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Preface to ”Artificial Intelligence and Sustainable

Energy Systems”

The problems that affect humanity are numerous and occur in different areas. Energy

sustainability, climate change, and the effects derived from pollutants and viruses are some of the

most relevant problems. The main objective of researchers is to provide solutions to these and other

problems.

In recent years, the use of artificial intelligence has increased considerably. Artificial intelligence

is used in different areas: energy, sustainability, medicine, health, mobility, industry, etc. Therefore, it

is necessary to continue advancing in the application of artificial intelligence to the aforementioned

problems. Energy is a precious commodity, and it is increasingly difficult to dispose of it

in a sustainable way. In this sense, renewable energy sources are essential, although the use

of conventional energy cannot be forgotten. Therefore, sustainable energy systems, integrating

renewable and non-renewable energy sources, smart systems, and new business models, are crucial.

Therefore, in this book, the best accepted and published articles on the topic ”Artificial

Intelligence and Sustainable Energy Systems” are presented. All articles refer to the themes indicated

above.

Luis Hernández-Callejo, Sergio Nesmachnow , and Sara Gallardo Saavedra

Editors

xi





entropy

Article

Minimum Distribution Support Vector Clustering

Yan Wang 1,2, Jiali Chen 1, Xuping Xie 1, Sen Yang 1, Wei Pang 3, Lan Huang 1,*, Shuangquan Zhang 1 and

Shishun Zhao 4

Citation: Wang, Y.; Chen, J.; Xie, X.;

Yang, S.; Pang, W.; Huang, L.; Zhang,

S.; Zhao, S. Minimum Distribution

Support Vector Clustering. Entropy

2021, 23, 1473. https://doi.org/

10.3390/e23111473

Academic Editors: Luis Hernández-

Callejo, Sergio Nesmachnow and Sara

Gallardo Saavedra

Received: 6 October 2021

Accepted: 4 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Symbol Computation and Knowledge Engineering, Ministry of Education, Colleague of
Computer Science and Technology, Jilin University, Changchun 130012, China; wy6868@jlu.edu.cn (Y.W.);
jiali19@mails.jlu.edu.cn (J.C.); xiexp21@mails.jlu.edu.cn (X.X.); ystop2020@gmail.com (S.Y.);
shuangquan18@mails.jlu.edu.cn (S.Z.)

2 School of Artificial Intelligence, Jilin University, Changchun 130012, China
3 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;

w.pang@hw.ac.uk
4 College of Mathematics, Jilin University, Changchun 130012, China; zhaoss@jlu.edu.cn
* Correspondence: Huanglan@jlu.edu.cn

Abstract: Support vector clustering (SVC) is a boundary-based algorithm, which has several advan-
tages over other clustering methods, including identifying clusters of arbitrary shapes and numbers.
Leveraged by the high generalization ability of the large margin distribution machine (LDM) and the
optimal margin distribution clustering (ODMC), we propose a new clustering method: minimum
distribution for support vector clustering (MDSVC), for improving the robustness of boundary
point recognition, which characterizes the optimal hypersphere by the first-order and second-order
statistics and tries to minimize the mean and variance simultaneously. In addition, we further prove,
theoretically, that our algorithm can obtain better generalization performance. Some instructive
insights for adjusting the number of support vector points are gained. For the optimization problem
of MDSVC, we propose a double coordinate descent algorithm for small and medium samples.
The experimental results on both artificial and real datasets indicate that our MDSVC has a significant
improvement in generalization performance compared to SVC.

Keywords: support vector clustering; margin theory; mean; variance; dual coordinate descent

1. Introduction

Cluster analysis groups a dataset into clusters according to the correlations of data.
To date, many clustering algorithms have emerged, such as plane-based clustering algo-
rithm, spectral clustering, density-based DBSCAN [1], OPTICS [2], Density Peak algorithm
(DP) characterizing the center of clusters [3], and partition-based k-means algorithm [4].
In particular, the support vector machine (SVM) has become an important tool for data
mining. As a classical machine learning algorithm, SVM can well address the issue of local
extremum and high dimensionality of data in the process of model optimization, and it
makes data separable in feature space through nonlinear transformation [5].

In particular, Tax and Duin proposed a novel method in which the decision boundaries
are constructed by a set of support vectors, the so-called support vector domain description
(SVDD) [6]. Leveraged by the kernel theory and SVDD, support vector clustering (SVC) was
proposed based on contour clustering, which has many advantages over other clustering
algorithms [7]. SVC is robust to noise and does not need to pre-specify the number of
clusters in advance. For SVC, it is feasible to adjust its parameter C to obtain better
performance, but this comes at the cost of increasing outliers, and it only introduces a soft
boundary for optimization. Several insights into understanding the features of SVC have
been offered in [8,9]. After studying the relevant literature, we found that these insights
mainly cover two aspects: the first aspect is the selection of parameters q and C. Lee and
Daniels chose a method similar to a secant to generate monotone increasing sequences of

Entropy 2021, 23, 1473. https://doi.org/10.3390/e23111473 https://www.mdpi.com/journal/entropy1
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q and establish the monotone function of q and radius R, which can be applied to high
dimensions; the second aspect is optimizing the cluster assignments. Considering the
high cost of the second stage of SVC, several methods have been proposed for improving
the cluster partition of SVC. First, Ben et al. improved the original Complete Graph (CG)
partition by using the adjacency matrix partition based on SV points, which simplified
the original calculation, but this method failed to avoid random sampling. Yang et al.
elaborated on the Proximity Graph (PG) to model the proximity structure of the m samples
with time complexity of O(m) or O(mlog(m)). However, the complexity of this algorithm
increases with the increase in dimensionality [10]. Lee et al. studied a cone cluster labeling
(CCL) method by using the geometry of the feature space to assign clusters in the data
space. If two cones intersect, the samples in these cones belong to the same cluster [9].
However, the performance of CCL is sensitive to kernel parameter q for the cones decided
by q. More recently, Peng et al. designed a partition method that utilized the clustering
algorithm of similarity segmentation-based point sorting (CASS-PS) and considered the
geometrical properties of support vectors in the feature space to avoid the downsides of
SVC and CASS-PS [11]. However, CASS-PS is sensitive to the number and distribution of
the support vector points recognized. Jennath and Asharaf proposed an efficient cluster
assignment algorithm for SVC using the similarity of feature set for data points utilizing
an efficient MEB approximation algorithm [12].

It is well known from the margin theory that maximizing the minimum margin is
often not the best way for further improving the learning performance. Regarding this,
the introduction of the margin mean and margin variance in distribution can make the
model achieve better generalization performance, as revealed by Gao and Zhou [13,14].
In classification and regression analysis, there are many methods for improving the learn-
ing performance by considering the statistical information of the data. Zhang and Zhou
proposed the large margin distribution machine (LDM) and optimal margin distribu-
tion machine (ODM) for data classification, which adjusted the mean and variance to
improve the performance of the model [15,16]. In regression analysis, MDR, ε-SVR, LDMR,
and v-MDAR considers the marginal distribution to achieve better performance. MDR, pro-
posed by Liu et al., minimizes the regression deviation mean and the regression deviation
variance, which introduced the statistics of regression deviation into ε-SVR [17]. To deal
with this issue, Wang et al. characterized the absolute regression deviation mean and the
absolute regression deviation variance and proposed the v-minimum absolute deviation
distribution regression (v-MADR) machine [18]. However, it is not very appropriate when
both positive-label and negative-label samples are present. Inspired by LDM, Rastogi et al.
also proposed a large margin distribution machine-based regression model (LDMR) [19].

In clustering analysis, for a good clustering, when the labels are consistent with the
clustering results, SVM can obtain a larger minimum margin. Inspired by this, maxi-
mum margin clustering (MMC) considered the large margin heuristic from SVM and
added the maximum margin to all possible markers [20]. Improved versions of MMC
are also proposed [21]. The optimal margin distribution clustering (ODMC) proposed
by Zhang et al. forms the optimal marginal distribution during the clustering process,
which characterizes the margin distribution by the first- and second-order statistics. It also
has the same convergence rate as state-of-the-art cutting plane-based algorithms [22].

The success of the aforementioned models suggests that there may still exist room for
further improving SVC. These models do not involve the improvement in the generalization
performance of SVC, that is, the reconstruction of hyperplane, when the distribution of data
is fixed in feature space. In this research, we propose a novel approach called minimum
distribution support vector clustering (MDSVC), and our novel contributions are as follows:

• We characterize the envelope radius of minimum hypersphere by the first- and second-
order statistics, i.e., the mean and variance. By minimizing these two statistics, it can
avoid the problem of too many or too few support vector points caused by the
inappropriate kernel width coefficient q to some extent, form a better cluster contour,
and, thus, improve the accuracy.
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• We enhance the generalization ability and robustness of the algorithm by introducing
these statistics while the distribution of data is fixed for the given q in feature space.

• We further prove that our method has better performance inspired by the expectation
of the probability of test error proposed in SVDD.

• We customize a dual coordinate descent (DCD) algorithm to optimize the objective
function of MDSVC for our experiments.

The remainder of this paper is organized as follows. Section 2 introduces the notations,
the recent progress in the margin theory, and the SVC algorithm. In Section 3, we present
the MDSVC algorithm, which minimizes the mean and the variance, and propose a DCD
algorithm to solve the objective function of MDSVC. Section 4 reports our experimental
results on both artificial and real datasets. We discuss our method in Section 5 and draw
conclusions in Section 6.

2. Background

Suppose D = [x1, . . . , xm] is a dataset of m samples, and each column is a sam-
ple of a d-dimensional vector. φ(x) is the mapping function induced by a kernel k, i.e.,
k
(
xi, xj

)
= φ(xi)

Tφ
(
xj
)
. SVC used the nonlinear Gaussian kernel function k

(
xi, xj

)
=

exp
(
−q ∗ ‖xi − xj‖2). Obviously, we have k(x, x) = 1. Both MDSVC and SVC aim to

obtain the radius R of the sphere, center a of the hypersphere, and the radius of each
point in feature space. Formally, we denote X the matrix whose i-th column is φ(xi),
i.e., x = [φ(x1), . . . , φ(xm)]. In this paper, we use the Gaussian kernel as our nonlinear
transformation approach to map data points to feature space.

Recent Progress in Margin Theory

Recent margin theory indicates that maximizing the minimum margin may not lead to
an optimal result and better generalization performance. In the SVC algorithm, when the
kernel width coefficient q is selected, the distribution of data points mapped to the feature
space is determined. If the distribution of boundary data is different from that of internal
data, the hyperplane constructed by SVC may not make better use of the data information,
thus reducing the performance of SVC. Additionally, we note that SVC is always overfitting
with too many support vector points in practice. Gao and Zhou have already demonstrated
that marginal distribution is critical to the generalization performance [13]. The high
generalization ability of margin has been shown in v-MADR, which minimizes both the
absolute regression deviation mean and the absolute regression deviation variance [18].
We also note that SVC can be regarded as a binary classifier divided by the division hyper-
plane. Inspired by the aforementioned research, we introduce the mean and variance of the
marginal distribution and minimize them to reduce the number of support vector points.

For the convenience of readers, a more detailed description of SVC is presented in
Appendix A.

3. Minimum Distribution Support Vector Clustering

In this section, we briefly delineate the process of MDSVC, including three subsections,
the formula of MDSVC, which minimizes both the mean and the variance, the optimiza-
tion algorithms based on dual coordinate descent method, and the statistical property of
MDSVC that shows the upper bound of the expectation of error. In this research, as men-
tioned before, we take the Gaussian kernel as a nonlinear transformation approach to map
data points to the feature space, and then we derive k(x, x) = 1, which is critical for us to
simplify the variance and solve the objective function. In addition, we define the mean and
variance based on the Euclidean distance. The reason we employ the Euclidean distance
is that we can take the objective function as the convex quadratic programming function
and the Euclidean norm represents the actual distance between two points rather than the
distance on the surface.

We delineate the idea of our algorithm in the feature space in Figure 1 roughly,
and more detailed descriptions are given in Sections 3.1.1 and 3.1.2. First, the hyperplanes

3
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of MDSVC, SVC, and the unit ball are shown in Figure 1a. By characterizing and minimizing
our mean and variance, we can, thus, have the hypersphere of MDSVC as an inclined
curved surface in the feature space, as indicated in red in Figure 1a. The intersection of
the SVC’s hypersphere and the unit sphere is a cap-like area. We further illustrate the
main difference between MDSVC and SVC through a lateral view and top view, which are
shown in Figure 1b,c, respectively. Figure 1b is the schematic diagram of the MDSVC’s Cap
and the SVC’s Cap. We can find that the center a of MDSVC’s hypersphere moves away
from the center of the ball and inclines to the distribution of the overall data because of the
mean and variance. In Figure 1c, we use Soft-Rsvc to represent the soft boundary of SVC.
The centers of the three spheres, namely the unit ball, SVC’s hypersphere, and MDSVC’s
hypersphere, are denoted by o, asvc, and a, respectively. We also use red points to indicate
the SVs of MDSVC. As shown in Figure 1c, we can see how the boundary of MDSVC R
is determined. Finally, we use Figure 1d to show the distribution of data points and the
details of the Cap formed by SVC.

Figure 1. (a) Hyperplanes of SVC and MDSVC. (b) Two caps formed by SVC and MDSVC with the unit-ball respect tively.
(c) Top view of Figure 1a. (d) Data distribution in the cap.

3.1. Formula of MDSVC
3.1.1. Preliminary

Let φ(x) be the mapping function induced by a kernel k, i.e., k
(
xi, xj

)
= φ(xi)

Tφ
(
xj
)
.

In the feature space, we use the Gaussian kernel, and we derive k(x, x) = 1. The distance
between a and x is ‖φ(x)− a‖2, where ‖.‖ is the Euclidean norm and a is the center of
the sphere. We denote X as the matrix whose i-th column is φ(xi). In what follows in the

4
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rest of this subsection, we first give the definitions of statistics of mean and variance in
clustering; we then present Theorems 1 and 2 to facilitate the formation of the variance;
next, we employ the mean and variance (Equations (1) and (2)) to obtain and elucidate the
final formula as a convex quadratic programming problem.

Definition 1. The margin mean is defined as follows.

−
γ =

1
m∑

i
‖φ(xi)− a‖2 = 1 − 2

m
aTXe + a2 (1)

where e stands for the all-one column vector of m dimensions. Because we use the Gaussian
kernel, we have k(x, x) = 1, which can facilitate the calculation. The reason for choosing
this form of mean is that we incline to make the center of the MDSVC’s sphere close to the
denser part of the samples. Next, we define the margin variance.

Definition 2. The margin variance is defined as follows.

∧
γ = 1

m2

m
∑

i=1

m
∑

j=1
(‖φ(xi)− a‖2 − ‖φ(xj)− a‖2)2

= 4
m2

m
∑

i=1

m
∑

j=1
(aTφ(xi)− aTφ(xj))

2

= 4
m2

m
∑

i=1

m
∑

j=1
(aTφ(xi)φ(xi)

Ta − 2aTφ(xi)φ(xj)
Ta + aTφ(xj)φ(xj)

Ta

)
= 8

m

m
∑

i=1
aTφ(xi)φ(xi)

Ta + 8
m2

m
∑

i=1

m
∑

j=1
aTφ(xi)φ(xj)

Ta

(2)

The variance considers the distribution of the overall data rather than the distribu-
tion of SVs. Note that if we only characterize the mean in our method, the hyperplane
would incline to dense clusters and there may appear more support vectors for the high
density of the clusters, which will result in unbalance. However, we should realize that
the mean is just the first step to adjusting the sphere of MDSVC. Next, we introduce the
variance to adjust the boundary with less volatility. We can find that the variance quan-
tifies the scatter of clustering. Additionally, we denote kernel matrix Q = XTX, where
Qij = k

(
xi, xj

)
= φ(xi)

Tφ
(
xj
)
. Note that φ(xi)φ

(
xj
)T , different from φ(xi)

Tφ
(
xj
)
, is diffi-

cult to obtain due to its complicated form, so we have to use an alternative way to address
this issue. Thus, we use the following Theorem 1. Note that the formula of variance can
be further simplified, so we employ Theorem 2 to elucidate and facilitate the form of the
variance. Finally, we obtain the simplified form for the margin variance as in Equation (8).

Theorem 1. The center of hypersphere a can be represented as follows,

a =
m

∑
i=1

αiφ(xi) = Xα (3)

Proof of Theorem 1. Suppose that a can be decomposed into the span of φ(xi) and an
orthogonal vector v, that is

a =
m

∑
i=1

αiφ(xi) + v = Xα + v, α = [α1, . . . , αm]
T (4)

where v satisfies φ(xi)
Tv = 0 for all i, i.e., xTv = 0. Then we have the following formula

a2 = αTXTXα + vTv ≥ αTXTXα (5)

5
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Therefore, when minimizing a, v = 0 does not affect its value. The formula of mean is
then derived as follows

−
γ = 1

m ∑
i
‖φ(xi)− a‖2 = 1 − 2

m αTXTXe + αTXTXα + vTv

≥ 1 − 2
m αTXTXe + αTXTXα

From the aforementioned formula, the mean is equivalent to modulus a in optimiza-

tion, that is,
−
γ ⇔ aTa . For variance, we have the following form

∧
γ = 1

m2

m
∑

i=1

m
∑

j=1
(‖φ(xi)− a‖2 − ‖φ(xj)− a‖2)2

= 8
m

m
∑

i=1
aTφ(xi)φ(xi)

Ta + 8
m2

m
∑

i=1

m
∑

j=1
aTφ(xi)φ(xj)

Ta

= 8
m

m
∑

i=1
αTXTφ(xi)φ(xi)

TXα+ 8
m2

m
∑

i=1

m
∑

j=1
αTXTφ(xi)φ(xj)

TXα

(6)

Thus, the variance is independent of v. The rest of the optimization objectives are also
independent of v. Based on all of the aforementioned equations, a can be represented as
the form of Equation (3). �

Theorem 2. QiQi
T , ∑m

i=1 ∑m
j=1 QiQj

T, H, P, QG are symmetric matrices where

Qi =

⎡⎢⎣ k(x1, xi)
...

k(xm, xi)

⎤⎥⎦, H = 8λ2
m

m
∑

i=1
QiQi

T

P = 8λ2
m2

m
∑

i=1

m
∑

j=1
QiQj

T , G = ((λ1 + 1)Q + H + P)−1Q

((λ1 + 1)Q + H + P)−1 refers to the inverse matrix of (λ1 + 1)Q + H + P

Proof of Theorem 2. Qi(m×1) is a column vector of the kernel matrix Q with the follow-
ing form

Qi(m×1) =

⎡⎢⎣ k(x1, xi)
...

k(xm, xi)

⎤⎥⎦

QiQi
T =

⎡⎢⎣ k(x1, xi)
...

k(xm, xi)

⎤⎥⎦[ k(x1, xi) · · · k(xm, xi)
]

=

⎡⎢⎢⎣
k(x1, xi)

2 · · · k(x1, xi)k(xm, xi)
...

. . .
...

k(x1, xi)k(xm, xi) · · · k(xm, xi)
2

⎤⎥⎥⎦

6



Entropy 2021, 23, 1473

NotethatQiQi
T is a symmetric matrix from the above form. Obviously, ∑m

i=1 ∑m
j=1 QiQj

T

is a symmetric matrix. Therefore, H and P are both symmetric matrices. We deduce QG
as follows

QG = Q((λ1 + 1)Q + H + P)−1Q
⇒ (QG)T = (Q((λ1 + 1)Q + H + P)−1Q)T

= Q((λ1 + 1)Q + H + P)T)−1Q = Q((λ1 + 1)Q + H + P)−1Q
⇒ (QG)T = GTQ = QG

Therefore, QG is a symmetric matrix. �

According to Theorem 1, we have the following form of mean and variance

−
γ =

1
m∑

i
‖φ(xi)− a‖2 = 1 − 2

m
αTQe + αTQα (7)

∧
γ = 8

m αT
m
∑

i=1
QiQi

Tα + 8
m2 αT

m
∑

i=1

m
∑

j=1
QiQj

Tα

= αT( 8
m

m
∑

i=1
QiQi

T + 8
m2

m
∑

i=1

m
∑

j=1
QiQj

T)α
(8)

3.1.2. Minimizing the Mean and Variance

Referring to the above subsections, we define the formula of MDSVC as follows

min
R,a

R2 + λ1
−
γ + λ2

∧
γ + C

m
∑

i=1
ξi

s.t. ‖φ(xi)− a‖2 ≤ R2 + ξi,
ξi ≥ 0

(9)

Consider that the center a of the sphere is closer to the denser part in the feature space
as minimizing the mean, and then we minimize the value of λ2 to make more points closer
to a, resulting in fewer support vector points. Next, we simplify Equation (9).

Based on Theorem 1, Equation (9) leads to

min
R,α

R2 + αT(λ1Q + H + P)α − 2λ1
m eTQα + C

m
∑

i=1
ξi

s.t. ‖φ(xi)− Xα‖2 ≤ R2 + ξi,
ξi ≥ 0

(10)

By introducing Lagrange multipliers βi, μi, the Lagrange function of Equation (12) is
given as follows

L(R, α, ξ, β, μ) = αT((λ + 1)1Q + H + P)α

−( 2λ1
m eTQ + 2βTQ)α + R2(1 −

m
∑

i=1
βi) +

m
∑

i=1
(C − μi − βi)ξi

(11)

By setting the partial derivatives {R, α, ξ} to zero for satisfying the KKT conditions,
we have the following equations of derivatives

∂L
∂R

= 2R − 2R
m

∑
i=1

βi = 0 (12)

∂L
∂α

= 2αT((λ1 + 1)Q + H + P)− (
2λ1

m
eTQ + 2βTQ) = 0 (13)

∂L
∂ξi

= C − μi − βi = 0 (14)

7
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Thus, we adopt G = ((λ1 + 1)Q + H + P)−1Q, where ((λ1 + 1)Q + H + P)−1 refers
to the inverse matrix of ((λ1 + 1)Q + H + P). On the basis of these equations, we obtain
vector A as follows

A =
λ1

m
((λ1 + 1)Q + H + P)−1Qe =

λ1

m
Ge (15)

Substituting Equation (15) into Equation (13), we thus have

α = A + Gβ (16)

By substituting Equations (12)–(14) into Equation (11), Equation (11) is re-written
as follows

L(β) = (A + Gβ)T((λ1 + 1)Q + H + P)(A + Gβ)− ( 2λ1
m eTQ + 2βTQ)(A + Gβ)

= min
β

1
2 βTDβ + Fβ (17)

We notice that G = ((λ1 + 1)Q + H + P)−1Q, so D and F have the following form

D = 4QG − 2GTQ = 2GTQ = 2QG
F = 2λ1

m eTQG
(18)

Referring to the above equations, thus, we derive our formula of MDSVC as follows

min
β

1
2 βTDβ + Fβ

s.t. 0 ≤ βi ≤ C
(19)

Based on Theorem 2, D is symmetric and consists of positive elements. We can then
make a conclusion that Equation (19) is a convex quadratic problem resulting from the
convex objective function and convex domain β ∈ [0, C]. Thus, we can solve the objective
function with convex quadratic programming.

3.2. The MDSVC Algorithm

Due to the simple box constraint and the convex quadratic objective function of our
optimization problem, we adopt the DCD algorithm to minimize one of the variables
continuously and keep the other variables fixed to obtain the closed form solution. For our
problem, we adjust the value of βi with a step size of t to make f (β) reach the minimum
value, while keeping other βk 
=i unchanged. Our sub-problem is thus as follows{

min
β

f (β + tei)

0 ≤ βi + t ≤ C
(20)

where ei = (0, . . . , 1i, .., 0)m
T denotes the vector with 1 in the i-th element and 0 is elsewhere.

For function f, we have

f (β + tei) =
1
2

diit2 +∇ f (β)it + f (β) (21)

where dii = ei
TDei is the diagonal entry of D. Then we calculate the gradient by the

following form
∇ f (β)i = ei

TDβ + ei
TFT (22)

As f (β) is independent of t, we can consider Equation (21) as a function of t. Hence,
f (β + tei) can be transformed into a simple quadratic function of t. Thus, we get the

8
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minimum value of Equation (21) by setting the derivation of the aforementioned function
with respect to t to zero. Therefore, t is represented as follows

t = −∇ f (β)i
dii

(23)

We denote βi
iter as the value of βi at the i-th iteration, thus, the value of βi

iter+1 can be
obtained as

βi
iter+1 = βi

iter − ∇ f (β)i
dii

(24)

Considering the box constraint 0 ≤ βi ≤ C of the problem, we can further obtain the
final form of updating βi

βi ← min
(

max
(

βi −
∇ f (β)i

dii
, 0
)

, C
)

(25)

According to Equations (16) and (19), we have [∇ f (β)]i = 2ei
TQα. Algorithm 1

(MDSVC) describes the procedure of MDSVC with the Gaussian kernel.

Algorithm 1: MDSVC. The DCD Algorithm for our method MDSVC

Step 1. Input: Data set X, parameters:[λ1, λ2, C, q ], maxIter, m
Step 2. Initialization: β = λ1

m e, α = 2λ1
m Ge, dii = 2ei

TQGei, G = (( λ1 + 1)Q + H + P)−1Q
Step 3. Iteration(1~maxIter): Iteration stops when the β converges.
Step 3.1. Randomly disturb β and then get the random index i
Step 3.2. Loop (i = 1, 2, . . . , m): update gradient and update β, α alternately.

[∇ f (β)]i ← 2ei
TQα

βi
temp ← βi

βi ← min
(

max
(

βi − ∇ f (β)i
dii

, 0
)

, C
)

α ← α +
(

βi − βi
temp)Gei

Step 4. Output: α, β.

Meanwhile, we give the analysis of the computational complexity of Algorithm MDSVC,
where m denotes the number of the examples and n represents the number of features.
We set maxIter to 1000 during our experiments, the time complexity of DCD, thus, can be
cast as maxIter*m*m. Furthermore, we can infer that the time complexity of DCD in this
paper is the sum of time complexity as shown in Table 1. Considering that m is much
greater than n, thus, the time complexity of DCD is O(m3), and the space complexity of
DCD is O(m2).

Table 1. Time Complexity Calculation of formulas involved.

The Formula of MDSVC Time Complexity of the Formula

Q = xTx m*n*m

H = 8λ2
m

m
∑

i=1
QiQi

T m3

P = 8λ2
m2

m
∑

i=1

m
∑

j=1
QiQj

T m3

G = ((λ1 + 1)Q + H + P)−1Q m3

A = λ1
m ((λ1 + 1)Q + H + P)−1Qe = λ1

m Ge m2

3.3. The Properties of MDSVC

We briefly introduce the properties of MDSVC in this subsection. Hereinafter, the
points with 0 < βi < C will be referred to as support vectors (SVs); the points with βi = C
will be called bounded support vectors (BSVs), which are the same as in SVC. Addition-
ally, the SVDD [5] used cross-validation (leave-one-out) as the criterion to characterize

9
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the expectation of the probability of test error, and, then, they describe the expectation
as follows

E(P(error)) =
num(SV)

m
(26)

The above expectation is more suitable as a standard for adjusting the parameters in
the experiments of SVDD rather than having a theoretical basis. It can only estimate the
error of the first kind, i.e., the target class. By analyzing the above equation, we further
infer that our algorithm can reduce the number of SVs to some extent compared with SVC.
Thus, we can obtain better generalization performance compared with SVC theoretically.
Inspired by SVDD and LDM, we give the expectation in a manner similar to the approach
used in LDM.

Theorem 3. The center. Let β represent the optimal solution of Equation (19) and E[R(β)] be the
expectation of the probability of error, and then we obtain

E[R(β)] ≤
E[d ∑

i∈I1

βi
∗

2(1−R2)
+ |I2|]

m
, (27)

where I1 ≡ {i|0 < αi < C}, I2 ≡ {i|αi = C}, d = max{diag{D}}.

Proof of Theorem 3. Suppose

β∗ = argmin
0≤β≤C

f (β),

βi = argmin
0≤β≤C,βi=0

f (β), i = 1, . . . , m,

and the parameters of the sphere are R and a, respectively. As in [16], the expectation
is calculated as below

E[R(β)] =
E[γ((x1, y1), . . . , (xm, ym))]

m
, (28)

where γ((x1, y1), . . . , (xm, ym)) is the number of errors produced during the leave-one-out
procedure. Data points are divided into three categories. Note that if βi

∗ = 0, the point is
interior in the data space. The cluster of the interior points is totally up to the SVs regardless
of the assignment of the cluster in the second stage of the MDSVC procedure based on the
analysis of SVDD. Hence, we consider two cases as follows:

(1) 0 < βi
∗ < C, the data is the support point according to the SVC and KKT conditions,

we have

f (βi)− min
t

f (βi + tei) ≤ f (βi)− f (β∗) ≤ f (β∗ − βi
∗ei)− f (β∗), (29)

where ei is a vector with 1 in the i-th coordinate and 0 elsewhere. Incorporating
Equation (16) into the aforementioned formula, we have 〈φ(xi, a)〉 ≤ βi∗dii

2 , where xi

are SVs. Further, note that if xi is an SV, we have 〈φ(xi, a)〉 = ‖a‖2 = 1 − R2 , which is
a lemma proposed in CCL [9]. Thus, we rearrange 〈φ(xi, a)〉 ≤ βi∗dii

2 , and then
obtain 1 ≤ βi∗dii

2(1−R2)
.

(2) βi
∗ = C, xi is the bounded SV (SVs) and must be misclassified in the leave-one-out

procedure. Hence we have

γ((x1, y1), . . . , (xm, ym)) ≤ d ∑
i∈I1

βi
∗

2(1 − R2)
+ |I2| (30)

10
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where I1 ≡ {i|0 < αi < C}, I2 ≡ {i|αi = C}, d = max{diag{D}}. Taking the mean of
both sides of Equation (30) and with Equation (28), we finally obtain the result that
Equation (27) holds. �

4. Experimental Study

In this section, MDSVC is compared with k-means (KM) [4], optimal margin distri-
bution clustering (ODMC) [22], spectral clustering (SC) [23], mean shift (MS) [24], and hi-
erarchical clustering (HC) [25]. We adopt the results of K-means acting as a baseline
rather than maximum margin clustering (MMC) [20] since it could not return results in
a reasonable time for most datasets. We experimentally evaluate the performance of our
MDSVC compared with the original algorithms of SVC on classic artificial datasets and
several medium-sized datasets; that is, we focus on the difference between MDSVC and
SVC. Table 2 summarizes the statistics of these data sets. All real-world datasets used for
our experiments can be found at UCI (http://archive.ics.uci.edu/ml, 2 February 2021).
In Table 2, all of the samples of artificial datasets, namely convex, dbmoon, and ring,
are added with Gaussian noises, which are representative of different types of datasets.
All algorithms are implemented with MATLAB R2021a on a PC with a 2.50 GHz CPU and
64 GB memory.

Table 2. Experimental Datasets.

Source Datasets Samples Feature

artificial
convex 150 3

dbmoon 200 2
ring 900 2

real

iris 150 3
glass 214 9
breast 277 9
heart 303 13
liver 345 6

ionosphere 351 34
vote 435 16

balance 625 4

4.1. Evaluation Criteria

To evaluate the performance of MDSVC, we use two external indicators, clustering
accuracy (Acc) and Adjusted Rand Index (ARI), as our performance metrics. Table 3 shows
the definition of the metrics mentioned.

Table 3. Formula of metrics.

Metrics Definition

Acc
Acc =

r
∑

i=1
ci

m
ARI ARI = RI−E[RI]

max(RI)−E[RI]

Accuracy: m is the total number of samples. We use ci to represent the number of the
i-th cluster points classified correctly. We predict the clusters r by performing clustering
methods and then measure the accuracy according to the true label.

Adjusted Rand Index: [y1, y2, . . . , ys] stands for the true labels of datasets, while
[c1, c2, . . . , cr] stands for the clusters separated by MDSVC. The sum of TP and TN that we
need to obtain can represent the consistency between the clustering result and the result
of the original cluster labels. We can distinctly compute it through the confusion matrix.
The Rand index (RI), which equals (TP + TN)/Cm

2 , represents the frequency of occurrence
of agreements over all of the instance pairs. Finally, we can calculate the RI value. However,

11
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the RI value is not a constant close to zero for two random label assignments. The ARI,
discounting the expected RI of random partition, can however address this issue.

4.2. Experimental Results and Analysis

In the process of SVC tuning, it is noted that there are often too many SVs or too
few SVs, failing to form a better contour. Irrational SVs may not divide the clusters better
and/or obtain higher precision. Based on this observation, we design experiments on
the number of SVs with varying values of λ1 and q. As mentioned before, the Gaussian
kernel k(x, y) = exp(−q *‖x − y‖2) is employed for nonlinear clustering, and we can derive
k(x, x) = 1. We apply the commonly used dichotomy method to select the kernel width
coefficient q.

Before conducting experiments on the evaluations for MDVSC and other clustering
methods, we analyze the relationship between λ1 and λ2 about SVs on two artificial datasets
and two real datasets in Figure 2. For the appropriate range of these two parameters, we can
realize that the number of SVs increases when λ1 increases as a is closer to the denser data
in the feature space. Furthermore, the increase in λ2 leads to a decrease in the number of
SVs for less volatility in terms of distance from a because the sphere is in the right place
with fewer SVs. Thus, it is instructive for us to adjust λ1 and λ2 to solve the problem of too
many or too few SVs when q and C are given.

We show the results with respect to the corresponding performance metrics in Tables 4
and 5, where PERCENTAGE represents the percentage of the average number of SVs to the
total data. We adopt/to represent the method has no need to compute the PERCENTAGE.
We summarize the win/tie/loss counts for MDSVC in the last row compared with other
methods. For a clearer comparison between MDSVC and SVC, q is selected from the same
range [2−7, 27] to compute the PERCENTAGE.

In particular, the evaluation of datasets is shown in Tables 4 and 5. Table 4 shows
that MDSVC is almost on par with SVC on artificial datasets. It is worth noting that our
MDSVC can reduce the number of SVs significantly under the same conditions compared
to SVC, i.e., the same q and C. In Table 5, although we note that both SVC and MDSVC
have worse Acc or ARI on some datasets, MDSVC still obtains better results than SVC and
other methods on most real datasets. Based on the analysis of the experiments, we derive
that we can change the SVs by changing the other parameters, λ1 and λ2, to achieve better
performance when the parameters q and C are selected for MDSVC. In addition, in terms of
the CPU time, MDSVC has superior performance on the datasets (ring, vehicle) with higher
dimensions and larger size than SVC, as shown in Figure 3. Referring to the comparison of
the CPU time between MDSVC and SVC, we indicate that MDSVC has two advantages:
better performance and less running time.

The estimated clustering assignments on artificial datasets, convex, and ring, are shown
in Figure 4. In order to show the clusters divided by SVs more intuitively and accurately,
we draw the contour lines decided by R. We note that the SVC algorithm is almost al-
ways overfitting on artificial datasets when the boundary is optimal; that is, all data
points are identified as SVs, and, thus, Figure 4 only shows the best non-fitting effect of
SVC. Obviously, MDSVC is superior to SVC in terms of forming better boundaries on
artificial datasets.

Considering Figure 4a–d, the boundaries of the convex and the dbmoon formed by
MDSVC are more rational than SVC in terms of separating clusters. For the ring set,
the challenge for SVC is to make rational boundaries with the appropriate number of SVs.
MDSVC forms four more rational boundaries and, thus, separates the ring set into two
clusters, as shown in Figure 4e, while SVC recognizes only two boundaries in Figure 4f.
Moreover, the introduction of statistical items (non-negative), which makes the hyperplane
closer to the denser part in the feature space, results in the value of R being larger than
SVC. Therefore, it can be seen that we have obtained a greater boundary under the premise
of not increasing outliers. In summary, MDSVC obtains better boundaries and a better
presentation of the statistical information in the above datasets.
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Figure 2. (a): The relationship between λ1 and λ2 on dbmoon about SVs. (b): The relationship between λ1 and λ2 on convex.
(c): The relationship between λ1 and λ2 on glass about SVs. (d): The relationship between λ1 and λ2 on iris about SVs.

Table 4. The result comparisons on artificial datasets.

Datasets Metric KM SC HC ODMC SVC MDSVC

convex
ARI
Acc

PERCENTAGE

0.970
0.820

/

0.748
0.013

/

1.000
0.333

/

0.329
0.333

/

1.000
1.000
64.2%

1.000
1.000
35.0%

dbmoon
ARI
Acc

PERCENTAGE

0.638
0.900

/

0.324
0.185

/

0.516
0.140

/

0.498
0.500

/

0.928
0.990
79.7%

1.000
1.000
55.3%

ring
ARI
Acc

PERCENTAGE

0.113
0.322

/

0.171
0.338

/

1.000
0.500

/

0.420
0.511

/

1.000
1.000
95.8%

1.000
1.000
53.1%

MDSVC: w/t/l
ARI
Acc

PERCENTAGE

(3/0/0)
(3/0/0)

/

(3,0,0)
(3,0,0)

/

(3,0,0)
(3,0,0)

/

(3,0,0)
(3,0,0)

/

(1,2,0)
(1,2,0)
(3,0,0)

For further evaluation, we assess the impact of parameters on ARI, Acc, and PER-
CENTAGE as the change of parameter values may have a significant influence on the
clustering results. Percentage characterizes the level of SVs. For our MDSVC, there are
three trade-off parameters λ1, λ2, C, and the kernel parameter q. We show the impact of
λ1 on ARI, Acc, and PERCENTAGE by varying it from 2−5 to 25 while making the other
parameters fixed as the optimal ones. As one can see from Figure 5e–h, the number of SVs
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is more sensitive to the kernel q and C compared to λ1 and λ2. In Figure 5b,d,f,h,j,l, we can
see that the results are not sensitive to parameter λ1 after reaching the optimal results on
most datasets. To sum up, we indicate that the mean and variance are both the main factors
that affect the performance of the algorithm.

Table 5. The result comparisons on real datasets.

Datasets Metric KM SC HC ODMC SVC MDSVC

iris
ARI 0.730 0.474 0.558 0.329 0.848 0.828
Acc 0.347 0.193 0.333 0.333 0.667 0.753

PERCENTAGE / / / / 96.1% 51.8%

glass
ARI 0.230 0.067 0.259 0.260 0.750 0.751
Acc 0.327 0.014 0.028 0.327 0.289 0.351

PERCENTAGE / / / / 89.8% 12.5%

breast
ARI 0.171 0.177 0.062 0.585 0.542 0.612
Acc 0.376 0.087 0.025 0.707 0.484 0.711

PERCENTAGE / / / / 98.7% 71.5%

heart
ARI 0.564 0.074 0.058 0.637 0.571 0.580
Acc 0.551 0.172 0.195 0.772 0.990 0.990

PERCENTAGE / / / / 61.3% 55.1%

liver
ARI 0.001 0.002 0.009 0.511 0.489 0.512
Acc 0.154 0.033 0.067 0.420 0.476 0.493

PERCENTAGE / / / / 89.7% 50.4%

ionosphere
ARI 0.178 0.191 0.189 0.612 0.747 0.756
Acc 0.477 0.393 0.171 0.738 0.687 0.734

PERCENTAGE / / / / 90.6% 26.2%

vote
ARI 0.296 0.009 0.512 0.525 0.512 0.525
Acc 0.540 0.112 0.356 0.386 0.361 0.387

PERCENTAGE / / / / 95.2% 88.7%

balance
ARI 0.114 0.184 0.695 0.112 0.570 0.653
Acc 0.294 0.075 0.016 0.147 0.278 0.356

PERCENTAGE / / / / 61.4% 58.1%

MDSVC: w/t/l
ARI (7,0,0) (7,0,0) (6,0,1) (4,2,1) (5,1.1)
Acc (6,0,1) (7,0,0) (7,0,0) (5,1,1) (6,1,0)

PERCENTAGE / / / / (7,0,0)

Figure 3. The CPU time of MDSVC and SVC.
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Figure 4. The result of MDSVC on three artificial datasets: convex, dbmoon, and ring. The parameters are set as follows:
(a): q = 0.1; λ1= 8; λ2 = 32; C = 0.1. (b) q = 1; C = 0.1. (c): q = 0.1; λ1 = 1; λ2 = 4; C = 0.1. (d) q = 0.5; C = 0.1. (e): q = 2; λ1 = 200;
λ2 = 300; C = 0.1. (f) q = 1; C = 0.5.
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Figure 5. The impact of λ1, λ2, C, and kernel parameter Q on ARI, Acc, and PERCENTAGE for different datasets. (a–d):
The impact of λ1, λ2, C, and kernel parameter Q on Acc. (e–h): The impact of λ1, λ2, C, and kernel parameter Q on
PERCENTAGE. (i–l): The impact of λ1, λ2, C, and kernel parameter Q on Acc.
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5. Discussion

It has been proved that trade-off parameters, q and C, have a significant impact
on the results of SVC [5,7]. Obviously, we may spend more time in finding the optimal
parameters that characterize a better boundary of clusters for SVC. This will result in a large
number of SVs during the tuning process, which may affect the partition of clusters and is
unreasonable, obviously. We know that it is feasible to adjust parameter C to obtain better
performance, but it comes at the cost of increasing outliers. To solve these problems and
inspired by the margin theory, we reconstruct a new hypersphere to identify the clusters to
make denser sets more easily divided by employing the margin distribution, and then we
establish the corresponding theory. We circumvent the high complexity resulting from the
variance by demonstrating Theorem 1 and employing the Gaussian kernel, and then we
derive the convex optimization problem.

As for the MDSVC algorithm, we design the customized DCD method to solve the
convex optimization problem [25]. MDSVC has two other trade-off parameters compared
to SVC, namely, λ1, λ2. Furthermore, we demonstrate that both of them play an important
role in MDSVC through experiments shown in Figure 2 and equations about hypersphere
we derive in Section 2. In Figure 4, we can obtain some useful instructive insights as an
avenue for adjusting the number of SVs. Therefore, we can obtain better performance by
increasing the λ1 value while there are few SVs. Moreover, we can increase λ2 value to
reduce SVs. If one focuses on forming better outlines of clusters, the recommendation is to
control the ratio of λ1 and λ2 to between 10−2 and 102. Once the number of SVs changes
drastically, there is no need for us to increase the value of λ1 and λ2. Meanwhile, what we
should be aware of is that λ1 should not be zero. We further theoretically prove that the
error has an upper bound in Section 3. Due to the lack of prior knowledge (true labels) of
clustering algorithms, it is difficult for us to achieve our error bound in a manner similar to
the approach used in LDM. We make it by taking the advantage of the error proposed in
SVDD [6] and the lemma derived in CCL [9]. According to Figure 1b,c and Figure 4c–e,
minimizing the mean and variance can make datasets properly outlined with a proper
amount of SVs from a practical and theoretical perspective, while the outlines of SVC are
inappropriate. However, we found that our method performed generally when the edge
points of datasets are separated relatively densely, where edge points are a collection of
relatively sparsely distributed points in the data space. Based on the experiments and
formulas obtained; thus, we think that our method performs better on the datasets with
edge points dispersing sparsely.

In short, the novel contribution of our work is that we redefine the hyperplane and the
center in feature space considering the distribution of data to form better boundaries with
a proper amount of SVs. Furthermore, experimental results in most datasets indicate that
MDSVC achieves better performance, which further demonstrates the superiority of our
method. In the future, we will design a corresponding method to improve the performance,
which redefines the clustering partition.

6. Conclusions

In this research, we propose MDSVC, which employs the mean and variance, lever-
aged by marginal theory and SVM. The novelty of MDSVC lies in its reconstruction of
the hyperplane, reducing the number of support vector points compared to SVC under
the same conditions, and the improvement in generalization performance. We also have
theoretically proven that our generalization performance has been improved, and the error
has an upper bound. To optimize the objective function of MDSVC, we employ the DCD
method with high applicability and efficiency. Experimental results in most datasets show
that MDSVC achieves better performance, which indicates its superiority.

In our future work, we will study the partition of the second stage to further improve
the performance of our method. At the same time, to assess the application potential of our
algorithm, we will employ our model in more application scenarios.
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Appendix A. Support Vector Clustering

Support vector clustering (SVC) introduces soft boundary as a tolerance mechanism to
reduce the number of boundary support vector points. The algorithm is robust to noise and
does not need to know the number of clusters. However, the effectiveness of the algorithm
depends on the selection of the kernel width coefficient q and the soft boundary constant C.
Clearly, parameter adjustment is time-consuming. SVC has the formulation as follows

min
R,a

R2 + C
m
∑

i=1
ξi

s.t.‖φ(xi)− a‖2 ≤ R2 + ξi, ξi ≥ 0
(A1)

where parameter C is used for controlling outliers and C
m
∑

i=1
ξi is a penalty term, and then

the slack variables ξi are used as tolerance. SVC looks for the smallest enclosing sphere
of radius R, under the constraints ‖φ(xi)− a‖2 ≤ R2 + ξi, where ||.|| is the Euclidean
norm and a is the center of the hypersphere. We can use the Lagrange function to solve
the problem

L = R2 + C
m

∑
i=1

ξi −
m

∑
i=1

μiξi −
m

∑
i=1

βi(R2 + ξi − ‖φ(xi)− a‖2)

After we take the derivative of the above formula, the dual problem can be cast
as follows

max
β

L = ∑
i

βiκ(xi, xi)− ∑
i

∑
j

βiβ jκ(xi, xj)

0 ≤ βi ≤ C

Thus, we can define the distance of each point in the feature space

R2(x) = ‖φ(x)− a‖2

Finally, R2 has the following form

R2(x) = κ(x, x)− 2∑
i

βiκ(x, xi) + ∑
i,j

βiβ jκ(xi, xj) (A2)

The radius of the hypersphere is

R = {R(xi)|xi is a support vector}
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Here, the Lagrange multiplier βi ∈ (0, C), xi is a support vector (SV). The point is a
boundary support vector point (BSV) when βi = C. SVC used the adjacency matrix Aij to
identify the connected components. For two points xi and xj

Aij =

{
0 ∃x, s.t. R2(x) > R, and x − xi = t

(
xj − xi

)
1 otherwise.

Finally, the clusters can be defined according to the adjacency matrix Aij. The time
complexity of calculating the adjacency matrix is O (vm2), in which v is the number of
samples for the line segment. The quadratic programming problem can be solved by the
SMO algorithm, the memory requirements of which are low, and it can be implemented
using O (1) memory at the cost of a decrease in efficiency. The obvious shortcoming of SVC
lies in the high cost of partition.
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Abstract: The energy generated by a photovoltaic power station is affected by environmental factors,
and the prediction of the generating energy would be helpful for power grid scheduling. Recently,
many power generation prediction models (PGPM) based on machine learning have been proposed,
but few existing methods use the attention mechanism to improve the prediction accuracy of gen-
erating energy. In the paper, a PGPM based on the Bi-LSTM model and attention mechanism was
proposed. Firstly, the environmental factors with respect to the generating energy were selected
through the Pearson coefficient, and then the principle and implementation of the proposed PGPM
were detailed. Finally, the performance of the proposed PGPM was evaluated through an actual data
set collected from a photovoltaic power station in Suzhou, China. The experimental results showed
that the prediction error of proposed PGPM was only 8.6 kWh, and the fitting accuracy was more
than 0.99, which is better than existing methods.

Keywords: Bi-LSTM; artificial neural networks; generating energy prediction

1. Introduction

The daily generating energy of a photovoltaic power station affects the power con-
sumption of the local area [1–3], while the photovoltaic power generation has a relationship
with environmental factors, such as sunshine duration, temperature, etc. Thus, the predic-
tion of the generating energy helps the local power grid system to improve foreseeability
and to create a proper generating schedule [4–7]. Since the main facility of a photovoltaic
power station works outdoors, the environmental factors would affect the device’s work-
ing state, making it meaningful to study this effect. For example, the characteristics of
temperature changes on the quality of output current in solar power plants are studied in
Indonesia [8]. In the global viewpoint, temperature and sunshine duration vary in different
countries around the world, which makes the characteristics of solar plants generation
different. It is a research focus to predict the generation based on environmental variation.

Generally, prediction is essentially a regression problem, the purpose of which is to
build the relationship between environmental factors and generating energy. Hence, the
machine learning-based methods have been widely used to achieve power generation
prediction, such as outage forecasting, wind power prediction, stability forecasting, peak
load prediction, etc.

The machine learning algorithm can treat big data efficiently [9], which can obtain
the optimal parameters for PGPMs based on a lot of historical data, as well as make a
prediction to generating energy through a trained model. Recently, the PGPMs based on
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machine learning have been proposed for different types of power stations, such as wind
power, thermal power, solar power, nuclear power, etc. Moreover, in order to achieve
accurate prediction of daily generating energy of power stations, the input data set of
existing PGPMs based on machine learning algorithm usually adopt all the environmental
parameters that affect the power generation, which makes the computational complexity of
such PGPM very high.

A PGPM based on support vector machine (SVM), one of the most commonly used
algorithms in machine learning, was proposed in ref. [10], which applied an improved
grid search method to optimize the parameters of C and g to improve the accuracy in
forecasting wind power generation. The experimental results showed that the model was
able to predict the real-time (15 min) wind power, and the accuracy was up to 78.49%.
However, since the computational complexity is very high in scenarios with larger training
samples, the SVM-based prediction model is only suitable for small-sample scenarios that
can obtain the global optimization parameters.

In order to solve the limitations of the SVM-based PGPM in the large-sample condition,
a lightweight PGPM based on ensemble decision tree haswas proposed in ref. [11], which
can predict a power system’s operating states in a real-time and in an on-line environment.
In the proposed solution, an ensemble security predictor (ENSP) was developed and trained
to predict and classify power system’s dynamic operating states into secure, insecure,
and intermediate transitional classes. Finally, the performance was evaluated with two
different case studies performed on IEEE 118-bus and IEEE 300-bus test systems, and
the experimental results showed that the prediction accuracy was up to 94.4%. However,
in some circumstances, for the ensemble decision tree model, it is a challenge to find
appropriate pruning schemes to remedy the decision tree due to the overfitting problem,
which means the proposed model is only optimized for the existing data, namely, the
proposed model is not quite suitable for unknown, new data.

Moreover, to improve the performance of the decision tree-based power generation
prediction model, the random forest-based PGPM [12] is developed to forecast medium–
long-term power load. In the proposed model, the total load is decomposed into the basic
load affected by the economy and meteorological sensitive load affected by meteorological
factors, and the prediction results are intelligently corrected by the wavelet neural network
algorithm. The experimental results showed that the mean absolute percent error (MAPE)
of the random forest-based PGPM was up to 1.43%, which is much better than decision tree-
based model proposed in ref. [11]. However, the random forest-based model is equivalent
to running multiple decision trees at the same time, which will inevitably have higher
computational complexity than decision trees.

Apart from the above-mentioned statistical learning methods, the artificial neural
network (ANN), which can simulate the human brain, has been widely used in the power
generation prediction field in the recent years [13]. To improve the power production
prediction for solar power stations, a PGPM based on the optimized and diversified
artificial Neural Networks was proposed in ref. [14]. The method is optimized in terms of
the number of hidden neurons and improved in terms of diverse training datasets used
to build ANN. The simulation results showed that the proposed approach outperformed
three benchmark models, with a performance gain reaching up to 11% for RMSE (root-
mean-square error) metric, and the confidence level reaches up to 84%. However, such
methods employ classical neural networks, which may not be suitable for some time-
varying sequence data of environmental factors.

Generally, for time-varying sequence data, the model based on recurrent neural net-
work (RNN) can provide higher prediction accuracy [15]. The Long Short-Term Memory
(LSTM) [16], an improved RNN, could solve the problems of gradient disappearance and
gradient explosion when training long sequence data in RNN, making it superior in time
sequence forecasting problems [17]. The LSTM network has a strong memory function,
which can establish the correlation between the data before and after, thereby improving
the prediction accuracy. Based on the above advantages of LSTM, a PGPM based on the

22



Electronics 2022, 11, 1885

high-performance K-Means-long-short-term-memory (K-Means-LSTM) was proposed to
predict the power point of wind power in ref. [18], and the simulation results showed
that the prediction error (RMSE) of the proposed PGPM reached 62 kW, achieving higher
accuracy than RNN-based methods.

However, the LSTM-based PGPM can only capture the data features of the former
part of the time sequence, which in turn leads to very limited performance of such methods
in some scenarios. As an improved version of LSTM, the Bidirectional LSTM (Bi-LSTM)
has better performance via adding a reverse-calculation module. Hence, a Bi-LSTM-based
PGPM, which is used to predict the abnormal electricity consumption in power grids, was
proposed in [19]. In the Bi-LSTM-based PGPM, the framework of Tensorflow was used
to achieve feature extraction and power generation prediction. Final experimental results
showed that the accuracy of the Bi-LSTM-based PGPM reached up to 96.1%, which is better
than that of the LSTM-based PGPM proposed in ref. [18] (94.5%).

Generally, the Bi-LSTM model can enhance the mining of correlation information of
time series feature to some extent; however, it can only extract local features, and it is
difficult to obtain global correlation, resulting in the loss of feature correlation information.
Simultaneously, such a model only focuses on the inherent relationship between the input
features and the target feature, so the input features of each time are assigned the same
weight. Nevertheless, the correlation between the input and target characteristics of
electricity consumption varies with time, which puts forward higher requirements for the
mining of time series correlation of input features.

Hence, in order to improve the performance of PGPMs based on Bi-LSTM, an Attention-
Bi-LSTM PGPM based on attention mechanism and Bi-LSTM is proposed in this paper,
which adequately employs the advantages of the attention mechanism and Bi-LSTM net-
work. The main contribution of this paper is the way in which the attention mechanism is
introduced. To solve this, appropriate attention layers have to be selected and designed to
efficiently utilize historical data.

Moreover, existing machine learning-based PGPMs usually use all environmental
parameters that affect power generation as input data sets, which can inevitably increase
the computational burden of computers. In order to improve computational efficiency, the
feature selection algorithm based on Pearson correlation theory [20] is proposed before
constructing the proposed PGPM.

The remaining of this paper is organized as follows. Section 2 details the principle
of environmental factors selection method based on Pearson coefficient theory. Section 3
presents the methodology of the prediction method. Section 4 elaborates data processing
procedures. Section 5 shows experimental layout and relative results. Section 6 concludes
the paper and looks forward to future work.

2. Feature Selection

According to the previous analysis, the daily generating energy is related to envi-
ronmental factors for photovoltaic power stations, and there are correlations between the
above-mentioned environmental factors. Therefore, finding the correlation between various
environmental factors and selecting appropriate environmental factors as the input dataset
can inevitably reduce the computational complexity of prediction models.

Generally, the environmental factors such as daily average temperature, maximum
temperature, minimum temperature, daily sunshine duration, average cloud cover, average
humidity, minimum humidity, precipitation from 8:00 a.m. to 8:00 p.m., etc., can affect
power generation. Under normal circumstances, the more environmental factors, the larger
the processing of high-dimensional vectors, as these factors would constitute the input
feature vector, and the complexity of calculations will be improved greatly. To reduce the
calculation complexity, these environmental factors should be properly selected, and the
Pearson correlation coefficients that can evaluate the correlation between environmental
factors and generating energy are introduced into the paper.
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Pearson correlation coefficient is a value between −1 and 1 that denotes the similar
trend between two datasets. For two random variables X and Y, the Pearson correlation
coefficient can be expressed by:

ρXY =
cov(X, Y)

rXrY
=

E(XY)− E(X)E(Y)√
E(X2)− E2(X)

√
E(Y2)− E2(Y)

(1)

where cov(X, Y) means the covariance between X and Y; ρX and ρY are the standard
deviation of X and Y respectively; E(.) function means the random variable’s expectation.

In the paper, the Pearson correlation coefficient between environmental factors and
generating energy can be calculated by:

r =
N∑ xiyi − ∑ xi∑ yi√

N∑ xi
2 − (∑ xi)

2
√

N∑ yi
2 − (∑ yi)

2
(2)

where r is the Pearson coefficient; xi and yi are the environmental factors and corresponding
generating energy respectively; N is the amount of historical data samples.

Hence, in order to select the optimal environmental factors to construct the input
dataset, the Pearson coefficients between environmental factors and generating energy
obtained from a photovoltaic power station in Suzhou, China (Supplementary Materials),
were used and the results are shown in Table 1.

Table 1. Pearson coefficients between environmental factors and generating energy.

Environmental Factors Pearson Coefficient

Daily average temperature 0.42551
Maximum temperature 0.54173
Minimum temperature 0.27529

Average humidity −0.69062
Minimum humidity −0.74763

Precipitation from 8:00 a.m. to 8:00 p.m. −0.33582
Daily sunshine duration 0.83609

Average cloud cover −0.59997

According to Pearson coefficient theory, factors with positive Pearson coefficients
have good correlation with the generating energy, which means they are suitable to be
regarded as the input data features to predict the generating energy. As can been found
in Table 1, some factors such as average humidity, minimum humidity, precipitation from
8:00 a.m. to 8:00 p.m., and average cloud cover could be filtered because they have a
weak correlation with generating energy. Hence, the remaining four environmental factors
are taken to compose the input feature vector, which means the data feature vectors are
four-dimensional.

3. The Methodology

3.1. Bi-LSTM Model

Generally, Bi-LSTM is composed by two LSTM models of the forward and backward
direction, which can capture long-term dependencies in one direction. Hence, the Bi-LSTM
allows more information to be preserved by capturing long-term dependencies in both
directions, which is suitable for power generation forecasting scenarios that require big
data processing. The architecture of Bi-LSTM model can be shown as Figure 1.
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Figure 1. Architecture of the Bi-LSTM model.

From Figure 1, it can be found that the forward directional LSTM is used to produce
the past information of input sequences, while the backward directional LSTM can gain the
future information of input sequences. Finally, the final output is obtained by combining
the corresponding time output of forward directional LSTM and backward directional
LSTM at each time, which can be expressed by:

ht = f (w1xt + w2ht−1) (3)

h′t = f
(
w3xt + w5h′t+1

)
(4)

ot = g
(
w4ht + w6h′t

)
(5)

where ht and h′t are current node outputs of the forward and backward direction respec-
tively; ot is the output of current cell; w1, w2, w3, w4, w5 and w6 are the weight coefficients.

According to Equations (3)–(5), w1 and w3 are the weights of the input to the forward
and backward hidden layers, w2 and w5 are the weights between the same hidden lay-
ers, while w4 and w6 are the weights of the forward and backward hidden layers to the
output layers. Compared with LSTM, Bi-LSTM improves the globality and integrity of
feature extraction.

3.2. Feature Attention Mechanism

Generally, the feature attention mechanism can improve the performance of Bi-LSTM
by dynamically assigning the attention weight to input features, as well as the correlation
between hidden layer and target features being mined, which can effectively reduce the
loss of feature correlations. The architecture of the feature attention mechanism is shown
in Figure 2.
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Figure 2. Architecture of feature attention mechanism.

From Figure 2, the input feature vector of time sequences with K hidden layer features
can be described as Xt = [X1,t, X2,t, . . . , Xk,t]. Then, a single layer neural network is used to
calculate the attention weight vector, which can be expressed by:

ek,t = σ(WeXt + be) (6)

where t is the time length of input sequences depending on sampling rates, and ek,t =
[e1,t, e2,t, . . . , ek,t] is regarded as the combination of attention weight coefficients correspond-
ing to the input characteristics of current moments. We is the trainable weight matrix, be is
an offset vector, and σ(.) is a sigmoid activation function.

The data sequence generated by the sigmoid activation function is normalized by the
softmax function, which is denoted as:

αk,t =
exp(ek,t)

k
∑

i=1
ei,t

(7)

where αk,t is the attention weight of character k, and the resulting attention weight αk,t and
hidden layer feature vector X′

t are recalculated as a weighted feature vector X′
a_t, which

can be expressed by:

X′
a_t = at � X′

t = [a1,tx1,t, a2,tx2,t, · · · , ak,txk,t] (8)

3.3. Temporal Attention Mechanism

Apart from the feature attention mechanism, the temporal attention mechanism can
allocate attention weight to the temporal information carried by each historical moment of
the input sequence to distinguish its influence on the output of the current time. At the
same time, the time sequence of each historical moment can be extracted independently
and the information expression of the critical moment can be enhanced; the architecture of
the temporal attention mechanism is shown in Figure 3.
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Figure 3. Architecture of the temporal attention mechanism.

From Figure 3, it can be found that the input is the hidden layer state of the Bi-LSTM
network iterated to time, which can be expressed by ht = [h1,t, h2,t, . . . , hn,t], where n is the
time window length of input sequences. The temporal attention weight vector lt of the
current moment corresponding to each historical moment can be described as:

lt = ReLU(WdXt + bd) (9)

where lt = [l1,t, l2,t, . . . , lk,t]; Wd is a trainable weight matrix; bd is a bias vector; and ReLU(.)
is an activation function to increase feature differences and make the weight distribution
more centralized.

Moreover, from Figure 3, it can be seen that the input sequence generated by the
activation function is normalized by the softmax function to obtain the temporal attention
weight, which can be expressed by βt = [β1,t, β2,t, . . . , βk,t], where βk,t is the attention
weight of character k, which can be denoted as:

βk,t =
exp(lk,t)

k
∑

i=1
li,t

(10)

Hence, the weighted feature vector h′t can be recalculated via data feature vector ht
generated by the hidden layer, which can be expressed by:

h′t = βt ⊗ ht =
k

∑
i=1

βi,thi,t (11)

3.4. The Proposed Attention-Bi-LSTM PGPM

In the paper, the Attention-Bi-LSTM PGPM based on the attention mechanism and
Bi-LSTM network is proposed, which consists of an input layer, feature attention layer,
Bi-LSTM layer, temporal attention layer, residual connected layer, and fully connected layer,
and the architecture of the Attention-Bi-LSTM PGPM is shown in Figure 4.

From Figure 4, it can be found that a Bi-LSTM network is built to extract the hidden
temporal correlation information from the input sample Xt, which is composed of the
history sequence and related four-dimensional input feature vector extracted from environ-
mental factors. The sample is fed into first Bi-LSTM network and the hidden layer feature
X′

t is obtained.
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Figure 4. Architecture of Attention-Bi-LSTM PGPM.
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Then, the feature attention mechanism was used to explore the potential correlation
between hidden layer features X′

t. The features X′
t extracted from the first Bi-LSTM were

sent to the feature attention layer. In order to extract the hidden layer features X′
t, the

attention weight of features was allocated dynamically. Based on the above statements, the
weighted hidden layer feature X′

a_t was obtained by dynamic distribution of the feature
attention weight.

Next, the weighted feature X′
a_t was residually linked to the original feature X′

t, which
was fed into the second Bi-LSTM to obtain the hidden layer feature ht. Moreover, the
correlation between the historical sequence and the feature ht was mined in the second
Bi-LSTM’s hidden layer, as well as the weighted feature vector h′t being mined in the
temporal attention layer. Finally, the power generation was predicted in the fully connected
layer with the above-mentioned parameters.

4. Data Processing

4.1. Data Cleaning

In this paper, a historical dataset collected from a photovoltaic power station with a
sampling rate of 1 day, which includes daily average temperature, maximum temperature,
minimum temperature, daily sunshine duration, and daily generating energy, was intro-
duced into the experiment [SM]. The input data sample is a 4-dimensional vector, which
denotes the above-mentioned four environmental features, and every input feature vector
corresponds to a daily generating energy, as the output value.

For data cleaning, firstly, the data sample with missing or invalid features was prepro-
cessed. In this paper, the data sample with invalid features was eliminated directly.

Secondly, different features have values of different ranges, making it necessary to
normalize the feature data. The normalized value could be calculated by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = 1
n

n
∑

i=1
xi

std(x) =

√
1
n

n
∑

i=1
(xi − x)2

yi =
xi−x

std(x)

(12)

where xi is the i-th original feature value; yi is the i-th normalized feature value; n is the
amount of data samples.

4.2. Division of Dataset

To train the prediction model parameters, which are mainly some structural weight
values, 75% of historical data samples were recognized as the training dataset, and the
remaining 25% of data samples were taken as the testing dataset to examine the prediction
efficiency. The ensemble division of dataset is shown in Figure 5.

As shown in Figure 5, the training process adopts a cross validation mechanism,
composed by many epochs. In each epoch, 90% of the training samples are regarded as a
sub-training set, and the remaining 10% of the training samples are regarded as the sub-
testing dataset. The partition scheme of the sub-training dataset and sub-testing dataset
is to divide them randomly. From Figure 5, it can be found that the optimal parameters
are obtained through multiple cross-validation, which was used to provide a basis for the
subsequent experiments.
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Figure 5. Division of the dataset.

5. Experimental Results and Analysis

5.1. Parameter Tuning and Statistical Analysis

In order to illustrate the advantages of the proposed PGPM, the performance of
existing PGPMs based on Support Vector Regression (SVR) [21], Decision Tree [22], Random
Forest [23], LSTM [24], and Bi-LSTM [25] were compared with the Attention-Bi-LSTM
PGPM proposed in the paper, and the main experimental parameters of PGPMs based on
SVR, Decision Tree, and Random Forest were tuned, as shown in Tables 2–4, respectively.

Table 2. Parameter tuning of PGPM based on SVR.

Penalty C RBF Gamma
Prediction Error

(kWh)

100 1 238.9
1 0.01 479.3

0.1 0.01 489.1

Table 3. Parameter tuning of PGPM based on Decision Tree.

Max Depth
Prediction Error

(kWh)

4 255.9
5 243.6
6 236.0
10 291.7
90 305.6

Table 4. Parameter tuning of PGPM based on Random Forest.

Number of Estimators Minimum Samples of Subtree Minimum Samples of Leaf
Prediction Error

(kWh)

200 2 1 231.8
200 2 4 232.1
100 2 1 232.9
400 4 1 232.9
400 4 2 232.8
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From Tables 2–4, the best parameters of each algorithm could be determined, for the
best prediction accuracy was achieved.

Moreover, the essence of proposed Attention-Bi-LSTM PGPM is an improved version
of PGPMs based on LSTM and Bi-LSTM. In order to ensure the comparability and accuracy
of subsequent experimental results, the experiments parameters of the above three LSTM-
based PGPMs are the same in the paper, and the related parameters are shown in Table 5.

Table 5. Related parameters of LSTM-based PGPMs.

Category Parameter

Length of Time Sequence 4
Bi-LSTM Hidden Layer Neurons 350

Learning Rate 0.01
Batch Size 64

Optimization Algorithm Adam
Loss Function Mean Squared Error (MSE)

Neuron Loss Rate 0.1

Furthermore, the statistical analysis was performed for the selected parameter con-
figurations, the way of which is to run the model training and prediction 50 times. Each
time, the training dataset and testing dataset were partitioned randomly to evaluate the
statistical stability of these models, and the results are shown in Table 6.

Table 6. Statistical analysis on the studied methods.

Method
Average of RMSE

(kWh)

Standard Deviation of
RMSE
(kWh)

SVR 238.9 2.3
Decision Tree 236.0 2.7

Random Forest 231.8 1.9
LSTM 29.7 1.5

Bi-LSTM 18.3 1.8
Attention-Bi-LSTM (Ours) 8.6 1.2

Table 6 shows the standard deviation for each algorithm is only 1~2 kWh, which
means the prediction result is stable when the parameters are determined. Therefore, the
subsequent comparison of parameter-dependent results could reflect the performance gaps
of different methods from the statistical viewpoint.

Moreover, in order to evaluate the performance of the above algorithms, the Python
scikit-learn library was employed to implement the PGPMs based on SVR, Decision Tree,
and Random Forest algorithms, while the Tensorflow library was employed to implement
the PGPMs based on LSTM, Bi-LSTM, and the proposed Attention-Bi-LSTM.

5.2. Experimental Results

According to above-mentioned relevant experimental parameters shown in Table 2 to
Table 5 and experimental layouts, the visualized experimental results within half a year
output by six PGPMs mentioned above are shown in Figure 6.
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Figure 6. Prediction results of different algorithms. (a) PGPM based on SVR; (b) PGPM based on
Decision Tree; (c) PGPM based on Random Forest; (d) PGPM based on LSTM; (e) PGPM based on
Bi-LSTM; (f) Ours.

As shown in Figure 6, it can be found that the deviations between the true data and
experimental results of PGPMs based on SVR, Decision Tree, and Random Forest were
more obvious than that generated of PGPMs based on LSTM, Bi-LSTM, and Attention-
Bi-LSTM. Summarily, the LSTM-based PGPMs are very suitable for power generation
forecasting scenarios. However, according to Figure 6d–f, it can be seen that from the
visualization point of view, the performance of Attention-Bi-LSTM PGPM proposed in this
paper is basically the same as that of the other LSTM-based PGPMs. Therefore, to further
illustrate the advantages of the proposed PGPM, this paper evaluates the performance of
above-mentioned PGPMs from a quantitative perspective.

Besides, in the training procedure of the proposed PGPM, the model converges very
quickly, as presented in Figure 7.

Figure 7. Convergence curve of the proposed PGPM.

32



Electronics 2022, 11, 1885

As Figure 7 shows, the loss function of the model decreased quickly, and converged
nearly to zero within the first 100 epochs, which means in the practical training procedure
it could be finished very fast.

5.3. The Quantitative Comparison of Results

To evaluate the performances of above-mentioned PGPMs more precisely, Mean
Absolute Error, Root of Mean Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE) of each PGPM were evaluated and compared. Moreover, a R-square coefficient [26]
is also introduced into the paper to calculate the fitting accuracy, which can be expressed by

MAE =
1
n

n

∑
i=1

|ŷi − yi| (13)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (14)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (15)

R − square =
∑n

i=1 (ŷi − yi)
2

∑n
i=1 (yi − yi)

2 (16)

where yi is the generating energy (true data) of the i-th sample; ŷi is the prediction of the
i-th sample; R − square is a coefficient with a range of [0 1], and the closer this value is to 1,
the higher the fitting accuracy.

According to Equations (13) to (16), the prediction errors and fitting accuracy of
above-mentioned PGPMs are shown in Table 7.

Table 7. Comparison of different PGPMs.

Method
MAE

(kWh)
RMSE
(kWh)

MAPE
(%)

Fitting Accuracy
(R-Square)

SVR 166.7 238.9 40.7 0.7617
Decision Tree 160.3 236.0 37.9 0.7675

Random Forest 160.6 231.8 38.8 0.7591
LSTM 25.5 29.7 5.7 0.9959

Bi-LSTM 13.7 18.3 3.6 0.9984
Ours 10.2 8.6 2.8 0.9997

As Table 7 shows, the prediction errors of the proposed PGPM were 10.2 kWh, 8.6 kWh,
and 2.8%, which were the smallest among these six algorithms. Moreover, from Table 6,
taking RMSE as an example, it can be found that the prediction errors of the PGPMs based
on SVR, Decision Tree, and Random Forest were 238.9 kWh, 236.0 kWh, and 231.8 kWh,
respectively, which are generally more than 200 kWh, as well as that of the PGPMs based
on LSTM and Bi-LSTM being less than 30 kWh. Hence, the performances of LSTM- and Bi-
LSTM-based PGPM are better than that of SVR-, Decision Tree-, and Random Forest-based
PGPMs. Simultaneously, with the introduction of the attention mechanism, the proposed
PGPM also achieved better prediction accuracy than that of LSTM- and Bi-LSTM-based
PGPMs. The metrics of MAE and MAPE showed similar results.

Additionally, the fitting accuracy was also evaluated in this paper. Fitting accuracy
is another indicator for evaluating prediction efficiency, which represents the relative
prediction error and can be used as a sign of the similarity between the predicted value and
the true value. From Table 6, it can be found that the fitting accuracy of the proposed PGPM
was 0.9997, slightly more than that based on LSTM and Bi-LSTM, but obviously more than
that of SVR-, Decision Tree-, and Random Forest-based PGPMs. Therefore, in the metric of
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fitting accuracy, the proposed Attention-Bi-LSTM PGPM achieves the best performance,
and is consequently very suitable for application in power generation forecasting scenarios.

5.4. Comparison of Multi-Step Prediction Results

Moreover, in order to evaluate the influence of proposed PGPM with the input time
sequences of various step lengths, an experiment was also implemented based on different
time steps, and the experimental results are shown in Table 7.

From Table 8, it can be found that there was a positive correlation between the predic-
tion error and step size; in other words, the prediction error increased with respect to step
length increases. Synchronously, the fitting accuracy had a negative correlation with step
length, that is, the fitting accuracy decreased as the step length increased. The reason for
the above phenomenon is that the dependence between the power generation and time
sequences is weakened with the increase of step length. In summary, when the time step of
input time sequences is four, the PGPM proposed in this paper can meet the demand for
power generation forecasting.

Table 8. Comparison of multi-step prediction results.

Time Step

Evaluation Criteria

Prediction Error
(kWh)

Fitting Accuracy
(R-Square)

4 8.6408 0.9997
8 15.2754 0.9989
10 18.0235 0.9985
14 23.8192 0.9974

6. Conclusions

The contribution of this paper was to propose a generating energy prediction model
based on the attention mechanism and Bi-LSTM, which improve the prediction accuracy,
and the experimental results showed that the performance of the proposed PGPM is much
better than that of PGPMs based on SVR, Decision Tree, Random Forest, LSTM, and Bi-
LSTM. The challenge of this work was how to employ attention mechanism efficiently. To
solve this, feature attention layer and temporal attention layer were introduced to enhance
the prediction performance, because these attention layers could help the algorithm to
utilize the most important features and the most critical moments.

Moreover, compared with the existing PGPMs, this paper mines the correlation of
environmental factors that affect photovoltaic power generation before implementing the
proposed PGPM, and thereby the calculation efficiency can be improved by eliminating
environmental factors that are weakly related to power generation.

However, the data features of the proposed PGPM are few, and only the meteorological
factors are considered as the input source. In the future, to further optimize the accuracy of
the prediction method, other data features can be introduced to construct a more accurate
input source.
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Abstract: The use of closed growth environments, such as greenhouses, plant factories, and vertical
farms, represents a sustainable alternative for fresh food production. Closed plant production systems
(CPPSs) allow growing of any plant variety, no matter the year’s season. Artificial lighting plays an
essential role in CPPSs as it promotes growth by providing optimal conditions for plant development.
Nevertheless, it is a model with a high demand for electricity, which is required for artificial radiation
systems to enhance the developing plants. A high percentage (40% to 50%) of the costs in CPPSs point
to artificial lighting systems. Due to this, lighting strategies are essential to improve sustainability and
profitability in closed plant production systems. However, no tools have been applied in the literature
to contribute to energy savings in LED-type artificial radiation systems through the configuration
of light recipes (wavelengths combination. For CPPS to be cost-effective and sustainable, a pre-
evaluation of energy consumption for plant cultivation must consider. Artificial intelligence (AI)
methods integrated into the prediction crucial variables such as each input-variable light color or
specific wavelengths like red, green, blue, and white along with light intensity (quantity), frequency
(pulsed light), and duty cycle. This paper focuses on the feature-selection stage, in which a regression
model is trained to predict energy consumption in LED lights with specific light recipes in CPPSs.
This stage is critical because it identifies the most representative features for training the model, and
the other stages depend on it. These tools can enable further in-depth analysis of the energy savings
that can be obtained with light recipes and pulsed and continuous operation light modes in artificial
LED lighting systems.

Keywords: light wavelength; energy efficiency; features selection; machine learning

1. Introduction

1.1. LED Lights in Closed Plant Production Systems

Agriculture in 2050 will have to produce almost 50% more output to meet the de-
mand for food supplies, presenting it with a crucial challenge in meeting the increase in
demand [1]. Technological development and innovation can offer alternatives to ensure
food security sustainably. The use of closed growth environments, such as greenhouses,
plant factories, and vertical farms [2–6], represents a sustainable alternative for fresh food
production. In closed plant production systems (CPPSs), several variables can be controlled
and optimized, such as water, fertilizers, CO2 injection, and temperature, as well as the
quantity and quality of light thus ensuring minimum greenhouse gas emissions [3]. CPPSs
allow growing of any plant variety, no matter the season of the year. Artificial lighting
plays an essential role in CPPSs, as it promotes growth by providing optimal conditions for
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plant development. LEDs are energy-efficient replacements that contribute to plant growth
in agriculture. An outstanding advantage of LED lamps is their ability to operate with
specific wavelengths (λ) that considerably reduce energy consumption. LEDs regularly
generate continuous light. Likewise, they can radiate pulsed light (on/off in microseconds
(μs)) with high power and low energy consumption at a specific frequency and duty cy-
cle without upsetting the vegetative development of plants [4,7,8]. LED technology can
produce different colors of light—that is, different qualities—called light recipes (different
wavelength combinations). The wavelength combinations (red, blue, green, ultraviolet,
and infrared) and the photosynthetic photon flux density (PPFD, given in μmol m−2 s−1)
are the components that constitute the light recipes. Light recipes impact crop growth
from branching to flowering; optimize the biomass; and increase the antioxidant capacity
levels of calcium, potassium, magnesium, chlorophyll, iron, vitamins A, B, and E, and other
substances [7–9]. Crop quality and productivity rely upon the time and the light quantity
supplied to the plants.

CPPSs can offer several advantages (improved management control of all variables
involved—temperature, CO2, radiation—and increased productivity, growth, and yield)
and generate an impact on humanity. Nevertheless, it is a model with a high demand
for electricity for the artificial radiation systems needed to enhance the developing plants.
Environmental control (refrigeration), the air required to remove the heat produced, and
artificial lighting account for approximately 32%, 11%, and 57% of the total energy demand,
respectively [10]. Furthermore, according to Avgoustaki and Xydis [11], the artificial
lighting system accounts for 80% of the electrical demand, since the overall operability of
the CPPS accounts for 40% of the total energy consumption.

Innovative approaches, such as fluid dynamics, evolutionary algorithms [12,13], the
derivative integral model, and derivative model [14–16], control the resources in CPPSs.
Artificial neural networks predict weather conditions and energy consumption [13–15,17].
Other techniques predict energy consumption performance for plant production [18,19].
Finally, other techniques focus on in the optimization of resources and reducing energy
demand in CPPSs [20,21].

1.2. Machine-Learning Modeling

Physical modeling approaches are the most common approaches for predicting sys-
tem behaviors, but they rely on descriptions of physics concepts. Thus, they tend to be
complex, as the detail of the model increased. Therefore, as the principle of Occam’s razor
states, physical modeling must balance complexity with assumptions in order to produce
simplified and representative models [22,23].

On the other hand, artificial intelligence (AI) researchers have proposed several tech-
niques that allow automatic generation of the models and equations based on measure-
ments arranged in datasets. Furthermore, machine learning (ML), a field of AI, applies
deterministic and heuristic methods to produce models with less complexity established in
the raw measurements [22].

During the last two decades, ML models have exhibited high effectivity, accuracy, and
performance in several fields, including energy applications. Furthermore, ML results for
modeling have motivated researchers to apply its models to accurately predict the behavior
of physical phenomena [22–30].

The ML modeling process can involve several stages, depending on its application,
but a general description would include collecting data, preprocessing data, building a
model, training, and testing. Furthermore, all the stages must be continually tuned to
improve the results; i.e., the stages can repeatedly change across the entire process if the
model requires efficiency improvements, as represented in Figure 1 [22].
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Figure 1. Modeling process with ML.

1.2.1. Collecting Data

ML modeling uses algorithms, statistics, and measurements structured in a dataset
to identify the process behaviors and mimic them in a model [31]. The data generation
stage depends on the processes contained in the chosen model. They may include electrical,
mechanical, optical, thermal, psychic, or chemical variables [22,24,25,32,33]; derive from
statistical analysis [26,27]; or be constructed with text, multimedia, or even real-time
reports [32–35]. Nevertheless, the datasets can be associated with a specific time and/or
frequency domain [36,37].

1.2.2. Preprocessing Data

After collecting and structuring the dataset, its variables need to be cleaned, processed,
and filtered for the ML model. The processing stage includes several techniques, which
can be human- or AI-designed, and they depend on the nature of the training data. For
example, in natural language processing with text, preprocessing removes capitals [38]; in
signal processing, wavelet transforms separate signals into their main components [39]; in
image processing, convolution with the image filters extracts features [40]; in big data and
data mining, dimensionality reduction is achieved [41].

The preprocessing data stages include normalization based on algorithms, such as
MIN-MAX normalization, decimal scaling, and Z-scores; filtering redundant and inconsis-
tent data; transformations such as linear, quadratic, polynomial, and histogram transfor-
mations; removing noisy data with techniques such as ensemble filtering, cross-validated
filtering, and interactive partitioning; feature selection with exhaustive, heuristic, filter, and
wrapper methods; and discretization to change from analog systems to digital ones [42].

Input features in ML modeling are representative when their information affects the
output of the modeled system. Additionally, removing characteristics that are irrelevant
or have low correlations from the results produces search spaces with lower complex-
ity, boosting the capabilities of the training algorithm and improving the final model’s
efficiency [43,44].

One of the most used commonly techniques for removing redundant and inconsistent
data in the second stage is feature Selection (FS). FS also makes it possible to reduce size,
increase the efficiency and accuracy of predictive learning, and reduce the complexity of
the final model [42]. The different FS approaches reported in the literature are constituted
theoretically and apply methods such as filtering, wrapping, and embedding through
techniques involving search algorithms, statistical criteria, and information, distance, de-
pendency, and consistency measures [42].

1.2.3. Building Model

ML includes several models for predicting behavior that are supported by statistics
and artificial intelligence. Different proposals have obtained different results depending
on the ML model’s application. The most common models are artificial neural networks,
evolutionary algorithms, swarm intelligence algorithms, decision trees, naive Bayesian
algorithms, logistic regression, fuzzy systems, gradient boosting machines, support vector
machines, support vector regression, random forest algorithms, AdaBoost, simulated
annealing, and hybrids of these models [22,24,26–28,31,34,44].
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1.2.4. Training Model

Each ML model tunes its internal parameters with a training algorithm designed
for the learning type. The most common learning types are supervised, unsupervised,
reinforced, semi-supervised, transductive, self-trained, ensemble learning, boosting, and
generative [31].

1.2.5. Testing Model

The metrics used to evaluate quality in the process of ML modeling depend on the
nature of the model, which may be for classification or regression. In regression models,
the metrics quantify the reliability of the model and the error between the model output
and the real-world system. The most common regression metrics are the root mean square
error (RMSE), mean error (ME), mean absolute error (MAE), mean average percentage
error (MAPE), and the Nash coefficients E and R2 [22,44].

1.3. Feature Selection

As mentioned in Section 1.2.2, feature selection is one of the most critical stages of ML
modeling since it makes it possible to identify the best relation to the required complexity
of the model and its quality at the preprocessing stage. In addition, feature selection makes
it possible to find the more representative inputs in the real-world system and to eliminate
no representative inputs or those that are redundant. ML models and training algorithms
that consider only representative features improve their efficiency and reduce the time
required for training [26,27,38,45]. A feature is an observable property in a system. Feature
selection aims to select a specific subset of features that maximize the performance of the
ML model.

The feature selection (FS) used here applied one of the most common techniques for
removing irrelevant data, reducing dimensionality, increasing predictive accuracy and
learning efficiency, and reducing the complexity of the final model [42]. Although there
are different approaches for FS, all have theoretical support in their use of different meth-
ods, such as filtering, wrapping, and embedding, and involve techniques that use search
algorithms, statistical criteria, and information, distance, dependence, and consistency
measures [42]. The aim was to use linear and nonlinear methods to implement FS with a
dataset acquired from an illumination radiation system.

This paper focuses on the feature selection stage in order to train a regression model to
predict energy consumption in LED lights with specific light recipes in CPPSs. This stage is
critical because it identifies the most representative features for training the model, and the
other stages depend on it. These tools can enable further in-depth analysis of the energy
savings that can be obtained with light recipes and pulsed and continuous light operation
modes in artificial LED lighting systems.

2. Materials and Methods

2.1. Lighting System Features

The Artificial Lighting Laboratory (LIA) at Instituto Tecnológico de Pabellón de
Arteaga in Aguascalientes, Mexico, developed the lighting system. An array of eight
lamps formed the artificial lighting system. The wattage of each lamp was 25 watts.
The ultra-bright LEDs emitted continuous and pulsed irradiation with different qualities
(red, blue, green, and white). A programmed controller (a field-programmable gate array
(FPGA)) allowed us to configure functions such as pulse frequency, duty cycle, intensity,
wavelength, and on–off time.

2.2. Construction of Experiment

This study evaluated 10 light recipes from the literature, as can be seen in Figure 2.
After that, the LED artificial radiation system was configured for continuous and pulsed
emission to generate the first dataset (see table at the top of figure) to be analyzed. The
intensities parameters were 50, 65, 80, 95, 110, 125, 140, 155, 170, and 185 μmol m−2 s−1, as
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determined by a quantum sensor, and the frequency was set to 100, 500, and 1000 Hz with
40%, 50%, 60%, 70%, 80%, and 90% duty cycles for different treatments.

 

Figure 2. Flow diagram for collection of CPPS measurements for the dataset.

In the generation of the second dataset, four different light recipes were set at intensi-
ties of 60, 70, 85, 90, 90, 100, 120, 130, 150, 160, and 180 μmol m−2 s−1, the frequency was
set at 100, 500, and 1000 Hz, and duty cycles were randomly selected at 60%, 70%, and 80%,
depending on the treatment (see table at the bottom of Figure 2).

The artificial illumination system included 14 light recipes (see tables in Figure 2) with all
combinations of parameters. After 60 min of radiation, we registered the measurements for the
energy demand with a hook-on AC ammeter (Peak Teach, Salerno, Italy) in watts × hours (Wh).
Then, the artificial radiation system was turned off for 15 min to cool down.

2.3. Min-Max Normalization

Normalization linearly transforms variables within specific ranges based on the mini-
mum and maximum median absolute deviations of the variable values, avoiding changes
to priorities in the variables because of the scale. Equation (1) represents the standard
deviation required in the transformation as Xstd, and Equation (2) indicates the variable
scaling [46,47].

Xstd =
x − Xmin

Xmax − Xmin
(1)

Xscaled = Xstd × (Xmax − Xmin) + Xmin (2)

where Xscaled is the new value transformed from the original value x ∈ X and Xmax and
Xmin are the maximum and minimum values, respectively.
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2.4. Pearson Correlation

This association method’s primary goal is to identify two or more correlated vari-
ables [45].

The Pearson correlation coefficient measures the degree of correlation between two
variables in a linear approach. Let X and Y be those variables, with measurements given by
{x1, x2, x3, ..., xn} and {y1, y2, y3, ..., yn} and means x and y. Then, the Pearson coefficient is
given by Equation (3) [42].

ρ(X, Y) =

n
∑

i=1
( xi − x ) ( yi − y )[

n
∑

i=1
(xi − x) 2

n
∑

i=1
( yi − y )2

] 1
2

(3)

A Pearson coefficient with the range ρ = [−1, 1] represents the level of correlation
when ρ is positive and correlation is direct, and the negative is the inverse [42].

When two variables are highly correlated, one can be redundant. The Pearson corre-
lation works only for linear relations and results in incorrectly measured correlations for
nonlinear systems. When classifying with binary outputs, it is possible to identify using
Pearson coefficients how an attribute correlates with the target class [42].

Additionally, one can perform a correlation statistical significance test using the pvalue
coefficient, such as a test of the probability that the correlation coefficient ρ is a wrong
hypothesis; for example, as a convention from the literature, if pvalue > 0.05, it is unreliable.
The alternatives for such a determination include statistical tests, such as the tvalue, variance
analysis (ANOVA), and 1tailed or 2tailed tests [48].

2.5. Variance Threshold

This method is used to identify features with variance. The features eliminated based on
variance are those with zero value, near to zero value, or below a specific threshold [49–51].

The variability in a group given with {x1, x2, x3, ..., xn} is the standard error; in other
words, it is the difference between the samples and the average value of the group x, as in
Equation (4) [52].

σ2 =

n
∑

i=1
(xi − x)2

n − 1
(4)

2.6. Mutual Information Gain

Feature selection with mutual information gain enables the discrimination of features
based on their interaction measurement, both for linear and nonlinear models [53]. Mutual
information measures the uncertainty based on the entropy H of one variable while observ-
ing the other one. Let X be a random variable with values {x1, x2, x3, ..., xn}; its entropy is
given by Equation (5) [54].

H(X) = −
n

∑
i=1

P(xi)log2[P(xi)] (5)

Let Y be an output variable with values {y1, y2, y3, ..., yn} and let X be a features array
with values {x1, x2, x3, ..., xn}; H(X|Y) is then given by Equation (6) [54].

H(X | Y) = −
n

∑
j=1

[P(xi)]
n

∑
i=1

P
(

xi | yj
)

log2
[
P
(
xi | yj

)]
(6)

The mutual information in Equation (7) measures the reduction in the uncertainty of
X given Y [54,55].

MI(X|Y) = H(X)− H(X|Y) (7)
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2.7. Univariate Linear F-Regression Selection

This method uses a linear model to measure the degree of linear dependence between
two random variables; in other words, it measures the significance of a feature in a linear
model [56].

The F-regression equations use the null hypothesis H0, indicating that the data only
intercept the model, and the alternative hypothesis H1, indicating the compatibility of
the data with the model. The selection of the true hypothesis relies on the Fscore given in
Equation (8), the explained variance from Equation (9), and the unexplained variance from
Equation (10) [56].

F =
explained variance

unexplained variance
(8)

explained variance =
K

∑
i=1

ni

(
Yi· − Y

)2

(K − 1)
(9)

unexplained variance =
K

∑
i=1

ni

∑
j=1

(
Yij − Yi·

)2

(N − K)
(10)

where Yij is the j th observation in the i out group in K, which is the number of out groups.
N is the overall sample size and ni is the number of observations.

Additionally, following Section 2.4, one can determine a pvalue for the hypothesis
conclusion, and, like with the Pearson correlation, if pvalue > 0.05, the conclusion is
unreliable [56].

2.8. Sequential Feature Selection

Sequential feature selection algorithms are a subset of wrapper algorithms that use
greedy search algorithms. They evaluate a solution with certain features in a specific
model and decide which feature to remove based on its quality. This technique can use a
feedforward or backward approach; i.e., adding or removing features in the model. Figure 3
displays the searching schema for feedforward and backward sequential selection with
three features [57,58].

 

Figure 3. Flow diagram for feedforward and backward sequential feature selection.

For this study, backward sequential feature selection served to remove the worst
variables in the energy consumption dataset for the LED lamps of a CPPS.
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2.8.1. Linear Regression Model

The linear model structure includes Y ∈ R
n×1, where Y = (y1, y2, y3, ..., yn)

T is the
response variable; X ∈ R

n×p, where X = (x1, x2, x3, ..., xn) represents the design matrix;
and xi =

(
xi,1, xi,2, xi,3, ..., xi,p

)
and β ∈ R

p×1, where n is the number of observations
and p is similar to the number of features. Then, the linear regression model is given by
Equation (11) [59].

Y = μ + ε (11)

where μ = β × X and ε is the regression error.
Then, with a given predictor Y and the design matrix X, Equation (12) solves the

β model parameters that reduce ε [59].

β =
(

XTX
)−1

XTY (12)

2.8.2. Decision Tree Regression Model

Decision trees are hierarchical structures with nodes representing tests of the data with
specific attributes and branches representing the test results. Decision tree models include
IDS, C4.5, CART, and regression models. For example, the regression decision trees predict
continuous random variables by finding the attributes that reduce the mean square error
(MSE), obtained with Equation (13) [60].

MSE =
1
n

n

∑
i=1

(yi − yi)
2 (13)

where Y = (y1, y2, y3, ..., yn) is the raw data output variable and Y = (y1, y2, y3, ..., yn)
represents the decision tree model output [60].

For this application, the regression variable used a decision tree with the energy
consumption and the node attributes as the features for the energy consumption dataset.

3. Results

3.1. Energy Consumption Dataset

We registered the power consumption emitted by the artificial lighting system as a
function of the light recipe, including parameters such as intensity; R, G, B, and W quality;
frequency; and duty cycle. Table 1 represents the first dataset obtained through the process
described in Section 2 (Figure 2). The evaluated energy consumption contained different
ranges depending on the directly configured parameters. However, applying specific value
ranges to the inputs affects the priority assigned to each one.

Endeavoring not to affect the input priorities, a new scaled dataset with min-max
normalization was generated according to the equations defined in Section 2.3. Table 2
shows the data obtained after applying the equations corresponding to each input and
output variable. The data represent the ranges from 0 to 1 after normalization. A value of 0
corresponds to the minimum value identified for that variable, while 1 is the maximum.
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Table 1. First 15 measurements of the dataset generated.

Intensity (A)
(μmol m−2 s−1)

Light Color Percentage (%) Frequency
(Hz)

Duty Cycle
(%)

Energy
Consumption (Wh)R G B W

50 45 0 5 0 0 0 23.5
50 41.5 0 8.5 0 0 0 23.4
50 30 0 20 0 0 0 23.9
50 0 0 21.5 28.5 0 0 25.1
50 33.5 11 5.5 0 0 0 24.4
50 33.5 16.5 0 0 0 0 23.4
50 0 0 0 50 0 0 24.5
50 25 0 25 0 0 0 23.9
50 35 0 15 0 0 0 33.5
50 15 0 35 0 0 0 24.1
50 45 0 5 0 100 40 20.7
50 41.5 0 8.5 0 100 40 20.6
50 30 0 20 0 100 40 20.9
50 0 0 21.5 28.5 100 40 22.2
50 33.5 11 5.5 0 100 40 21.1

Table 2. First 15 scaled dataset measurements.

Intensity (A)
(μmol m−2 s−1)

R G B W
Frequency

(Hz)
Duty (%)

Energy
Consumption (Wh)

0.000 0.256 0.000 0.039 0.000 0.000 0.000 0.085
0.000 0.236 0.000 0.066 0.000 0.000 0.000 0.082
0.000 0.171 0.000 0.154 0.000 0.000 0.000 0.097
0.000 0.000 0.000 0.166 0.154 0.000 0.000 0.132
0.000 0.191 0.180 0.042 0.000 0.000 0.000 0.111
0.000 0.191 0.270 0.000 0.000 0.000 0.000 0.082
0.000 0.000 0.000 0.000 0.270 0.000 0.000 0.114
0.000 0.142 0.000 0.193 0.000 0.000 0.000 0.097
0.000 0.199 0.000 0.116 0.000 0.000 0.000 0.378
0.000 0.085 0.000 0.270 0.000 0.000 0.000 0.103
0.000 0.256 0.000 0.039 0.000 0.100 0.444 0.003
0.000 0.236 0.000 0.066 0.000 0.100 0.444 0.000
0.000 0.171 0.000 0.154 0.000 0.100 0.444 0.009
0.000 0.000 0.000 0.166 0.154 0.100 0.444 0.047
0.000 0.191 0.180 0.042 0.000 0.100 0.444 0.015

3.2. Person Correlation Results

The next step was determining the Pearson correlation level with the coefficient ρ
supported by the statistic test pvalue using the equations in Section 2.4. The evidence for
Pearson correlation with intensity, R, G, B, W, and frequency was sufficient as pvalue ≤ 0.05,
but the duty correlation was unreliable because pvalue > 0.05. Thus, duty cycle was the first
variable eliminated (Table 3).

Table 3. ρ and pvalue correlation with energy consumption per input variable.

Elimination Order Input ρ pvalue

7th Intensity 0.865312 0
3rd R 0.091069 5.64 × 10−12

2nd G 0.043198 0.001106
5th B 0.372963 1.3 × 10−187

6th W 0.522086 0
4th Frequency 0.110005 8.18 × 10−17

1st Duty cycle 0.014195 0.283926
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Figure 4 shows a correlation heat map of the input variables and the energy consump-
tion output to identify the strongest correlations graphically. There is a lower correlation
where the graph color is darker.

Figure 4. Pearson correlation heat map results.

3.3. Variance Threshold Results

The dataset energy consumption variables were dismissed against the variance thresh-
old value as it gradually increased. The method for eliminating the variables with lower
variance was described in Section 2.5. Figure 5 indicates the color associated with each
variable in the variance threshold selection.

Table 4 displays the feature variance, the threshold value, and a bar plot showing the
eliminated variable. Each threshold value was increased by 0.01 steps until a feature was
eliminated from the energy consumption dataset.

 

Figure 5. Colors per variable for variance threshold feature selection.
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Table 4. Elimination order for features using variance threshold selection.

Elimination Order Variable Variance Threshold Image

1st W 0.05079 0.051

2nd G 0.05490 0.055

3rd B 0.05546 0.056

4th Duty cycle 0.06012 0.061
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Table 4. Cont.

Elimination Order Variable Variance Threshold Image

5th R 0.06479 0.065

6th Intensity 0.10185 0.110

7th Frequency 0.14260 N/A N/A

3.4. Mutual Information Gain Results

Mutual information gain feature selection for the energy consumption dataset, set as
the output variable, and all the other variables, assigned to the features array, was applied
according to the description in Section 2.6. The results of this analysis are represented in
Figure 6 and Table 5.

Figure 6. Mutual information evaluated versus the features in the dataset.
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Table 5. Mutual information gain values for the energy consumption dataset.

Elimination Order Input MI(X|Y)

5th Intensity 0.987600
7th R 1.107432
3rd G 0.318185
6th B 1.027326
4th W 0.514607
1st Frequency 0.092839
2nd Duty 0.131858

3.5. Univariate Linear F-Regression Results

Once again, feature selection by F-regression in the generated dataset employed the
energy consumption, such as the outcome variable in the features array (Section 2.7).
Figure 7 displays the Fscore value for hypothesis H0 for each variable in the features array,
and Table 6 shows the Fscore and pvalue calculated by H0 for all input parameters.

Figure 7. Fscore comparison and the energy consumption dataset features.

Table 6. Fscore and pvalue feature selection with F-regression.

Elimination Order Input Fscore pvalue

7th Intensity 16,981.875086 0
3rd R 47.651943 5.643556 × 10−12

2nd G 10.652646 1.105620 × 10−3

5th B 920.664903 1.349950 × 10−187

6th W 2135.097576 0
4th Frequency 69.796609 8.176545 × 10−17

1st Duty cycle 1.148417 2.839262 × 10−1

The calculated pvalue is indicated in Table 6. The Pearson correlations for intensity,
R, G, B, W, and frequency showed reliable results since pvalue ≤ 0.05, but the duty cycle
correlation was unreliable because pvalue > 0.05; that is, the duty cycle was the first
eliminated.

3.6. Sequential Feature Selection Results

We used backward sequential feature selection under a linear model and a decision tree
regression (no linear model). However, implementation of the sequential feature selection
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through the decision tree may have generated overfitting; thus, a 10-fold cross-validation
allowed the recognition of the accepted characteristics by modifying the tree depth from 2
to 5.

3.6.1. Sequential Feature Selection with Linear Regression Model

Table 7 presents the results obtained for the linear regression model (Section 2.8.1)
determining the feature elimination sequence, which used as attributes the admitted range
from 1 to 6. The table follows the logic of Figure 5, showing each color in the elimination
ranking with the variance threshold.

Table 7. Sequential feature deletion from the linear regression.

Elimination Order Variable Image

1st Duty cycle

2nd W

3rd G
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Table 7. Cont.

Elimination Order Variable Image

4th B

5th Frequency

6th R

7th Intensity N/A

3.6.2. Sequential Feature Selection with Decision Tree Regression Model

The feature recognition through the decision tree regression model used the variance
in a specific feature, which ranged from 1 to 6, allowing the elimination order for each input
variable (Tables 8–11) to be obtained from the tree depth configuration. A color image of
each feature, following the structure for variance threshold selection, is shown in Figure 5.
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Table 8. Sequential feature selection by decision tree for depth = 2.

Elimination Order Variable Image

1st R

2nd B

3rd Duty cycle

4th Frequency

5th G

6th W

7th Intensity N/A
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Table 9. Sequential feature selection by decision tree for depth = 3.

Elimination Order Variable Image

1st W

2nd B

3rd G

4th Duty cycle

5th Frequency

6th R

7th Intensity N/A
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Table 10. Sequential feature selection by decision tree for depth = 4.

Elimination Order Variable Image

1st W

2nd B

3rd Frequency

4th G

5th Duty cycle

6th R

7th Intensity N/A
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Table 11. Sequential feature selection by decision tree for depth = 5.

Elimination Order Variable Image

1st W

2nd G

3rd Duty cycle

4th B

5th Frequency

6th R

7th Intensity N/A
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4. Discussion

The results obtained require division into linear and nonlinear model selection al-
gorithms. The division generated makes it possible to analyze the results according to
the model type and to identify the sequence of each feature. Tables 12 and 13 show the
algorithms by group, the feature selection order, and the mean.

Table 12. Elimination order for the linear model group.

Feature
Pearson

Correlation
Variance

Threshold
Univariate Linear

F-Regression
Sequential

Backward Linear
Mean

Intensity 7 6 7 7 6.8
R 3 5 3 6 4
G 2 2 2 3 2.2
B 5 3 5 4 4.4
W 6 1 6 2 4.2

Frequency 4 7 4 5 4.8
Duty
cycle 1 4 1 1 1.6

Table 13. Elimination order for the nonlinear model group.

Feature
Variance

Threshold
Mutual

Information Gain

Sequential Backward Deep Tree Values
Mean

2 3 4 5

Intensity 6 5 7 7 7 7 6.5
R 5 7 1 6 6 6 5.17
G 2 3 5 3 4 2 3.17
B 3 6 2 2 2 4 3.17
W 1 4 6 1 1 1 2.33

Frequency 7 1 4 5 3 5 4.17
Duty cycle 4 2 3 4 5 3 3.5

The averages calculated and reported in Tables 12 and 13 indicate two different
behaviors depending on the model performance (linear or nonlinear). Figure 8 shows an
alternative way to visualize the performance between linear and nonlinear models.

Figure 8. Feature elimination order distributions with algorithms from the two models used.
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After dividing the models into linear and nonlinear groups, we validated the ordinal
elimination variables on a scale from 1 to 7 and tested the distributions with the Kruskal–
Wallis test (Table 14) [61]. The sequence elimination distribution for the proposed models is
shown in Figures 9 and 10 (linear and nonlinear models, respectively).

Table 14. Values obtained with the Kruskal–Wallis test.

Group Fscore pvalue

Linear 16.27232 0.012364
Nonlinear 17.65278 0.007161

Figure 9. Order of elimination for features in linear models.

The linear model indicated that the essential characteristic was intensity, while the
least significant was the duty cycle (Figure 9 and Table 14). If the appropriate sequence
for any variable is required, the mean value can be found in Table 12. This means that the
elimination order for the linear models was duty cycle, G, R, W, B, frequency, and intensity.

The nonlinear model found that the most crucial characteristic was intensity, while
the least important was W (white color), with sufficient significance p < 0.05. If the correct
sequence of the other variables is required, we can rely on the mean values for the feature
distribution (Table 13). Overall, the elimination sequence was W, G, B, duty cycle, frequency,
R, and intensity.

The elimination order for the duty cycle and R in the linear and nonlinear models
suggests that they are nonlinear features, mainly because several linear algorithms selected
them as the first variables to eliminate but nonlinear algorithms selected them as the most
important ones.
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Figure 10. Order of elimination for features in nonlinear models.

5. Conclusions

In this study, we performed feature selection in order to prioritize inputs in the predi-
cation of energy consumption in an artificial illumination system for a CPPS using linear
and nonlinear regression models. A dataset was generated with electrical measurements
for proprieties such as intensity, light wavelength (RGB and W), frequency, and duty cycle.

The algorithms used for the linear models to identify the elimination order of the
features included the variance threshold, Pearson correlation, univariate liner F-regression,
and sequential backward feature selection with linear regression.

On the other hand, for nonlinear models, the algorithms used were the variance
threshold, mutual information gain, and sequential backward feature selection with tree
decision regression, using a tree depth from 2–5. The Kruskal–Wallis test served to validate
the elimination order distributions.

The best order for eliminating features with the linear model was duty cycle, light
color, frequency, and intensity, with pvalue = 0.012364. The best order with nonlinear
models was white, green, blue, duty cycle, frequency, red, and intensity, with significance
at pvalue = 0.007161. The elimination order for the duty cycle and R in the linear and
nonlinear models differed enormously because the linear algorithms considered them the
most suitable elimination features, while nonlinear algorithms marked them as essential
features. This discrepancy was because the duty cycle and R were nonlinear features. Thus,
only nonlinear models could map them correctly. Moreover, this supports the hypothesis
that the energy consumption in LED lamps for CPPSs has nonlinear behavior and that
nonlinear models should be used to predict it.

This technique allows various deductions to be drawn from the analysis of the data
obtained, including the estimation of the average energy consumption and its comparison
with the quality of the crop, as well as the determination of the circumstances under which
energy use is efficient. The selection of characteristics can be used as a reference for the
agro-industrial community.
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Abstract: Conflagration is the major safety issue of electric vehicles (EVs). Due to their well-kept
appearance and structure, which demonstrate salient visual changes after combustion, EV bodies are
recognized as an important basis for on-spot inspection of burnt EVs and make application using
semantic segmentation possible. The combination of deep learning-based semantic segmentation
and recognition of visual traces of burnt EVs would provide preliminary analytical results of fire
spread trends and output status descriptions of burnt EVs for further investigation. In this paper,
a dataset of image traces of burnt EVs was built, and a two-branch network structure that splits
the whole task into two sub-tasks separately concentrated on foreground extraction and severity
segmentation is proposed. The proposed network is trained on the dataset via the transfer learning
method and is tested using 5-fold cross validation. The foreground extraction branch achieved a
mean intersection over union (mIoU) of 95.16% in the burnt EV foreground extraction task, and
the burnt severity branch achieved a mIoU of 66.96% for the severity segmentation task. By jointly
training two branches and applying a foreground mask to 3-class severity output, the mIoU was
improved to 68.92%.

Keywords: deep learning; semantic segmentation; electric vehicle fire

1. Introduction

Vehicles are necessities in human life and are extensively utilized in logistics, trans-
portation and travel. The termination of the production of traditional internal combustion
engine vehicles (ICEVs) is being gradually implemented worldwide under the pressure of
the global energy shortage and environment pollution issues, and electric vehicles (EVs)
are recognized ideal alternatives in this situation. Partially or fully driven by Li-ion bat-
teries, EVs have presented the potential hazard of fire, which heavily affects the safety of
passengers under various scenarios, e.g., parking, charging and driving. Fire incidents in
EVs and plug-in hybrid electric vehicles (PHEVs) mostly begin in the battery power system.
Compared with gasoline-caused vehicle fires, battery-caused vehicle fires contain more
energy, extremely high temperatures, and the release of combustible and toxic gas, thus
leading to higher risks and difficulty in extinguishing the fire [1,2].

In order to eliminate potential fire hazards and improve the manufacturing safety of
EVs, correlative research should not only focus on prevention of combustion, but also on
analysis and research of existing cases of burnt EVs. Recently, the on-spot investigation
of burnt EVs has become an important method for analysis and research. Fire or damage
traces remaining on the body panels and vehicle frames are frequently used to locate the
origin of fire [3]. When the vehicle is not burnt extensively, traces with salient appearances,
e.g., burnt-off paint and rusted metal, can provide reliable clues for the determination of
fire origin [4]. Due to the similarity of material and paint utilized in EVs and conventional
vehicles, fire traces of bodies of burnt EVs are also applicable and credible for investigation.
Moreover, fire traces can be conveniently captured as digital images, which also provides
possibilities for using a computer vision method for recognition.
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Semantic segmentation is one of the major computer vision tasks that applies end-
to-end classification of every pixel of the image input and outputs a corresponding seg-
mentation map, in which a cluster of pixels classified as the same class is called semantic.
With fully convolutional network (FCN) [5] first introduce convolutional neural network
(CNN) into semantic segmentation, multiple advanced network structures with various
optimization methods were proposed, e.g., contextual information-reinforced PSPNet [6]
and DeepLab [7,8] and attention mechanism-based DANet [9] and PSANet [10]. Multiple
backbones are also implemented in semantic segmentation tasks for different purposes,
e.g., ResNet [11,12] with deep architecture, MobileNet [13] as a lightweight framework,
and HRNet [14] for high-resolution feature extraction.

With the improvement of computer performance and the emergence of in-depth
research on deep learning, semantic segmentation has been utilized in various prac-
tical tasks and has achieved par excellence performance. In the medical field, Ron-
neberger et al. [15] proposed U-Net with an encoder-decoder architecture for biomedical
segmentation tasks. Milletari et al. [16] proposed a variant called V-Net that utilized resid-
ual blocks. Zhou et al. [17] proposed a much more complex UNet++ with sub-networks
connected through a series of nested, dense skip pathways. Apart from the structures, the
targets for medical segmentation also varies, e.g., lungs, lesions, lobes, tumours, and vessels.
In the scene parsing and automatic driving field, Zhao et al. [6] proposed PSPNet with
a classic pyramid pooling module. Charles et al. [18] expanded the input of the network
to 3d point sets and proposed a related structure named PointNet. Kirillov et al. [19]
combined sematic segmentation and instance segmentation tasks and proposed a new task
called panoptic segmentation. Semantic segmentation is also in large-scale use for fire and
smoke detection and recognition. Wang et al. [20] proposed a model concentrated on small
fire and smoke regions in video data. Zhang et al. [21] proposed a lightweight U-Net-based
network for forest fire detection and recognition. Mseddi et al. [22] proposed a method
combining YOLOV5 and U-Net for fire detection and segmentation. Moreover, in the
remote sensing field, Chen et al. [23] proposed symmetrical dense-shortcut frameworks for
very-high-resolution images, and Zhang et al. [24] proposed a dual lightweight attention
network for high-resolution remote sensing images.

Currently, no semantic segmentation-based research on the recognition of EV fire
traces has been implemented, and no corresponding dataset has been built for the task.
However, according to the forementioned analogous tasks, semantic segmentation would
be compatible with the EV fire trace recognition task of this paper. The combination of
semantic segmentation would not only output a preliminary analytical result of burnt EVs
by collecting images conveniently, but also make its output a status description of burnt
EVs for further archive and research. In summary, the main contributions of this paper can
be summarized as follows:

1. A deep learning-based semantic segmentation technique was novelly applied to the
recognition of fire image traces on EVs, and a dataset was labeled according to the
different visual appearances of burnt EVs for corresponding tasks;

2. A multi-task learning-based two-branch network architecture was proposed. The first
branch of the network was used for the foreground extraction task, and the other
was built for distinguishing different severities of the burnt vehicle body. The best
configuration of training and output of this architecture was found;

3. A connectivity-based weighted cross entropy loss function was proposed in the
foreground branch for eliminating false true regions and keeping the main vehicle
body for further processing;

4. A densely connected module with the expectation maximum attention (EMA) mecha-
nism was proposed for better extracting multi-scale features in the severity segmenta-
tion branch.

The proposed model and an executable demo are available in Supplementary Materials
at: https://github.com/Jkreat/EVFTR (accessed on 27 May 2022).

64



Electronics 2022, 11, 1738

2. Materials and Methods

2.1. Dataset of Burnt EVs

Original images of burnt EVs were collected from various accident cases of EV com-
bustion in China and burning tests conducted by Tianjin Fire Research Institute of M.E.M.
The dataset contains 314 raw images with pixel-level annotations of burnt EVs. Vehicle
bodies of the dataset are labeled into 3 different levels of severity and background into
pixel-level according to their visual appearance after combustion. Blue stands for intact
(IN), brown stands for mild and moderate burnt (MB) regions, red stands for severely burnt
(SB) regions, and black stands for background (BG). The proportion of the numbers of
pixels in different classes is shown in Table 1. Detailed regions of different labels are shown
in Figure 1. The distinction between MB and SB is mainly based on the visual appearance
of the painting. In short, regions with painting burnt into yellow or black were labeled as
MB, and regions with painting entirely burnt out and bottom metal exposed were labeled
as SB. As for tires and glasses, MB and SB were labeled according to whether their basic
structure were kept after burning. All images with labeled masks were resized to 560 × 420
to fit the input of the proposed network. Moreover, the whole dataset was divided into
five folds uniformly for five-fold cross validation. While training the foreground extraction
branch, the labeled images were transferred into foreground masks. More images with
corresponding labeled masks for different tasks are shown in Figure 2.

Table 1. Proportion of numbers of pixels in different classes (%).

BG IN MB SB

57.09 25.70 7.55 9.67

Figure 1. Original image, labeled image and details. (a) Original image of burnt EV. (b) Labeled
image of different severity. (c) Detail of region labeled as SB. (d) Detail of region labeled as MB.
(e) Detail of region labeled as IN.
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Figure 2. Images from the dataset with corresponding labels. First row: original images, second row:
labeled masks for fire trace segmentation, third row: labeled masks for foreground extraction.

2.2. Backbone and Transfer Learning

Many public datasets for semantic segmentation task contain classes annotated as
vehicles or cars. Due to the similarity of burnt vehicles in the tasks of this paper and
intact vehicles annotated in public datasets, initializing pretrained weights from these
public datasets for training the proposed network of this paper via fine-tuning method
will not only lead to quick convergence, but significantly improve the overall accuracy
by transferring knowledge learned from abundant corresponding data. Therefore, rather
than training from scratch, transfer learning was used for training. To obtain benefits from
pretrained weights and extract features better, a mainstream backbone network with deep
architecture was needed. Therefore, ResNet101 with dilated convolution was selected as
the backbone of the proposed architecture. Weights of the backbone were initialized using
pretrained weights from COCO dataset.

Compared with the original ResNet101, the dilated version has the same number
of layers and number of parameters but replaces the normal convolution operation with
the dilated convolution operation in the last two groups of convolution blocks. Such
a replacement increased the resolution of the output feature map without reducing the
reception field. As for the semantic segmentation task, the feature map with higher spatial
resolution contains more context representation; thus, the dilated ResNet101 better fits the
task of this paper. The detailed configuration of the selected backbone is listed in Table 2.

Table 2. Configuration of backbone.

Layer Name Block Configuration Number of Blocks Output Size

Layer0
[

Conv, (7 × 7), 64, stride = 2
Maxpool, (3 × 3), 64, stride = 2

]
1 280 × 210

Layer1
⎡⎣ Conv, (3 × 3), 64, stride = 1

Conv, (3 × 3), 64, stride = 1
Conv, (3 × 3), 256, stride = 1

⎤⎦ 3 140 × 105

Layer2
⎡⎣ Conv, (3 × 3), 128, stride = 1

Conv, (3 × 3), 128, stride = 1
Conv, (3 × 3), 512, stride = 1

⎤⎦ 4 70 × 53

Layer3
⎡⎣ Conv, (3 × 3), 256, stride = 1

Conv, (3 × 3), 256, dilation = 2
Conv, (3 × 3), 1024, stride = 1

⎤⎦ 23 70 × 53

Layer4
⎡⎣ Conv, (3 × 3), 512, stride = 1

Conv, (3 × 3), 512, dilation = 4
Conv, (3 × 3), 2048, stride = 1

⎤⎦ 3 70 × 53

2.3. Foreground Extraction Branch
2.3.1. Network Structure

A modified atrous spatial pyramid pooling (ASPP) module from DeeplabV3 was
connected after the backbone in this branch for capturing the multi-scale context. To fit the
size of the feature map from the backbone, the original ASPP module with a dilation rate of
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(6, 12, 18) was modified to a larger module with a dilation rate of (4, 11, 18, 25). Moreover,
the number of output channels of each layer was promoted from 256 to 512. The overall
structure of the foreground extraction branch is shown in Figure 3.

Figure 3. Structure of the foreground extraction branch.

2.3.2. CCE Loss Function

The characteristics of the foreground extraction task in this paper are summarized
as follows:

• Every input image has only one main EV body as the target for processing. Other
partially or fully captured vehicle bodies in the image should all be regarded as
background and be minimized;

• The body of the target EV in each image is always at the center of image, i.e., the farther
a predicted foreground pixel cluster is from the center of image, the less possible it
would be for it to be considered the main vehicle target;

• Compared to false negative (FN) areas, false positive (FP) areas are a major issue that
influence overall accuracy and should be eliminated.

To restrain the FP areas of the results from the foreground branch, a cross entropy loss
function with connectivity-based weights was proposed to increase the penalization of FP
domains according to their area and distance from center of the image.

The proposed loss function works when the model is “nearly converged”, i.e.,
N < threshold connected domains exist in the output image. In this condition, a con-
nectivity analysis algorithm is applied to split output foreground into N sorted domains
according to their area, and the domain with the largest area is regarded as the main body
of the vehicle.

D = {D1,D2, . . . ,DN} (1)

The weighted binary cross entropy loss function for 2-class segmentation task could
be described as below:

L = − 1
N

N

∑
i=1

(yi log pi + w(1 − yi) log (1 − pi)) (2)

In the equation above, w is the weight value. When w < 1, the function concentrates
more on FNs; on the contrary, the function pays more attention on FPs when w > 1.
Moreover, the function degenerates into normal cross entropy loss if w tends to 1. When
one pixel belongs to the domain Dk, w is calculated as follows:

w = 1 + log

(
1 +

dk
γ

√
Ak
A1

)
(3)

In the equation above, dk stands for the distance between the centroid of the minimum
bounding rectangle of Dk and the center of image, Ak is the area of Dk, and A1 is the
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domain that possesses the largest area, i.e., the main body of the EV. γ is a hyperparameter
for controlling the value of the weight.

2.4. Severity Segmentation Branch

Considering that the features of burnt EV bodies are close to the features of intact
vehicles from the source dataset used for pretraining, the transfer learning method is
effective in the foreground extraction task, and a simple ASPP module would result in
good accuracy. However, in the severity segmentation task, the features of burnt regions
are amorphous and abstract, and the number of classes for classification also increase from
2 to 4. Therefore, a network architecture with a better feature representation capability is
in need.

Contextual information reinforcement and attention mechanism utilization are two
major research priorities in semantic segmentation research. Inspired by DenseASPP, a
densely connected multi-scale structure with an attention module named DA-EMA was
proposed in this paper. The overall structure of the severity segmentation branch, including
the DA-EMA module, is shown in Figure 4.

Figure 4. Structure of the severity segmentation branch. C is the output channels, K is number of
bases contained in the EMA unit, and d is the dilation rate.

Simply improving the dilation rate of the ASPP module to improve the receptive field
may cause a drop in overall model performance caused by the loss of modelling capability.
To solve the problem and enlarge the receptive field further, Yang et al. [25] proposed a
DenseNet [26]-like densely connected ASPP (DenseASPP) module.

Attention mechanisms have been proven effective in many semantic segmentation
scenarios by performing feature recalibration and feature enhancement [27]. In this paper,
an attention module is added to every level of a densely connected structure for enhancing
multi-scale feature representation. However, traditional attention-based modules need
to generate a large attention map that has high computation complexity and high GPU
memory cost. A lightweight expectation maximization attention (EMA) module [28] is a
good alternative in this case. Instead of treating all pixels as the reconstruction bases of the
attention map, the EMA module uses the expectation maximization algorithm to find a set
of compact basis in an iterative manner and then largely reduces computational complexity.
A typical EMA unit consists of three operations, including responsibility estimation (AE),
likelihood maximization (AM) and data re-estimation (AR). Given the input X ∈ RN×C and
the initial bases μ ∈ RK×C, AE estimates the latent variables Z ∈ RN×K as ‘responsibility’,
the step functions as the E step in the expectation maximization (EM) algorithm. AM uses
the estimation to update the bases μ, which works as the M step in the EM algorithm. The
AE and AM steps execute alternately for a pre-specified number of iterations. Then, with
the converged μ and Z, AR reconstructs the original X as Y and outputs it. The detailed
structure of one EMA unit is shown in Figure 5.
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Figure 5. Detailed structure of an expectation maximization attention unit.

To improve the contextual representation, dilated convolution is frequently utilized in
the proposed network. Wang et al. [29] found a “gridding” issue in the dilated convolution
framework: as zeros are padded in the dilated convolution layer, the receptive field of
the kernel only covers locations with a non-zero value and makes other neighboring
information become lost. In this paper, dilation rates in the proposed DA-EMA module
were modified from (3, 6, 12, 18, 24) to (3, 7, 11, 16, 21), which had no common divisor larger
than 1 to improve the information used in the densely connected convolution layers with
alleviation of the gridding effect. According to Figure 4, the overall DA-EMA module
contains 5 EMA units with dilated convolution, and the sixth EMA unit is utilized to process
the concatenated feature map. The detailed configuration of the dilated convolution layers
and EMA units is shown in Table 3.

Table 3. Detailed configuration of DA-EMA units.

Block Name
Convolution
Kernel Size

Dilation
Number of
EMA Bases

Input Channels
Output

Channels

DA-EMA1 3 × 3 3 32 2048 128
DA-EMA2 3 × 3 7 32 2048 + 128 × 1 128
DA-EMA3 3 × 3 11 32 2048 + 128 × 2 128
DA-EMA4 3 × 3 16 32 2048 + 128 × 3 128
DA-EMA5 3 × 3 21 32 2048 + 128 × 4 128

Output EMA 1 × 1 1 64 2048 + 128 × 5 4

2.5. Multi-Task Learning-Based Two-Branch Architecture

Multi-task learning is a learning mechanism that enables multiple learning tasks to
improve their generalization performance by sharing common knowledge learned from
other tasks and maintaining their own features. The proposed model combines branches
introduced above together with a shared backbone feature. In the foreground extraction
branch, the result is accurate enough by training with the transfer learning method; thus,
the output of this branch is used as a mask for further processes. In the severity branch,
the background class is set as ignored, i.e., the parameters of the background class are not
reckoned in back propagation; only parameters of three different severity levels are learned.
Finally, to get the final results, the mask from the foreground extraction branch is applied
to the output image of the severity segmentation branch.

Two different training methods were adopted for comparison to get better results. The
overall architecture and training methods are listed in Figure 6.

Two-stage training: Train the backbone and foreground extraction branch using trans-
fer learning first, then fully freeze parameters of the backbone and train the severity
segmentation branch.

Joint training: Train the two branches and background together, then calculate the
weighted sum of loss from the two branches for back propagation. Assuming L1 is the loss
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from the foreground extraction branch, and L2 is the loss from the severity segmentation
branch, the overall loss is calculated as:

L = λL1 + (1 − λ)L2 (4)

Moreover, two output methods were also implemented and taken into comparison.
The first output method did not set the background label as ignored; thus, the severity
branch also output the prediction of the background, and the number of classes of this
branch output is 4. On the contrary, the second method set the background label as ignored,
i.e., background was not included for back propagation; thus the severity branch barely
output the prediction result containing the background class. Two different methods are
shown in Figure 7.

Figure 6. Two training methods implemented in this paper; dotted lines stand for back propagation.
(a) Two-stage training; (b) joint training.

Figure 7. Two output methods (for the severity segmentation branch) in this paper: (a) 4-class output;
(b) 3-class output.

2.6. K-fold Cross Validation

Generally, to evaluate the performance of a model, the dataset is randomly split into
two subsets for training and testing according to a certain ratio. Test set obtained through
this method may be unreliable to estimate the real performance of the model, especially
when the size of the dataset is relatively small. K-fold cross validation utilizes all data to test
the model, and thus could better estimate the generalization ability of the model. The fold
number K is usually set to 5 or 10 [30,31]. In this paper, K was set to 5 as a trade-off between
the bias of the result and time consumption for training. The leave-one-out method, a
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special case of K-fold cross validation, was utilized. In this case, the number of folds equals
the number of instances.

3. Results

3.1. Experimental Configuration and Evaluation Metrics

All experiments were conducted on a server running the Ubuntu 16.04 operation
system. The server was equipped with two Tesla p40 GPUs and a Xeon Gold 5118 CPU.
The resolutions of images from the dataset were resized to 560 × 420. Due to the utilization
of transfer learning, the model converged rapidly, and the number of training epochs was
set to 10 while each branch was separately trained. When two branches were trained
jointly, the number was increased to 20. For all experiments, the initial learning rate was
set to 0.0001 and the Adam optimizer was used. Additionally, 5-fold cross validation was
implemented. The training group with fold K set for testing was named training group K.

Intersection over union (IoU) was utilized as the metric form of segmentation tasks of
this paper to evaluate the accuracy of the outputs. IoU is calculated as follows:

IoU =
TP

TP + FP + FN
(5)

In experiments of the foreground extraction task, only the IoU of foreground that
represented bodies of target vehicles were counted.

In the EV fire trace recognition task, the number of classes was set to 4, so the mean
IoU (mIoU) of 4 classes was calculated to evaluate the performance. As discussed in 3.1,
the 4 classes were IN, MB, SB, BG, and the mIoU could be calculated as follows:

mIoU =
1
4
(IoUBG + IoUIN + IoUMB + IoUSB) (6)

Additionally, to evaluate the accuracy of vehicle body segmentation, the union regions
of IN, MB and SB were regarded as “Vehicle Body” (VB) regions; to evaluate the segmenta-
tion accuracy of burnt regions as a whole, the union of MB regions and SB regions were
regarded as “Fire Trace” (FT) regions. Their IoU was thus calculated as follows:

IoUVB =
IIN∪MB∪SB

UIN∪MB∪SB
(7)

IoUFT =
IMB∪SB

UMB∪SB
(8)

3.2. Experiments of the Foreground Extraction Branch

In this group of experiments, to evaluate the performance of the foreground extraction
branch, the backbone was connected to the modified ASPP module only, and the proposed
CCE loss function was utilized.

3.2.1. Parameter Experiments of the CCE Loss Function

γ is an important component of the proposed CCE loss function in the foreground
extraction branch. The value of γ was adjusted in a reasonable range, and the results
obtained from different values are shown in Table 4.

3.2.2. Ablation Study

To conduct an ablation study for the foreground extraction branch, we compared the
impact of the modified ASPP module and the proposed CCE loss function. The value of γ
in this experiment was set to 20 according to the results above. The comparison results are
listed in Table 5.
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Table 4. Detailed configuration of DA-EMA units.

γ
Training
Group 1

Training
Group 2

Training
Group 3

Training
Group 4

Training
Group 5

Average
Standard
Deviation

1 95.69 95.33 94.31 94.78 93.88 94.80 0.74
2 95.14 95.15 94.89 95.09 94.24 94.90 0.39
3 95.51 95.35 95.31 94.75 94.20 95.02 0.54
5 95.85 95.27 95.04 94.61 94.04 94.96 0.68
10 95.80 95.53 94.96 94.63 94.22 95.03 0.65
15 95.84 95.47 95.19 94.78 94.20 95.10 0.63
20 96.03 95.62 95.24 94.80 94.11 95.16 0.74
30 95.90 95.42 95.20 94.70 94.06 95.06 0.70
50 95.66 95.33 94.63 95.02 93.91 94.91 0.68

Table 5. Detailed configuration of DA-EMA units.

Modified
ASPP

CCE Loss
Training
Group 1

Training
Group 2

Training
Group 3

Training
Group 4

Training
Group 5

Average
Standard
Deviation

95.34 95.27 94.58 94.65 93.81 94.73 0.62
� 95.81 95.37 94.69 94.78 94.02 94.93 0.69

� 95.48 95.59 94.88 94.73 94.09 94.95 0.61
� � 96.03 95.62 95.24 94.80 94.11 95.16 0.74

3.3. Experiments of the Severity Segmentation Branch

In this group of experiments, to evaluate the performance of the severity segmentation
branch, the backbone was connected to the proposed DA-EMA module only, and the
number of classes for training and output was set to 4, i.e., no class was ignored in the back
propagation process.

3.3.1. Performance Comparison

The proposed DA-EMA module and multiple mainstream semantic segmentation
network structures were trained in the same configuration including the same backbone
network. The results are shown in Table 6 and Figure 8.

Figure 8. Results of the proposed DA-EMA and other semantic segmentation models.

72



Electronics 2022, 11, 1738

Table 6. Comparison of the proposed DA-EMA and other semantic segmentation models.

Method BG IN MB SB mIoU VB FT

FCN [5] 93.97 76.07 38.89 48.56 64.37 93.61 67.95
PSPNet [6] 94.15 75.07 37.63 46.90 63.44 92.82 67.85

DeepLabV3 [7] 93.84 76.23 39.11 49.06 64.56 93.44 68.47
DANet [9] 94.85 76.52 42.74 49.58 65.92 93.42 70.71

PSANet [10] 94.61 76.00 36.92 49.00 64.13 93.29 67.88
LEDNet [32] 93.18 76.91 37.82 48.82 64.18 91.25 65.75
OCRNet [33] 94.76 76.67 39.65 44.89 63.99 93.33 67.98

DA-EMA 95.30 77.12 42.68 52.73 66.96 94.03 71.00

3.3.2. Ablation Study

To examine the contribution of different modules in the proposed DA-EMA module,
an ablation study was conducted. The first experiment used the structure of DenseASPP
with a modified dilation rate without the EMA module (DA), the second experiment only
utilized one EMA module to process the feature map from the backbone (EMA), and the
third experiment was conducted using the proposed DA-EMA module. As per the results
shown in Table 7, both the EMA module and the densely connected structure helped to
improve the overall performance.

Table 7. Detailed configuration of DA-EMA units.

DA EMA BG IN MB SB mIoU VB FT

� 95.16 76.92 40.03 51.22 65.83 93.86 69.15
� 94.52 75.78 40.79 48.51 64.90 92.87 69.78

� � 95.30 77.12 42.68 52.73 66.96 94.03 71.00

3.3.3. Responsibility Map Visualization

In the EMA module, each basis corresponds to an abstract concept of the image. To
examine whether the EMA mechanism functioned in the proposed DA-EMA module,
multiple responsibility maps, i.e., latent variables Z generated from different EMA bases,
were extracted. These were concluded from responsibility maps from different levels of the
EMA module, as shown in Figure 9.

Figure 9. Converged responsibility maps collected from EMA units from different levels. (a) Maps
from DA-EMA block 1. (b) Maps from DA-EMA block 2. (c) Maps from DA-EMA block 3. (d) Maps
from DA-EMA block 4. (e) Maps from DA-EMA block 5. (f) Maps from output EMA block.
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3.4. Experiment of the Entire Network

Benefiting from the multi-task learning mechanism, the entire network for EV fire
trace recognition combined two branches and achieved better performance than using
the single severity segmentation branch only. To demonstrate this improvement, different
configurations of training and output were implemented using the proposed network,
and the results are shown in Table 8 and Figure 10. In the joint training method, the λ
value for loss calculation was set to 0.25 based on the ratio of the loss value while each
branc converged.

Table 8. Results of different training methods and output methods. “Branch#2” stands for training
the severity segmentation branch only.

Training
Method

Output
Classes

BG IN MB SB mIoU VB FT

Branch#2 4 95.30 77.12 42.68 52.73 66.96 94.03 71.00
2-Stage 4 95.84 78.52 45.54 52.59 68.12 94.72 72.44

Joint 4 95.63 77.86 43.81 53.57 67.72 94.86 72.79
2-Stage 3 96.15 79.17 45.11 53.80 68.56 95.10 71.79

Joint 3 95.70 78.92 45.96 55.11 68.92 94.50 73.17

Figure 10. Results of the proposed DA-EMA in different training and output configurations. (a) Orig-
inal images. (b) Labeled images. (c) Results of the single severity segmentation branch. (d) Results of
the two-stage training and 4-class output. (e) Results of the joint training and 4-class output. (f) Re-
sults of the two-stage training and 3-class output. (g) Results of the joint training and 3-class output.

4. Discussion

To evaluate the foreground extraction branch, two experiments were conducted: a
loss function parameter experiment and an ablation experiment. By tuning the value of
hyperparameters in the proposed CCE loss function, we concluded that by using the loss
function with an appropriate value of hyperparameters, the performance of the foreground
extraction branch was improved. While the value is relatively small, it, on the contrary,
hindered the convergence of the network. Once the value was extremely big, the function
degenerated into normal cross entropy loss and lost its ability. Moreover, by conducting the
ablation experiment, we found both the modified ASPP module and the CCE loss function
had a positive effect on the branch.

The transfer learning method is essential in this paper, especially in the foreground
extraction branch. By using weights pretrained on an enormous public dataset including
labeled intact vehicles, the branch converged rapidly, and obtained great IoU results of
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over 95%. Due to the fine results obtained from the selected backbone and modified ASPP
using pretrained weights, it is enough to use the simple ASPP module and CCE loss
function for the foreground extraction task. More complicated models could not cause
considerable excessive improvement. However, the severity segmentation task would be
less benefited from the transfer learning method, which was also the reason for splitting the
whole fire trace recognition task into two sub-tasks and focusing on a new module for the
enhancement of feature extraction and expression. Therefore, the DA-EMA module with
densely connected dilated convolution layers and a lightweight expectation maximization
attention mechanism was proposed in the severity segmentation branch for the EV fire
trace recognition task.

Regarding the experiments on the severity segmentation branch, we first compared
the performance of the proposed DA-EMA module and other mainstream semantic seg-
mentation models. The results in Table 6 showed that the proposed DA-EMA module
achieved better accuracy in comparison to many mainstream networks. Moreover, ac-
cording to Figure 8, due to the combination of the contextual mechanism and attention
mechanism, outputs of the proposed DA-EMA module were more detailed than models
with attention models, e.g., DANet and PSANet, and emphasized burnt regions more
than models with contextual information, e.g., PSPNet and DeeplabV3. In addition, for
EVs with slightly burnt bodies, the proposed DA-EMA module generated less error when
classifying intact regions into burnt regions. For EVs with windows broken and internal
structures or background exposed behind the glass, the proposed DA-EMA could better
recognize regions behind the broken windows. Moreover, some models might wrongly
recognize components, e.g., air inlets and intact tires, as burnt regions, but these issues were
barely present with the proposed DA-EMA module. The other experiment evaluating the
performance of the proposed DA-EMA module was an ablation experiment conducted by
separately utilizing the DenseASPP-like structure with multiple dilated convolution layers
and only one EMA module without a multi-scale structure. As a result, both the dense
structure and EMA module had a positive impact on the overall performance. Moreover,
the visualization of responsibility maps showed that bases of EMA units were converged to
a certain concept of the input image, e.g., regions of different severities, contours of EV, and
backgrounds. Though responsibility maps became more abstract and diffused as dilation
rate increased, representations of different concepts were not reduced.

To prove that the performance improvement benefited from the multi-task learning
mechanism by combining two branches, different training methods and number of classes
of the severity branch were tested. According to the results shown in Table 8, by setting
the background as an ignored label and predicting only three classes of severity levels, the
severity segmentation branch output fewer errors than when taking the background class
into consideration. When the two-stage training method was applied, backbone parameters
were frozen after the foreground branch was trained, and the parameters did not change
while training the severity branch. Therefore, the output of the foreground mask was much
more close to the best performance achieved by training the foreground only. However,
by training the two branches jointly and making the severity segmentation branch output
only three classes, the whole model achieved the best performance.

Although the proposed DA-EMA module achieved better accuracy than other main-
stream semantic segmentation models and the two-branched model also improved the
overall performance further, the model still has some room for improvement. Firstly, the
number of parameters of the network, especially the number of parameters of the backbone
and the modified ASPP with more output channels in the foreground extraction branch is
large, thus raising the time consumption of model training and inference. Though the task
of this paper does not have a real-time requirement, there is still room for simplifying the
model by reducing redundant components. Secondly, the size of dataset is relatively small,
and white is the major color of EV bodies. Therefore, a lack of EV samples of different colors
may lead to error when inferring EVs with rare colors or complicated paintings. Thirdly,
restricted by the computing capacity, the resolution of images was relatively insufficient
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for expressing many detailed features. To solve this problem, a modified model with the
capacity of processing larger images should be implemented.

5. Conclusions

In this paper, we used semantic segmentation techniques for recognizing traces of
different severity levels from burnt EV images. A corresponding model with two branches
separately concentrating on the foreground extraction task and the severity segmenta-
tion task was proposed, the backbone of which was ResNet101 with dilated convolution.
Benefiting from the feature similarity between intact vehicles from a public dataset for
pretraining and burnt vehicles from a dataset built in this paper, transfer learning con-
siderably improved the overall accuracy of the foreground extraction task. Along with
the modified ASPP module and proposed CCE loss function, the foreground extraction
branch achieved an IoU of 95.16%. In the severity segmentation branch, to better enhance
the feature representation capacity, a module combining the DenseASPP-like dense archi-
tecture and attention module named EMA was proposed. Achieving a mIoU of 66.96%,
the proposed severity segmentation branch was tested and found to fit the task of the
paper better than the other mainstream networks. Finally, by combining the two branches
together, the whole multi-task based model was evaluated under different configurations
of training and output, and the mIoU was finally improved to 68.92% while jointly training
two branches and setting the background as ignored in the severity segmentation branch.

However, the proposed model has some limitations in certain scenarios. First, it is
limited by the scale of dataset, as the majority of EV bodies are white. The lack of images of
EVs with rare colors in dataset may cause errors when recognizing fire traces on EVs with
these colors. To solve this problem, continuing to expand the dataset is the most efficient
method. Second, although the gridding effect of the DA-EMA module was alleviated
by modifying the dilation rates, the dilated convolution layers of the backbone were not
optimized, and thus, the gridding effect still existed, especially in the foreground mask
output from the foreground extraction branch. Third, the proposed CCE loss function
in the foreground extraction branch did assist in eliminating FP areas, but when jointly
training two branches, the λ was set to 0.25, which may weaken the function of CCE loss.
As many FP areas were caused by other vehicle bodies, the best solution would be to
apply the instance segmentation method to the foreground segmentation branch. Instance
segmentation would classify pixel clusters of vehicle and distinguish which cluster belongs
to which vehicle. By using this, the FP areas of other vehicle bodies can be conveniently
removed. The problems above are shown in Figure 11.

Figure 11. Limitations of the model. (a) Error of a red vehicle. (b) Gridding. (c) FP area from other
vehicles.

Supplementary Materials: The proposed model and an executable demo are available at: https:
//github.com/Jkreat/EVFTR (accessed on 27 May 2022).
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Abstract: The smart grid has become a cyber-physical system and the more cyber it becomes, the
more prone it is to cyber-attacks. One of the most important cyber-attacks in smart grids is false
data injection (FDI) into its measurement infrastructure. This attack could manipulate the control
center in a way to execute wrong control actions on various generating units, causing system
instabilities that could ultimately lead to power system blackouts. In this study, a novel false data
detection and prevention paradigm was proposed for the measurement infrastructure in smart grids.
Two techniques were devised to manage cyber-attacks, namely, the fixed dummy value model and
the variable dummy value model. Limitations of the fixed dummy value model were identified and
addressed in the variable dummy value model. Both methods were tested on an IEEE 14 bus system
and it was shown through the results that an FDI attack that easily bypassed the bad data filter of
the state estimator was successfully identified by the fixed dummy model. Second, attacks that were
overlooked by the fixed dummy model were identified by the variable dummy method. In this way,
the power system was protected from FDI attacks.

Keywords: smart grid; cyber-physical system; false data injection attacks; false data detection;
cyber security

1. Introduction

“Smart grid” is taken as an umbrella term for different technologies. Those tech-
nologies are considered alternatives to the traditional methods used to operate the power
system. Some of these technologies are advanced metering infrastructure (AMI), demand
response, outage management, wide-area measurement system (WAMS), active fault level
monitoring, etc. In a smart grid, the power resources can be used efficiently [1,2]. A
smart grid has a high dependence on the advanced communication infrastructure, as
there is an exchange of a huge amount of data for the proper operation of such a complex
network [3–5]. In fact, the smart grid is taken as a network consisting of computers, as
well as power infrastructure. All of these are used for monitoring and managing energy
usage [6,7]. An automated and distributed energy network is created by the smart grid [8].
Self-monitoring is carried out in the case of a smart grid, which makes the smart grid dis-
tinct from a traditional grid [9]. Distributed power resources (DPR) can be accommodated
in a smart grid [10,11].

In a power system, if there exists a mismatch between the generation and utilization
of power, there will be a deviation of electrical quantities from their actual values. The two-
way communication is carried out in a smart grid to have a safe and reliable power flow.
That communication should be secure. Sometimes attackers hack these communication
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links to change the values of power flow in the power network. The hackers attack the
power system to obtain different goals. Multiple purposes can be achieved by these attacks.
Attacks can be used to obtain financial benefits; create technical problems, such as blackouts
of power; and a combination of the two [12–18].

Considering the target of attacks, they can be further divided into three types. The first
category involves attacks that target availability. In these attacks, the aim of the attackers
is to corrupt, block, or delay the communication in the power system. The second type is
attacks that target integrity. In these types of attacks, the attackers try to illegally disrupt
data exchange in the smart grid. The final category is attacks that target confidentiality.
In these attacks, the attackers try to obtain unauthorized information from the smart
network [19].

1.1. Power System State Estimation

The power system state estimation (PSSE) technique is used for the detection of
bad data received in the control room. All the received measurements are placed in a
vector, which is denoted by z. The measurement vector contains the real forward powers,
reactive forward powers, real backward powers, reactive backward powers, real powers
injected into all the buses, reactive powers injected into all buses, voltage magnitudes,
and voltage angles [20–23]. The measurement vector z and the state variable x have the
following relationship:

z = h(x) + e (1)

h(x) represents the non-linear function that gives the dependencies between measured
values and the state variables, and it can be found using the power system topology. e

represents random noise of Gaussian form with a zero mean and some known covariance.
In the case of AC state estimation (SE), the weighted least-squares method is adopted

for solving the state variables with an objective function [24,25]:

minF(x) = (z − h(x))TW(z − h(x)) (2)

where W is the weighting matrix, as given in [26]. This is an unconstrained optimization
problem whose first-order optimality condition is given by:

∂F(x)
∂x

∣∣∣∣
x=x̂

= −2HT(x̂)W(z − h(x̂)) = 0 (3)

Here, H represents the Jacobian matrix and x̂ is taken as the vector of the estimated
states. An iterative process can be used for solving this non-linear equation [27].

The non-linear function can be approximated by a linear function by using some DC
assumptions. Those assumptions are given as follows:

1. The voltage magnitudes of all the buses are very close to each other and they are
assumed to be “1 pu”.

2. The active power transmission through the transmission lines is taken as lossless,
i.e., there are no losses in the transmission lines.

3. The value of reactive power injected into all the buses, as well as flowing through the
transmission lines, is taken as zero.

4. There is a small difference in the voltage angles of two buses such that “Sin(δφ) ≈ δφ”

After applying the DC assumptions, we can rewrite the above equations in this form:

z = Hx + e (4)

H is known as the Jacobian matrix of the power system topology. If the measurement
vector has m values and the number of states is n, then the Jacobian matrix H will have an
order of “m × n”. In (4), x contains the bus voltage angles. z contains the values of active
powers flowing through the transmission lines and injected into all the buses.
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The Jacobian matrix H is constant during each iteration of the linearization process. In
the DC power flow model (4), the Jacobian matrix H is constant throughout. Equation (4)
will be valid for each iteration of the linearization model (3). Therefore, the same notation
is adopted for both the linearized model (3) and the DC power flow model (4).

The weighted least square (WLS) approach is used for estimating the states. In the
WLS algorithm, the estimated state x̂ can be written as follows [19,22]:

x̂ =
(

HTR−1H
)−1

HTR−1z (5)

R represents the covariance matrix of e. The estimated states, as well as the measure-
ment vector z, are used for the calculation of the measurement residue.

r = z − Hx̂ (6)

Then, the normalized L2-norm is calculated for r.

L(r) = rTR−1r (7)

A comparison of L(r) is done with the threshold τ for finding the presence of bad data.
The X2—test is used for the determination of the threshold τ.

rTR−1r ≤ τ (8)

Bad data do not exist if the condition in (8) is satisfied. Similarly, when the condition
is not satisfied, bad data exist in the system.

1.2. Stealth False Data Injection (FDI) Attack

A stealth attack is a special type of attack that bypasses the PSSE technique test.
The residual test is not able to detect a stealth attack. This attack is also known as an
unobservable attack or undetectable attack. In a stealth attack, the Jacobian matrix H is
fully known to the attacker. H is used for the construction of an undetectable attack. Stealth
false data injection (FDI) is given as follows [17,19,22,28–30]:

za = z + a (9)

where a represents the vector of false data that is added to the measurement vector z. The
attacker hacks the data from the communication line and injects the attack vector a into it,
where a = Hc.

The attack is done on the communication line by the attacker and all measurements of
power are hacked. The Jacobian matrix H is determined with the help of those measure-
ments of power. The whole power system topology can be understood with the help of
H. The dependence of one power value on the other powers can be found using H. This
leads the attacker to make an undetectable attack. In fact, it tells the attacker which specific
values of power the attacker will have to change with one particular change in power. To
understand the whole power network, the formation of the Jacobian matrix H is the most
important component. The vector c is multiplied by matrix H and the resultant is added to
the actual measurements when undertaking a stealth attack.

The stealth attack is executed against the PSSE in the power network and that is the
attack of injecting false data into the system measurements. The state estimation technique
is bypassed by the stealth attack [31]. In case of an attack, the estimated state becomes:

x̂a =
(

HTR−1H
)−1

HTR−1za (10)

x̂a = x̂ + c (11)
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The estimated state is changed in the case of a stealth attack. Now, the estimated state
is equal to the original estimated state plus the addition of a constant vector c. It is assumed
that c~N(0,σ2

c ), where the false state variance is represented by σ2
c .

za = Hx + e + a = Hx + e + Hc (12)

za = Hxa + e (13)

Therefore, the attack changes the state of the power system. The technique used in
the system for bad data detection is bypassed by the stealth false data injection attack in
this way:

ra = za − Hx̂a = r (14)

The attacked residual is represented by ra. In the attack, the attacked residue is the
same as that of the normal residue. Therefore, the technique of bad data detection using
residue is bypassed by this attack and the defender is not able to detect the stealth attack.

1.3. Contributions

The key contributions of this study are the following:

1. It was shown that the bad data filter of the state estimation was only useful for
detecting bad measurement data and could not efficiently detect a stealth FDI, making
the system vulnerable to all such attacks.

2. A fixed dummy value model was proposed and it was shown that the false data
attacks that went undetected by the bad data filter could be successfully detected.

3. Since the dummy value in the fixed dummy value model is kept fixed, the intruder
may obtain a clue about it and may change the measurement, keeping the same
dummy value, therefore causing this model to be vulnerable to FDI attacks. To
address the vulnerability of the fixed dummy value model, another technique for the
variable dummy value model was also proposed, which was shown to successfully
counter such attacks.

In this work, a quasi-steady state system was assumed to carry out the AC state
estimation model. Therefore, the dynamic model of the system is not discussed. For the AC
state estimator, the Jacobian matrix H is obtained after the linearization of the measurement
model at every iteration. Thus, Equation (5) is solved at each iteration until a stopping
threshold is reached.

The organization of the rest of the paper is as follows. Section 2 contains a brief
literature review of the different methods and frameworks used for the detection of attacks.
Section 3 consists of the proposed model of the fixed dummy value model. Section 4
discusses the simulations and results of DC state estimation, AC state estimation, and fixed
dummy value model. The limitations of the fixed dummy value model are also given in
that section. Section 5 covers the variable dummy value model. The simulations and results
of the variable dummy value model are present in Section 6. Moreover, Section 7 is devoted
to the discussion of results and future work. Section 8 contains the conclusion.

2. Literature Review

A large variety of methods and algorithms have been used for detecting stealth attacks.
Machine learning methods achieved significant success in this area. In [32], supervised
learning based on recurrent neural networks (RNNs) was used for detecting FDI attacks.
In [16], three supervised machine learning classifiers, namely, SVM, k-nearest neighbor
(kNN), and the extended nearest neighbor (ENN), were used. Different machine learning
algorithms are proposed in [28] for measurement classification. Measurements are classified
as attacked or secure. Sparse logistic regression, SVM, and k-nearest neighbor methods
were used in that study. Another technique was proposed in [33] for the detection of FDI
attacks, which used the Gaussian mixture model. The contribution in [34] was based on
unsupervised learning. Four machine learning methods, namely, a one-class SVM, local

82



Sustainability 2022, 14, 6407

outlier factor, isolation forest, and robust covariance estimation, were employed for FDI
attack detection. In [35], a machine-learning-based scheme was used that employed ensem-
ble learning. In ensemble learning, there is a use of multiple classifiers, and the decisions
obtained by the individual classifiers are further classified. The proposed scheme used two
ensembles. Supervised classifiers were used in the first ensemble and the unsupervised
classifiers were employed in the second ensemble. Supervised learning was proposed
in [36], which used a two-layer hierarchical framework. The first layer distinguished the
mode of operation, such as a normal state or cyberattack. The second layer classified the
type of cyberattack. An approach based on machine learning was adopted in [37] for
cyber-attacks, which used an extremely randomized trees algorithm. In [38], three machine
learning techniques, namely, a support vector machine (SVM), k-nearest neighbor, and
artificial neural network, were implemented for detecting FDI attacks. Each technique was
used with three different feature selection techniques.

An extreme learning machine framework was used in [39] for detecting FDI attacks.
In [40], auto-encoders were used for detecting FDI attacks. The hidden correlation structures
were learned in the data by using auto-encoders. The correlation was learned in two
dimensions, namely, the time and the spatial dimensions. Denoising auto-encoders were
also used to clean the corrupted data. The approaches based on the auto-encoder neural
network [41] and attention-based auto-encoders [42] were also used for the detection
of attacks.

The contribution of [15] distinguished the normal function of the power system from
the function in which there was a stealth attack. The stealth attacks were detected by using
two machine-learning-based techniques. In the first technique, supervised learning was
used for a set of labeled data. That data was used for the training of a support vector
machine (SVM). The second technique did not use any training data and the deviation of
the measurements was detected. An anomaly detection algorithm was applied to detect
stealth attacks.

Deep learning models were also used for the purpose of detecting FDI attacks. The
deep neural network (DNN) model was used [43] for the classification of cyber-attacks
in a smart grid. Another deep learning-based method was proposed in [44] to detect FDI
attacks. The proposed approach consisted of a convolutional neural network (CNN) and a
long short-term memory (LSTM) network for the detection of attacks. The data integrity
attacks in AC power systems can be detected by using a deep Q-network detection (DQND)
scheme proposed in [45]. It is a deep reinforcement learning approach. A neural network
model was used in [46] for detecting false data. In this case, the residual elements obtained
from state estimation were the inputs given to the perceptron model. An algorithm based
on deep learning was proposed in [47] to detect FDI attacks. The dimensionality reduction,
as well as feature extraction from measurement datasets, was done by using auto-encoders.
Then auto-encoders were integrated into an advanced generative adversarial network
(GAN) framework, which was used for detecting the FDI attacks.

The methods based on machine learning had great success in the detection of FDI
attacks. However, at the same time, they have certain limitations and drawbacks. The
methods based on supervised learning need a labeled dataset. They are built on some
conventional attack assumptions. Similarly, deep learning techniques also have some
limitations. In these methods, there is a need for extensive training. More memory space is
also required for deep learning methods.

The main aim of the detection frameworks is to protect the whole communication
system against attacks. One of the key features of microgrids is a secure communication
network. For the development of a communication network, its design has vital importance.
For the deployment of a heterogeneous automation and monitoring system, a multi-layered
architecture was proposed in [48]. For the organization of hardware, as well as software
equipment in an integrated manner, six functional layers were structured in the proposed
architecture. In [49], a clear description of a smart grid and the type of communication meth-
ods were given. The communication methods were explained based on their advantages

83



Sustainability 2022, 14, 6407

and the lacking feature. The contribution of [50] was based on the hybrid communication
simulation model. In hybrid network architectures, both wireless and dedicated wired
media are used. A suite of hybrid communication simulation models was developed for
the validation of critical system design criteria.

A mathematical model of the power system was presented in [51] and a robust security
framework was proposed. A Kalman filter was used to estimate variables in the model.
In [52], an online data-driven algorithm was presented for detecting FDI attacks toward
synchrophasor measurements. The proposed algorithm applied density-based LOF (local
outlier factor) analysis for detecting anomalies in the data. Another method was proposed
in [53] in which the modeling of the system was done as a discrete-time linear dynamic
system. There was the use of the Kalman filter for performing the state estimation (SE).
A generalized cumulative sum algorithm achieved the quickest detection of the attacks.
In [18,19], the economic impact due to stealth FDI attacks on the market operations in
real-time was considered. The construction of a profitable attacking plan for the attacker
was also shown. In [20], it was explained that the attacker can construct the stealth FDI
attack without knowing the structure of the system. The attacker can find the system
structure and make an attack.

In [54], a distributed state estimation method based on the alternating direction method
of multipliers (ADMM) was presented for detecting cyber-attacks. In this case, the parti-
tioning of regional subsystems was done using the K-means method. An online detection
algorithm was proposed in [55] for detecting cyber-attacks. The online estimation of the
unknown and time-varying attack parameters was provided by the algorithm. The FDI
attacks were detected by proposing an active data modification scheme in [56]. In that
scheme, there was an amendment of measurements and control data before they are trans-
mitted through communication networks. In [57], an FDI attack detection method was
proposed that was based on the equivalent model of a load frequency control (LFC) system
and a Kalman filter algorithm.

The work of [21] formulated the problem of false data detection as a low-rank matrix
recovery. Convex optimization was used for solving the problem. The adopted method-
ology normalized the combination of the l1 norm and nuclear norm. This mixed norm
optimization problem was solved using the augmented Lagrange method of multipliers
in order to obtain a good convergence rate. In [22], the false data detection problem was
considered a matrix separation problem. FDI attacks are sparse in nature. To separate
the states of the power system from the anomalies, a mechanism was developed. The
problem was solved using two methods, namely, low-rank matrix factorization and nuclear
norm minimization.

3. Proposed Model

The methods used in the literature for the detection of attacks are successful up to
a certain limit. If the attacker knows the whole network of the smart grid and makes an
attack, it becomes difficult to detect those attacks. Therefore, we proposed a new power
system model for an AC power flow network that is safe against stealth FDI attacks and the
control room is able to detect these attacks in an efficient manner. The introduced model
was based on the concept of dummy value. The smart grid meters will transmit both values,
i.e., the actual value and the dummy value. No additional transmission lines and no extra
buses will be used. There is no need for any extra meters in the proposed model. The
vulnerabilities of the communication networks in supervisory control and data acquisition
(SCADA) systems in the smart grid, such as unsophisticated bugs or communication
failures, were not considered in this work. The application of the measured value and
the dummy value in this article did not consider the error caused by the measurement
equipment itself or any other reason. In this work, the error due to parametric variation of
the meter or any other unknown reason was not taken into consideration. However, it may
be incorporated into our future work. Moreover, this work focused on false data injection
attacks in which the intruder hacks the measurement vector and injects the attack vector
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into the measurement vector before it is received by the control room. Therefore, this study
only considered targeted attacks.

The measurement vector for the AC power flow network contains the active and
reactive powers injected into all the buses, active and reactive powers flowing through
transmission lines in the forward direction, and active and reactive powers flowing in the
backward direction. If a system has b number of buses and t number of transmission lines,
then the measurement vector for the AC power flow network is given by

zy =
[
pv(y) qv(y) pvw(y) qvw(y) pwv(y) qwv(y)

]T
(15)

where zy is the measurement vector at the yth instant and y = 1, 2, 3, . . . , mt. Here, mt
represents the total number of instances. pv(y) and qv(y) are the vectors containing the
active and reactive powers injected to all the buses at the yth instant. Both vectors will
have a dimension of 1 × b. Similarly, pvw(y) and qvw(y) denote vectors having the active
and reactive powers flowing through all the transmission in the forward direction at the
yth instant. Both vectors have dimensions of 1 × t. Moreover, pwv(y) and qwv(y) represent
the vectors of the active and reactive powers flowing through all the transmission lines in
the backward direction at the yth instant. The complete measurement vector will have a
dimension of m × 1. The state vector x contains the voltage magnitudes and voltage angles
of all the buses. However, the Jacobian matrix will have a dimension of m × n, where m is
the total number of values in the measurement vector and n is the total number of values
in the state vector. The measurement vectors at all the instances can be placed together to
obtain the measurement matrix as follows:

Z = [z1 z2 z3 . . . . . . . . . . . . . . . . . . zmt]
T (16)

The dimensions of the measurement matrix are mt × m. The measurement vector after
implementing the proposed system will become like this:

zdy =

⎡⎢⎣ pv(y)(1); p′v(y)(1); . . . . . . ; qv(y)(b); q′v(y)(b);
pvw(y)(1); p′vw(y)(1); . . . . . . ; qvw(y)(t); q′vw(y)(t);
pwv(y)(1); p′wv(y)(1); . . . . . . ; qwv(y)(t); q′wv(y)(t)

⎤⎥⎦
The measurement vector containing the actual and dummy values is represented by

zdy. Here, pv(y)(1) represents the first entry of the vector pv(y) and qv(y)(b) is the bth entry
of the vector q′

v(y). The dummy values of the power are present on the even indexes of
the new measurement vector. The vectors of the dummy values containing the active and
reactive powers injected to all the buses at the yth instant are p′

v(y) and q′
v(y). Similarly,

other vectors containing dummy values of the active and reactive powers for transmission
lines at the yth instant are denoted by p′

vw(y), q′
vw(y), p′

wv(y), and q′
wv(y). zdy will have

dimensions of 2m × 1. The measurement matrix after including the dummy values will be

Zd = [zd1 zd2 zd3 . . . . . . . . . . . . . . . . . . zdmt]
T (17)

This measurement vector will have dimensions of mt × 2m. The Jacobian matrix of the
proposed system at the yth instant is represented by Hdy and its dimensions are 2m × n.
There are different methods to find the Jacobian matrix. To make a stealth attack, it is
necessary for the attacker to determine the Jacobian matrix. The attacker hacks both the
dummy and actual values and creates a Jacobian matrix to attack the system.

Realistic data of the AC power flow network was used for implementing and evaluat-
ing the proposed model. For this purpose, the load curves of a transmission organization
known as PJM, which serves 13 states of the United States and the District of Columbia,
were taken as a reference to generate the data of the power flow network. These load curves
were based on realistic data. Therefore, our generated data were very close to the realistic
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data of an AC power flow network. The data were generated for four different seasons,
namely, summer, fall, winter, and spring, based on the standard realistic load curves given
for each season.

The overall proposed model was divided into two scenarios. In the first scenario, a
fixed dummy value was sent to the control room. However, in the second case, a variable
dummy value was sent and it changed with the change of the actual value of power.

Fixed Dummy Value Model

In this case, a fixed dummy value, along with each of the actual values, was sent to
the control room. The dummy value of the power was not dependent on the load. It did
not vary with the variation in load or variation in the actual value of power. In the fixed
dummy value model, to select the dummy value of a particular power, the average value
was calculated from all the actual measured values that occurred for that value at all the
instances. That average value was selected as the dummy value of power. In this case, the
dummy values were determined by taking the mean of the last year’s worth of historical
measurement data, i.e., real-time measured values are stored from the past year and utilized
for the calculation of fixed dummy values based on Equations (18)–(21). Later, these values
were inserted into the memory of the meters and were simply appended or added to all
the newly acquired measurements accordingly. It should be noted that the dummy value
will no longer change with the newly acquired measurements. The calculation of the fixed
dummy value was done by using these formulas:

p′v(y)(l) =
∑mt

s=1 zs(lp)
mt

l = 1, 2, 3, . . . . . . , b and lp = 1, 2, 3, . . . . . . , b
(18)

q′v(y)(l) =
∑mt

s=1 zs(lq)
mt

l = 1, 2, 3, . . . . . . , b and lq = b + 1, b + 2, . . . . . . , 2b
(19)

p′vw(y)(l) =
∑mt

s=1 zs(lpv)
mt

l = 1, 2, 3, . . . . . . , t and lpv = 2b + 1, 2b + 2, . . . . . . , 2b + t
(20)

q′vw(y)(l) =
∑mt

s=1 zs(lqv)
mt

l = 1, 2, 3, . . . , t and lqv = 2b + t + 1, 2b + t + 2, . . . . . . , 2b + 2t
(21)

In (18), p′v(y)(l) represents the lth entry of the dummy values vector p′
v(y). zs(lp)

denotes the lpth entry of the sth historical measurement vector. mt is the total number of
instances for which the historical measurement vectors are obtained. To calculate the first
entry of the dummy measurement vector p′

v(y), the sum of the first entries of all the historical
measurement vectors is calculated and then divided by the total number of instances for
which those historical measurement vectors are obtained. Similarly, the second entry of the
dummy values vector p′

v(y) can be calculated by finding the mean of the second entries of mt
historical measurement vectors. The same procedure is adopted for finding all the entries of
p′

v(y) and the dummy values of all the active powers injected into the buses are calculated in
this way. In (19), q′v(y)(l) denotes the lth entry of the dummy values vector q′

v(y), and zs(lq)
represents the lqth entry of the sth historical measurement vector. mt gives the total number
of historical measurement vectors. The lth entry of the dummy values vector q′

v(y) is found
by calculating the mean of the lqth entry of mt historical measurement vectors. By using
this procedure, the dummy values of all the reactive powers injected into the buses can
be calculated. In (20) and (21), p′vw(y)(l) and q′vw(y)(l) represent the lth entry of each of the
dummy measurement vectors p′

vw(y) and q′
vw(y), respectively. zs(lpv) and zs(lqv) denote

the lpvth and lqvth entries of the sth historical measurement vector, respectively. The lth
entry of each of the dummy measurement vectors p′

vw(y) and q′
vw(y) is calculated by finding

the mean of the lpvth and lqvth entries of mt historical measurement vectors, respectively.

86



Sustainability 2022, 14, 6407

Therefore, the dummy values of the active and reactive powers flowing through all the
transmission lines can be calculated by using Equations (20) and (21), respectively.

By applying Equations (18)–(21), the dummy values are calculated at a single instant
by using mt historical measurement vectors and then those calculated dummy values
are kept the same for all the instances, i.e., the dummy values do not change for the other
instances. In fact, in the fixed dummy value model, the dummy values depend only on the
historical measurement values and they do not depend on the real-time measurement values.

p′
wv(y) and q′

wv(y) can also be calculated using this method and all the dummy values
are selected in this way. These dummy values are placed in zdy, which is embedded in the
meters. These values are also placed in another vector d present in the control room. When
the system is hacked by the attacker, 2m power values will be obtained by the attacker in
zdy instead of m values. In the next step, the Jacobian matrix will be constructed by the
attacker and a stealthy attack will be done in this way:

zdyr = zdy + Hdy ∗ c (22)

Here, zdyr denotes the measurement vector received in the control room at the yth
instant. For the detection of an attack, a comparison is made between the dummy values
obtained from zdyr and those dummy values set by the control room. The following
equation is used in the control room to detect the attack:

r(u) = d(u)− zdyr(v) (23)

where u = 1, 2, 3 . . . , m and
v = 2,4, 6 . . . , 2m

Here d(u) denotes the uth entry of the dummy values vector d, which is selected and
set by the defender. Meanwhile, zdyr(v) denotes the vth entry of the received measurement
vector. In the case of a secure system:

|r(u)| = 0 (24)

where u = 1,2, 3, . . . , m.
During the case of no attack, zdyr = zdy.
To launch an attack, the attacker changes the actual and dummy values according

to the construction of the stealth attack. As the dummy values are fixed, they should not
change for a secure system. Therefore, for an attack, the value of |r(u)| will come out to be
greater than zero and the attack will be detected in this way.

The conventional technique for bad data detection (BDD), such as DC state estima-
tion (SE), fails to detect a stealth FDI attack. Moreover, AC SE is also bypassed by this
attack. However, our model with a fixed dummy value was capable enough to detect the
FDI attacks in the AC power flow network and all the attacks could be detected by the
control room.

4. Simulations and Results of the Fixed Dummy Value Model

We implemented the proposed model for the AC power flow network on an IEEE
14-bus system, which had 14 buses and 20 transmission lines. Therefore, at every instant,
the measurement vector had 54 values of active power and 54 values of reactive power
i.e., 108 measurement values in total. The system had 28 state variables. In this case, the
voltage magnitudes and voltage angles were taken as the states of the system.

4.1. Data Generation

The seasonal data was generated for the IEEE 14-bus test system. The standard
realistic load curve of every season was followed by the generated data. For this purpose,
the measurements of the power flow network were varied with the variation of the load
that was connected to buses. The measurements were taken after a time interval of one
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hour. Therefore, there was a time of one hour between the two measurement vectors. For
a complete day, the values were recorded in the control room 24 times. We generated the
data for one year, i.e., 365 days. Therefore, for the whole system, we obtained values for
8760 different instances. MATPOWER 7.0 was used for the simulation of the system model.
The load was varied from 61% to 118.5% of its average value in the reference load curves.
Therefore, we also varied the load between these two values. For one day, a specific pattern
was followed for every different season by the load that was connected to the buses. We
generated the data for one day of every season by using the pattern of that specific season.
We selected all the load values in a particular range for a whole day to follow that specific
pattern. After varying the total load of the power system, four load curves for one day
of every season are shown in Figure 1. The values of the loads are shown at 24 different
instances in one complete day. These load curves follow the standard realistic load curves
and realistic data was generated according to these curves.

Figure 1. Seasonal load curves of four different seasons based on which data was generated.

4.2. DC State Estimation

By using the generated data, the DC state estimation, which was made by applying
the DC assumptions, was implemented for the detection of simple and stealth attacks. For
the simulations, the attacks were done according to a certain method, and that method
was adopted in the whole manuscript wherever the attacks were made. For a complete
day, 25% of the measurement vectors were considered as attacks, i.e., the attacks were
made in the measurement vectors at six different instances. The choice of instances was
made randomly to make it generalized. In 50% of the measurement vectors chosen for
attacks, simple attacks were done. However, stealth attacks were made in the remaining
50% of the measurement vectors that were randomly chosen to be attacked. To create
the simple attacks, the attack vector was constructed in such a way that at a particular
instant, any value of power was randomly chosen between 0.5% of the maximum value
and 0.5% of the minimum value of power at that instant. In the case of stealth attacks, the
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Jacobian matrix was first constructed and then the Jacobian matrix was multiplied with a
vector c to make the attack vector. The values of vector c were selected randomly between
−1 and 1 such that it had zero mean and a variance of 2. The attack vector was added to the
measurement vector to make the attack. The results of the DC state estimation are shown in
Figures 2 and 3. Three types of measurements are shown in Figure 2, namely, safe mea-
surements, simple attack measurements, and the measurements for a stealth attack. A safe
zone based on the threshold is also shown in the figure. The measurements outside the
safe zone are considered as attacked. The results show that the safe measurement points
were present in the safe zone and points of simple attacks were outside the zone. However,
measurements affected by stealth attacks are also found in the safe zone, i.e., they are
declared as safe by the DC state estimation. They should have to appear outside the safe
zone. Therefore, DC SE is not capable of detecting stealth FDI attacks. Similarly, Figure 3
also shows the results of DC state estimation in the form of a bar graph. The residue was
calculated for every measurement and the difference of that residue from the threshold is
plotted along the vertical axis. For a safe measurement, the value of the difference should be
positive, as the residue of that measurement should be less than the threshold. In the graph,
the safe measurements are labeled with 1, measurements of simple attacks are labeled
with 0, and stealth-attacked measurements are labeled with −1. The results show that the
safe measurements and stealth-attacked measurements had positive values of difference.
However, the value of the difference was negative for simple attacks. This means that the
simple-attacked measurements were termed as attacked by the DC state estimation but
measurements having stealth attacks were considered safe. Therefore, simple attacks were
detected by the DC state estimation, but stealth attacks bypassed detection.

Figure 2. Categorization of safe measurements, simple attacks, and stealth attacks based on the
threshold in a DC SE.

89



Sustainability 2022, 14, 6407

Figure 3. The results of a DC SE for simple and stealth attacks in the form of a bar graph.

4.3. AC State Estimation

For the AC power flow network, an AC SE is used for the detection of attacks. We
also used AC SE for the detection of simple and stealth attacks, and the results are given in
Figures 4 and 5. The conventions used in a DC state estimation for displaying the results
are also used in these figures. In Figure 4, a safe zone, simple-attacked measurements,
and stealth-attacked measurements are plotted. Safe measurements and stealth attacks
are present in the safe zone, and simple-attacked measurements are outside the zone. It
shows that stealth attacks were not detected by the AC state estimation. Similarly, in
Figure 5, these results are shown in the form of a bar graph. The value of the difference in
the residue from the threshold was positive for safe measurements and stealth-attacked
measurements. However, the difference was negative for simple-attacked measurements.
This indicated that the AC SE could detect a simple attack but it could not detect the stealth
attack. Therefore, it is displayed in the results that simple attacks were detected by the DC
state estimation, as well as the AC state estimation techniques, but stealth attacks bypassed
these techniques.

4.4. Fixed Dummy Value Model (Results)

The proposed model of a fixed dummy value was implemented for the AC power
flow network of the IEEE 14-bus system. The meters sent the actual value and the fixed
dummy value to the control room in the form of a measurement vector. Table 1 shows the
actual values and the fixed dummy values at the first instant for the first five buses and first
five transmission lines. In the control room, the difference, i.e., the residue of two dummy
values, was calculated. One dummy value was obtained from the measurement vector and
the other was already present in the control room. As the dummy value was fixed in this
case, it should not change at any instance. Therefore, for a secure system, the value of the
residue should be zero.
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Figure 4. Categorization of safe measurements, simple attacks, and stealth attacks based on the
threshold in an AC SE.

Figure 5. The results of an AC SE for simple and stealth attacks in the form of a bar graph.
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Table 1. Active and reactive powers injected into the first 5 buses and the active and reactive powers
flowing through the first 5 transmission lines in the forward and backward directions.

Active Powers Injected into the Buses

Bus No. Actual Value (MW) Dummy Value (MW)

1 232.11 196.3
2 18.41 21.06
3 −93.94 −82.22
4 −47.88 −41.72
5 −7.58 −6.63

Reactive Powers Injected into the Buses

Bus No. Actual Value (MVAR) Dummy Value (MVAR)

1 −16.49 −10.3
2 30.79 21.73
3 5.98 −0.27
4 3.9 3.9
5 −1.6 −1.6

Active Powers Flowing through the Transmission Lines in Forward Direction

From To Actual Value (MW) Dummy Value (MW)

1 2 156.65 131.57
1 5 75.46 64.73
2 3 73.11 63.66
2 4 56.14 49.21
2 5 41.53 36.6

Reactive Powers Flowing through the Transmission Lines in Forward Direction

From To Actual Value (MVAR) Dummy Value (MVAR)

1 2 −20.35 −14.04
1 5 3.86 3.74
2 3 3.57 4.71
2 4 −1.54 −1.62
2 5 1.17 0.81

Active Powers Flowing through the Transmission Lines in Backward Direction

From To Actual Value (MW) Dummy Value (MW)

1 2 −152.37 −128.41
1 5 −72.7 −62.63
2 3 −70.79 −61.85
2 4 −54.46 −47.89
2 5 −40.62 −35.88

Reactive Powers Flowing through the Transmission Lines in Backward Direction

From To Actual Value (MVAR) Dummy Value (MVAR)

1 2 27.58 17.83
1 5 2.21 −0.38
2 3 1.55 −1.68
2 4 3.01 2
2 5 −2.1 −2.31

The results are shown in Figure 6. The bar graph shows the results for safe measure-
ments, simple-attacked measurements, and stealth-attacked measurements. Safe measure-
ments are labeled as 1, simple-attacked measurements as 0, and stealth-attacked measure-
ments as −1. The residue was calculated for each measurement and plotted along the
vertical axis. For safe measurements, the value of the residue was zero, as shown in the bar
graph. In the case of simple-attacked measurements and stealth-attacked measurements,
the residue was not zero, as the dummy value was changed. Therefore, our proposed
model could detect all kinds of attacks, such as simple attacks and stealth attacks. Stealth
FDI attacks remained undetected by the DC and AC state estimation, but they could be
detected by using our proposed approach.
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Figure 6. Detection results of the fixed dummy value model for simple and stealth attacks based
on dummies.

4.5. Limitations of Fixed Dummy Value Model

The proposed fixed dummy value model could detect the stealth FDI attacks but, at
the same time, there was a limitation of the model. As the dummy value does not change,
by looking at the measurements continuously for some time, the attacker will come to know
which one is the dummy value and the attacker will not change that value while doing an
attack. In this way, the attack may be done such that it is unable to be detected. Figure 7
shows the results where the fixed dummy value model was bypassed by the stealth attack.
It can be seen from the graph that the value of the residue in the case of attacks came out
to be zero, as the attacker did not change the dummy values while launching the attack.
Therefore, this limitation of the fixed dummy value was evaluated using the results.

Figure 7. Limitations of the fixed dummy value model for simple and stealth attacks.
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5. Variable Dummy Value Model

In the proposed model with a fixed dummy value, the attacker may attack the system
by remaining undetected because the dummy value is fixed for all instances. Therefore,
the dummy value should vary to protect the system against attacks. For this purpose, the
model with a variable dummy value was introduced. In this scenario, the dummy value
will change at every instant, and it will depend on the actual value, as well as some other
values of the power in the system. Therefore, the dummy value of the power changes with
the change in either of those values on which it depends. In the variable dummy value
model, a linear function is implemented for the calculation of the dummy value and that
function uses the actual measured value of that meter and the measured value of some
other meter that has a relationship with that actual value. The function is only known
to the control room. In the fixed dummy value model, the calculated dummy values are
embedded into the meters. Similarly, in the variable dummy value model, the function
used for the calculation of dummy values is embedded into the meters. This work assumed
that the intruder does not have access to the meters, i.e., the intruder only has access to the
measurements sent to the control room. The following functions are used in the case of the
variable dummy value model for the calculation of dummy values for buses:

p′v(y)(i) = β1vpi pv(y)(i) + β2vpi pviz(y) + β3vpi

i = 1, 2, 3, . . . . . . , b
(25)

q′v(y)(i) = β1vqiqv(y)(i) + β2vqiqviz(y) + β3vqi

i = 1, 2, 3, . . . . . . , b
(26)

where p′v(y)(i) and q′v(y)(i) represent the ith entries of the dummy values vectors p′
v(y) and

q′
v(y), respectively. pv(y)(i) and qv(y)(i) denote the ith entries of pv(y) and qv(y), respectively.

Similarly, pviz(y) and qviz(y) represent the active power and reactive power flowing through
the first transmission line connected to the ith bus at the yth instant, respectively. β1vpi, β2vpi,
β3vpi, β1vqi, β2vqi, and β3vqi are the constants that have to be learned to calculate the dummy
values. Similarly, the calculation of the dummy values of the active and reactive powers
flowing through the transmission lines can be done by using the following functions:

p′vw(y)(i) = β1vwpi pv(y)(i) + β2vwpi pw(y)(i) + β3vwpi

i = 1, 2, 3, . . . . . . , t
(27)

q′vw(y)(i) = β1vwqiqv(y)(i) + β2vwqiqw(y)(i) + β3vwqi

i = 1, 2, 3, . . . . . . , t
(28)

p′wv(y)(i) = β1wvpi pw(y)(i) + β2wvpi pv(y)(i) + β3wvpi

i = 1, 2, 3, . . . . . . , t
(29)

q′wv(y)(i) = β1wvqiqw(y)(i) + β2wvqiqv(y)(i) + β3wvqi

i = 1, 2, 3, . . . . . . , t
(30)

p′vw(y)(i) and q′vw(y)(i) denote the ith entries of vectors p′
vw(y) and q′

vw(y), respectively,
which contain the dummy values of powers flowing through the transmission lines in
the forward direction at yth instant. pw(y)(i) and qw(y)(i) represent the active power and
reactive power injected into ith bus at yth instant, respectively. pw(y)(i) and qw(y)(i) belong
to pv(y) and qv(y), respectively. Similarly, p′wv(y)(i) and q′wv(y)(i) show the ith entries
of vectors p′

wv(y) and q′
wv(y), respectively, which have the dummy values of the active

power and reactive power flowing through transmission lines in the backward direction.
Constants are also used in the equations proposed for the calculation of dummy values.

The Equations (25)–(30) are used for finding the dummy values at the yth instant. In
the variable dummy value model, the dummy values depend on the real-time measurement
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values. As the real-time measurement values are used for the calculation of the dummy
values, the dummy values change at every instant in this case.

There is a key point to consider while selecting the dummy value, which is that the
dummy value of a meter should be close to its actual value. There should not be too much
difference between the actual and dummy value such that the attacker can find the dummy
value and construct an undetectable attack. Therefore, when these linear functions are
implemented for the calculation of the dummy value, we may obtain a dummy value that
is far away from its actual value. The reason for this is that these dummy values depend
on two different values of the power and there might be a high variance in the values of
a certain meter depending upon the load connected to a bus. If the variance of either of
the two actual values is high for a whole day, the dummy value will not be close to the
actual value.

This problem may be minimized due to the selection of appropriate values of the
constants. The selection of constants is done in such a way that all dummy values of a
specific power for the whole day must remain close to the actual value of that power. For
this purpose, a machine-learning technique, namely, multivariate linear regression (MLR),
was used for finding the best values of the constants. The procedure of MLR to find the
constants of the equation used to calculate the dummy values of the active power injected
to all the buses is explained here. In this case, the hypothesis is written as

gβk
(pk) = β1vpk pv(k) + β2vpk pvkz + β3vpk (31)

Here, gβk
(pk) is a function of pk that is parameterized using βk. pk represents the kth

input vector, where k = 1, 2, 3, . . . , b and pk = [1 pvkz pv(k)]T. βk denotes the kth parameter
vector and βk = [β3vpk β2vpk β1vpk]T. β1vpk, β2vpk, and β3vpk are the constants to be learned
for each dummy value of the active power injected into the buses. Therefore, for each
dummy value, a different vector of constants is used. Depending upon the hypothesis, the
cost function for the multivariate linear regression can be written as

J(βk) =
1

2mt

mt

∑
y=1

((
3

∑
f=1

βk f pk f (y)

)
− pv(y)(k)

)2

(32)

Here, mt represents the total number of instances, i.e., the total number of training
examples in this case. pv(y)(k) represents the output of the yth training example of the
active power injected to the kth bus. We must minimize the cost function so that we obtain
the best values of the parameters. For this purpose, the gradient descent algorithm was
applied, which is based on the update rule. The gradient descent can be written as

βk f := βk f − α
1

mt

mt

∑
y=1

(
gβk

(
pk(y)

)
− pv(y)(k)

)
pk f (y) (33)

βk f represents the f th entry of the kth parameter vector. pk f (y) denotes the f th entry of
the kth input vector at the yth instant. The β’s are calculated again and again, and those
parameters are used to calculate the cost. The above process is repeated until convergence
occurs. When the cost converges, this produces the best values of the parameters.

By adopting the same procedure, the constants for the remaining equations are also
found and those constants are put in their respective functions to calculate the dummy
values of the active and reactive power. Then, these functions are embedded into the meters
for the calculation of the dummy values. The meters measure the actual values of power
and then use those functions to calculate the dummy values of power to send them to the
control room. These functions are only known to the control room.

In the control room, to detect the FDI attacks, these functions are used to recalculate
the dummy value by using the actual values obtained from the measurement vector. Then,
the recalculated dummy value is compared with the dummy value obtained from the
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measurement vector for attack detection. The following equations are used in the control
room to compare the calculated dummy values and received dummy values of active and
reactive powers injected into all the buses:

rvp(y)(j) = p′vr(y)(j)− (β1vpj pvr(y)(j) + β2vpj pvrjz(y) + β3vpj)

j = 1, 2, 3, . . . . . . , b
(34)

rvq(y)(j) = q′vr(y)(j)−
(

β1vqjqvr(y)(j) + β2vqjqvrjz(y) + β3vqj

)
j = 1, 2, 3, . . . . . . , b

(35)

The measurement vector received in the control room at the yth instant is zdyr. Here,
p′vr(y)(j) and q′vr(y)(j) represent the jth entries of the received vectors p′

vr(y) and p′
vr(y),

respectively, which contain the dummy values of the active power and reactive power
received in the control room at the yth instant. pvr(y)(j) and qvr(y)(j) denote the jth entries
of the received vectors pvr(y) and qvr(y), respectively, which contain the actual values of the
active power and reactive power received in the control room at the yth instant. pvrjz(y) and
qvrjz(y) are taken from the received measurement vector. rvp(y)(j) and rvq(y)(j) represent the
jth entries of the residue vectors rvp(y) and rvq(y), respectively, which contain the residues
for the active and reactive powers injected into the buses at the yth instant. Similarly,
the equations for calculating the residues for the forward and backward powers flowing
through the transmission lines are given by:

rvwp(y)(j) = p′vwr(y)(j)−
(

β1vwpj pvr(y)(j) + β2vwpj pwr(y)(j) + β3vwpj

)
j = 1, 2, 3, . . . . . . , t

(36)

rvwq(y)(j) = q′vwr(y)(j)−
(

β1vwqjqvr(y)(j) + β2vwqjqwr(y)(j) + β3vwqj

)
j = 1, 2, 3, . . . . . . , t

(37)

rwvp(y)(j) = p′wvr(y)(j)−
(

β1wvpj pwr(y)(j) + β2wvpj pvr(y)(j) + β3wvpj

)
j = 1, 2, 3, . . . . . . , t

(38)

rwvq(y)(j) = q′wvr(y)(j)−
(

β1wvqjqwr(y)(j) + β2wvqjqvr(y)(j) + β3wvqj

)
j = 1, 2, 3, . . . . . . , t

(39)

In these equations, the dummy and actual values are obtained from the received
measurement vector in the control room. rvwp(y)(j), rvwq(y)(j), rwvp(y)(j), and rwvq(y)(j)
represent the jth entries of the residue vectors rvwp(y), rvwq(y), rwvp(y), and rwvq(y), respec-
tively, which contain the residues for the active and reactive powers flowing through the
transmission lines in the forward and backward directions at the yth instant. The overall
residue at the yth instant is calculated using

r =
∣∣∣rvp(y)

∣∣∣+ ∣∣∣rvq(y)

∣∣∣+ ∣∣∣rvwp(y)

∣∣∣+ ∣∣∣rvwq(y)

∣∣∣+ ∣∣∣rwvp(y)

∣∣∣+ ∣∣∣rwvq(y)

∣∣∣ (40)

For a secure system:
r = 0

If the total residue has some value other than zero, the system is considered attacked.
The attacker hacks the measurement vector zdy and sends the vector zdyr to the control
room after making the attack. As the attacker does not know which are the dummy values,
the attacker will attack dummy values too. The attacker also does not know about the
relationship used to calculate the dummy value. As a result, the attack is easily detected in
the control room, as the value of r will not be equal to zero.

This proposed model of the variable dummy value can tackle the limitations of the
fixed dummy value model and the stealth FDI attacks can be detected in an efficient way.
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6. Results of the Variable Dummy Value Model

The proposed model with the fixed dummy value can be bypassed, as the dummy
value is constant for all the instances. The dummy value should change with the change
in the actual value. In the variable dummy value model, the limitation of the fixed value
dummy model is overcome by changing the dummy value at every instant. The variable
dummy value model was implemented for the AC power flow model of the IEEE 14-bus
system. A dummy value was selected in such a way that it should remain close to the actual
value of that power and this feature depends upon the values of constants used in the
linear function. For the selection of the constants, the MLR model is built for the calculation
of all dummy values. Before using the MLR model, we must select the dummy values as
outputs to find the relationship between the input and output. To select the dummy value
of power at any instant for MLR, any value is picked from its actual values that occurred
for the whole one year prior to that instant. The multivariate linear regression model was
run for all the linear equations, and we obtained the best values of the constants for a
particular equation that gave the minimum cost for that equation. Table 2 shows the values
of constants at the first instant for the first five buses and the first five transmission lines.

Figure 8 shows the learning of the MLR model when finding the parameters of the
linear equation used to find the dummy values of P1. The constants of the equation of the
line that best fit the training data were found. Constants for all the linear equations were
found in this way and those equations were embedded in the meters to calculate the dummy
values. Table 3 shows the actual values and the dummy values for the variable dummy
value model at a single instant for the first five buses and first five transmission lines.

Figure 8. Training of the multivariate linear regression model to find the constants of the equation
used to calculate the dummy values of P1.
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Table 2. Constants used for the calculation of dummy values of active and reactive powers injected
into the first 5 buses and the active and reactive powers flowing through the first five transmission
lines in the forward and backward directions.

Calculation of Dummy Values of Active Powers Injected into the Buses

Bus No. β1 β2 β3

1 0 40.81 196.30
2 0 3.1 21.06
3 0 13.45 −82.22
4 0 6.83 −41.72
5 0 1.09 −6.63

Calculation of Dummy Values of Reactive Powers Injected into the Buses

Bus No. β1 β2 β3

1 0 6.73 −10.30
2 0 10.78 21.73
3 0 7.29 −0.27
4 0 1.13 5.13
5 0 8.25 −9.88

Calculation of Dummy Values of Active Powers Flowing through the Transmission Lines in
Forward Direction

From To β1 β2 β3

1 2 0.91 29.57 131.57
1 5 −1.22 10.93 64.73
2 3 −9.36 −1.44 63.66
2 4 −5.18 −2.62 49.21
2 5 −3.07 −2.48 36.6

Calculation of Dummy Values of Reactive Powers Flowing through the Transmission Lines in
Forward Direction

From To β1 β2 β3

1 2 5.97 −1.03 −14.04
1 5 4.91 5.21 3.74
2 3 1.08 0.13 4.71
2 4 −0.13 −0.03 −1.62
2 5 −0.22 −0.27 0.81

Calculation of Dummy Values of Active Powers Flowing through the Transmission Lines in
Backward Direction

From To β1 β2 β3

1 2 2.8 −24.45 −128.41
1 5 2.8 −8.55 −62.63
2 3 8.85 1.35 −61.85
2 4 4.9 2.48 −47.89
2 5 2.95 2.38 −35.88

Calculation of Dummy Values of Reactive Powers Flowing Through the Transmission Lines in
Backward Direction

From To β1 β2 β3

1 2 5.35 16.66 17.83
1 5 1.65 4.65 −0.38
2 3 −3.25 −0.53 −1.68
2 4 −0.74 −0.39 2
2 5 −0.16 −0.04 −2.31
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Table 3. Active and reactive powers injected into the first 5 buses and the active and reactive powers
flowing through the first 5 transmission lines in the forward and backward directions for the variable
dummy value model.

Active Powers Injected to the Buses

Bus No. Actual Value (MW) Dummy Value (MW)

1 232.11 232.02
2 18.41 14.74
3 −93.94 −154.82
4 −47.88 −87.64
5 −7.58 −9.95

Reactive Powers Injected into the Buses

Bus No. Actual Value (MVAR) Dummy Value (MVAR)

1 −16.49 −45.96
2 30.79 −26.41
3 5.98 −32.63
4 3.9 0.58

5 −1.6 −44.16

Active Powers Flowing through the Transmission Lines in Forward Direction

From To Actual Value (MW) Dummy Value (MW)

1 2 156.65 131.57
1 5 75.46 64.73
2 3 73.11 63.66
2 4 56.14 49.21
2 5 41.53 36.6

Reactive Powers Flowing through the Transmission Lines in Forward Direction

From To Actual Value (MVAR) Dummy Value (MVAR)

1 2 −20.35 −14.04
1 5 3.86 3.74
2 3 3.57 4.71
2 4 −1.54 −1.62
2 5 1.17 0.81

Active Powers Flowing through the Transmission Lines in Backward Direction

From To Actual Value (MW) Dummy Value (MW)

1 2 −152.37 −128.41
1 5 −72.7 −62.63
2 3 −70.79 −61.85
2 4 −54.46 −47.89
2 5 −40.62 −35.88

Reactive Powers Flowing through the Transmission Lines in Backward Direction

From To Actual Value (MVAR) Dummy Value (MVAR)

1 2 27.58 17.83
1 5 2.21 −0.38
2 3 1.55 −1.68
2 4 3.01 2
2 5 −2.1 −2.31

In the control room, the dummy values were again calculated by using the obtained
actual values from the measurement vector and those recalculated dummy values were
subtracted from the obtained dummy values to find the residue. The residue should be
zero for a secured system. The results of the proposed model of the variable dummy value
are shown in Figure 9, where the model was evaluated using simple and stealth attacks.
Safe measurements are also shown in the figure. The residue is plotted along the vertical
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axis. For safe measurements, the value of the residue was zero, as shown in the bar graph.
However, for simple attacks and stealth attacks, the residue had some value greater than
zero. Therefore, simple and stealth attacks were detected by our proposed variable dummy
value model. As a result, the limitations of the fixed dummy value approach were handled
by this variable dummy value model, and stealth FDI attacks were easily detected in the
control room.

Figure 9. Results of the variable dummy value model for simple and stealth attacks.

7. Discussion

Stealth false data injection attacks create huge damage to a power system. Such kinds
of attacks should be detected for a smooth and reliable power flow in a smart grid. The
proposed model was applied for the detection of such attacks. The model was based on a
dummy measurement. The meters in the smart grid send the actual measurement and the
dummy measurement. There are two techniques in the proposed model, namely, the fixed
dummy value model and the variable dummy value model.

Both techniques were validated through the experimental results. The first technique
of the fixed dummy value model could detect FDI attacks. However, at the same time, this
technique has some limitations. When the attacker does not attack the dummy value of
measurement, i.e., only the actual measurement is attacked, the control room is not able
to detect that attack. The second technique of the proposed model, such as the variable
dummy value model overcomes the limitation and the FDI attacks that were left unnoticed
by the fixed dummy value model were detected by the variable dummy value model, as
validated by the results.

The proposed model does not require the installation of any extra buses or transmission
lines. There is no need to install any extra meters. Therefore, the model can be effectively
applied to a smart grid and is economically efficient. From the viewpoint of long-term
operation, the proposed model can be applied to make a smart grid more protected and
secured. In the future, an extension of this work can be done to practically implement
the model for a smart grid, which will protect the smart grid from FDI attacks. Some
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other methods can be adopted to set the dummy values of the power in the future. The
probability of launching the attack can be minimized in this way.

8. Conclusions

Two-way communication is one of the most important features of a smart grid. These
communication links may be hacked by attackers to launch attacks. A lot of damage, as
well as loss, can be caused by cyber-attacks on a power system. Financial benefits can
be obtained by the attacker through these attacks. An attacker can also create technical
problems. Power information can be corrupted or blocked. The values of power can be
increased or decreased, which will cause power blackouts or power outages. The accurate
and continuous power flow can be ensured by detecting and minimizing cyber-attacks.
The methods of DC state estimation, as well as AC state estimation, are unable to detect
stealth FDI attacks.

For this purpose, in this study, a model based on dummy measurement values was
proposed and implemented for the detection of stealth FDI attacks. The overall proposed
model consisted of a fixed dummy value model and a variable dummy value model. The
fixed dummy value model showed promising results against FDI attacks but with some
limitations. The variable dummy value model handled those limitations and the stealth FDI
attacks were efficiently detected in the control room using our proposed model. Simulations
were performed for the model and the results indicated that all the stealth FDI attacks were
detected in the control room. We made the power system a secure one.
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Abstract: A field experiment was conducted for two consecutive years with the aim to quantify the
role of different nutrient management variables such as microbial inoculation, zinc (Zn) fertilization
and optimal and sub-optimal fertilization of nitrogen and phosphorus on the energetic and nutritional
status of the rice–wheat cropping system (RWCS). The said nutrient management variables were
applied over six different crop establishment methods (CEMs) in RWCS viz. puddled transplanted
rice (PTR), system of rice intensification (SRI) and aerobic rice system (ARS) in rice and conventional
drill-sown wheat (CDW), system of wheat intensification (SWI) and zero-tillage wheat (ZTW) in
wheat. Two microbial consortia viz. Anabaena sp. (CR1) + Providencia sp. (PR3) consortia (MC1) and
Anabaena-Pseudomonas biofilmed formulations (MC2) were used in this study, while recommended
dose of nitrogen (N) and phosphorus (P) (RDN) (120 kg N ha−1 and 25.8 kg P ha−1), 75% RDN and Zn
fertilization (soil applied 5 kg Zn ha−1 through zinc sulphate heptahydrate) were the other variables.
The contribution of microbial consortia, Zn fertilization and RDN (over 75% RDN) to net energy pro-
duction of RWCS was 12.9–16.1 × 103 MJ ha−1, 10.1–11.0 × 103 MJ ha−1 and 11.7–15.3 × 103 MJ ha−1.
Among the CEMs, the highest gross and net energy production was recorded in ARS–ZTW with
lowest energy required for production of one tonne of system yield (2366–2523 MJ). The system
protein yield varies from 494.1 to 957.7 kg ha−1 with highest protein yield in 75% RDN + MC2 + Zn
applied ARS–ZTW. Among micronutrients, the uptake of Zn and iron (Fe) is sensitive to all studied
variables, while manganese (Mn) and cupper (Cu) uptake was found significantly affected by CEMs
alone. The combination of 75% RDN + MC2 + Zn in ARS–ZTW was found superior in all respects
with 288.3 and 286.9 MJ ha−1 net energy production and 2320 and 2473 MJ energy required for
production of one tonne system yield in the first and second year of study, respectively.

Keywords: aerobic rice; energetics; nitrogen; protein yield; system of rice intensification; zero-tillage
wheat; zinc

1. Introduction

Rice and wheat are the forerunner staple food crops in imparting the energy for
humans, directly through carbohydrate and protein as the main components of foods and
indirectly through different provisional services. Out of the total protein consumption in
India, 56.7% is from cereals [1], while 20% of per-capita energy for humans and 13% protein
in the diet of nearly half of the world population were contributed by rice, and this share is
much higher in developing countries [2]. The share of both crops to food grain production
is 75.11%, while the share in total cereal production was 81.3% [3]. This indicates the
role of rice and wheat in meeting the protein requirement of the Indian population. On
another side, the contribution of rice and wheat to resource utilization among all crops
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is the highest with 34.5% and 24.4% of the gross cropped area under rice and wheat,
respectively [3]. At the same time, the share of rice in the total fertilizer consumption is 37%
for nitrogen (6.98 million tonnes), 37% for phosphorus (2.76 million tonnes) and also 37%
for potassium (0.977 million tonnes) in 2020–2021, respectively, and the same for wheat
was nearly 24% for nitrogen (4.897 million tonnes) and 24% for phosphorus (2.155 million
tonnes). Besides the above-mentioned natural resources, the monetary involvement is
much higher in the cultivation of both crops with an average cost of cultivation for rice
varying from Indian national rupee (INR) 1082.5 to 2732.6 for 100 kg grain yield, and the
same for wheat varies from INR 1109.8 to 2233.9 for 100 kg grain yield, respectively [4]. The
monetary criteria such as gross and net returns are used most commonly for calculating
crop profitability, while for different artificial resources such as irrigation water, electricity,
petroleum products, fertilizers, etc., which are purchased at a subsidized price, the present
monetary evaluation is not complete. In this regard, the evaluation of all resources in
a single unit, and with it the non-subsidized or original cost, is needed, and this can
be carried out by the quantification of all inputs and outputs in terms of energetic and
nutritional outcome. The need for accounting for energetics in crops and cropping systems
along with monetary returns can be justified by increasing energy scarcity, increasing
adoption of energy-efficient CEMs [5–7], the contribution of energy to greenhouse gas
emissions and subsidies on fertilizers. As energy scarcity is aggravating and large variants
for management practices and input additions are available, the study of these parameters
for their energy efficiency will be an important scope and generate valuable scientific
information. The requirement of energy per kg of crop produce and reduction in energy
requirements for different field operations, and higher net energy production with the same
level of resources, are useful criteria for judging efficiency in crop production. This high
contribution of both crops to input consumption and meeting the energy and nutritional
requirements of human beings creates scope to evaluate both crops in the cropping system
mode for their energetic and nutritional outcomes.

Rice and wheat had significant variation in the crop establishment methods (CEMs)
and cultivation methods and this can be explained by significant variations in hydrological
regimes in rice ecosystems in India [8–11] and variation in tillage and land configuration
in wheat [7,12]. The significance of energetics in a crop/cropping system has both eco-
nomic and environmental bias. The largest contribution of the energy sector to global
warming [13] with finite, limited and shrinking conventional (coal and petroleum-based)
energy resources and increasing emphasis of policy makers on use of solar, wind and
hydroelectric energy explain the environmental bias of energetics, while increasing the
price per unit of energy leading to increasing prices of inputs, promotion of energy-efficient
machines/equipment in crop production [14,15] and increasing wages of labour elucidate
the economic bias of energy use. The energy equivalents given by different authors [16–18]
indicate the highest energy equivalent per unit input was accounted by different nutrients.
The energy equivalent for 1 kg nitrogen, phosphorus, potassium and Zn was 60.6 MJ,
11.1 MJ, 6.7 MJ and 20.2 MJ, respectively. The higher energy equivalent signifies the need
for studying nutrient management variables for their role in energetics, while variation in
CEMs and cultivation methods leading to variation in tillage requirements create scope for
studying their energetics with varied levels of inputs. Along with the energy equivalent,
the nutritional status of both crops needs to be studied considering their contribution
to human nutrition and growing concerns of micronutrient deficiency [19,20] and other
health-related risks [21,22]. The CEMs were studied for their energetics, while scientific
information on the interactions of different CEMs and input additions (microbial inocu-
lation, Zn fertilization and optimum and sub-optimum fertilization) on the energetic and
nutritional status of RWCS is lacking, which was considered a research gap. Considering
the increased number of crop establishment methods (CEMs) in RWCS with significant
variations, the significant contribution of both rice and wheat to input consumption and
human nutrition and the high energy equivalent of nutrients, the study was planned with
two objectives: (i) to identify the energy-efficient CEMs in RWCS and the role of microbial
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inoculations and Zn fertilization in enhancing the energetics of RWCS; and (ii) to know
about the micronutrient uptake in rice and wheat as affected by applied treatments, thereby
increasing the nutritional status of grains.

2. Material and Methods

2.1. Experimental Site

The field experiment was conducted consecutively for two years (2013–2014 and
2014–2015) at Research Farm of ICAR-Indian Agricultural Research Institute, New Delhi
(latitude of 28◦38′ N, longitude of 77◦10′ E and altitude of 228.6 m above the mean sea
level). Two crops in a year including rice during wet season (June to September) and wheat
during dry/winter season (November to April) were grown. The climate of New Delhi is
of subtropical and semi-arid type with hot and dry summers followed by monsoon rains in
July-September and cold winters in November–April and falls under the agro-climatic zone
‘Trans-Gangetic plains’. The mean annual normal rainfall and evaporation are 650 and
850 mm, respectively. Amount of rainfall received during growing duration of first cycle
of RWCS (2013–2014) was 1497.4 mm, out of which 1349.8 mm was received during rice
growing season and 147.6 mm was received during wheat growing season. In second cycle
(2014–2015), total rainfall was 760 mm, out of which 451.4 mm received in rice growing
season and 308.6 mm during wheat growing season. The number of rainy days was higher
during first rice growing season (39 days) than second rice growing season (22 days). The
highest amount of rainfall during rice growing season was received during 33rd (196.1 mm)
and 29th meteorological weeks (112.7 mm) in first and second year, while in case of wheat,
7th (53 mm) and 9th (135.4 mm) meteorological weeks received highest rainfall in first and
second year, respectively (Supplementary Tables S1 and S2).

The soil was sandy clay loam (Typic Ustochrept) in texture with a mechanical com-
position [23] of 51.4% sand, 22.2% silt and 26.4% clay. The soils of experimental field had
0.54% organic C [24], 257 kg ha−1 alkaline permanganate oxidizable N [25], 17 kg ha−1

available P (Olsen’s method) [26], 327 kg ha−1 1 N ammonium acetate exchangeable K [27]
and 0.85 mg kg−1 of available zinc [28]. The pH of the soil was 7.6 (1:2.5 soil-to-water
ratio) [29].

2.2. Experimental Details

The field experiment was planned in split-plot design with six crop establishment
methods (CEMs) with three for each rice (Pusa Sugandh 5) and wheat (HD 2967) as main
plot (net area for each main plot was 256.5 m2). The CEMs were arranged as puddled
transplanted rice (PTR) followed by (fb) conventional drill-sown wheat (CDW), system of
rice intensification (SRI) fb system of wheat intensification (SWI) and aerobic rice system
(ARS) fb zero-tillage wheat (ZTW). In all these CEMs, nine subplot treatments were applied
(net area for each sub-plot was 9.5 m2), which include RDN (recommended dose of nutri-
ents) (120 kg ha−1 N and 25. 8 kg ha−1 P), 75% RDN, 75% RDN + Anabaena sp. (CR1) +
Providencia sp. (PR3) consortia (MC1) and 75% RDN + Anabaena-Pseudomonas biofilmed
formulations (MC2). These four treatments were applied with and without Zn (soil applied
5 kg Zn ha−1 through zinc sulphate heptahydrate) making total eight treatments and one
control (no fertilizer). All treatments were replicated thrice.

2.3. Crop Establishment Methods (CEMs)

The details for CEMs of rice and wheat are mentioned in Tables 1 and 2. In order to
have the same crop growth duration in all three methods of cultivation, sowing of rice in
main field for ARS and sowing rice in nursery for transplanting in both PTR and SRI was
performed on the same date. The PTR is traditionally followed by the CEM in which rice is
grown in standing water. The level of standing water is maintained by reduction in soil
infiltration rate through soil cultivation in standing water before transplanting (puddling)
and applying irrigation at frequent intervals. The level of water is maintained at 2–3 cm
during vegetative growth stage and increased up to 5 cm during flowering and grain filling
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stage. In SRI [30–32], soil puddling is carried out the same as that of PTR and soil water
level is maintained at saturation. The seedlings at13–14 days old were transplanted with
1–2 healthy seedlings per hill at a spacing of 20 cm × 20 cm. The ARS is growing of rice
in unsaturated, unpuddled and arable soil conditions [33]. The soil is maintained at field
capacity and direct sowing of pre-soaked rice grain was conducted through seed-drill. In
case of wheat, drill-sowing of wheat is mostly followed in India in which row sowing of
seed at 22.5 cm with seed drill is performed, while SWI [34–36] is a new CEM involving
dibbling or transplanting of young seedlings at 20 cm × 20 cm spacing. The ZTW is gaining
acceptance in Indo-Gangetic plains (IGPs) by the farmers due to energy and cost saving [12]
and timely sowing [7].

2.4. Application of Microbial Inoculation and Fertilizers

Two microbial consortia were applied in present study (Anabaena sp. (CR1) + Providencia
sp. (PR3) consortia (MC1) and Anabaena-Pseudomonas biofilmed formulations (MC1)) [37,38].
For application of microbial consortia, a thick paste of respective culture was made in
carboxyl methyl cellulose and applied to rice seedlings in PTR and SRI by dipping roots in
paste of respective culture for half an hour before transplanting. In ARS, pre-soaked seeds
were treated with thick paste of culture made in carboxyl methyl cellulose half an hour
before sowing. In wheat, thick paste of respective culture was made in carboxyl methyl
cellulose (CMC) and seeds were treated with this thick paste in all CEMs for half an hour
just before sowing. For application of N, P and K chemical fertilizers, urea, single super
phosphate and muriate of potash were used, while zinc sulphate heptahydrate was used
for supply of Zn. Among nutrients, P, K and Zn were applied at the time of sowing and N
was split, applied in both rice and wheat (Tables 1 and 2).

2.5. Energy Calculation

For calculation of gross energy, grain and straw yield was measured and their cited
energy equivalents [16,18] were considered. The energy equivalents mentioned in [16–18]
were used to calculate the energy input (Table 3). The energy input consists of both direct
(human labour, diesel and electricity) and indirect (seed, fertilizers and machinery) energy
in rice and wheat. The net energy output is calculated by subtracting energy input from
gross energy output. The energy input is also expressed as energy tonne−1 of economic
yield produced.

2.6. Calculation of Grain Yield, Protein Yield and Micronutrient Uptake

Both rice and wheat were harvested at harvest maturity and threshed produce obtained
from net plot areas were cleaned, dried and weighed at 14% moisture content and expressed
as Mg ha−1. The protein yield was calculated based on the nitrogen concentration in
grain. For determining the nitrogen content, the plant sample (0.5 g each) was digested
by using 10 mL of analytical grade concentrated sulphuric acid along with a pinch of
digestion mixture (CuSO4 + K2SO4) to determine total nitrogen content. The samples were
analyzed by using Kjeldahl’s apparatus [39] and were expressed as percentage. The zinc
(Zn), iron (Fe), manganese (Mn) and copper (Cu) concentrations in rice and wheat plant
samples were determined as per the procedure described by [40] using Atomic Absorption
Spectrophotometer (AAS) and expressed as mg kg−1. For calculating the uptake in grain,
grain yield was measured at 12% moisture content. For rice, white rice kernel was used
instead of rough rice.
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Table 3. Energy equivalents used for calculation of energy input and output in
production system [16–18].

S. No. Input Used Energy Equivalent (MJ Unit−1)

1. Human labour 1.96
2. Diesel (per litre) 56.31
3. Farm machinery 62.7
4. Fertilizer (Nitrogen MJ kg−1 N) 60.60
5. Fertilizer (Phosphorus MJ kg−1 N) 11.2
6. Fertilizer (Potassium MJ kg−1 N) 6.7
7. Fertilizer (Zinc Sulphate Heptahydrate MJ kg−1 N) 20.2
8. Electricity (per unit) 11.93
9. Rice and wheat grain (MJ kg−1) 14.7
10. Rice and wheat straw (MJ kg−1) 12.5

2.7. Statistical Analysis

The data obtained from the experiment were statistically analyzed using analysis of
variance (ANOVA) using the IBM SPSS statistics package and the Duncan’s multiple range
test to quantify and evaluate the source of variation at the 5% level of significance.

3. Results

3.1. Energy Input

Energy requirement was higher in rice than wheat in both years (Figures 1 and 2). In
both crops, the second year had a higher energy requirement than the first year. Among
all major operations, fertilization requires higher energy in rice, wheat and the rice–wheat
cropping system. The share of fertilizer application in total energy consumption is 54–62%,
66–75% and 59–68% in rice, wheat and RWCS, respectively. The fertilization (54–62%), land
preparation (17–22%) and irrigation (8–10%) are the three major consumers of energy in rice.
The energy required for nursery, seed and sowing accounts for 10–11% in PTR, 5–6% SRI
and 6% in ARS. In wheat, 66–75% of the total energy was accounted for by fertilization.
The contribution of land preparation to the total energy consumption was 16–17% in CDW
and SWI, while it was zero in ZTW (Figures 1 and 2). The seed requirement was the
lowest in SWI and therefore accounts for only 3–4% of total energy. The CDW and ZTW
require 11% and 16% energy for seed. In the case of system energy inputs, fertilization,
land preparation and irrigation accounts for 59–68%, 9–19% and 6–10% of total energy,
respectively. Among all operations, the energy required for nursery, seed requirement,
land preparation and fertilization varies across CEMs. The renewable energy (seed and
labour) consumption in rice varies from 1257.0 to 1879.7 MJ ha−1, while in wheat it varies
from 1258.2 to 2516.6 MJ ha−1 (Table 4). The highest renewable energy consumption was
observed in ARS and ZTW, while the highest non-renewable energy consumption was
recorded in PTR and CDW. In all CEMs of rice, indirect energy accounts for 61.8 to 69.9% of
total energy inputs and in wheat its share is 75.9 to 90.7%. In rice, both direct and indirect
energy consumption was highest in PTR. In case of wheat, direct energy consumption was
highest in SWI, while indirect energy use was highest in ZTW (Table 5). The application
of microbial consortia and Zn fertilization require 20 and 101 MJ ha−1 energy, while the
application of microbial consortia decreases energy requirements by 1964.5 MJ ha−1 over
RDN (Tables 4 and 5). Among CEMs, PTR had the highest energy requirement and it was
higher by 1222–1229 and 2043–2391 MJ ha−1, respectively, than SRI and ARS. In wheat,
ZTW reduces the energy requirement by 1655 and 684 MJ ha−1 over CDW and SWI. On the
system basis, ARS-ZTW was found superior in saving energy.
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Figure 1. Effect of crop establishment methods on energy requirement for different inputs and
operations in rice–wheat cropping system in 2013–2014.
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Figure 2. Cont.
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Figure 2. Effect of crop establishment methods (a) and nutrient management (b–d) on energy input
requirement in rice–wheat cropping system. (T1: Control, T2: RDN, T3: RDN + Zn, T4: 75% RDN,
T5: 75% RDN + Zn, T6: 75% RDN + MC1, T7: 75% RDN + MC1 + Zn, T8: 75% RDN + MC2 and T9:
75% RDN + MC2 + Zn). RDN Recommended dose of nutrients 120 kg N ha−1 and 25.8 kg P ha−1;
Zn: Soil applied with 5 kg Zn ha−1 through zinc sulphate heptahydrate; MC1: (Anabaena sp. (CR1) +
Providencia sp. (PR3) consortia; MC2: Anabaena-Pseudomonas biofilmed formulations.

3.2. Energy Production

The PTR and SRI were found statistically superior to ARS in gross energy production
in both years (Table 6). The net energy production in SRI was significantly higher over
both PTR and ARS, while between PTR and ARS, PTR was found superior to ARS. The
net energy production in SRI was higher by 1000 to 1500 MJ ha−1 over PTR and 4800 to
5100 MJ ha−1 over ARS. The lower net energy production in ARS was mainly due to lower
yield. The saving in energy per tonne of rough rice produced in ARS was 401–492 and
86–167 MJ t−1 more than PTR and SRI. In the case of wheat, both gross and net energy
production in ZTW were significantly higher than CDW and SWI. The increase in gross
and net energy production in ZTW over CDW was 7500–8000 and 9200–9600 MJ ha−1 and
similarly for ZTW versus SWI was 8200–8600 and 8900–9300 MJ ha−1, respectively. The
ZTW required the lowest amount of energy for production of a tonne of grain. The saving in
energy per tonne of grain produced was 216–488 and 274–275 MJ ha−1 over CDW and SWI,
respectively. The system gross energy output was highest in ARS–ZTW but remained on
par with all other CEMs in the first year. During the second year, gross energy production
in ARS–ZTW was significantly higher than SRI–SWI and remained on par with PTR–CDW.
In regard to net energy production, ARS–ZTW was found superior to both PTR–CDW
and SRI–SWI and increased net energy production by 5900 and 4100 MJ ha−1. The energy
required to produce a tonne of system yield varied between 2523 and 3039 MJ ha−1 and all
three systems differed significantly, with ARS–ZTW found superior over the rest.
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Table 6. Effect of crop establishment methods on energetic and protein yield of rice, wheat and
rice–wheat cropping system.

Treatment

Gross Energy
(×103 MJ ha−1)

Net Energy
(×103 MJ ha−1)

Energy tonne−1 of
Grain (MJ tonne−1)

Protein Yield
(kg ha−1)

2013 2014 2013 2014 2013 2014 2013 2014

Rice

Puddled transplanted rice (PTR) 151.2a 149.4a 137.8b 134.9b 3276a 3629a 246.5a 229.1a

System of rice intensification (SRI) 151.5a 149.6a 139.2a 136.4a 2961b 3304b 247.3a 229.6a

Aerobic rice system (ARS) 145.5b 143.7b 134.1c 131.6c 2875c 3137c 221.2b 206.0b

Wheat

Conventional drill-sown
wheat (CDW) 140.4b 142.7b 129.8b 131.9b 2421a 2497a 552.3b 535.1b

System of wheat
intensification (SWI) 139.8b 142.0b 130.1b 132.2b 2208b 2281b 550.8b 533.1b

Zero-tillage wheat (ZTW) 148.4a 150.2b 139.4a 141.1a 1933c 2007c 639.1a 621.4a

Rice–wheat cropping system

Puddled transplanted rice
(PTR)–conventional drill-sown
wheat (CDW)

291.7a 292.1a 267.6b 266.8b 2834a 3039a 798.8b 764.3b

System of rice intensification
(SRI)–system of wheat
intensification (SWI)

291.3a 291.6a 269.4b 268.6b 2573b 2773b 798.2b 762.7b

Aerobic rice system
(ARS)–zero-tillage wheat (ZTW) 293.9a 293.9a 273.5a 272.7a 2366c 2523c 860.2a 827.3a

Within a column, means followed by the same letter are not significantly different at the 0.05 level of probability
by the Duncan’s multiple range test.

The gross energy production in rice was highest in RDN + Zn applied in PTR and
found significantly superior over same treatments applied in SRI and ARS in both years
(Table 7). Application of 75% RDN + MC1 + Zn and 75% RDN + MC2 + Zn in PTR and SRI
remained on par with RDN and found significantly superior over same treatment applied
in ARS in first year, while in second year only 75% RDN + MC2 + Zn in SRI was found on
par with RDN. The net energy production was highest in 75% RDN + MC2 + Zn in SRI
and found superior over same treatment applied in ARS in both years. The net energy
production in 75% RDN + MC2 was higher by 900–1000 and 7300–8600 MJ ha−1 than
RDN and 75% RDN (averaged over all CEMs). Application of MC1 increased net energy
production by 6800–8300, 6900–8500 and 7100–8600 MJ ha−1, respectively, in PTR, SRI and
ARS. Similarly, increase in net energy production by MC2 was 7100–8400, 7000–8600 and
7500–8800 MJ ha−1, respectively. The zinc fertilization significantly increased gross and
net energy production in all CEMs and in all treatments. The increase in gross and net
energy production due to Zn fertilization varied between 1600 and 7300 and 1400 and
7100 MJ ha−1, respectively. The lowest amount of energy for production of one tonne of
grain was in control. Among CEMs, control in ARS had significantly lower energy per
tonne of rice grain produced. Application of MC1 lower energy required per tonne of grain
produced by 167–233 MJ tonne−1 and MC2 by 183 to 234 MJ tonne−1 over 75% RDN.
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Table 7. Effect of nutrient management options on energetic and protein yield of rice in different crop
establishment methods.

Treatment

Gross Energy
(×103 MJ ha−1)

Net Energy
(×103 MJ ha−1)

Energy tonne−1

of Grain
(MJ tonne−1)

Protein Yield
(kg ha−1)

2013 2014 2013 2014 2013 2014 2013 2014

Puddled transplanted rice (PTR)

Control 129.6j 127.0j 121.9l 118.4p 2395l 2842j 161.0j 144.2i

RDN * 154.3cd 152.0d 138.7efg 135.5ghij 3704a 4089a 258.2de 240.3d

RDN + Zn ** 160.4a 159.3a 144.7ab 142.6a 3604ab 3897b 292.6a 274.9a

75% RDN 144.9h 144.0gh 131.3i 129.4m 3515bc 3825bc 215.5gh 202.7f

75% RDN + Zn 149.3f 147.2e 135.6h 132.5kl 3402cd 3783c 220.4fgh 204.5ef

75% RDN + MC1 153.2d 150.8d 139.6def 136.2fghi 3262efg 3642d 258.2de 235.3d

75% RDN + MC1 + Zn 157.8ab 156.3b 144.1abc 141.6abc 3167gh 3476e 283.3ab 267.6ab

75% RDN + MC2 153.3d 151.2d 139.7def 136.5efgh 3262efg 3623d 254.6de 235.1d

75% RDN + MC2 + Zn 158.1ab 156.6b 144.4ab 141.9ab 3174gh 3487e 274.6bcd 257.7bc

System of rice intensification (SRI)

Control 131.4j 128.7j 125.0k 121.3o 1881m 2293k 172.6j 155.5i

RDN * 154.9cd 152.6d 140.6dc 137.3defg 3421cd 3797bc 259.8cde 241.8d

RDN + Zn ** 156.5bc 155.4bc 142.0bcd 139.9bcd 3324def 3613d 290.7ab 273.1a

75% RDN 145.3gh 144.5fg 132.9i 131.1lm 3202fgh 3510e 208.8ghi 196.4fg

75% RDN + Zn 150.0ef 147.8e 137.5fgh 134.4hijk 3096hi 3467e 222.1fg 206.2ef

75% RDN + MC1 153.8cd 151.4d 141.4cde 138.0defg 2972j 3342f 255.6de 232.9d

75% RDN + MC1 + Zn 158.3ab 156.8b 145.8a 143.3a 2894jk 3199gh 276.4abc 257.3bc

75% RDN + MC2 153.9cd 151.8d 141.5cde 138.4def 2979ij 3333f 253.0de 233.6d

75% RDN + MC2 + Zn 159.0ab 157.4ab 146.5a 143.9a 2876jk 3181gh 286.9ab 269.5ab

Aerobic rice system (ARS)

Control 122.0k 119.3k 116.4m 113.1q 1737n 2049l 154.1k 138.5j

RDN * 149.2f 146.9ef 135.7h 132.8kl 3341de 3637d 232.8f 216.1e

RDN + Zn ** 154.6cd 153.5cd 140.9de 139.2cde 3269efg 3484e 261.9cde 245.5cd

75% RDN 139.1i 138.3i 127.6j 126.1n 3118h 3340f 193.0i 181.2h

75% RDN + Zn 143.8h 141.7h 132.2i 129.4m 2996ij 3282fg 204.2hi 189.1gh

75% RDN + MC1 147.8fg 145.4efg 136.2gh 133.2jkl 2900jk 3191gh 218.5fgh 198.1fg

75% RDN + MC1 + Zn 152.4de 150.9d 140.7de 138.6def 2810k 3037i 251.0de 243.3d

75% RDN + MC2 148.0f 145.9efg 136.4gh 133.6ijkl 2894jk 3168h 220.9fgh 203.3ef

75% RDN + MC2 + Zn 152.6de 151.1d 140.9de 138.7def 2814k 3045i 254.5de 238.5d

Nutrient management * * * * * * * *

Interaction * * * * * * * *

Within a column, means followed by the same letter are not significantly different at the 0.05 level of probability
by the Duncan’s multiple range test. “*”: Indicates significant different of treatments the 0.05 level of probability
by the Duncan’s multiple range test; RDN *: Recommended dose of nutrients 120 kg N ha−1 and 25.8 kg P ha−1;
Zn **: Soil applied 5 kg Zn ha−1 through zinc sulphate heptahydrate; MC1: (Anabaena sp. (CR1) + Providencia sp.
(PR3) consortia; MC2: Anabaena-Pseudomonas biofilmed formulations.

In wheat, the highest amount of gross energy production was recorded in RDN + Zn in
ZTW and remained on par with 75% RDN + MC1 + Zn and 75% RDN + MC2 + Zn in ZTW
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(Table 8). These three treatments were found significantly superior over same treatment
applied in CDW and SWI except RDN in CDW. The net energy production in second year
was 100 to 3500 MJ ha−1 higher than first year. The application of 75% RDN + MC2 + Zn
had the highest net energy production. Application of MC1 and MC2 increases net energy
production by 5500 to 6700 and 6800 to 7700 MJ ha−1. Similarly increase in net energy
production due to Zn fertilization was 1200 to 7900 MJ ha−1. The energy per tonne of
wheat grain produced varied between 786 and 2858 MJ tonne−1 in the first year and 853
and 2956 MJ tonne−1 in the second year. Application of microbial consortia significantly
reduces energy required for production of one tonne of wheat grain, while Zn fertilization
found statistically superior when applied with RDN in CDW during both the years and 75%
RDN + MC1 in CDW and SWI in first year. The system gross and net energy production
varied between 247.2 and 311.9 × 103 MJ ha−1 and 233.6 and 288.3 × 103 MJ ha−1 (Table 9).
The highest gross and net energy production was found with RDN + Zn in ZTW and 75%
RDN + MC2 + Zn in ZTW, respectively. The increase in system net returns due to microbial
consortia and Zn fertilization was 12,900 to 16,100 and 4800 to 12,040 MJ ha−1, respectively.

Table 8. Effect of nutrient management options on energetic and protein yield of wheat in different
crop establishment methods.

Treatment

Gross Energy

(×103 MJ ha−1)

Net Energy

(×103 MJ ha−1)

Energy tonne−1

of Grain
(MJ tonne−1)

Protein Yield
(kg ha−1)

2013–2014 2014–2015 2013–2014 2014–2015 2013–2014 2014–2015 2013–2014 2014–2015

Conventional
drill–wheat (CDW)

Control 119.9l 120.2m 115.1i 115.2i 1358m 1439m 340.7h 312.6k

RDN * 143.8defgh 145.5defghi 131.0defg 132.5efgh 2858a 2956a 583.3de 561.5fg

RDN + Zn ** 150.0abcde 151.4abcdef 137.1cde 138.3cde 2756b 2858b 647.8b 624.9bcd

75% RDN 134.3jk 138.0jkl 123.5gh 127.1h 2590c 2643d 498.5f 486.7i

75% RDN + Zn 135.6ijk 139.4ijkl 124.7fgh 128.3gh 2589c 2641d 503.3f 496.2hi

75% RDN + MC1 141.0fghijk 144.3fghij 130.1efg 133.3efgh 2469d 2528e 560.5e 546.0g

75% RDN + MC1 + Zn 148.7cdefg 150.2cdefg 137.8cde 139.2cde 2360efg 2449efg 633.4bc 612.0bcde

75% RDN + MC2 142.1efghij 145.3defghi 131.2defg 134.3defg 2450de 2510ef 565.8e 555.9g

75% RDN + MC2 + Zn 148.6cdefg 149.9cdef 137.6cde 138.8cde 2360efg 2453efg 637.8b 620.4bcd

System of wheat
intensification (SWI)

Control 123.8l 124.2m 119.9hi 120.2i 1028n 1103n 355.3h 326.0k

RDN * 143.0defghi 144.6efghij 131.2defg 132.7efgh 2656c 2750c 580.1e 557.9g

RDN + Zn ** 148.5cdefg 149.7cdefgh 136.5cde 137.7cde 2575c 2675cd 642.8b 619.4bcd

75% RDN 133.3k 137.0kl 123.4gh 127.0h 2376ef 2428fg 497.0f 484.8i

75% RDN + Zn 135.4ijk 139.2ijkl 125.5fgh 129.1gh 2362efg 2413gh 505.0f 497.5hi

75% RDN + MC1 139.3hijk 142.6hijk 129.4efg 132.5efgh 2275gh 2333hij 554.7e 539.7gh

75% RDN + MC1 + Zn 147.2defgh 148.7defgh 137.3cde 138.6cde 2172i 2258j 628.9bcd 607.0bcdef

75% RDN + MC2 140.6ghijk 143.8ghijk 130.7defg 133.8defgh 2254hi 2312ij 560.8e 550.5g

75% RDN + MC2 + Zn 147.2defgh 148.5defgh 137.3cde 138.4cde 2170i 2260j 632.8bc 615.0bcde

Zero-tillage wheat (ZTW)

Control 133.2k 133.3l 130.1efg 130.0fgh 786o 853o 436.3g 405.5j

RDN * 150.8abcd 152.1abcd 139.7abc 140.7bcd 2373ef 2466efg 666.1b 643.6bc

RDN + Zn ** 157.3a 158.2a 146.1ab 146.8ab 2291fgh 2388ghi 737.2a 713.4a

75% RDN 141.5fghij 144.8defghij 132.3cdef 135.5cdefg 2082j 2139k 583.0de 571.3efg
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Table 8. Cont.

Treatment

Gross Energy

(×103 MJ ha−1)

Net Energy

(×103 MJ ha−1)

Energy tonne−1

of Grain
(MJ tonne−1)

Protein Yield
(kg ha−1)

2013–2014 2014–2015 2013–2014 2014–2015 2013–2014 2014–2015 2013–2014 2014–2015

75% RDN + Zn 143.0defghi 146.4defghi 133.8cde 137.0cdef 2083j 2139k 589.2cde 582.5defg

75% RDN + MC1 148.2cdefg 151.1bcdefg 139.0bcd 141.7abc 1991k 2052l 642.6b 628.1bc

75% RDN + MC1 + Zn 155.6abc 156.7abc 146.3ab 147.2ab 1914kl 1998l 719.8a 697.7a

75% RDN + MC2 148.9bcdef 151.8abcde 139.7abc 142.4abc 1980kl 2042l 647.0b 637.3bc

75% RDN + MC2 + Zn 156.6ab 157.6ab 147.3a 148.1ab 1900l 1986l 730.8a 712.8a

LSD (p= 0.05) 4.05 3.58 4.05 3.58 48.4 45.4 47.6 45.5

Nutrient management * * * * * * * *

Interaction * * * * * * * *

Within a column, means followed by the same letter are not significantly different at the 0.05 level of probability
by the Duncan’s multiple range test. ”*”: Indicates significant different of treatments the 0.05 level of probability
by the Duncan’s multiple range test; RDN *: Recommended dose of nutrients 120 kg N ha−1 and 25.8 kg P ha−1;
Zn **: Soil applied with 5 kg Zn ha−1 through zinc sulphate heptahydrate; MC1: (Anabaena sp. (CR1) + Providencia
sp. (PR3) consortia; MC2: Anabaena-Pseudomonas biofilmed formulations.

Table 9. Effect of nutrient management options on energetic and protein yield of rice–wheat cropping
system in different crop establishment methods.

Treatment

Gross Energy
(×103 MJ ha−1)

Net Energy
(×103 MJ ha−1)

Energy tonne−1

of Grain
(MJ tonne−1)

Protein Yield
(kg ha−1)

2013 2014 2013 2014 2013 2014 2013–2014 2014–2015

PTR–CDW

Control 249.5k 247.2g 237.0j 233.6l 1847k 2092o 501.7l 456.7m

RDN * 298.2cdef 297.5c 269.8def 268.0fghi 3268a 3500a 841.5fgh 801.8ghi

RDN + Zn ** 310.4a 310.7a 281.8abc 280.9abc 3164b 3360b 940.5abcd 899.9bcd

75% RDN 279.2j 282.1f 254.7h 256.5j 3035c 3209cd 714.0j 689.5k

75% RDN + Zn 284.9ij 286.6f 260.3gh 260.8ij 2986c 3190cd 723.6ij 700.7jk

75% RDN + MC1 294.2fgh 295.1cd 269.7def 269.5efgh 2856de 3063ef 818.7ghi 781.3hi

75% RDN + MC1 + Zn 306.5abc 306.6a 281.8abc 280.8abc 2750efg 2945ghi 916.7cde 879.6def

75% RDN + MC2 295.4fg 296.5c 270.9def 270.9defgh 2844def 3043efg 820.3ghi 791.0ghi

75% RDN + MC2 + Zn 306.7abc 306.5a 282.0abc 280.7abc 2753efg 2952ghi 912.4cde 878.1def

SRI–SWI

Control 255.2k 252.9g 244.9ij 241.5k 1433l 1662p 527.9l 481.5m

RDN * 297.9cdef 297.3c 271.7def 269.9defgh 3027c 3254c 839.9fhg 799.7ghi

RDN + Zn ** 304.9abcde 305.1ab 278.5bcd 277.6bcd 2938cd 3131de 933.6bcd 892.5cde

75% RDN 278.6j 281.4f 256.3h 258.1j 2775efg 2947ghi 705.8j 681.2k

75% RDN + Zn 285.4hij 287.0ef 263.0fgh 263.4hij 2721g 2920hi 727.1ij 703.6jk

75% RDN + MC1 293.1fghi 294.0cde 270.8def 270.5defgh 2617h 2820j 810.3ghi 772.7hi

75% RDN + MC1 + Zn 305.5cdef 305.5ab 283.0abc 281.9ab 2522h 2714kl 905.4de 864.3def

75% RDN + MC2 294.5fg 295.6c 272.2def 272.2defg 2607h 2803jk 813.8ghi 784.1hi

75% RDN + MC2 + Zn 306.2abcd 305.9ab 283.7abc 282.3ab 2514hi 2708kl 919.7cde 884.5def
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Table 9. Cont.

Treatment

Gross Energy
(×103 MJ ha−1)

Net Energy
(×103 MJ ha−1)

Energy tonne−1

of Grain
(MJ tonne−1)

Protein Yield
(kg ha−1)

2013 2014 2013 2014 2013 2014 2013–2014 2014–2015

ARS–ZTW

Control 255.2k 252.6g 246.5i 243.1k 1207m 1376q 590.4k 544.1l

RDN * 300.1bcdef 299.0bc 275.4cde 273.5cdefg 2821efg 3005fgh 898.9def 859.7defg

RDN + Zn ** 311.9a 311.7a 287.0ab 286.0a 2740fg 2894j 999.1a 958.9a

75% RDN 280.6j 283.1f 259.9gh 261.6ij 2556h 2687l 776.0i 752.5ij

75% RDN + Zn 286.9ghij 288.1def 265.9efg 266.4ghi 2509hi 2664m 793.4h 771.6hi

75% RDN + MC1 296.0def 296.5c 275.2cde 274.9bcdef 2413ij 2572n 861.1efg 826.2fgh

75% RDN + MC1 + Zn 308.0ab 307.6a 287.0ab 285.9a 2328j 2478n 970.9abc 941.0abc

75% RDN + MC2 296.9def 297.6c 276.2cd 276.1bcde 2404j 2557n 867.9efg 840.5efg

75% RDN + MC2 + Zn 309.2ab 308.7a 288.3a 286.9a 2320j 2473n 985.3ab 951.4ab

LSD (p = 0.05) 4.77 3.93 4.77 3.93 58.6 54.2 61.3 55.7

Nutrient management * * * * * * * *

Interaction * * * * * * * *

Within a column, means followed by the same letter are not significantly different at the 0.05 level of probability
by the Duncan’s multiple range test. ”*”: Indicates significant different of treatments the 0.05 level of probability
by the Duncan’s multiple range test; RDN *: Recommended dose of nutrients 120 kg N ha−1 and 25.8 kg P ha−1;
Zn **: Soil applied with 5 kg Zn ha−1 through zinc sulphate heptahydrate; MC1: (Anabaena sp. (CR1) + Providencia
sp. (PR3) consortia; MC2: Anabaena-Pseudomonas biofilmed formulations.

3.3. Grain Yield, Protein Yield and Micronutrient Uptake

The grain yield was significantly affected at the individual crop level, while at system
level it remained on par (Figure 3). Application of RDN + Zn recorded the highest yield
in both crops, while the yield in 75% RDN + MC1 + Zn and 75% RDN + MC2 + Zn
remained on par with RDN + Zn. The protein yield in wheat was higher than rice and this
amount is 303 to 318 kg ha−1 in the first year and 304 to 315 kg ha−1 during the second
year (Tables 6 and 7). The system protein yield varied between 456.7 and 999.1 kg ha−1,
respectively, with the highest and lowest in RDN + Zn in ARS–ZTW and control in
CDW–PTR, respectively (Table 8). In both rice and wheat, CEMs differed significantly
in protein production with the highest protein in SRI in rice and ZTW in wheat. The
increase in protein yield in PTR over ARS was 25.2 to 23.2 kg ha−1, while the same for
ZTW over CDW and SWI was 86.2 to 88.3 kg ha−1. The order of significance for the
variation in system protein yield was RDN > microbial consortia > Zn fertilization > CEMs,
while their contribution to protein yield was 112.7–326.3 kg ha−1; 85.7–102.1 kg ha−1,
16.1–105.1 kg ha−1 and 62–65 kg ha−1, respectively.

The uptake of all studied micronutrients was affected significantly due to CEMs in
both rice (white rice kernel) and wheat (whole grain) (Tables 10–12). In rice, PTR and
SRI remained on par with each other and were found statistically superior to ARS for all
micronutrients. In wheat, ZTW recorded significantly higher micronutrient uptake than
both CDW and SWI. Among nutrient management treatments, the uptake of Zn and Fe
was significantly affected due to all treatment variables, while for Mn and Cu, the uptake
remained on par in all treatments except control. The highest uptake of Zn, Fe, Mn and Cu
in rice was 45.42 g ha−1, 235.0 g ha−1, 24.78 g ha−1 and 19.66 g ha−1 (all in SRI), respectively.
Similarly, for wheat it was 217.9 g ha−1 for Zn, 528.2 g ha−1 for Fe, 179.9 g ha−1 for Mn and
35.84 g ha−1 for Cu (all in ZTW), respectively.
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(a) 

(b) 

Figure 3. Effect of crop establishment methods and nutrient management on grain yield of rice
(a) and wheat (b) (pooled data over two years). (T1: Control, T2: RDN, T3: RDN + Zn, T4: 75% RDN,
T5: 75% RDN + Zn, T6: 75% RDN + MC1, T7: 75% RDN + MC1 + Zn, T8: 75% RDN + MC2 and T9:
75% RDN + MC2 + Zn). RDN Recommended dose of nutrients 120 kg N ha−1 and 25.8 kg P ha−1;
Zn: Soil applied with 5 kg Zn ha−1 through zinc sulphate heptahydrate; MC1: (Anabaena sp. (CR1)
+ Providencia sp. (PR3) consortia; MC2: Anabaena-Pseudomonas biofilmed formulations.

Table 10. Effect of crop establishment methods on micronutrient uptake in rice and wheat.

Treatment
Zn Uptake (g ha−1) Fe Uptake (g ha−1) Cu Uptake (g ha−1) Mn Uptake (g ha−1)

2013 2014 2013 2014 2013 2014 2013 2014

Rice
Puddled transplanted rice (PTR) 38.3a 30.2a 206.0a 184.9a 17.0a 12.5a 21.4a 17.1a
System of rice intensification (SRI) 38.8a 30.3a 208.1a 187.8a 17.1a 12.8a 21.5a 17.2a
Aerobic rice system (ARS) 32.8b 25.8b 182.5b 165.3b 13.8b 10.1b 18.0a 15.1b
LSD (p = 0.05) 0.55 0.45 3.09 4.86 0.80 0.70 0.57 0.63
Wheat
Conventional drill-sown wheat (CDW) 154.5b 138.1b 418.7b 400.6b 21.6b 18.5b 126.3b 115.2b
System of wheat intensification (SWI) 154.3b 138.7b 418.3b 401.2b 22.2b 18.9b 127.1b 116.3b
Zero-tillage wheat (ZTW) 183.6a 167.1a 475.8a 451.0a 31.1a 26.8a 155.1a 143.4a
LSD (p = 0.05) 1.96 1.82 8.93 7.74 1.88 1.67 5.07 4.90

Within a column, means followed by the same letter are not significantly different at the 0.05 level of probability
by the Duncan’s multiple range test.
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Table 11. Effect of nutrient management options on micronutrient uptake in rice in different crop
establishment methods.

Treatment
Zn Uptake (g ha−1) Fe Uptake (g ha−1) Cu Uptake (g ha−1) Mn Uptake (g ha−1)

2013 2014 2013 2014 2013 2014 2013–2014 2014–2015

PTR–CDW

Control 18.94k 15.15o 133.3kl 113.7n 5.70k 4.23j 9.18l 6.69j

RDN * 40.66cd 31.77ef 216.1cd 194.7def 18.35abc 13.49abcde 22.86abcde 18.29abcde

RDN + Zn ** 42.22ab 35.96a 232.2a 210.5ab 19.89a 14.95a 25.03a 20.15a

75% RDN 34.22gh 27.05ij 189.6fgh 171.9hij 15.95efgh 12.04cdefg 20.26efghi 16.31efghi

75% RDN + Zn 35.67fg 27.72i 194.0fgh 175.0hi 16.19defgh 11.69efg 20.44defgh 16.21efghi

75% RDN + MC1 41.32c 32.61de 219.5bc 195.6def 18.97abc 13.91ab 23.51abcd 18.81abcd

75% RDN + MC1 + Zn 44.58ab 35.40ab 228.2ab 207.1abc 19.89a 14.57a 24.54ab 20.01ab

75% RDN + MC2 40.60c 32.20ef 217.0bcd 194.9def 18.49abc 13.56abcd 23.21abcd 18.44abcde

75% RDN + MC2 + Zn 43.55b 33.84cd 223.8abc 200.6cd 19.14ab 14.01ab 23.66abcd 18.98abcd

SRI–SWI

Control 20.7k 16.44n 144.1k 124.5m 6.74k 5.16j 10.19l 7.45j

RDN * 41.11cd 31.85ef 219.4bc 199.1cd 18.26abcd 13.63abcd 22.95abcde 18.34abcde

RDN + Zn ** 45.15ab 35.63a 231.9a 211.7a 19.66a 15.03a 24.78ab 19.93ab

75% RDN 33.45h 26.22jk 184.5hi 168.5ij 15.52ghi 11.95defg 19.69ghijk 15.84fghi

75% RDN + Zn 37.67e 29.31h 197.8efg 179.8gh 17.80abcdef 13.43abcde 22.08bcdefg 17.73bcdefg

75% RDN + MC1 41.03cd 32.09ef 218.8bc 196.3de 18.54abc 13.80abc 23.05abcd 18.40abcde

75% RDN + MC1 + Zn 43.92ab 34.15bc 224.1abc 201.8bcd 19.51a 14.27ab 24.06abcd 19.34abc

75% RDN + MC2 40.38c 31.72ef 217.1bcd 196.4de 18.04abcde 13.41abcde 22.76abcdef 18.02abcdef

75% RDN + MC2 + Zn 45.42a 35.00abc 235.0a 212.5a 19.54a 14.48a 24.28abc 19.43abc

ARS–ZTW

Control 16.86l 13.54p 123.5l 106.1n 5.02k 3.65j 8.19l 6.49j

RDN * 35.76fg 27.84i 194.3fgh 176.1hi 15.72fgh 11.43fg 20.05fghij 16.79defgh

RDN + Zn ** 39.41d 31.25efg 206.2de 188.0efg 16.86cdefg 12.56bcdef 21.67cdefg 18.23abcde

75% RDN 28.45j 22.73m 166.1j 151.5l 12.99j 9.64hi 16.99k 14.29i

75% RDN + Zn 31.01i 23.91lm 175.6ij 159.4kl 13.36j 9.39i 17.45jk 14.44i

75% RDN + MC1 32.44hi 25.24kl 183.6hi 164.2jk 13.58ij 9.49i 17.63ijk 14.55hi

75% RDN + MC1 + Zn 37.38ef 30.25gh 199.7ef 187.3fg 15.61fghi 11.36fgh 19.93ghij 17.36cdefg

75% RDN + MC2 33.61h 26.45ijk 187.2gh 168.9ij 14.48hij 10.33ghi 18.80hijk 15.52ghi

75% RDN + MC2 + Zn 39.74cd 30.84fg 206.0de 185.9g 17.25bcdefg 12.59bcdef 21.63cdefg 18.21abcde

LSD (p = 0.05) 1.84 1.45 11.4 8.7 2.13 1.83 2.73 2.32

Nutrient
management treatments * * * * * * * *

Interactions * * * * * * * *

Within a column, means followed by the same letter are not significantly different at the 0.05 level of probability
by the Duncan’s multiple range test. ”*”: Indicates significant different of treatments at the 0.05 level of probability
by the Duncan’s multiple range test; RDN *: Recommended dose of nutrients 120 kg N ha−1 and 25.8 kg P ha−1;
Zn **: Soil applied with 5 kg Zn ha−1 through zinc sulphate heptahydrate; MC1: (Anabaena sp. (CR1) + Providencia
sp. (PR3) consortia; MC2: Anabaena-Pseudomonas biofilmed formulations.
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Table 12. Effect of nutrient management options on micronutrient uptake in wheat in different crop
establishment methods.

Treatment
Zn Uptake (g ha−1) Fe Uptake (g ha−1) Cu Uptake (g ha−1) Mn Uptake (g ha−1)

2013–2014 2014–2015 2013–2014 2014–2015 2013–2014 2014–2015 2013–2014 2014–2015

PTR–CDW

Control 81.6k 70.5k 263.9k 249.0j 61.5j 55.4h 12.5j 10.4j

RDN * 163.0fgh 145.1g 442.3fg 422.4efgh 137.9fg 125.1cd 23.1fgh 19.9fgh

RDN + Zn ** 186.1cde 163.4d 469.8de 446.1d 148.7ef 133.9cd 25.0def 21.5de

75% RDN 173.3i 127.8i 394.0b 381.4i 114.3h 106.8f 19.9hi 17.2gh

75% RDN + Zn 140.1i 128.9i 401.9h 386.7i 115.2h 107.3f 19.9hi 16.7hi

75% RDN + MC1 158.8gh 142.2gh 432.0g 416.8h 133.8g 122.8cd 22.7fgh 19.4fgh

75% RDN + MC1 + Zn 181.1e 160.2def 463.7ef 441.4de 144.4fg 130.1cd 24.3defgh 21.4def

75% RDN + MC2 160.1gh 143.7g 435.8g 420.7fgh 136.1g 123.7cd 22.9fgh 19.1fh

75% RDN + MC2 + Zn 182.8de 161.2de 465.1e 441.3de 145.3fg 131.6cd 24.2efgh 21.3defg

SRI–SWI

Control 86.5k 75.6k 273.3j 258.9j 66.3j 60.4h 15.5i 13.0ij

RDN * 162.0fgh 145.1g 442.9fg 423.9efgh 137.9fg 125.6cd 23.0fgh 19.5fgh

RDN + Zn ** 184.5de 162.8d 467.3e 444.7d 148.3ef 134.0c 25.0def 21.4def

75% RDN 136.8i 128.2i 394.7h 383.0i 114.8h 107.7f 20.2gh 17.4fgh

75% RDN + Zn 142.7i 132.3i 403.8h 389.5i 118.7h 111.1ef 22.6fgh 19.3fgh

75% RDN + MC1 156.9h 141.3gh 429.1g 414.8h 133.2g 122.5de 22.4fgh 18.9fgh

75% RDN + MC1 + Zn 179.9e 160.1def 458.8e 437.7defg 144.5fg 130.6cd 24.7defg 21.5ef

75% RDN + MC2 158.3gh 142.9g 433.6g 419.5gh 135.4g 123.4cd 22.5fgh 18.5fgh

75% RDN + MC2 + Zn 180.8e 160.3def 461.6ef 438.8def 144.5fg 131.3cd 23.7fgh 20.5efgh

ARS–ZTW

Control 111.6j 99.8j 320.8i 299.8i 90.5i 83.4g 23.2fgh 19.7fhg

RDN * 192.6c 174.6c 501.3bc 474.5bc 167.5bcd 154.1ab 33.4ab 28.9ab

RDN + Zn ** 217.9a 194.8a 528.2a 497.2a 179.9a 164.3a 35.7a 30.9a

75% RDN 164.4fg 155.4f 450.5efg 431.8defgh 141.4fg 133.7cd 28.9bcd 25.1bcd

75% RDN + Zn 167.3f 156.4ef 458.8f 437.2defg 142.2fg 134.0c 28.6cde 24.3cde

75% RDN + MC1 185.2de 163.7d 490.3cd 468.5c 160.2cde 148.7b 29.8bc 25.3bcd

75% RDN + MC1 + Zn 209.9b 188.9b 515.8ab 486.6abc 172.8abc 157.8ab 32.9abc 28.8ab

75% RDN + MC2 187.9cd 171.6c 493.4c 471.8c 164.0cd 151.1b 31.6abc 26.6bc

75% RDN + MC2 + Zn 216.1ab 194.1ab 522.9ab 491.8ab 177.8ab 163.3a 35.8a 31.6a

Nutrient
management treatments * * * * * * * *

Interactions * * * * * * * *

Within a column, means followed by the same letter are not significantly different at the 0.05 level of probability
by the Duncan’s multiple range test. ”*”: Indicates significant different of treatments at the 0.05 level of probability
by the Duncan’s multiple range test; RDN *: Recommended dose of nutrients 120 kg N ha−1 and 25.8 kg P ha−1;
Zn **: Soil applied with 5 kg Zn ha−1 through zinc sulphate heptahydrate; MC1: (Anabaena sp. (CR1) + Providencia
sp. (PR3) consortia; MC2: Anabaena-Pseudomonas biofilmed formulations.

4. Discussion

4.1. Energy Input and Type of Energy

The study of energy input is important in rice and wheat at the individual crop level
as well as system level due to significant variations in cultivation practices which include
CEMs, nutrient management and soil hydrological regimes across a region. The faster
adoption of CEMs such as ZTW [41], which is reported to reduce the energy expenditure
on tillage, promotion of consortia-based microbial inoculations for nutrient endowments
in crops [42,43], thereby reducing the total nutrient applied and increasing the use of
micronutrients due to crop response [44,45], was evaluated for biological parameters and
economic scale, while their evaluation in terms of energy requirement carries significant
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importance considering their share in total energy consumption in the crop production
process (Figure 1).

In our study, CEMs, rate of N and P application, Zn fertilization and microbial in-
oculation significantly affected the energetics of RWCS. The higher energy requirement
in rice than wheat was contributed by the field preparation, nursery and higher number
of irrigations [5,17]. The variation in energy inputs across CEMs in rice was governed
by nursery, puddling, seed and sowing and number of irrigations, while in wheat tillage,
seed rate and weeding operation contributed to the variation in energy input, with highest
contribution coming from tillage. The highest share of fertilization to total energy consump-
tion [18,46] was due to the energy equivalent for N (60.6 MJ kg−1), P2O5 (11.1 MJ kg−1)
and K2O (6.7 MJ kg−1) and the higher quantity (90–120 kg N, 44.67–59.1 kg P2O5 and 60 kg
K2O) applied, while higher energy equivalents for tractor-operated machinery and diesel
increased the share of field preparation in total energy input. As the share of fertilizer in
energy consumption is higher in wheat, the increase in energy efficiency by using microbial
consortia will be more profitable for wheat. The variation in energy requirement due
to irrigation was contributed by rice alone as the irrigation requirement of all CEMs in
wheat remained the same. The saving in energy by changing CEM from PTR to ARS was
563.7 MJ ha−1 (2%). At the same time, this contribution was less if calculated based on
monetary terms at the farmer field level which might be due to the subsidized rate of elec-
tricity and very low irrigation charges. At the system level, the share of irrigation in total
energy input remained the same (6%) even though the difference in energy consumption in
irrigation among CEMs is 326.6 MJ ha−1. The reduction in energy requirement by changing
CEM was reported by [17,47].

The ARS and ZTW were found to be better as they use higher renewable energy than
PTR and CDW. The use of higher seed rate and absence of puddling and tillage in ARS and
ZTW were the important reasons for higher renewable energy consumption. At the same
time, total energy input was also lower in ARS and ZTW which makes them energy-efficient.
Both methods were also recommended on the issue of water shortage [48,49] and timely
planting along with energy efficiency [7]. Among nutrient management treatments, the use
of microbial inoculations reduces the share of non-renewable energy; therefore, treatment
with 75% RDN + MC1 or MC2 increases the share of renewable energy in crop production.

The variation in gross energy production arose due to yield superiority of PTR [50]
and SRI [51] over ARS in rice and ZTW [52] over CDW and SWI in wheat. The higher
gross energy than ARS and lower energy input than PTR make SRI significantly superior
in net energy production. The variation across CEMs in energy input and net energy
production [53,54] was also reported. We found that in rice and wheat, the variations in
energy input and gross energy production contribute equally towards the variation in net
energy production among CEMs, while at the system level, the variation in input has the
highest contribution to the increase in net energy production.

4.2. Energy Production

Among the nutrient management options, gross and net energy output was affected
significantly by the rate of N and P application, Zn fertilization and microbial inoculation.
The rate of N and P application had the highest contribution to variation in energy produc-
tion, while Zn fertilization had the lowest contribution to energy production. The highest
gross energy in RDN + Zn was the outcome of highest yield, while the highest net energy
production in 75% RDN + Zn + MC1 or MC2 was due to reduction in cost of cultivation
on 25% of N and P fertilizer. The difference in energy input across CEMs had a higher
contribution to the variation in net energy production than gross energy production. The
variation in energy input across CEM was 6.53 × 103 to 15.47 × 103 MJ ha−1 for rice, 3.95
to 12.19 MJ ha−1 for wheat and 10.49 to 27.66 MJ ha−1 for RWCS, while variation in gross
energy production was 125.0–157.1, 125.7–153.1 and 250.9–309.2 MJ ha−1 for rice, wheat
and RWCS, respectively.
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The nutrient application through chemical fertilizers is the single most important
source of nutrients. Its importance has increased over the years due to increasing nutrient
deficiency [55,56], response to fertilization and use of high-yielding nutrient responsive
varieties. In terms of energy, fertilizer contributes 59–64% to total energy input in RWCS
and the cost of chemical fertilizer is also going to increase in future on account of the
increasing cost of fertilizer production, depletion in natural reserves and increasing de-
mand. The rice and wheat together contribute 61% (17.67 million tonnes) to total fertilizer
consumption in India. Considering this, complimentary options such as use of microbial
inoculations with partial replacement of chemical fertilizers will help in making the RWCS
more energy-efficient.

4.3. Grain Yield, Protein Yield and Micronutrient Uptake

The calculations of nutritional status of staple crops are essential considering the
shifting of focus of India from food security to nutritional security [57,58]. Protein energy
malnutrition (PEM) ranks first among the major nutrition-related disorders in India [21].
As both rice and wheat are the staple crops catering the protein need of the majority of the
population (especially BLP where PEM is a severe problem), the calculation of their protein
yield will be more focused than just the calculation of yield. In our experiment, the variation
in protein yield was accounted due to the variation in grain yield of rice and wheat and
the factor used for calculation converting nitrogen content to protein. The yield variations
in rice recorded due to better crop establishments leading to superior growth and yield
attributes due to transplanting in both PTR and SRI and less weed menace due to puddling
than ARS. The variation in yields response by different CEMs was reported by [59,60],
while variation in weed dynamics across CEMs [61] and weed problem in aerobic rice [62]
was also reported. This significantly higher yield variation across CEMs nullified the effect
of factor used for calculation of protein yield which is higher in rice (5.95) than wheat (5.70).

Another health-related risk is micronutrient deficiency also called as hidden hunger [63].
The need and significant of micronutrient application for enhancing yield [20] as well as
increasing grain micronutrient concentration and uptake was reported [64], while their
uptake variation across the CEMs with use of different microbial inoculations is meagre
and studied in this investigation. The uptake of all studied micronutrients was higher in
wheat. Along with uptake, concentration dilution by dry matter production and presence of
anti-nutritional factors (phytate) [65] are the other factors deciding the nutritional status of
food grains. The higher micronutrient uptake in PTR and SRI signifies the role of puddling
in enhancing the uptake of micronutrients [66], while significantly higher micronutrient
uptake in ZTW is the indication of the superior performance of ZTW arose due to residual
effect of previous season rice (ARS) and better root growth leading higher forage area due
to less physical constraints for root growth (non-puddled ARS). The uptake of Zn and Fe
in both rice and wheat was significantly affected by application of microbial inoculations,
RDN and Zn fertilization. This indicates ability of above-mentioned factors in amending
the micronutrient uptake in rice. The variation in micronutrient uptake across the CEMs
was explained by changes in hydrological regimes across CEMs in rice and residual effect
as well as soil physical constraints in wheat.

5. Conclusions

The crop establishment methods (CEMs) differ significantly in energy input and
output along with protein and micronutrient uptake in both years of study. The gross
and net energy production was highest in ARS–ZTW which was 293.9 × 103 MJ ha−1

and 273.5–267.6 × 103 MJ ha−1, respectively. The protein yield increase in ARS–ZTW
was 61.5–62 kg ha−1 in the first year and 86.2–88.3 kg ha−1 in the second year over other
CEMs, respectively„ while it reduced the energy required for the production of one tonne
of system yield by 206 and 250 MJ tonne−1 over PTR–CDW in the first and second year,
while the same for SRI–SWI was 467 and 517 MJ tonne−1, respectively, for the first and
second year. The application of 75% RDN with microbial consortia and Zn showed promise
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in enhancing net and gross energy production over all other combinations. This signifies
their role of microbial consortia in energy efficiency and nutrient security of RWCS. The
future research may focus on evaluation and standardization of microbial consortia in other
crops and cropping systems under diverse ecologies. Furthermore, understanding the
physiological and biochemical processes or mechanisms which are affected by the microbial
consortia in rice and wheat can be an innovative line of research work. Besides this, the
energy inputs and output and energy efficiency need to be studied for the increased level
of mechanization in crop production as the lack of labour availability and higher wage rate
in the future will increase mechanization in crop production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14105986/s1. Table S1: Mean weekly meteorological data
during the rice-growing season in 2013 and 2014; Table S2: Mean weekly meteorological data during
the wheat growing season in 2013–14 and 2014–15.
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Abstract: Accurate short-term solar forecasting is challenging due to weather uncertainties associated
with cloud movements. Typically, a solar station comprises a single prediction model irrespective of
time and cloud condition, which often results in suboptimal performance. In the proposed model,
different categories of cloud movement are discovered using K-medoid clustering. To ensure broader
variation in cloud movements, neighboring stations were also used that were selected using a dynamic
time warping (DTW)-based similarity score. Next, cluster-specific models were constructed. At the
prediction time, the current weather condition is first matched with the different weather groups
found through clustering, and a cluster-specific model is subsequently chosen. As a result, multiple
models are dynamically used for a particular day and solar station, which improves performance
over a single site-specific model. The proposed model achieved 19.74% and 59% less normalized
root mean square error (NRMSE) and mean rank compared to the benchmarks, respectively, and was
validated for nine solar stations across two regions and three climatic zones of India.

Keywords: clearness index forecasting; cloud cover; clustering; DTW

1. Introduction

Solar power is one of the viable alternatives to fossil-fuel-generated power, which
causes serious environmental damage [1]. In terms of total energy consumption, India is
ranked third after China and the United States [2], and has a target of producing 57% of total
electricity capacity from renewable sources by 2027 [3]. In this paper, we developed a novel
method for the short-term (some hours ahead) [4] forecasting of the clearness index (Kt)
(defined as the ratio of global horizontal irradiance (GHI) to extraterrestrial irradiance) [5–8]
while accounting for unpredictable weather conditions, focusing on variability in cloud
cover [9–12]. Cloud variability leads to highly localized solar prediction, as a single model
is unable to provide accurate forecasts under different weather conditions [13,14].

Long short-term memory (LSTM) [15] is one of the most popular deep-learning algo-
rithms, mainly used to handle sequential data, and it can preserve knowledge by passing
through the subsequent time steps of a time series [16]. In [17], the authors developed
a site-specific univariate LSTM for the hourly forecasting of photovoltaic power output.
In [18], the authors compared the performance of several alternative models for forecast-
ing clear-sky GHI. These included gated recurrent units (GRUs), LSTM, recurrent neural
networks (RNNs), feed-forward neural networks (FFNNs), and support vector regression
(SVR). GRU and LSTM outperformed the other models in terms of root mean square error
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(RMSE). In [19], the authors proposed an hour-ahead solar power forecasting model based
on RNN-LSTM for three different solar plants. In [9], LSTM and GRU dominated over
artificial neural networks (ANNs), FFNNs, SVR, random forest regressor (RFR), and multi-
layer perceptron (MLP) in solar forecasting. The above discussion suggests that the authors
used a single model to forecast solar irradiation for a particular day and did not consider
cloud cover at the time of forecasting. In [20], the authors designed a forecasting model for
one-day ahead hourly prediction using LSTM. The authors reported that the algorithm per-
formed effectively under fully or partially cloudy conditions. In [21], the authors proposed
a one-hour-ahead hybrid solar forecasting model using traditional machine-learning mod-
els such as random forest (RF), gradient boosting (GB), support vector machines (SVMs),
and ANNs. The RF model showed the best forecasting accuracy for the spring and autumn
seasons, while the SVR model performed best for the winter and summer seasons. In [22],
the authors evaluated 68 machine-learning models for 3 sky conditions, 7 locations, and
5 climate zones in the continental United States. No universal model exists, and specific
models for each sky and climate condition are recommended. Hence, it is well-established
that a single site-specific forecasting model is unable to produce consistent forecasting
performance in all cloud conditions and seasons [20–22].

Typically, a site-specific model is built for solar-energy prediction, and multiple models
are built for different seasons. However, even within the same day, there can be fluctu-
ations due to variability in cloud cover [23]. So, a single model gives a very high error
in terms of NRMSE. The error is further pronounced for time windows with high cloud
variability. The authors in [22], found that a specific forecasting model showed very high
error in NRMSE in overcast cloud conditions in comparison with clear-sky conditions on a
particular day. They also stated that forecasting performance significantly changed with
the change in cloud conditions on a particular day. The authors in [24], stated that LSTM
outperformed other predictive models in short-term solar forecasting. Nevertheless, its
ability to predict cloudy days with low solar irradiance is significantly reduced. This serves
as a motivation to implement an adaptive model. Table 1 summarizes the forecasting
error of LSTM for nine solar stations across three climatic zones of India. Solar stations
are described in Section 3.1. Figure 1 depicts the deviation of NRMSE in high- and low-
variability cloud-cover conditions in comparison with overall NRMSE. In high cloud-cover
variability, forecasting error was significantly higher compared to overall NRMSE. This
signifies that if cloud variability ever increases too much, site-specific LSTM cannot handle
such a situation very well. Another motivation is provided by the parity plot in Figure 2,
which shows forecast and actual clearness indices for three solar stations separately for
high and low cloud-cover variability conditions. Forecasts were more accurate under
low-variability cloud cover conditions than those for high-variability cloud conditions.

In this paper, we propose a novel short-term (2 h ahead) solar forecasting approach [25]
that uses clustering on the basis of cloud parameters as a preprocessing step, and subse-
quently uses LSTM that is cluster-specific for the forecasting clearness index. Specifically,

• For each forecasting site, the nearest three neighboring stations were selected on the
basis of DTW similarity scores [26].

• A global dataset was created by combining some derived features of cloud cover and
clearness indices of each station and those of its neighbors. The derived features were
obtained following [23].

• The entire day was divided into time windows. For clustering, the K-medoids [27]
algorithm was applied on those time windows.

• A separate LSTM model was trained for each cluster that represented different cloud
conditions.

The major contributions of the paper are as follows:

• An adaptive forecasting model (CB-LSTM) is proposed that can apply multiple models
for a site on the basis of existing weather conditions.

• A global dataset was created on the basis of derived cloud-related information that is
used to cluster a day into different weather types.
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• The proposed model showed promising forecasting performance compared to bench-
mark models such as convolutional neural network (CNN)-LSTM and nonclustering-
based site-specific LSTMs. The model achieved less forecasting error for solar stations
having significant solar variability.

• Performance (measured in terms of forecasting accuracy) was validated for nine solar
stations from three climatic zones in India. To our knowledge, this is the first time that
such an approach was applied to data from the Indian subcontinent.

The rest of the paper is organized as follows. Section 2 provides the background on
various deep-learning model architectures. Section 3 presents the proposed method, and
Section 4 presents details on its forecasting performance. The paper is concluded with a
discussion in Section 5.

Table 1. Forecasting performance (NRMSE in %) of LSTM for high- and low-cloud-variability cloud
cover.

Stations
High Cloud-Cover

Variability
Low Cloud-Cover

Variability
Overall NRMSE

Composite climate zone

Bhainsdehi 44.72 17.71 29.85
Begamganj 39.03 20.80 27.98

Dindori 41.16 14.90 25.73

Hot and dry climate zone

Tiruchirappalli 59.06 44.02 47.57
Idukki 87.99 47.70 61.13

Madurai 47.89 44.29 45.65

Warm and humid climate zone

Khaga 34.23 17.42 23.63
Vaibhavwadi 92.22 38.22 57.31
Osmanabad 71.72 33.58 47.83

Figure 1. Deviation of NRMSE (%) in high and low cloud-cover variability conditions compared to
overall NRMSE (%).
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Figure 2. Parity plot showing forecast and actual clearness indices for three solar stations for high
and low cloud-cover variability conditions. (a) Bhainsdehi (high cloud-cover variability); (b) Bhains-
dehi (low cloud-cover variability); (c) Osmanabad (high cloud-cover variability); (d) Osmanabad
(low cloud-cover variability); (e) Khaga (high cloud-cover variability); (f) Khaga (low cloud-cover
variability).
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2. Deep-Learning Models

ANN in the learning phase is unable to utilize information learned from the past time
steps while processing the current time step, which is the major drawback of traditional
neural networks. An RNN can solve this problem and is one of the deep-learning models
designed to handle sequential data. To preserve information, it recursively transfers
learning from previous time steps of the network to the current time step. However, it
is susceptible to the vanishing gradient problem. As a result, it is unable to remember
long-term dependencies.

LSTMs are a special type of RNN that is especially designed to learn both long- and
short-term dependencies [15]. Compared to a traditional neural network, LSTM units
encompass a ‘memory cell’ that can retain and maintain information for long periods of
time [28]. Figure 3 is a schematic diagram of an LSTM cell. A set of gates are used to
customize the hidden states. Three different gates are used, representing input, forget,
and output. The functionality of each gate is summarized as follows.

• Forget gate [29] ( ft) = σ(w f [ht−1, xt] + b f ): On the basis of certain conditions such
as xt, ht−1, and a sigmoid layer, a forget gate produces either 0 or 1. If 1, memory
information is preserved; otherwise, it is discarded.

• Input gate [29] (it) = σ(wi[ht−1, xt] + bi): helps in deciding which values from the
input are used for the current memory state.

• Cell state [29] (ct) = tanh(wc[ht−1, xt] + bc): new cell state ct is the summation of
ct−1 ∗ ft, and ĉt ∗ it. ct−1 ∗ ft decides the fraction of the old cell state that is discarded,
and the amount of new information that is added is decided through ĉt ∗ it.

• Output gate [29] (ot) = σ(wo[ht−1, xt] + bo): decides what to output on the basis of
the current input and previous hidden state.

• Hidden state [29] (ht) = ot ∗ tanh(ct): current hidden state is computed by multiply-
ing the output gate by the current cell state using the tanh function.

Figure 3. Schematic diagram of an LSTM cell.

Here, w f , wi, wc and wo are weight matrices. b f , bi, bc and bo are biases for individual
gates. σ indicates a sigmoid activation function. * stands for element-wise multiplication,
and + implies element-wise addition.

3. Materials and Methods

3.1. Dataset Description and Preprocessing

We merged two sources of data for this analysis. The first was obtained from Modern-
Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) [30] satellite.
This provides information on PM2.5, surface wind speed (m/s), surface air temperature
(k), total cloud area fraction, dew point temperature at 2 m (k), 2 m eastward wind (m/s),
and 2 m northward wind (m/s). The second set of data was extracted from from the
National Renewable Energy Laboratory (NREL) [31] for 2013. This contains information
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on DHI, DNI, GHI, clear-sky DHI, clear-sky DNI, clear -sky GHI, and solar zenith angle.
The clearness index at time t (denoted by Kt) was calculated on the basis of GHI values.
These two datasets were merged on the basis of latitude and longitude. For each location
(unique combination of latitude and longitude), a 10 km radius was used for the merge.
Table 2 describes the nine solar stations studied in this paper.

Table 2. Dataset description.

Latitude and Longitude Region Climatic Zone Location

23.50 and 78.75 Inland Composite Begamganj (Madhya Pradesh)
22.50 and 81.25 Inland Composite Dindori (Madhya Pradesh)
25.50 and 81.25 Inland Composite Khaga (Uttar Pradesh)
21.50 and 77.50 Inland Hot and dry Bhainsdehi (Madhya Pradesh)
16.50 and 73.75 Coastal Hot and dry Vaibhavwadi (Maharashtra)
18.00 and 76.25 Coastal Hot and dry Osmanabad (Maharashtra)

10.00 and 78.125 Inland Warm and humid Madurai (Tamil Nadu)
11.00 and 78.75 Coastal Warm and humid Tiruchirappalli (Tamil Nadu)

10.00 and 76.875 Coastal Warm and humid Idukki (Kerala)

After collecting solar data (time series) from the PV module, they were stored in a
database, and a series of standard preprocessing steps were applied.

• Night hours (8 p.m. to 7 a.m.) are removed.The resolution of the collected data was
15 min.

• Next, a standard sliding-window approach was applied to the time-series data to
convert them into a suitable representation (supervised) for deep-learning models.
Figure 4 depicts the generic approach of a sliding window with input and output
window sizes n and m. The input window covered n past observations, such as {X1,
X2, X3, . . . , Xn}, and used to predict the next m observations as {Xn+1, . . . , Xn+m}.
After that, the input window is shifted one position to the right as {X2, X3, X4, . . . ,
Xn+1}, and {Xn+2, . . . , Xn+m+1} are the new input and output sequences. This process
continues until no data points of the time series are left.

Figure 4. Sliding-window approach.

3.2. Locally and Remotely Derived Variables for Clustering

Variables that were obtained on the basis of the meteorological parameters of the
forecast site are called locally derived variables, while variables acquired depending upon
the neighboring forecasting sites are called remotely derived variables. Derived variables
were obtained following [23].

Neighboring solar stations relative to the forecast site were selected as follows:

• A radius of 120 km was used to select the solar stations around the forecasting site.
• DTW [32] was used as the similarity measure of clearness index (Kt).
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• Three solar stations with the best similarity score were selected and used for clustering.

Table 3 lists all locally and remotely derived variables.

Table 3. Variables used for K-medioid clustering.

Predictors Equation Description

Locally derived variables

kttrend KtPrev15 − KtPrev30 It was calculated to capturethe most recent trend

Kt temporal variability (Stdev 1-h) σ(KtPrev15, KtPrev30, KtPrev45, KtPrev60) Computed by taking the standard deviation
of the four subsequent observations in an hour

Kt Slope (1-h) β0 + β1KtPrev15 + β2KtPrev30 + β3KtPrev45 + β4KtPrev60 It was calculated by fitting a linear equation
through four consecutive observations of the clearness index.

Remotely derived variables

KtPrev15 nearby mean μ(KtPrev15Source1, KtPrev15Source2, KtPrev15Source3) It was computed by taking
the mean of the clearness index of three neighboring sites.

KtPrev15 nearby std σ(KtPrev15Source1, KtPrev15Source2, KtPrev15Source3) It was computed by taking the standard
deviation of the clearness index of three neighboring sites.

Cloud-cover variability (Stdev) σ(CVSource1, CVSource2, CVSource3)
It is the standard deviation of the cloud

cover of neighboring solar stations.

Cloud Cover Squired (μ(CVSource1, CVSource2, CVSource3))
2 It is the squared value of the mean of cloud covers

of three neighboring sites.

3.3. Multivariate LSTM (M-LSTM)

Figure 5b describes the architecture of the multivariate LSTM model, summarized as
follows:

• It is a site-specific model where predictors are directly used from the forecasting site.
The model uses additional information on predictors such as temperature, dew point,
wind speed, and cloud cover.

• A stateful LSTM was used for maintaining inter- and intrabatch dependency. The input
layer of an LSTM consists of 5 input features of 16 time steps (4 h) each. Two hidden
layers and a tanh activation were used.

3.4. Spatiotemporal LSTM (ST-LSTM)

This implementation led to a spatiotemporal model, as information from the forecast
site is used together with information from neighboring sites.

Figure 5a shows the architecture in detail and can be summarized as follows:

• A spatiotemporal dataset was created by combining information on meteorological
parameters, including dew point, temperature, wind speed, and cloud cover from the
three neighboring sites and from the forecast site.

• Stateful LSTM was used. The input layer consisted of 20 input features of 16 time
steps each. Two hidden layers were used with a dropout rate of 20%. As hidden-layer
activation, tanh was used.

• A spatiotemporal dataset was used to train the LSTM and forecast clearness index for
three different times of the day.
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Figure 5. Architecture of—(a) spatiotemporal and (b) multivariate forecasting models.

3.5. Clustering-Based ANN (CB-ANN) and LSTM (CB-LSTM)

CB-ANN was designed following [23]. CB-LSTM is a global forecasting model, de-
signed using K-medoid clustering followed by LSTM. Meteorological parameters collected
from the neighboring sites together with clearness index values from the forecast site were
not directly used as predictors. As mentioned in Section 3.2, derived features were extracted
for Kt from the forecast site and cloud cover information from neighboring sites.

Figure 6 shows a cluster-specific feature identification to understand the important
features of a cluster. For each forecasting site, a spatiotemporal dataset was created
that was split into training (80%) and test sets (20%). A global dataset was created by
combining the training sets of all the forecast sites, and normalized using the min–max
normalizer [33]. Next, the optimal number of clusters was determined on the basis of
the elbow–silhouette [34] method. The K-medoids algorithm is used to cluster the time
windows in the dataset. As the input attributes were related to cloud formation, the clusters
intuitively represent different cloud types. As a result, the dataset was split into k clusters,
where each cluster center was represented by a medoid.
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Figure 6. Cluster-specific best feature identification strategy.

The proposed approach is presented in Figure 7 and is described as follows:

• For each cluster, separate stateless LSTM was built. The network was implemented us-
ing the keras package of version 2.7.0 in Python.The input layer of the LSTM consisted
of 13 input features of 1 time step each. In the hidden layers, hyperbolic tangent acti-
vation function (tanh) was used. After each hidden layer, a batch-normalization [35]
layer was used to transform inputs into a mean of 0 and a standard deviation of 1.
We used a dropout and L2 regularization [36] to protect the network from overfitting.
The network weights were initialized using the Xavier uniform initializer [37]. The out-
put layer consisted of 8 nodes with linear activation and was used to forecast Kt for the
next two hours. Figure 8 shows the network configuration of CB-LSTM together with
input and output features. For obtaining the best performance of CB-LSTM, specific
hyperparameters such as number of layers, number of nodes in each layer, batch size,
number of epochs, dropout, and learning rate were optimized. The tree-structured
Parzen estimator (TPE) [38] algorithm was used for optimization. Table 4 presents
the hyperparameter settings. Table 5 shows the optimal hyperparameter settings for
the proposed approach (CB-LSTM) in Section 4.

• Overall forecasting accuracy was computed for each site using the weighted average
of the generated accuracy by the different LSTM models. Forecasting accuracy was
separately computed for three times of the day.

Table 4. Hyperparameters to optimize.

Model Hyperparameter Value

Number of layers 1, 2, 3
Nodes in layers 25, 50, 75, 100

CB-LSTM Learning rate 0.1, 0.01, 0.001
Batch size 1, 10, 20, 50, 100

Epoch 25, 50, 100, 150, 200
Dropout 0.05, 0.1, 0.2
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Figure 7. Architecture of clustering-based forecasting model.

Figure 8. Network configuration of CB-LSTM.
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Table 5. Optimal hyperparameter settings for CB-LSTM in different cloud conditions.

Hyperparameters Broken Clear/Sunny Broken/Overcast

Number of hidden
layers 2 2 2

Nodes in hidden
layer one 100 25 100

Nodes in hidden
layer two 100 25 100

Learning rate 0.001 0.001 0.001
Batch size 1 1 1

Epochs 200 200 100
Dropout 0.2 0.2 0.2

Model parameters 127,608 9408 127,608

3.6. Evaluation

Forecasting performance was evaluated using three performance evaluation metrics,
namely, mean absolute error (MAE) [39], RMSE [40], and NRMSE [39]. They are defined as
follows:

MAE =
1
N

N

∑
i=1

|ŷi − yi| (1)

RMSE =

√
∑N

i=1(ŷi − yi)2

N
(2)

NRMSE =

√
∑N

i=1(ŷi−yi)2

N
μ

(3)

NRMSE(%) =

√
∑N

i=1(ŷi−yi)2

N
μ

∗ 100% (4)

4. Result and Discussion

Figure 9 shows the average value and standard deviation of the clearness index for all
forecasting sites. Greater variability was observed for Idukki, Vaibhavwadi, Tiruchirappalli,
and Osmanabad. Khaga had the lowest variability.

Figure 10 shows cluster-specific features, and K-medoids led to three clusters. Features
were selected on the basis of the reduction in impurity scores. For Cluster 0, the mean
decrease in impurity was highest for features Kt slope (1-h) and KtPrev15. For Cluster
1, cloud cover squared and KtPrev15-nearby-mean were the most important features.
For Cluster 2, cloud cover squared and Kt Slope (1-h) were the most important features.
To understand the cloud type of each cluster, we calculated the percentage of cloud-cover
information falling in each cluster, and this is illustrated in Figure 11. For Cluster 0,
the majority of observations belonged to the broken-cloud type. In Cluster 1, the majority
of observations belonged to the clear/sunny-sky type. For Cluster 2, the total numbers of
observations in the broken and bvercast cloud types were relatively similar.

Table 5 shows the optimal hyperparameters of the proposed approach (CB-LSTM)
for three different cloud conditions of broken, clear/sunny, and broken/overcast. Com-
plex cloud conditions (broken or overcast) require more hidden nodes and parameters to
produce good forecasting. Nevertheless, model complexity is less in clear/sunny sky con-
ditions.

Table 6 provides information on the climatic zone-specific forecasting performance
of ST-LSTM and a comparison with M-LSTM. For the composite climatic zone, ST-LSTM
achieved 5.96%, 3.71%, and 8.80% less RMSE, NRMSE, and MAE, respectively, than the
M-ULSTM did. For the hot and dry climatic zone, the corresponding values were 1.58%,
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1.44%, and 0.25% respectively. The biggest gain was in the warm and humid climatic zone,
with corresponding percentages at 8.65%, 8.34%, and 11.55% respectively.

Figure 9. Average value and variability of clearness index of forecasting sites.

Figure 10. Cluster-specific best features in terms of mean decrease in impurity.

Figure 11. Understanding cloud patterns via cluster-specific distribution of cloud type.
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Table 6. Forecasting performance of spatial LSTM compared to univariate and multivariate LSTMs.

M-LSTM ST-LSTM
Forecasting Sites RMSE NRMSE MAE RMSE NRMSE MAE

Composite

Bhainsdehi 0.1429 0.2550 0.0870 0.1408 0.2515 0.0812
Begamganj 0.2211 0.3568 0.0952 0.2090 0.3410 0.0960

Dindori 0.2430 0.3541 0.1258 0.2164 0.3352 0.1358

Hot and dry

Tiruchirappalli 0.2859 0.5426 0.1894 0.2854 0.5419 0.1888
Idukki 0.3087 0.6243 0.1957 0.2969 0.6037 0.1837

Madurai 0.2725 0.5497 0.1746 0.2704 0.5447 0.1845

Warm and humid

Khaga 0.2253 0.3888 0.1049 0.1890 0.3300 0.1113
Vaibhavwadi 0.2911 0.4708 0.1821 0.2726 0.4423 0.1831
Osmanabad 0.3001 0.4541 0.2188 0.2896 0.4408 0.1941

Table 7 demonstrates the superiority of CB-LSTM over CB-ANN and ST-LSTM in terms
of RMSE, NRMSE, and MAE. For the composite climatic zone, CB-LSTM outperformed
CB-ANN by 27.16%, 29.49%, and 38.86% in terms of RMSE, NRMSE, and MAE, respectively.
For the hot and dry climatic zone, percentages were -5.28%, 8.03%, and 8.85%, respectively.
For the warm and humid climatic zone, CB-LSTM achieved 9.80%, 22.04%, and 19.94%
less RMSE, NRMSE, and MAE, respectively, as compared to CB-ANN. ST-LSTM was
dominated by CB-LSTM in the composite climatic zone by 33.77%, 28.49%, and 19.64%
in terms of RMSE, NRMSE, and MAE, respectively. In the hot and dry climatic zone, CB-
LSTM led to reductions of 35.37%, 35.26%, and 34.74% in RMSE, NRMSE, and MAE,
respectively, as compared to ST-LSTM. For the warm and humid climatic zone, CB-LSTM
led to corresponding reductions of 27.65%, 17.78%, and 25.34%, respectively.

The largest gain was observed in the composite climatic zone compared to CB-ANN in
terms of RMSE, NRMSE, and MAE. On the other hand, compared to CB-LSTM, the greatest
gain was seen in the hot and dry climatic zone. Thus, CB-LSTM led to less forecasting error
than that of the M-LSTM and ST-LSTM. CB-LSTM dominated both M-LSTM and ST-LSTM
at each of the three different times of day in terms of NRMSE.

Table 7. Forecasting performance of CB-LSTM compared to multivariate and spatiotemporal LSTM.

CB-LSTM CB-ANN ST-LSTM
Forecasting Sites RMSE NRMSE MAE RMSE NRMSE MAE RMSE NRMSE MAE

Composite

Bhainsdehi 0.1096 0.1936 0.0677 0.1569 0.2762 0.1243 0.1408 0.2515 0.0812
Begamganj 0.1148 0.2016 0.0751 0.1664 0.3118 0.1384 0.2090 0.3410 0.0960

Dindori 0.1426 0.2530 0.1079 0.1790 0.3440 0.1445 0.2164 0.3352 0.1358

Hot and dry

Tiruchirappalli 0.1605 0.2903 0.1094 0.1617 0.3414 0.1173 0.2854 0.5419 0.1888
Idukki 0.2118 0.4934 0.1339 0.2001 0.5288 0.1376 0.2969 0.6037 0.1837

Madurai 0.1793 0.3208 0.1193 0.1619 0.3288 0.1447 0.2704 0.5447 0.1845

Warm and humid

Khaga 0.1483 0.2641 0.1139 0.1623 0.3195 0.1258 0.1890 0.3300 0.1113
Vaibhavwadi 0.2009 0.3599 0.1200 0.2109 0.4980 0.1475 0.2726 0.4423 0.1831
Osmanabad 0.1879 0.3757 0.1089 0.2238 0.4760 0.1595 0.2896 0.4408 0.1941

Table 8 illustrates the climatic-zone-specific forecasting superiority of CB-LSTM com-
pared to three benchmark models [21,23,41]. In the hot and dry climatic zone, CB-LSTM
achieved maximal gain with 8.86% and 26.81% lower NRMSE compared to [21,41]. On the
other hand, in the composite climatic zone, the best NRMSE was 30.56% compared to [23].
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Table 8. Forecasting performance of CB-LSTM compared with benchmark models in terms of NRMSE (%).

Forecasting Sites CB-LSTM [21] [41] [23]

Composite

Bhainsdehi 19.36% 22.75% 26.09% 27.62%
Begamganj 20.16% 20.74% 26.39% 31.18%

Dindori 25.30% 25.09% 27.93% 34.40%

Hot and dry

Tiruchirappalli 29.03% 38.06% 47.62% 34.14%
Idukki 49.34% 49.82% 54.04% 52.88%

Madurai 32.08% 34.14% 47.67% 32.88%

Warm and humid

Khaga 26.41% 20.90% 24.02% 31.95%
Vaibhavwadi 35.99% 45.70% 46.61% 49.80%
Osmanabad 37.57% 48.89% 41.98% 47.60%

Figure 12a shows climatic-zone-specific variability in predictions of CB-LSTM in terms
of NRMSE. clustering-based ANN [23] for the composite and hot and dry climatic zone,
and RF-SVR [21] for the warm and humid climatic zone were the worst-performing models.
For all climatic zones, CB-LSTM achieves the least prediction error.

Figure 12b shows region-specific variability in predictions of CB-LSTM in terms of
NRMSE. CB-LSTM had the least prediction error in both inland and coastal regions.

(a) (b)

Figure 12. (a) Climatic-zone-specific variability in predictions; (b) region-specific variability in predictions.
The symbol “†” indicates an outlier.

Table 9 shows a comparison of the overall forecasting performance of CB-LSTM to
that of three benchmark models in terms of NRMSE and mean rank. CB-LSTM showed the
lowest overall NRMSE and mean rank.

Table 9. Overall forecasting performance of CB-LSTM compared to that of benchmarks.

Models Overall NRMSE Mean Rank

[41] 0.3803 3.11
[21] 0.3378 2.11
[23] 0.3805 3.33

CB-LSTM 0.3058 1.44
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5. Conclusions

CB-LSTM achieved better forecasting performance than that of M-LSTM and ST-
LSTM for all climatic zones and regions. In terms of RMSE, MAE, and NRMSE, CB-LSTM
dominated M-LSTM and ST-LSTM by 32.07%, 26.50%, 30.59%, 32.26%, 26.57%, and 27.18%.

CB-LSTM also outperformed three benchmark models [21,23,41] by 10.46%, 24.42%,
and 24.36% in terms of overall NRMSE. CB-LSTM achieved the best mean rank compared
to all the benchmark models. This holds for all the climatic zones and regions compared to
the three benchmark models.

Thus, the performance of CB-LSTM was robust under differing conditions. We also
obtained insights into the common nature of cloud patterns in India, as the clustering
algorithm indicated relevant features about cloud patterns that could lead to improved fore-
casts.

The proposed model helps grid operators in better distributing power across the
national grid. A future goal is to validate our model for more locations across other climatic
zones, seasons, and topographical regions of India.
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Abstract: Buildings are currently among the largest consumers of electrical energy with considerable
increases in CO2 emissions in recent years. Although there have been notable advances in energy
efficiency, buildings still have great untapped savings potential. Within demand-side management,
some tools have helped improve electricity consumption, such as energy forecast models. However,
because most forecasting models are not focused on updating based on the changing nature of
buildings, they do not help exploit the savings potential of buildings. Considering the aforementioned,
the objective of this article is to analyze the integration of methods that can help forecasting models
to better adapt to the changes that occur in the behavior of buildings, ensuring that these can be
used as tools to enhance savings in buildings. For this study, active and passive change detection
methods were considered to be integrators in the decision tree and deep learning models. The results
show that constant retraining for the decision tree models, integrating change detection methods,
helped them to better adapt to changes in the whole building’s electrical consumption. However, for
deep learning models, this was not the case, as constant retraining with small volumes of data only
worsened their performance. These results may lead to the option of using tree decision models in
buildings where electricity consumption is constantly changing.

Keywords: drift detection; electrical consumption forecasting; energy forecasting; machine learning;
smart buildings

1. Introduction

Buildings presently produce up to 40% of worldwide energy consumption and 30% of
carbon dioxide emissions, numbers which are constantly increasing due to urbanization [1].
Additionally, considering the long life expectancy of buildings, it is assessed that 85–95%
of buildings that exist today will still be utilized in 2050 [2]. Hence, changes in energy
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utilization on buildings are inclined to intensely affect current society, including major
economic and environmental changes such as climate change and global warming [3,4].
Buildings are becoming substantially more complex and sophisticated. They integrate
conventional energy services systems, on-site energy generation systems, and charging
systems [5]. For this reason, energy management is becoming fundamental for buildings
around the world, and energy forecasting is essential as an initial step to establish an energy
management system [6]. The forecasting of building energy utilization supports smart
building performance through low energy and control procedures [7].

In recent times, because of their important application in various fields including
electric energy consumption in buildings, data-driven models such as machine- and deep
learning-based approaches have become exceptionally well known [8] and are being uti-
lized to improve forecast accuracy [9]. In real life, electrical consumption forecasting models
should regularly be made online in real-time. An online setting brings extra challenges
since there could be an anticipation of changes to the information distribution over the long
haul [10]. However, traditional electric energy forecasting models are normally trained once
and not re-trained again with new data, thus missing out on the new information that new
data can provide [11]. When this situation happens, it can lead to incorrect forecasting [12].

Recognizing change points and incorporating these uncertain change points into
electric energy forecasting models is one of the most difficult tasks [13]. The unexpected
changes in the data distribution over time, are known as concept drift [14]. Concept drift
has been perceived as the root cause of decreased effectiveness in data-driven decision
support systems [15]. Based on how the data change, concept drift can be separated into
different kinds: sudden, gradual, recurring, and incremental [16]. Sudden drift happens
when the data change quickly and without variation. Whenever the data begin changing in
class distribution, this is defined as gradual drift. Recurring drifts happen when the data
change for a moment and then return sooner or later. Incremental drift occurs when the
data continuously change over the long run [17].

To address those different situations in forecasting models, two main strategies have
been used: active and passive methods. For active methods, a model is equipped with a
change detection strategy and re-trained when a trigger has been flagged. Nonetheless,
in passive methods, algorithms are re-trained at regular intervals regardless of whether
a change has occurred or not [18]. There has been a very important effort investigating
concept drift in regression tasks (see Table 1) that have focused on load forecasting in
houses [19,20], energy consumption in smart grids [21], electricity supply and demand [22],
total reactive power [23], energy production for a wind farm [24], power generation in a
photovoltaic plant [25], and electricity price [26,27]. However, there have not been many
works in real cases where concept drift techniques are used to maintain or improve the
results of machine learning techniques in smart buildings. Therefore, this paper’s objective
is to provide a novel analysis of the integration of drift detection methods in decision trees
and deep learning algorithms for whole building electricity consumption forecasting in
smart buildings.

Given the above, the main contributions of this paper in this field of research could be
summarized as follows:

• Integration of drift detection methods to a multi-step forecasting strategy that forecasts
the next 24 h from any hour of the day.

• An analysis of the integration of drift detection methods in decision trees and deep
learning algorithms for forecasting the electricity consumption of the entire building.

• Comparison analysis between active and passive drift detection methods for building
electricity consumption forecasting in smart buildings.
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Table 1. Summary of literature review, their contributions, and their limitations.

Ref. Contributions Limitations

[19]
A proposed approach for load forecasting where

the model is persistently refreshed as new
information shows up.

The tuning module could utilize a more modern
approach to following precision patterns.

[20] Proposed online ensemble methods for load
forecasting under the concept of drift.

The research did not evaluate concept drift or the
performance during the drifting duration.

[21] Proposed a model that helps to identify anomalies
using paired learners.

Delay of a few hours between the anomaly and
its detection.

[22] Analyzed different drift detection methods for
data streams in smart city applications.

Absence of accessible or reusable benchmark datasets in
the literature to completely compare the outcomes.

[23]
Proposed an unsupervised drift detection

approach capable of analyzing streaming data in a
smart grid.

The approach was not compared with a deep learning
algorithm that incorporates drift detection methods.

[24]
Suggested a drift detection approach based on the
analysis of the change caused by new information

using extreme learning machines.

Need for an automatic setting of the parameters for the
proposed drift detection approach.

[25] Implemented a segmentation of time series based
on stationarity using drift detection methods.

The approach needs to have previous knowledge about
the time series cyclical behaviors.

[26]
Proposed a passive drift detection approach using

Robust Soft and Generalized Learning Vector
Quantization.

The proposed method was compared with drift
detection algorithms without optimized

hyperparameters.

[27]
Proposed an improvement for the Robust Soft

Learning Vector Quantization algorithm to be used
in drift detection.

The proposed approach method performs better in
synthetic concept drift streams but not in

real-world streams.

[28]
Proposed an approach based on random trees

algorithm to deal with changes using drift
detection methods.

The proposed approach discards the previous anomaly
instead of updating the detection model.

2. Methodology and Approach

The use of drift detection methods is well known, however, the integration of these
methods into a multi-step forecasting strategy to predict continuous hourly electricity
energy consumption in the entire building turns out to be a novel topic.

Therefore, this section describes data preprocessing, forecasting algorithms, drift detec-
tion methods, and performance metrics used in this article. Section 2.1 provides information
on how the datasets from the two buildings used to train the learning algorithms were
made. Section 2.2 presents the approach and the learning algorithms used to forecast the
electrical consumption in buildings. Section 2.3 describes the drift detection methods and
their incorporation into the learning algorithms. Section 2.4 explains the metrics used for
evaluating the performance of learning algorithms. A summary of the methodology used
is shown in Figure 1.
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Figure 1. Methodology used for the analysis of the integration of drift detection methods.

2.1. Datasets Construction

For this research, the data from two buildings located on the campus of the University
of Valladolid were used. These data were obtained through smart meters installed in each of
the buildings at their electrical power transformer stations, which record the active energy
consumed (kWh) of the entire building in intervals of 15 min from 2016 to 2019. At the time
of analyzing the data, some missing records were found, because these missing records
did not exceed 0.5% of the total value of the data and were not found consecutively, a line
interpolation technique was applied to complete these missing records. After completing
the missing data, since it was desired to forecast the electricity consumption per hour, the
data were conditioned to have the consumption per hour for each building.

Based on previous studies [29–33] where it has been proven that the use of weather, cal-
endar variables, and past values data can help improve the training of learning algorithms,
these were included in the datasets. To obtain the past values data, the autocorrelation
and partial autocorrelation of the energy consumption variable were analyzed, resulting
in a significant autocorrelation up to lag 25. For calendar variables, the timestamps of
the historical data were used to obtain the variables of the hour, day, month, and year.
Additionally, a variable was added to indicate when it is a working day or not, this variable
was made based on the annual calendar of the university. The weather variables that were
used were those that are related to the comfort of the occupants inside the building, such
as relative humidity, precipitation, minimum temperature, average temperature, maximum
temperature, heating degree days, cooling degree days, and all-sky surface longwave
downward irradiance. The weather data were obtained from the NASA Langley Research
Center (LaRC) POWER Project funded through the NASA Earth Science/Applied Science
Program (https://power.larc.nasa.gov/, accessed on 16 March 2022).

2.2. Approach and Forecasting Algorithms

For the electricity consumption forecast, a multi-step forecasting strategy was used,
which in this case can predict electricity consumption for the next 24 h from one hour. The
advantage of this strategy is that it allows electricity consumption forecasting from any
hour of the day, the disadvantage is that it is necessary to prepare the dataset with past
values data so that this information can be used by the learning algorithms to forecast the
multiple hours more accurately.
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Based on studies where decision tree [34–37] and deep learning algorithms [38–41]
obtained good results in forecasting electrical consumption in buildings, two decision
trees, and two deep learning algorithms were selected. From the decision tree algorithms,
Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were selected, while from
the deep learning algorithms, Convolutional Neural Network (CNN), and Temporal Con-
volutional Network (TCN) was chosen. The architectures of the learning algorithms used
are shown in Figure 2.

(a) (c) 

(b) (d) 

Figure 2. (a) Basic RF architecture. (b) Basic XGBoost architecture. (c) Basic CNN architecture.
(d) Basic TCN architecture.

The algorithms used were programmed in Python using the Scikit-learn, XGBoost,
Keras, and TensorFlow libraries. To obtain the best combination of hyperparameters
and architecture for the algorithms, backtesting with sliding windows was used. The
backtesting with sliding windows procedure consisted of keeping the same training size
and sliding a data window to create five different training tests (see Figure 3). For this case,
the data from 2016 to 2017 were used for the training set, while the data from 2018 were
used for the validation sample. Once the best architecture and parameters were defined
through backtesting, the model was adjusted with data from 2016 to 2018, leaving 2019 as
the testing set. The best combinations of parameters obtained in the backtesting process are
shown in Table 2. The parameters that do not appear in the table are absent because their
default values were used.
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Figure 3. Backtesting with sliding windows procedure.

Table 2. Best combinations of parameters obtained through backtesting procedure.

Algorithms Hyperparameter

Random
Forest

max_depth = 45; n_estimators = 200;
min_samples_leaf = 1

eXtreme
Gradient Boosting

n_estimators = 50; eta = 0.1; max_depth = 5;
colsample_bytree = 0.8; subsample = 0.8; gamma = 1

Convolutional
Neural Network

filters = 64; kernel_size = 2; batch size = 1; activation
function = linear; optimizer = adam;

learning rate = 0.001; maxpooling1D (pool_size = 2);
loss function = mean squared error

Temporal
Convolutional Network

filters = 200; kernel_size = 4; batch size = 1;
dilations = [1, 2, 4, 8, 16, 32]; activation function = linear

2.3. Drift Detection Methods

Since the selected algorithms are not capable of detecting changes in the data distribu-
tion, two well-known active drift detection methods (DDM), Adaptive Window (ADWIN)
and Kolmogorov–Smirnov Window (KSWIN) [28] were incorporated into them. These
methods were selected because the training uses the latest batch of data with the latest
training instances and the size of the window is generally determined by the user.

ADWIN accurately keeps a variable-length window of late values; to such an extent
that it holds that there has not been a change in the data distribution. This window is
additionally isolated into two sub-windows (W0, W1) used to decide whether a change has
occurred. ADWIN contrasts the median of W0 and W1 to affirm that they coincide with a
similar distribution. Concept drift is identified assuming the distribution correspondence
does not hold anymore. After recognizing a drift, W0 is changed by W1 and a new W1
is introduced. ADWIN utilizes a certainty value δ ∈ (0, 1) to decide whether the two
sub-windows coincide with a similar dispersion [42].

KSWIN is a drift detection method based on the Kolmogorov–Smirnov (KS) measur-
able test. KS-test is a measurable test without really any suspicion of basic information
appropriation. KSWIN keeps a sliding window Ψ of fixed size n (window_size). The last
r (stat_size) tests of Ψ are accepted to address the last idea considered as R. From the
main n − r examples of Ψ, r tests are consistently drawn, addressing an approximated last
concept W. The KS-test is performed on the windows R also W, of a similar size. KS-test
looks at the distance of the observational aggregate data distribution dist(R, W) [27].
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A sudden change is distinguished by KSWIN if:

dist(R, W) >

√
− lnα

r
(1)

where α is the probability for the test statistic of the KS-test, and r is the size of the statistic
window.

The reason for using methods based on window size was because the training utilizes
the last batch of data with the last training set. The window of fixed size approach is the
least complex rule and the window size is usually decided by the user. By having data on
the time size of the change, a window of the fixed size approach is a valuable decision [11].

2.4. Performace Metrics

To analyze the integration of the DDM, in addition to using active methods, it was
proposed to use a passive method, which consisted of retraining the algorithms every 24 h
regardless of whether there was a change in the data distribution. These methods were
compared in each of the algorithms using performance metrics, mean absolute percentage
error (MAPE), mean absolute error (MAE), root mean square error (RMSE), and coefficient
of determination (R2) were used.

MAPE shows the measure of the precision of the estimated values comparative with
the real values (in a percentage) [43], which is determined according to Equation (2).

MAPE =
∑n

i = 1

∣∣∣ yi−ŷi
yi

∣∣∣
n

× 100% (2)

MAE is utilized to assess how close estimates or expectations are to the real results. It
is determined by averaging the absolute differences between the expected values and the
real values [44], as shown in Equation (3).

MAE =
∑n

i = 1
∣∣yi − ŷi

∣∣
n

(3)

RMSE evaluates the differences between the real values and estimated values [45],
which is determined according to Equation (4):

RMSE =

√
∑n

i = 1(yi − ŷi)
2

n
(4)

R2 is a statistical measure of the variance between estimated values acquired by
the model and real values (level of direct relationship among anticipated and estimated
values) [46], which is determined according to Equation (5).

R2 = 1 − ∑n
i = 1(yi − ŷi)

2

∑n
i = 1(yi − yi)

2 (5)

where yi is the expected value, ŷi is the real value, yi is the average value, and n is the total
number of estimations.

The reason why these metrics were chosen was to have an overview of the performance
of the models. In the case of the MAPE, it was chosen because it is easy to understand
since it presents percentage values, but due to its limitations, it was decided to accompany
it with the MAE, which shows how much inaccuracy is expected from the forecast on
average, helping to determine which models are better. However, because the MAE can
have difficulty distinguishing large from small errors, it was combined with the RMSE to
be on the safe side. As for R2, it was selected to know how the data fit the models.
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3. Experimentation Setup

Two buildings with a continental Mediterranean climate were selected for testing.
These buildings have a lighting and air conditioning control system, as well as an energy
monitoring system to provide a balance between the comfort of the occupants and the
consumption of electrical energy. The first building corresponds to the Faculty of Science
of the University of Valladolid located at coordinates 41.663411◦, −4.705539◦, which is
dedicated to administrative offices, while the second building corresponds to the Faculty
of Economics located at coordinates 41.658586◦, −4.710667◦, which is dedicated to teaching
activities. These buildings were selected due to their different behavior in electricity
consumption during the selected years. In case of Building 1, it has had changes in
consumption only in specific periods, while Building 2 has had a decrease in energy
consumption gradually each year because energy efficiency improvements were made, and
solar panels were integrated into the building (see Figure 4). The energy source used for
Building 1 comes from the electrical grid, while for Building 2, the energy source comes
from the electrical grid and photovoltaic panels.

(a) (b) 

  
(c) (d) 

  

Figure 4. (a) View of Building 1. (b) Hourly electricity consumption for Building 1. (c) View of
Building 2. (d) Hourly electricity consumption for Building 2.

The records of the electrical consumption that were used to test the proposed method
were from 2016 to 2019. For the training stage, the years 2016 to 2018 were used, while for
the test stage the year 2019 was used. To evaluate the learning algorithms with the DDM,
two Python scripts were developed, one for the decision tree algorithms and the other
for the deep learning algorithms. Two functions were created in the scripts, the first for
updating the algorithms with a passive method and the second for updating with the active
methods. In the passive method, the algorithms were retrained every 24 h over a period of
one year, while in the active methods, the algorithms were retrained every time a change in
the data distribution was detected for the same period. It should be noted that to apply the
ADWIN and KSWIN methods to the models, the scikit-multiflow library was used.
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For this study, the active methods take the first three years of the dataset as a reference
and compare it with the new data. If a change is detected, the model is retrained. The
way the model is retrained depends on the type. For decision trees, the model is built
from scratch while for deep learning, transfer learning was used, to reduce training time.
The transfer learning was carried out by freezing the layers except for the last two, which
were updated every time the detection method indicated that it was required to retrain the
model.

4. Results and Discussion

4.1. Decision Trees Models Evaluation

After integrating the active and passive DDM with decision tree models, the results
obtained for Building 1 (see Table 3) show that the models with DDM obtained better
performance for both algorithms than the model without DDM. Likewise, it is highlighted
that the passive method used for training presents better results than the active methods.

Table 3. Decision tree model results for Building 1.

RF XGBOOST

Method ND
MAPE

(%)
MAE

(kWh)
RMSE
(kWh)

R2 MAPE
(%)

MAE
(kWh)

RMSE
(kWh)

R2

Wo/DDM n/a 9.23 16.24 29.48 0.827 8.81 15.01 27.16 0.853
ADWIN 10 8.95 15.68 28.61 0.837 8.69 14.84 26.89 0.856
KSWIN 111 8.53 14.98 27.78 0.846 8.56 14.63 26.62 0.859

24 H 365 8.46 14.83 27.59 0.848 8.51 14.57 26.59 0.859
Wo/DDM = without drift detection method, ND = numbers of detections, n/a = not applicable.

Table 4 shows the results in Building 2 where it is observed that, like Building 1, the
models with DDM present better performance for both algorithms than the model without
DDM. However, if we focus on the RMSE and R2 metrics, the passive method does not
clearly show that it obtains better performance than the KSWIN method in the case of
XGBoost.

Table 4. Decision tree model results for Building 2.

RF XGBOOST

Method ND
MAPE

(%)
MAE

(kWh)
RMSE
(kWh)

R2 MAPE
(%)

MAE
(kWh)

RMSE
(kWh)

R2

Wo/DDM n/a 19.47 9.08 14.95 0.861 17.78 8.17 13.97 0.878
ADWIN 15 17.61 8.51 14.42 0.870 16.96 7.94 13.73 0.882
KSWIN 108 16.44 7.91 13.89 0.880 16.68 7.78 13.54 0.886

24H 365 16.14 7.83 13.87 0.880 16.55 7.77 13.57 0.885
Wo/DDM = without drift detection method, ND = numbers of detections, n/a = not applicable.

The findings show that the decision tree algorithms certainly benefited from the
integration of the DDM, showing improvement in the results. When analyzing the detection
number, which corresponds to the number of sudden changes detected by the DDM, it
could be concluded that for active methods a higher number of detections, which in our
case would be the same as the retraining number, could lead to better results. However,
when we compare the passive method with the KSWIN method, it can be seen that the
results are very approximate but in the case of the KSWIN method, the number of retraining
is less than 50% of the retraining performed by the passive method.

Even though the passive method has shown better performance, it cannot be affirmed
with certainty that it would be better to use it since it assumes that the data distribution
undergoes daily changes, which would not necessarily be true since it could be the case
that the behavior of the occupants or energy savings measures causes changes in electricity
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consumption in periods greater than 24 h and the model is being retrained at a time when
it is not necessary.

4.2. Deep Learning Models Evaluation

After integrating the active and passive DDM with deep learning models, the results
obtained for Building 1 (see Table 5) show that for the TCN, the model without DDM
obtains better performance than the models with DDM. However, in the case of CNN, it is
observed that the model without DDM obtains better performance than the active methods
but not better than the passive method if we focus on the RMSE and R2 metrics.

Table 5. Deep learning model results for Building 1.

CNN TCN

Method ND
MAPE

(%)
MAE

(kWh)
RMSE
(kWh)

R2 MAPE
(%)

MAE
(kWh)

RMSE
(kWh)

R2

Wo/DDM n/a 9.40 17.14 30.78 0.811 9.03 15.88 29.42 0.828
ADWIN 10 12.51 20.74 32.21 0.793 10.89 18.9 33.28 0.780
KSWIN 111 12.35 20.45 31.96 0.797 10.11 17.68 32.01 0.796

24H 365 10.93 18.56 30.75 0.812 10.15 17.41 30.97 0.809
Wo/DDM = without drift detection method, ND = numbers of detections, n/a = not applicable.

Table 6 shows the results in Building 2 where it is observed that, like Building 1, the
TCN obtains better performance without DDM. However, for CNN, if we focus on the
RMSE and R2 metrics, the KSWIN method obtained better performance than the model
without DDM.

Table 6. Deep learning model results for Building 2.

CNN TCN

Method ND
MAPE

(%)
MAE

(kWh)
RMSE
(kWh)

R2 MAPE
(%)

MAE
(kWh)

RMSE
(kWh)

R2

Wo/DDM n/a 16.97 9.62 17.41 0.811 17.58 8.98 15.85 0.843
ADWIN 15 21.49 11.39 18.57 0.785 19.18 9.66 17.01 0.819
KSWIN 108 19.67 10.18 16.95 0.821 17.38 8.93 16.24 0.835

24H 365 18.89 10.10 17.14 0.817 18.09 9.17 16.39 0.832

Wo/DDM = without drift detection method, ND = numbers of detections, n/a = not applicable.

For the deep learning models, the findings show that the ADWIN method, which
performs the smallest amount of retraining, presents the worst performance of the active
methods, while the passive method presents the better performance. However, in general,
the model without DDM obtains better performance except in the RMSE and R2 metrics for
CNN with DDM. Which would suggest that the type of change in the data distribution is
not abrupt enough to require the retraining of the deep learning models.

This behavior in the performance of the deep learning models would make us question
the need for retraining in this case, but if we compare the outcomes of the decision tree
models versus the deep learning models, it can be seen that, in the case of Building 2 where
the deep learning models without DDM have better performance than the decision tree
models without DDM when DDM is applied, decision tree models perform better than
deep learning models without DDM.

Figure 5 shows the average error of the forecast algorithms by hours of the electrical
consumption of the entire building from the first hour that is forecast for each algorithm. As
can be seen, when we analyze the average error per hour in each of the buildings, we realize
that the decision tree models, when integrating the DDMs, improve their performance in
each of the hours, however, this is not the case for deep learning models.
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Models without DDM 
(a) Building 1 (b) Building 2 

 
Models with DDM 

(c) Building 1 (d) Building 2 

 

Figure 5. (a) Performance of forecasting algorithms without DDM by hours in Building 1. (b) Perfor-
mance of forecasting algorithms without DDM by hours in Building 2. (c) Performance of forecasting
algorithms with DDM by hours in Building 1. (d) Performance of forecasting algorithms with DDM
by hours in Building 2.

The results show that the proposed method can be applied to maintain or even improve
the performance of learning algorithms in situations where there are constant changes
in the behavior of electrical consumption in buildings. A limitation is the drift detection
methods that were integrated. In the case of ADWIN, only the confidence value parameter
was allowed to be modified, while in the case of KSWIN an inappropriate modification of
the values of the size of windows would cause the method to not detect sudden changes in
the distribution data.
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5. Conclusions

In this paper, the integration of drift detection methods is analyzed in models for
electricity consumption forecasting in buildings so that these models can adapt to the
changing behavior that has been occurring in buildings due to energy-saving measures.
Two active methods and one passive method were proposed to be integrated with the
decision tree and deep learning models to know when the models should be retrained
according to changes in the data distribution. The passive method consisted of retraining
the models every 24 h assuming that the models should be constantly updated, while the
active methods were ADWIN and KSWIN, which are based on a variable-length window
approach.

The main conclusion that can be learned from this study, after analyzing the results, is
that in the case of decision tree models, the incorporation of DDM not only allows them
to keep up to date with changes in the data distribution but also improves their accuracy.
Being the best case RF, without DDM obtained a MAPE of 9.23% for Building 1 and 19.47%
for Building 2 while with the passive DDM it obtained a MAPE of 8.46% for building 1 and
16.14% for Building 2. However, in the case of deep learning models, the incorporation
of DDM did not turn out to be as favorable as decision tree models. With the CNN being
the worst case, without DDM an MAPE of 9.40% was obtained for Building 1 and 16.97%
for Building 2 while with the passive DDM it obtained an MAPE of 10.93% for building
1 and 18.89% for Building 2. We can deduce from this that in the case of deep learning
models, constantly updating them with small volumes of data would only worsen their
performance. In cases such as Building 2 with sudden changes in load curves due to
improvements, the model becomes inefficient, because deep learning models cannot adapt
with small data to constant changes in the short term.

Considering the results obtained in the deep learning models, for future lines of
research it would be necessary to focus on how it would be possible to adapt the deep
learning models to constant changes within the electrical consumption forecasting in
buildings to avoid model obsolescence.
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46. And̄elković, A.S.; Bajatović, D. Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas
consumption prediction. J. Clean. Prod. 2020, 266, 122096. [CrossRef]

160



Citation: Aisyah, S.; Simaremare,

A.A.; Adytia, D.; Aditya, I.A.;

Alamsyah, A. Exploratory Weather

Data Analysis for Electricity Load

Forecasting Using SVM and GRNN,

Case Study in Bali, Indonesia.

Energies 2022, 15, 3566. https://

doi.org/10.3390/en15103566

Academic Editors: Luis

Hernández-Callejo, Sergio

Nesmachnow and Sara Gallardo

Saavedra

Received: 30 March 2022

Accepted: 4 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Exploratory Weather Data Analysis for Electricity Load
Forecasting Using SVM and GRNN, Case Study in Bali,
Indonesia

Siti Aisyah 1, Arionmaro Asi Simaremare 1, Didit Adytia 2,*, Indra A. Aditya 1 and Andry Alamsyah 2

1 Generation Division, PLN Research Institute, Jakarta 12760, Indonesia; siti.aisyah@pln.co.id (S.A.);
arionmaro@pln.co.id (A.A.S.); indra.aditya@pln.co.id (I.A.A.)

2 School of Computing, Telkom University, Bandung 40257, Indonesia; andrya@telkomuniversity.ac.id
* Correspondence: adytia@telkomuniversity.ac.id

Abstract: Accurate forecasting of electricity load is essential for electricity companies, primarily for
planning electricity generators. Overestimated or underestimated forecasting value may lead to
inefficiency of electricity generator or electricity deficiency in the electricity grid system. Parameters
that may affect electricity demand are the weather conditions at the location of the electricity system.
In this paper, we investigate possible weather parameters that affect electricity load. As a case study,
we choose an area with an isolated electricity system, i.e., Bali Island, in Indonesia. We calculate
correlations of various weather parameters with electricity load in Bali during the period 2018–2019.
We use two machine learning models to design an electricity load forecasting system, i.e., the
Generalized Regression Neural Network (GRNN) and Support Vector Machine (SVM), using features
from various weather parameters. We design scenarios that add one-by-one weather parameters to
investigate which weather parameters affect the electricity load. The results show that the weather
parameter with the highest correlation value with the electricity load in Bali is the temperature, which
is then followed by sun radiation and wind speed parameter. We obtain the best prediction with
GRNN and SVR with a correlation coefficient value of 0.95 and 0.965, respectively.

Keywords: electricity load; forecasting; weather; GRNN; SVM

1. Introduction

Electricity has become a vital part of the life of modern society nowadays. It is said
that electricity access is an essential factor to enable the economic growth of a country or
region [1]. Many studies also imply that the interruption of electricity supply has a severe
impact on business and residential customers [2–4], where total electricity blackout can
cost up to billions of dollars of economic activity [5]. These emphasize the importance of
reliable and stable electricity supply to our current society.

One of the critical tasks in securing the electricity system’s reliability is maintaining the
balance between electricity supply and demand. In current large power systems, the task is
done by adjusting the power generated from generation units in the systems to a forecasted
system electricity demand. Failure to do this correctly may cause the instability of the
power system or even a blackout. On the other hand, low accuracy of electricity demand
forecasting may also cause inefficient and costly operation of the generation units caused by
the requirements of higher capacity of spinning reserve generators and lower efficiency of
thermal generators [6]. The latter may also lead to higher carbon emissions which contribute
to global temperature rises or global warming [7]. Inevitably, the accuracy of electricity
demand forecasting is paramount in electric power system planning and operation.

There are two approaches for estimating energy use: statistical techniques and artificial
intelligence [8]. In recent years, artificial intelligence has accelerated, with one of its appli-
cations being to improve the control of the current generation system. Predicting electrical

Energies 2022, 15, 3566. https://doi.org/10.3390/en15103566 https://www.mdpi.com/journal/energies161



Energies 2022, 15, 3566

loads for energy consumption is no longer a novel concept, as it can be accomplished
through machine learning to predict future energy consumption points [9]. Numerous
studies have been conducted because it is critical to understand the prediction of elec-
trical energy consumption. For example, in 2018, Li and Zhang completed a short-term
forecasting of electricity consumption in Shanghai by using grey prediction model [10].
Tian et al. predicted short-term electrical energy consumption using a combination model
between STL (Seasonal and Trend decomposition using Loess) and GRU in the same year.
They made predictions for the next 3 to 10 days using a combination model between STL
(Seasonal and Trend decomposition using Loess) and GRU. When compared to GRU and
SVM, GRU produces better results [11]. Hamdoun et al. projected electrical energy by
comparing two different approaches, namely statistics and machine learning, to see more
accuracy. They found that the prediction model based on machine learning produced the
best results and had the lowest error rate among the findings they obtained [12]. Using a
combination of the FPA (Flower Pollination Algorithm) model to optimize the Feedforward
Neural Network (FNN), Zhao et al. made a short-term prediction of electricity consump-
tion in 2020, then compared it with the SVR and RBFN models. The FPA-FNN model
produced good results, with MAPE values of 1.41 percent and RMSE [13]. The Nonlinear
Autoregressive (NARM) model was used to predict the electricity load for the next month
for the energy management system in 2019. Ahmad and Chen then compared the NARM
model to the Random Forest model and the linear model using stepwise regression in the
case of ISO New England using the results obtained. They discovered that when compared
to the other two models, the NARM model produced the best results [14].

Several studies have shown that weather parameters can affect the electricity load and
need to be incorporated in power system planning and demand forecasting [15], both for
short-term and long-term system planning [16]. Some studies evaluate the effect of weather
parameters on the electricity system at regional and country levels, such as Algeria [17] and
Turkey [18]. Other studies evaluated at a lower level, such as building electricity demand
or residential house electricity consumption [19,20].

Aisyah and Simaremare investigate the correlation between weather parameters and
electricity load in Bali by using three different weather source data, i.e., GFS, ERA5, and
observation data from AWS (Automatic Weather Station) BMKG [21]. They conclude that
three weather parameters are highly correlated with electricity load in Bali, i.e., temperature,
wind speed, and solar radiation. This paper investigates which weather parameters affect
electricity consumption in an isolated area by calculating the correlation coefficient with
electricity load data. Bali has a significant increase in electricity consumption, and the
Island does not have conventional resources [22], so it is crucial to estimate the electricity
load for the future. That is by investigating which weather parameters affect most the
electricity consumption. Additionally, to our best knowledge, no published research yet on
the machine learning area was conducted for the electricity load forecasting in Bali. Thus,
we chose Bali Island in Indonesia as a case study. Moreover, we also developed electricity
load forecasting using two machine learning models: the Support Vector Regression (SVR)
and the Generalized Regression Neural Network (GRNN), with weather parameter data
and consumer characteristics as input for the machine learning models.

The SVM is one of the machine learning models that is usually used to solve regression
and classification problems. It performs efficiently for time series prediction, especially
for seasonal data [23]. Moreover, the SVM also effectively prevents overfitting problems
by implementing Structural Risk Minimization (SRM) [24]. GRNN is simple to train
and gives a satisfactory prediction, modeling, mapping, and interpolation [25,26]. It
also performs efficiently for continuous data [27]. It has a higher learning speed than
RBF [28]. To determine which weather parameters have the most significant effects on
the electrical load, we create scenarios by gradually increasing the number of weather
parameters used as features. Moreover, we also add scenarios in which moving average
(MA) of electricity load data is used as a feature for the machine learning models. The
innovations in this paper are as follows: firstly, we introduce a technique for feature
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selection from weather parameters, in which the selected features are used as the inputs
to design machine-learning-based electricity forecasting. In [9,29], deep networks are
used to make an electricity forecasting model, but they did not make feature selection
for weather parameters. Secondly, weather parameters are used as features, but we also
consider moving average (MA) data (daily, weekly, and monthly MA) as input for the
machine-learning-based electricity load forecasting.

The content of this paper is as follows. Section 2 discusses electricity load data and
some weather parameters in Bali and two machine learning models used. We discuss
exploratory data analysis between weather parameters and electricity load data in Section 3.
It is then followed by descriptions of obtained results and some discussions in Section 4.
We conclude the paper in the final section.

2. Materials and Methods

2.1. Electricity Load Data

This study was conducted in a case study location with an isolated power grid system,
i.e., Bali Island, located in Indonesia. Bali’s power is provided by external electricity
producers from East Java Province and domestic electricity generators within the island.
All of the power generated in Bali is utilized solely inside the island’s boundaries. As
indicated in Figure 1, we are using two-year electricity load data, i.e., 2018–2019. As seen
in Figure 1, the electricity demand in Bali follows a consistent pattern throughout the
year, with peak demand occurring during January through May and September through
November and peak demand occurring during June through August. According to Figure 1,
there are anomalies in the power load statistics for both 2018 and 2019, namely, 17 March
2018, and 7 March 2019, which are both Nyepi Days in Bali, during which people in Bali
refrain from engaging in any activity, indoor or outdoor, on those days. There was also an
electricity interruption on 5 September 2018, which resulted in a total outage of electricity
over the whole Bali islands. The daily averaged electrical load and the daily trend is also
depicted in Figure 1, which was derived through linear regression. We may also assume
from this trend line that the power demand increased from 2018 to 2019. On average,
0.123 megawatts (MW) per day are added to the daily trend line in 2018, and 0.162 MW per
day is added to the daily trend line in 2019.

Figure 1. Electricity load data in Bali Island during 2018 (a) and 2019 (b). Hourly, daily, and daily trend
electricity load are denoted by red line, blue line with circle, and black dot-dashed line, respectively.
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Not only is it vital to examine the yearly trend, but it is also critical to evaluate the daily
and weekly variations of the power load in the system under investigation. Figure 2 depicts
the weekly and daily variance in electricity demand in Bali for the year 2019. In terms of
weekly variation, we can see in the left-hand portion of Figure 2 that the characteristics of
electricity demand in Bali remain relatively constant during the weekdays. In contrast, on
weekends, there is a slight decrease in electricity demand on Saturday and a slight decrease
in electricity demand on Sunday. These features are unsurprising given that most people
do not work on Sundays, resulting in decreased electricity demand. The lowest power
consumption in Bali is at 4:00 a.m. local time, as seen in the right portion of Figure 2. Still,
the highest electrical demand is between 8:00 and 10:00 a.m. local time, when people begin
their activities during the day. During the lunch hour, between 12:00 and 01:00 p.m., when
most individuals take their lunch break, there was a modest decrease in electricity demand.
The most significant demand for power happened between 07:00 and 08:00 p.m. when
individuals ate their dinner. These hourly and daily characteristics are crucial to consider
when constructing an electrical load forecasting system. In the following subsection, we
will discuss the weather data used in this work.

Figure 2. Variations of electricity load in Bali during 2019: (a) Weekly variation; (b) Daily variation.
The solid black lines denote the mean value, whereas the gray lines denote the variations.

2.2. Weather Data

Primary weather data collected from field observations are the most optimal weather
data to explain real-world weather conditions. While this fundamental data is somewhat
inexpensive due to the requirement of a real-time measuring device, it is also highly costly.
Furthermore, to use the observation data as a component of the energy load forecasting
system, the observation data must be delivered to the forecasting system continuously,
which necessitates the usage of a reliable measuring instrument. For this work, we will
employ reanalysis weather data instead of real-time data as input for a machine learning
model to be used as a feature in the electricity load forecasting system. This study uses the
reanalysis weather data from the European Centre for Medium-Range Weather Forecasts,
often known as the ECMWF, collected from the ERA5 model [30]. Since 1979, hourly
weather data has been available, with spatial resolution varying between 0.25◦ and 0.75◦.
Weather parameters such as temperature, solar radiation, wind speed, rainfall rate, pressure,
and relative humidity are investigated in this study.

To determine the quality of ERA5 weather parameter data, we compared the reanalysis
data with observation data collected on Bali Island using an Automatic Weather Station
(AWS) that has a temporal grid of 20 min. The AWS is positioned at latitude and longitude
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115.167◦ E and 8.75◦ S. This study employs the most recent reanalysis ERA5 data from the
nearest accessible grid to the AWS site, located at 115.00◦ E and 8.50◦ S, as shown in Figure 3.
Indeed, the locations are quite a distance apart from one to another. Nonetheless, as seen in
Figure 4, we compare many weather parameters from the ERA5 with the observed AWS
data to identify any differences. We examine four meteorological factors: rainfall rate, solar
radiation, temperature, and wind speed in Figure 4 during June 2019.

Figure 3. Location of Automatic Weather Station (AWS) in Ngurah Rai, Bali, and location of point for
ERA5 data, in Bali Island, Indonesia.

(a) 

(b) 

Figure 4. Cont.
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(c) 

(d) 

Figure 4. Comparison of weather data from ERA5-ECMWF (red line with triangle) and Automatic
Weather Station or AWS (blue line) for: (a) Rainfall Rate; (b) Solar Radiation; (c) Temperature;
(d) Wind speed.

As shown in Figure 4, the solar radiation and wind speed, in particular, show a
relatively similar trend between ERA5 and the observation data from AWS. In contrast, the
other two parameters, i.e., the temperature and the rainfall rate, show a similar trend but
with a different magnitude between ERA5 and the observation data from AWS. Because a
significant distance separates the ERA5 point and the AWS point locations, this disparity
might be caused by differences in local temperature and rainfall rates that are potentially
highly different. The ERA5 data offers a good representation of the trend of meteorological
parameters for Bali Island when compared to other data sources.

2.3. Methods

This paper has two main steps to design an electricity load forecasting system:
(1) Exploratory data process to investigate correlations between weather parameters and
electricity load; (2) Design a machine-learning-based model for electricity load forecasting
using the best weather features obtained from step (1). For electricity load forecasting, two
machine learning methods were utilized, namely, the Generalized Regression Neural Net-
work (GRNN) and the Support Vector Regression (SVR) techniques (SVR). In the following
subsections, we briefly describe these two methods.

2.3.1. Generalized Regression Neural Network

Donald F. Specht initially presented the General Regression Neural Network (GRNN)
in 1991 [25], which is a deformation version of the radial basis function (RBF) neural
network [28]. In comparison to RBF, GRNN improves at approximation and learning
speed [31]. Its functioning is based on nonlinear or kernel regression, which implies that
the result is dependent on the input. GRNNs may be utilized for prediction, modeling,
mapping, and interpolation, as well as serving as controllers [25].

The GRNN architecture, as seen in Figure 5, is composed of four layers: the input
layer, the pattern layer, the summation layer, and the output layer. The input layer takes
and stores the input data Xi = [x1, x2, . . . , xn]. The number of neurons in a network is
proportional to the amount of data input. The input layer’s result is then transmitted to the
pattern layer. The pattern layer is nonlinear, and its neurons can retain information about

166



Energies 2022, 15, 3566

the interaction between the input neurons and the pattern layer [31]. A pattern based on
the Gaussian function Pi can be expressed as follows

Pi = exp

[
− (X − Xi)

T (X − Xi)

2σ2

]
(i = 1, 2, . . . , n) (1)

where σ is the smoothing or spreading parameter. The input variable is denoted by X,
whereas xi denotes a more precise training sample from neuron i in the pattern layer.

Figure 5. The architecture of General Regression Neural Network.

Following the pattern, the summation layer performs two distinct computations
referred to as numerators and denominators. The first kind is used to determine the
number of weighted outputs from the pattern layer, whereas the second type is used to
determine the number of unweighted outputs from the pattern layer [26]. The pattern
layer’s purpose is as follows:

Ss = ∑
i=1

Pi, (i = 1, 2, . . . , n) (2)

Sw = ∑
i=1

wiPi, (i = 1, 2, . . . , n) (3)

where Ss is the denominator, Sw is the numerator, and wi is the weight of the pattern neuron
i connected to the summation layer.

The last layer is the output layer, the results of which are produced by dividing the
neuron numerator Ss by the neuron denominator Sw. The output layer performs the
following calculations:

y =
Sw

Ss
(4)

In comparison to other approaches, the primary advantage of GRNN is that it is
simple to train and requires only one independent parameter [26]. GRNN does not require
recurrent training and may be trained in a short period of time. While this is a disadvantage
of GRNN over other algorithms, it does need significant processing to analyze new points.
These shortcomings, however, can be solved by adopting the clustering version of GRNN
or by executing computations using an embedded parallel structure and building a semi-
conductor chip [25].

2.3.2. Support Vector Machine

Vapnik et al. pioneered the Support Vector Machine (SVM) in 1999 [32]. SVM is a
classification and regression technique used in machine learning [23]. This technique is
more effective when used in conjunction with Structural Risk Minimization (SRM) than
when used in conjunction with Empirical Risk Minimization (ERM) [24]. Support Vector
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Regression is a machine learning model that allows for trade-offs between minimizing
empirical errors and the complexity of the resultant fitted function, hence lowering the
danger of overfitting [33]. SVR employs a soft margin approach to achieve the highest
degree of generalization; the regression issue is handled using an alternate loss function and
two slack variables [24]. As follows is the definition of the nonlinear regression problem
using the SVR model.

y = f (x) = ω·ψ(x) + b (5)

where ω is a weighted vector, b is a constant bias, and ψ(x) is the feature space mapping
function. The following minimization procedure is used to obtain the coefficients of ω
and b:

Minimize
1
2
‖w2‖+ C

1
N

N

∑
i=1

(ξi + ξi
∗) (6)

Subject to

⎧⎨⎩
yi − (w, xi + b) ≥ ε + ξi
(w, xi) + b − yi ≤ ε + ξi

∗

ξi, ξi
∗ ≥ 0

(7)

where the parameters C and ε are model-defined. C evaluates the trade-off between
empirical risk and smoothness, whereas 1

2‖w2‖ quantifies the function’s smoothness. ξ
and ξ∗ are positive slack variables that indicate the difference between the actual and
corresponding limit values in the approximation function’s ε-tube model.

Following the application of the Lagrangian multiplier and optimization of the condi-
tions, the nonlinear regression function f (x) is as follows.

f (x) =
N

∑
i=1

(δi − δ∗i ) K
(

xi, xj
)
+ b (8)

where K
(

xi, xj
)

is a kernel function that describes the inner product in D-dimensional
feature space [34], and δi and δ∗i are Lagrangian multipliers.

The GRNN and SVR method were utilized for designing machine-learning-based
model for electricity load forecasting with weather parameters are features input. In
the next section, we perform exploratory data to calculate correlations between weather
parameters with electricity load in Bali.

3. Exploratory Data Analysis

The relationship between weather data parameters with electricity load in Bali is in-
vestigated in this section by calculating how correlate these parameters with each other. To
calculate correlation between two variables, we employ the so-called correlation coefficient
(CC), which is utilized to show how close a relationship between two variables’ data is
to one another, especially for the trend of these variables. The formula for the correlation
coefficient is defined as follows:

CC =
cov(X, Y)

σxσy
(9)

where X and Y are variables that being compared, cov(X, Y) denotes the covariance be-
tween two variables, and σx and σy denotes the standard deviation of data X and Y,
respectively. In this paper, we use Formula (9) to calculate the correlation between elec-
tricity load with weather parameters, such as 2 m temperature, net solar radiation, wind
speed, rainfall rate, pressure, and relative humidity.

Figure 6 compares electricity load data in Bali Island during 2019 with weather pa-
rameters such as temperature, solar radiation, and wind speed, whereas Figure 7 shows
comparisons for rain rate, pressure, and relative humidity. In Figures 6 and 7, the elec-
tricity load data is denoted as blue lines with the left-hand side y-axis, whereas weather
parameters are red lines with the right-hand side y-axis. As shown in Figure 6, we can
directly notice that the temperature and solar radiation have a very similar trend with the
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electricity load in Bali, which indicates these two weather parameters have a high (positive)
correlation with electricity load in Bali. For the wind speed, as shown in the lower part of
Figure 6, the trend of electricity load is in the opposite direction, indicating that the wind
speed and electricity load have a negative correlation.

Figure 6. Plots of electricity load in Bali during 2019 in comparison with weather parameters;
(a) temperature; (b) solar radiation; (c) wind speed. The magnitude of electricity load belongs to left
y-axis, whereas the magnitude of weather parameters is in the right y-axis.

In Figure 7, we can see lower correlations between the rainfall rate with electricity
load. In contrast, for the pressure, we can also see a negative correlation with electricity
load, as with the wind parameter. The trend of the relative humidity parameter with the
electricity load is not very clear, which indicates a low correlation value. Table 1 shows
correlation coefficient (CC) values between each weather parameter in Figures 6 and 7 with
electricity load in Bali. As shown qualitatively in Figure 6, the most correlated weather
parameter with the electricity load is the 2 m temperature and is followed by the net solar
radiation with CC values of 0.63 and 0.43, respectively. As also noticed in Figure 6, the wind
parameter negatively correlates with the electricity load, with a CC value of −0.40, which
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is relatively high. Other weather parameters such as rainfall rate, pressure, and relative
humidity have lower CC values, i.e., −0.18, −0.22, and 0.14, respectively. Based on this
exploratory data, we can conclude that three weather parameters have a high correlation
with the electricity load in Bali island, i.e., 2 m temperature, net solar radiation, and wind
speed. These parameters will be used as features for machine learning models, which will
be discussed in the next section.

Figure 7. As in Figure 4, for other weather parameters; (a) rainfall rate; (b) pressure; (c) relative humidity.

Table 1. Correlation Coefficient (CC) between electricity load and various weather parameters.

Weather Parameter CC

2 m Temperature 0.63
Net Solar Radiation 0.43

Wind Speed −0.40
Rainfall Rate −0.18

Pressure −0.22
Relative Humidity 0.14
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4. Prediction of Electricity Load

As discussed in the previous section, we have investigated correlations between
various weather parameters with the electricity load in Bali. The three most correlated
weather parameters, i.e., 2 m temperature, net solar radiation, and wind speed, with CC
values varying from −0.40 to 0.63. Three other parameters have lower CC values. This
section explores possible designs for feature input of a machine-learning-based model for
the electricity load forecasting system. Firstly, we investigate which weather parameters
will give the best configuration for feature input for machine learning models. Secondly,
we also investigate scenarios to improve prediction results by adding moving average
information as an additional input for machine learning prediction.

4.1. Prediction Using Weather Data

This subsection proposes multiple scenarios for feature input to design a machine-
learning-based electricity load forecasting system. We design scenarios that add one-by-one
weather parameters, from high to low CC value, as feature input for two machine learning
models, i.e., the GRNN and SVR. Besides weather parameters, customer characteristics
also significantly affect electricity load consumption, as shown in Figure 2. We include two
characteristics of electricity customers in Bali island, i.e., hourly and daily characteristics,
illustrated in Figure 2. The hourly characteristics are represented as values from 1 to 24
that represent hours, whereas for the daily characteristics, there are values from 1 to 7 that
represent day number. These two customer characteristics are included as scenario-1 in
Table 2. For other scenarios, i.e., scenarios 2 to 6, we added one-by-one weather parameters,
from high to low correlated weather parameters, as shown in Table 2.

Table 2. Scenarios to investigate effects of each weather parameter as feature input for the
machine learning.

Scenario Feature

User Behavior Weather Parameter

1
Hourly Characteristics -

Daily Characteristics

2
Hourly Characteristics 2 m Temperature

Daily Characteristics

3
Hourly Characteristics 2 m Temperature

Daily Characteristics Net Solar Radiation

4

Hourly Characteristics 2 m Temperature

Daily Characteristics Net Solar Radiation

Wind Speed

5

Hourly Characteristics 2 m Temperature

Daily Characteristics Net Solar Radiation

Wind Speed

Rainfall Rate

6

Hourly Characteristics 2 m Temperature

Daily Characteristics Net Solar Radiation

Wind Speed

Rainfall Rate

Pressure
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For training data for the machine learning models, we use one year data, i.e., during
2018, to forecast 1-month electricity load data, i.e., January 2019. Using features configura-
tion scenarios as shown in Table 1, we perform electricity load forecasting using the GRNN
model, as shown qualitatively in Figure 8. Here, we can see qualitatively that scenario-2 in
Figure 8b. gives the best prediction compared to other scenarios. The scenario-2 consisted
of hourly and daily characteristics with 2 m temperature as input for the machine learning
model. Adding additional weather parameters features such as scenario-3 to -6 results in
worse prediction performances, as shown qualitatively in Figure 8c–f.

Figure 8. Comparison between electricity load data (solid black line) during the period 1–25 January
2019, with results of prediction by using GRNN model (dashed red line) with various feature
scenarios; (a) scenario-1; (b) scenario-2; (c) scenario-3; (d) scenario-4; (e) scenario-5; and (f) scenario-6.

We also optimize the GRNN and SVR model parameter settings to give the best
prediction. For the GRNN, there is only one parameter to be optimized, i.e., the “spread”
parameter. The spread parameter is optimized by varying its value, as shown in Table 3.
Table 3 shows results of various values of spread parameter of GRNN model for predicting
scenario-2. From this table, the spread value of 0.50 gives the best performance. We also
optimized parameter settings in the SVR model. The best result is obtained with radial
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basis function kernel, regularization parameter C value of 100, kernel coefficient γ of 2,
ε value in SVR model is 0.1, and polynomial degree 3.

Table 3. Results of various value of parameter Spread in the GRNN model for scenario-2.

Spread CC RMSE

1.25 0.917 46.35
1.00 0.926 44.36
0.75 0.933 42.68
0.50 0.937 41.72

Not only using the GRNN, we also perform prediction by using the SVR model, in
which results of prediction by using two models are summarized in Table 4. Here, the best
scenario for the GRNN model is obtained by scenario-2, which results in a CC value of
0.937 and a root mean square error (RMSE) value of 41.72. For the SVR model, the best
scenario is obtained by scenario-3, i.e., with weather parameter temperature and net solar
radiation, resulting in a CC value of 0.934 and an RMSE value of 48.88. Note that the RMSE
value of the best scenario obtained by using the GRNN model is lower than the SVR model.
It is also the same with the CC value; the GRNN model gives slightly better performance
than the SVR model.

Table 4. Results of prediction by using GRNN and SVR model with various weather parameter
scenarios, as described in Table 2.

Scenario
GRNN SVR

CC RMSE CC RMSE

1 0.886 53.87 0.877 62.21
2 0.937 41.72 0.929 49.88
3 0.897 50.79 0.934 48.88
4 0.894 52.44 0.917 53.44
5 0.884 54.62 0.906 55.43
6 0.879 53.61 0.876 59.51

4.2. Prediction Using Moving Average Data

We also explore the possibility of improving the accuracy of the machine-learning-
based electricity forecasting system by adding another feature configuration. In this sub-
section, we experiment with scenarios when additional features are added into machine
learning, i.e., moving average (MA) data of the electricity load data. The moving average
data is the electricity load that is averaged with a specific time frame range. It is possible
to obtain this MA data in the implementation of the electricity load forecasting as long as
realization (observation) data of electricity load can be accessed directly and fed into the
machine learning forecasting system.

This subsection added three scenarios of moving average (MA) data, i.e., monthly,
weekly, and daily moving average data. Monthly moving average data means that averaged
electricity load data is calculated with a time frame of one month from the time series
of historical electricity load data. The MA information is fed into the machine learning
forecasting system. To compare how effective the addition of MA data was into the machine
learning model, we performed electricity load prediction using the GRNN and SVR model
with scenario-2, as shown in the previous subsection. The scenario-2 is added with monthly,
weekly, and daily MA as new scenarios. Figure 9 shows the results of each scenario with
MA data. From Figure 9, the scenario with monthly MA data results in worse performance
than the scenario without MA.
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Figure 9. Comparison between electricity load data (solid black line) during the period 1–20 January
2019, with results of prediction by using GRNN model (dashed red line) with various feature moving
averaged (M.A.) scenarios; (a) scenario without M.A.; (b) scenario with MA-Monthly; (c) scenario
with MA-Weekly; (d) scenario with MA-Daily.

On the other hand, better performance is achieved by scenarios with weekly and daily
MA data. Quantitatively, each scenario’s performance is summarized in Table 5 for both
using GRNN and SVR model. The best performance scenario for both GRNN and SVR is
the scenario with MA-daily; for the GRNN model, the best scenario gives a CC value of
0.956 and RMSE value of 28.82, whereas for the SVR model, it gives a CC value of 0.965,
and RMSE value of 44.40. Note that the SVR model gives slightly better performance in
terms of CC value than the GRNN model results but gives a worse performance in terms of
RMSE value. Overall, the GRNN model gives better results than the SVR model.

Table 5. Results of prediction by using GRNN and SVR model with various scenario with Moving
Average (M.A.) values; Monthly, Weekly, and Daily.

Scenario
GRNN SVR

CC RMSE CC RMSE

Without MA 0.937 41.72 0.929 49.88
MA-Monthly 0.884 54.62 0.931 47.88
MA-Weekly 0.916 40.27 0.943 46.77
MA-Daily 0.956 28.82 0.965 44.40
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We compare prediction results using a scenario with MA-daily in Figure 10 for both
GRNN and SVR models. Qualitatively, the GRNN gives better prediction, especially
vertical direction errors, confirmed by RMSE values as in Table 5.

Figure 10. Comparison between electricity load testing data (solid black line) with results of prediction
by using GRNN model (dashed red line), and SVR (dotted magenta line) for Scenario with MA-Daily;
(a) during the period 1 January–1 August 2019; (b) during the period 1–20 January 2019.

5. Conclusions

This paper aims to design a machine-learning-based electricity load forecasting system.
We investigate two primary studies, i.e., exploratory data, to investigate the correlation
between weather parameters and electricity load data and feature selection optimiza-
tion for the machine learning forecasting model. This paper uses a statistical method,
i.e., the correlation coefficient (CC), to select highly correlated weather parameters with the
electricity load data. The results of this step are used as input for the machine-learning-
based electricity forecasting model, which is not considered a statistical method. However,
our results show that this feature selection step significantly affects the machine learning
prediction accuracy. We found that this statistically based feature selection improves the
accuracy of the machine learning model.

Results from exploratory data conclude that three weather parameters highly corre-
lated with the electricity load in Bali islands, i.e., 2 m temperature, net solar radiation,
and wind speed. Other weather parameters, such as rainfall rate, pressure, and relative
humidity, are less correlated. To investigate the effects of weather parameters as feature
input for the machine learning model, we perform scenarios in which we added one-by-one
weather parameters, from high to low correlated weather parameters. For the GRNN
model, the best performance scenario is achieved for the featured scenario only with 2 m
temperature, a CC value of 0.937, and an RMSE value of 41.72. On the other hand, the best
performance scenario for the SVR model is a feature scenario of 2 m temperature and net
solar radiation, resulting in a CC value of 0.934 and an RMSE value of 48.88. Predicting
using the GRNN is better than the SVR, especially in terms of correlation coefficient (CC)
value and RMSE value, as shown in scenario-2 in Section 4.1. This result can be related to
the fact that the GRNN only has one parameter to be optimized, i.e., the spread parameter.
In contrast, there are more parameters to be optimized in the SVR model, i.e., type of kernel
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function, regularization parameter, kernel coefficient, polynomial degree, etc. Therefore,
optimizing the GRNN is more straightforward than the SVR. Moreover, the GRNN is a
model with strong nonlinear mapping capabilities suitable for solving the electricity load
forecasting problem with weather parameter features, as in this paper.

To improve the performance of the prediction, we also investigate an option to add
another feature to the machine learning forecasting model, i.e., we add the moving average
(MA) of historical electricity load data itself to the machine learning. There are three
scenarios of moving average data that we investigated, i.e., monthly, weekly, and daily
moving average data. Scenario with the additional feature of MA-monthly data gives
worse performance than scenario without MA-monthly data. The other two scenarios,
i.e., MA-weekly and MA-daily, give better performance than without MA data. The best
performance scenario is achieved with MA-daily data; the GRNN model gives the CC
value of 0.956, RMSE of 28.82, and the SVR model gives the CC value of 0.965 and RMSE
value of 44.40. In conclusion, the GRNN model performs better than the SVR model
regarding the RMSE value. The inclusion of moving average electricity load data is possible
when the forecasting system can obtain near real-time realization (observation) data of
electricity load.

For future research direction, there are several points that can be investigated further.
Firstly, to further improve the accuracy of the electricity load prediction, more advanced
machine learning models can be investigated, i.e., deep learning models. Secondly, in
an area that is connected with multiple electricity grid systems, the correlation between
weather parameters and electricity load can be low. Therefore, a new technique for feature
selection is needed to design electricity load forecasting for this type of area.
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Abstract: The rapid development of artificial intelligence offers more opportunities for intelligent
mechanical diagnosis. Recently, due to various reasons such as difficulty in obtaining fault data
and random changes in operating conditions, deep transfer learning has achieved great attention in
solving mechanical fault diagnoses. In order to solve the problems of variable working conditions
and data imbalance, a novel transfer learning method based on conditional variational generative
adversarial networks (CVAE-GAN) is proposed to realize the fault diagnosis of wind turbine test bed
data. Specifically, frequency spectra are employed as model signals, then the improved CVAE-GAN
are implemented to generate missing data for other operating conditions. In order to reduce the
difference in distribution between the source and target domains, the maximum mean difference
(MMD) is used in the model to constrain the training of the target domain generation model. The
generated data is used to supplement the missing sample data for fault classification. The verification
results confirm that the proposed method is a promising tool that can obtain higher diagnosis
efficiency. The feature embedding is visualized by t-distributed stochastic neighbor embedding
(t-SNE) to test the effectiveness of the proposed model.

Keywords: conditional variational generative adversarial networks; transfer learning; wind turbines;
variable working conditions

1. Introduction

Fault diagnosis of wind turbines plays an important role in equipment health man-
agement. Recently, deep learning (DL) has become a promising method in intelligent fault
diagnosis. DL methods usually follow two principles: (1) the dataset should be large and
well labeled and (2) the training and testing datasets are subject to the same distribution.
However, in reality, wind turbines often face the problems of working condition variation,
sample imbalance, and few fault samples, which brings challenges for deep learning to
achieve wind turbine fault diagnosis. Compared with DL, transfer learning (TL) allows
different probability distributions of samples between source and target domains. This
means that a new but related task in the target domain can be effectively addressed by the
learned knowledge from the source domain.

TL-based models have been employed for intelligent fault diagnosis under different
working conditions. Li et al. proposed a novel weighted adversarial transfer network
(WATN) for partial domain fault diagnosis [1]. Huang et al. proposed a deep adversar-
ial capsule network (DACN) to embed multi-domain generalization into the intelligent
compound fault diagnosis [2]. Li et al. proposed a two-stage transfer adversarial network
(TSTAN) for multiple new faults detection of rotating machinery [3]. Chen et al. proposed
a transferable convolutional neural network to improve the learning of target tasks [4].
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Li et al. proposed a method named deep adversarial transfer learning network (DATLN) for
new emerging fault detection [5]. Li et al. proposed a data-driven fault feature separation
method (DFSM) that can eliminate the working condition features from all the information
and employ the rest of the fault information for diagnosis [6]. Qian et al. proposed a
method called improved joint distribution adaptation (IJDA) to align both the marginal
and conditional distributions of datasets more comprehensively [7]. Guo et al. proposed a
deep convolutional transfer learning network (DCTLN), which consists of condition recog-
nition and domain adaptation, for intelligent fault diagnosis of machines with unlabeled
data [8]. Yang et al. proposed a feature-based transfer neural network (FTNN) to identify
the health states of real-case machines with the help of the diagnosis knowledge from
laboratory machines [9].

Domain adaptive (DA) technology plays an important role in transfer learning. Maxi-
mum mean discrepancy (MMD) is commonly used to measure the distribution discrepancy
of the transferable features [10]. The MMD-based domain adaptive technology has been
widely used to accomplish transfer learning tasks in the fields of computers [11,12]. The
key to domain adaptation is to find a way to decrease the distribution divergence between
different domains. Feature matching and instance reweighting are the main learning strate-
gies for DA research. Zhang et al. applied the maximum variance discrepancy (MVD) for
combining with the maximum mean discrepancy (MMD) for the feature matching [13].
Zhang et al. proposed a novel geodesic flow kernel-based domain adaptation approach for
intelligent fault diagnosis under varying working conditions [14]. An et al. proposed a
novel adaptive cross-domain feature extraction (ACFE) method that can automatically ex-
tract similar features between different feature spaces [15]. Qian et al. proposed a novel dis-
tribution discrepancy evaluating method called auto-balanced high-order Kullback–Leibler
(AHKL) divergence for DA [16]. Based on polynomial kernel-induced MMD (PK-MMD),
Yang et al. proposed a model that was constructed to reuse diagnosis knowledge from
one machine to another [17].

However, an important problem in TL-based fault diagnosis methods is that target
domain mechanical fault datasets are always highly imbalanced with abundant normal
condition mechanical samples but a paucity of samples from rare fault conditions. The
generative adversarial network (GAN) [18] uses the adversarial principle of generator
and discriminator to enhance the diversity of data and provides the possibility to solve
the above problems. Zheng et al. proposed a dual discriminator conditional generative
adversarial network to enhance the accuracy of imbalance fault diagnosis [19]. Wang et al.
implemented a Wasserstein generative adversarial network (WGAN) to generate simulated
signals based on a labeled dataset [20]. There has been a proliferation of adversarial models
presented by GAN, such as AnoGANs [21], GANormaly [22], etc. GAN has been developed
in the field of fault diagnosis and anomaly detection [23–26]. Auto-encoder (AE) is another
way of generating samples. AE has now developed numerous variants, e.g., variational AE
(VAE) [27], adversarial AE (AAE) [28], etc.

The problem of missing data from wind turbines can be effectively solved by GAN
and AE. Qu et al. proposed a data imputation method with multiple optimizations based
on generative adversarial networks (GANs) for wind turbines [29]. Guo et al. proposed
improved adversarial learning to generate fault features for the fault diagnosis of a wind
turbine gearbox with unbalanced fault classes [30]. Jiang et al. proposed an improved over-
sampling algorithm to generate and develop a balanced dataset based on the imbalanced
dataset of unfixed-length [31]. Jing et al. proposed an improved context encoder network
(ICE) for missing wind speed data reconstruction [32]. In the literature [33], an improved
auto-encoder (AE) network with a transfer layer was designed to eliminate the effect of
SCADA data in the ambiguous status and enhance the reliability of a training dataset.

However, the samples generated by AE are often very fuzzy because there is no
advanced discriminant network, and GAN has problems such as unstable training and
mode collapse. Therefore, the two are combined to generate data to achieve better results,
such as VAE-GAN [34], etc. Bao et al. proposed CVAE-GAN [35], which takes labels as
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conditional inputs to the model to generate images of specified classification and produced
relatively good images in all categories.

Gearboxes are important components for power transmission and speed regulation
in mechanical equipment. In wind turbines, the downtime and power loss caused by
the failure of gearbox components is the highest among all components. Wind turbine
gearboxes operate under variable conditions for long periods of time. Due to the difficulty
in obtaining operating data for different operating conditions, the diagnostic accuracy can
be low when only data from a single operating condition is used to train the neural network
for fault diagnosis. By generating data for unknown operating conditions through GAN
and solving the problem of data imbalance, the fault diagnosis accuracy of wind turbine
gearboxes can be effectively improved.

In this paper, we proposed a model named transfer learning based on conditional
variational generative adversarial networks (TL-CVAE-GAN). An improved CVAE-GAN
is used for transfer learning to achieve the generation of unknown samples for wind
turbine transmission platforms in different conditions and solve the classification problem
of variable conditions data. The known data are used to train CVAE-GAN1, and then the
MMD between the known and unknown conditions is calculated. The MMD is added
to the loss of CVAE-GAN2, which is an unknown generator, to achieve the generator’s
domain migration. The problem of data imbalance for wind turbine gearboxes is solved by
generating missing data for unknown working conditions via CVAE-GAN2. The raw data
and generated data are fed into the classifier to train the model for classification.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts
of DA and CVAE-GAN. In Section 3, a novel fault diagnosis model named transfer learning
based on conditional variational generative adversarial networks (TL-CVAE-GAN) for a
wind turbines testbench is proposed. In Section 4, the wind turbine testbench datasets
are input into the proposed model for training and testing, and the results are analyzed.
Section 5 presents the conclusion.

2. Conditional Variational Generative Adversarial Networks and Domain
Adaptive Technology

2.1. Conditional Variational Generative Adversarial Networks (CVAE-GAN)

The model structure is shown in Figure 1 and includes four parts: encoder network, E,
generator network, G, discriminator network, D, and classifier network, C.

x z x

d

l
c c

Figure 1. Model structure of CVAE-GAN.

The encoder network, E, maps a sample, x, to a potential representation, z, via a
learnable distribution, P(z|x,c), with c denoting the class of the data. Bounds on the prior
P(z) and the recommended distribution are reduced using KL loss:

LKL =
1
2
(− log σ2 + μ2 + σ2 − 1) (1)

where μ and σ are the mean and covariance of the output of the potential vector from
encoder network E.
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The generative network, G, generates the data, x′, by sampling from the learnable
distribution, P(x′|z,c). The functions of G and D are the same as GAN. The network,
G, attempts to learn the distribution of the real data by means of gradients from the
discriminator network, D, which is able to distinguish between true/false samples. The
loss function of the discriminator network, D, is:

LD = −Ex∼pr [log D(x)]− Ez∼pz [log(1 − D(G(z)))] (2)

where x is the input data and z is the potential vector from encoder network, E.
The generator uses an average feature matching the objective function. This objective

function requires the feature centers of the synthetic samples to match the feature centers
of the real samples. The generator, G, tries to minimize the loss function as:

LGD =
1
2

∥∥Ex∼pr fD(x)− Ez∼pz fD(G(z))
∥∥2

2 (3)

where fD(x) denotes the features in the middle layer of the discriminator, D.
The generating network, G, uses the average feature to match the objective function.

Let the network, G, attempt to minimize:

LGC =
1
2∑

c

∥∥Ex∼pr fC(x)− Ez∼pz fC(G(z, c))
∥∥2

2 (4)

where fC(x) denotes the intermediate layer outputs of the classifier and c denotes the label
of the input data, x.

Then, an L2 reconstruction loss and pairwise feature matching-based loss are added to
x and x′:

LG =
1
2
(
∥∥x − x′

∥∥2
2 +

∥∥ fD(x)− fD(x′)
∥∥2

2 +
∥∥ fC(x)− fC(x′)

∥∥2
2) (5)

where x is the input data and x′ is the generated data from the generator, G.
Network C takes x′ as input and outputs a k-dimensional vector, which is then con-

verted to probability-like values using the softmax function. Each port of the output
represents the posterior probability, P(c|x′). In the training phase, network, C, attempts
to minimize the softmax loss. The function of the classifier network, C, is to measure the
posterior of P(c|x′):

LC = −Ex∼pr [log P( c|x′)] (6)

The total loss function is:

L = LKL + LG + LGD + LGC + LD + LC (7)

LKL is only relevant to the encoder network, E, indicating whether the distribution of
potential vectors is as expected. LG, LGD, and LGC are relevant to the generator network, G,
indicating whether the synthetic sample is the same as the input training samples, the real
sample, and other samples in the same category, respectively. LC is relevant to the classifier
network, C, indicating how well the network is used to classify different categories of
samples; LD is relevant to the discriminator network, D, indicating how well the network
is able to distinguish between real/synthetic samples. All these objective functions are
complementary to each other and ultimately lead to optimal results for the algorithm.

2.2. Domain Adaptive Technology (DA)

As shown in Figure 2, domain adaptation is used to map data features from different
domains to the same feature space, so that other domain data can be used to enhance
the target domain training. There are two fundamental concepts in domain adaptation:
the source domain and the target domain. The source domain, DS = {XS, P(XS)}, is rich
in supervised learning information. The target domain, DT = {XT, P(XT)}, represents the
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domain in which the test set is located, usually without labels or with only a few labels.
Source and target domains are often the same type of task but are distributed differently.

Domain
adaptation

Figure 2. Domain adaptation.

Common domain adaptation methods include:

(1) Sample adaptation: resampling samples in the source domain so that their distribution
converges with the target domain distribution.

(2) Feature adaptation: projecting the source and target domains into a common feature
subspace.

(3) Model adaption: modification of the source domain error function.

Domain loss is calculated using the maximum mean difference (MMD). To be specific,
the transferable features are first mapped into reproduced kernel Hilbert space (RKHS),
in which the mean distance between them is viewed as the metric to their distribution
discrepancy:

MMD(XS, XT) =

∥∥∥∥ 1
|XS|∑

φ(xs)−
1

|XT |∑
φ(xt)

∥∥∥∥ (8)

where φ is a mapping function, XS is the source data, and XT is the target data.

3. Transfer Learning Based on Conditional Variational Generative Adversarial
Networks (TL-CVAE-GAN)

In this paper, we proposed a model named transfer learning based conditional varia-
tional generative adversarial networks (TL-CVAE-GAN) for fault diagnosis of wind turbine
transmission platform datasets under different conditions. An improved CVAE-GAN
is used for transfer learning to achieve the generation of unknown samples in different
conditions.

As shown in Table 1, the data in this paper include XS1, XS2, XT1, and XT2. XS is the
source domain data and XT is the target domain data. XS1 and XT1 are in operating speed
1, XS2 and XT2 are in operating speed 2. In this paper, XT2 is unknown.

Table 1. Variables and conditions of the data.

Domain Data Work Condition Known or Not

Source domain
XS1 Speed1 Data available
XS2 Speed2 Data available

Target domain XT1 Speed1 Data available
XT2 Speed2 Data not available

The model structure of TL-CVAE-GAN is shown in Figure 3. A generative model
CVAE-GAN1 is trained to generate XS2′ from XS1, and another generative model CVAE-
GAN2 is trained to generate XT2′ from XT1. The structure of the neural network model is
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the same for CVAE-GAN1 and CVAE-GAN2, both containing: an encoder, E, a decoder, De,
a generator, G, and a discriminator, D.
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Figure 3. Model structure of TL-CVAE-GAN.

Assume that X1 is the data corresponding to Speed1 and X2 is the data corresponding
to Speed2. The data, X1, is fed into the encoder, E, together with Speed1 for dimensionality
reduction to obtain an intermediate code, z, with the Speed1 information removed; z is input
to the decoder, De, for reconstruction, and the mean, u, and variance, σ, are additionally
obtained from z. The variance, σ, is multiplied by the random noise, e, plus the mean,
u, to obtain zs; zs is fed into the generator, G, together with Speed2 to produce X2′ . The
real X2 is fed into the discriminator, D, together with the generated X2′ for discrimination.
The accuracy of the generated model is improved by confronting the generator with the
discriminator.

The MMD of XS1 to XT1 is solved for domain adaptation. The MMD is added to the
loss function of the generator CVAE-GAN2 for backpropagation to generate XT2′ .

The TL-CVAE-GAN model is divided into the following steps:
In the first step, update the parameters of CVAE-GAN1 and generate XS2′ . The source

data XS1 and its corresponding rotational speed are input into encoder E to obtain the
intermediate key feature, z, with the rotational speed information removed. The mean value,
u, and variance, σ, are obtained from z, then a new sample, zs, is formed by u, σ, and the
noise e; z is fed into the decoder De for reconstruction and zs and the corresponding speed,
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speed2, are input to the generator, G, to generate XS2′ . The discriminator, D, discriminates
between the generated data, XS2′ , and the real data, XS2. The loss of CVAE-GAN1 is:

Loss1 = LossVAE + LossGAN (9)

LossVAE =
∥∥XS1 − XS1

′∥∥2
2 +

1
2
(− log σ2 + μ2 + σ2 − 1) (10)

LossGAN= −Ex∼pr [log D(XS2)]− Ez∼pz [log(1 − D(G(zs, speed2)))] (11)

where XS1 is the input source data, XS1′ is the generated data from XS1, μ and σ are the
mean and covariance of the output of the potential vector from the encoder network, E,
XS2 is another input source data that the operating conditions are different from XS1, speed2
is the operating speed of XS2, and zs is the potential vector of source data from encoder
network, E.

In the second step, update the parameters of CVAE-GAN2. The MMD between CVAE-
GAN1 and CVAE-GAN2 is calculated. The MMD is added to the loss of CVAE-GAN2 to
achieve the generator’s domain migration. The loss is as follows:

Loss2 = MMD(XS1, XT1) + MMD(zs, zt) + MMD(XS2
′, XT2

′) + MMD( fD
′(XS2

′), fD
′(XT2

′)) (12)

where fD’(x) denotes the features in the penultimate layer of the discriminator, D. XT1 and
XT2 are the target data and zs and zt are the potential vector of source data and target data
from encoder network E.

In the last step, repeat steps 1 and steps 2 for 5 training cycles to generate the unknown
data, XT2′ .

The model structure of the classifier is shown in Figure 4. The existing data, XS1, XS2,
XT1, and the generated data, XT2′ , are together input into the classifier for training.

yi

XS XS XT

 
XT2

yi

Figure 4. Model structure of the classifier.

The classifier model contains three convolution layers, three BatchNorm1d, three
MaxPool1d, and one fully-connected layer. The number of neurons in each layer is shown
in Figure 4. The activation function for the last layer is Softmax and the activation functions
for the other layers are Relu. All the data goes through the fast Fourier transform, and is
then fed into the model. The classifier is updated by:

Loss21 = ∑
xi ,yi∼Ti

[yi log yi
′ + (1 − yi) log(1 − yi

′)] (13)

where yi is the real label of the data and yi’ is the output of the classifier model.
The feature embedding is visualized by t-SNE to test the effectiveness of the proposed

model. The complete algorithm flow is shown in Algorithm 1.
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Algorithm 1. TL-CVAE-GAN

Input: Input training data, Tr = {(XS1, YS1), (XS2, YS2), (XT1, YT1)}, testing data, Te, classified
model, fC. In the CVAE-GAN1 model: encoder network, fE1, decoder network, fDE1, generator
network, fG1, and discriminator network, fD1. In the CVAE-GAN2 model: encoder network, fE2,
generator network, fG2, discriminator network, fD2.The learning rate, lr.
########################Cycle 5 times ####################
1: For f from 0 to 4:
########################train CVAE-GAN1 model ####################
2: For each training epoch, do:
3: For each batch, do:
4: zi = fE1(xs1i, Speed1), xs1i’ = fDE1(zi), the mean value, usi, and variance, σsi, are

obtained from zi, sample e from the random noise S. zsi = usi +σsi *e,
xs2i’= fG1(zsi, Speed2), ds2i’= fD1(xs2i’), ds2i= fD1(xs2i)

5: Backward propagation by Equation (9).
6: end
7: save CVAE-GAN1 model
#################### train CVAE-GAN2 model use MMD #######################
8: download CVAE-GAN1 model. Use the parameters of the CVAE-GAN1 model as the
initial parameters of CVAE-GAN2.
9: For each training, do:
10: For each batch, do:
11: zi = fE2(xt1i), zti = uti +σti *e, xt2i’= fG2(zti),
12: Backward propagation by Equation (12).
13: end
14: save CVAE-GAN2 model
15: lr = lr/2
16: if f > 0:
17: download the CVAE-GAN2 model. Use the parameters of the CVAE-GAN2

model as the initial parameters of CVAE-GAN1.
18: end
########### train classifier net use Tr and the generate data XT2′ #################
########the input data is X = {(XS1, YS1), (XS2, YS2), (XT1, YT1), (XT2′ , YT2)}###########
19: For each training, do:
20: For each batch, do:
21: yi’ = fC(xi)
22: Backward propagation by Equation (13).
23: end
###################### testing results and t-SNE #########################
24: For the test set, calculate cTi = fC (Tei), calculate the accuracy, and draw the t-SNE diagram.
Output: testing results.

4. Case Analysis

In this section, the data of the wind turbine transmission platform are used to verify
our model. The wind turbine transmission platform is shown in Figure 5. It consists of
a drive motor, a stator gearbox, a planetary gearbox, and a load device to simulate the
vibration state under various gear faults.

The number of teeth of each gear in the drive system is shown in Figure 6. The stator
gearbox consists of four gears in a two-stage drive with three shafts. The fault occurred in
the intermediate shaft gear. Piezoelectric sensors are placed on the bearing seat at the right
end of the intermediate shaft. This paper simulates the multiple faults of a wind turbine
gearbox under variable operating conditions. Six fault modes in the stator gearbox are
adopted, including normal, cracked, chipped, missing teeth, wear, and eccentricity. The
data available is shown in Table 2. The data consists of six categories, with one health
category and five fault categories. The first three categories contain data for four operating
speeds (38 Hz, 40 Hz, 43 Hz, 45 Hz) and the last three categories only have data for 43 Hz
and 45 Hz. The speed is of the driver motor. The data is sampled at a frequency of 8192 Hz;
256 data are available in each category for each working condition.
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Figure 5. Transmission platform of wind turbine.

Figure 6. General structure of the gear system.

Table 2. Fault description of wind turbine transmission platform.

Fault Modes Label Speed (Hz)
Sampling
Frequency

Number of
Dataset

Normal 0 38, 40, 43, 45 8192 Hz 256 × 4
Cracked 1 38, 40, 43, 45 8192 Hz 256 × 4
Chipped 2 38, 40, 43, 45 8192 Hz 256 × 4
Missing 3 43, 45 8192 Hz 256 × 2

Wear 4 43, 45 8192 Hz 256 × 2
Eccentricity 5 43, 45 8192 Hz 256 × 2

The data description of the training dataset and testing dataset is shown in Table 3.
There are 256 data in each category for each speed. For each class of data under each
speed, the first 160 are taken as the training set and all data are testing data. The trained
percentages are 62.5%. This case addresses the problem of unbalanced data from the wind
turbine transmission platform, generating missing data and improving diagnostic accuracy.
Therefore, in this case, the data in categories 3, 4, and 5 where the speed is 38 Hz and 40 Hz
are set missing and are not included in the training set.
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Table 3. Data description of the training dataset and testing dataset.

Data Label Speed (Hz)
Number of Training

Dataset
Number of Testing

Dataset

Source
domain

XS1 0, 1, 2 43, 45 160 × 3 × 2 256 × 3 × 2
XS2 0, 1, 2 38, 40 160 × 3 × 2 256 × 3 × 2

Target
domain

XT1 3, 4, 5 43, 45 160 × 3 × 2 256 × 3 × 2
XT2 3, 4, 5 38, 40 0 256 × 3 × 2

For the TL-CVAE-GAN and classifier model, the update function is Adam, the training
epochs for the update are 400, and the batch size is 32.

Figures 7–9 show the missing data, XT2′ , generated by the generator CVAE-GAN2.
It can be seen that the generator effectively generates data for the unknown operating
conditions (38 Hz, 40 Hz).

Figure 7. The generated data and its corresponding real data for fault 3 at 38 Hz and 40 Hz.
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Figure 8. The generated data and its corresponding real data for fault 4 at 38 Hz and 40 Hz.

Figure 9. Cont.
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Figure 9. The generated data and its corresponding real data for fault 5 at 38 Hz and 40 Hz.

In this case, it is the pinion of the intermediate shaft that has failed. Therefore, the
rotational frequency is given in Equation (14) and the meshing frequency is given in
Equation (15).

fr = speed × 29/100 (14)

fm = fr × 36 (15)

When the operating condition is 38 Hz, the rotational frequency is 397 Hz and the
meshing frequency is 11 Hz. When the operating condition is 40 Hz, the rotational frequency
is 418 Hz and the meshing frequency is 12 Hz. The rotational and meshing frequency
characteristics are evident in both the real data and the generated data. At the same time,
there are differences in the frequency spectrum of missing, wear, and eccentric faults.

Figure 7 shows a missing fault. When a gear has a broken tooth, there is a strong
shock at the broken tooth for every week the gear rotates, so there are distinct rotational
and meshing frequencies present in the frequency spectrum. It is clearly modulated by
the rotational frequency throughout the frequency band. The edge band is characterized
by a large number of edge frequencies, a wide range, and a uniform and relatively flat
distribution. It can be seen that the generated data effectively exhibits these characteristics.

Figure 8 shows a wear fault. The gears are uniformly worn, with a high amplitude
sideband at the engagement frequency and its harmonics. The amplitude of the higher
harmonics of the meshing frequency is large. In this data, the wear is more severe and
the amplitude of the second harmonic has exceeded the amplitude of the fundamental
wave of the meshing frequency. It can be seen that the generated data effectively exhibits
these characteristics.

Figure 9 shows an eccentric fault. This data has only eccentricity, no faulty gears, so
there are no sidebands at the meshing frequency. It can be seen that the generated data
effectively exhibits these characteristics.

The generated data for the unknown working conditions are trained together with the
known data for the classifier. We compared the classification accuracy of the trained model
using only the training set and the training set with the generated unknown data. For
better comparison, the same classifier, the same number of training epochs, and the same
learning rate were used for both cases. The obtained fault classification accuracy and t-SNE
is shown in Figure 10. The comparison of classification accuracy with and without the
addition of generated data is shown in Table 4. It can be seen that after the data generated
by TL-CVAE-GAN with unknown working conditions were added to the training set, the
test accuracy of the trained classifier was improved by 21.3%.
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Figure 10. The t-SNE of the classify using only the training set and the training set with the generated
unknown data.

Table 4. Comparison of classification accuracy with and without the addition of generated data.

Only the Training Set
Trains the Classifier

Training Set and Generated Data
together to Train the Classifier

Improved

Classification
accuracy 77.8% 99.1% 21.3%

5. Conclusions

Fault diagnosis of wind turbines plays an important role in improving the reliability
of wind turbines. However, the operating conditions of wind turbines vary randomly, and
data on different operating conditions are not easily available.

In this paper, the wind turbine transmission platform data is supplemented by the
generation of data for unknown operating conditions, which in turn improves the classifi-
cation accuracy. The proposed TL-CVAE-GAN model combines the better performance
of CVAE-GAN in generating samples with the idea of domain adaptive migration. It
achieves the generation of unknown samples for wind turbine transmission platforms in
different conditions and solves the classification problem of variable conditions data. Work
conditions are input to the model as conditions, and the generation of data in different
work conditions between similar classes is achieved by domain migration. The known data
are used to train CVAE-GAN1. In CVAE-GAN, the known working conditions are fed into
the encoder as conditional information to obtain the intermediate key information for the
removal of the working conditions. The intermediate key information and the unknown
conditions are fed together into the generator to generate the same class of data for the
unknown conditions. The generation can be improved by confronting the generator with
the discriminator.

The MMD between the known and unknown conditions is then calculated. The
MMD is added to the loss of CVAE-GAN2, which is an unknown generator, to achieve the
generator’s domain migration. The problem of data imbalance for wind turbine gearboxes is
solved by generating missing data for unknown working conditions via CVAE-GAN2. The
raw data and generated data are fed into the classifier to train the model for classification.

The results show that the proposed model, TL-CVAE-GAN, effectively generates
data for unknown working conditions. After the generated data of unknown operating
conditions were added to the training set as a supplement, the test accuracy of the trained
classifier was improved by 21.3%, effectively improving the fault diagnosis accuracy under-
sample imbalance. The model can better solve the problem of fault diagnosis of wind
turbines with variable operating conditions.
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Abstract: Intermittency of electrical power in developing countries, as well as some European
countries such as Turkey, can be eluded by taking advantage of solar energy. Correct prediction of
solar radiation constitutes a very important step to take advantage of PV solar panels. We propose an
experimental study to predict the amount of solar radiation using a classical artificial neural network
(ANN) and deep learning methods. PV panel and solar radiation data were collected at Duzce
University in Turkey. Moreover, we included meteorological data collected from the Meteorological
Ministry of Turkey in Duzce. Data were collected on a daily basis with a 5-min interval. Data
were cleaned and preprocessed to train long-short-term memory (LSTM) and ANN models to
predict the solar radiation amount of one day ahead. Models were evaluated using coefficient of
determination (R2), mean square error (MSE), root mean squared error (RMSE), mean absolute error
(MAE), and mean biased error (MBE). LSTM outperformed ANN with R2, MSE, RMSE, MAE, and
MBE of 0.93, 0.008, 0.089, 0.17, and 0.09, respectively. Moreover, we compared our results with
two similar studies in the literature. The proposed study paves the way for utilizing renewable
energy by leveraging the usage of PV panels.

Keywords: renewable energy; solar energy; artificial neural network; deep learning; LSTM; radiation
prediction

1. Introduction

1.1. Background

In recent years, the role of energy in the life standard of human beings has been
vitally important [1–3]. As the human population increases, energy demands increase
exponentially [2–5]. Researchers demonstrate that the energy demand is anticipated to be
approximately 1.5–3 times by 2050 [2,6,7]. Given that fact, we can anticipate that fossil fuels
such as petroleum, natural gas, and coal, which are the traditional energy sources, will
be depleted very soon. One more reason to switch to renewable energy is how harmful
the fossil fuels are to the environment [4,8]. It should be emphasized that consumption
of energy from fossil fuels is increasing CO2 (carbon dioxide) and greenhouse gas (GHG)
emissions all over the world [6,9]. Increasing GHGs cause a rising atmospheric temperature
of the Earth’s surface [7–13]. With this concern, renewable energy has come into question
for the last century [2–5,7–13].

Alternatively, solar energy, which is among renewable energy sources, is abundant and
environmentally friendly, and photovoltaic (PV) technology has provided development
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and discovery for both rural and urban choices on a global scale [5,9–17]. The history of
modern PV energy is based on Alexandre Becquerel’s 1839 observation of the photoelectric
effect [13–17]. However, after the 1990s, studies on PV energy rapidly improved [5,18].
In addition, annual PV solar energy exceeded that of wind power for the first time and
reached about 70 GW, and was even 50% higher than in the previous year [18]. The
global solar PV capacity reached at least 303 GW (48% compared to 2015) at the end of
2016 [18,19]. Furthermore, reports from the world’s solar photovoltaic electricity supplies
anticipate that PV technologies will increase to 345 GW and 1081 GW by 2020 and 2030,
respectively [1,5,12,19].

The rapid expansion of PV systems does not only provide economic benefits to the
electrical systems but also contributes to the reduction of global heating problems [19].
Although a solar PV system can operate by itself, a grid-connected system is required
in order to reliably evaluate the electricity generation system [20,21]. Nonetheless, the
instability of weather conditions and solar radiation lead to the instability of the power
produced by PV panels, which causes a lot of problems in the control and operation of
grid-connected PV panels [22–24]. To solve the instability problems, researchers have been
developing methods to predict the output power of PV panels based on historical data
and meteorological data [25,26]. Recently, artificial neural networks (ANNs) have been
used to improve the prediction power of PV panels’ output. ANNs have been utilized to
solve further problems such as estimating radiation amount, solar power, and ambient
temperature parameters [26,27]. ANNs have been applied for the modeling, identification,
optimization, prediction, and control of complex systems. Hence, several studies report
using ANNs in solar radiation modeling and prediction. Most of those studies utilized the
geographical coordinate and meteorological data such as relative humidity, air temperature,
pressure, sunshine duration, etc. as an input to the ANNs for estimating of global solar
radiation [26,27]. In the following subsection, we go through some of the relevant literature
to demonstrate the attempts to predict solar radiation using machine learning.

1.2. Literature Review

Table 1 covers the literature review section of this paper. In the following table, we
mention the authors, cities at which the data was collected, the research aim, date when
the data was acquired, the models utilized for achieving the research aim, and last but not
least, the performance of each model.

Table 1. Literature review.

Authors and Reference Case Study Research Objective Data Models Used Performance of Models

A. Mellit et al. [28] Trieste, Italy

Estimate the amount of solar
radiation for 24h using
grid-connected photovoltaic
plants (GCPV).

From July 1st 2008 to May 23rd 2009 for
solar radiation, from November 23rd 2009
to January 24th 2010 for air
temperature data.

ANN
The correlation coefficient was 98–99%
for sunny days and 94–96% for
cloudy days.

C. Voyant et al. [29]

Mediterranean Sea:
Ajaccio, Bastia,
Montpellier, Marseille,
and Nice

Estimate the global solar
radiation with two models.

Data on an hourly basis from October 2002
to December 2008 and from French
meteorological organization.

• ARMA/ANN hybrid model,
• the numerical weather

prediction model (ALADIN).

• The nRMSE for hybrid model
MLP/ARMA was 14.9%
compared to 26.2% for the naïve
persistence predictor.

A. Sozen et al. [30] 17 different cities
in Turkey

• Estimate the solar
potential based on
geographic coordinates
meteorological data (and
the corresponding month)
as inputs to the network.

The data were collected from 17
meteorological stations between 2000
and 2002.

ANNs

• MAPE (mean absolute
percentage error) was found to
be less than 6.735%.

• R2 was found to be about
99.893% for the testing stations.

A. Mellit et al. [31] In Tahifet, south Algeria

They presented an application of
an RNN-based approach to
estimate the daily electricity
generation of a photovoltaic
power system (PVPS).

The measured weather data and the output
of electrical signals (voltage and current)
were recorded at the PVPS station in
Algeria from 1992 to 1997.

ANN and RNN
• MAPE was lower than 5.5%.
• The correlation coefficient

ranged between 95 and 97%.

J. M. S. de Araujo [32] Gifu, Japan For hourly solar
radiation prediction.

• The dataset from the
NOMADS website.

• Three years’ data of solar radiation
from 1st January 2014 to
31st December 2016 for LSTM.

LSTMWRF (weather research
and forecasting)

• LSTM algorithm was

310 W m−2 higher compared to

210 W m−2 from the WRF model.
• The error of WRF was 19%

lower compared to 28% of
LSTM for the nRMSE
error metric.
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Table 1. Cont.

Authors and Reference Case Study Research Objective Data Models Used Performance of Models

A. Alzahrani et al. [33] Canada Estimate solar irradiance using a
deep neural network.

The data were recorded for four days, from
Canada’s natural sources.

• Deep recurrent neural
networks (LSTM)

• Support vector
regression (SVR)

• Feedforward neural
networks (FNN)

RMSE:

• LSTM = 0.086
• SVR = 0.11
• FNN = 0.16

MBE:

• LSTM = 0.004
• SVR = 0.0042
• FNN = 0.005

A. Rai et al. [34]
Three different
geographical regions in
different climatic zones.

For midterm solar
radiation estimation.

The data came from three different
geographical regions in different climatic
zones between 2014 and 2015 years.

• A convolution neural
network (CNN)

• Bi-direction long-short-term
memory (BiLSTM)-based
hybrid deep learning
(DL) model.

For CNN-BiLSTM

• R2 = 0.924
• MAE = 0.0397

J. H. Yousif et al. [35] Many different locations
around the world.

Some different ANN techniques
to estimate the photovoltaic
thermal (PV/T) energy.

Data were taken from 2008–2017 for
locations with different latitudes
and climates.

Some models:

• Bayesian neural
network (BNN)

• RNN
• Generalized feed-

forward (GFF)
• MLP
• LSTM

They gave error results such as MAPE,

MSE, RMSE, MBE, MPE, and R2.

Y. Jung et al. [36] South Korea To predict the amount of PV
solar power.

The data were obtained from 164 PV plants
for 63 months. RNN-LSTM

• RMSE = 7.416%
• MAPE = 10.805% for the

testing data

M. Mishra et al. [37] Urbana
Champaign, Illinois

To forecast a short-term solar
power using various time
intervals (1 day, 15 days, 30 days,
60 days ahead forecasting).

The datasets from February 2016–
August 2017 and September 2017–
October 2017.

• Wavelet transform
(WT)-based DLM

• LSTM-Dropout
• Linear regression (LR),
• Some other models

They gave error results such as RMSE,

MAE, MAPE, and R2.

S. Ghimire et al. [38] Australia

Propose a convolutional
long-short-term memory
(CLSTM) neural network hybrid
model to predict half-hourly
global solar radiation (GSR).

Data from 1 January 2006 to
31 August 2018.

Some models:

• Convolutional neural
networks (CNN)

• LSTM
• Gated recurrent unit (GRU).

• Relative root mean square error
(≈1.515%)

• Mean absolute percentage error
(≈4.672%)

• Absolute percentage bias
(≈1.233%)

D. Lee et al. [39] Gumi city in
South Korea

Build three different deep
learning models to predict the
solar power output of PV panels.

Data were a PV power output dataset for
39 months (from 1 June 2013 to
31 August 2016) from a PV operator located
in Gumi city in South Korea.

• ANN
• DNN

LSTM

LSTM-based model performs better by
more than 50% compared to the
conventional statistical models in terms
of mean absolute error.

Z. Pang et al. [40] Tuscaloosa, Alabama,
United States

Create two models using a
shallow ANN and an RNN to
estimate the solar radiation.

The data utilized wereonly
meteorologicaldata from a localweather
station in Tuscaloosa, Alabama,
United States

• A shallow ANN

an RNN

They gave error results of RMSE and
NMBE for both models.

1.3. The Proposed Study

Based on the aforementioned literature review, we found that data from PV panels
and/or meteorological data are utilized to predict solar radiations. The highest achievable
results were found by deep learning techniques [28,31,36–44]. Therefore, we designed
our experiment based on shallow and deep learning models. The motivation behind the
proposed study was the irregularity of energy delivery in Duzce city in Turkey, which may
exist in similar cities around the world. We utilized both PV historical data, which was
collected from the city of Duzce in Turkey for the period between 2014 to 2018, as well as
the daily meteorological data for the same period. In the proposed study, we compared
between a deep ANN and an LSTM model in terms of predicting the solar radiation in
the city of Duzce in Turkey on daily basis. We performed hyperparameter optimization
at predefined hyperparameter values for both the networks, ANN and LSTM. Selecting a
deep learning architecture to perform an accurate prediction of the solar radiation amount
is crucial for the system operators to reduce costs and uncertainties [17,41–44]. The main
contributions of the proposed work can be summarized as: (i) conducting a comparison
between the performance of the most common deep learning models in the literature,
(ii) building an LSTM to accurately predict the solar radiation at the city of Duzce in Turkey
with the potential to be generalized to more cities around the world, and (iii) conducting a
comparison between our results in terms of the coefficient of determination (R2), root mean
squared error (RMSE), mean biased error (MBE), and mean absolute error (MAE).
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2. Materials and Methods

2.1. Dataset

The solar data, which were utilized in the current study, were collected from three
different types of grid-connected PV panels. The PV panels were installed on the top roof
of the University of Duzce Scientific and Technological Research and Application Center
(DUBIT) by Duzce University Clean Energy Resources Application and Research Center
(DÜTEM) in 2013 in Turkey. The geographic location of the center panel is 40◦54′14.7′′ N
and 31◦10′56.7′′ E. Figure 1 shows the three different PV solar panels of schemas in DUBIT
in Duzce University in Duzce.

Figure 1. Three different PV solar panels of schemas in DUBIT in Duzce.

As shown in Figure 1, the first type of panels used (P1) is an amorphous thin film
silicon panel. A single P1 panel has the power of 100 W. In the proposed study, 24 P1 panels
were utilized. The 24 P1 panels were structured in the form of a matrix with two rows
and twelve columns (2 × 12). The total output power generated by the (P1) panels matrix
equals 2400 W. The second type of panel (P2) is a polycrystalline silicon panel. A single
P2 has a solar panel power of 240 W. Eleven P2 panels were utilized in the current study.
The 11 (P2) panels were placed as a single row. That row produces a total power output
of 2400 W. The third type of panel (P3) is a monocrystalline silicon panel. P3 produces a
solar panel power of 235 W. Ten P3 panels were placed in a single row. Those have a total
power output 2350 W. That system of panels (P1, P2, and P3) has been recording data every
5 min since 2013. Output power is recorded for each panel. Average temperature, radiation
amount, and average atmospheric temperature were recorded for all panels.

Table 2 demonstrates an example of the recorded data recorded from P1, P2, and P3.
Therefore, for every day, there are 288 rows of data and 6 columns (3 columns denote
the output power for each panel type (kWh), 1 column denotes average atmospheric
temperature (Â ◦C), 1 column denotes radiation amount (W/m2), and 1 column denotes
panel temperature (Â ◦C). Rows are indexed with the time of acquisition. Moreover,
meteorological data were recorded on daily basis. Thus, for every 288 rows of panels’ data,
there is a corresponding row of meteorological data. Meteorological data acquired were as
follow: daily average relative humidity, daily sunshine time, and daily average cloudiness.
Meteorological data were recorded by the Ministry of Metrology in Turkey. The rationale
behind using the meteorological data is to include any factor that might be affecting the
radiation amount detected by the panels. Some of the meteorological data is presented in
Table 3.
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Table 2. Data from PV panels recorded every five minutes in DUBIT.

Dates
dd.MM.yyyy

HH:mm

P1

Amorphous Thin-Film
Silicon
(kWh)

P2

Polycrystalline
Silicon
(kWh)

P3

Monocrystalline
Silicon
(kWh)

Average
Atmospheric
Temperature

(Â °C)

Radiation
Amounts
(W/m2)

Panels
Temperature

(Â °C)

01.01.2014 11:50 454.81 600.56 613.59 7.40 55.00 7.70
01.01.2014 11:55 454.82 600.57 613.60 7.40 56.00 7.70
01.01.2014 12:00 454.83 600.58 613.61 7.40 56.00 7.70
01.01.2014 12:05 454.84 600.58 613.62 7.40 54.00 7.60
01.01.2014 12:10 454.84 600.59 613.62 7.50 53.00 7.60
01.01.2014 12:15 454.85 600.60 613.63 7.50 53.00 7.70
01.01.2014 12:20 454.86 600.61 613.64 7.50 56.00 7.70
01.01.2014 12:25 454.87 600.62 613.65 7.60 56.00 7.80
01.01.2014 12:30 454.88 600.62 613.65 7.50 56.00 7.80

Table 3. An example of daily average cloudiness from meteorological data in the Turkish State
Meteorological Service (the numbers indicate rate of average cloudiness).

Months

Days Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

1 8.0 7.0 6.4 1.5 4.6 6.2 4.4 2.5 5.0 1.2 7.0 7.7
2 7.0 1.1 6.9 4.4 5.2 5.8 4.1 5.2 3.8 2.9 7.0 7.0
3 7.0 0.0 5.9 4.3 4.2 6.0 5.3 6.8 5.4 5.7 3.7 6.5
4 6.4 3.1 6.7 2.7 6.1 6.0 6.1 5.2 4.7 7.0 0.8 6.3
5 4.6 0.7 4.6 5.7 6.3 7.0 4.0 4.3 6.8 5.5 1.9 7.2
6 5.4 0.9 4.3 5.8 6.8 7.0 0.6 1.9 6.3 6.7 0.8 6.4
7 3.6 0.2 3.8 5.3 5.4 6.3 1.1 6.1 3.8 3.8 0.5 6.2
8 0.0 0.6 7.9 6.8 6.7 6.3 1.6 5.6 5.4 3.0 3.0 6.4
9 7.6 5.7 8.0 0.8 6.8 4.9 0.0 5.8 4.6 6.6 5.4 6.8

10 8.6 6.4 8.0 1.2 6.6 3.0 1.9 2.7 5.0 4.8 5.9 6.8

Table 3 shows an example of 10 days’ data of the meteorological data that were
acquired from the Meteorological Ministry of Turkey in 2014 in Duzce, Turkey. Rows
represents days, columns represent months, and the values in each cell represent the
average cloudiness on that day in that month and recorded average daily cloudiness
for 12 months of the year. Similar tables are given for the other meteorological data.
Meteorological data corresponding to 4 years from 2014 to 2018 were utilized in the current
study [45].

Data were cleaned by removing rows with missing values, then all the data were
aggregated in a single table containing the meteorological data along with the panels’ data.
Python 3.7 and pandas were utilized for data cleaning and manipulation.

2.2. Deep Neural Network Approaches

In this section, we present the shallow ANN and deep ANN architectures used for
forecasting of solar radiation amount as an output, including conventional multi-layer deep
ANN, sequential model, recurrent neural network, and long-short-term memory.

2.2.1. Conventional Deep ANN/Multilayer Perceptron (MLP)

Multilayer perceptron was introduced by Rosenblatt in 1958 as the basic type of neural
network and consists of a number of perceptron [46–59]. There is an input layer to receive
the data and there is an output layer that determines and predicts the output value in
multilayer perceptron. Between the input and output layers, there is a selected number of
hidden layers, which is the main processing engine of MLP [42–46,56–59].

As shown in Figure 2, MLP is a simple neural network. Equation (1) is used to calculate
the output of a single perceptron or neuron [46,59].

output = f
(
∑ inputs

i (xi.wi + bi)
)

, (1)
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where xi is the input of the neuron, wi is the weight on each connection to the neuron, bi is the
bias, and f (.) is the activation function, for instance, the tanh activation function [16,47,59].

Figure 2. Multilayer perceptron network with single output.

2.2.2. Recurrent Neural Network (RNN)

RNNs are conventional neural networks consisting of one or more feedback loops [47].
RNNs have the ability to utilize their input memory to process entries [48]. In conventional
neural networks, all inputs and outputs are considered to be independent of each other.
This means that the output is not fed back to the network as an input; however, in the case
of RNNs, output can be fed again with the input to be considered in future decisions [47,48].
RNNs’ basic architecture is shown in Figure 3.

Figure 3. Basic recurrent neural network (RNN).

In Figure 3, the RNN consists of input (xt), hidden state (ht), and outputs (yt). Wx,
Wy, and Wh are weight matrices. The most important part of RNN is the hidden state (ht),
which is a vector that can also have an arbitrary dimension [48].

ht = Fw (ht−1, xt), (2)

ht = tanh
(

Whh(t−1) + Wxxt

)
, (3)

yt = Wyht, (4)
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Figure 3 also shows the relationship between functions in RNN. In the functions,
h(t−1) of previous hidden state contains information from the previous time step; Fw is an
activation function as shown Equation (3) [47,48].

2.2.3. Long-Short-Term Memory (LSTM)

LSTM is based on the RNN architecture. It is a model designed to expand the RNN
memory [45,46]. This memory has the ability to store information over an arbitrary length
of time. There are three gates, which are the input, output, and forget gate, to control
the information flow into and out of the neuron’s memory [48–51]. Those three gates
get the same input as the input neuron. Furthermore, each gate possesses an activation
function [41,48,52].

Figure 4 shows the figuration of LSTM at time t. Mathematically, LSTM can be
described using the following functions [50–58].

ft = g
(

Wf xt + Uf ht−1 + b f

)
, (5)

it = g (Wi xt + Ui ht−1 + bi), (6)

kt = tanh (Wk xt + Uk ht−1 + bk), (7)

ct = ft ct−1 + it kt, (8)

ot = g (Wo xt + Uo ht−1 + b0), (9)

ht = ot tanh (ct), (10)

where xt is the input vector at time t and g is an activation function (sigmoid, tanh, or
ReLU). W and U are weight matrices, and b is the bias vector. ht and ct are output and cell
state vector at time t. ft has been used for remembering old information and it has been
used for getting new information [38,49,50,52].

 
Figure 4. Long-short-term memory (LSTM) at time t.

2.3. Activation Functions

Activation functions are used to add the non-linearity behavior of the ANN [53–56].
Without the activation function, the output of each layer of the ANN would just be the
output of a linear model with number of parameters equal to the number of the neurons in
each layer [54,55]. Consequently, activation functions increase the overall performance of
the ANN and add a nonlinear behavior to it, depending on the behavior of the activation
function itself. Thus, if activation functions are not applied on the ANN, the ANN usually
has limited performance and acts as a linear regression model [54,55,57,59].

Figure 5 shows the basic structure of the activation function, where x = inputs,
w = weights, f (Σ) = activation functions, and y = outputs [54,55].
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Figure 5. Structure of neural networks with activation function.

The most common activation functions are hyperbolic tangent function, sigmoid func-
tion, linear function, ReLU (rectified linear unit) function, leaky-ReLU function, softmax
function, and swish (a self-gated) function [55,58,59].

In this work, we use the hyperbolic tangent function (tanh) as the activation function
for our proposed ANN and DNN models. The tanh function is used for the input and
hidden layers.

In hyperbolic tangent function (−1, 1)

f (x) = tanh(x) =
(ex − e−x )

(ex + e−x )
, (11)

However, the rectified linear unit (ReLU) activation function is utilized in the output
layer to provide a non-negative solar radiation predictive value [54–59].

ReLU (rectified linear unit) function [0, ∞)

f (x) =
{

0 f or x < 0
x f or x ≥ 0

, (12)

3. Experimental Design

3.1. Dataset Description

Panels data and meteorological data of the full dataset were used in this study as de-
tailed in the methodology. Panels log their power reading during the daytime, i.e., sunrise
to sunset. From the sunset to sunrise, the panel does not provide any information about
their output power; however, we still have data about their average temperature. Therefore,
to maximize the information in our data, we filtered out the period between sunset to
sunrise which varies between winter and summer. We added the meteorological data,
which consisted of cloudiness, relative humidity, and sun time, to the panels’ data. Meteo-
rological data were recorded as one sample per day while panels’ data were recorded every
5 min. Therefore, we created three new columns for every panel’s data file and assigned to
those columns the meteorological values for that day by repeating it n times where n is the
number of rows/entries in that panel’s data file. In this way, we have built a connection
between solar data and meteorological data. We used the same epochs numbers and batch
size for two models owing to the comparison.

Deep ANN and LSTM were utilized in this study to predict the daily solar radiation.
Inputs were amorphous silicon PV panel in kWh, mono silicon PV panel in kWh, poly sili-
con PV panel in kWh, average atmospheric temperature in ◦C, average panel temperature
in ◦C, daily average cloudiness, daily average relative humidity (%), and daily sunshine
time in hours, and the output was the predicted radiation amount (W/m2).

Four years’ worth of data were utilized in the proposed study. The data were split into
3 years for training and 1 year for testing. Results in terms of mean square error (MSE) were
computed for each model. The training set was split further into a training and validation
set for both models. Eventually, the two trained models were evaluated using the testing
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set. The assumption was that the trained model which has been trained on the 3 years of
data can then be used to perform the prediction throughout the 4th year with the same
range of error. For both models, we concatenated the daily meteorological data to the data
acquired from the PV panels. In order to preserve the data acquired by the panel, each daily
metrological value was repeated in the rows corresponding to that day. We trained both
models using the aggregated data by averaging every 12 rows (=60 min) and predicting
the following 48 row’s solar radiation (=predicting the solar radiation after 48 h). The
data were then normalized between 0 and 1, and the normalized data were used for the
learning process.

3.2. Description of the ANN Model

As shown in Figure 6, we created an ANN model for prediction of radiation amounts.
Deep ANN was utilized with a structure of 1 input layer of size 8, 2 hidden layers each of
size 50, and a single output layer with size 1. Therefore, we utilized only one row to predict
the following 48th row.

Figure 6. ANN model.

For the model in Figure 6, the tanh function was used as the activation function for the
proposed model. Hyperparameter optimization using random grid search was performed
on the batch size and the learning rate. Stochastic gradient descent (SGD) was utilized as
the optimizing parameter for the deep ANN. The hyperparameters’ ranges are specified in
the following Table 4.

Table 4. Hyperparameters of the ANN model.

Epochs 500

Batch size 16, 32, 64, 128, 256, 512, 1024

Learning Rate (LR) [0.0005, 0.05] with step 0.005

Table 4 demonstrates the hyperparameters of the ANN model.

3.3. Description of the LSTM Model

LSTM is an advanced RNN used to specify which feature should be memorized or
forgotten when the network is being trained. Therefore, given a sufficient history of features
and solar radiation, the LSTM can determine the required history for each feature to provide
an accurate solar radiation estimation.
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In the proposed LSTM/DNN model, we allowed the LSTM to access up to 30 h in the
past in order to predict the solar radiation after 48 h. Hyperparameters optimization via
grid search was performed on the hyperparameters shown in Table 5.

Table 5. Hyper parameters of the LSTM model.

Epochs 500

Batch size 16, 32, 64, 128, 256, 512, 1024

n 1, 2, 5, 10, 15, 20, 30 h

The loss function of LSTM was the mean squared error (MSE) and the model was
implemented by Keras.

3.4. Error Measures

The performance of the reference methods and the different approaches were evaluated
with five different error measures for ANNs. The equation shows the mean-square error
(MSE) [50,59].

MSE
(
x′, x

)
=

1
N ∑ N

n=1(x′
n − xn)

2 , (13)

In the equations, x is the measured power time series, x2′ is the predicted power time
series, and N denotes the number of samples of the time series [47,48,59].

4. Results and Discussion

The training and texting process is shown in Figure 7. Loss function with 500 epochs,
batch size of 256 was used for this ANN model.

Figure 7. Loss function with 500 epochs for ANN model, batch size of 256.

As shown in Figure 7, the minimum training MSE and minimum testing MSE were
0.0762 and 0.0775, respectively, for the ANN model. The optimum parameters selected for
the ANN model were batch size 256 and learning rate 0.01.

Figure 8 shows the graph of training and texting of data with the LSTM model for
500 epochs.
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Figure 8. The graph of training and testing of data with LSTM model for 500 epochs.

As demonstrated in Figure 8 for the LSTM model, the minimum training MSE and
minimum testing MSE were 0.0049 and 0.0080, respectively. The optimum parameters
selected for the ANN model were batch size 256 and past days of 15 h.

Table 6 compares the results obtained by using the ANN model and the LSTM model.
Using MSE to calculate the error/loss of the two models, it was found that LSTM improves
the results about 18 times in case of training, and about 9 times in case of testing. Since
LSTM successfully outperformed ANN by utilizing the data from the previous 15 h, LSTM
was the chosen model to test on the 4th year testing data.

Table 6. Error comparison of models after 500 epochs.

Method MSE

ANN Model
Minimum training loss 0.0762

Minimum testing loss 0.0775

LSTM (Deep Learning)
Minimum training loss 0.0049

Minimum testing loss 0.0080

Figure 9 shows a sample of the prediction performed using the LSTM trained model
on 175 days of the 4th year assigned for testing the trained model. Number of days are
shown on the horizontal axis versus the normalized solar radiation on the vertical axis. We
calculated the coefficient of determination, R2, along with the MSE for the testing results.
R2 was found to be 0.9365 and MSE was 0.01. In order to demonstrate the significance
of our results, we compared our results to similar work in the literature by M. Mishra
et al. [37] and U. Agbulut et al. [60]. Moreover, U. Agbulut et al. [60] predicted the solar
radiation by using deep learning models for four different cities in Turkey. We averaged
the values of their metric scores over the four cities to compare with ours. On the other
hand, M. Mishra et al. [37] utilized wavelet transformation on the historical PV solar output
at the University of Illinois in Urbana Champaign along with the meteorological data to
train LSTM model to perform daily predictions. The authors compared the performance
of different ML models to LSTM. Similar to our findings, LSTM outperformed the other
models. They trained the models using 18 months of data and tested with one month. It is
worth noting that they were performing hourly predictions for 1 day ahead.
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Figure 9. Radiation of 175 days (testing days) as LSTM predicted (blue) versus the ground truth as
measured (red).

Table 7 demonstrates the performance of our model with respect to other similar
models in the literature. Although we outperformed the other models in terms of R2, M.
Mishra et al. [37] achieved better results in terms of RMSE and MAE. We claim that this
higher performance is due to the fact that they performed hourly prediction of the one day
ahead and not the whole day. Moreover, we tested on a whole year of data and not only
one month.

Table 7. Comparison for ANN.

Metric [38] [58] Proposed Method

R2 0.426 0.916 0.93

RMSE 0.011 2.138 0.089

MBE NA 0.3874 0.009

MAE 0.074 1.781 0.17

5. Conclusions and Limitations

In this study, we collected data from three different types of solar panels for the city of
Duzce in Turkey and trained an ANN and an LSTM to accurately predict the solar radiation
using PV historical data as well as meteorological data. Data were collected for the years
between 2014 and 2018 on a daily basis with a 5-min interval. The first model was an ANN
model which is frequently used for solar prediction according to the literature. The second
model was LSTM which is based on RNNs and is getting more utilization in time series
forecasting studies. In the proposed study, we demonstrate the feasibility of accurately
predicting solar radiation after 24 h if 15 h of PV historical data along with one previous
day of meteorological data are provided to the LSTM. The ability of the LSTM to utilize the
historical values of the features allows it to outperform other deep learning models in time
series applications. Moreover, we conducted a comparison between our results and similar
work in the literature in terms of many error metrics.

Two main limitations of the proposed study would be training the models on data
collected solely from the city of Duzce in Turkey. For future work, we plan to collect data
from different places in Turkey, or around the globe if possible, to study the generalizability
of a trained LSTM model to be used as a prediction tool for solar radiation in different
locations. We are aware of the fact that the weather in Duzce is stable most of the time and
it perhaps assisted in creating a very accurate model; thus, we are planning to acquire data
from places where the weather is more turbulent.

206



Appl. Sci. 2022, 12, 4463

Author Contributions: Conceptualization, T.O. and B.O.A.; methodology, T.O.; software, T.O. and
B.O.A.; validation, J.M.Z. and O.T.O.; formal analysis, J.M.Z. and O.T.O.; investigation, T.O.; resources,
T.O.; data curation, T.O. and B.O.A.; writing—original draft preparation, T.O.; writing—review and
editing, T.O., F.T. and J.M.Z.; visualization, T.O.; supervision, J.M.Z. and O.T.O.; project administration,
T.O.; funding acquisition, The Scientific and Technological Research Council of Turkey (TUBITAK).
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Scientific and Technological Research Council of Turkey
(TUBITAK), grant number 1059B141800505.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data utilized in this study were obtained from the Duzce University
using the aforementioned described solar panels. Those solar panels were installed in the Duzce Uni-
versity for scientific research in 2013. Data were recorded and saved in the Duzce University database.
Moreover, meteorological data were obtained via a protocol between the physics department, Duzce
University, and the Ministry of Metrology in Turkey. Data are available upon request.

Acknowledgments: This study was supported by 1059B141800505 from The Scientific and Techno-
logical Research Council of Turkey (TUBITAK).

Conflicts of Interest: There is no conflict of interest.

References

1. Husain, A.A.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies.
Renew. Sustain. Energy Rev. 2018, 94, 779–791. [CrossRef]

2. Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain.
Energy Rev. 2018, 90, 275–291. [CrossRef]

3. Wang, Z.; Song, H.; Liu, H.; Ye, J. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects.
Angew. Chem. Int. Ed. 2020, 59, 8016–8035. [CrossRef]

4. Zhang, Y.; Jing, R.; Yanru, P.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological,
and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [CrossRef]

5. Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.; Wilberforce, T.; Olabi, A.G. Environmental impacts of solar
energy systems: A review. Sci. Total Environ. 2021, 754, 141989. [CrossRef]

6. Li, J.; Huang, J. The expansion of China’s solar energy: Challenges and policy options. Renew. Sustain. Energy Rev. 2020,
132, 110002. [CrossRef]

7. Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S.; et al.
A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission
technologies. Nat. Energy 2018, 3, 515–527. [CrossRef]

8. Shamshirband, S.; Rabczuk, T.; Chau, K.W. A survey of deep learning techniques: Application in wind and solar energy resources.
IEEE Access 2019, 7, 164650–164666. [CrossRef]
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Abstract: Under harsh geographical conditions where manned flight is not possible, the ability of
the unmanned aerial vehicle (UAV) to successfully carry out the payload hold–release mission by
avoiding obstacles depends on the optimal path planning and tracking performance of the UAV.
The ability of the UAV to plan and track the path with minimum energy and time consumption is
possible by using the flight parameters. This study performs the optimum path planning and tracking
using Harris hawk optimization (HHO)–grey wolf optimization (GWO), a hybrid metaheuristic
optimization algorithm, to enable the UAV to actualize the payload hold–release mission avoiding
obstacles. In the study, the hybrid HHO–GWO algorithm, which stands out with its avoidance of
local minima and speed convergence, is used to successfully obtain the feasible and effective path. In
addition, the effect of the mass change uncertainty of the UAV on optimal path planning and tracking
performance is determined. The effectiveness of the proposed approach is tested by comparing it
with the metaheuristic swarm optimization algorithms such as particle swarm optimization (PSO)
and GWO. The experimental results obtained indicate that the proposed algorithm generates a fast
and safe optimal path without becoming stuck with local minima, and the quadcopter tracks the
generated path with minimum energy and time consumption.

Keywords: path planning and tracking; metaheuristic optimization; quadcopter; payload hold–
release system; obstacle avoidance

1. Introduction

Path planning and tracking are the main tasks studied for unmanned vehicles, es-
pecially unmanned aerial vehicles (UAVs), unmanned ground vehicles, and unmanned
underwater vehicles [1–4]. UAVs, which have been used extensively in defense industry
and academic studies in recent years, perform tasks such as surveillance, target tracking,
search and rescue, and payload transportation [4–7]. The obstacles and their positions in
the region where UAVs will operate play an important role in the effective operation of
UAVs [8]. Establishing a safe path by determining the risky areas in military operation
and natural disaster areas, following the path that has been generated, and releasing the
payloads to the predefined regions are critical for the successful performance of the mis-
sion [9]. In this study, a new path planning and tracking algorithm based on metaheuristic
optimization is developed for the payload hold–release task by avoiding the obstacles at
the target points defined around the planned path.

A path planning and tracking is required for the UAV to safely reach the target location
from the starting location depending on certain restriction conditions such as minimum
flight distance and time [10]. UAVs may be exposed to inconvenient land and weather
conditions while performing critical tasks. UAVs try to overcome this problem with their
maneuverability and altitude capabilities [1]. This situation causes the UAV to consume
more energy [11]. In the presence of obstacles and constraints, optimal path planning
is required for the UAV to safely follow the specified path with minimum energy and
time consumption [12,13]. The UAV path planning problem is a complex optimization
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problem that requires efficient algorithms to solve. This optimization problem can be
solved with classical algorithms as well as by using quite efficient metaheuristic algorithms.
Simple path planning for UAV is performed with the Voroni diagram algorithm [14],
the probabilistic roadmaps algorithm [15], the A* algorithm [16], and rapidly discovered
tree-based algorithms [17]. However, since the kinematic and dynamic constraints of
the UAV are rarely considered, these algorithms are generally not preferred in practical
applications. In recent years, various approaches have been proposed for the autonomous
path planning of the UAV, including meta-heuristic optimization algorithms. In [18],
modeling of the battery performance of the UAV is emphasized. A multi-variable linear
regression model has been created for the minimum energy consumption of the UAV
on the specified path. The generated energy consumption model is used as a fitness
function in the optimization algorithm. The performance of the proposed algorithm has
been verified with various scenarios for the minimum energy consumption of the UAV.
In [19], a path planning algorithm based on k-degree smoothing is proposed to define the
coordinated path planning of the UAV in a safe and efficient manner. In the study, a k-
degree smoothing method that aims to obtain a safer path using the ant colony optimization
(ACO) algorithm [20] is presented. The proposed algorithm draws attention with its slow
convergence speed and high probability of being stuck to local optima. In order to deal
with these problems, a hybrid optimization algorithm obtained by combining maximum–
minimum ACO (MMACO) and Cauchy mutant (CM) operators is recommended in [21].
As paths with faster convergence speed and better solution optimization are preferred
in practical applications, swarm-based bio-inspiring optimization algorithms with low
computational complexity and high computational speed are used extensively. In [22],
an improved particle swarm optimization (PSO) algorithm has been proposed to achieve
faster convergence speed and better solution optimization in the path planning of the
UAV. The performance of the algorithm has been tested on various UAVs under many
environmental constraints with Monte Carlo simulations. In [23], the 3D path planning
problem of the UAV in the presence of obstacles is solved with the grey wolf optimization
(GWO) algorithm [24] and the performance of the proposed algorithm is compared with
metaheuristic algorithms such as PSO, the whale optimization algorithm (WOA), and the
sine cosine algorithm (SCA). In the literature, metaheuristic optimization algorithms play
an important role in solving different engineering problems, as well as path planning and
tracking [25–27].

UAVs may encounter various obstacles while performing specified missions by stick-
ing to a path. In [28], an obstacle avoidance algorithm based on ellipsoid geometry is
proposed for the UAV to remain loyal to its original path and avoid the obstacles in its
environment by creating waypoints in the presence of obstacles that obstruct the UAV
flight path. The search for an avoidance path in the proposed algorithm is based on the
use of ellipsoid geometry as a limited region containing the obstacle. Considering the
geometry of the defined obstacle, a limited ellipsoid zone is created, and new crossing
points are calculated within this zone. A convolutional neural network (CNN) approach
based on depth estimation using molecular camera data to enable the quadrotor UAV to
independently avoid collisions with obstacles in unknown and unstructured environments
is presented in [29]. In [30], a new algorithm has been proposed that analytically calculates
the path efficiently and effectively to create an environment map with a path without
collision. In the developed algorithm, an initial path is created by the intersection of two
3D surfaces. Each obstacle position is shaped around the obstacles by adding a radial
function to one of the two surfaces. The developed algorithm ensures that the intersection
between deformed surfaces does not intersect with obstacles. The algorithm provides that
the safe path is created in real time in the UAV’s path tracking. In [31], every point in
the motion environment is scanned with the 2D lidar on the UAV and the position of the
UAV is estimated using the point cloud correction method. Unlike many studies with lidar,
the effects of motion on the point cloud have been taken into account. In the proposed algo-
rithm, point cloud features obtained by laser radar are extracted and a clustering is made
based on relative distance and density. A robust nonlinear flight controller framework with
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six dimensional force and torque estimators that includes a model predictive controller
(MPC)-based trajectory plan that considers the trajectory planning problem as an optimal
control problem with nonlinear obstacle avoiding limitations is proposed in [32].

The ability of the UAV, which has a payload transportation system, to move around
the reference trajectory and hold payloads from a certain point and to release payloads
to specified targets with minimum error makes the UAV important for critical missions.
In releasing the payloads to the specified targets, the UAV should be able to determine
the path on its own or stay loyal to the specified path. In [33], neural-network-based
real-time UAV control is performed in order to release the payloads to the marked targets
by following a certain path with minimum error. The controller structure includes feature
extraction and selection stages. In order for the UAV to release the payloads on the
predetermined coordinates with the highest accuracy, the full mathematical model of the
UAV, as well as the model of the payload transportation system, is needed. In [34], both the
dynamic model parameters and the payload transportation system model of the UAV are
handled together with the controller approach based on the law of feedback linearization.
It is stated that the stabilization of the UAV, especially when releasing payload, is improved
with the proposed controller approach. The controller scheme robust to payload changes
in various weights is presented in [35]. The proposed controller provides the stabilization
of the UAV in the suspended position by compensating the weight changes in the UAV
with payload transportation system. In [36], an optimization-based controller algorithm
has been developed for the UAV moving around a certain trajectory to make minimum
oscillation at maximum payload. It is emphasized that the developed algorithm performs
optimal control, especially in maneuvers.

In this study, a new metaheuristic-optimization-based path planning and tracking
algorithm with a very high convergence speed is proposed to the UAV with payload
transportation system in order to plan a path by avoiding obstacles under constraints
such as mass uncertainty, unknown parameters, and unmeasurable external disturbances
and to release the payloads to the target points with minimum error while staying loyal to
path. The proposed algorithm is robust as it copes with unknown system dynamics and
adverse environmental factors. The main contributions of this study are that the new hybrid
Harris hawk optimization (HHO)–GWO algorithm for path planning is proposed, the new
path planning and tracking control strategy is developed together, and the path-tracking
performance of the quadcopter in payload hold–release mission has been analyzed. In
addition, the positional error due to the mass uncertainty can be minimized by the proposed
control strategy, as well as the energy function. The results of the study are shown that
the mass uncertainty and energy of quadcopter during payload hold–release mission have
been minimized using the new proposed path planning and tracking algorithm.

The remainder of this paper is organized as follows. The dynamic model of the
quadrotor UAV used in the study is given in Section 2. The proposed controller approach
for the path planning and tracking of the UAV is introduced in Section 3, including GWO
and HHO algorithms. The generated maps are presented in Section 4. The results obtained
with the proposed model are discussed in Section 5. Finally, in Section 6, the main results
of the study, and future work are highlighted.

2. Dynamic Model of Quadcopter

Quadcopter is an underactuated type of UAV with four motors and six degrees of
freedom (three translational and three rotations) and capable of landing and taking off
in limited areas [37]. The evaluation of translation and rotation dynamics together in the
motion control of a quadcopter is an important control problem. In the solution of this
control problem, it is very important to take into account the non-linear parameters in the
dynamics of the quadcopter. The main components of the quadcopter, Euler angles (roll,
pitch, yaw), body frame, and global frame are illustrated in Figure 1.
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Figure 1. The main components of quadcopter.

The following parameters:

• The frame of the quadcopter is symmetrical and the center of gravity is in the middle
of the fuselage;

• The thrust and friction of each motor of a quadcopter is proportional to the square of
their motor speed;

• Moment of inertia of the propellers;
• During the flight of the qudcopter, the Earth is flat and non-rotating.

are assumed in the model of quadcopter [38]. Position changes during quadcopter flight
are measured in the frame, accelerometer, and gyro values are measured in the body
frame. For this reason, it is necessary to define the transformations between body and
coordinate systems. In this study, cos(.), sin(.), and tan(.) are represented by c(.), s(.), and
t(.), respectively. Considering these transformations, the velocity expression in the frame is
obtained by using the velocity in body frame as:⎡⎢⎣ ẊG

ẎG

ŻG

⎤⎥⎦ =

⎡⎢⎣ c(ψ)c(θ) c(ψ)s(φ)s(θ)− c(φ)s(ψ) c(φ)c(ψ)s(θ) + s(φ)s(ψ)
s(ψ)c(θ) s(φ)s(ψ)s(θ) + c(φ)c(ψ) c(φ)s(ψ)s(θ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(φ)c(θ)

⎤⎥⎦
⎡⎢⎣ ẋb

ẏb

żb

⎤⎥⎦ (1)

where ẊG, ẎG, ŻG velocities (m/s) (X, Y, Z) in global frame, φ, θ, ψ (roll, pitch, yaw
angles), (rad), and ẋb, ẏb, żb velocities (X, Y, Z) in the body frame [38,39]. The equations
of motion of the quadcopter consist of two main components, dynamic and kinematic.
Dynamic components explain the motion of the quadcopter according to Newton’s second
laws, while kinematic components explain the quadcopter’s transformation equations.
The rotational kinematics of the quadcopter describe the relationship between the angular
rate and Euler angles. According to this rotation kinematics, since the angular rate is given
in the body frame and the Euler angles are given in the frame, the relation between each
other is obtained as: ⎡⎣ φ̇

θ̇
ψ̇

⎤⎦ =

⎡⎢⎣ 1 s(φ)t(θ) c(φ)t(θ)
0 c(φ) −s(φ)
0 s(φ)

c(θ)
c(φ)
c(θ)

⎤⎥⎦
⎡⎣p

q
r

⎤⎦ (2)

by using the transformation matrix, where p, q, r roll, pitch, yaw rates (rad/s) and φ̇, θ̇, ψ̇,
and (rad/s) time derivatives of Euler angles, respectively [38,40]. Translational s describes
the linear motion of all forces acting on the quadcopter during flight according to the
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coordinate frame. Equations of motion resulting from translational s of the quadcopter are
obtained as in Equation (3), according to Newton’s second law:⎡⎣ ẌG

ŸG

Z̈G

⎤⎦ =

⎡⎣ 1
m (−[c(φ)c(ψ)s(θ) + s(φ)s(ψ)]u1 − KdxẊG)
1
m (−[c(φ)s(ψ)s(θ)− c(ψ)s(φ)]u1 − KdyẎG)

1
m (−[c(φ)c(θ)]u1 − KdzŻG) + g

⎤⎦ (3)

where ẌG, ŸG, Z̈G accelerations (m/s2) X, Y, Z in the coordinates, m mass of quadcopter
(kg), Kdx, Kdy, Kdz drag coefficients, ẊG, ẎG, ŻG velocities X, Y, Z in the coordinates, and
u1 is total thrust of all motors, respectively [41]. The rotational s of quadcopter describes
the relationship: ⎡⎣ φ̈

θ̈
ψ̈

⎤⎦ =

⎡⎢⎢⎣
[(Jy−Jz)qr−Jrq(w1−w2+w3−w4)+lKTu2]

Jx
[(Jz−Jx)pr+Jr p(w1−w2+w3−w4)+lKTu3]

Jy
[(Jx−Jy)pq+Kdu4]

Jz

⎤⎥⎥⎦ (4)

between the second derivatives of Euler angles (φ̈, θ̈, ψ̈) (rad/s2) on each axis depending on
the square of its motor speeds (w1, w2, w3, w4) (rad/s), namely, torques, and Jx, Jy, and Jz
(kg m2) quadcopter moments of ineartia on each axis. u2 refers roll control input, u3
describes pitch control input, u4 indicates yaw control input, KT is the thrust coefficient, Kd
is the drag torque proportionality constant, and l is the arm length of quadcopter (m)
as in Equation (4) [38,41]. The quadcopter moments of inertia on each axis and mass of
quadcopter are expressed [41]:

Jx = Jy =
2(mc + ml)R2

5
+ 2l2mm Jz =

2(mc + ml)R2

5
+ 4l2mm m = 4mm + mc + ml (5)

where mc is the center mass of quadcopter (kg), R is the radius of center mass (m), mm is the
motor mass (kg), and ml is the payload mass (kg). In this study, the total mass in the system
model of the quadcopter is changed during the payload hold–release mission depending on
the weight of the payload carried, and the moment of inertia in each axis is directly related
to this mass change. To summarize, the dynamic and kinematic model of the quadcopter
with six degrees of freedom is represented as Equations (1)–(4). The relationship between
motor speeds and control variables is defined as:⎡⎢⎢⎣

u1
u2
u3
u4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
KT KT KT KT
0 −lKT 0 lKT

lKT 0 −lKT 0
Kd −Kd Kd −Kd

⎤⎥⎥⎦
⎡⎢⎢⎣

w2
1

w2
2

w2
3

w2
4

⎤⎥⎥⎦ (6)

Note that the control variables are directly proportional to the squares of the motor speeds.

3. Proposed Control Approach for Path Planning and Tracking

The control strategy of this study consists of path planning and tracking. The hybrid
HHO–GWO algorithm, which has high convergence speed and swarm intelligence that can
avoid local minimum points, is proposed in this study in determining the optimum path.
The path planning performances of the proposed optimization algorithm are compared
with metaheuristic optimization algorithms such as PSO and GWO. The payload hold–
release path determined by these optimization algorithms is generated with the shortest
distance and avoiding the areas where there are obstacles. By analyzing the multi-objective
function with metaheuristic optimization algorithms, waypoints to be followed by the UAV
are generated. As seen in Figure 2, after the waypoints that the quadcopter are to follow are
generated, the following of these waypoints, namely, the path tracking, is carried out with
controller in a nested structure. The main idea of the study is that a new control strategy is
proposed to carry out path planning and tracking together for the quadcopter’s payload
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hold–release mission. The section includes not only controller design of quadcopter but
also metaheuristic algorithms such as PSO, GWO, and HHO.

Figure 2. The proposed control strategy of the quadcopter.

3.1. Controller Design

The control strategy proposed in this study consists of two main steps: path planning
and the tracking of the path. Path planning, which is the first step of the control strategy, is
the process of determining the waypoints that the quadcopter is desired to track during
payload transportation mission. Metaheuristic optimization algorithms such as PSO, GWO,
and hybrid HHO–GWO are used to identify these waypoints. After determining the
waypoints that the quadcopter is desired to track, path tracking is performed as the second
step of control strategy. The path tracking process consists of four control structures:
translational position, attitude–altitude, angular velocity controllers, and the system model
of quadcopter. This path tracking controller is nested with each other. The motion control on
the X and Y axes, attitude–altitude control and the angular velocity control of quadcopter
are performed on the outer part, the inner part, and the innermost part, respectively. In the
study, noise that occurs as a disruptive effect in attitude, altitude, and angular velocity
control is suppressed by Kalman filter [42]. The position errors of quadcopter in X, Y, and
Z axes are indicated as:

ex = XG
d − XG ey = YG

d − YG ez = ZG
d − ZG (7)

where ex, ey, and ez refer the position errors; XG
d , YG

d , and ZG
d denote the desired positions;

and XG, YG, and ZG define the measured positions in the X, Y, and Z axes, respectively.
The errors of quadcopter in orientation angles are specified as:

eφ = φd − φ eθ = θd − θ eψ = ψd − ψ (8)

where eφ, eθ , and eψ describe the orientation errors; φd, θd, and ψd define the desired
orientation angles; and φ, θ, and ψ represent the measured orientation angles in the roll,
pitch, and yaw angle, respectively. The angular velocity error is stated as:

ep = pd − p eq = qd − q er = rd − r (9)

where ep, eq, and er are the angular velocity errors; pd, qd, and rd define the desired angular
velocity; and p, q, and r express the measured angular velocity along xb, yb, zb, respectively.

3.1.1. Translational Position Control

This controller is responsible for minimizing the measurement difference obtained
from the desired position and the quadcopter system model output. As specified in
Equations (10) and (11):

θd(t) = KPXex(t) + KIX

∫ t

0
ex(τ)dτ + KDXėx(t) (10)
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φd(t) = KPYey(t) + KIY

∫ t

0
ey(τ)dτ + KDYėy(t) (11)

the desired roll and pitch values are identified by the translational position controller
as a result of the minimization of this error with the proportional–integral–derivative
(PID) controller, and where KPX, KIX, KDX express PID gains that control the movement
of the quadcopter in the X position, and KPY, KIY, KDY indicate PID gains that control the
movement of quadcopter in the Y position, respectively. The inputs of the translational
position controller are desired the position (XG

d , YG
d ), the output of the quadcopter system

model (XG, YG), and the controller’s output are the desired pitch (θd) and roll angles (φd).
The proposed controller also performs the tracking of waypoints specified in the X, Y plane
with metaheuristic path planning algorithms [38].

3.1.2. Attitude–Altitude Control

The height and orientation angles (roll, pitch, yaw) of the quadcopter are controlled
by the attitude–altitude controller. As stated in Equations (12)–(15):

u1(t) =
1

cos(φ)cos(θ)
(KPZez(t) + KIZ

∫ t

0
ez(τ)dτ + KDZ

dez(t)
dt

+ mg) (12)

pd(t) = KPφeφ(t) + KIφ

∫ t

0
eφ(τ)dτ + KDφ

deφ(t)
dt

(13)

qd(t) = KPθeθ(t) + KIθ

∫ t

0
eθ(τ)dτ + KDθ

deθ(t)
dt

(14)

rd(t) = KPψeψ(t) + KIψ

∫ t

0
eψ(τ)dτ + KDψ

deψ(t)
dt

(15)

KPZ, KIZ, KDZ express PID gains that control the movement of quadcopter in the Z position;
KPφ, KIφ, KDφ specify PID gains that control the roll angle; KPθ , KIθ , KDθ describe PID
gains that control the pitch angle; KPψ, KIψ, KDψ denote PID gains that control the yaw
angle. The inputs of the controller are desired and measured height, roll, pitch, and yaw
angles; the outputs are u1; and the desired angular velocities are (pd, qd, rd). u1 obtained at
the controller output is input into the quadcopter system, and this control variable enables
the quadcopter to increase [38].

3.1.3. Angular Velocity Control

This controller performs angular velocity control, the main task of the controller is
the minimization of error between desired and measured angular velocity components.
The angular velocity control is denoted as:

u2(t) = KPPep(t) + KIP

∫ t

0
ep(τ)dτ + KDP

dep(t)
dt

(16)

u3(t) = KPQeq(t) + KIQ

∫ t

0
eq(τ)dτ + KDQ

deq(t)
dt

(17)

u4(t) = KPRer(t) + KIR

∫ t

0
er(τ)dτ + KDR

der(t)
dt

(18)

where KPP, KIP, KDP express PID gains that control the angular velocity along xb; KPQ, KIQ,
KDQ indicate PID gains that control the angular velocity along yb; and KPR, KIR, KDR refer
to PID gains that control the angular velocity along zb. The outputs of controller constitute
the orientation control variables (u2, u3, u4) of the quadcopter [38].
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3.1.4. Motor Control

Using the height and orientation control variables obtained from attitude–altitude
and angular velocity controller outputs, the angular velocities required for the motors are
obtained as in Equations (19) and (20) [38]. Thus, the thrust required for the movement of
the quadcopter in the specified path is obtained by controlling the speed of the motors wi,
i = 1, 2, 3, 4 as:

w2
1 =

u1

4KT
+

u3

2lKT
+

u4

4Kd
w2

2 =
u1

4KT
− u2

2lKT
− u4

4Kd
(19)

w2
3 =

u1

4KT
− u3

2lKT
+

u4

4Kd
w2

4 =
u1

4KT
+

u2

2lKT
− u4

4Kd
(20)

The power consumed by each motor of quadcopter is indicated as:

Pmk = Phk
= (2ρAp)(

KvKτ

Kt
)3w3

k k = 1, 2, 3, 4 (21)

where Pmk denotes the power consumed by the kth motor, Phk
explains the hovering power

consumed by the kth motor, ρ is air density (kg/m3), Ap refers to the propeller cross-section
(m2), Kv is the back electromotive force (EMF) constant, Kτ is the torque proportionality
constant, and KT is the thrust coefficient.

3.2. Three-Dimensional Path Planning Model of the Quadcopter

The 3D path planning algorithm proposed in this study is operated to define the
optimum path by avoiding the obstacle region after the starting and ending point are
determined. There are two limit values of the objective function, the starting (xs, ys, zs) and
the ending points (xt, yt, zt). The number of waypoints to be generated, including starting,
ending, payload hold, and payload release points, are entered. Afterwards, the locations
of the spherical barriers on the map are defined as central positions (xobs, yobs, zobs) and
the radius (robs), and these locations are given as an input to the algorithm. The 3D path-
planning algorithm presented in this study consists of three different objective functions.
In the first part, the length of the generated path is indicated as:

d =
Np−1

∑
i=1

√
dx2

i + dy2
i + dz2

i (22)

where dx, dy, dz are the infinitesimal lengths traversed by the quadcopter along X, Y, Z axes,
respectively, and Np is the number of generated points [43]. In the second part, the total
energy consumed by the quadcopter is expressed as:

Et = KE

Np

∑
i=1

Δt
4

∑
k=1

w3
ki (23)

where KE = (2ρA)(KvKτ
Kt

)3, and Δt is the sampling period. Motor speeds wk (k = 1, 2, 3, 4)
have been calculated in order to obtain dxi, dyi, dzi in each i by using Equation (6) to obtain
u1, u2, u3, u4, as well as the UAV model Equations (3) and (4). The collision of the quadcopter
with obstacles is represented as violation function. The violation function is calculated as
indicated in Algorithm 1. In the third part, the distance of each point on the pathway to a
specific obstacle is expressed as:

dobsi =
√
(Xi − xobs)2 + (Yi − yobs)2 + (Zi − zobs)2 + ruav (24)

ruav = 2(l + Δl) (25)
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where Xi, Yi, Zi are the generated points, and Δl is the propeller radius. If this distance is
greater than the radius of the obstacle, then it is assumed that the obstacle is outside the
quadcopter’s field of view. The feasible constraint takes the following form:

dobsi ≤ robs (26)

in Equation (26) [44]. The points chosen on the map representing the flight path attain a
value calculated as:

vi =

{
0, (1 − dobsi

robs
) < 0

(1 − dobsi
robs

), (1 − dobsi
robs

) > 0
(27)

in Equation (27). The average value of vi with respect to a particular obstacle is obtained.
Subsequently, the average of vi with respect to the other obstacle is obtained, and the total
violation function is expressed as:

V =
1

Np

Np

∑
i=1

nobs

∑
j=1

vij (28)

in Equation (28). The objective function is calculated by combining Equation (22),
Equation (23), and Equation (28):

JE = min{(d + Et)(1 + ξV)} (29)

where ξ and V are the violation coefficient and function, respectively.

Algorithm 1: Pseudo-code of proposed 3D path-planning algorithm.
Initialize starting X, Y, Z point (xs, ys, zs)
Initialize ending X, Y, Z point (xt, yt, zt)
Initialize holding X, Y, Z point (xh, yh, zh)
Initialize releasing X, Y, Z point (xr, yr, zr)
Input: The number of measurements (Np)
Input: Determine the position of obstacle on Map (xobs, yobs, zobs, robs)
Input: The number of obstacles (nobs)
Initialize waypoints between starting and ending point randomly.
for Optimization Algorithms (PSO, GWO, hybrid HHO–GWO) do

for k = 1: number of obstacles (nobs) do
Calculate the distance of randomly generated path to sperical obstacles
using Equation (24). (dobs)
v = max(1 − dobs

robs(k)
, 0)

V = V + mean(v)
Calculate the distance of generated path using Equation (22). (d)
Calculate the energy of generated path using Equation (23). (Et)
Calculate objective function using Equation (29), JE = min{ (d + Et)(1 + ξV)}

return XG
d , YG

d , ZG
d

3.3. Proposed Path Planning and Tracking Optimization Algorithm

In recent years, many metaheuristic optimization algorithms that imitate living things
in nature have been used extensively to solve complex nonlinear engineering problems.
These algorithms stand out compared to traditional optimization techniques such as stochas-
tic and deterministic approaches, with their flexibility, simplicity, avoidance of local optima,
and ability to search randomly. In this study, in order to overcome the problem of planning
the optimum path and tracking this path for the quadcopter, a swarm-based hybrid opti-
mization approach is proposed, which contains GWO and HHO [45] algorithms and has
high convergence speed and is capable of avoiding local minima. The proposed optimiza-

219



Electronics 2022, 11, 1208

tion algorithm allows the quadcopter to not only avoid obstacles but also to follow the
planned path for payload holding-releasing with minimum error. The performance of
the proposed algorithm is compared with PSO and GWO algorithms. The PSO, GWO,
and hybrid GWO–HHO algorithms used for the quadcopter’s path planning and tracking
are described in this section.

3.3.1. Particle Swarm Optimization

PSO is a population-based metaheuristic optimization algorithm developed in 1995
by Kennedy and Eberhart, inspired by the behavior of birds living in flocks in nature [46].
Generally, PSO is a population-based probability optimization method, which is preferred
to produce solutions for multivariable and multiparameter optimization problems. It is
frequently used in different optimization problems due to its high convergence speed and
solutions. In adapting to various environmental conditions, such as avoiding predators or
finding a rich food source, many animal swarms such as fish and birds communicate with
each other, increasing their probability and speed of finding the real target. The essence
of the PSO algorithm is a swarm and each particle is a part of it. In this swarm-based
optimization algorithm, each particle consists of a position and velocity component, and an
update is made in their positions by changing the velocity of the particles. Depending
on the optimization problem, the updated positions of the particles are substituted in the
objective function [46]. In the minimization process of the objective function, if the position
value of the particle is smaller, than the best position value obtained, the new solution is
kept in the memory in each iteration as shown in Algorithm 2. The position and velocity
vectors of these particles are initially determined randomly, depending on the constraints.
The velocities of randomly generated particles are computed as:

Vi(t + 1) = Vi(t) + c1rand(pbest − Xi) + c2rand(gbest − Xi) (30)

in the next iteration, where Xi, the position of i. particle, rand, is a uniformly random
number between [0, 1]; pbest is the best position of the swarm; gbest is the best position
within the group; and c1, c2 are two constants which determine the weights of pbest and
gbest, respectively. The position of the particles is obtained by adding the expression of
velocity Vi(t + 1) to the current position Xi as:

Xi(t + 1) = Xi(t) + Vi(t + 1) (31)

In this optimization process, the position of each particle in the population is up-
dated by changing the velocity vector. This update process consists of both the ex-
perimental knowledge of the particle and the knowledge it has socially acquired from
neighboring particles.

Algorithm 2: Pseudo-code of PSO algorithm.
Initialize position vectors Xi(i = 1, 2, ..., n)
Initialize velocity vectors Vi(i = 1, 2, ..., n)
while (t<Max number of iterations) do

for i = 1: Number of Particles (n) do
Update the velocity of particles by Equation (30)
Update the position of particles by Equation (31)
Evaluate the fitness of Xi
if f (Xi) < f (pbest) then

Xi = pbest

if f (Xi) < f (gbest) then
Xi = gbest

return gbest
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3.3.2. Grey Wolf Optimization

The GWO algorithm, inspired by the hunting hierarchy of grey wolves that live as a
swarm in nature, is proposed by Mirjalili et al. [24]. As illustrated in Figure 3, the alpha
wolf makes all hunting decisions in the herd, leads the swarm, and is located at the top
of hunting pyramid. According to the order of social hierarchy in the herd, the top three
wolves are alpha, beta, and omega, respectively. The candidate solutions are randomly
generated in optimization process as with other metaheuristic optimization algorithms as
shown in Algorithm 3. Among these candidate solutions, the best, the second, and the third
candidate solution refers to to alpha (Xα), beta (Xβ), and delta (Xδ) positions, respectively.
The other low candidate solution refers to the omega (ω) position. The hunting mechanism
of grey wolves consists of following the prey and approaching, encircling, and attacking
the prey. In the grey wolf optimization algorithm, the process of encircling the prey is
carried out: −→

D =|−→C −→
Xp(t)−

−→
X (t)| (32)

−→
X (t + 1) =

−→
Xp(t)−

−→
A
−→
D (33)

where t specifies the current iteration,
−→
A and

−→
C are constant vectors,

−→
Xp is the position

vector of the prey, and
−→
X defines the position vector of a grey wolf.

−→
A and

−→
D are calculated

by: −→
A = 2−→a −→r1 −−→a (34)

−→
C = 2−→r2 (35)

where −→a is linearly decreased from 2 to 0 over the course of the iterations, and −→r1 and−→r2 are random values generated between 0 and 1. The hunting process of grey wolves is
expressed as:

−→
Dα =|−→C1

−→
Xα −

−→
X | −→

Dβ =|−→C2
−→
Xβ −

−→
X | −→

Dδ =|−→C3
−→
Xδ −

−→
X | (36)

−→
X1 =

−→
Xα −

−→
A1

−→
Dα

−→
X2 =

−→
Xβ −

−→
A2

−→
Dβ

−→
X3 =

−→
Xδ −

−→
A3

−→
Dδ (37)

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(38)

where the positions of the best three agents are indicated by
−→
Xα,

−→
Xβ,

−→
Xδ; the distance vectors

(
−→
Dα,

−→
Dβ,

−→
Dδ) of candidate solutions are calculated according to the best three solutions;

(
−→
X1,

−→
X2,

−→
X3) are the updated positions of the search agents; and

−→
X (t + 1) is the next

iteration position.

Figure 3. The hunting hierarchy of grey wolves.
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Algorithm 3: Pseudo-code of GWO algorithm.
Initialize the grey wolf population Xi(i = 1, 2, ..., n)
Initialize a, A and C
Calculate the fitness of each search agent
Xα = the best search agent
Xβ = the second best search agent
Xδ = the third best search agent

while (t<Max number of iterations) do

for each search agent do
Update the position of the current search agent by Equation (37)
Update a, A and C
Calculate the fitness of all search agents
Update Xα, Xβ and Xδ

t = t + 1
return Xα

3.3.3. Harris Hawk Optimization

In this section, the exploration, transition from exploration to exploitation, and ex-
ploitation phases of the HHO component of the hybrid GWO–HHO algorithm proposed
in the study are explained. In this algorithm, the hunting strategy of Harris hawks, one
of the smart birds in nature, is imitated. Harris hawks act as a swarm, especially during
the rabbit-hunting process. Each swarm has a leader. The leader and other members of
the swarm primarily make exploration flights. After the prey is detected, the hunting
process begins. HHO is gradient-free optimization method; hence, it can be applied to
many nonlinear engineering problems depending on a suitable formulation [45]. Harris
hawks’ main tactic in hunting is called the “surprise attack”. In this clever strategy, several
hawks collaboratively try to attack from different directions and simultaneously approach
the prey that has been found to have fled outside the shelter. The attack can be completed
quickly, with the hawks catching their prey in a matter of seconds. All phases of the HHO’s
exploration and exploitation processes are shown in Figure 4.

Figure 4. All phases of Harris hawk optimization algorithm [45].

• Exploration phase: Although Harris hawks have strong eyes, sometimes they may
not be able to detect their prey easily. In this situation, Harris hawks often wait in the
desert area and observe their surroundings. This process continues in a loop. Harris
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hawks in each loop are identified as candidate solutions. The hawk, who is in the
best position in relation to the rabbit in the loop, represents the optimum solution.
The HHO algorithm uses two different strategies in the hunt search process. These
strategies can be described by [45]:

X(t + 1) =

{
Xrand(t)− r1|Xrand − 2r2X(t)| q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB − LB)) q < 0.5

(39)

where X(t + 1) represents the position of Harris hawks in the next iteration t; X(t)
denotes the current position of Harris hawks; Xrabbit indicates the position of the
rabbit; Xm(t) is the average position of the current population of Harris Hawks;
Xrand(t) represents a randomly selected Harris hawk from the current population;
r1, r2, r3, r4, and q are random numbers between [0, 1]; and UB and LB show the upper
and lower bounds of the variables, respectively. The average position of hawks is
determined by:

Xm(t) =
1
N

N

∑
i=1

Xi(t) (40)

where N represents the total number of Harris hawks, and Xi(t) indicates the location
of each Harris hawk in iteration t.

• Transition from exploration to exploitation phase: Harris hawks begin the exploita-
tion phase by developing different attack models according to the energy of the prey
after the exploration process is completed. This process is modelled in [45] as:

E = 2E0(1 −
t
T
) (41)

where E0 is the initial energy value of the prey randomly defined in the range of [0, 1],
E is the energy of the escaping prey, and T is the maximum number of iterations.

• Exploitation phase: At this phase, the Harris hawk attacks its prey and makes the
surprise attack move. In response to this situation, the prey tries to escape. In this case,
the Harris hawk basically develops four different strategies. The energy of the prey
and the chance of catching the escaping prey are indicated by E and r, respectively:

– Soft besiege (r ≥ 0.5 and |E| ≥ 0.5)
In this strategy, the Harris hawk makes misleading jumps at its prey and tries
to reduce the energy of its prey. This soft besiege strategy is mathematically
described by:

X(t + 1) = ΔX(t)− E|JXrabbit(t)− X(t)| (42)

ΔX(t) = Xrabbit(t)− X(t) (43)

where ΔX(t) is the difference between the current position in the t-th iteration
and the current position of the prey, and J is a value that changes with each
iteration to simulate the natural motion of the prey.

– Hard besiege (r ≥ 0.5 and |E| < 0.5)
In this strategy, the energy of the prey is very low. The hawk hardly makes any be-
siege to throw his surprise claws on its prey. This strategy can be mathematically
modeled as:

X(t + 1) = Xrabbit(t)− E|ΔX(t)| (44)

where Xrabbit(t) represents the current position of prey, ΔX(t) is the difference
between the current position in the t-th iteration and the current position of
the prey.

– Soft besiege with progressive rapid dives (r < 0.5 and |E| ≥ 0.5)
In this strategy, the prey has enough energy to escape. The Harris hawk is still
performing the soft besiege strategy before the surprise jump. This process is
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smarter than the previous strategy. Before the hawks start their soft besiege, they
decide their next move based on the following calculation:

Y = Xrabbit(t)− E|JXrabbit(t)− X(t)| (45)

where Xrabbit(t) indicates the current position of the prey, and J is a value that
changes with each iteration to simulate the natural motion of the prey. This
situation is compared with the previous dive to decide whether such a move
would be a good dive. If the situation is unfavorable, the hawks dive into their
prey suddenly. When deciding on this, a Levy-flight-based movement structure
is used. This situation is defined by:

Z = Y + S × LF(D) (46)

where Z is the variable that decides whether the hawk will make a move on its
prey, Y indicates its position in relation to the decreasing energy of the prey, D
is the size of the problem, S is a random vector of size 1 x D, and LF is the Levy
flight function and is defined by:

LF(x) = 0.01
u × σ

|v|
1
β

σ =

(
Γ(1 + β) × sin(πβ

2 )

Γ( 1+β
2 ) × β × 2(

β−1
2 )

) 1
β

(47)

where u and v are the random numbers between (0, 1), and β is 1.5. Note that the
Levy flight algorithm is added to the exploitation phase to ensure that the local
search process can be continued without becoming stuck at local optimum points.
The positions of the hawks in the soft besiege phase are updated by:

X(t + 1) =

{
Y if F(Y)<F(X(t))
Z if F(Z)<F(X(t))

(48)

where Y and Z are obtained using Equations (40) and (41).
– Hard besiege with progressive rapid dives (r < 0.5 and |E| < 0.5) In this strat-

egy, the prey does not have enough energy to escape. The Harris hawk makes a
fierce siege before its surprise jump to catch its prey. The hard besiege situation is
expressed by:

X
′
(t + 1) =

{
Y

′
if F(Y

′
)<F(X(t))

Z
′

if F(Z
′
)<F(X(t))

(49)

where Y
′

and Z
′

are defined as:

Y
′
= Xrabbit(t)− E|JXrabbit(t)− Xm(t)| (50)

Z
′
= Y

′
+ S × LF(D) (51)

3.3.4. The Proposed Optimization Algorithm

In this study, a hybrid HHO–GWO algorithm is proposed by combining the HHO
algorithm with its random search capability and high convergence speed and the GWO
algorithm, which has a high performance in avoiding local optima, so that the quadcopter
can both avoid obstacles and track the planned path with minimum error. This algorithm
ensures the robustness of the controller, even with sudden mass changes in the quadcopter
during payload hold and release. The pseudo-code of the proposed algorithm for this study
is presented in Algorithm 4.
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Algorithm 4: Pseudo-code of hybrid HHO–GWO algorithm
Input: The population size N and maximum number of iterations T
Output: The location of rabbit and its fitness value
Initialize the random population Xi(i = 1, 2, ..., N)
while (stopping condition is not met) do

Calculate the fitness values of hawks. Set Xrabbit as the location of rabbit (best
position).

for (each hawk (Xi)) do
Update the initial energy E0 and jump strength J
E0 = 2rand()− 1, J = 2(1 − rand())

Update the E using Equation (41)
if |E | ≥ 1 then

Update the location vector using Equation (39)—(Exploration phase)
end

if | E| < 1 then

if r > 0.5 and |E| > 0.5 then
Update the position vector using Equation (42)—Soft besiege

end

if r ≥ 0.5 and |E| < 0.5 then
Update the position vector using Equation (44)—Hard besiege

end

if r < 0.5 and |E| ≥ 0.5 then
Update the position vector using Equation (45)—Soft besiege with
progressive rapid dives

end

if r < 0.5 and |E| < 0.5 then
Update the position vector using Equation (50)—Hard besiege with
progressive rapid dives

end

end

end

end

return Xrabbit
Initialize the starting position of search agents as final position vector of Harris
Hawk Optimization

Initialize a, A and C
Calculate the fitness of each search agent
Xα = the best search agent
Xβ = the second best search agent
Xδ = the third best search agent

while (t<Max number of iterations) do

for each search agent do
Update the position of the current search agent by Equation (37)
Update a, A and C
Calculate the fitness of all search agents
Update Xα, Xβ and Xδ

end

t = t + 1
end

return Xα

4. Payload Hold-Release Mission Planning

In this study, a path planning and tracking algorithm is proposed on three different
maps. In order to guarantee that the algorithms run do not memorize the path, three maps
with different starting and ending points, containing obstacles at different locations, are
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generated. On the first map, there are obstacles of equal size with a radius of 2 m. On the
second map, there are obstacles of two different sizes with radii of 1 m and 2 m. On the
third map, there are obstacles in three different sizes with radii of 1 m, 1.5 m, and 2 m.
The environmental difficulty level of Map 1, Map 2, and Map 3 range from weak to strong,
respectively, in performing the payload hold-and-release mission by coping with obstacles.
Seven separate spherical obstacles are placed on each of the maps. The locations of these
spherical barriers on three different maps are given in Table 1. As stated in the Table 1,
the location of each obstacle in 3D space is expressed as the X, Y, Z positions and radius R.
These spherical barriers are positioned in 3D space, as shown in Figure 5. Here, the point
where the quadcopter starts its mission, holds and releases the payload is shown as star,
square and circle, respectively. In addition, the numbers on the figure are used to label
the obstacles. The numbers on the figure are used to name the obstacles. Considering the
safe and shortest path conditions of the quadrotor on these generated maps, waypoints
are determined by metaheuristic optimization algorithms such as PSO, GWO, and hybrid
HHO–GWO. By following this determined path, the payload hold–release performance of
the quadrotor has been analyzed.

(a) (b)

(c)

Figure 5. Maps created for testing the performance of quadcopter path planning and tracking (a) for
Scenario 1, (b) for Scenario 2, (c) for Scenario 3.
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Table 1. Positions of obstacles with 3 different scenarios.

Obstacle Number Map 1 Map 2 Map 3

(xobs, yobs, zobs, robs), (m)

1 (5, 5, 12.5, 2) (4, 6, 12, 2) (3, 9, 10, 1.5)
2 (10, 10, 12.5, 2) (8, 8, 11, 2) (7, 9, 8, 1)
3 (7.5, 7.5, 7.5, 2) (7, 7, 7, 1) (6, 5, 2, 2)
4 (10, 5, 5, 2) (5, 4, 6, 1) (4, 5, 7, 1.5)
5 (5, 10, 10, 2) (6, 7.5, 9, 1) (5, 8, 8, 1)
6 (5, 5, 5, 2) (7, 6, 4, 2) (6, 7, 6, 1)
7 (10, 10, 5, 2) (8, 9, 5, 2) (7, 5, 7, 1)

5. Experimental Results and Discussion

The performance comparison of the path planning and tracking control strategy is
presented in this section. Firstly, the path planning performance of the quadcopter is
examined on three different maps. Generating the shortest and safest path of quadcopter
on all three maps is performed with the PSO, GWO, and hybrid HHO–GWO algorithms.
The quadcopter at origin point (0, 0, 0) rises by 15 m along the Z-axis in all 3 maps.
Afterwards, the payload holds the path from the first to the fifth waypoints, and the
payload release path from the fifth to ninth waypoints are generated by metaheuristic
optimization algorithms such as PSO, GWO, and hybrid HHO–GWO. The mass of payload
is 1 kg. Therefore, the total mass of quadcopter has been changed from 3 kg to 4 kg in all
missions. The root mean squared error (RMSE) performance criterion in path planning and
tracking is denoted as:

RMSE =
1

Nm

Nm

∑
i=1

√
(Xre fi − Xi)2 + (Yre fi − Yi)2 + (Zre fi − Zi)2 (52)

where Xre fi, Yre fi, and Zre fi are reference positions of the quadcopter; Xi, Yi, and Zi are
measured positions of the quadcopter in X, Y, and Z axes, respectively; and the total
number of measurements is expressed with Nm. The energy efficiency can be calculated as:

Ee f f =
Eb − Et

Eb
× 100 (53)

where Eb is the total energy of the battery, and Et is the total energy consumed by the
quadcopter. The generated waypoints are presented for Scenario 1 in Table 2. The distances
of the paths created are 37.53 m, 36.26 m, 35.68 m in Scenario 1 for the PSO, GWO, and
hybrid HHO–GWO, respectively. The performance of the payload hold and release path is
demonstrated in Figure 6. The path generated by metaheuristic optimization algorithms
is illustrated on Scenario 1 with obstacles in Figure 7. When the convergence rate and
minimum point are investigated, the maximum convergence rate and minimum point has
been obtained for the proposed hybrid HHO–GWO algorithm. The shortest distance path
is obtained with the hybrid HHO–GWO on Scenario 1.

The generated waypoints are introduced for Scenario 2 in Table 3. The distances of
the paths created are 37.47 m, 40.72 m, and 36.73 m in Scenario 2 for the PSO, GWO, and
hybrid HHO–GWO, respectively. The performance of the payload hold-and-release path is
displayed in Figure 8. The paths generated by the metaheuristic optimization algorithms
are indicated in Scenario 2 with obstacles in Figure 9. When the convergence rate and
minimum point are investigated, the maximum convergence rate and minimum point has
been obtained for the proposed hybrid HHO–GWO algorithm. The generated minimum
path distance is obtained for the hybrid HHO–GWO in Scenario 2.
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(a) (b)

Figure 6. The optimized payload hold (a) and release (b) path performance of metaheuristic opti-
mization algorithms for Map 1.

Table 2. Optimized waypoints for Scenario 1.

Waypoint Number PSO GWO Hybrid HHO–GWO

XG
d (m), YG

d (m), ZG
d (m)

1 (0, 0, 15) (0, 0, 15) (0, 0, 15)
2 (1.23, 2.44, 9.35) (2.89, 2.14, 11.10) (2.94, 1.85, 11.37)
3 (4.78, 2.90, 5.13) (5.90, 2.62, 7.38) (5.60, 3.82, 7.69)
4 (8.05, 4.45, 2.82) (7.29, 4.62, 3.30) (7.82, 5.26, 4.30)
5 (10, 7, 0) (10, 7, 0) (10, 7, 0)
6 (8.9, 8.33, 5.26) (9.71, 7.21, 2.81) (8.74, 7.85, 3.39)
7 (9.63, 9.16, 8.48) (9.93, 8.81, 7.32) (8.25, 9.41, 7.05)
8 (8.23, 9.97, 9.05) (9.02, 10.74, 10.6) (8, 10.68, 10.31)
9 (7.5, 12.5, 15) (7.5, 12.5, 15) (7.5, 12.5, 15)

Path Distance 37.53 m 36.26 m 35.68 m

Table 3. Optimized waypoints for Scenario 2.

Waypoint Number PSO GWO Hybrid HHO–GWO

XG
d (m), YG

d (m), ZG
d (m)

1 (0, 0, 15) (0, 0, 15) (0, 0, 15)
2 (0.85, 0.84, 12.33) (5.32, 1.71, 6.99) (1.96, 1.51, 10.33)
3 (2.71, 2.08, 7.35) (8.25, 2.73, 5.90) (4.17, 2.21, 6.81)
4 (6.72, 4.05, 3.26) (8.77, 4.99, 3.89) (6.77, 4.14, 3.13)
5 (10, 7, 0) (10, 7, 0) (10, 7, 0)
6 (10.75, 9.24, 4.44) (6.63, 5.61, 1.71) (10.01, 9.11, 5.95)
7 (8.2, 9.3, 7.85) (4.23, 4.71, 5.16) (8.7, 9.32, 7.94)
8 (5.9, 9.49, 10) (2.52, 7.58, 8.98) (6.43, 10.25, 12.01)
9 (5, 9, 15) (5, 9, 15) (5, 9, 15)

Path Distance 37.47 m 40.72 m 36.73 m

The generated waypoints are demonstrated for Scenario 3 in Table 4. The distances
of the paths created are 31.32 m, 32.24 m, and 29.59 m on Map 3 for the PSO, GWO, and
hybrid HHO–GWO, respectively. The performance of the payload hold-and-release path is
displayed in Figure 10. The paths generated by the metaheuristic optimization algorithms
are shown in Scenario 3 with obstacles in Figure 11. The numbers on Figures 7, 9 and 11
are used to label the waypoints obtained by the optimization algorithms. When the conver-
gence rate and minimum point are investigated, the maximum convergence rate and mini-
mum point were obtained for the proposed hybrid HHO–GWO algorithm. The generated
minimum path distance is obtained for hybrid HHO–GWO in Scenario 3. To summarize,
the path planning on all three maps is obtained for the proposed hybrid HHO–GWO
algorithm for minimum distance and the maximum converge rate. The PSO algorithm is
run 500 times for Scenarios 1–3, and the average running times for each scenario are deter-
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mined as 66.14 s, 66.16 s, and 66.01 s, respectively. The GWO algorithm is run 500 times
for Scenarios 1–3, and the average running times for each scenario are 65.12 s, 65.25 s,
and 65.11 s, respectively. The proposed hybrid HHO–GWO algorithm is run 500 times for
Scenarios 1–3, and the average running times for each scenario are measured as 64.09 s,
64.68 s, and 64.71 s, respectively. Note that all algorithms mentioned in the study are run
on a PC device, which has an Intel i7-10750H, 6 cores, 2.6 GHz Turbo, and 32 GB RAM. All
codes are compiled with MATLAB 2020b.

(a) (b)

(c)

Figure 7. The optimized path for Map 1 (a) using PSO, (b) using GWO, and (c) using hybrid
HHO–GWO.

(a) (b)

Figure 8. The optimized payload hold (a) and release (b) path performance of metaheuristic opti-
mization algorithms for Map 2.
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(a) (b)

(c)

Figure 9. The optimized path for Map 2 (a) using PSO, (b) using GWO, and (c) using hybrid
HHO–GWO.

Table 4. Optimized waypoints for Scenario 3.

Waypoint Number PSO GWO Hybrid HHO–GWO

XG
d (m), YG

d (m), ZG
d (m)

1 (0, 0, 15) (0, 0, 15) (0, 0, 15)
2 (1.98, 2.19, 8.8) (0.51, 3.15, 9.64) (1.96, 1.51, 10.33)
3 (6.71, 3.59, 4.31) (1.71, 4.16, 4.62) (4.17, 2.21, 6.81)
4 (8.32, 4.95, 1.54) (4.48, 5.41, 0.74) (6.77, 4.14, 3.13)
5 (8, 7, 0) (8, 7, 0) (8, 7, 0)
6 (7.82, 6.76, 3.22) (6.44, 7.01, 3.07) (10.01, 9.11, 5.95)
7 (6.95, 6.45, 7.77) (7.12, 7.33, 4.89) (8.7, 9.32, 7.94)
8 (5.82, 6.24, 8.66) (6.48, 7.1, 8.27) (6.43, 10.25, 12.01)
9 (4, 7, 10) (4, 7, 10) (4, 7, 10)

Path Distance 31.32 m 32.24 m 29.59 m
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(a) (b)

Figure 10. The optimized payload hold (a) and release (b) path performance of metaheuristic
optimization algorithms for Map 3.

(a) (b)

(c)

Figure 11. The optimized path for Map 3 (a) using PSO, (b) using GWO, and (c) using hybrid
HHO–GWO.

The path tracking performance of the quadcopter is analyzed with these generated
waypoints. The payload hold and release are carried out in waypoints 5 and 9, respec-
tively. The performance of the quadcopter under both path tracking and sudden payload
change is examined. The path tracking in a payload hold–release mission is illustrated
in Figures 12–14 for Scenarios 1, 2, and 3, respectively. The total path, RMSE, target time,
and energy efficiency performance criteria of metaheuristic algorithms are presented in
Table 5. The total measured paths are 53.025 m, 51.631 m, and 50.7 m, and the mean
square errors are 21.76 m, 19.98 m, and 19.57 m for PSO, GWO, and hybrid HHO–GWO,
respectively, in Scenario 1. The total times of the payload hold–release mission in Scenario
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1 are 66.15 s, 65.01 s, and 64.12 s for the PSO, GWO, and hybrid HHO–GWO, respectively.
The energy efficiencies of the quadcopter in Scenario 1 are obtained as 64.51%, 67.42%, and
68.08% for the PSO, GWO, and hybrid HHO–GWO respectively. The total measured paths
are 52.92 m, 56.52 m, and 52.51 m, and the mean square errors are 19.86 m, 22.7 m, and
19.35 m for the PSO, GWO, and hybrid HHO–GWO, respectively, in Scenario 2. The total
mission times are 66.18 s, 65.24 s, and 64.76 s, and the energy efficiencies obtained are
67.92%, 63.33%, and 68.74% for the PSO, GWO, and hybrid HHO–GWO, respectively, in
Scenario 2. The total measured paths are 46.87 m, 47.80 m, and 44.72 m, and the mean
square errors are 17.65 m, 18.49 m, and 16.92 m for the PSO, GWO, and hybrid HHO–GWO,
respectively, in Scenario 3. The total mission times are 65.99 s, 65.01 s, and 64.71 s, and the
energy efficiencies are 66.74%, 65.5%, and 68.81% for the PSO, GWO, and hybrid HHO–
GWO, respectively, in Scenario 3. The minimum total path, mean square error, target time,
and energy efficiency are obtained for the hybrid HHO–GWO in all Scenarios. When the
path tracking performance of the quadcopter in Figure 14 for Scenario 3, which has the
highest environmental difficulty level, is evaluated, it is seen that the least change in the
Z-axis occurs with the proposed algorithm. This shows that the energy is used optimally.
The results show that the hybrid HHO–GWO algorithm has the highest energy efficiency.

Table 5. Performance criteria of metaheuristic optimization algorithms for path planning
and tracking.

Map Number Algorithms Total Path (m) RMSE (m) Target Time (s)
Energy Efficiency

(%)

1 PSO 53.03 21.76 66.15 64.51
1 GWO 51.63 19.98 65.01 67.41

1 hybrid
HHO–GWO 50.70 19.57 64.12 68.08

2 PSO 52.92 19.86 66.18 67.92
2 GWO 56.52 22.70 65.24 63.33

2 hybrid
HHO–GWO 52.11 19.35 64.76 68.74

3 PSO 46.87 17.65 65.99 66.74
3 GWO 47.80 18.49 65.01 65.50

3 hybrid
HHO–GWO 44.72 16.92 64.71 68.81

To summarize, the path planning and tracking control strategy of the quadcopter
have been proposed in this study. The path planning has been achieved via PSO, GWO,
and the proposed hybrid HHO–GWO algorithms. The results of path planning show that
the shortest and safest paths are obtained for all scenarios. After this, the path-tracking
performance of the quadcopter in a payload hold–release mission is investigated for all
scenarios. The path-tracking results express that the minimum total path, mean square
error, target time and energy efficiency of quadcopter in payload transportation mission
have been obtained for all scenarios. The path-tracking error due to the mass uncertainty
of the quadcopter has been minimized in all scenarios with obstacles. The contributions of
this study are the following:

• A hybrid HHO–GWO optimization algorithm with high convergence speed for path
planning has been proposed,

• The position error of the quadcopter caused by the sudden change during payload
holding and releasing is examined;

• The errors that occur in path tracking under sudden payload changes are minimized
with the newly proposed control strategy.
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Figure 12. The path-tracking performance of the quadcopter for Map 1 (a) using PSO, (b) using GWO,
and (c) using hybrid HHO–GWO.
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Figure 13. The path-tracking performance of quadcopter for Map 2 (a) using PSO, (b) using GWO,
and (c) using hybrid HHO–GWO.
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Figure 14. The path-tracking performance of quadcopter for Map 3 (a) using PSO, (b) using GWO,
and (c) using hybrid HHO–GWO.

6. Conclusions and Future Work

In this study, a new metaheuristic path planning and tracking algorithm for payload
hold–release mission is proposed to avoid obstacles. A hybrid HHO–GWO algorithm
is proposed by combining the HHO algorithm, with high convergence speed, and the
GWO algorithm, which has a high performance in avoiding local optima, so that the
quadcopter can both avoid obstacles and track the planned path with minimum error.
The performance of the proposed path-planning algorithm is compared with PSO and GWO.
The minimum path distance and maximum convergence rate have been obtained with the
newly proposed hybrid HHO–GWO metaheuristic optimization algorithm. The waypoints
that the quadcopter desires to track are generated with the optimization algorithm not
only minimizing distance but also energy. The path tracking has been carried out by these
generated waypoints. The payload hold-and-release mission has been realized with a
path-tracking controller. The mass component in the quadcopter model is changed during
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payload holding and releasing. The position errors occur in path tracking with the sudden
mass change of the quadcopter in this payload holding and releasing task. The results
of path tracking are indicated by the minimum total path, mean square error, total time
and consumed energy have been obtained for the newly proposed hybrid HHO–GWO.
The most important contribution of this study is that the proposed control strategy and
the position error caused by this mass uncertainty can be minimized. It is planned to
perform environmental tests of the proposed metaheuristic-based approach by embedding
it on a single UAV in the future. By comparing the results obtained with the results of our
current study, studies will be focused on the optimum solution of path generation and
tracking problems with the cooperation of multiple UAVs.
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Abstract: This article is part of a scientific research project dedicated to the study of plants generating
electricity from hydraulic sources by exploiting the technology of inverted flow centrifugal pumps,
also known as PAT. The main purpose is to provide a contribution to the methodologies already
existing in the literature, creating a one-dimensional model capable of predicting the characteristic
curves of the machine, in both operating modes, without knowing its geometry. The first part of
the work is therefore focused on the description of the fluid dynamic model, capable of determin-
ing the losses in the various sections of the machine, using different calculation approaches. The
development of this model was carried out using a set of six centrifugal pumps, measured at the
DIMEG Department of the University of Calabria and at the University of Trento. For this range of
pumps, the characteristic curves were therefore obtained, both in pump and turbine operation. The
second part of this work focuses on the description of the geometric model, useful as generally few
data are provided in the manufacturer’s catalog, which is necessary for the correct installation of
the machine. The geometric model can determine, using these parameters and through good design
techniques and statistical diagrams, the entire geometry of the machine. This model refers to a pump
prototype, having a simplified geometry, for which the characteristic curves of the PAT are obtained
in pump operation. These curves are compared with those present in the manufacturer’s catalog, and
if they show too high deviations, it is possible to act on some geometric parameters, chosen based
on a sensitivity analysis. Once satisfactory results have been obtained, it is possible to obtain the
characteristic curves also in turbine operation. This procedure has been finally applied to another
PAT, taken as an example.

Keywords: pumps as turbines; predicting model; experimental test; optimization procedure

1. Introduction

Over the years, world energy consumption has drastically increased, with different
trends in various countries based on the degree of wealth and development and the
availability of raw materials and resources. Consequently, as regards the water sector, the
idea of using inverted flow pumps, also known as PAT [1,2], has begun to make its way
into the market. The first researchers who realized the actual potential in exploiting a pump
used as a turbine were Thoma and Kittredge [3]. They began experimenting in laboratories
on this technology around the 1930s. There are also traces of the use of this technology in
the 1970s; however, it failed to play an important role as energy was cheap and there was
still no sensitivity towards recycling and saving. It was therefore more convenient to buy
energy directly from the grid, and few tended to invest in new plants to produce a small
number of kilowatt-hours. However, in the 1980s, some factors prompted a re-evaluation
of the use of this technology, favoring its development and its establishment on the market,
including the following:
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- The inability of the distribution networks to reach rural settlements. The latter were
therefore forced to produce energy independently, also using inverted flow pumps.

- The use of power electronics: the adjustment of the machine using inverters makes it
possible to obtain acceptable efficiencies for a range of different flow rates (previously
the adjustments were manual and only hydraulic).

PATs are mainly used as pressure-reducing valves (PRVs) [4,5] or in the pico/micro-
hydroelectric sector [6]. Regarding the first application, the typical examples are aqueducts:
water distribution systems that must always be under pressure. The pressure must remain
within certain values: a minimum value, necessary to reach the highest altitudes, but
at the same time a maximum value that must not be exceeded, as losses increase and
cause problems of operability. It is therefore necessary to adjust the pressure, as the excess
energy would be lost, for this reason, it is preferable to use an inverted flow pump. The
pico-hydroelectric sector, on the other hand, is mainly linked to self-production. Even small
water sources, commonly neglected for economic reasons, are therefore exploited. The aim
is to satisfy one’s energy needs, without selling the energy or feeding it into the power grid.
It is therefore a question of withdrawing as little as possible from the watercourse, which is
then released, reducing the impact on the resource. PAT can also be used by harnessing
tidal energy [7], i.e., harvesting its height range in natural bays and estuaries or in artificial
barrages, or extracting the kinetic energy from the tidal currents across natural and artificial
channels [8]. The main feature of PAT pumps is represented by their reversibility, as it is
possible, by reversing the direction of the fluid path inside the machine, to produce energy.
They are generally marketed as monobloc electric pumps [9,10] in which the motor is of the
asynchronous type. It can play two opposite roles: motor in direct operation and electric
generator in reverse operation.

The main advantages of the use of PAT technology are represented by the following:

- Lower costs compared to a normal hydraulic turbine, especially for small units, below
50 kW;

- Simplicity of installation and maintenance;
- The wide range of models available on the market.

On the other hand, since pumps are not designed to operate as a turbine, they have
the following disadvantages:

- The absence of guide vanes, which excludes the possibility of making
hydraulic adjustments;

- The lower efficiency compared to a well-designed hydraulic turbine, especially in the
off-design conditions;

- The lack of information about the characteristic curves for the turbine, as the manufac-
turer of the machine supplies only those for the pump.

PATs can therefore be used as a replacement for traditionally employed turbines
(Francis, Kaplan, Pelton) and turbines discussed in other articles [11,12]. However, it
is necessary to make sure that the PAT operation is well adapted to the characteristics
of the system where the PAT will be installed. It is necessary to establish, knowing the
characteristic curves of operation of a pump, the characteristic curves of the machine that
operates as a turbine. The aim of the present paper is to develop a combined procedure for
assessing both the geometry (which is not given by manufacturers) and the fluid dynamic
performances of a generic PAT. For this purpose, many fluid dynamics models calculating
losses, head, and efficiencies by changing the flow rate of the machine were calibrated on
a sample of six PATs. Then, a geometrical model capable of reconstructing a prototypal
geometry, by a rough sizing of the PAT, was developed, involving charts, maps, good
design rules, statistical correlations, and so on. Compared to the past approaches, in this
work, the possibility of refining the calculus of geometrical parameters of the geometry
model is given. The deviation between the curves given by the manufacturer’s catalog
and the ones foreseen in the pump operation can be reduced or annulled by changing
one or more geometrical parameters, calculated by the model. A sensitivity analysis was
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conducted for this purpose, in such a way as to understand which parameters to act on.
The objective of this research is therefore to provide a flexible tool, which allows calculating
the performance of any PAT, in both modes of operation, starting from little information
available from the catalog provided by the manufacturer. This would make it possible
for anyone who decides to approach this technology to facilitate the choice of the PAT
that guarantees the best efficiency according to the energy resources available. As already
mentioned, only the behavior of the machine when operating as a pump is known, but not
the behavior of the machine when operating as a turbine.

State of the Art

In the literature, there are different approaches in the study of PAT that can be grouped
as follows:

1. Simple statistical correlations that aim to establish a connection between the point
of better efficiency (BEP) in pump operation and that in turbine operation. In more
detail, from the examination of the position of the BEP points in the pump and turbine
operation, of machines for which these are known, laws are derived which can then
be used to predict the location of the BEP of a new machine. For example, Child [13],
Sharma [14], Alatorre [15], and Stepanoff [16] combine the best head ratio and the best
flow ratio with respect to the total efficiency of the pump; Hancock [17] correlates these
reports to the total efficiency of the turbine; Schmield [18] relates these relationships
to the hydraulic efficiency of the pump; and Grover [19] and Hergt [20] relate these
ratios to the characteristic speed of the turbine.

2. The PAT performance prediction method using specific speed, where flow rate and
head are expressed as a function of specific speed [21]. Different expressions of specific
speeds are used, which are gradually refined and improved to ensure better accuracy
of the results. Some examples are as follows: Derakshan applied the dimensionless
specific speed to obtain different relations, valid for centrifugal pumps with specific
speed ns < 60 [22]; Nautiyal proposed an additional parameter through which it is
possible to obtain the trend of the prevalence and the flow rate [23]; Singh proposed
a correlation based on experimentation performed on a sample of 13 pumps and
subsequently applied it to the pump under examination, thus obtaining the relation-
ship between the specific speed in turbine operation and that in pump operation [24];
Tan, by testing the hydraulic performance of centrifugal pumps, used both in direct
and reverse operation, obtained different linear relationships between the pump and
turbine parameters [25]; Stefanizzi established a relationship between specific speed
under pump and turbine mode, based on data obtained from the performance of 27
pumps, and subsequently it used to predict the performance of 11 new PATs [26].

3. Empirical correlations: Derakshan’s [27] methodology proposes head–flow and
power–flow polynomial curves, interpolated on the available PAT sample. These
polynomials are dimensionless based on the values of the flow rate, head, and power
of the PAT at the BEP and can be used in a universal way for predicting the curves of
head, power, and efficiency versus flow rate for any machine.

4. One-dimensional model: Venturini [28] developed a prediction model based on the
physics of the machine and consisting in the use of loss coefficients and specific
parameters, through an optimization procedure, which is applied to the machine
operating as a pump and subsequently as a turbine.

5. Numerical analysis and CFD, for axial flow centrifugal pumps, which allow recon-
structing, through a structured step-by-step methodology, the characteristic curve in
pump mode, and subsequently in turbine mode, and predicting the behavior of the
fluid inside the turbomachinery [29].

6. For commercial centrifugal radial flow pumps, through computer numerical sim-
ulations, a methodology has been developed that makes it possible to predict the
characteristic curves, in both operating modes, with errors of less than 10% compared
to the mathematical model [30]. The operating conditions of the site are then obtained,
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providing a methodology that allows the choice of the most suitable turbomachine
to obtain electricity in those areas that do not have access to it, exploiting small
hydroelectric resources.

All the proposed models can be improved because it is very difficult to foresee the
performance curves of any PAT, given the very wide range of machines present on the
market. For some PATs, these models provided acceptable results; for others, they did
not. The PATs show phenomena of instability in the associated fluid, generating S-curves
or cavitation phenomena and making the performance lower than a traditional Kaplan,
Francis, or Pelton turbine. These instabilities are linked to the geometric configuration
of the machine and to the deviation of the parameters calculated from the design values
or measured in the laboratory. Given their use and their high energy consumption, it is
therefore essential that their performance be optimized, and different models or design
methodologies have been developed in this regard. Recent literature shows that in-depth
studies have been carried out concerning the impact that the geometric parameters have on
the performance of PAT, studies of a theoretical, numerical, and experimental nature [31].
A model has recently been developed those acts on the shape of the impellers of centrifu-
gal compressors, given its influence on the overall performance of the machine [32]. It
references genetic algorithms (GA) and a 3D simulation, which act on certain parameters
such as the angle of the blades at the leading and trailing edges and the point where the
splitter blades are connected. A new and performing design has therefore been obtained,
which contributes to the research and development of compressors, without altering the
technical characteristics of the fluid, to be able to replace low-consumption engines with
ecological and economical fuel. A further solution, to optimize the PAT performances, refers
to a numerical model which can determine the most advantageous geometric structure
of the water cut [33]. Its finite thickness interferes with the flow at the entrance to the
duct, generating swirling phenomena and deviations of the flow lines. Different stretching
and cutting water thickness values at variable inclination are then analyzed using CFD
simulations to identify the geometric features that have the greatest impact on machine
performance. In recent literature, there is also a discussion that refers to PATs with low
specific speed values in pico-hydropower plants [34]. This research was carried out by
referring to regenerative pump models, given the characteristics that mark them in terms
of stability and constructive simplicity. The approach used is both theoretical, referring
to the momentum exchange theory, and through a 3D numerical simulation, to study the
behaviour and performance of the machine in turbine operation. It is evident that PATs
are the object of study for many researchers, as this technology is still under development
and improvement. There are numerous contributions and optimizations that have been
made in recent years, with different approaches and innovative ideas, both with a purely
theoretical treatment and through a subsequent experimental verification.

2. Materials and Methods

The fluid dynamic models in both pump and turbine operation are shown separately,
highlighting the various steps necessary to obtain the characteristic curves of the machine.
These models are tuned on a sample of 6 centrifugal pumps, having specific speed changing
in the range 9.05 ÷ 43.48. On these pumps, the measurements of the geometric parameters
and the experimental tests on the test bench were carried out, as the flow rate varied, both
in direct and reverse operation.

2.1. Fluid Dynamic Model

As already mentioned in the introduction, the proposed fluid dynamic models can
predict the performance of the PATs, both in pump and turbine operation. The model
provides head, efficiency, and loss variations versus flow rates changes. Figure 1 shows
a flow chart summarizing the main steps of the development.
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Figure 1. Flow chart summarizing the main steps of the development.

The evaluation of the losses inside a hydraulic machine cannot ignore the knowledge
of its geometry, as it is indispensable for doing the calculations. It is convenient to adopt
a prototype of a centrifugal pump, already described in another article [35], with character-
istics common to most of the pumps available. Figure 2 shows a schematic representation
of it, highlighting the passage sections and the symbols used to identify them.

 

Figure 2. Reference geometry.

Regarding the main components that make up the machine, the simplifications
adopted are as follows:

Aspiration (Section 0): A conical axial section was adopted, and the hypothesis was
also assumed that the inlet diameter d0 coincides with the blade tip diameter d1p of the inlet
section of the impeller.

Impeller (Sections 1–2): As regards the inlet section, a truncated conical surface was
considered, having upper and lower base diameters d1m and d1p and laterally delimited by
the width of the blades. As a representative diameter [36], the one in correspondence with
the average current line has been adopted, which divides the section into two equal parts.
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Volute (Sections 3–4): Given the complexity of its geometry, some simplifications have
been adopted regarding the section and its evolution. A volute with a square terminal
section is assumed, with sides b and hv. The height of the volute varies linearly along the
peripheral direction, until hv is reached. It is also assumed that the terminal section has a
normal along the tangential direction.

Final diffuser (Section 5): It is assumed that the dimensions vary linearly moving from
the inlet to the outlet section according to a reflection equal to the tangent of an angle αd,
set equal to 3.5 degrees.

In the next sections, pump and turbine operations are separately analyzed.

2.1.1. Pump Operation

The fluid dynamic model relating to pump operation is shown, referring to the proce-
dure described in Figure 1.

Velocity Triangles

To evaluate the hydraulic losses, the model calculates the flow speed in the various
sections of the machine. Initially, this calculus is done at the inlet and outlet of the im-
peller, given the direct influence on the theoretical head (Eulerian work) estimation. The
hypothesis made for the inlet section is that the fluid reaches the impeller in a direction
perpendicular to the passage area, therefore with an angle α1 equal to 90◦. The tangential
component of the absolute inlet speed is therefore equal to zero (cu1 = 0), as can be seen
from the velocity triangles represented in Figure 3.

Figure 3. Velocity triangles at the inlet and outlet of the impeller in pump operation under design
conditions (BEP) with slip deviation.

A smaller tangential component of the absolute speed (cu2) is obtained, and thus a
lower theoretical head is obtained compared to that determined in the one-dimensional
design. It represents an inability of the impeller of the machine, having a finite number of
blades, to transfer all energy to the fluid. To account for this loss of performance, the slip
speed (Figure 4), vs, has been calculated:

vs = (1 − h0)·u2 (1)
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Figure 4. Impeller input–output speed triangles in turbine operation with slip deviation.

The tangential component of the absolute velocity, corrected with the slip, is obtained
from the following expression:

c∗u2 = cu2 − vs (2)

In Equation (1), h0 represents the slip factor.
Many correlations were proposed for assessing the h0 parameter:

- Stodola [37,38] assumes that the motion of the fluid at the exit of the impeller is the
sum of a main flow, which is guided by the blades, and of a vortex, having a rotation
speed equal in modulus but in the opposite direction to that of the impeller. The
diameter to which this vortex refers corresponds to the minimum passage section at
the exit of the impeller.

- Stanitz [39,40], after a series of experimental tests, highlighted how the speed of slip,
υs, was independent of the angle β2p and not affected by the compressibility effects
but was a function exclusively of the number of blades, z.

- Busemann [39,40] considered radial impellers having thick blades in an infinitesimal
logarithmic spiral, which transforms into a rectilinear array made of infinite foil profile
planes of infinitesimal thickness. Furthermore, he assumed that the upstream machine
elements downstream of the rotor are sufficiently distant to have no effect on the
behavior of the fluid in the mobile blade.

- Qiu, Mallikarachchi, and Anderson [41,42], who analyzed the various computation
models of the slip factor present in the literature, realized their application limits.
Based on this analysis procedure, they obtained a unitary formulation of the slip
coefficient, which considers both the geometry of the impeller and the flow conditions.
This model was derived from the studies of Eckardt [43], who believed that the rotation
speed of the vortex was not equal to the rotation speed of the impeller but depended
on the blade load, that is, the difference in relative speed between the face under
pressure and that in the blade depression.

- Other possible correlations are those obtained from Balje [44] and Yadav and Misra [45].
- Wiesner carried out an in-depth study on the correlations that existed in the literature

in that year (1967) to verify which was the most reliable and which provided results
as close as possible to those obtained experimentally. From this study, he found
that Busemann’s correlation [39,40] is the most reliable if applied to pumps with
centrifugal impellers.

Stodola’s formula, however, proved to be the best option as it provided results more
consistent with the characteristic curves of the machines supplied by the manufacturers.
By following Stodola’s formula,

h0 = 1 − π

z
sin

(
β2p

)
(3)
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For some models, the slip phenomenon was considered also at the impeller inlet:
the inlet is not axial and a value of the angle α1 different from 90◦ has been obtained.
Considering the slip phenomena, calculated, also in this case, using Stodola’s formula
(Equation (3)), the tangential component of the absolute velocity becomes cu1

∗ and the
theoretical head is calculated as follows:

Hth =
1
g
(u2cu2

∗ − u1cu1
∗) (4)

This solution has led to an improvement in the results achieved, allowing the head
curve obtained from the model to be brought closer to that provided by the catalog.

Hydraulic Losses

The model evaluates the hydraulic losses by referring to the individual components
and are classified into friction losses (Table 1) and dynamic losses (Table 2).

Table 1. Friction losses in pump operation.

Impeller h f g = λ
w2

∞
2g

(
l

deq

)
(5)

Vaneless diffuser h f c =
λ

2g
1

Dh3

c2
3

sen
(
α′2
) d3

d2

(
d3 − d2

2

)
(6)

Volute h f v =
18

∑
j=1

λj
c2

4
2g

(
ΔScl + ΔSinn + ΔScp

)
j

Aθmj

Qj

Q
(7)

Final diffuser h f d =
λ

8sen(αd)

[
1 −

(
A4
A5

)2
]

c2
4

2g
(8)

In evaluating these losses, the value of the friction coefficient was obtained using the
Colebrook–White formula [36], in transition and turbulent conditions. The speed w∞ which
appears in the expression of the losses in the impeller (Equation (5)) represents the average
value of the relative speeds calculated between the inlet section and the outlet section of the
impeller. The choice to use this expression is the result of an in-depth experimental analysis.
Regarding the friction losses inside the volute, the approach recommended by Worster
was followed [46]. It is hypothesized that the velocities inside the volute have a purely
tangential direction and that a free vortex velocity distribution exists in the volute. The
analysis is carried out by dividing the component into 18 sectors and evaluating the friction
losses in each of them. The purpose is to analyze the volute considering the variations in
both dimensions and speeds. It was considered more correct to evaluate these losses by
referring to the average speed inside the sections rather than to that at the outer edge of
the volute in the exit section. This last approach would have led to a trend of decreasing
friction losses as the flow rate increased. Table 2 shows the dynamic losses obtained for the
related machine components.
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Table 2. Dynamic losses in pump operation.

Inlet hinlet = 0.25

⎛⎝ Q
πd2

0
4

⎞⎠2
1

2g
(9)

Impeller

Shock losses hshock =
[w1sen(i)]2

2g
(10)

Wake losses hdg = (ξ2 − 1)2 c2
m2
2g

(11)

Vaneless
diffuser Instantaneous expansion losses hdc =

c2
m2
2g

(
1 − A2r

A3

)2
(12)

Volute Mixing losses hdv =
c2

m3
2g

(13)

Final
diffuser Diffusion losses 1 hdd = ξd

c2
4

2g
(14)

1 ξd represents the localized resistance coefficient, and its value was obtained as a function of the ratio c, reported
in Table 3, and taken from [47].

Table 3. Localized resistance coefficient as a function of the parameter c.

0.025 ≤ c ≤ 0.075 ξd = 0.14
0.075 < c ≤ 0.15 ξd = 0.20
0.15 < c ≤ 0.25 ξd = 0.47
0.25 < c ≤ 0.35 ξd = 0.76
0.35 < c ≤ 0.45 ξd = 0.95
0.45 < c ≤ 0.75 ξd = 1.05
0.75 < c ≤ 0.90 ξd = 1.10

The shape of the final diffuser was assumed as that of a diverging duct with a gradual
widening of the section. The value of parameter c is obtained from the following equation,
as a function of the input (b) and output (b5) sections of the component and its length (Ld):

c =
b5 − b
2 Ld

(15)

In addition to the losses in Table 2, another loss is detected, due to the vortex, which
arises above all at low flow rates. The model, being one-dimensional, is unable to consider
bidimensional phenomena such as vorticity. This observation was confirmed by the ex-
perimental investigations carried out by Van der Braembussche [48]. For overcoming this
critical issue, some expressions based on experimental observations were proposed.
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For Q < Qbep,

hdi f f =
c2

u3 − c2
u3bep

2g
(16)

For Q > Qbep,
hdi f f = 0 (17)

Once the theoretical head and hydraulic losses have been evaluated, it is possible to
obtain the real head by calculating the difference between the theoretical head and the
hydraulic losses.

Hm = Hth − ∑ losses (18)

2.1.2. Turbine Operation

The path of the fluid is inverted with respect to direct operation: the entry coincides
with the final diffuser of the machine and is identified by Section 4, while the discharge
is identified by Section 1. The speeds are then calculated starting from the inlet section of
the machine.

Velocity Triangles

To evaluate the losses, it was first necessary to calculate the velocities in the various
sections of the machine:

- Inlet: For the calculation of the velocities, reference is made to their average value.
- Volute: For this component, a free vortex distribution is hypothesized, and this

assumption is confirmed in the experimental analyses carried out by some researchers.
- Impeller inlet/outlet (Figure 4): In both sections, the corrections related to the two-

dimensional phenomena of slip were considered. The use of the slip factor in the
turbine input has been confirmed in various studies [49,50].

Concerning the phenomena of slip in turbine operation, the following correlations
have been used:

For ns < 10, Stodola’s formula was used (Equation (3)).
For ns > 10, the Stanitz formula [39,40] was used, expressed as follows:

h0 = 1 − 0.315
(

2π

z
sin−1

(
cm2

u2

))
(19)

This criterion is part of the tuning of the model by comparing the theoretical and
experimental results.

For the same reason, for ns < 10, the tangential component of the absolute speed, cu2,
is calculated by assuming the inlet angle α2 as Worster suggests [46,51] and is used in other
models [52]:

α2 = tan−1
[

b
2πb2

ln
(

1 +
2b
d2

)]
(20)

Then,
cu2 =

cm2

tan(α2)
(21)

For ns > 10, cu2 is calculated by assuming a free vortex distribution of velocities in the
area between Section 3 and Section 2, i.e., between the volute and the impeller inlet. The
expression used is as follows:

cu2 = cu3
d3

d2
(22)

Hydraulic Losses

For the evaluation of hydraulic losses, also in this case, a distinction is made between
friction losses and dynamic losses (Table 4). For the former, the formulas adopted are the
same as those for direct operation (Table 1). The only difference lies in the evaluation of
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the speed w∞ which appears in the friction losses in the impeller, since in this case the
slip also occurs in the inlet section, changing the value of the tangential component of the
relative speed.

Table 4. Dynamic losses in turbine operation.

Diffuser Inlet losses hdd = ξd
c2

4
2g

(23)

Impeller

Inlet losses hinlet = 0.5 ·
(

1 − d2b2
d3b3

)
c2

m3
2g

(24)

Shock losses 1
hshock =

[w2sen(i)]2

2g
(25)

Instantaneous expansion losses hdg = (ξ1 − 1)2 c2
m1
2g

(26)

Volute Diffusion losses hdi f f =
c2

u3 − c2
u3bep

2g
(27)

Outlet 2
hinlet = 0.25

⎛⎝ Q
πd2

0
4

⎞⎠2
1

2g
+

c2
u1

2g
(28)

1 The shock losses are computed considering the incidence angle i of the fluid at the runner entry. 2 The additional
term cu1

2/2g has been added to exhaust losses to consider the dissipative vortex generated by the presence of the
tangential component cu1.

In the expression of the diffuser losses, following the flow direction of the fluid in
turbine operation, this component is a converging duct. In the losses in the diffuser,
ξd is obtained as a function of the ratio between the final section volute width and the final
section diffuser width, taken from [53] and reported in Table 5:

Table 5. Localized resistance coefficient as a function of the ratio b5/b.

1.25 ≤ b5
b ≤ 1.75 ξd = 0.12

1.75 < b5
b ≤ 3 ξd = 0.30

3 < b5
b ≤ 5 ξd = 0.40

The determination of the losses was carried out with reference to the recommendations
of Idel’cick [54]. At this point, the engine head is calculated as the sum of the Eulerian work
and the previously exposed hydraulic losses:

Hm = Hth + ∑ losses (29)
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Even in turbine operation, the actual flow rate differs from that of the plant by an
amount equal to the leakage of liquid from the clearances present between the impeller and
the casing. The parameter that takes this phenomenon into account, that is, the volumetric
efficiency, is determined as follows:

ηv =
Q − Qs

Q
(30)

2.2. Geometric Model

The knowledge of the geometry of the machine is fundamental for developing the
model [36,37]. However, pump manufacturers provide only the geometrical parameters
strictly necessary for the correct installation of the machine. This problem was faced with
the preparation of a geometric model, capable of obtaining the missing values. It uses few
geometric parameters that can be easily deduced from the catalog and, by exploiting the
best design practices provided by the technical–scientific literature and based on statistical
graphs derived from the measured machines, calculates the other geometrical parameters.
The object of this geometric model is the determination of all those geometric parameters
necessary for the evaluation of the losses.

The design criterion is inspired by what is present in [37] and requires knowledge of
the following parameters:

- Flow rate and head relative to the best efficiency conditions (Q, Hm);
- Rotational speed at which the machine must work (n);
- Head at the shut-off (Hmo);
- Absorbed power at the point of best efficiency (Pe);
- Height of the machine (h2);
- External diameter of the impeller (d2).

Knowing these parameters, it is possible to size the components listed below.

2.2.1. Calculation of the Shaft Diameter

This parameter was obtained by carrying out a simplification. Since the machines
under examination are generally subjected to low stresses, only the torsion to which
the shaft is subjected was taken into consideration [37]. Considering τa, the maximum
allowable tension of the material of which the shaft is composed, and Pe, the maximum
power that is reached at the axis of the machine, the shaft diameter was obtained as follows:

dsh f =

(
16Pe

ωπτa

) 1
3

(31)

Since it is not always possible to know the value of the admissible voltage for each
pump under analysis whose constituent material is known, the value obtained to which
reference will be made in the maximum calculations was an average value equal to
7.56 Mpa [37].

2.2.2. Sizing of the Inlet Section

For this section, the parameters determined are as follows:

- The blade tip diameter, d1p, is obtained through an interpolation function, of order
two, which correlates the blade tip diameter with the specific speed, that is

d1p

d2
= −0.00003n2

s + 0.0106ns + 0.1219 (32)
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- The internal diameter of impeller inlet d1m is assumed with design criteria, considering
that the shaft must be housed in the impeller hub. It is determined as follows:

d1m = kdsh f (33)

The coefficient k, based on the measurements obtained on the range of pumps available
(Figure 5), is set equal to 1.65.

Figure 5. Statistical distribution of the ratio d1m/dshf.

- The inlet angle of the relative velocity vector, β1p, was obtained by imposing that, in
correspondence with the design conditions, the geometric angle is equal to the real
angle. This evaluation of the angle of entry is aimed at minimizing, under design
conditions, the losses due to shocks. For a correct evaluation of the meridian speed,
both the volumetric efficiency ηv and the real transit area must be considered. The real
transit area considers the overall dimension factor of the blades which in turn depends
on the angle β1p. It is clear that there is a need to resort to a recursive procedure for
the evaluation of β1p.

 

 

 

 

(34)

- The width of the inlet blade, b1: Indicating with θ the inclination of the blade edge
with respect to the radial direction, the length of the incoming blade was obtained
as follows:

b1 =
d1p − d1m

2
1

cos(θ)
(35)

An average value of the angle θ was obtained from a series of measurements carried
out on the pump subjects of this analysis, and it is equal to 40◦.

2.2.3. Determination of the Geometry of the Seals

For the determination of the spokes of the seals, the hypothesis of linear dependence
between the diameters of the seals and the blade tip diameter was assumed. This hypothesis
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is satisfactorily verified for the front seal while exhibiting less feedback when applied to the
rear seal. Given the modest influence of these parameters on the evaluation of volumetric
returns, the approximation was considered acceptable. The relations used to evaluate the
diameters of the seals as a function of the inlet blade tip diameter are as follows:

d f = 1.3031 d1p (36)

db = 1.3138 d1p (37)

2.2.4. Determination of the Number of Blades and the Angle β2p

The number of blades and the angle β2p were evaluated by following the procedure
described by Lobnanoff [37], using the statistical diagram shown in Figure 6. The use of
the diagram presupposes the knowledge of the specific speed of the machine and of the
ratio between the vacuum head Hmo and the head at BEP, Hm, available in any case from
the catalog. Figure 6 shows the points relating to the range of pumps under examination.
The values of the parameters chosen are obtained as a function of the curve that comes
closest to these points. Being a statistical diagram, obtained from many tests carried out
on different models of machines, in some cases it may provide accurate results, in other
cases it may not. For this reason, since the number of blades is a simple value to find, it is
obviously preferable to use the known value.

 
Figure 6. Statistical diagram for the determination of z and β2p.

2.2.5. Calculation of the Blade width at the Outlet

The height b2 of the unloading blades was obtained after defining the value of flow or
flow coefficient, φ. The value of this coefficient is chosen from a statistic diagram whose
use presupposes the knowledge of the specific speed and of the number of blades z. The
height of the blade is obtained through the expression

b2 =
Q

∅

(
πd2 − zt2

sin(β2p)

) (38)

The thickness of the blades, t2, was assumed to be 4 mm.

2.2.6. Sizing of the Volute

The diameter of the water cutter (d3) is obtained considering that it must be slightly
higher (about 5%) than the external diameter of the impeller. This is necessary to avoid in-
terference due to machine vibrations. The following dimensioning criterion [38] is adopted:
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d3 = 1.05 d2 ns ∈ [10 . . . 20] (39)

d3 = 1.06 d2 ns ∈ [20 . . . 30] (40)

d3 = 1.07 d2 ns ∈ [30 . . . 50] (41)

d3 = 1.09 d2ns ∈ [50 . . . 75] (42)

The geometry relating to the exit section of the volute (A4) is obtained through the
value of the average speed in the volute. It is expressed as a function of a parameter Kv,
obtained from a statistical diagram as the specific speed varies.

The procedure used is as follows:

Kv =
vvolute√

2gHm
(43)

A4 =
Q

Kv
√

2gHm
(44)

b = hv =
√

A4 (45)

A square geometry was assumed for the exit section of the volute (A4).

2.2.7. Sizing of the Final Diffuser

It has been assumed that the length of the final diffuser, Ld, can be assumed to be
equal to the difference between the height h2 (distance between the axis of the pump and
the discharge flange) and the radius r2. It was therefore possible to dimension the output
section of the final diffuser using the following expressions:

b5 = h5 = 2 Ld tan(αd) + b (46)

A5 = b5hv (47)

The half-opening angle of the diffuser αd is set equal to 3.5 degrees in such a way as to
ensure that fluid vein detachment does not occur.

2.2.8. Impeller–Case Distance sd

The impeller–case distance was evaluated following an analysis carried out on the
geometric characteristics of the pumps under examination. An average value of 9 mm was
established. Although there are undeniable differences between this value and the real one,
the influence of the parameter on the evaluation of quantities of interest, and in particular
the friction efficiency on the disc, is reduced to such an extent that the approximation was
deemed acceptable.

2.3. Measurement of Geometric Parameters

To verify the accuracy of the geometric model, it was necessary to measure, for each
pump subject of this analysis, the following geometric parameters:

- External diameter (d1);
- Eye diameter of the impeller (d2);
- External blade width (b1);
- Blade width at the eye of the impeller (b2);
- Outflow angle relative to the external diameter (β1);
- Outflow angle relative to the eye of the impeller (β2).

The measurement of some of the parameters listed above such as the diameters and the
height of the blades did not present difficulties. To perform such measurements, a vernier
caliper was used (0–1000 mm range, 0.15 mm accuracy). The evaluation of the angles β1
and β2 was carried out adopting the following methodology:
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- To calculate the exit angle β2 (angle relative to the high-pressure area), it was verified
that the profile of the impeller blades in the radial plane was approximated by a
logarithmic spiral, using a probe mounted in the spindle of the milling machine to
reconstruct its shape. The equation of the logarithmic spiral in polar coordinates r, θ
(where r is the generic radius of the profile in a radial plane and θ is the angle that this
radius forms with the axis of the machine always in the radial plane) is as follows:

r = a emθ (48)

Having a series of pairs of values of r, θ it is possible to evaluate by interpolation
the unknown values a and m of Equation (47). To obtain the values r and θ, the various
measured impellers were mounted on a divider disc of the type used for milling machines.
This disc allowed the rotation of the impeller installed on it exactly by the desired angle,
with great precision.

- To determine the angle β1, it is required that in correspondence with the design
conditions (BEP point) there is a correspondence between the geometric angle and the
flow angle.

3. Results

The analysis was carried out on five Ksb pumps (P40-335, P80-220, P40-250, P50-160,
P100-200) and a Caprari pump (P80-160), which cover a specific speed range from 9.05
to 43.48. These pumps were measured at the DIMEG Department of the University of
Calabria, except for the P100-200, which was instead measured at the University of Trento.
They are centrifugal pumps with a conical axial inlet and perpendicular discharge, a volute
with a square end section, and a height that varies linearly along the peripheral direction.
The final diffuser consists of a diverging truncated cone. The following paragraphs show
the results of both the geometric and fluid dynamic models.

3.1. Results of the Fluid Dynamics Model

The following Figures 7–11 and 12A,B show the characteristic curves obtained from
the fluid dynamic model for the range of pumps under examination, both in turbine and
pump operation. In this case, the geometric parameters of the pumps are known, as they
have been measured, and therefore the model processes these values according to the
machine prototype described above. These curves are compared with those measured
experimentally to highlight the deviation and an error band of 5%.

Figure 7. (left) Head and efficiency for the PAT 40-335 (ns = 9.05) in pump operation. (right) Head
and efficiency for the PAT 40-335 (nst = 5.52) in turbine operation.
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Figure 8. (left) Head and efficiency for the PAT 80-220 (ns = 32.69) in pump operation. (right) Head
and efficiency for the PAT 80-220 (nst = 26.91) in turbine operation.

Figure 9. (left) Head and efficiency for the PAT 40-250 (ns = 12.78) in pump operation. (right) Head
and efficiency for the PAT 40-250 (nst = 8.81) in turbine operation.

Figure 10. (left) Head and efficiency for the PAT 50-160 (ns = 31.01) in pump operation. (right) Head
and efficiency for the PAT 50-160 (nst = 26.03) in turbine operation.
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Figure 11. (left) Head and efficiency for the PAT 80-160 (ns = 40.24) in pump operation. (right) Head
and efficiency for the PAT 80-160 (nst = 32.94) in turbine operation.

Figure 12. (left) Head and efficiency for the PAT 100-200 (nst = 43.48) in pump operation. (right)
Head and efficiency for the PAT 100-200 (nst = 35.91) in turbine operation.

As can be seen in the Figures 7–11 and 12A,B, in turbine operation, the PATs are able
to provide satisfactory performances under nominal operating conditions. To the right of
the BEP point, the efficiency drops slowly, and this represents an advantage of the PATs,
because it allows working with good efficiency in a wide range of flow rates. Nevertheless,
there are no very high efficiencies, if compared to traditional machines, such as small
Francis and Pelton turbines. The main cause is linked to the fact that the PATs are not
designed to work as a turbine, and for this reason they are not optimized. In addition,
there are instability phenomena that occur inside the machine when it operates outside the
design conditions. This instability can occur as follows:

- Oscillations of the rotation speed;
- Instability in the torque applied to the motor shaft;
- Instability in the head from the turbine or in the flow rate processed;
- Cavitation due to the presence of low suction pressures;
- Water hammer, which stresses both the piping system and the mechanical parts of

the PAT.

There are therefore strong fluctuations in the torque that is transmitted to the machine
shaft which, in the transition from pump to turbine operation, requires long synchronization
times of the machine with the generator. The PAT is therefore not able to adapt to the
variations of the energy required by the network. These fluctuations can also occur during
turbine operation, during synchronization with the generator at the frequency of the
electrical network in the starting or braking phase, and for low flow rates or when the
load applied to the shaft is zero, as the hydraulic energy is entirely dissipated by the
friction in the bearings and the impeller does not accelerate. Regarding pump operation,
centrifugal pumps are operating machines and, to obtain high efficiencies, they are designed
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to minimize losses. The best pump efficiencies are obtained for machines with high specific
speeds. The shape of the impeller is less critical and allows a more regular fluid passage;
there are no abrupt changes in shape or strong bends. However, high specific speed pumps
process high flow rates but low heads. For low specific speed values, these machines are
designed exclusively to provide high heads at the flow rate, at the expense of efficiency.
To obtain high heads, the impeller assumes a ‘pan’ conformation; it is very flattened, and
the fluid threads have strong curves, producing high pressure drops and therefore low
performances. For example, the 40-335 pump has low efficiency because it only produces
head. It must therefore centrifuge, and it is necessary to increase its diameter, flattening
its shape.

3.2. Results of the Geometric Model

This paragraph shows the comparison between the geometric values determined by
the model previously described and the actual geometry of the machines measured in the
laboratory (Table 6). Furthermore, the difference between the two corresponding values is
highlighted to be able to observe the reliability of the procedure used. Since this is a study
based on statistical graphs, it is foreseeable that this difference will be minimal for some
values, while it will be substantial for others, depending on the actual geometry of the
machine, which adapts to the model itself. It is the designer’s task to establish, and then
evaluate, whether to accept this obtained gap, obviously depending on the sensitivity that
the parameter itself has towards the result. This procedure was the basis for the verification
of the model and its refinement. The curves that have been obtained from the entire module,
which includes the fluid dynamic and geometric model obtained for the machine models
under examination, have reported tolerable results for the purpose that had been set.

Table 6. Geometric parameters measured and calculated by the model.

Pumps
40-335 40-250 80-220 50-160 80-160 100-200

Meas Calc Meas Calc Meas Calc Meas Calc Meas Calc Meas Calc

d0 (mm) 72.5 82.4 65 65.6 115 95.6 77.1 73.4 120 87.5 143 114
d1m (mm) 49.9 40.2 37.74 35.9 50 45.4 34 29.6 42 35 50 51
d1 (mm) 60.9 61.3 51.37 50.8 57 70.5 50 51.5 81 61.2 62 82.4
df (mm) 84.75 107.3 84.75 85.5 134.75 124.5 89.75 95.6 135 114 159.75 148.4
d3 (mm) 338 251.2 282 273 230 234.3 185 186.2 185 187.3 224 234.3
db (mm) 139.7 108.2 99.76 86.2 150 125.5 90 96.4 135 114.9 150 149.6
b1 (mm) 7.2 27.5 8.89 11.5 50 32.7 32 28.6 62 34.3 61 41.1
b2 (mm) 10 16.1 8 7.3 25 21.2 16 16.5 25 21.1 32.5 28.7
b3 (mm) 16 28.2 8 14.7 42.5 37.2 26 28.8 35 37 61 50.3
b (mm) 26 24 24 27 49 66 67 42 87 47 55 93.6
β1p (◦) 20.49 43.83 38.58 51.9 17.53 42.75 26.36 41.38 23.7 43 20 38.97
β2p (◦) 24 23 20 23 28.26 27 26 26 23.7 26 26 27

t1 (mm) 4 4 4 4 2 4 4 4 4 4 4 4
t2 (mm) 4 4 4 4 2 4 4 4 5 4 4 4
b5 (mm) 40 64.2 89 52.6 80 89 50 89.9 84 63 89 114.5
cl (mm) 0.125 0.125 0.25 0.125 0.15 0.125 0.25 0.125 0.25 0.125 0.55 0.25
sd (mm) 7 9 17 9 9 9 21 9 9 9 15 9
Ld (mm) 97 131.5 98 95 90 170 102 93 137 136.5 91 170

As previously specified, we notice significant differences for some values. These
differences, however, are relative and calculated as a function of the specific measured
value. This analysis was carried out on a sufficiently large number of models, in such a
way as to allow their improvement. Obviously, this research, being still ongoing, has the
potential to provide even better results.
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4. Sensitivity Analysis

The proposed model provides more accurate results when using the measured geome-
try of the machine. The influence of the single geometric parameters on the model results
was analyzed to carry out a sensitivity analysis. The geometric parameters to which the
model is most sensitive have been identified and are as follows:

- Hub diameter d1m;
- Width of the blades entering the impeller b1;
- Suction diameter d0;
- Width and height of the volute hv, b;
- Impeller exit angle β2;
- Height of the blades exiting the impeller b2.

A sensitivity analysis was carried out for each of these parameters in correspondence
to percentage variations ±Δ/2% and ±Δ%. For both pump and turbine operation, the
following parameters are determined:

- QP/T meas: flow rate to BEP measured on the bench;
- QP/T calc: flow rate to the BEP calculated by the model;
- HP/T meas: head at BEP measured on the bench;
- HP/T calc: head at BEP calculated by the model.

The percentage error is then evaluated as follows:

(Q, H)P/Tmeas − (Q, H)P/Tcalc
(Q, H)P/Tmeas

(49)

Table 7 summarizes the influence of the geometric parameters considered on the
values of flow rate and head at the BEP, in direct (QP, HP) and inverse (QT, HT) operation.
The stars (*) indicate a greater or lesser degree of sensitivity in proportion to their number.

Table 7. Sensitivity to geometric parameters.

QP HP QT HT

d1m * *** *** ***
b1 * * ** ****
d0 ** *** **** ****

hv, b **** *** *** ****
b2 ** *** * *
b2 ** **** ** **

For example, (*) means that the model is not very sensitive to this parameter, for (****)
the model is very sensitive to this parameter.

As can be seen from Table 7, in determining the head at BEP in turbine operation (HT),
the most critical parameters for what is necessary to have a value as accurate as possible
are the diameter of the hub (d1m), the height of the inlet blades (b1), the suction diameter
(d0), and the dimensions of the volute (hv, b). Regarding, instead, the determination of
the flow rate at the BEP for the turbine operation (QT), the influence of the height of the
inlet blades b1 is always negligible. As an example, Tables 8–10 show the results relating to
parameters b and hv, to which the model is most sensitive, for three representative pump
models: P40-335, P40-250, and P80-220. During the analysis, the range of variation of each
parameter is between ±20%, except for three parameters which showed a higher sensitivity
(diameter of hub and suction band diameter of ±10%, width of the volute band of ±5%).
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Table 8. Sensitivity analysis for pump 40-335.

hv, b
(m)

Δ%
Variation

hv, b
(m)

Qp
meas

Qp
calc

E%
Hp

meas
Hp
calc

E%
QT

meas
QT
calc

E%
HT

meas
HT
calc

E%

0.024 −5.0% 0.023 26 25.1 3.6% 35 29.90 14.7% 49.3 45.9 7.0% 99.5 109.0 −9.5%
0.024 −2.5% 0.023 26 26.0 0.0% 35 30.30 13.5% 49.3 47.3 4.0% 99.5 105.1 −5.6%
0.024 0.0% 0.024 26 26.0 0.0% 35 31.10 11.1% 49.3 48.8 1.1% 99.5 101.5 −2.0%
0.024 2.5% 0.025 26 27.2 −4.6% 35 31.20 10.9% 49.3 50.2 −1.8% 99.5 98.2 1.4%
0.024 5.0% 0.025 26 28.3 −9.0% 35 31.30 10.6% 49.3 51.7 −4.8% 99.5 95.0 4.5%

Table 9. Sensitivity analysis for pump 40-250.

hv, b
(m)

Δ%
Variation

hv, b
(m)

Qp
meas

Qp
calc

E%
Hp

meas
Hp
calc

E%
QT

meas
QT
calc

E%
HT
meas

HT
calc

E%

0.027 −5.0% 0.026 25 25.0 0.0% 20 19.90 3.8% 38.3 37.6 1.8% 43.7 49.0 −12.2%
0.027 −2.5% 0.026 25 25.0 0.0% 20 19.70 1.7% 38.3 38.7 −1.0% 43.7 47.3 −8.4%
0.027 0.0% 0.027 25 25.0 0.0% 20 20.00 0.0% 38.3 39.8 −3.7% 43.7 45.9 −5.0%
0.027 2.5% 0.028 25 25.4 −1.6% 20 20.20 −0.8% 38.3 41.2 −7.4% 43.7 44.9 −2.9%
0.027 5.0% 0.028 25 26.4 −5.7% 20 20.10 −0.4% 38.3 42.3 −10.2% 43.7 43.6 0.1%

Table 10. Sensitivity analysis for pump 80-220.

hv, b
(m)

Δ%
Variation

hv, b
(m)

Qp
meas

Qp
calc

E%
Hp

meas
Hp
calc

E%
QT

meas
QT
calc

E%
HT

meas
HT
calc

E%

0.066 −5.0% 0.063 100 100.0 0.0% 14.4 14.28 0.8% 123 117.68 4.3% 20.0 20.7 −3.3%
0.066 −2.5% 0.064 100 100.0 0.0% 14.4 14.35 0.3% 123 120.66 1.9% 20.0 20.2 −1.1%
0.066 0.0% 0.066 100 100.0 0.0% 14.4 14.41 −0.1% 123 122.64 0.3% 20.0 19.6 1.9%
0.066 2.5% 0.068 100 100.0 0.0% 14.4 14.46 −0.4% 123 124.63 −1.3% 20.0 19.1 4.6%
0.066 5.0% 0.069 100 100.0 0.0% 14.4 14.51 −0.8% 123 126.61 −2.9% 20.0 18.6 7.2%

5. Procedure for Predicting the Performance of a Generic Pump

This paragraph describes the global procedure for calculating the performance of a
generic PAT, which uses both the pump/turbine fluid dynamic model and the geometric
model. In the first phase, the geometry of the machine is built, as described in Section 3,
starting from the data Q, H, Hmo, h2, d2, and n acquired from the catalog. The fluid dynamic
model is then applied to calculate the performance of the machine in pump operation,
and comparisons are made with the curves available in the catalog. At this point, two
situations could occur: the first is that the two curves are very close, and the second is that
the two curves do not coincide. In the second case, it is necessary to act on the geometric
parameters calculated by the model, starting from those to which the model itself is most
sensitive. The manual insertion of these parameters into the model which calculates the
geometry (Section 3) is possible. When, after several attempts, the curves concur, the model
can be applied in turbine operation. The procedure is shown in Figure 13.

To better illustrate what has just been described, an example carried out on the Caprari
pump P65-250 is reported. This pump was supplied by the DIMEG Department of the
University of Calabria, together with the five pumps previously described. The geometric
model, first of all, calculates its geometry. Then, using these parameters, the fluid dynamic
model derives the head and efficiency curve as a function of the flow rate, in pump
operation, which will then be compared with the pump curve provided in the catalog (see
Figure 14A).
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Figure 13. Global procedure for determining the performance curves.

 
(A) 

Figure 14. Cont.
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(B) 

Figure 14. (A) Head and efficiency for the PAT 65-250 (ns = 22.75) in pump operation. (B) Head and
efficiency for the PAT 65-250 (ns = 22.75) in pump operation with z = 6, b = 0.038 m, b5 = 0.054 m, and
cl = 3.5 × 10−4 m.

As can be seen from Figure 14A, the real head obtained from the model was too low if
compared with the head reported in the catalog, as it is positioned below this curve. The
geometric model provided a value of the number of blades equal to 5. However, having
the real value of this parameter (z = 6) available, it was possible to replace it. The change of
this parameter has modified the losses linked to the slip phenomenon, calculated using the
Stodola formula [37,38], which depends on the value of the number of blades. To improve
the characteristic curve, it was decided to act on the value of the width of the exit section of
the volute (b), reducing it, to then obtain, using the geometric model, the corresponding
value of the width of the final diffuser (b5). By decreasing the value of this parameter, the
fluid passage section is reduced (A4), causing an increase in speed inside the volute (c4).
The b-value initially obtained by the model was 0.048 m, and b5 was equal to 0.064 m.
Finally, as can be seen from the total efficiency curve calculated by the model, the efficiency
is too high for low flow rates. This is linked to the assumptions imposed a priori and to
having initially considered the volumetric efficiency, for any flow rate value, equal to its
value at the BEP, set equal to 0.95. However, it was possible to improve the results by
acting on the amplitude value of the seal, cl, through which the liquid leaks occur, which
is therefore linked to the volumetric losses. By increasing the value of this parameter, the
total efficiency curve is considerably lowered. After applying the changes illustrated above,
the curves changed as shown in Figure 14B.

At this point, having obtained the conformity of the results for pump operation, it was
possible to observe the behavior of the machine in turbine operation. Figure 15A,B shows
the curves obtained from the model before and after the modifications to the geometric pa-
rameters analyzed. These curves, obtained from the fluid dynamic model relating to turbine
operation, are compared, for simplification purposes, with the data obtained experimentally
on the PAT. However, this method works even in the absence of experimental data.
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Figure 15. (left) Head and efficiency for the PAT 65-250 (nst = 15.83) in turbine operation. (right)
Head and efficiency for the PAT 65-250 with z = 6 in b = 0.038, b5 = 0.054 m, and cl = 3.5 × 10−4 m.

6. Conclusions

The work carried out is part of a theoretical–experimental research context on cen-
trifugal pumps used as turbines (PATs). Their convenience lies mainly in the lower costs
incurred compared to a turbine with the same power and in the wide range of models
available on the market. However, this advantage cannot be grasped if it is not possible to
know the actual behavior of the machine when it is used as a turbine once a specific need
has been recognized. The objective of this research is the development of a prediction model
capable of obtaining the head–flow rate and efficiency–flow rate curves of the PAT, both in
pump and turbine operation. The effort was the development of a series of fluid dynamic
models that involve the pressure drops in the various components of the machine, as well
as the slip phenomena at the inlet and outlet of the impeller. Furthermore, a geometric
model was created for the reconstruction of the geometry of the machine, based on good
design techniques, statistical data, and maps of good functioning, available in the literature.
This analysis was necessary as the geometry is not provided by the manufacturer’s catalog.
These models were calibrated based on measurements made on the DIMEG hydraulic test
bench on a sample of six machines, tested in both operating modes, whose geometric pa-
rameters were measured. The machines measured were six centrifugal pumps, namely five
Ksb pumps (P40-335, P80-220, P40-250, P50-160, P100-200) and a Caprari pump (P80-160),
which have a specific speed range from 9.05 to 43.48. For these pumps, the head flow rate
and flow rate efficiency curves have been obtained in both operating modes. Generally,
these curves, if compared with those obtained experimentally in the DIMEG test bench,
show a good reliability, because they fall into error bands equal to +/−5%. To the right of
the BEP, the efficiency curves are flat, which represents an advantage for those who use
this technology, as the machine maintains good performance over a wide range of flow
rates. Subsequently, a procedure was set up which envisages the use of the previously
mentioned models, useful for calculating the performance curves of the machine both
in pump and turbine operation, as well as for the reconstruction of the geometry. In the
first phase, based on a few data available from the manufacturer’s catalog, the model
reconstructs the prototype geometry of the machine and calculates the performance curves
of the machine in pump operation. If these curves match those present in the catalog,
the geometry calculated by the geometric model is correct; otherwise, it is necessary to
change some geometric parameters so that the predicted curves and those in the catalog
coincide. For this purpose, a sensitivity analysis comes to the aid of the user, the purpose
of which is to identify the parameters to which the model is most sensitive. The sensitivity
analysis showed that the geometric parameters to which the model is most sensitive, in
turbine operation, are the diameter of the hub (d1m), the height of the inlet blades (b1), the
suction diameter (d0), and the dimensions of the volute (hv, b). Finally, once the appropriate
parameters have been changed and the compliance of the performance curves with the
catalog data has been obtained, it is possible to obtain the curves in turbine operation,
which will certainly be reliable, given the adherence of the curves in pump operation.
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In conclusion, the article presented a flexible and interactive forecasting tool, with 95%
reliability, which allows choosing the most suitable PAT model to exploit the available
water resources. A simple model of general application was presented, useful for those
who decide to rely on PAT technology.
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Nomenclature

Symbols
A generic area
Ab,f back/front leakage passage area
Aθmj inlet area of the jth volute sector
A1, 2 passage area at different points of the impeller
A1r, 2r real passage area at different points of impeller
A3 diffusion region passage area
A4 volute final section area
A5 final diffuser inlet passage area
b1, 2 width at different points of impeller
b3 vaneless diffuser width
b4 final section volute width
b5 final section diffuser width
c1, 2, 3, 4 absolute fluid velocities at different points of PAT
cm1, m2, m3 meridional velocities at different points of PAT
cu1, u2, u3, u4 peripheral velocities at different points of PAT
cl radial clearance of the seal
d generic diameter
do impeller eye diameter
d1, d2, d3 diameter at different points of PAT
deq equivalent hydraulic diameter
dshf shaft diameter
df diameter of the front seal
db diameter of the rear seal
Eff_meas measured efficiency
Eff_catal catalog efficiency
Eff_calc calculated efficiency
h4, 5 heights at different points of the final diffuser
hv volute throat section height
H head
He head at BEP of the pump
Hm real head
Head_meas measured real head
Head_catal catalog real head
Head_calc calculated real head
Hmo head at the shut-off
Hth theoretical head (Euler’s head)
HBEP head at BEP of the PAT
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Kv volute velocity coefficient
Ld diffuser length
n rotational speed
ns characteristic speed
sd clearance between the impeller and the case
P power
Pe maximum pump power
Q flow rate
Qe flow rate at BEP of the pump
Qs leakage flow
QBEP flow rate at BEP of the PAT
R4 final section volute radius
t1, 2 vane thickness
u1, 2 peripheral velocities at different points of impeller
wu1, u2 peripheral components of relative velocity
wm1, m2 meridional components of relative velocity
w∞ average relative velocity
z number of blades
Greek letters
α2 absolute flow angle in the vaneless diffuser
αd final diffuser opening angle
β inclination of relative flow to peripheral direction
β1f , 2f relative flow direction
β1p, 2p blades angles at different points of impeller
ΔScl lateral surface area
ΔSinn increment of inner wall surface
ΔScp increment of peripheral volute surface
z dynamic loss coefficient
η efficiency
ηcalc calculated efficiency
ηH hydraulic efficiency
ηD disc efficiency
ηv volumetric efficiency
ηtot total efficiency
ηmeas measured efficiency
θ inclination of blade to radial direction
λ friction coefficient
λj friction coefficient of a segment of volute
μ leakage flow coefficient
υ kinematic viscosity
ξ1, 2 vanes blockage factor
ξd localized drag coefficient
ρ density of water
τa torsional stress
φ capacity coefficient
ω angular velocity
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Abstract: Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on
current and state of charge. The modelling of lithium-ion batteries is therefore complicated and
model parametrisation is often time demanding. Grey-box models combine physical and data-
driven modelling to benefit from their respective advantages. Neural ordinary differential equations
(NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical
laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of
NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as
a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor
circuit, including its dependency on current and state of charge, is implemented as a NODE. After
training, the grey-box model shows good agreement with experimental full-cycle data and pulse
tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one
consisting of half cycles and one dynamic load profile representing a home-storage system. The
dynamic response of the battery is well captured by the model.

Keywords: neural ordinary differential equations; grey-box model; equivalent circuit model; lithium-
ion batteries

1. Introduction

Lithium-ion batteries are a key technology for electric vehicles, portable devices and
stationary applications such as home-storage systems. With the increasing usage of lithium-
ion batteries in complex fields of application, the demand for battery models is growing as
well. Battery models are necessary to predict the dynamic voltage and current behaviour
and to monitor internal states, particularly the state of charge (SOC) and the state of health
(SOH). There are many different types of battery models [1,2]. Depending on the required
purpose, they can be selected as a compromise between accuracy and simplicity. We
introduce here a grey-box (GB) modelling approach that uses a simple equivalent circuit
model (ECM) as a basis.

Digitisation has been progressing rapidly in the past decades, and with it the amount
of available data increases. This has boosted the development of artificial intelligence and
especially neural networks. Neural networks are an important representative of black-
box (BB) models. They learn relations between inputs and outputs of systems based on
data [3–6]. However, BB models require a huge amount of training data. Therefore, it is
reasonable to consider other modelling techniques. White-box (WB) modelling uses prior
physical, chemical or engineering knowledge in the form of mathematical equations to
describe the behaviour of the corresponding system. WB models are therefore limited to
the understanding of the underlying processes. GB models combine WB and BB modelling
techniques to benefit from their respective advantages [3–6].
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There are many examples in current research where neural networks are used to
model lithium-ion batteries. In Ref. [7] a feedforward network with two hidden layers
approximates the SOC of a battery based on the actual voltage, current and time. The
authors of Ref. [8] predict the SOC of a battery with a recurrent neural network (RNN). The
last three values of SOC, battery current, battery voltage and the values of four temperature
sensors are taken into account. RNNs enable time series prediction. The authors of
Ref. [9] perform online predictions of the remaining capacity of a lithium-ion battery
with a long short-term memory network, a special form of RNN. The measured voltages
during constant current (CC) charging above a certain battery voltage and the charge
throughput till reaching the charge cut-off voltage serve as inputs. The authors of Ref. [10]
use neural networks for battery design. They generate their training data with a pseudo-
two-dimensional model of a lithium-ion battery by varying different design parameters.
The first neural network classifies whether the given parameter combination leads to a
possible battery configuration or not. A second neural network estimates the specific energy
and the specific power of the battery with the chosen parameters. In Ref. [11] a feedforward
network is used for end-of-line prediction. The unmeasured physical battery parameters are
estimated by a neural network. The aforementioned approaches represent BB models. The
following articles focus on GB modelling of lithium-ion batteries. The authors of Ref. [12]
estimate the SOH of a battery with a neural network that takes the fitted parameters of
an ECM as input. In Ref. [13] a reduced-order physics-based model is supplemented with
two neural networks to predict what the authors call "nonideal voltages" of the positive
and negative electrode. An additional Bayesian network approximates the influence of
ageing on the battery resistance and the amount of cyclable lithium. The authors of Ref. [14]
build GB models of dynamic systems including external variables with neural ordinary
differential equations (NODEs). In contrast to the original contribution [15], they call the
combination of NODEs and differential equations “universal differential equations”. In
Refs. [16,17] NODEs are used for GB modelling of lithium-ion batteries. The authors of
Ref. [16] focus on physical battery modelling in combination with NODEs. They consider
ageing effects such as solid electrolyte interface formation, lithium plating and active
material isolation as well as the increase in the internal resistance. NODEs approximate
the remaining deviation between the physical model and the experiment. In our previous
work [17] an ECM serves as a basis for a GB model of a lithium-ion battery. NODEs model
the voltage drop across the included resistor–capacitor (RC) circuit.

In the present contribution, we continue our previous work [17] by further improving
the GB model. For this purpose, we increased the amount of physical knowledge in the
model. In contrast to the former contribution, the focus of the current study is on modelling
the dynamic properties of the battery. We used additional training data from charging
and discharging with pulsed currents to train the time constant of battery dynamics.
Furthermore, we tested the trained GB model against two test profiles covering more
realistic battery operation. So far we have neither considered temperature dependencies
nor ageing effects.

The target battery studied here is a large-format 180 Ah prismatic commercial lithium-
ion cell with lithium iron phosphate (LFP)/graphite chemistry. This type of cell is used in
stationary storage systems. We have previously investigated the experimental properties
of this cell in great detail [18]. LFP cells are attractive for stationary storage applications
because they have shown a high cyclic and calendaric lifetime [19,20]. However, their state
diagnosis is challenging due to a flat, plateau-like discharge voltage curve and charge–
discharge voltage hysteresis [21]. One of the goals of the present study is therefore to
investigate the applicability of GB models to this type of cell.

The paper is organised as follows. In Section 2, we describe the fundamentals of the
ECM, the NODEs and the combination of both for GB modelling of lithium-ion batteries. In
Section 3, we show and discuss the application of the proposed GB model to the simulation
of lithium-ion batteries. The training and test results are given as well as their dependencies
on hyperparameters, the user-defined parameters of a neural network. Hyperparameters
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such as the learning rate or the number of hidden layers of a neural network control the
learning process. At the end of the paper, we summarise the results and give an outlook.

The measurement data and the code are available in Zenodo. See ‘Data Availability
Statement’ for further information.

2. Methodology

In this section, we introduce NODEs and explain how to use them for modelling
dynamic systems. We present an ECM of a lithium-ion battery and derive the GB model
from the ECM. Furthermore, we describe the initialisation, normalisation and training
procedures as well as the experimental basis used for training and testing.

2.1. Background: Neural Ordinary Differential Equations

Besides the standard feedforward network, a number of other neural network archi-
tectures have been developed for different areas of application. The interested reader is
referred to Ref. [22] for a detailed overview of neural networks.

RNNs are used for time series prediction. In contrast to feedforward networks, RNNs
have recurrent connections. The outputs of a neuron can be used as inputs of a neuron in
the same or a previous layer. In Ref. [23] RNNs learn multivariate time series with missing
values. The authors of Ref. [24] include external variables in RNNs.

The authors of Ref. [25] introduce residual neural networks (ResNets) to overcome
problems with the degradation of the training loss with an increasing number of hidden
layers in deep neural networks. ResNets have additional short-cut connections which allow
direct addition of the input of a neuron to its output.

In Ref. [26] the connection between ResNets with shared weights (the same weights
are used in each layer of the neural network) and special forms of RNNs is established.
ResNets can be used for time series prediction as well.

The following recursive formula applies to the state transformation from layer t to
layer t + 1 in a ResNet [25]:

�zt+1 = �zt + �f
(
�zt,�θt

)
, t = 0, ..., T − 1 (1)

where,�zt ∈ Rd is the vector of the hidden states at layer t,�θt the learned parameters of layer
t and �f : Rd → Rd a learnable function. The vector�θt of learned parameters summarises the
learned weights and biases. Parameter sharing across the layers (�θt = �θ for t = 0, ..., T − 1)
results in the explicit Euler discretisation of the initial value problem [15,27–32],

d�z(t)
dt

= �f
(
�z(t), t,�θ

)
, �z(0) = �z0. (2)

Herein the continuous change in the states�z(t) is given by the learnable function �f that
represents a neural network. Therefore, the differential equation according to Equation (2) is
called NODE. Starting from the initial state�z(0) a differential equation solver can calculate
the output state�z(T) [15,29,30,32].

Originally, NODEs were developed for initial-value problems. The authors of Ref. [14]
expanded the approach to solving differential equations with constraints. In our previous
work [17], we showed how to consider external variables �u(t) (here, the dynamic battery
current as input variable) directly based on a simple application example. The differential
equation according to Equation (2) is generalised:

d�z(t)
dt

= f
(
�z(t),�u(t), t,�θ

)
, �z(0) = �z0. (3)

The external variables are inputs of the NODE. Therefore, we have to provide a function
describing the change in the external variables with time. We could for example interpolate
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the measured data [17]. Figure 1 illustrates how to use NODEs with external variables
schematically.

⃗ ∫ d⃗( ⃗ , , , ⃗) ⃗ ⃗( ⃗ , , , ⃗) ∫ d ⃗
Figure 1. NODEs with external variables;�zt represents the state variables at time t and �ut represents
the respective external variables. Adapted from Figure 1 in [17], which is licensed under CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/, accessed on 23 February 2022).

As stated in Refs. [14,17], NODEs can be used for GB modelling. The differential
equations derived from physical insights in the system and NODEs can be combined in one
equation system. A WB model is used as a basis for GB modelling. Single dependencies
or entire equations in the differential equation system are then replaced with learnable
parameters and neural networks. The respective ODEs are transformed into NODEs.
Additional assumptions going beyond the physical insights in the system can be added. A
differential equation solver delivers the corresponding values of the state variables at the
considered time points. Additional algebraic model equations can also be modified using
learnable parameters and neural networks.

2.2. Equivalent Circuit Model

Equivalent circuit modelling is a common approach to model lithium-ion batteries.
ECMs describe battery dynamics with only a few states and parameters. Due to their
simplicity, they are often used to predict the SOC or the SOH of batteries [33,34]. There is
no agreement in the literature about the type of equivalent circuit to be used for lithium-ion
batteries [2]: Simple empirically oriented versions of ECMs model battery dynamics with a
voltage source, a serial resistor and one or more RC elements [33,35–40]. Electrochemically
oriented models will typically include a Warburg diffusion element (either in series with
the RC element or within the RC element). A more detailed analysis, particularly in the
context of the present combination with NODEs, is out of the scope of the present study.

One can take into account that the circuit parameters may depend on SOC, tempera-
ture, the battery current, and the cycle number [36,40].

As in Ref. [17], we used a simple ECM as a basis for battery modelling. The chosen
ECM is shown in Figure 2. It is composed of an SOC-dependent voltage source, a serial
resistor, and one RC circuit. The open-circuit voltage of phase-change active materials such
as LFP is known to exhibit a path dependency [21]: The measured voltage is different after
discharge with a subsequent rest phase or after charge with a subsequent rest phase at the
same SOC. To describe this effect with our model, we included a hysteresis voltage drop
representing the particular feature of the studied LFP cell.

The following equation system describes the chosen ECM including parameter depen-
dencies on battery current and SOC:

dSOC
dt

= − 1
Cbat

ibat (4)

dvRC1

dt
=

1
C1

·
(

ibat −
1

R1(SOC, ibat)
· vRC1

)
(5)

vbat = vOC(SOC)− vhys · sgn(ibat)− RS · ibat − vRC1, (6)

where Cbat is the battery capacity, RS the serial resistance, R1(SOC, ibat) the charge-transfer
resistance in the RC circuit depending on SOC and battery current, and C1 the double-
layer capacitance (which, in our case, may include other physical contributions to voltage
dynamics, for example, solid-state diffusion). It should be noted that considering a non-
constant C1 could improve the approximation capability of the model. However, we
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decided to use a constant double-layer capacitance at the present stage because we wanted
to focus on the most important effects which we expect from the charge-transfer resistance
and its dependency on the battery current and the SOC. The SOC-dependent open-circuit
voltage (OCV) is labelled vOC(SOC) and the hysteresis voltage drop is given by vhys times
the signum function of the battery current sgn(ibat). The hysteresis voltage drop could have
also been modelled by the current- and SOC-dependent resistance R1. However, we did
not include the voltage hysteresis into R1 to maintain the physical characteristics of both
vhys and R1. The battery voltage vbat is the output of the dynamic system and the battery
current ibat is the external variable. We define the current positive for battery discharge
and negative for battery charge. Note that Equations (4) and (5) represent ‘standard’,
physics-derived ordinary differential equations (ODEs).

vhys

vOC (SOC)

ibat

RS

vRS

R1 (SOC, ibat)

vhys

C1

vbat

vRC1

Figure 2. ECM of a battery consisting of an SOC-dependent voltage source, a hysteresis voltage drop,
a series resistor, and an RC circuit.

2.3. Grey-Box Model

We took the ECM given by Equations (4) to (6) as a basis for GB modelling. The
nominal capacity of a battery is usually given by the manufacturer. It indicates the capacity
of a fresh cell. However, the real (experimentally observed) battery capacity Cbat can
deviate from the manufacturer’s claims. For this reason, we considered the capacity Cbat in
Equation (4) as a learnable parameter. In Equation (5) the double-layer capacitance C1 and
the charge-transfer resistance R1, as well as its dependency on SOC and battery current,
are unknown. Therefore, we introduced a second learnable parameter to represent the
capacitance C1. As we wanted to take into account that the charge-transfer resistance may
have different values and characteristics during charging and discharging (as observed
experimentally [18]), R1 is described by two learnable functions. Depending on the sign of
the battery current, one of these functions is chosen; at zero current (ibat = 0 A) the mean
is taken. In the output Equation (6) we had to establish a link between OCV and SOC. The
manufacturer usually only provides finite-rate charge/discharge curves. Therefore, we
derived vOC(SOC) from dedicated measurements (so-called quasi-OCV measurements).
The hysteresis voltage drop vhys and the serial resistance RS are assumed constant in
Equation (6). We introduced two more learnable parameters to approximate these two
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values. Overall, using these assumptions, the ECM according to Equations (4) to (6) leads
to the following GB model:

dSOC
dt

= − 1
ω0

ibat (7)

dvRC1

dt
=

1
ω1

·
(

i − 1
R1(SOC, ibat)

· vRC1

)
(8)

R1(SOC, ibat) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f
(

SOC, ibat,�θ f

)
∀ ibat < 0

g
(

SOC, ibat,�θg

)
∀ ibat > 0

1
2

(
f
(

SOC, ibat,�θ f

)
+ g

(
SOC, ibat,�θg

))
else

(9)

vbat = vOC(SOC)− ω2 · sgn(ibat)− ω3 · ibat − vRC1. (10)

Here, ω0, ω1, ω2 and ω3 represent learnable parameters. The functions f and g represent
feedforward networks with their respective learnable parameters �θ f and �θg. We chose
neural networks with one hidden layer and rectified linear unit (ReLU) activation for f and
g. We varied the number of neurons in the hidden layer between 10 and 300. Both networks
had two inputs, the SOC and the battery current, and one output, the ohmic resistance R1.

It is worthwhile recognising that, mathematically, this model combines physics-based
ODEs and machine-learning-based NODEs in one equation system. The combined equa-
tions are solved simultaneously within a single numerical framework.

2.4. Experiments

We applied the proposed GB modelling approach to a single lithium-ion battery
cell. All experiments were carried out using a commercial single cell of the Chinese
manufacturer CALB, model CA180FI. The large-format prismatic cell has a nominal capacity
of 180 Ah and a nominal voltage of 3.2 V. It uses LFP at the positive electrode and graphite
at the negative electrode. The cell was investigated experimentally under a controlled
laboratory environment (climate chamber CTS 40/200 Li) using a battery cycler with four-
wire measurement (Biologic VMP3). Details on the cell and characterisation methods can
be found in our previous publication [18]. Here we carried out additional measurements
for GB model parameterisation and testing.

We measured experimental data sets representing several different operation scenarios.
Constant current constant voltage (CCCV) charge and discharge curves were measured
with different C-rates of 0.1 C, 0.28 C and 1 C (corresponding to 18 A, 50 A and 180 A,
respectively) during the CC phase. The upper and lower cut-off voltages were 3.65 V and
2.5 V, respectively, and a cut-off current of the CV phase of C/20 was used. Additionally,
one charge and one discharge curve were acquired with included current pulses: During
50 A CC operation, every two SOC-percent the current was reduced to 25 A for 30 s. This
gives rise to two dynamic voltage answers, one at beginning and one at end of pulse.

Furthermore, two independent measurements for model testing were carried out.
Firstly, the cell was cycled with 50 A between 25% and 75% SOC for around 44 h after fully
charging, in the following referred to as half cycles. We started from a fully-charged cell and
a first discharge to 25% SOC. The SOC cycling range was controlled by Coulomb counting.
After 40 half cycles it was fully charged again. Secondly, the cell was fully charged and
afterwards subjected to a dynamic load profile over 48 h representing a home storage battery
in a single-family house. The synthetic load profile was taken from Ref. [41] (obtained
with a load profile generator [42]), where a battery system of 5 kWh was investigated, and
downscaled to the energy of the present cell (576 Wh). All measurements were carried out
at an ambient temperature of T = 25 °C.

The number of data points per measurement series was large. Therefore, beginning
from the first value, we decided to only keep measurement values if the current varied
by |Δibat| ≥ 0.5 A or the measured voltage varied by |Δvbat| ≥ 0.5 mV between two subse-
quent values. Table 1 summarises the characteristics of the used measurement data. The
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number of used measurement values and the total duration are given for the different series.
It is worth mentioning that these values vary widely. The shortest data set for training only
spans t = 3932 s. The longest training data set takes t = 41,846 s. The test data sets cover
much longer durations.

Table 1. Measurement data for training and testing the model.

Data Set Number of Values Time Duration/s

discharge 0.1 C 5014 38,148
charge 0.1 C 4492 41,846
discharge 0.28 C 2177 13,787
charge 0.28 C 2181 17,418
discharge 1 C 898 3932
charge 1 C 3120 3936
pulsed discharge 15,575 14,479
pulsed charge 12,660 16,300
half cycles 77,548 162,754
synthetic load profile 69,541 190,231

The measurement data were made available and used as voltage versus time and
current versus time series. The measured battery current served as the external input of
the model. As proposed in [17], we interpolated the measured current values linearly for
providing values at arbitrary times as required by the numerical solver (cf. below).

2.5. Normalisation and Initialisation

The normalisation and initialisation are crucial for the training of the GB model with
NODEs. It is recommended to scale the inputs of neural networks [43]: The average of
the input variables over the training set should be close to zero (note that this condition is
fulfilled for a rechargeable battery, as negative currents for charge and positive currents for
discharge integrate to zero). Additionally, their covariances should be about the same.

As the SOC is in the range of 0 to 1, we decided to scale all inputs to values between −1
and 1. Additionally, we normalised the output values of the neural networks to the same
value range. We did not use different learning rates for different parameters. Therefore,
we also scaled the learnable parameters according to the respective value range and the
expected deviation from the chosen initial value.

According to the manufacturer, the cell has a nominal capacity CN = 180 Ah. However,
integration of the measured current over time for a whole charging or discharging process
leads to an approximate charge throughput of Q ≈ 191.5 Ah. As the manufacturers usually
give lower values for the nominal capacity to be on the safe side, we decided to set the
initial value to ω0 = 191.5 Ah. In the model, we used SI units. Therefore, we had to include
a conversion factor.

To get more information about the ohmic resistances and the capacitance in Equations (5) and (6),
or rather their learnable representation in Equations (8) to (10), we examined the mea-
surement data from the pulse tests more closely. Figure 3 shows a detailed view of the
current versus time and voltage versus time plot for the charging process with a pulsed
current. At t = 7264 s, there is a current step of Δibat = −25 A during charging. The
battery follows this current step with an ohmic voltage drop Δvbat,serial ≈ 7 mV. The
ohmic voltage drop is modelled through the serial resistance in Equation (6), or rather
the learnable parameter ω3 in Equation (10). For discharging we found similar absolute
values. Therefore, ω3 = |Δvbat,serial|/|Δibat| = 0.28 mΩ should be a good starting point for
the learnable parameter. We introduced the normalised parameter ω∗

3 = 1000 · ω3 instead
and initialised it as ω∗

3 = 0.28Ω. The value for ω3, which is the approximation of RS,
is then calculated according to ω3 = 1/1000 · ω∗

3 . The further course of the battery volt-
age following the ohmic voltage drop is modelled through the RC circuit in the ECM.
We estimated the time constant τ of the RC circuit by applying a tangent to the voltage

273



Energies 2022, 15, 2661

curve. We found τ ≈ 15 s. The final battery voltage drop caused by the RC circuit is
Δvbat,RC ≈ 8 mV. In the ECM the ohmic resistance R1 models this voltage drop. It can
be approximated as R1 = |Δvbat,RC|/|Δibat| = 0.32 mΩ. The capacitance C1 was estimated
according to C1 = τ/R1 = 15 s/320 μΩ = 47 kF. One has to take into account that the ohmic
resistance R1 in Equation (5) or (8) depends on SOC and battery current. Therefore, this is
only a rough reference point. We expected it to be much higher than the estimated value
for low and high values of SOC. Again, we introduced normalisation factors to simplify
the later training process. The current input to the neural networks f ∗ and g∗ was nor-
malised in relation to the maximum absolute current. The outputs of the neural networks
f and g were generated as follows: f

(
SOC, ibat,�θ f

)
= 1/100 · f ∗

(
SOC, ibat/180,�θ f ∗

)
, and

g
(

SOC, ibat,�θg

)
= 1/100 · g∗

(
SOC, ibat/180,�θg∗

)
. We initialised the weights and biases of f ∗

and g∗ from the uniform distribution U
(
−
√

k,
√

k
)

, where k = 1
l with l ∈ N the number of

inputs to the respective layer (cf. Ref. [43]). The learnable parameter ω1 was represented
by ω1 = 105 · ω∗

1 , where the normalised parameter ω∗
1 was initialised as ω∗

1 = 0.5 F. We
implemented the non-linear vOC(SOC) curve according to the measurements of Ref. [18]
as look-up table. The vOC(SOC) relationship needed in Equation (10) was obtained from
the look-up table via linear interpolation. Due to inaccuracies of the current measurement
and the choice of the initial SOC value it could be possible that the calculated SOC was
sometimes slightly larger than 1 or slightly lower than 0. In these cases we provided the
OCV values for SOC = 1 or SOC = 0, respectively. We approximated the hysteresis voltage
drop to find a good initial value as follows. We subtracted the voltage drops over the
resistances RS and R1 from the difference between the OCV and the measured battery
voltage at a medium SOC for ibat = −50 A, yielding vhys ≈ 15 mV. We introduced the
respective normalised learnable parameter ω∗

2 = 10 · ω2. We initialised it to ω∗
2 = 0.15 V.

Figure 3. Simulation results using NODEs for grey-box modelling of a lithium-ion battery in compar-
ison to experimental data at T = 25 °C. The focus is on charging with a pulsed current at a medium
SOC; (left): battery current versus time; (right): battery voltage versus time.
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Applying these modifications, the following equations describe the final GB model:

dSOC
dt

= − 1
3600 s/h ω0

ibat (11)

dvRC1

dt
=

1
105 · ω∗

1
·
(

i − 1
R1(SOC, ibat)

· vRC1

)
(12)

R1(SOC, ibat) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

100 · f ∗
(

SOC, ibat/180,�θ f ∗
)

∀ ibat < 0
1

100 · g∗
(

SOC, ibat/180,�θg∗
)

∀ ibat > 0
1

200

(
f ∗
(

SOC, ibat/180,�θ f ∗
)
+ g∗

(
SOC, ibat/180,�θg∗

))
else

(13)

vbat = vOC(SOC)− 1
10

· ω∗
2 · sgn(ibat)−

1
1000

· ω∗
3 · ibat − vRC1, (14)

where ω0, ω∗
1 , ω∗

2 , and ω∗
3 are learnable parameters and the functions f ∗ and g∗ represent

neural networks. They were built in analogy to the neural networks f and g in Equation (9).
We used feedforward networks with one hidden layer and ReLU activation. The number
of hidden neurons was varied.

2.6. Simulation and Optimisation Methodology

We implemented our model in Python (version 3.7.6). We used the open-source ma-
chine learning framework PyTorch (version 1.9.0) [44]. PyTorch provides two main features:
Tensor computing and automatic differentiation for deep neural networks. Furthermore,
we used the torchdiffeq library (version 0.2.1) [45] which builds on PyTorch. It allows
solving ODEs and backpropagation through the solutions of the ODEs.

The differential Equations (11) and (12) were solved with the Dopri8 method. Back-
propagation was performed with the standard odeint method from torchdiffeq. Finally, an
Adam optimiser minimised the loss function.

2.7. Training

The model has a large number of unknown parameters that need to be identified
by mathematical optimisation: The four learnable parameters ω0 to ω∗

3 , and 4 · n + 1
parameters�θ∗f and�θ∗g each in the two learnable functions f ∗ and g∗ with n the number of
hidden neurons.

Due to the small amount of available training data, we split the training into two
consecutive steps: First, we trained a static network with the CCCV data. Afterward,
we used the pulsed data to take the battery dynamics into account. One has to keep in
mind that all current flows through the charge-transfer resistance R1 of the RC circuit
at steady-state operation. The double-layer capacitance C1 is used to capture transient
phenomena.

In detail, in the first step we neglected the double-layer capacitance. Therefore, the
differential Equation (12) was converted into the algebraic equation

vRC1 = R1(SOC, ibat) · ibat. (15)

We trained the resulting simplified GB model using the data covering the six CCCV charging
and discharging processes with different C-rates. We initialised the learnable parameters
ω0, ω∗

2 , and ω∗
3 and the learnable functions f ∗ and g∗ of the simplified model as discussed

above. As we have chosen a constant hysteresis voltage for non-zero battery currents, it
is important to provide appropriate values for low currents. We decided to set currents
with an absolute value |ibat| < 0.25 A to zero. Additionally, we had to provide the initial
SOC value. As there was a rest phase before the start of each data set, we assumed that the
battery is initially at equilibrium and therefore represented by the OCV curve. We inverted
the OCV(SOC)-curve to determine the respective SOC value from the initial voltage. As
mentioned above, the Dopri8 method was used to solve Equation (11) with an absolute
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tolerance of 10−5 and relative tolerance of 10−3. We performed backpropagation with the
standard odeint method from torchdiffeq. An Adam optimiser with a decaying learning
rate between 10−2 and 10−3 minimised the loss function. The loss function was defined
as the sum of the root mean squared error (RMSE) between the simulated battery voltage
and the measured battery voltage and an additional penalisation term. Approximated SOC
values lower than 0 or higher than 1 were taken into account. Their hundredfold absolute
deviation from 0 or 1 was used as the penalisation term. As we had already initialised
the other learnable parameters according to the insights from the measurement data, we
only optimised�θ f ∗ and�θg∗ during the first 50 training epochs. The total number of training
epochs was varied. It is a hyperparameter of the training process that controls the number
of complete passes through the training data set. During each training epoch, the six data
sets were given to the model in random order. All time series were used completely. The
optimisation steps were carried out with stochastic gradient descent. The parameters were
stored when the total training loss during one epoch decreased.

In the second step, we used the complete GB model according to Equations (11) to (14)
for further training. Therefore, we initialised ω∗

1 as stated previously. The other parameters
were taken from the pre-trained model. The initial SOC was determined as before. Addi-
tionally, we had to provide an initial value for the voltage drop vRC1 across the RC circuit.
Due to the proceeding rest phase we assumed vRC1(t = 0) = 0 V. The standard odeint
backpropagation was used again. We chose Dopri8 as differential equation solver with an
absolute tolerance of 10−5 and relative tolerance of 10−3. As before, the loss function was
defined as the sum of the RMSE loss of the model output compared to the measured voltage
and the penalisation term. The training loss was minimised by an Adam optimiser with a
learning rate of 10−3. During the first ten training epochs, we only considered the data from
the charging and discharging processes with a pulsed battery current. Afterwards we also
considered the data from charging and discharging with the CCCV protocol. Additionally,
we froze all learnable parameters except ω∗

1 during the first 20 training epochs. Overall, we
carried out 30 training epochs with batch gradient descent.

To further test our approach, we investigated GB models with different numbers of
neurons in f ∗ and g∗. Furthermore, we varied the number of training epochs in the first
training step between 100 and 1000, leaving training step two unchanged. The results of this
study will be discussed in Section 3. We decided to take the trained model with 100 hidden
neurons in f ∗ and g∗ and 300 training epochs in training step one as the final version.

2.8. Test

We tested the final GB model against the two remaining experimental data sets (half
cycles and synthetic load profile). Again, we used the standard odeint backpropagation
method from torchdiffeq. We tried to solve the differential equation system using Dopri8
with an absolute tolerance of 10−5 and relative tolerance of 10−3. However, for the half
cycles, this resulted in a step size underflow. Therefore, we changed the absolute tolerance
to 10−3 for the half cycles.

For both test data sets, we had to provide initial values for the SOC and vRC1. We
initialised these values as before during training: We set vRC1(t = 0) = 0 V and derived the
initial SOC from the battery voltage.

3. Results and Discussion

The training and test results are discussed in the following sections. First, the focus
is on the training results, with the goal of selecting an appropriate number of hidden
neurons in f ∗ and g∗ and of training epochs. Secondly, we compare the training results to
the measurement data. Finally, simulations with the GB model are compared against the
further test data sets.
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3.1. Training

In total, eight experimental time series of the LFP cell were available and used for
training the GB model. In particular, six time series represent charge and discharge with a
CCCV protocol at different C-rates, and two time series represent charge and discharge
with pulsed current.

The neural networks representing the functions f ∗ and g∗ were used to approximate
the dependency of the charge-transfer resistance R1 on current and SOC. We performed
the training with different network sizes for f ∗ and g∗. Additionally, we varied the number
of training epochs in the first training step. Training step two was not changed. Figure 4
shows the results after completing the whole training process. Here the obtained value for
R1 is plotted as a function of SOC for charging with ibat = −50 A. The results shown in
the left panel of Figure 4 were obtained from the evaluation of function f ∗ with different
numbers of neurons in the hidden layer and 100 epochs during the first training part.

With only 10 hidden neurons, the result takes the form of a combination of two linear
branches representing the charge-transfer resistance over the whole range of SOC. With
an increasing number of neurons, the dependency of R1 on SOC gets more complicated.
The results vary only slightly when increasing the number of hidden neurons from 100 to
up to 300, however at the cost of longer training times. Using a standard notebook and
training on the CPU the training time for the first training part with 100 epochs increased
from about 15.5 min to about 16.8 min when changing the number of hidden neurons from
100 to 300. Therefore, we decided to choose 100 hidden neurons for f ∗ and g∗.

Figure 4. Simulation results: approximation results for R1 for ibat = −50 A derived from evaluation
of function f ∗; (left): results for a varying number of hidden neurons in f ∗ and 100 training epochs in
the first training part; (right): results for 100 hidden neurons in f ∗ and a varying number of training
epochs in the first training part.

We additionally varied the number of training epochs in the first training step. The
right panel of Figure 4 illustrates the final results for R1 at a battery current ibat = −50 A
obtained with the neural network f ∗ with 100 hidden neurons and a varying number
of training epochs. With an increasing number of training epochs, the neural network
produces more complex behaviour of R1 as function of SOC.
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After training with more than 300 training epochs, the right panel of Figure 4 shows
changes in R1 for low SOC values. We believe that this is due to overfitting. As there were
few data available, we did not split off a validation data set. However, we took a closer
look at the training and test losses (note that the test results will be discussed in more detail
in Section 3.3). We calculated the RMSE between the measured and the approximated
battery voltage for all training and test data sets. The overall training and test losses were
defined as the average of the RMSE losses of the individual data sets. Figure 5 shows
the results as a function of the number of training epochs. The training loss decreases
with an increasing number of training epochs in the first training step. However, the test
loss reaches a minimum at around 300 training epochs. These results made us choose
300 training epochs in the first training step.

As a final result from this analysis, we represented f ∗ and g∗ with neural networks
with one hidden layer with 100 hidden neurons each. We carried out 300 training epochs in
the first and another 30 epochs in the second training step.

Figure 5. Average training and test losses as a function of the number of training epochs in the first
training part.

Figure 6 illustrates the final training results for R1. The left panel shows the results
for charging (ibat < 0 A) as evaluated with f ∗. The right panel shows the results for
discharging (ibat > 0 A) as evaluated with g∗. The charge-transfer resistance is in the range
of up to several milliohms. It decreases with an increasing absolute battery current for
both charging and discharging, and reaches higher values for low and high SOC values
compared to a medium SOC. The resistance shows a pronounced asymmetry between
charge and discharge: During charge the highest values occur when the cell is (nearly) full.
During discharge the highest values occur when the battery is (nearly) empty. This is a
typical behaviour observed from lithium-ion batteries with LFP cathode [18]. However, it is
difficult to interpret electrochemical details into a simple equivalent circuit. In Ref. [46] the
overpotentials of a lithium-ion cell were deconvoluted. The results show that lithium-ion
batteries are co-limited by reaction, diffusion, and ohmic losses. In the present paper,
the battery is operated at rather low currents (up to 1 C), where diffusion limitations are
expected to be not dominant. For a single charge-transfer reaction, the charge-transfer
resistance decreases exponentially with increasing direct current in the Tafel region [47].
Therefore, the observed decrease in resistance with increasing current is physically realistic.
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After completing the training procedure, the learnable parameters had the following
values:

ω0 = 191.5 Ah

ω∗
1 = 0.5069 F

ω∗
2 = 0.1125 V

ω∗
3 = 0.2814Ω.

This results in the following ECM parameters:

Cbat = 191.5 Ah

C1 = 50.69 kF

vhys = 11.25 mV

RS = 281.4 μΩ.

Figure 6. Simulation results: approximation results for R1 as a function of SOC for different battery
currents; (left): charging, (right): discharging.

3.2. Comparison of Model against Training Data

The measurement data are given as current versus time and voltage versus time series.
The current served as the external input of the model which approximated the battery
voltage. Figure 7 shows the training results in the form of voltage versus SOC, which
allows a better comparison for different C-rates than a voltage versus time plot. The left
panel shows the measured and the learned battery voltage as a function of SOC. The right
panel shows the approximation error relative to the measured voltage. Figure 7a shows the
complete SOC range while Figure 7b focuses on a medium SOC. The simulation results
are in good agreement with the experiments over the complete SOC range and for all
investigated C-rates. The absolute value of the deviation is smaller than 1% relative to the
measured voltage for a wide range of SOC. Only for very low and very high SOC values,
the absolute value of the relative approximation error reaches up to around 3%, which is
still acceptable. In these ranges the OCV(SOC) curve (shown in blue in Figure 7a,b) is very
steep. Therefore, higher approximation errors can be expected.
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(a)

(b)

Figure 7. Simulation results using NODEs for grey-box modelling of a lithium-ion battery in compar-
ison to experimental data; left: charge and discharge curves for different C-rates at T = 25 °C. The
lower branches represent discharge (time progresses from right to left), while the upper branches
represent charge (time progresses from left to right); right: relative approximation error; (a) the whole
SOC range (b) focus on medium SOC.

Figure 3 compares the training results for a pulsed current charge with the measured
voltage. Here, we have chosen a temporal representation. The pulses in Figure 3 are in
the area of a medium SOC. The model reproduces the dynamic voltage response of the
battery following a current step in a qualitatively correct way. Quantitatively, the absolute
voltage drop after the pulse is underestimated by the model. The characteristics of the
time behaviour are also different in the simulation compared to the experiment. While the
simulation shows an exponential behaviour resulting from the first-order dynamics of the
RC element (Equation (12)), the experiment shows a

√
t behaviour resulting from the solid-
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state diffusion inside the electrode materials, also referred to as Warburg diffusion [48].
Still, given the relative simplicity of the GB model, the comparison between model and
experiment is adequate. Note that we also achieved similar results for other SOC values
and for the discharge branch.

In conclusion, the training results show that the GB model can reproduce the training
data very well.

3.3. Comparison of Model against Test Data

After finishing the training process we wanted to test the model against data not
included in the training. The first test data set consists of consecutive half cycles. The
results are shown in Figure 8. Figure 8a shows the test results for the complete time series.
In this complete view, the test results are very good. In Figure 8b the focus is on the last
three half cycles of the time series. One can see that the dynamics of the battery voltage
are modelled well on this scale, although there are deviations between simulation and
experiment particularly at the beginning of each half cycle.

(a)

(b)

Figure 8. Test results in comparison to experimental data at T = 25 °C for half cycles; (a) the complete
time series; (b) focus on the last three half cycles.
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We tested the model against a second test data set, a synthetic load profile of a home-
storage battery. The results are shown in Figure 9. Figure 9a covers the complete time series,
whereas Figure 9b focuses on the segment in the middle covering faster dynamics. The
simulations show good agreement with experimental data for the complete load profile.
The highest relative approximation errors occur in the area of high SOC values. This was
expected because the training error is high at high values of SOC. It is worth mentioning
that this synthetic load profile covers the longest measuring time with t = 190,231 s. The
longest training time series spanned only t = 41,846 s. Nevertheless, the test results are
good for the complete time series.

(a)

(b)

Figure 9. Test results in comparison to experimental data at T = 25 °C for a synthetic load profile;
(a) the complete time series (b) focus on the segment in the middle.
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4. Summary and Conclusions

In this article we have presented the development and application of a GB modelling
framework for lithium-ion batteries based on a coupling of NODEs and physics-based
ODEs. The model was trained and tested using experimental data of an LFP battery cell
used in home-storage applications. The main findings can be summarised as follows.

We showed how to derive a GB model from a physics-based ECM with appropriate
choice of learnable functions and parameters. We emphasised the importance of normali-
sation and initialisation of the parametric parts of the model. The training was split into
two training steps: first, a simplified static model was trained where the capacitance of the
RC element was neglected. In the second step, the pre-trained parameters were used to
train the short-term battery dynamics. When choosing the hyperparameters, especially the
number of hidden neurons in f ∗ and g∗ and the number of training epochs, care had to be
taken to avoid long training times and overfitting.

The model trained this way was able to reproduce the complete set of training data (CCCV
charge and discharge curves as well as pulse tests) with good accuracy (typically < 1% deviation
between predicted and measured voltage). In contrast to the GB model proposed in our previous
work [17], the present model can approximate the fast (1 s to 30 s) dynamics of the battery. The
model was tested against two data sets, half cycles and a synthetic load profile. The simulations
showed good agreement with the experimental data. The highest but still acceptable errors
occur in the area of low and high SOC values where the OCV curve is very steep. It is worth
mentioning that the training database was rather small: only eight time series covering charging
and discharging processes were available for training; and the test data sets spanned a much
longer time duration than the training data sets.

As an outlook it would be interesting to use more training data, especially from pulse
tests with different current steps. Additional data would also improve model validation.
For example, a k-fold cross validation could deliver insights into the robustness of the
model against the chosen training data. Moreover, the comparison of a WB model and a
GB model using NODEs would be of interest.

In conclusion, we have shown that the use of NODEs can be a powerful methodology
for modelling lithium-ion batteries.
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Abbreviations

The following abbreviations are used in this manuscript:

BB Black-box
CC Constant current
CCCV Constant current constant voltage
ECM Equivalent circuit model
GB Grey-box
LFP Lithium iron phosphate
NODE Neural ordinary differential equation
OCV Open-circuit voltage
ODE Ordinary differential equation
RC Resistor–capacitor
ReLU Rectified linear unit
ResNet Residual neural network
RMSE Root mean squared error
RNN Recurrent neural network
SOC State of charge
SOH State of health
WB White-box
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Abstract: Unplanned power plant failures have been seen to be a major cause of power shortages,
and thus customer power cuts, in the South African power grid. These failures are measured
as the unplanned capability loss factor (UCLF). The study of South Africa’s UCLF is almost non-
existent. Parameters that affect the future UCLF are, thus, still not well understood, making it
challenging to forecast when power shortages may be experienced. This paper presents a novel study
of South African UCLF forecasting using state-of-the-art deep learning techniques. The study further
introduces a novel deep learning ensemble South African UCLF forecasting system. The performance
of three of the best recent forecasting techniques, namely, long short-term memory recurrent neural
network (LSTM-RNN), deep belief network (DBN), and optimally pruned extreme learning machines
(OP-ELM), as well as their aggregated ensembles, are investigated for South African UCLF forecasting.
The impact of three key parameters (installed capacity, demand, and planned capability loss factor)
on the future UCLF is investigated. The results showed that the exclusion of installed capacity in
the LSTM-RNN, DBN, OP-ELM, and ensemble models doubled the UCLF forecasting error. It was
also found that an ensemble model of two LSTM-RNN models achieved the lowest errors with a
symmetric mean absolute percentage error (sMAPE) of 6.43%, mean absolute error (MAE) of 7.36%,
and root-mean-square error (RMSE) of 9.21%. LSTM-RNN also achieved the lowest errors amongst
the individual models.

Keywords: deep learning; forecasting; power outages; coal power plants; recurrent neural networks;
ensemble techniques

1. Introduction

South Africa has been seen to be a late participant in the three key industrial revolu-
tions [1]. The use of artificial intelligence (AI) and data is on the rise in South Africa [2–4].
This rise means that South Africa might not be a late participant in the fourth industrial
revolution. In 2007, 2013, 2018, and 2019, South Africa experienced a shortage in power
supply due to various challenges, leading to load shedding [1]. South Africa’s public power
utility, Eskom, has on several occasions stated its inability to accurately predict/forecast the
unplanned capability loss factor (UCLF) as one of the major factors leading to an unreliable
power supply and unpredictable load shedding [5,6]. UCLF is a term that refers to the
measure of unplanned plant breakdown. The behavior of South African UCLF has not
been well studied. Pretorius et al. studied the impact of the South African energy crisis
on emissions [7]. This study only talks about an increase in UCLF due to maintenance
deferral. The study does not talk about how to forecast UCLF, nor the major factors that
contribute to UCLF that can help in the forecasting of UCLF. The UCLF, planned capability
loss factor (PCLF), and other capability loss factor (OCLF), together with the installed ca-
pacity, determine the power available to supply customers. The PCLF is the planned plant
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outages for the maintenance or refurbishments of the plant. This is typically a planned,
set value set by the utility. The utility can decide to change their planned outage/PCLF
depending on different factors. The OCLF accounts for other or random losses and is
usually significantly smaller than the UCLF [8]. The installed capacity gives the number of
megawatts of the installed power plant units. Micali studied the prediction of new coal
power plants’ availability in the absence of data in South Africa [8]. The author mentions
that the work is a precursor to predicting UCLF in new plants. The author proposes using
expert opinion with some data from stations where data are available. However, the work
in [8] did not focus on the total UCLF, assumed limited availability of data, did not use
AI techniques, and depended on expert knowledge. In [9], the authors state that expert
knowledge can change from one expert to the next, and thus expert results can be different
from the same data. The author, in addition, did not investigate factors that affect power
supply and may influence the UCLF [8]. There is, thus, a gap in South Africa in terms
of accurately forecasting UCLF. In addition, the study of the total South African UCLF
behavior is a gap as only precursor work exists, and the precursor work is focused on new
plants. Another gap is the use of intelligent systems that are not reliant on human experts
in UCLF forecasting.

To add to the previous paragraph, the knowledge of when the power system might
experience a power shortage is still a topic of interest and is not only important for the
utility, but also customers. Knowing when there may be a power shortage, and hence a
requirement to reduce consumption, helps customers plan their operations. Unplanned
failures have been studied before. In [10], real-time prediction of distribution system
outage duration using historical outage records to train neural networks was studied. The
Netherlands collects information on unplanned outages from its utilities to inform its
maintenance and investment policies [11].

South Africa is the highest producer of electricity in Africa and is in the top 25 producers
of power in the world [12,13]. Over 80% of South Africa’s power is produced by coal-fired
power stations and a nuclear power station. The total South African power grid UCLF can,
thus, be modeled as that of the coal and nuclear power stations. Despite the recent move
towards cleaner energy, the largest power-producing countries, such as India and China,
still rely heavily on coal-fired power stations [12]. The study of coal thermal power plants
and behavior is, thus, still of interest [14–17]. The study of the South African coal-fired
power station UCLF is, therefore, important as coal power plants are still highly used and
are still a research topic of interest.

Forecasting and prediction have been topics of interest for many researchers [10,18].
This is mainly due to an interest in understanding and predicting the future behavior
of certain variables. Artificial intelligence (AI) techniques have become popular in these
forecasting/prediction tasks. One of the reasons for this popularity is their ability to
model non-linearity with high accuracy. Khoza and Marwala used an ensemble of the
multi-layer perceptron and rough set theory to predict the direction that the South African
gross domestic product (GDP) would take [18]. Galius proposed a probabilistic model
for modeling power distribution network blackouts [19]. In Egypt, power cable failures
were analyzed to help prevent future power outages [20]. In [21], bilateral long short-term
memory (LSTM) was used to forecast the short-term cycle of wafer lots for the planning
and control of wafer manufacturing. The rise of computational power and access to labeled
data has led to an increase in the utilization of deep learning techniques [22]. Deep learning
techniques have been seen to have an excellent performance in multiple areas, such as
language and speech processing, as well as computer vision [23,24]. Alhussein et al. used
a hybrid of convolutional neural networks (CNN) and long short-term memory (LSTM)
to forecast individual house loads [25]. Here, the researchers use CNN to select features
from the input data and LSTM to learn the sequence. The authors stated a mean absolute
percentage error (MAPE) improvement greater than 4% in comparison to LSTM-based
models. Kong et al. also combined CNN and LSTM for short-term load forecasting in
Singapore [26]. Pandit et al. compared LSTM and Markov chain models in weather
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forecasting for German offshore wind farms to improve their wind turbine availability and
maintenance [27]. Deep learning has also been used to forecast wind speeds at turbine
locations [28]. The authors combine CNN and the gated recurrent unit (GRU) to achieve
satisfactory results in comparison to existing models. Deep learning techniques have
also been used to forecast the Korean postal delivery service demand [29]. This observed
performance of deep learning techniques has also led to their adoption in recent load
forecasting studies [30,31]. A gap still exists in the application of the state-of-the-art
techniques in forecasting UCLF (and South African UCLF), as applied in forecasting in the
different engineering areas.

As observed, a number of studies have used a combination of techniques to achieve
improved performance [25–29]. This combination of techniques is usually termed ensemble
or hybrid techniques. Ensemble techniques have also been used for classification in different
engineering applications. Ramotsoela et al. used an ensemble of five artificial intelligence
techniques to detect intrusion in water distribution systems [32]. The ensemble model
used here combined an artificial neural network (ANN), RNN (recurrent neural network),
LSTM, GRU, and CNN in a voting system. The ensemble model classified its output as an
anomaly if at least two constituent models classified their outputs as an anomaly. CNN
models have been combined to determine driver behavior from multiple data streams [33].
The proposed ensemble model incorporated a voting system to enhance the classification
accuracy. A double ensemble model of semi-supervised gated stacked auto-encoders has
been used to predict industrial key performance indicators [34]. Drif et al. proposed an
ensemble of auto-encoders for recommendations [35]. The authors used an aggression
method to combine outputs from the sub-models to form the ensemble model output.
Bibi et al. used an ensemble-based technique to forecast electricity spot prices in the
Italian electricity market [36]. The authors estimated deterministic components using
semi-parametric techniques and then determined stochastic components using time series,
and machine learning algorithms. The final forecast is obtained from the estimates of
both components [36]. Shah et al. used a similar approach to Bibi et al. in short-term
electricity demand forecasting for the Nordic electricity market [37]. The similarity is that
the authors separated their approach into a deterministic and a stochastic component and
then combined the estimates from them to obtain the final forecast. None of the literature
covers the use of ensemble techniques in forecasting UCLF. The use of ensemble techniques
in UCLF forecasting is, thus, an existing research gap.

This paper introduces the following contributions: (i) A novel study of the South
African UCLF behavior using state-of-the-art AI (deep learning and ensemble) techniques.
(ii) An investigation of the impact of the installed capacity, historic demand, and PCLF on
the UCLF forecasting accuracy. (iii) An introduction of a novel deep-learning ensemble
total South African UCLF forecasting system.

The remainder of this paper is arranged as follows: Section 2 presents the techniques
used in this research. Section 3 presents the experimental setup. The proposed UCLF
forecasting system is presented in Section 4. Section 5 then presents the experimental
results and the discussion of the results. The paper conclusions are presented in Section 6.
Section 7 presents the limitations of the study as well as future work. The paper flow chart
is shown in Figure 1.

Figure 1. The paper arrangement flow chart.

2. Methods Used

This section presents the four techniques used in this research.
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2.1. OP-ELM

The optimally pruned extreme learning machine (OP-ELM) is the improved version
of the extreme learning machine. This improved technique, introduced by Miche et al.,
uses the leave-one-out (LOO) method to select the optimal number of neurons [38]. LOO
marginalizes the irrelevant neurons built into ELM’s network. This marginalization helps
overcome the shortfall in the approximation of the training dataset’s correlated and irrele-
vant variables. Given a training set xi, with a target vector ti, the OP-ELM’s objective is to
obtain the minimum possible error function. The OP-ELM equation is given by (1). If there
exists an input weight vector connecting the kth hidden neuron and the input (wk), a kth
hidden node’s bias (bk), and an output weight connecting the output and the kth hidden
neuron (βk), such that ∑

j
k=1 f (wk, bk, xi)βk = yi, (1) can be re-written as (2).

∑j
k=1 f (wk, bk, xi)βk = ti (1)

Hβ = T (2)

H =

⎡⎢⎣ f (w1, b1, x1) · · · f (wk, bk, x1)
... · · ·

...
f (w1, b1, xm) . . . f (wk, bk, xm)

⎤⎥⎦
m×j

(3)

β = H∗T =
(

HHT
)−1

HTT (4)

where yi is the output vector, ti is the output target vector, H is the hidden layer’s output
matrix, and k = 1, 2 . . . j. The input weights and biases are assigned at random and do not
require tuning. The hidden layer’s output matrix parameters are also assigned random
values. If H is a square matrix, matrix inversion can be used to determine the output
weights. In a case where H is not a square matrix, the Moore–Penrose Equation (4) is used
to determine the output weights. The neurons are ranked using multi-response sparse
regression, and the LOO is then applied.

2.2. LSTM-RNN

The fading of previously learned patterns is a challenge experienced in standard RNN
architectures. The LSTM-RNN has a memory cell to overcome this shortcoming. The
memory cell is managed by non-linear gating units. The gated units of an LSTM-RNN unit
can be seen in Figure 2. These gated units, the forget gate (fn), input gate (in), and output
gate (on), are presented by Equations (5)–(7), respectively. Equations (8)–(10), respectively,
present the input node (gn), the state (sn), and the cell state (hn). Here, n is the time step, ∅ is
the tanh function, σ is the sigmoid function, and the W matrices are the respective network
activation functions’ corresponding input weights. The LSTM-RNN cells are stacked after
each other to achieve a deep layered LSTM-RNN. The memory cells give the models the
ability to sustain memory.

fn = σ
(

Wf zzn + Wf hhn−1 + b f

)
(5)

in = σ(Wizzn + Wihhn−1 + bi) (6)

on = σ(Wozzn + Wohhn−1 + bo) (7)

gn = ∅

(
Wgzzn + Wghhn−1 + bg

)
(8)

sn = gn � in + sn−1 � fn (9)

hn = ∅(sn)� on (10)
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Figure 2. An LSTM−RNN cell with gated units.

2.3. DBN

The deep belief network (DBN) is built by stacking restricted Boltzmann machines
(RBM). The technique was introduced in the mid-2000s by Geoffrey Hinton. There are
no connections between the neurons on the same layer. There is a symmetrical and bi-
directional connection between the layers. The model determines the hidden state, visible
state, initial weight, and biases in the first step using unsupervised learning. Supervised
learning, using back-propagation, is used to append the unsupervised learning pre-trained
model. The joint distribution over the visible and hidden units is given by (11) [39].

P(m, h) =
e−E(m,h)

∑n ∑h e−E(m,h)
(11)

where E(m, h) is the energy function. The conditionally independent conditional probabili-
ties are given by (12) and (13). If the values of the hidden and visible units are from 0 to 1,
(12) and (13), respectively, become (14) and (15), with i = 1, 2 . . . kh and j = 1, 2 . . . km.

p(m|h) = ∏j p
(
mj
∣∣h) (12)

p(h|m) = ∏i p(hi|m) (13)

p
(
mj = 1

∣∣h) = sigmoid
(

αj + ∑kh
i=1 Wijhi

)
(14)

p
(
hj = 1

∣∣m)
= sigmoid

(
βi + ∑km

j=1 Wijmj

)
(15)

2.4. Ensemble

Ensembles of models of the three techniques used in this study, LSTM-RNN, OP-ELM,
and DBN, are investigated for UCLF forecasting. Ensemble models are a combination of
multiple models to try to achieve better performance than that of the individual models.
There is a number of different ways that models can be combined to form an ensemble [30].
Figure 3 shows a summary of the aggregate method, which is commonly used in regression
problems. Here, models operate in parallel, and their outputs are aggregated to obtain
the ensemble model’s output. The aggregate ensemble model output, Oϕ, can be written
as (16). Here, Omk is the ensemble model’s kth output for models m1, m2 . . . mn, and n is
the number of models used to develop the assembly model. The equally weighted method
was used, where each model’s output into the ensemble model is given an equal weight.

Oϕ =
1
n ∑k=1

k=1 Omk (16)
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Figure 3. Summary of the aggregate ensemble method.

3. Experimental Setup

This section presents the experiment setup via two sub-sections. The first sub-section
presents the South African coal generation plants overview. The second sub-section presents
the experimental approach.

3.1. South African Key Coal Power Generation Plants Overview

South Africa has 15 key coal-powered thermal power stations. These stations are
owned and operated by Eskom. Two of these stations are the new supercritical power
stations, Medupi and Kusile, which are still under construction and at different stages of
completion. The power stations are mostly concentrated in Mpumalanga Province, mainly
due to the large availability of coal in this province. Twelve coal power stations are located
in Mpumalanga, two in Limpopo Province, and one in Free State Province. Figure 4 shows
the location of the South African coal-fired power stations [40]. South Africa also has
one nuclear power generation station located in the Western Cape Province. This power
station has an installed capacity of 1940 MW. This nuclear station and the coal-fired power
stations contribute to over 80% of South Africa’s installed capacity and supply the country’s
baseload. The PCLF and UCLF data used in this research are from these coal-fired powered
stations and the nuclear power station, collected from a centralized database.

3.2. Data Description

The data used in this study were real utility data collected from January 2010 to
December 2019. Figure 5 shows the different periodicities of the UCLF over time. Figure 5c
shows the periodicity over weeks in parts of the South African winter (June–July) and
summer (November–December) season in the year 2019.

The collected data were for four variables: the installed capacity, demand, PCLF, and
UCLF. To investigate how these variables affect the UCLF forecast accuracy of the different
techniques, the variables were arranged into five experiments, as shown in Figure 6. A
tick indicates that a variable is used in the respective experiment and a cross indicates that
the variable was not used in the experiment. The experiment with the best performance
will, thus, indicate which variables should be used with which technique to achieve the
lowest year-ahead UCLF forecasting error. The installed capacity is the total power that
can be generated by the installed power generation plants in megawatts. The demand
is the historic total national power demand in megawatts. The PCLF and UCLF are the
respective historic variables in megawatts. The UCLF data used for the input in the training
and testing of the models were split into the UCLF two years before the target UCLF,
UCLF T-2 Years, and the UCLF a year before the target, UCLF T-1 Year. The UCLF data
used was a daily peak value. A variable indicating if it is a weekend or a weekday, the

292



Energies 2022, 15, 2546

Weekend Index, was also used as an input. This variable was a 1 for weekends and a 0 for
weekdays. This variable was included for the models to be able to differentiate the data for
a weekday and the weekend, respectively. This resulted in six input variables. The training
period was between 1 January 2012 and 31 December 2018. The testing period was between
1 January 2019 and 31 December 2019. Thus, the forecasts were a daily peak UCLF for the
year-ahead forecast period. All the variables, except the weekend index, were normalized
to be between 0 and 1. The training input data were, thus, a 2555 × n matrix, where the
2555 is the daily input values over 7 years and n is the number of variables used in the
respective experiment, as described next.

Figure 4. Location of 15 key South African coal-fired power stations.

The training input variable matrix sizes were, thus, 2555 × 6 for Exp 1, 2555 × 5 for
Exp 2 to Exp 4, and 2555 × 3 for Exp 5.

3.3. Experimental Approach

The different techniques’ models were, respectively, developed using various approaches.
The OP-ELM models were trained by tuning the model dimensions. A different num-

ber of hidden nodes were used to train the model in the respective experiments. Optimal
pruning using the LOO method was key in determining the model’s dimensions. Various
dimensions were investigated and the model with the lowest errors in each experiment
was captured and is presented in the results section.

LSTM-RNN models were trained with different numbers of stacked hidden LSTM
units. The variation of the hidden units was consistent in all the different experiments.
Similar to the OP-ELM, the performance results for the model with the lowest obtained
UCLF forecast errors were captured.

Single layered DBN models were developed with the number of hidden units being
varied for the respective models, the lowest number of hidden units used was four with
the highest number of hidden units being sixteen.
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(a) 

 
(b) 

 

 
(c) 

Figure 5. The South African UCLF (MW—normalized): (a) UCLF for a period between January 2010
and December 2019; (b) monthly periodicity of UCLF between January 2018 and December 2019;
(c) weekly periodicity for June–July 2019 and November–December 2019.

Figure 6. Variables used in the different experiments conducted per technique.
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The aggregation ensemble approach was used for the ensemble of the three techniques.
These ensembles were of two techniques at a time. Here, the various respective parameters
per technique are tuned and combined to form different ensemble models. The performance
results of the forecast results with the lowest errors are captured per experiment. For each
technique and experiment, the other hyperparameters, such as training rate and the number
of layers, were kept the same. In future work, the effect of optimizing the hyperparameters
can be investigated.

3.4. Performance Measures Used

Each model’s performance was measured using three key performance measures:
symmetric mean absolute percentage error (sMAPE), mean absolute error (MAE), and
root-mean-square error (RMSE). Motepe et al. state that the MAE, RMSE, MPE, MAPE, and
sMAPE are common forecasting error measurements [30]. They further state the challenge
that the MAPE faces when target values are too small, which leads to errors being too large.
The three used performance measurements in this research are presented in (17)–(19).

sMAPE =
2
N ∑N

k=1
|Fk − Tk|
|Fk|+ |Tk|

(17)

MAE =
∑N

k=1|Fk − Tk|
N

(18)

RMSE =

√
∑N

k=1(Fk − Tk)
2

N
(19)

where Fk is the forecasted value, Tk is the target value, and N is the number of forecasted values.

3.5. Statistical Significance Test

After the model performance is measured, the model results can be found to not be
statistically different from each other. This means that despite one model achieving results
with a lower error in comparison to the next model’s results, the model with the lower
error does not necessarily outperform the model it is being compared to. A statistical test
can be used to determine if model results are statistically significantly different. One such
test is the t-test. The t-test uses the mean and the variance to check if two samples are
from the same sample. The test calculates a significant value, also termed the p-value.
A p-value less than the acceptable value means that the samples being compared have a
significant difference, and vice versa. A p-value of 0.05, which is a commonly used value
in scientific studies, was used in this study. The statistical significance test is performed,
for each technique between the results with the lowest overall errors and results with the
lowest errors from Exp 1, Exp 2, Exp 3, Exp 4, and/or Exp 5.

4. Proposed UCLF Forecasting System

Figure 7 presents the proposed UCLF forecasting system. The power stations monitor
their plant’s performance and report this locally at the station and centrally. These data are
then stored in a central database. The UCLF data are part of these stored power station data.
A record of the power station units that are on planned outages, PCLF, for maintenance
or refurbishment is also stored centrally. These PCLF data are then provided by a central
planning department in conjunction with the central operations department. The planning
department also provides the installed capacity data to the central database. The system
operator or an equivalent department would then provide the demand data. The data are
pre-processed, and the variables are then consolidated for input into the deep learning (DL)
ensemble UCLF forecasting module. The DL ensemble UCLF forecast module contains a
DL ensemble model that forecasts the UCLF. The UCLF forecast is then stored and used by
the planning, operations, and system operator. The DL ensemble model is developed and
tested offline, and then deployed in the system. The UCLF forecast data together with the
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actual UCLF data are then used by a model performance evaluation module to periodically
check if the model’s accuracy is still acceptable based on the utility’s requirements.

Figure 7. Proposed deep learning UCLF forecasting system.

5. Experiment Results and Results Discussion

This section presents the results of the five different experiments for the four tech-
niques. The results are then discussed.

5.1. OP-ELM Results

The different experiments were conducted with different OP-ELM models, as de-
scribed in Section 3. The lowest obtained errors per experiment are captured in Table 1.
It was found that the OP-ELM model developed using variables for Experiment 2 and
50 hidden nodes achieved the lowest errors. This model achieved an sMAPE of 10.21%,
MAE of 11.57%, and RMSE of 14.65%. These performance results are in bold in Table 1.
This model was, therefore, developed without the demand as an input. Experiments 4 and
5’s lowest obtained errors were higher than the lowest obtained errors in the other three
experiments. The exclusion of the installed capacity, in Experiments 4 and 5, was observed
to lead to an increase in the errors. In these experiments, the sMAPE increased by over 90%
in comparison to the sMAPE in the other experiments. This increase in the errors was also
observed to be approximately twice the observed errors in Experiment 2.

Table 1. OP-ELM experiments results.

Experiment Hidden Nodes
Performance

sMAPE MAE RMSE

Exp 1 81 0.208919 0.124393 0.157294

Exp 2 50 0.204172 0.115727 0.146514

Exp 3 50 0.231884 0.134929 0.173026

Exp 4 125 0.405396 0.198972 0.228686

Exp 5 18 0.519556 0.246778 0.27476

A statistical significance test was conducted to determine if the results with the lowest
errors from each experiment had a significant difference from the results with the overall
lowest errors. The statistical significance test results are captured in Table 2. From the
significance test results, a p-value of less than 0.05 was observed. Thus, the results are
significantly different from each other. The exclusion of the demand, therefore, increases
model forecasting error.
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Table 2. OP-ELM models’ lowest errors statistical significance test.

Exp 1 Exp 3 Exp 4 Exp 5

p-value 0.020517 0.001810 2.0375 × 10−91 7.4004 × 10−118

5.2. LSTM-RNN Results

LSTM-RNN models were developed using the different variables per respective ex-
periment. The performance of the different LSTM-RNN models was observed. The lowest
obtained year-ahead UCLF forecast errors, per experiment, are captured in Table 3.

Table 3. LSTM-RNN experiments results.

Experiment Hidden Units
Performance

sMAPE MAE RMSE

Exp 1 511 0.15897 0.091421 0.114164

Exp 2 64 0.173154 0.097143 0.117865

Exp 3 511 0.168273 0.09699 0.122862

Exp 4 256 0.343999 0.179548 0.214021

Exp 5 767 0.407081 0.206088 0.237777

A model with 511 hidden units and Experiment 1 variables had the lowest errors.
Here, an sMAPE of 7.95%, MAE of 9.14%, and RMSE of 11.42% were achieved. Higher
errors were observed in Experiments 4 and 5, where the installed capacity was excluded.
These errors were approximately twice the errors in Experiment 1. A statistical significance
test was conducted to determine if the results with the lowest errors in each experiment
were significantly different from the results with the overall lowest errors. The results were
found to be statistically different from each other as a p-value of less than 0.05 was observed
in all four cases. The obtained p-values are captured in Table 4.

Table 4. LSTM-RNN models’ lowest errors statistical significance test.

Exp 2 Exp 3 Exp 4 Exp 5

p-value 0.022794 9.3999 × 10−14 9.2587 × 10−211 7.8709 × 10−256

5.3. DBN Results

The DBN models were developed as discussed in Section 3. The errors for the models’
year-ahead UCLF forecast results were observed and the lowest obtained errors per exper-
iment are captured in Table 5. A model with nine hidden nodes developed using all the
variables was found to achieve the lowest errors, with an sMAPE of 9.74%, MAE of 11.52%,
and RMSE of 13.74%. Experiments 4 and 5 showed an increase that was approximately
three times the errors observed in Experiment 1.

The statistical significance test was conducted as described in Section 3.5 and the test
result showed that the forecasting results were significantly different. Table 6 shows the
statistical significance test results. The p-value can be seen to be less than 0.05 in each case,
indicating a significant difference in the respective cases.
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Table 5. DBN experiments results.

Experiment Hidden Nodes
Performance

sMAPE MAE RMSE

Exp 1 9 0.194736 0.115172 0.137397

Exp 2 8 0.328704 0.172461 0.172461

Exp 3 8 0.300888 0.159492 0.189725

Exp 4 4 0.608786 0.279951 0.304046

Exp 5 4 0.588584 0.273245 0.298614

Table 6. DBN models’ lowest errors statistical significance test.

Exp 2 Exp 3 Exp 4 Exp 5

p-value 7.3796 × 10−268 1.7369 × 10−253 9.7011 × 10−264 3.9572 × 10−259

5.4. Ensemble Results

Ensemble models of the three techniques were developed using the aggregate method
with two individual developed models at a time; that is, from Equation (16), n = 2. All
the individual models developed in this research were ensembled in this manner and
their performance was observed. The performance parameters for the ensemble model
whose year-ahead UCLF forecast achieved the lowest errors per experiment are presented
in Table 7. Thus, not all results are included in Table 7, just the results with the lowest errors
per experiment. The ensemble technique name is constructed by combining the name of the
original technique used and the number of hidden nodes, for the OP-ELM and DBN, and
the number of hidden units, for the LSTM, next to the name. The lowest obtained errors
were achieved using an ensemble model of two LSTM models with 192 and 26 hidden
units, respectively. This model achieved an sMAPE of 6.43%, MAE of 7.36%, and RMSE
of 9.21%, which are bolded in Table 7. The respective errors in Experiments 4 and 5 were
approximately twice the errors in Experiment 1. The accuracy of the model in Experiment
2 was higher than that for the models in Experiment 3. The models in Experiments 2 and 3
had lower accuracy than the model in Experiment 1, and higher accuracy than the models
in Experiments 4 and 5.

Table 7. Ensemble experiments results.

Experiment Ensemble Technique
Performance

sMAPE MAE RMSE

Exp 1

LSTM192-LSTM26 0.1286794 0.073588 0.092046

LSTM192-DBN9 0.143504 0.080100 0.099055

LSTM383-OPELM16 0.163263 0.093770 0.120741

DBN9-DBN8 0.155915 0.089143 0.11129

DBN9-OPELM16 0.168854 0.096859 0.122968

OPELM81-OPELM16 0.198971 0.108824 0.140945

Exp 2

LSTM383-LSTM64 0.161214 0.092327 0.112328

LSTM128-DBN8 0.170443 0.097098 0.124192

LSTM64-OPELM50 0.167899 0.095670 0.118292

DBN8-DBN8 0.328704 0.172461 0.205681

DBN8-OPELM80 0.217165 0.118987 0.150817

OPELM50-OPELM15 0.206886 0.114157 0.147775
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Table 7. Cont.

Experiment Ensemble Technique
Performance

sMAPE MAE RMSE

Exp 3

LSTM511-LSTM511 0.168272 0.096990 0.122861

LSTM511-DBN8 0.210692 0.118462 0.148410

LSTM511-OPELM50 0.185430 0.106055 0.130075

DBN8-DBN8 0.300887 0.159491 0.189725

DBN9-OPELM50 0.225704 0.123672 0.153060

OPELM50-OPELM15 0.229431 0.127089 0.160191

Exp 4

LSTM256-LSTM256 0.343998 0.179547 0.214021

LSTM256-DBN4 0.466254 0.228923 0.257488

LSTM256-OPELM100 0.359248 0.184216 0.223038

DBN4-DBN4 0.608786 0.279950 0.304045

DBN4-OPELM100 0.480638 0.230885 0.263031

OPELM100-OPELM125 0.392240 0.194914 0.232011

Exp 5

LSTM767-LSTM767 0.407080 0.206087 0.237776

LSTM767-DBN4 0.4929245 0.239221 0.267542

LSTM767-OPELM18 0.459199 0.225823 0.254908

DBN4-DBN4 0.588584 0.273245 0.298614

DBN4-OPELM18 0.551643 0.259683 0.285607

OPELM18-OPELM18 0.519555 0.246777 0.274759

Table 8 presents the results for a statistical significance test conducted as discussed in
Section 3.5. A p-value less than 0.05 was observed for each test conducted. This observation
indicated that all the results being compared were significantly different from each other.

Table 8. Ensemble models’ lowest errors statistical significance test.

Exp 2 Exp 3 Exp 4 Exp 5

p-value 7.3796 × 10−268 1.7369 × 10−253 9.7011 × 10−264 3.9572 × 10−259

5.5. Results Discussion

The lowest obtained year-ahead UCLF forecasting errors from each technique are
summarized in Table 9. These results show that the lowest UCLF forecasting errors were
obtained by the ensemble model. The ensemble model was then followed by the LSTM-
RNN, DBN, and then OP-ELM. The two deep learning techniques, thus, achieved higher
accuracies than the non-deep learning technique, OP-ELM. It was observed that with
all techniques, apart from OP-ELM, the lowest errors were attained in Experiment 1.
Experiments 4 and 5 showed a sharp increase in errors, relative to the rest of the experiments
with all the techniques. Thus, the exclusion of the installed capacity as an input variable
decreased the accuracy of the models of the techniques used. The plots of the target UCLF
and the year-ahead forecasted UCLF for the models with the lowest errors per technique
are presented in Figures 8–11. These plots are plotted for the period of 1 January 2019 to
31 December 2019. Each plot of the individual models also includes the ensemble model
with the lowest forecasting error. The plots of the UCLF forecast by the models that make
up the ensemble model are plotted in Figure 9.
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Table 9. Summary of lowest obtained errors per used technique.

Technique Experiment
Performance

sMAPE MAE RMSE

OP-ELM Exp 2 0.204172 0.115727 0.146514

LSTM-RNN Exp 1 0.15897 0.091421 0.114164

DBN Exp 1 0.194736 0.115172 0.137397

Ensemble Exp 1 0.128679 0.073588 0.092046

Figure 8. A plot of the OP-ELM and ensemble lowest error model year-ahead UCLF forecast against
the target UCLF.

Figure 9. A plot of the LSTM-RNN and ensemble lowest error model year-ahead UCLF forecast
against the target UCLF.
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Figure 10. A plot of the DBN and ensemble lowest error model year-ahead UCLF forecast against the
target UCLF.

Figure 11. A plot of the ensemble lowest error model and the two aggregated models’ year-ahead
UCLF forecast against the target UCLF.

6. Conclusions

This paper contributed to the body of knowledge about South African UCLF fore-
casting. (i) A novel study of the South African UCLF behavior using state-of-the-art AI
(deep learning and ensemble) techniques was presented. LSTM-RNN, DBN, OP-ELM, and
ensembles of these three techniques’ models were investigated in South African UCLF
forecasting. (ii) An investigation of the impact of the installed capacity, historic demand,
and PCLF on the UCLF forecasting accuracy was presented. It was found that the installed
capacity had the biggest impact on the UCLF forecasting error, with the exclusion of this
variable doubling the errors with the respective techniques used. (iii) A novel deep-learning
ensemble total South African UCLF forecasting system was introduced. It was found that
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an ensemble of LSTM models achieved the lowest errors with an sMAPE of 6.43%, MAE of
7.36%, and RMSE of 9.21%. The lowest achieved LSTM model UCLF forecast errors were
an sMAPE of 7.95%, MAE of 9.14%, and RMSE of 11.42%. The lowest achieved DBN model
UCLF forecast errors were an sMAPE of 9.74%, MAE of 11.52%, and RMSE of 13.74%. The
lowest achieved OP-ELM model UCLF forecast errors were an sMAPE of 10.21%, MAE of
11.57%, and RMSE of 14.65%. The lowest attained error was, thus, given by the ensemble
model, followed by LSTM-RNN. The non-deep learning techniques’ lowest achieved error
was higher than that of the lowest errors achieved by the other techniques. Thus, ensemble
deep learning techniques can be used to effectively forecast the total South African UCLF
and, thus, load shedding.

7. Limitations of the Study and Future Work

This section presents the limitation of this study. As with most research, not all
research-related aspects can be covered in a single study. As mentioned in Section 1, the
study of South African UCLF behavior and UCLF forecasting is a new research area. This
study does not focus on the speed of training the models, but rather on how well the models
forecast the UCLF. Future work can include looking at the model training performance from
the training speed perspective. The study forecast period is a year. This period was selected
as it gives a wide enough window for the utility, at a daily resolution, to understand the
UCLF behavior for the year. This understanding allows the utility company to plan over the
year. The study does not research the performance of the models in shorter-term forecast
windows, e.g., hourly, daily, weekly, etc. The performance of the models can, in the future,
be studied for different forecast windows. Future research work should also consider
looking at recent state-of-the-art techniques, such as temporal convolutional networks
(TCN), gated recurrent units (GRU), and quasi-recurrent neural networks (QRNN). Given
the performance of the equally weighted ensemble techniques in this paper, weighted
ensemble techniques should be considered in future work. This future work can also
investigate the ensemble models’ performance when combining more than two models.
Other benchmark techniques, such as naïve and multilayer perceptron, can be considered
in future work.
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Abstract: Owing to their simple construction, cost effectiveness, and high thermal efficiency, pulsating
heat pipes (PHPs) are growing in popularity as cooling devices for electronic equipment. While
PHPs can be very resilient as passive cooling systems, their operation relies on the establishment and
persistence of slug/plug flow as the dominant flow regime. It is, therefore, paramount to predict the
flow regime accurately as a function of various operating parameters and design geometry. Flow
pattern maps that capture flow regimes as a function of nondimensional numbers (e.g., Froude, Weber,
and Bond numbers) have been proposed in the literature. However, the prediction of flow patterns
based on deterministic models is a challenging task that relies on the ability of explaining the very
complex underlying phenomena or the ability to measure parameters, such as the bubble acceleration,
which are very difficult to know beforehand. In contrast, machine learning algorithms require limited
a priori knowledge of the system and offer an alternative approach for classifying flow regimes. In this
work, experimental data collected for two working fluids (ethanol and FC-72) in a PHP at different
gravity and power input levels, were used to train three different classification algorithms (namely
K-nearest neighbors, random forest, and multilayer perceptron). The data were previously labeled
via visual classification using the experimental results. A comparison of the resulting classification
accuracy was carried out via confusion matrices and calculation of accuracy scores. The algorithm
presenting the highest classification performance was selected for the development of a flow pattern
map, which accurately indicated the flow pattern transition boundaries between slug/plug and
annular flows. Results indicate that, once experimental data are available, the proposed machine
learning approach could help in reducing the uncertainty in the classification of flow patterns and
improve the predictions of the flow regimes.

Keywords: two-phase flow; pulsating heat pipes; flow pattern maps; machine learning; classification
algorithms

1. Introduction

The lifespan and reliability of a wide range of electronic components and electro-
mechanical assemblies are often compromised by the poor performance of the thermal
control system (TCS). Cooling capacity, weight, and cost requirements are becoming very
challenging in high-density PCBs, microprocessors, photovoltaic solar arrays, and actuators,
not only limiting the expected performance [1] but also creating safety issues, as in EV
battery systems [2]. On the other hand, energy consumption for cooling purposes has
critically increased in recent years. Data centers consume 200 TWh each year worldwide [3],
where 38% (76 TWh) is estimated to go toward cooling processes. There are a wide variety of
available cooling processes for electronics. The most common methods based on two-phase
flow are flow boiling [4–10], pool boiling [11–14], and impinging jets [15–18].

Pulsating heat pipes (PHPs) can play a leading role in reducing cooling costs due to
their resulting equivalent thermal conductivity that is several times higher than that of pure
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copper [19]. Furthermore, no pumping power is required for the circulation of the working
fluid. This results in a sensible reduction in complexity, volume, and weight of the TCS.
The PHP is a thermally driven heat transfer device patented in the 1990s [20,21], which
has seen a growing research interest since then. It is simpler in its construction and more
cost-effective, compared to other similar heat transfer devices (e.g., heat pipes, loop heat
pipes). It is composed either of a tube bent in several turns or of two plates welded with a
serpentine-like path milled on one of the surfaces. Once filled and sealed, a working fluid
resides in the PHP as an alternation of liquid slugs and vapor plugs due to the dominant
effect of capillary forces with respect to buoyancy. When heat is applied to the evaporator
zone, the fluid motion inside the tube is activated, and the pressure fluctuations drive
a self-excited [22] oscillating motion of liquid plugs and vapor bubbles, also identified
as oscillating Taylor flow. This condition significantly enhances the heat transfer [23] by
exploiting both sensible and latent heat.

1.1. Flow Patterns in PHPs

Whilst PHPs are drawing the attention of a growing number of research groups, includ-
ing both experimental and numerical approaches, the industrialization of such technology
is still in its preliminary phase, and examples of off-the-shelf PHPs are not yet common
and limited to specific applications. The complex interplay of evaporation/condensation
phenomena, surface tension, and inertial effects has been the object of several numerical in-
vestigations with the aim of developing a robust modeling tool. Nikolayev [24] developed
one of the first models able to describe the chaotic self-sustained oscillations in a PHP with
an arbitrary number of branches and arbitrary number of bubbles. Further improvements
of the same model led to the implementation of the effect of the tube conductivity on the
start-up phase [25] and the impact of the PHP orientation on the overall performance [26].

The operation of a PHP is strongly linked to the existence of a dominant slug/plug
flow throughout the required range of operating conditions. Due to the variation of flow
direction, pressure drop, and liquid film thickness in a PHP, several flow patterns have been
observed [27], showing transitions between slug/plug, semi-annular, and annular flow
(Figure 1). For a given geometry, the flow pattern is highly influenced by filling ratio and
power input [28], due to the effect on the vapor quality, showing a higher ratio of bubble
length over tube diameter [29]. As a result, the slug/plug flow pattern can transition into
an annular flow, which in the long run can lead to a reduction in thermal performance
and a stoppage of the oscillation due to critical drying out of the evaporator. The flow
pattern has been extensively investigated in flow boiling in millimeter-scale channels, and
it is the result of the interaction of interfacial, inertial, viscous, and gravitational forces.
Without an exhaustive knowledge of the flow pattern, the correct thermal and hydraulic
design parameters cannot be calculated properly. Despite the crucial role played, the
majority of the available flow boiling pressure drop correlations have been formulated
without reference to the flow pattern condition they covered [30]. It is also known that
the available heat transfer correlations are very sensitive to the flow pattern condition [31].
Frequently, the expected flow pattern is roughly linked to the dimension of the channel. A
rough classification proposed by Kandlikar [32] fixed 3 mm as the transition limit between
macro-channels and micro-channels, not considering fluid properties, inertial effects, and
gravity levels. In varying gravity conditions, a transition from a thermosyphon mode (semi-
annular dominant) to PHP mode (slug/plug dominant) impacts the thermal performance,
operating range, and start-up power [33].
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Figure 1. Flow patterns observed in the adiabatic section of a 1.6 mm ID PHP filled with ethanol
during a series of experiments [9]. S: slug/plug; SA: semi-annular; A: annular.

One of the main limitations of the available numerical tools is the inability to define
the dominant flow pattern given a set of operating conditions. The flow pattern is assumed
a priori, and only static criteria are considered. Bond number (Bo = ρgd2/σ), or its relevant
form considering the wettability through the contact angle (θ < 90◦) (Bo = ρgd2/(σcosθ)),
and the confinement number (Co = 1/Bo1/2) are implemented to establish whether the
initial existence condition for slug/plug flow are met. Once the motion is activated,
there is no real control of the transitions of the flow pattern, mainly ignoring inertial
effects. Break-ups and coalescence events were reviewed in a numerical investigation from
Andredaki et al. [34]. An approach to the development of flow pattern maps for oscillating
flows based on dimensionless numbers was proposed by Pietrasanta et al. [29], drawing the
attention to break-up and coalescence phenomena in a simplified PHP loop, suggesting the
effective use of the actual bubble acceleration rather than the static, nominal g value (i.e.,
gravitational acceleration) and the actual bubble velocity to describe the transition between
slug/plug and semi-annular flow. This last methodology, even if much more accurate than
the use of Bond number and other dimensionless numbers such as Weber or Reynolds
number, has the disadvantage that it cannot be used for design purposes, but only for a
posteriori validation of numerical codes.

Therefore, despite the great effort shown so far, the development of comprehensive
design tools, validated over a wide range of operating conditions and able to assist thermal
engineers, is not yet complete.

1.2. Machine Learning Algorithms for Two-Phase Flow Heat Transfer

Machine learning is a rapidly growing field that allows data-driven optimization, and
it has been recently extended to flow identification and design of cooling devices at different
scales, considering the most significant design parameters as inputs and flow regimes or
thermal resistance as outputs, depending on the application. The use of these algorithms
is predominant in regression problems for heat transfer coefficients and pressure drop,
although the classification of flow patterns can still be found in the available literature.

Several challenges related to two-phase flow heat transfer have been addressed via
the use of machine learning techniques. The prediction of flow patterns using support
vector machines (SVMs) was proposed by Guillén-Rondon et al. [35]. Here, the authors
trained an SVM with a large two-phase flow pattern dataset and achieved on average 95%
prediction accuracy when testing the algorithm on different groups and combinations of
flow patterns. Another interesting contribution is within flow boiling and condensation
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heat transfer. The prediction of heat transfer coefficients for both phase changes is a
challenging task, and the use of machine learning has proven to be beneficial for facilitating
these estimations. An example is the work by Zhu et al. [36] which proposed the use
artificial neural networks (ANNs) to predict flow boiling and condensation heat transfer
coefficients for micro-channel systems with serrated fins. The authors were able to identify
the most relevant geometrical and operational parameters to minimize the prediction error
and evaluate the influence of specific operational parameters such as mass and heat flux
into the prediction accuracy of the ANN. The results were promising, showing that the
relative deviation from experimental data was on average 11.4% and 6.10% for flow boiling
and condensation, respectively. The use of ANN is also useful in image recognition and
analysis. A recent study published by Suh et al. [37] established an automated framework
for determining boiling curves from high-quality bubble images using convolutional neural
networks (CNNs). The image analysis performed by the neural network was able to capture
relevant physical features used for its training and learning of the underlying statistics
between bubble dynamics and corresponding boiling curves. The prediction error was
reported to be 6% on average.

In terms of the identification of flow patterns in PHP systems, few attempts were found.
Most efforts focused on common heat pipes and two-phase systems. Hernandez et al. [38]
developed a decision-tree-based classifier to identify flow regimes and select appropriate
predictive models for several two-phase flow systems. Zhang et al. [39] proposed two
different machine learning classification algorithms for two-phase nuclear systems. The
first one was designed for real-time flow regime identification based on SVMs, and the
second classifier was designed for transient flow regime classification using CNNs. Both
classifiers performed with high accuracy, allowing for a fast response when dealing with
complex two-phase systems. Note that the above-mentioned contributions are related to
two-phase flow systems, where no pulsating phenomenon occurs, and the transition from
one flow regime to another may be less rapid than when the flowrate and its direction are
not controlled (as it is the case with PHP systems).

In the context of PHP devices, most research attempts have dedicated their efforts
to the prediction of key design parameters, such as thermal resistance and pressure drop.
Jokar et al. [40] presented a novel approach for simulation and optimization of PHPs, based
on a multilayer perceptron (MLP) neural network. According to the authors, PHPs, as
a complex system, can be successfully simulated by means of artificial neural networks.
Jalilian et al. [41] extended the study to the optimization of a flat plate PHP for application
in a solar collector. The trained network was validated with experimental data and used to
evaluate the objective function to maximize the thermal efficiency of the system. A compre-
hensive discussion of the thermal performance prediction of PHPs based on an artificial
neural network (ANN) and regression/correlation analysis (RCA) was proposed by Patel
and Metha [42]. The authors investigated the influence of nine major input variables, con-
sidering more than 1600 experimental points from the literature. Wang et al. [43] proposed
a similar predicting model based on ANN for the optimization of the effects of different
working fluids, extending the current state-of-the-art approaches. Table 1 summarizes the
main input parameters and machine learning approaches adopted in the abovementioned
work. Note that the implementation of these machine learning algorithms is rather recent,
indicating that there are still further studies to perform, although promising results have
been obtained.
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Table 1. Relevant studies on machine learning applied to PHPs.

Author Year Model Description
Input

Parameters
Output

Prediction
Accuracy

Jokar et al. [40] 2016

Combination of ANN and GA
2 hidden layers (50 and 40

neurons)
Batch learning method

70% of data used for training

Heat flux
Inclination angle

Filling ratio

Equivalent thermal
resistance

Relative errors of
5–12%

Jalilian et al.
[41] 2016

ANN to describe behaviour of
PHP in solar collectors

GA for optimizing design
parameters of solar collector

Solar radiation
PHP evaporator length

Filling ratio
Water tank temperature

Inclination angle

Heat gained by
collector

Root-mean-square
error between 7%

and 13%

Patel and
Mehta [42] 2018

ANN as a prediction model
RCA to find correlation among

input and outputs
Data collected from 2003 to 2017

Geometrical parameters
Working fluids

Operational parameters

Thermal
resistance

Correlation
coefficient of 0.89
for ANN and 0.95

for RCA with
dimensionless

numbers

Wang et al. [43] 2019

General model for varied
working fluids and conditions

Use of ANN for prediction
Evaporation and condensation

temperature estimated from
model

Dimensionless numbers
related to heat transfer
and system geometry
Ratio of evaporation
length and diameter

Thermal
resistance

Mean square error
of 0.014 and
correlation

coefficient of 0.98

On the basis of the findings shown in Table 1, there is still a need for understanding the
complex phenomenon of flow regime transition in PHP systems, and for the classification
of the flow pattern when the device is in operation. The capability of identifying the flow
regime for a set of operating conditions allows for a more accurate prediction of design
parameters and for useful insights regarding the behavior of the system during operation.
Within this context, the use of machine learning is beneficial, as it leverages the abundance
of significant sets of data. The advantages of machine learning techniques, namely, the
direct use of data, the variety of methods for specific purposes, and their equation-free
nature, provide unique characteristics that can improve the optimization of experiment
design, speed in experimental analysis, and scaling to different scenarios.

This work proposes, for the first time, the use of machine learning classifiers to
identify flow patterns and flow pattern transition in a single-loop PHP system with two
different working fluids and in varying gravity conditions using data from the European
Space Agency Parabolic Flight Campaigns [11,25]. Since the single-loop PHP allows the
visualization of flow patterns, this makes the present analysis unique in understanding
if ML can be successfully trained to recognize PHP flow patterns. The selection of the
most suitable classifier is carried out by comparing the accuracies of such classifiers when
predicting the flow regime on unseen data (or testing sets). The selected classifier is used
for devising flow pattern maps for both working fluids, to identify the location of the
flow regime transition zone. It is expected that this capability provides a more systematic
approach when identifying flow regimes, reducing observation uncertainty (when used).

2. Methodology

This work was carried out in two stages. First, the experiments were performed, where
the data used for the machine learning implementation were generated. Second, these
data were preprocessed and prepared for the deployment of machine learning tests and
analysis. Velocity measurements were used to estimate acceleration, as described in the
work done by Pietrasanta et al. [44]. The length of bubbles was also measured. Pressure
measurements also took place in both thermal terminals of the device (i.e., condenser
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and evaporator). These measurements were used to estimate physical properties for the
calculation of dimensionless numbers such as Reynolds (Re), Weber (We), Froude (Fr),
and Bond (Bo) numbers, as defined in Pietrasanta et al. [29]. The labeling process was
conducted visually while analyzing the high-speed images. These values, along with the
label for each observation, were used to train the machine learning algorithms. Note that
the entire set of data was split into a training and testing subsets. Cross-validation within
the training set was also implemented for hyperparameter selection.

2.1. Experimental Setup

The experimental campaign was conducted on a simplified passive heat transfer loop
under varying gravity level and power inputs; ethanol and FC-72 were selected as the
working fluid, mainly due to their significant differences in surface tension, density, and
latent heat of vaporization. The main fluid properties are listed in Table 2. The varying
gravity level was obtained via access to the ESA parabolic flight microgravity platform [45].
The main controlled and observed experimental parameters selected for the setup are
detailed in Table 3.

Table 2. Main properties of the two working fluids at 20 ◦C.

Fluid σ (N/m) ρ (kg/m3) hl,v (kJ/kg) μ (Pa·s) dcr (mm)

Ethanol 0.0224 789.59 927.57 1.22 × 10−3 3.40
FC-72 0.0118 1701.6 94.024 0.72 × 10−3 1.69

Table 3. Experimental matrix with controlled parameters and parameters observed.

Controlled Parameters Value

Working fluid Ethanol, FC-72
Diameter 2 mm

Gravity level ~10−2 g, ~1 g, ~2 g
Total power input (W) 9, 15, 18, 24

Observed parameters Range

Wall temperature (◦C) from 20 to 43
Heat flux (W/cm2) from 6.5 to 13.6

Absolute fluid velocity (m/s) from 0 to 0.6
Absolute fluid acceleration from 0 to 20 g

The device can be defined as a hybrid pulsating heat pipe/closed loop thermosyphon
depending on the working fluid used and on the gravity level. The setup is equipped with
wall-side thermocouples, glass tubes for high-speed shadowgraph visualization of the flow
pattern, and pressure transducers, and the power input is supplied via three heaters coiled
around three sections of the evaporator. The temperature at the condenser is kept constant
with an external cooling loop. A detailed description of the experimental apparatus is
provided in [29] and a rendering of the experimental setup is depicted in Figure 2. As
discussed in [29], the threshold between confined and unconfined flow is conventionally
defined through Bo or Co numbers. In both cases, the limit between stratified or unstratified
displacement of the fluid (observable if the tube is in a horizontal position), is a function of
the diameter, the surface tension, the density of the phases, and the gravity acceleration.
When the gravity acceleration is reduced, the confinement conditions (or unstratified
displacement of the fluid) are easy to reach. This is due to a change in the hierarchy of the
forces acting on the fluid, where capillarity becomes dominant over gravitational forces.
The opposite behavior is observed under hyper gravity conditions.
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Figure 2. Rendering of the single-loop PHP with position of sensors and camera [45]. Reproduced
with permissions.

2.2. Classification Algorithms

Classification is a type of supervised learning. Here, a set of relevant features is
associated with a set of categories, which are already labelled (this makes classification
a supervised method). This allows for a confident training of the classification model
and, later, accurate predictions. When classifying features, different approaches can be
implemented, and the specific method for relating features and labels varies from algorithm
to algorithm. Hence, evaluating the performance of such algorithms is of great importance,
given the context. In this work, three different classification algorithms (namely, K-nearest
neighbors, multilayer perceptron, and random forest) are tested and compared. The
selection of these methods was based on the fact that each of them presents distinct features
that make them unique. This provides a suitable path to cover a wide range of alternatives
when classifying an unknown set of features.

The K-nearest neighbors algorithm is a distance-based method, where each data point
is put to the test and the distance between such point and its K-nearest neighbors is saved
and later compared. Note that no training stage is strictly needed.

The second algorithm, namely, the multilayer perceptron, is an artificial neural network
that minimizes a cost function, which allows for accurate predictions once the classification
problem is properly trained. The minimization of the cost function can be achieved through
a variety of methods, where backpropagation and gradient descent algorithms are popular
and accurate choices.

Lastly, the random forest algorithm is an ensemble of decision trees. In this case,
predictions are made on the basis of the training of multiple classifiers, and a final prediction
takes place via the most repeated forecast of such classifiers. This is applied to improve the
robustness of the classification model.

The accuracy of each algorithm is evaluated using the accuracy score function, given
in Equation (1).

score =
1
n

n−1

∑
i=1

1(ŷi = yi), (1)
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where n is the number of samples, ŷi is the predicted categorical value, yi is the true
categorical value, and function 1(x) is the indicator function, which outputs 1 when ŷi = yi
and 0 otherwise. A brief description of the algorithms considered in this work is presented
below. In addition, a summary of the functionality of each algorithm is depicted in Figure 3,
where the logic behind each method is shown via block diagrams. Note that these diagrams
are only general, as details regarding the architecture and specific parameters of each
algorithm depend on the final configuration of each method, which depends on further
studies that decide the suitable values of parameters.

 
(a) (b) (c) 

Figure 3. Schematics of selected classification algorithms. (a): K-nearest neighbors, (b): random
forest, (c): multilayer perceptron.

2.2.1. K-Nearest Neighbors

This classification algorithm is fundamentally simple but exhibits relative high per-
formance. The underlying intuition is based on classifying the information from specific
features from the categories of its closest neighbors [46]. The number of neighbors (k) can be
user-defined or it can vary depending on the local density of the neighborhood. Likewise,
to quantify the proximity of such neighbors, different measures of distance can be used,
such as Euclidean or Manhattan distance. The distance from a close neighbor can also be
weighted so that it provides a higher influence than a farther one.

Major limitations of this algorithm are its lack of performance when dealing with high-
dimensional data and its high prediction times for large datasets. The reader is referred
to [47] for a deeper description of this algorithm.

2.2.2. Random Forest

The random forest algorithm is based on decision trees, where the data are split into
different branches that are created on the basis of specific data subsets. Random forest
consists of creating multiple decision trees and randomizing the set of features these trees
are fed into [48]. This approach is a trademark for what is known as ensemble learning. The
response of each tree is then compared, and, in the case of classification, the mode of the
outputs is considered as the categorical prediction. The diverse nature of the random forest
algorithm, i.e., the use of multiple classifiers to find a robust prediction, allows for low-
variance responses, which is a desired characteristic in any machine learning method [49].
The predictions are also expected to be unbiased.

A particularity of this method is the identification and ranking of the most relevant
features in the datasets with respect to the categorical responses. This can be useful as a
complement for the study of the effect of single features on the output response.

312



Energies 2022, 15, 1970

The main disadvantage of this algorithm is the large computational time required for
implementation, which increases with the number of trees to build (defined by the user).
More details regarding the algorithm can be found in [50].

2.2.3. Multilayer Perceptron

A multilayer perceptron (MLP) is a type of artificial neural network. It consists of
an input layer that receives the data, a set of hidden layers that process the data, and an
output layer that contains the response of the classification [49]. The network is trained
via backpropagation, which is an optimization technique where a cost function (related to
the difference between predictions and true values) is minimized. The function learned by
the neural network consists of the linear combination of a set of two parameters, namely,
weights and biases. The use of this method allows for flexibility, as linear and nonlinear
systems can be fitted to the network and in cases where online predictions are needed.

Major drawbacks of this algorithm are its strong dependence on hyperparameters
(i.e., number of neurons, number of hidden layers, etc.) and the presence of local minima
when using hidden layers. This means that, when more hidden layers are used to increase
accuracy, there is a major risk of deviating from a global optimal solution. A deeper
description and the advantages of this algorithm can be found in [51].

3. Results and Discussion

Three different classifiers were built for each of the working fluids (ethanol and FC-
72) using the experimental data. These data comprise 9841 observations for ethanol and
8590 observations for FC-72. The input features considered for all classifiers and both
working fluids are the modified versions of Weber, Froude, and Bond numbers, represented
by We∗l , Fr∗l , and Bo∗l , respectively. These numbers were defined using actual bubble
lengths, velocities, and accelerations, estimated via specific image analysis methods. More
details regarding the definition of each number and data pre-processing can be found in
Pietrasanta et al. [29]. The categorical output data indicate whether a specific observation is
classified as slug/plug flow or semi-annular flow, and it was conducted visually. For each
working fluid and classifier, the steps described below were carried out.

3.1. Data Splitting

Datasets were randomly split into training and testing sets. This was applied to avoid
using entire datasets for training stages, as this could lead to overfitting. The proportion
of data used in the training stage was fixed to 70%. This proportion of data splitting is
commonly used, along with similar splitting ratios such as 80% or 67%. There is no optimal
splitting ratio in machine learning applications (in general), and the decision is based on
the original datasets. In this work, the datasets for both working fluids were large enough
to perform the selected data split, leading to the values presented in Table 4.

Table 4. Split of data samples for ethanol and FC-722.

Data Sample Total Data Points Training Set Data Points Testing Set Data Points

Ethanol 9841 6888 2953
FC-72 8590 6013 2577

3.2. Data Scaling

The values of the input features in the training and testing set were scaled (i.e., nor-
malized) to avoid issues from different orders of magnitude among feature values. This
was achieved by estimating the expected value and standard deviation of the training and
testing sets and applying the normalization formula shown in Equation (2), where zi is the
normalized data point, xi is the original data point, μ is the sample’s mean or expected
value, and sd is the sample’s standard deviation. The result from this normalization proce-
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dure is a transformed dataset that presents an expected value of 0 and a standard deviation
of 1.

zi =
xi − μ

sd
. (2)

3.3. Classifier Creation

The training set was used to train the classifier and then test it with the testing set. The
accuracy score was estimated and stored. At this point, default values for each algorithm’s
parameters were used. The selection of the most suitable set of parameters for each method
was completed later (see Section 3.6).

3.4. Cross-Validation

The training set was further used in cross-validation. This method provides a more
general indication of the classification performance. In this work, cross-validation was
implemented via the so-called k-fold cross-validation method. Here, the training set was
further split into k subsets, which were smaller than the training set. This was followed by
subsequent trainings of the classification algorithm using k − 1 subsets as the training set,
while the remaining data were set aside for testing. The accuracy score was then estimated
for all folds and averaged to get a representation of the overall performance of the classifier.
This allowed for a higher training/testing split, as a validation set is not necessary when
using cross-validation. A schematic of the k-fold method is depicted in Figure 4.

 

Figure 4. The k-fold cross-validation procedure with n folds.

3.5. Accuracy Assessment

The accuracy score of the created classifier and the mean score from the cross-validation
procedure were compared to assess the general performance of the classifier. This com-
parison was only for understanding the robustness of the initial classifier. Normally, large
differences are expected, leading to the conclusion that the initial set of parameters for each
classifier (among other factors such as split ratio, amount of total data, and/or number of
input features) should be adjusted.

3.6. Selection of Hyperparameters

To increase classification performance, and to select the most suitable set of parameters
for a fair comparison (i.e., comparing only classifiers presenting maximum accuracy), a deep
analysis was carried out. This is achieved using a grid search. This procedure consisted
of choosing a combination of various values for specific parameters within a classifier
and exhaustively performing a cross-validation for each combination of parameters. The
accuracy score for each of these combinations was stored for comparison, and the set of
parameters with the best (maximum in this case) output value of accuracy score was chosen.
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The updated classifier was then tested using the testing set, and a prediction (testing)
accuracy score was stored. Note that, in order to apply this procedure to each selected
classifier, a set of different hyperparameters was chosen. Table 5 shows the parameters,
which were selected on the basis of the authors’ criteria and availability within the syntax
and structure of the applied algorithms (i.e., Sci-kit learn module in Python).

Table 5. Selected hyperparameters for grid search and cross-validation procedures.

KNN Random Forest MLP

Leaf size Number of trees in the forest Maximum number of
iterations

Number of neighbors Criterion for split quality Number of hidden layers
Distance metric Criterion for maximum features per split Activation function

- Minimum samples to split an internal
node Optimization solver

- Minimum samples to be at a leaf node Regularization parameter
- Bootstrap Boolean (resampling) Learning rate

3.7. Classification Results

Once all classifiers were trained and tested with the default parameters, cross-validation
and grid search methods were implemented to select the set of parameters that output the
maximum accuracies. On the basis of the list of hyperparameters presented in Table 6, the
selected ones for the most accurate classifiers are shown in Tables 6–8 for the K-nearest
neighbors, random forest, and multilayer perceptron, respectively. These classifiers were
used for comparing accuracy using the testing set in later stages. Note that these optimal
parameters varied when choosing a different working fluid, as the results for ethanol could
not be extrapolated to those for FC-72. Nevertheless, slight differences could be seen,
especially with those classifiers that do not depend on a large number of hyperparameters,
such as the K-nearest neighbors classifier. For this classifier, a training set was split even
though it was not strictly needed. This was for the sake of consistency when comparing all
three classifiers.

Table 6. Optimal hyperparameters for K-nearest neighbors classifier.

Parameter Value—Ethanol Value—FC-72

Leaf size 1 1
Number of neighbors 25 26

Distance metric Manhattan distance Manhattan distance

Table 7. Optimal hyperparameters for random forest classifier.

Parameter Value—Ethanol Value—FC-72

Number of trees in the forest 100 100
Criterion for split quality Entropy Entropy

Criterion for maximum features per
split Squared root of features Squared root of features

Minimum samples to split an internal
node 10 2

Minimum samples to be at a leaf node 2 2
Bootstrap Boolean (resampling) True True

To assess the performance of individual classifiers after identifying the best set of
hyperparameters, normalized confusion matrices were used to visualize the distribution
of correct and incorrect classifications on the testing set. A confusion matrix depicts the
fraction of correct and incorrect labeled points over the total number of true labels. Thus,
a matrix entry of 1, for a specific label, indicates that all points in such a dataset are
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categorized with the expected label. Normalized values were used for more interpretable
visual results.

Table 8. Optimal hyperparameters for multilayer perceptron classifier.

Parameter Value—Ethanol Value—FC-72

Maximum number of iterations 1000 100
Number of hidden layers 2 2

Activation function ReLU ReLU
Optimization solver Adam Adam

Regularization parameter 0.0001 0.0001
Learning rate adaptive adaptive

The confusion matrices for the three algorithms in the case of ethanol as the working
fluid are shown in Table 9. In general, all algorithms performed similarly, where the
classification of slug/plug flow was significantly higher than that of semi-annular flow.
This could be due to the increase in observation errors while classifying semi-annular
flow or to the innate nature of this flow pattern, which could have led to more erroneous
observations.

Table 9. Confusion matrix results for ethanol.

Actual Slug/Plug Actual Semi-Annular

KNN
Predicted slug/plug 0.89 0.32

Predicted semi-annular 0.11 0.68

Random Forest
Predicted slug/plug 0.88 0.32

Predicted semi-annular 0.12 0.68

MLP
Predicted slug/plug 0.90 0.30

Predicted semi-annular 0.10 0.70

In the case of ethanol, the multilayer perceptron exhibited a slightly higher number
of correct classifications, considering both slug/plug and semi-annular flow. These low
differences among the three classifiers suggest that, given the available data and selected
input features (limited by design and, thus, subject to potential improvements), a fixed
order of accuracy could be reached by all algorithms, with the highest provided by MLP.

In the case of FC-72, the highest fraction of correct classifications was also found
using the MLP classifier. The major difference across classifiers was seen in the slug/plug
category. The confusion matrices for FC-72 are illustrated in Table 10. As in the case of
ethanol, the MLP classifier tended to present the highest accuracy among the algorithms
with the testing set, after selecting the most suitable set of hyperparameters.

Table 10. Confusion matrix results for FC-72.

Actual Slug/Plug Actual Semi-Annular

KNN
Predicted slug/plug 0.90 0.33

Predicted semi-annular 0.10 0.67

Random Forest
Predicted slug/plug 0.89 0.34

Predicted semi-annular 0.11 0.66

MLP
Predicted slug/plug 0.91 0.33

Predicted semi-annular 0.09 0.67

The overall classification performance is reflected in the value of the accuracy score.
These values are reported in Tables 11 and 12, respectively. These values represent the
accuracy of those classifiers that presented the highest cross-validated score when selecting
the most suitable set of hyperparameters. In accordance with the confusion matrices,
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the results suggest that the use of MLP provided the highest performance. The lowest
performance was shown by the random forest algorithm. In this work, this accuracy score
was chosen as a selection criterion for the most suitable classification method; however, it
is acknowledged that additional criteria such as computational time or performance when
dealing with larger datasets could be included.

Table 11. Accuracy score for each algorithm: ethanol.

Classifier Accuracy (%)

K-nearest neighbors 82.8
ANN 83.9

Random forest 82.2

Table 12. Accuracy score for each algorithm: FC-72.

Classifier Accuracy (%)

K-nearest neighbors 75.8
ANN 77.1

Random forest 75.6

An alternative and complementary method for evaluating the performance of each
classification algorithm is the analysis of learning curves. A learning curve shows the
sensitivity of a particular performance metric (i.e., accuracy score, mean squared error, etc.)
with respect to the size of the training set. This allows the user to identify (i) whether it is
necessary to include more data samples in the training set, and (ii) whether the classifier
under study presents a bias error or a variance one. Generally speaking, a bias error
indicates that the classifier could be overly simple/complex with respect to the training
set, leading to either overfitting or underfitting cases. Similarly, a variance error indicates
that the classifier could vary drastically or remain unaffected when moving from training
(seen data) to testing (unseen data). This also leads to overly simplistic/complex models
depending on the case [49].

Both these concepts are related, as machine learning models with high/low bias
present low/high variance, exhibiting a tradeoff that should always be taken into ac-
count [49]. To evaluate this tradeoff in both training and validation stages, the learning
curves for each classifier and working fluid were created. Once the hyperparameters of
each algorithm were selected via grid search, different sizes of training data were chosen
(as a proportion of the initial training set size; see Table 4), and the training accuracy score
was estimated for each training set size. For the validation curve, cross-validation was used
once again (via k-fold cross-validation, as described in Section 3.5), and, for each training
set size, accuracy scores were also calculated. The learning curves for all three algorithms
and both working fluids are depicted in Figure 5.

Figure 5 reveals that the training error for the KNN classifier in both working fluids (a
and d, respectively) was equal to 1, denoting perfect accuracy. Although this might seem
like a successful result, there was a relatively large gap between the training score trend
and that for the validation set. This gap is indicative of variance error, as the classifier
performed well only during training. The accuracy score in both datasets was within
the range of 83% to 100% for both working fluids, suggesting a small bias error in both
stages. A similar case was seen in the random forest classifier. However, in this case, the
variability of the accuracy score in the training set behaved differently as the size of the
training set increased for both working fluids. A minimum accuracy score was reached
with ethanol as a working fluid, whereas an oscillating trend was seen when working with
FC-72. The accuracy score in the validation set was seemingly improved with the increase
in data samples. In general, the random forest algorithm presented a lower bias error than
KNN. On the other hand, the MLP classifier presented a smaller gap between training
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and validation stages, indicating a good balance between variance and bias errors, as the
accuracy score for both stages was within the range of 84% to 85%. This suggests that the
tradeoff for this method was the most balanced.

Figure 5. Training and cross-validation curves: (a) KNN with ethanol; (b) MLP with ethanol;
(c) random forest with ethanol; (d) KNN with FC-72; (e) MLP with FC-72; (f) random forest with
FC-72.

3.8. Flow Pattern Maps

The classification results from the most accurate classifier (MLP in this case) were
used to develop a flow pattern map for both ethanol and FC-72. Once the classifier
predicted the classes for each data point in the testing set (those in the training set were
already stored during training), these points were used to estimate the values for the flow
pattern maps. As a result, the maps can be used as a graphic tool for visualizing the
outcomes from the classification methods. The x-axis corresponds to Bo0.5

l , and the y-axis
corresponds to Fr0.5

l We0.25
l , in accordance with the correlation between process conditions

(velocity and acceleration) and the effect of the different forces acting on the fluid (namely,
inertial, external, and related to the surface tension) proposed by Pietrasanta et al. [29].
The resulting flow pattern maps for both fluids developed by the authors are illustrated
in Figure 6. These maps can act as a reference for comparison with the flow pattern maps
from the MLP classifier.

For both working fluids, a much clearer transition zone was found when comparing
the previous flow pattern maps and those based on the MLP classifier. This was due to the
inherent improvements brought about by the use of the MLP method, as this algorithm
provides a more systematic mean for classification compared to visual categorization or
empirical correlations with physical properties.

Figure 7 shows the flow pattern map for ethanol. The map clearly shows a thresh-
old value where the transition from slug/plug to semi-annular flow took place, located
approximately where the x-axis was equal to 4. Higher values along this axis indicate semi-
annular flow, where surface tension no longer dominated the fluid flow, and the increased
acceleration led to higher bubble lengths. Semi-annular flow can be further identified on
the y-axis, where for values of Fr0.5

l We0.25
l lower than 2, a relatively high density of points

classified as semi-annular flow was encountered. Lower values on both axes indicated the
presence of slug-plug flow, either because the PHP device was not active or because the
external forces were not strong enough to prevail over the surface tension of the working
fluid while operating.
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Figure 6. Flow pattern maps for ethanol (a) and FC-72 (b) proposed by Pietrasanta et al. [29].
Reproduced with permissions.

 
Figure 7. Flow pattern map for ethanol: multilayer perceptron.
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In the case of FC-72, its corresponding flow pattern map is shown in Figure 8. Similar
to the case of ethanol, a threshold value for the transition zone was found. Here, the
threshold was located approximately when Bo0.5

l = 9. This means that slug/plug flow
prevailed for higher velocities and bubble lengths when FC-72 was used as working fluid.
This can be explained by the differences in the surface tension of both fluids. FC-72 has a
lower surface tension than ethanol; hence, for the same dynamic conditions (fluid velocity
and acceleration), greater numbers of Bo0.5

l would be reached before the flow regime
transition. Abnormal points were found within the slug/plug region for FC-72, which were
classified as semi-annular. This phenomenon could have been caused by the propagation
of visual errors, as discussed previously. This would also mean that the choice of Bol did
not properly reflect the surface tension effects, since this number could not capture the
regimes for both fluids.

 
Figure 8. Flow pattern map for FC-72: multilayer perceptron.

To overcome the effect of different surface tension in both working fluids, a modified
term was used on the x-axis of both flow pattern maps. The term Bo0.5

l was scaled using the
ratio σl

σre f
, where σl represents the surface tension of the working fluid, and σre f is a reference

surface tension, which in this case was that of ethanol. Surface tension for both fluids
was estimated via validated correlations that depend on key operating conditions such as
saturation temperature [29]. This correction ratio was calculated for each observation, and
updated flow pattern maps for both fluids were developed (using the MLP classifier). Note
that, since ethanol was used as reference, no changes were found in its flow pattern map.
The updated flow pattern maps for ethanol and FC-72 are depicted in Figures 9 and 10,
respectively.

The updated flow pattern maps exhibited more consistent threshold values on both
axes, for both working fluids. In the case of ethanol, these values were 6 for the x-axis and 2
for the y-axis, whereas, for FC-72, these limits were located at 5 for the x-axis and 1 for the
y-axis. These values allowed for more interpretability, as it was now possible to cluster the
observations and determine their corresponding flow regime on the basis of their relative
location to the threshold values, with a margin of only ±1 unit on each axis.

Overall, the predictions presented good correspondence with experimental results,
and the use of modified numbers plus scaling allowed for a clearer differentiation of flow
regimes. However, it is worth noting that, although a relatively large number of data were
used, this only represents a single PHP design (e.g., the single-loop PHP). Therefore, any
attempt to implement these classifiers in a different system would most likely provide less
accurate predictions, and a more extensive dataset would be needed.
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Figure 9. Updated flow pattern map for ethanol: multilayer perceptron.

 
Figure 10. Updated flow pattern map for FC-72: multilayer perceptron.

4. Conclusions

For the purpose of proposing accurate data-driven methods for the flow regime clas-
sification in PHP systems, three different machine learning algorithms were tested on
experimental data from a PHP device, for two different working fluids (namely, ethanol
and FC-72). Both datasets were labeled with their corresponding flow regimes, and the
most relevant input features were identified and embedded into specific groups of dimen-
sionless numbers that accurately captured the physical phenomena. All three classifiers
showed good performance, whereby the classification of the ethanol data was more ac-
curate than that of FC-72, indicating that the process of labeling the data may have been
more challenging in the latter case. The use of the multilayer perceptron (MLP) exhibited
the highest performance for both working fluids, whereas the random forest algorithm
presented the lowest accuracy, although all algorithms performed similarly. The prediction
results from the most accurate classifiers were used to build a flow pattern map for each
working fluid. In both cases, clear thresholds were identified, where the transition from
slug/plug to semi-annular flow took place. These bounds were obtained after scaling
the values of the modified Bond number with those of surface tension for both working
fluids. The use of a trained and an automatic classifier in this context could provide a more
accurate and less demanding classification of flow regimes. Considering a larger set of
data with heat fluxes and geometrical parameters, since effective bubble accelerations and
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velocities would be dependent variables in this case, this method could effectively offer the
chance of overcoming the rough use of Bond numbers to predict confined slug/plug flows
in PHPs.

Further extensions of this work include the use of more diverse data, which will
improve the robustness of the classification algorithms. In addition, the use of unsupervised
learning could be a next step and a significant upgrade. In this way, the labeling process
would not be needed, and an appropriate algorithm would identify different clusters of
data that may correspond with the flow regimes the clusters belong to. Note that the
selection of input features is still of great importance, and the use of the modified Weber,
Froude, and Bond numbers can be validated from the results of the clustering.

The use of accurate classifiers in this context allows for a more straightforward identi-
fication of flow regimes. This enables the correct selection of models to be used for design,
simulation, and optimization of PHP systems. Additionally, regression algorithms can be
integrated to the current framework to estimate thermal resistance, which would provide a
substantial input for estimating the thermal performance of PHP devices. The results can
reveal a clear and robust path to define operational regimes in PHP devices. Moreover, the
use of more data from other experiments with different geometries, fluids, and materials
can provide a useful resource to improve the applicability of classifiers.
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Abbreviations

Nomenclature

a Fluid acceleration (m/s2)
.

Q Heat load input (W)
Bo Bond number ρ Density (kg/m3)
Co Confinement number score Accuracy score
d Diameter (mm) sd Standard deviation
f Frequency (Hz) σ Surface tension (N/m)
Fr Froude number T Temperature (◦C)
g Gravitational acceleration (m/s2) θ Angle (◦)
h Enthalpy (J/kg) u Velocity (m/ms)
l length (m) We Weber number
μ Dynamic viscosity (Pa·s) xi Data point
μ Expected or average value yi True categorical value
N Number of turns ŷi Predicted categorical value
n Total number of data points zi Normalized data point
P Pressure (Pa)

Subscripts

b Bubble l Liquid
c Condenser l,v Liquid to vapor
cr Critical ref Reference value
e Evaporator v Vapor
f Fluid w Wall
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Abbreviations

ANN Artificial neural network PCB Printed circuit board
ESA European Space Agency PHP Pulsating heat pipe
FR Filling ratio RF Random forest
KNN K-nearest neighbors TC Thermocouples
ML Machine learning TCS Thermal control system
MLP Multilayer Perceptron TS Thermosyphon
p Parabola
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Abstract: Dissolved gas in oil (DGA) is a common means of monitoring the condition of an oil-
immersed transformer. The concentration of dissolved gas and the ratio of different gases are
important indexes to judge the condition of power transformers. Monitoring devices for dissolved
gas in oil are widely installed in main transformers, but there are few recorded fault data of main
transformers. The special operation and maintenance modes of main transformers leads to the fault
modes particularity of main transformers. In order to solve the problem of insufficient samples and
the feature uncertainty, this paper puts forward an unsupervised mutual information method to
select the feature verified by the optimized support vector machine (SVM) model of particle swarm
optimization (PSO) method and tries to find the feature sequence with better performance. The
methos is validated by data from nuclear power transformers.

Keywords: main transformer; condition monitoring; unsupervised mutual information; feature
selection; DGA

1. Introduction

Power transformers that work under harsh environments would experience thermal
decomposition of oil and cellulose insulation materials, such as arcing, corona discharge,
low energy sparks, severe overloading, overheating of insulation systems and pump motor
failures. These conditions alone or in combination can produce combustible and noncom-
bustible gases [1] Detection of anomalies requires an assessment of the amount of gas
produced. Gas in oil-immersed transformers can be used to identify fault types, including
thermal and electrical interference. Gases obtained from chromatographic analysis of insu-
lating oils may contain dissolved carbon monoxide (CO), carbon dioxide (CO2), nitrogen
(N2), hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6).
The composition, formation rate and specific content ratio of dissolved gas can be used to
indicate transformer condition.

The composition and content of dissolved gases in oil of transformer insulation can
reflect the operation condition of transformer to a great extent thus dissolved gas analysis
(DGA) has become an effective method for fault diagnosis of oil-immersed transformers [2].

Organizations such as the Institute of Electrical and Electronics Engineers (IEEE) and
the International Electrotechnical Commission (IEC) recommend a variety of diagnostic
techniques [3], depending on the type of transformer and operating conditions. Some of the
most commonly used techniques include Doernenburg ratio, Rogers ratio, Duval triangle
model, etc. These classical diagnostic methods mostly take the ratio of different gases as the
characteristic input and then judge the actual operating condition of the transformer by the
threshold value formed by experience or statistical methods. Fuzzy network, support vector
machine, artificial neural network, and other commonly used artificial intelligence methods
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are also generally introduced into the field of power transformer fault diagnosis [4–7].
However, in the studies of different scholars, the features used as the basis of intelligent
diagnosis are often different.

In previous studies, in addition to problems in diagnostic methods, there are the
following phenomena in monitoring data: less test data, less available data sets and
unbalanced data type distribution, which bring great problems to algorithm verification [8].

Main transformers are important equipment for power generation of nuclear facilities.
They are in a high-load long-term condition and are more prone to failure caused by
aging [9]. Meanwhile, due to the particularity of nuclear power refueling overhaul and the
conservative culture of nuclear power [10], the maintenance strategy of nuclear equipment
is more rigorous and conservative, and the failure modes of main transformers may be
slightly different. The data of the main transformers are classified separately in the IEC
database [2], which shows transformer performance difference in nuclear industry.

Due to the particularity of nuclear power transformers, there are less marked data
and more constraints on the monitoring data that can be used for research. The features
are important inputs of the diagnostic algorithm. High-dimensional features bring high
computational cost and the risk of “over-fitting”. Dimensionality reduction or selection is
an important research direction.

In this paper, an unsupervised mutual information feature algorithm is proposed
for feature selection of different features proposed in the current classical algorithm and
intelligent algorithm, as a pattern recognition method, SVM can construct the optimal
classification hyperplane under the condition of small sample learning and distinguish
transformer conditions according to the input features. The main transformer condition
diagnosis model based on support vector machine is adopted for diagnosis in this paper,
and the case data of main transformer is verified.

2. Framework of the Feature Selection Method Based on the SVM Model for Main
Transformers

The research framework for the feature selection method based on the architecture of
the SVM model for the main transformers is shown in Figure 1.

Figure 1. Framework of Feature Selection method based on SVM model for main transformers.
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The gas concentration values measured in the continuous operation process of nuclear
power transformer are obtained, and there is almost no-fault data.

The features used in various power transformer condition diagnosis methods based on
dissolved gas in oil are extensively studied. On this basis, the initial feature set is formed.

The unsupervised mutual information feature extraction algorithm is adopted to
extract features, and the set of sequence features is obtained according to the weight
coefficient from high to low.

In the feature set, different number of feature sets are selected sequentially and verified
by optimized SVM model for transformer fault diagnosis.

In order to reduce the contingency of the experiment, the 5-fold verification method is
used to process the training samples and test samples to verify the validity of the selection
feature in the diagnosis of the nuclear power transformer condition diagnosis.

Based on the accuracy of diagnosis, the feasibility of different feature extraction
algorithms in the condition diagnosis of main transformers is analyzed.

3. Condition Diagnosis Model for Main Transformer

Condition diagnosis model is important to verify the feature selection algorithm and to
determine the accuracy and rapidity of transformer condition diagnosis. SVM is a machine
learning method based on statistical learning theory, compared with other algorithms, it
can well solve practical problems such as small sample, nonlinear [11], the PSO algorithm
can converge fast in the parameter optimization. The SVM optimized with PSO in the field
of power transformer fault diagnosis has further application [12].

3.1. Support Vector Machine

State diagnosis of main transformers, As the case of a typical nonlinear classification
problem, the overall plan of SVM is the first use of a nonlinear transform the input space
data is mapped to a high-dimensional feature vector space, and then in the feature space of
the optimal separating hyperplane is constructed, linear classification, after the last map
back to the original space Became a nonlinear classification of input space [13].

SVM settings
At present, the commonly used kernel functions are mainly polynomial kernel func-

tion, radial basis (RBF) kernel function, hyperbolic tangent (sigmoid) kernel function, and
so on. This paper mainly uses the RBF kernel function to the apply to SVM model.

3.2. PSO for Optimal Parameters

PSO is a kind of evolutionary computation, the basic idea of which is to find the
optimal solution through the cooperation and information sharing between individuals
in the group. It mimics a bird in a flock by designing a massless particle with just two
properties: speed, which represents how fast it is moving, and position, which represents
the direction it is moving. Each particle separately searches for the optimal solution in
the search space, and records it as the current individual extreme value, and shares the
individual extreme value with other particles in the whole particle swarm and finds the
optimal individual extreme value as the current global optimal solution of the whole
particle swarm. All particles in a swarm adjust their speed and position based on the
current individual extremum they find, and the current global optimal solution shared by
the whole swarm [14].

PSO-SVM Parameter Settings
C1: the initial value is 1.5, local search capability of PSO parameters
C2: 1.7 initially, PSO parameter global search capability
Maxgen: The initial value is 200, the maximum number of evolutions
Sizepop: the initial value is 20 and the maximum size of the population
K: initial 0.6 (k belongs to [0.1, 1.0]), the relationship between the speed and x (V = KX)
WV: The initial value is 1 (wV best belongs to [0.8, 1.2]), and the rate updates the elasti

coefficient before the speed in the formula
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WP: The initial value is 1, the elastic coefficient in front of the velocity in the population
renewal formula

V: Initial 5, SVM Cross Validation parameter
Popcmax: the maximum value of the change in the SVM parameter C, initially 100.
Popcmin: the initial value is 0.1, the minimum change of SVM parameter C.
Popgmax: the initial value is 1000, the maximum value of the change of THE SVM

parameter G.
Popgmin: the initial value is 0.01, the minimum change value of the SVM parameter C.

4. Feature Selection Algorithms for Main Transformer Condition

This chapter introduces the unsupervised mutual information filtering feature sorting
method used in feature selection. In feature selection, the relevance of each feature is
calculated first, the importance of the feature is evaluated by the forward sequential search,
and finally an ordered feature sequence is output.

4.1. Stepwise Feature Selection Process

The process of stepwise feature selection is to select a feature from the unselected
feature set each time and add the feature set S. In accordance with the selection order, the
feature set outputs an ordered feature sequence.

When initializing, the feature set is empty. The unselected feature set is the complete
set of all known features.

After each step selection, the feature set increases the feature set selected in this step,
while the feature set not selected reduces the feature set selected in this step. Until the
unselected feature set is empty.

4.2. Selection Principle

The principle of ‘’minimum redundancy—maximum correlation” which is similar to
the famous supervised feature selection method is adopted [15], and the selection of the
mth feature is based on:

lm = arg max fi∈Um{Rel( fi)−
1

m − 1 ∑
ft∈Sm−1

Red( fi, ft)} (1)

where Um represents the set of unselected features in the current step
fi represents a feature in the unselected feature set in the current step;
Rel( fi) represents Relevance of feature fi, which is the average mutual information

between feature fi and any other one in the whole feature set is defined as Rel( fi). Rel( fi)
can be calculated with Formula (2).

Rel( fi) =
1
n

n

∑
t=1

I( fi; ft) =
1
n
(H( fi) + ∑

1≤t≤n,t 
=i
I( fi; ft)) (2)

Sm−1 is the selected feature set in the current step;
Red( fi, ft)is the redundancy of feature fi relative to selected feature ft. Red( fi, f )t can

be calculated with Formula (3).

Red( fi, ft) = Rel( ft)− Rel( ft| fi) (3)

Rel( ft| fi) is conditional relevance of ft with fi, Rel( ft| fi) can be calculated with
Formula (4).

Rel( ft| fi) =
H( ft| fi)

H( ft)
× Rel( ft) (4)
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4.3. Relationship with Supervised Algorithms

When the data type is supervised, the labels of the class can represent the information
of the whole feature set.

Then relevance of feature fi can be defined as

Rel( fi) = I( fi, c) (5)

where c in Formula (5) is the class label [16].
Redundancy between feature fi and the selected feature ft is defined as

Red( fi, ft) = I( fi, ft) (6)

According to the principle of mathematics [17], relevance in an unsupervised algo-
rithm is the lower bound of relevance in a supervised algorithm, and redundancy in an
unsupervised algorithm is proportional to the redundancy in a supervised algorithm. When
the initial feature set is approximately equal to the labels of the class, the sequence features
obtained by the unsupervised algorithm are highly correlated with the sequence features
obtained by the supervised algorithm.

5. Experiment and Validation

5.1. Experiment Description

The internal fault mode of power transformer is mainly mechanical fault, thermal fault
and electrical fault, the latter two types of faults is the major issues, and mechanical fault is
often shown in the form of thermal fault or electrical fault [18]. General power transformers
are often subdivided into fault modes according to the degree of heating or arcing.

Due to safety culture of nuclear power plants, maintenance strategy for the main
transformers tends to be conservative and strict; The failure of nuclear power transformers
is rare to happen, and the failure data that can be accessed to publicly is very few. Available
fault data cannot cover all the modes. Therefore, the condition of the main transformers
are divided into the following three types in this paper, and only two summative failure
modes are reserved and the corresponding as illustrated in Table 1.

Table 1. Code of power transformer operation condition.

NO. FAILURE MODE CONDITION TYPE CODE

1 Partial discharge
Electrical fault 12 Low-energy discharge

3 High-energy discharge
4 Thermal fault < 300 ◦C

Thermal fault 25 Thermal fault 300 to 700 ◦C
6 Thermal fault > 700 ◦C
7 Normal 3

The fault data used in the experiment in this paper are reactor-related transformer
data obtained from IEC TC database, and the feature selection data and normal data are
the monitoring values of a nuclear power main transformer under normal operation. The
data can be obtained in the Supplementary Material. A nuclear power plant generator,
24 kV voltage, is stepped up to 500 kV and connected to the 500 KV power grid through
the main transformer. The main transformer is a three single-phase transformer, each phase
capacity 410 MVA. The neutral points on the high voltage side are connected and directly
grounded. Oil is regularly sampled and analyzed once every 3 months manually. Sampling
intervals can sometimes be uneven, depending on special focus judged by sampling staff
or adjustment by work schedules.
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5.1.1. Sample Data

Gas concentration of DGA method is analyzed in one part per million (PPM). To
facilitate the presentation and analysis of the characteristics in the figure, logarithmic
processing is performed for each monitoring value in Figures 2 and 3. The box diagram of
the monitored data value in the sample data is shown in Figure 2. Sample type distribution
and monitoring value distribution of each basic feature are presented in Figure 3.

Figure 2. Box diagram of the monitored data value in the sample data.

Figure 3. Sample type distribution and monitoring value distribution of each basic feature.

5.1.2. Basic Features by DGA Condition Monitoring

Typical gases measured in the DGA method of the main transformers include H2, CH4,
C2H2, C2H4, C2H6, CO, CO2 as illustrated in Figures 2 and 3.

TH = CH4 + C2H2 + C2H4 + C2H6

Other features commonly used in transformer condition diagnosis methods are shown
in Table 2.
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Table 2. Common features of transformer DGA condition diagnosis methods.

NO. FEATURE DIAGNOSIS METHOD

1 %C2H2
The Duval Triangle method [2]2 %C2H4

3 %CH4
4 CH4/H2

The three basic gas ratios of IEC 599/IEC 60599 [19]5 C2H4/C2H6
6 C2H2/C2H4
7 C2H2/CH4 Doernenberg Ratios [19]
8 C2H6/C2H2
9 C2H2/H2 Two new Gas ratios in IEC 6059910 CO2/CO

11 ϕ(H2)

Other approach [20]
12 ϕ(CH4)
13 ϕ(C2H6)
14 ϕ(C2H4)
15 ϕ(C2H2)
16 %H2 fourth % ratio [21]

The symbols in the Duval triangle method shown in Table 1 are denoted as
%C2H2 = 100x/(x + y + z); %C2H4 = 100y/(x + y + z); %CH4 = 100z/(x + y + z); with
x = (C2H2); y = (C2H4); z = (CH4) in PPM.

ϕ(H2), ϕ(CH4), ϕ(C2H6), ϕ(C2H4) and ϕ(C2H2) in Table 1 represent the contents of
five characteristic gases, respectively, and Total Combustion Gases (TCG) as in:
TCG = H2 + CH4 + +C2H4 + C2H6 + C2H2; ϕ(H2) = H2/TCG; ϕ(CH4) = CH4/TCG;
ϕ(C2H6) = C2H6/TCG; ϕ(C2H4) = C2H4/TCG; ϕ(C2H2) = C2H2/TCG;

And %H2 = 100 ∗ H2/(H2 + C2H6 + CO + CO2).
As shown in Figures 2 and 3, the class of the sample is not balanced and several basic

features are similar in distribution. Unsupervised feature extraction is adopted to obtain
the feature set with maximum correlation and minimum redundancy.

5.2. Extracted Feature Sequence by Unsupervised MI V.S. Supervised MI

Table 3 shows the comparison of feature sequences extracted by the unsupervised
mutual information method and supervised mutual information method and their corre-
sponding weights. As obtained from Table 3.

Table 3 Extracted feature sequence by unsupervised MI V.S. supervised MI the mutual
information of unsupervised feature extraction method selects the same first feature from
cases of nuclear power transformer DGA with that of supervised method, while the
weight value, generated by supervised feature extraction algorithm is greater than the
corresponding values in the unsupervised algorithm, which means supervised method has
more dynamic to choose the first feature; In other steps, selected feature is not the same,
but the unsupervised algorithm has a strong dynamic at each step.

5.3. Results of the Diagnosis by Optimized SVM
5.3.1. Diagnostic Precision with Supervised Mutual Information Feature Selection Method
versus Unsupervised Approach

According to the framework described in Section 2, a PSO-optimized SVM model is
applied to classify cases to reflect the fitness of the selected features.

The feature sequences selected by the supervised mutual information feature selection
algorithm and the unsupervised mutual information feature selection algorithm are applied,
respectively. Different numbers of features are selected from feature sequences obtained
by both methods, and the diagnostic accuracy of the both method is shown in Figure 4, in
which the red point is where the best fitness is obtained.
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Table 3. Extracted feature sequence by unsupervised MI V.S. supervised MI.

No.
Supervised MI Unsupervised MI

Feature Weight Feature Weight

1 %C2H4 0.380665 %C2H4 0.31706
2 %C2H2 0.021415 %H2 0.276004
3 ϕ(C2H4) 0.095868 ϕ(C2H2) 0.302481
4 C2H4/C2H6 0.052677 ϕ(C2H4) 0.306476
5 C2H2/CH4 0.058468 ϕ(C2H6) 0.299351
6 C2H6 0.066181 ϕ(CH4) 0.29588
7 %CH4 0.082497 ϕ(H2) 0.292157
8 ϕ(C2H2) 0.067574 CO2/CO 0.298659
9 CO2 0.066806 C2H2/H2 0.304623
10 C2H6/C2H2 0.068373 C2H6/C2H2 0.305679
11 C2H2 0.059614 C2H2/CH4 0.30906
12 CH4/H2 0.055447 C2H2/C2H4 0.301607
13 C2H4 0.057832 C2H4/C2H6 0.306031
14 ϕ(CH4) 0.064196 CH4/H2 0.301547
15 %H2 0.032973 %CH4 0.303705
16 ϕ(C2H6) −0.00899 %C2H2 0.279383
17 CH4 0.002819 TH 0.26508
18 CO −0.00451 CO2 0.243314
19 C2H2/C2H4 −0.01682 CO 0.245554
20 TH −0.00641 C2H6 0.246708
21 C2H2/H2 −0.02399 C2H4 0.229841
22 %H2 −0.02539 C2H2 0.213115
23 ϕ(H2) −0.0789 CH4 0.202028
24 CO2/CO −0.08773 H2 0.187682

Figure 4. Diagnostic precision with supervised mutual information feature selection vs. unsupervised
approach.

As can be seen from Figure 4, features selected from both unsupervised and supervised
feature selection methods have good performance as input to diagnostic accuracy in cases,
and both of the models achieve greatly increased diagnostic accuracy in the second feature.
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5.3.2. Diagnostic Precision by Features of the Unsupervised Approach with Best Fitness vs.
Other Classical Feature Set

Feature set with the highest diagnostic accuracy obtained by unsupervised mutual
information feature selection method is used as input to optimized SVM diagnosis model for
main transformer cases, other typical feature sets are used in contrast as shown in Table 4.

Table 4. Diagnostic precision by features of the unsupervised approach with best fitness vs. other
classic feature set (percent).

TYPE 1 2 3 4

5-FOLD-1 100.00 89.29 89.29 96.43
5-FOLD-2 100.00 100.00 100.00 100.00
5-FOLD-3 100.00 96.43 96.43 100.00
5-FOLD-4 100.00 92.86 100.00 100.00
5-FOLD-5 92.86 96.43 92.86 92.86
AVERAGE 98.57 95.00 95.71 97.86

Note: 1 refers to the features of the unsupervised approach with the best fitness obtained as shown in Figure 4
as input to the optimized svm model; 2 refers to the features used in the three ratios method [1]; 3 refers to the
features used in some intelligent methods [16]; 4 refers to the features used in the Duval Triangle method [2].

As shown in Table 4, the feature set obtained by the unsupervised mutual information
feature selection algorithm, is used as the input of the optimized SVM diagnosis model
and performs better than other inputs of the feature set in the case of diagnosis of the main
transformer condition diagnosis. Therefore, the algorithm has high applicability.

6. Conclusions and Analysis

Fault data of main transformer lacks. In addition, the fault mode of the main trans-
former is different from that of other power transformers. This paper proposes an unsuper-
vised mutual information feature selection method to calculate DGA monitoring data of
main transformer and output feature selection sequence. Compared with the supervised
mutual information feature selection algorithm, the unsupervised mutual information
feature selection algorithm is highly correlated with the sequence features output by the
supervised feature selection algorithm in feature selection. In the samples, the training
samples and test samples were designed by five-fold method based on the appropriate
feature set obtained by the unsupervised mutual information feature selection algorithm.
The PSO optimized support vector machine model was used to verify the main transformer
fault diagnostic, and the diagnosis accuracy was high. This method is suitable for feature
extraction in main transformer fault diagnosis. However, the feature extraction method
based on unsupervised mutual information is essentially an embedded feature extraction
method with some significant advantages and disadvantages at the same time. The re-
dundancy between features in the selected feature set is minimized, and its limitations
depend on the evaluation of candidate solutions by the classification algorithm, which is
computationally more expensive. Therefore, the offline data set can be used for training
and verification in practical application, and the obtained feature set can be used to judge
the condition of nuclear power transformers online.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su14052700/s1, the experimental data of DGA samples used in Section 5.1 of this paper.
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Abstract: The use of machine learning (ML) algorithms for power demand and supply prediction
is becoming increasingly popular in smart grid systems. Due to the fact that there exist many
simple ML algorithms/models in the literature, the question arises as to whether there is any
significant advantage(s) among these different ML algorithms, particularly as it pertains to power
demand/supply prediction use cases. Toward answering this question, we examined six well-known
ML algorithms for power prediction in smart grid systems, including the artificial neural network,
Gaussian regression (GR), k-nearest neighbor, linear regression, random forest, and support vector
machine (SVM). First, fairness was ensured by undertaking a thorough hyperparameter tuning
exercise of the models under consideration. As a second step, power demand and supply statistics
from the Eskom database were selected for day-ahead forecasting purposes. These datasets were
based on system hourly demand as well as renewable generation sources. Hence, when their
hyperparameters were properly tuned, the results obtained within the boundaries of the datasets
utilized showed that there was little/no significant difference in the quantitative and qualitative
performance of the different ML algorithms. As compared to photovoltaic (PV) power generation,
we observed that these algorithms performed poorly in predicting wind power output. This could be
related to the unpredictable wind-generated power obtained within the time range of the datasets
employed. Furthermore, while the SVM algorithm achieved the slightly quickest empirical processing
time, statistical tests revealed that there was no significant difference in the timing performance of
the various algorithms, except for the GR algorithm. As a result, our preliminary findings suggest
that using a variety of existing ML algorithms for power demand/supply prediction may not always
yield statistically significant comparative prediction results, particularly for sources with regular
patterns, such as solar PV or daily consumption rates, provided that the hyperparameters of such
algorithms are properly fine tuned.

Keywords: Eskom; forecasting; hyperparameter; machine learning; tuning; wind

1. Introduction

Accurate forecasting of the power being generated and consumed in smart grid
systems is crucial to ensuring grid sustainability [1]. Consequently, power demand/supply
forecasting continues to be an area of contemporary research, and for this reason, machine
learning (ML) algorithms have become key instruments for such forecasting obligations [2].

However, it remains unclear as to which ML algorithm performs best for power
demand/supply forecasting in smart grid (SG) systems. Some specific reasons for such un-
certainties are well documented in many review articles [3,4], with a few noted as follows:

• It is noted that the number of simple and complex ML algorithms/models in the
literature has grown exponentially, thus making it almost impossible to compare all
available models [3].
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• There are many contradictory conclusions regarding the best performing algorithm(s)
mainly due to the lack of proper statistical significance analyses of many output results.
For example, the authors in [5,6] claim that statistical techniques (i.e., regression-based
approaches) perform better than simple ML methods, whereas the findings in [7–9]
suggest that ML methods typically outperform statistical techniques. Thus, such
contradictory reports exist in the literature.

• Some authors can be prejudiced toward publishing only those metrics that demon-
strate how well their approach may have outperformed other methods, while failing
to report other relevant metrics of concern [3]. Such practices can distort the findings
of such studies in favor of the suggested method(s) over existing ones, which should
not be the case.

• Furthermore, many research works neglect to perform proper hyperparameter tuning
exercises of the various algorithms under consideration before conducting comparison
assessments. In other cases, crucial information about the source of the training and
testing data is omitted, as is the proportion of the training and test split, making it
difficult to replicate previously published results [3]. Note that the difference between
a hyperparameter and hyperparameter tuning is that a hyperparameter is a parameter
whose value is used to control the learning process and to determine the values of
the model parameters of a learning algorithm, whereas hyperparameter tuning is the
problem of selecting the optimal set of hyperparameters for a learning algorithm [10].

Consequently, following the above concerns, the current article describes an inde-
pendent investigation of the performance of some well-known ML algorithms in terms of
their use in power supply/demand prediction. This article does not propose a new ML
method; rather, it provides evidence as to whether there is a true difference in using these
different ML algorithms for power prediction use cases. Thus, our findings are intended to
help smart grid designers make better decisions about which ML algorithm to use in their
designs. Furthermore, the goal of this paper is to inform the smart grid research community
that, as long as these algorithms are properly fine tuned, it may be possible to deploy any
of these algorithms for prediction purposes in smart grid systems since within the limits of
the dataset used in our study, there existed little or no statistically significant difference in
their performance. Additionally, our paper emphasizes the importance of adhering to the
best practices proposed in comparing different ML algorithms (see [3]), such as ensuring
that a thorough statistical significance analysis of the output results is conducted, using
multiple metrics of comparison, and providing in-depth details about the training and
testing data used in the study. Thus, summarily, the contributions of the present article can
be stated in the following:

1. We conducted a comparative performance analyses of six well-known ML algorithms,
namely the artificial neural network (ANN), Gaussian regression (GR), k-nearest
neighbor (k-NN), linear regression (LR), random forest (RF), and the support vector
machine (SVM).

2. We examined three different data sources spanning across the system hourly demand,
photovoltaic, and wind generation datasets from the Eskom database. We observed
that the different ML algorithms considered herein performed poorly, particularly
on the wind power generation dataset, which we attributed to the highly stochastic
nature of the wind source.

3. A thorough statistical significance analysis of the different methods revealed that
within the confines of the datasets used in this study, there was little/no significant
difference in the performance of the different ML algorithms. Thus, this early obser-
vation suggests that any of the simple ML algorithms considered here can be used for
demand/supply forecasting, albeit after a thorough hyperparameter tuning exercise
is conducted.

The remainder of the paper is structured as follows: Section 2 presents a summary
of the related work. Section 3 details the methodology to include a summary of the ML
algorithms, datasets, and the metrics of performance considered in our study. Section 4
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presents the results and discussion, with the conclusion drawn in Section 5. A list of
mathematical symbols used in this article is provided in the Abbreviations part.

2. Related Work

This section discusses the related work, particularly those concerned with prediction
analysis in smart grids using various ML algorithms. Different prediction models for
microgrids are also discussed, many of which are focused on power generation and con-
sumption. Many of these models typically implement ML techniques to forecast short-term
and day-ahead electricity demands.

First, it is noted that prediction errors can lead to an imbalance between power supply
and demand; thus, load forecasting is essential for transmission system operators because
of the impact of prediction accuracy on power system operations. Hence, improving
energy demand prediction methods could enable a power grid to become more stable. A
comparison of different ML techniques for short-term demand prediction on microgrids was
conducted in [11] to improve prediction accuracy. The comparison was between ensemble
prediction network (EPN) and long-short term memory (LSTM), neural network, and multi-
layer perceptron. The EPN technique outperformed other forecasting methods when error
was evaluated on a wide range of data. It was shown that prediction accuracy influences the
operational cost of energy too. In [12], the kernel-based extreme learning machine (KELM)
algorithm was compared to the extreme learning machine (ELM) and the Gaussian kernel
for predicting short-term electricity prices on a yearly dataset from the Australian market.
The KELM technique was shown to outperform other kernel methods, but the Gaussian
kernel-based ELM was more efficient for dealing with complexities in electricity pricing data
and accurately predicting the price profile pattern. An automated reinforcement learning-
based multi-period method for forecasting renewable power generation and load was
proposed in another interesting article [13]. It was demonstrated that, when compared to
traditional scheduling methods, the proposed method, along with its forecasting capability,
significantly reduced operating costs while calculating at a faster rate. In a separate
work, a least squares SVM (LS-SVM) coupled with the bacterial colony chemotaxis (BCC)
optimization algorithm was proposed to improve the accuracy and speed of short-term load
forecasting. The method was determined to achieve better accuracy and faster processing
speed, compared with the ANN and LS-SVM based on grid search [14].

Various predicting techniques have been proposed to sustain the amount of energy
generated to meet the demands of consumers, and some methods have been developed to
enhance existing ones. For example, in [15], the ANN was compared with the multi-variable
regression (MVR) and support vector machine (SVM) for improving energy dispatch for a
residential microgrid based on solar power forecasting. The ANN model was most efficient
in this case, with an accurate model for forecasting hourly irradiance and generated power.
Unlike in [16], which perceived K-means as a new algorithm to predict irradiance intervals
for stochastic generation in microgrids, improvements are always made as technology
advances, as seen in [17], which indicates that the use of the regression technique is the way
to go. They demonstrated that it yields improved performance since it has longer reliability
and less processing time for the prediction of power generated in microgrids. Power
forecasting will also be vital to the success of future energy management schemes, such
as in transactive energy models [18]. In addition, IoT devices in smart grids will require
efficient communication protocols for transmitting forecast data to a remote or cloud server.
An efficient interface for such a purpose between CoAP and OSGP was proposed in [19],
which can ensure that data are exchanged effectively between IoT devices used in home and
industrial applications and an SG infrastructure. Other device development and prediction
concepts can be gleaned from [20] in order to develop systems that can be used for smart
grid prediction use-cases.

Furthermore, many methods have been used to forecast energy consumption, from an
hour ahead to a day ahead, depending on various weather conditions. For comparison pur-
poses, Ref. [21] stated that the SVM outperformed other algorithms for hourly prediction of
load power consumption in a building. Power consumption prediction algorithms for the
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day ahead are either ML or AI. In [22], a hybrid AI model (a combination of feed-forward
artificial neural network (FFANN), wavelet transform (WT), and simulated annealing (SA))
was used to predict power demand for a day ahead. The hybrid model was shown to be
more efficient as compared to using just one method, as in [23], which implemented the
neural network technique for similar day-ahead prediction conditions. Ref. [24] focused on
the use of ensemble learning techniques to predict the power consumption of a building
with given weather forecast information. They noted that the gradient boosted trees yielded
the best performance among the different ensemble methods used. Ref. [25] evaluated
different AI algorithms (ARIMA, SARIMA, SVM, XGBoost, RNN, LSTM, and LSTM-RNN)
at a university campus microgrid to predict power consumption. They suggested that
RNN, LSTM, and RNN-LSTM provided the best MSR, MAE, MAPE, and R-squared when
compared to the other techniques used.

Table 1 is essentially a summary of these various related comparative studies. Many
of these studies, like previous observations in the literature, compare only a few ML
algorithms, and frequently only within the same class.

Table 1. Summary of the related studies, with key characteristics from each study compared to
the others.

Ref. Year
Methods

Compared

Metrics
of

Comparison

Was Statistical
Significance

Analysis
Performed?

Was
Processing

Time Measured?
Findings

[11] 2021
EPN, LSTM,

ANN RMSE, MAPE No
Yes:

EPN was fastest

EPN outperformed LSTM,
MLP, SVR and ETR in terms
of RMSE over a wide variety
of data

[12] 2021
ELM

Kernel-based technique
MAE, MAPE,

RMSE No No

Kernel based methods
performed better than
ELM; Gaussian kernel per-
formed better than other
kernel methods.

[15] 2020
ANN, MVR,

SVM MAPE, MSE No No
The developed neural net-
work model outperformed
the MVR and SVM

[17] 2020
Regression,

ANN

MSE, RMSE,
R-squared

Chi-squared
No No

Regression approach has
a better performance than
some state-of-the-art method
such as feed forward
neural network.

[21] 2019
LR, ANN,

SMO regression, SVM
MAE, RMSE,

CC No
Yes,

but only
for SVM

SVM performed better
than other algorithms
compared with.

[22] 2019
FFANN, WT,

SA
MAPE, RMSE,

NMAE No No
FFANN performed bet-
ter than BP-, GA-, and
PSO-FFANN schemes

[23] 2020 LSTM RMSE, MAE No No No comparison

[24] 2018
MLR, decision tree, RF,
Gradient boosted trees ARE No No Gradient boosted trees per-

formed better than others.

[25] 2021

ARIMA, SARIMA,
SVM, XGBoost,

RNN, LSTM,
LSTM-RNN

MAE, MAPE,
MSE, R-squared No No

Deep learning approaches
such as RNN, LSTM achieved
better results than time se-
ries and machine learning.
While hybrid of RNN-LSTM
achieved the best accuracy

Present
Article 2022

ANN, GR,
k-NN, LR,
RF, SVM

CC, RAE, RRSE,
MAE, RMSE Yes Yes

There was no statistical
significant difference in
the performance of the
different methods
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Furthermore, it is clear that only a few metrics are used to compare these methods,
which tends to bias the conclusions that can be drawn from the comparison exercise. Most
importantly, none of the recently published studies performed a statistical significance test
on their output results. As a result, their conclusions may be biased, making it difficult
to determine which algorithm truly performs best. Additionally notable is the absence of
timing performance, which limits an ML designer’s ability to make appropriate choices.
Finally, the findings of these studies demonstrate that no single ML algorithm performs best
across all studies. As a result, in the absence of thorough statistical significance tests, many
of these conclusions may not be truly reliable. Thus, in this article, we attempt to conduct
an independent study of these well-known ML algorithms in order to determine whether
there is any significant difference in their performance based on thorough significance tests.
Our findings will help to inform the research community in this area, as well as assist
designers in making sound decisions when developing smart grid systems.

3. Methodology

We discuss in this section the different simple ML algorithms considered in our study,
the datasets used, and the metrics used to analyze the performance of the different algorithms.

3.1. Machine Learning Algorithms

There are many platforms and learning libraries that can be used to implement differ-
ent ML algorithms, many of which circumvent the need to write codes. However, in this
section, we present only a summary of each ML algorithm as a basis for understanding
how they work. According to the meta-analysis of the recent literature provided in Table 1,
the underlying ML algorithms include the regression and artificial neural network-based
approaches. As a result, we considered these foundational techniques in our research
because, in addition to being simple, they use fewer computational and memory resources
than the more recent deep learning approaches. Furthermore, in the aftermath of new
smart grid applications, which are based on the Internet of Things (IoT), it is critical to
consider these simpler methods due to the limited processing and memory capacities of
many IoT-based devices, which justifies the inclusion of the methods discussed below in
our study.

3.1.1. Artificial Neural Network

There are many works that describe the ANN [26–28], and we aim only to present
its basic structure and how it works. The ANN, also called the multilayer perceptron
(MLP), typically comprises an input layer, single or multiple hidden layers, and a single or
multiple output layer(s) (depending on the specific application), with each layer comprising
a different number of nodes as typically represented in Figure 1.

(a) (b)

Figure 1. Representations of an ANN: (a) Single-layer (b) Multi-layer.
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The input data, which contain the independent variables, also called features or
attributes, are denoted as x1, x2, · · · , xn, whereas the output (i.e., dependent) variable
is denoted as ỹ. The weights connecting the input and hidden nodes are denoted as
w1, w2, · · · , wn. The ANN aims to minimize the error, which is the difference between the
correct y and the predicted values ỹ via a cost function [26]. The cost function computes
this error, wherein the term “cost” refers simply to the error. The steps taken by the ANN
can be summarized as follows, but in-depth details can be found in [27,29]:

1. The dot product between the inputs and weights is computed. This involves multiply-
ing each input by its corresponding weight and then summing them up along with a
bias term b. This is obtained as

Z =
N

∑
i=1

wixi + b (1)

2. The summation of the dot products is passed through an activation function. The
activation function bounds the input values between 0 and 1, and a popular function,
which we used in our study, is the sigmoid activation function, stated mathematically as

φ(Z) =
1

1 + e−Z (2)

The sigmoid function returns values close to 1 when the input is a large positive value,
returns 0 for large negative values, and returns 0.5 when the input is zero. It is best
suited for predicting the output as a probability, which ranges between 0 and 1, which
makes it the right choice for our forecasting problem. The result of the activation
function is essentially the predicted output for the input features.

3. Backpropagation is conducted by first calculating the cost via the cost function, which
can simply be the mean square error (MSE) given as

MSE =
1
N

N

∑
i
(ỹi − yi)

2 (3)

where yi is the target output value, ỹi is the predicted output value, and N is the num-
ber of observations (also called instances). Then, the cost function is minimized, where
the weights and the bias are fine tuned to ensure that the function returns the smallest
value possible. The smaller the cost, the more accurate the predictions. Minimiza-
tion is conducted via the gradient descent algorithm, which can be mathematically
represented as

W∗
x = Wx − a(

∂Error
∂Wx

) (4)

where W∗
x is the new weight, Wx is the old weight, a is the learning rate, and ∂Error

∂Wx
is

the derivative of the error with respect to the weight, where ∂Error is the cost function.
The learning rate determines how fast the algorithm learns. The gradient descent
algorithm iterates repeatedly (called the number of epochs) until the cost is minimized.
Consequently, the steps followed can be summarized as follows:

(a) Define the inputs (i.e., features) and output variables.
(b) Define the hyperparameters.
(c) Define the activation function and its derivatives.
(d) Train the model and make predictions.

Following the preceding steps, the ANN’s hyperparameters can be fine-tuned using
the GridsearchCV method, with details of using the GridsearchCV well documented in [30].
The number of neurons, activation function, learning rate, momentum, batch size, and
epochs are among the hyperparameters fine tuned in our study.
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3.1.2. Linear and Gaussian Regression

When making day-ahead energy demand and supply predictions, we are often faced
with a single input variable system, and thus, a simple linear regression model can be used
for prediction purposes. Here, the model comprises an input or predictor variable that
helps to predict the output variable, and this is represented by a simple linear equation.
However, for generalization sake, the idea behind the regression is to estimate from a
sample the parameters of the model generally written as [31]

ŷ = β0 + β1x1 + · · ·+ βN xN + ε (5)

where ŷ is the predicted output, β1, β2, · · · , βN are the parameters (i.e., the model coeffi-
cients), x1, x2, · · · , xN are the input variables (or features), and ε is a random error with
ε ∼ N (0, σ2), where σ2 is the variance value. By determining these parameter values (i.e.,
β), a line of best fit can be obtained and used for prediction purposes. The method of
ordinary least squares can be used for parameter estimation, and this involves minimizing
the squared differences between the target and predicted outcomes (i.e., the residuals) [31].
The sum of squares of the error, termed the residual sum of squares (RSS), is computed
as RSS = ∑N

i (yi − ŷi)
2, which can then be minimized using, for example, the gradient

descent algorithm instead of the ordinary least squares approach. The gradient descent
algorithm commences with sets of initial parameter values and advances iteratively to-
ward a set of parameter values that minimize the function. The iterative minimization is
accomplished via derivatives, which involves taking steps in the negative direction of the
function gradient.

However, in using the linear regression approach, it is essential that we make as-
sumptions regarding the structure of the function to be used, for example, by making a
choice as to which is a better fit: a linear or a quadratic function. Such a choice can be
independently decided upon by certain methods, such as the Gaussian regression (GR)
(also called Gaussian process regression) approach [32]. Essentially, the GR generates a
number of candidate functions that can model the observed data, and it attempts to find
the function that best fits the data. Such a best fit function is then used for predicting future
occurrences. The main difference between the GR and LR is that the GR uses a kernel,
which typically represents the covariance matrix of the data [33]. Thus, the choice of the
kernel function often influences strongly the performance of the GR algorithm. Further
theoretical details regarding the GR algorithm can be found in [34]. The hyperparameters
of the LR and GR fine tuned in this study include the attribute selection method, kernel
and the filter type.

3.1.3. k-Nearest Neighbour

The k-NN algorithm is a learning algorithm that predicts the outcome of a test value
(input data) based on the k nearest neighbors (i.e., other close data points) and the distance
computed between them [35]. By calculating the distance between the k points in the
training data closest to the test value, the test value is considered to belong to the category
with the least distance. The distance measure can be based on the Euclidean, Manhattan, or
Minkowski methods [36].

In using the k-NN algorithm, first the data may need to be standardized/normalized
since the outcome may be fairly different due to some features having large variances. Then,
it is essential to determine an optimal k value, which is often obtained via a hyperparameter
tuning exercise. In this case, a range of k values are tested, and a good value is obtained
that minimizes the error rate of the model.

The k-NN has remained viable in many application areas because of its simplicity and
ease of application, its dependence on only two main metrics, namely the k and the distance
metric, and its ability to easily add new data to the algorithm. The hyperparameters fine
tuned for the k-NN are the k value and the type of neighbor search algorithm.
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3.1.4. Random Forest

The RF is an ensemble of decision trees used for performing both regression and
classification tasks [37]. It is built on the basis of the decision tree algorithm, which is
capable of fitting complex datasets. The concept of the tree is to search for a variable–value
pair within the training set and then to split this to obtain the best two child subsets.
Essentially, when making predictions, each data point begins at the top of the tree (as
shown in Figure 2) and then down through the branches until it reaches a leaf node, where
no further branching can be achieved.

Figure 2. A representation of the concept of the random forest algorithm.

Being an ensemble approach, the RF aggregates multiple outputs generated via dif-
ferent sets of decision trees toward obtaining better results. The idea is to take an average
over the outcome of each predictor, thus reducing the variance toward arriving at a better
prediction model that presents fewer cases of overfitting the training data [38]. Thus, the RF
becomes a strong learner, whereas the individual decision trees are considered weak learn-
ers. The RF algorithm is trained via the bagging method or bootstrap aggregating approach,
which comprises randomly sampling subsets of the training data [39]. It then fits the model
to these smaller datasets and then aggregates the predictions. This approach allows for
many instances to be used repeatedly during the training phase. Essentially, the RF can be a
slow algorithm since it has to grow many trees during the training stage. Further technical
details regarding the RF algorithm can be accessed in [37]. The fine-tuned hyperparameters
of the RF algorithm include the maximum depth and the number of iterations.

3.1.5. Support Vector Machine

The SVM aims to determine a hyperplane in an N-dimensional space, where N is the
number of features, which distinctly classifies the data points [40]. The SVM is a generalized
version of the maximal margin classifier, with provision for more data types to be better
classified. Essentially, the SVM uses the hyperplane to separate optimally two convex
hulls of points (data instances), by ensuring that the hyperplane is equidistant from the
two convex hulls.

In this situation, the hyperplane is a classification border. It is usually a N − 1 di-
mensional flat affine subspace, which is a line in two dimensions and a plane in three
dimensions [41]. In terms of classification, the goal is to find the plane that optimizes the
distance between two classes of data points. The hyperplane’s size depends on the number
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of features. In the SVM domain, support vectors are data points on or near the hyperplane.
Using these support vectors allows us to optimize the hyperplane’s margin. They are called
support vectors because any change in their position affects the hyperplane.

For non-linearly separated data points, the SVM adopts the concept of kernels to
classify such points. A kernel refers to a function that maps lower dimensional data into
higher dimensional ones. The function takes two vectors of any dimension as input and
outputs a score (a dot product) that quantifies how similar the input vectors are. If the
dot product is small, then the vectors are different, whereas if they are large, the vectors
are similar. The SVM can use a variety of kernel functions, but one popular kernel is
the Gaussian radial basis function (RBF). The RBF Gaussian kernel K(x, y) is calculated
as follows:

K(x, y) = exp−
( ||x2 − y2||2

2σ2

)
(6)

where x and y are N-dimensional independent variables, and σ is assumed to be the
standard deviation of x and y, with || • || being the Euclidean norm. Further formal and
detailed explanation and use of the SVM can be obtained in [42,43], with the following
hyperparameters fine tuned in the present study, namely, the kernel and filter type.

3.2. Dataset

We considered the system hourly demand and renewable power generation data
obtained from the Eskom database in our study (https://www.eskom.co.za/dataportal/,
accessed on 1 October 2021). Eskom is a South African electricity public utility company
established to be the Electricity Supply Commission [44]. It owns and operates a number
of noteworthy power plants that provide roughly 95% of South Africa’s electricity [45].
Eskom provides data on power generated, consumed, and from open cycle gas turbines,
renewables and power outages. Our research focused on demand-side data and renew-
able energy sources, which are reflective of a typical smart grid. Thus, the use cases are
as follows:

1. System hourly demand: This dataset presents the hourly power demand measured
from 5 to 18 October 2021 (https://www.eskom.co.za/dataportal/demand-side/
system-hourly-actual-and-forecasted-demand/, accessed on 1 October 2021). It is
classed into the residual and the Republic of South Africa (RSA) contracted demand.
However, we considered only the residual demand data in our study, which suffices to
compare the different algorithms. The entire dataset comprised 528 data points, with
the residual demand data comprising 336 data points collated from 5 to 10 October
2021, and 192 data points from the residual forecast dataset provided from 11 to
18 October 2021. In this case, a training to testing split ratio of 65% to 35% was used,
respectively.

2. Hourly renewable generation: This dataset presents the hourly renewable generation
per resource type, namely, from photovoltaic (PV) and wind sources (https://www.
eskom.co.za/dataportal/renewables-performance/hourly-renewable-generation/, ac-
cessed on 1 October 2021). These datasets reflect only renewable sources owned by
Eskom or that Eskom has contracts with. The PV and wind datasets comprised
960 data points in total, each measured per hour from 1 September 2021 to 10 October
2021. For both the PV and wind use cases, we used 80% of the dataset for training and
20% for testing. This implies that 770 data points from 1 September 2021 to 2 October
2021 were used to train each model, whereas 190 data points from 3 to 10 October
2021 were used for testing purposes. It should be noted that the term “target” used
henceforth in this article refers to the actual data against which the different models
are compared with during the testing phase.

The above use cases were selected because a typical grid-tied microgrid in a smart grid
system can be expected to supply power to consumers both from the main grid as well as
from local renewable sources. Consequently, when in the grid-tied mode, the system hourly
actual demand dataset suffices as a relevant use case for prediction purposes. On the other
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hand, when in an island mode, the hourly renewable generation dataset becomes relevant
for forecasting sake. Thus, both use cases are useful for designing energy management
systems capable of day-ahead or week-ahead demand and supply forecasting in smart
grids. Such knowledge helps to anticipate the amount of electricity that will be used hourly
so that sufficient generation can be made available to meet such electricity demand.

3.3. Performance Metrics

As noted in Section 1, the possibility for bias arises when only a few metrics are
reported while other notable metrics remain unreported [3]. Since each metric reports
different information regarding an algorithm’s performance, some articles tend to only
report those metrics that reflect their method’s improved performance while shunning
others. However, to avoid such unacceptable practices, we used a variety of notable metrics
to compare the different models with aim to provide a broader perspective regarding the
performance of the different models. To this effect, five well-known evaluation metrics
were considered, and they are discussed as follows.

3.3.1. Correlation Coefficient

The Pearson correlation coefficient (CC) rxy can be computed for any model as follows

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(7)

where n is the sample size, xi, yi are the individual sample points (i.e., paired instances)
indexed with i for a pair of random variables (X, Y), and

x̄ =
1
n

n

∑
i=1

xi (8)

is the sample mean for X and similarly obtained for Y as follows

ȳ =
1
n

n

∑
i=1

yi (9)

Essentially, the value of rxy ranges from −1 to 1, where a value of 1 means that the
relationship between X and Y can be described by a linear equation. In this case, all data
points fall on a line. The correlation sign (− or +) follows from the regression slope, where
a + sign means that Y increases as X increases and vice versa for a − sign. The case of
rxy = 0 means that no correlation exists between X and Y. Other intermediate values
(i.e., 0 < rxy < 1 and −1 < rxy < 0) describe partial correlations with values closer to 1 or
−1 representing a better model based on the context and purpose of the experiment.

3.3.2. Relative Absolute Error

The relative absolute error (RAE) is the ratio of the total absolute error produced by a
model to the total absolute error of a simple predictor. In this case, the simple predictor is
just the average of the target values. The RAE is thus computed as

RAE =
∑n

i=1 |Pi − Ai|
∑n

i=1 |Ā − Ai|
× 100% (10)

where Pi is the predicted value by a model for an instance i out of a total number of n
instances, Ai is the target value for the instance i, and Ā is the mean of the target values
given by

Ā =
1
n

n

∑
i=1

Ai (11)
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One advantage of the RAE metric compared to the root mean square error (RMSE)
described later is that it treats each error equally by ensuring that only the absolute value is
considered and not the square of the error. Consequently, systems that are invariant to the
effects of outliers can be best evaluated by the RAE instead of the RMSE.

3.3.3. Root Relative Square Error

The root relative square error (RRSE) is the ratio of the square root of the sum of the
squared errors to the sum of the squared errors of a simple predictor. Again, the simple
predictor is the average of the target values. The RRSE is given as

RRSE =

√
∑n

i=1(Pi − Ai)2

∑n
i=1(Ā − Ai)2 × 100% (12)

where all terms remain as previously defined. By computing the square root of the relative
squared error, the RRSE reduces the error to a similar magnitude range as the RAE. How-
ever, unlike the RAE, the RRSE penalizes outliers with large error values, thus allowing
models with plausible outliers to be easily identified.

3.3.4. Mean Absolute Error

The mean absolute error (MAE) is a measure of the error between a pair of random
variables expressing the same event. It is computed as

MAE =
1
n

n

∑
i=1

|Pi − Ai| (13)

Following (13), it can be observed that an errorless model will generate a zero MAE
value, since Pi = Aj, thus indicating that the MAE ranges from 0 to infinity, with 0 being
an ideal model. For this reason, the MAE is a boundless metric and thus, is data specific.
Nevertheless, it remains a valuable metric for comparing models that are based on the
same input data.

3.3.5. Root Mean Square Error

The root mean square error (RMSE) is a measure of accuracy for comparing the forecast
errors of different models based on the same dataset. It is the square root of the average of
the squared errors, mathematically computed as follows

RMSE =

√
∑n

i=1(Pi − Ai)2

n
. (14)

Since computing the RMSE involves squaring the difference between the predicted and
the target values, thus, a few large differences will definitely increase the RMSE compared
to the MAE. Consequently, the RMSE is sensitive to outliers, and hence useful for analyzing
models with outlier tendencies.

4. Results and Discussion

In this section, we present and discuss both quantitative and qualitative results ob-
tained from the evaluation and analysis of the ML models considered in our study. By
quantitative analysis, we present and discuss the evaluation metrics as they relate to the
performance of the different models. By qualitative analysis, we refer to the visual assess-
ment of the different displays of the predicted against the target values of the different
models. To this effect, firstly, we conducted a parameter tuning exercise toward ensuring
that all models are evaluated based on their best parameter values. For this purpose, the
GridSearchCV tool was used with discrete sets of parameter values designated per model.
The system hourly demand dataset was used for the fine-tuning process. Thereafter, the
fine-tuned models were tested and compared based on the hourly renewable generation
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dataset, and the results are discussed. The models were simulated using the Waikato
Environment for Knowledge Analysis platform upon on a computer having an i7-10750H
central processing unit and an NVIDIA GeForce GTX 1650 Ti GPU.

4.1. Hyper-Parameter Optimization
4.1.1. Artificial Neural Network

ANN algorithms are typically characterized by a number of hyperparameters that
should be properly fine tuned to obtain models that perform optimally. These hyperparam-
eters are the number of neurons, activation function, learning rate, momentum, batch size,
and epochs. However, since the hyperparameter tuning procedure can be a cumbersome
and time-consuming process, consequently, we used the sigmoid as the activation function
and we kept the batch size fixed for all methods at 100, whereas the epoch was fixed at 500.
All other hyperparameters were then fine tuned accordingly.

Table 2 presents the different parameter settings and their respective performances
based on the CC, RAE, and RRSE. The number of hidden layers and nodes per layer is
denoted as (x1, x2, · · · , xn), where the number of elements (i.e., index) n represents the
number of hidden layers, while the value of each element denotes the number of nodes per
layer. Essentially, we examined a maximum of two hidden layers with the number of nodes
per hidden layer increased from 6, 9, to 12. We then considered three states for the learning
rate classed as low (0.1), medium (0.3), and high (0.5). For the momentum parameter, we
examined three values at 0.1, 0.2, and 0.4. These values were selected to understand how
the model performs under increasing or decreasing values. The following are our findings.

Table 2. Performance of different ANN parameter settings.

Hidden Layer Learning Rate Momentum CC RAE (%) RRSE (%)

6 0.1 0.4 0.8909 44.6982 45.9884
6 0.3 0.2 0.8897 48.2524 49.068

6,6 0.1 0.1 0.8895 44.1209 45.73
6,6 0.5 0.4 0.8795 47.2956 49.1213
9 0.1 0.4 0.8909 44.7817 46.0154
9 0.3 0.2 0.8884 48.9404 49.2918

9,9 0.1 0.1 0.8894 44.0081 45.7508
9,9 0.5 0.4 0.8844 47.4725 51.764
12 0.1 0.4 0.8909 44.8448 46.0465
12 0.3 0.2 0.888 48.7637 49.0518

12,12 0.1 0.1 0.8894 43.8782 45.764
12,12 0.5 0.4 0.8851 46.897 51.3911

1. The model’s performance typically decreases under an increased learning rate and
momentum values, irrespective of the number of hidden layers used. This implies
that a low learning rate and momentum values are best suitable for an ANN model,
with the values of 0.1 and 0.1 yielding the lowest error rates, respectively. This can be
easily explained noting that low learning rate values imply smaller step sizes and thus
higher resolutions, which leads to improved convergence to better approximations.

2. A model with two hidden layers with 12 nodes per layer yielded the lowest error rates
under a low learning rate and momentum values. Although this configuration cannot
be generalized for all ANN models, it yielded the lowest error rate for the present use
case. Furthermore, we note that increasing the number of nodes above 12 produced
no improvement in model performance.

3. Generally, under the same low learning rate and momentum values, we observed
that the double-layered model performed marginally better than the single layer
configuration. For example, considering in Table 2 the best model of (12,12) hidden
layer configuration, and learning rate and momentum of 0.1 each, we obtained a
2.155% decrease in the error rate when using the double-layered model instead of the
single-layered model of same number of nodes.
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4. Since there is no single fixed global configuration or model for all possible use
cases, it becomes vital to ensure that a model’s hyperparameters are accurately fine
tuned. For example, by fine tuning our model, we achieved a 10.344% error reduc-
tion rate in using a double-layer model with 12 nodes per layer (learning rate = 0.1,
momentum = 0.1) over a single-layer model with 9 nodes (learning rate = 0.3,
momentum = 0.2).

4.1.2. Gaussian Regression

The following hyperparameters of the GR algorithm were fine tuned, namely, the
kernel and the filter type. The kernels considered were the polynomial (poly) kernel, radial
basis function (RBF), and the normalized polynomial kernel. The filter types included
either the normalization or standardization of the training data. Our findings from the
results in Table 3 are noted as follows:

1. A combination of the poly kernel and standardization of the training data led to
the best model, which yielded the lowest RAE and RRSE values of 44.7277% and
45.5645%, respectively.

2. Hyperparameter tuning of the GR algorithm can achieve as much as 51.387% and
50.301% error reduction rate in the RAE and RRSE, respectively, thus emphasizing the
importance of hyperparameter tuning.

3. With RAE and RRSE differences of 3.121% and 3.645%, respectively, there exists
little/no significant advantage in using either the normalization or standardization of
the training data as it pertains to the poly kernel. Consequently, the most important
parameter is simply the choice of the kernel to be used.

4. We presume that the RBF kernel may have performed poorly owing to the large size
of the training dataset, which is a well-known limitation of the RBF. Nevertheless,
it is noted that performance improvement can yet be achieved by standardizing the
training data.

Table 3. Performance of different GR parameter settings.

Kernel Filter Type CC RAE (%) RRSE (%)

Poly kernel Normalized training data 0.8905 46.1688 47.2879
Poly kernel Standardize training data 0.8905 44.7277 45.5645

RBF Normalized training data 0.8905 92.0074 91.6804
RBF Standardize training data 0.8905 52.0316 52.7159

Normalized Poly Kernel Normalized training data 0.8905 46.1688 47.2879
Normalized Poly Kernel Standardize training data 0.8905 46.045 47.1676

4.1.3. k-Nearest Neighbor

The k-NN algorithm is characterized by one major parameter, which is the k parameter.
The neighbor search method is another parameter; however, the linear search approach
based on the Euclidean distance metric was used in our study. The following k values were
selected as k = 1, 3, 5, and 10. The results obtained are presented in Table 4.

Table 4. Performance of different k-NN parameter settings.

K Neighbour Search Algorithm CC RAE (%) RRSE (%)

1 Euclidean (LNNSearch) 0.8905 44.7124 45.5615
3 Euclidean (LNNSearch) 0.8905 44.7124 45.5615
5 Euclidean (LNNSearch) 0.8905 44.7124 45.5615
10 Euclidean (LNNSearch) 0 100 100

We observed that the same error rate (i.e, RAE and RRSE values) was obtained for
parameters k = 1, 3, and 5. At k = 10, a large error rate of 100% was realized, thus implying
that large K values are inappropriate for use under the present use case. With lower k values
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yielding the same results, it is suitable to use k = 1 since it presents the least computational
demand for the model.

4.1.4. Linear Regression

The linear regression (LR) method can be improved based on the choice of the attribute
selection method. We tested the LR algorithm without any attribute selection method,
as well as with the M5 and greedy attribute selection method. The results obtained are
presented in Table 5 with little or no difference between the different selection methods.
Using an attribute selection method achieved only about 0.764% reduction in the error rate
over the use of the no-selection method. Thus, for power demand prediction purposes, it is
sufficient to apply the LR method without any attribute selection method. This is expected
since there exist only the day and time as the main input attributes for forecasting purposes,
thus attribute selection introduces no significant performance advantage.

Table 5. Performance of different LR parameter settings.

Attribute Selection Method CC RAE (%) RRSE (%)

No attribute selection 0.8905 44.7124 45.5615
M5 method 0.89 44.3709 45.657

Greedy methods 0.89 44.3709 45.657

4.1.5. Random Forest

The random forest (RF) algorithm has a few parameters to be fine tuned, namely,
the maximum depth and the number of iterations. In our study, a combination of three
parameters were examined with progressively increasing values and the results obtained
are presented in Table 6. We found that increasing the maximum depth and number of
iterations barely resulted in 0.409% and 0.378% decreases in the RAE and RRSE error rates,
respectively. This insignificant difference in the error rate implies that using low maximum
depth values and number of iterations will be suitable in using the RF algorithm for power
demand prediction purposes. It also may present faster computational time since fewer
iterative steps are considered during the algorithmic process.

Table 6. Performance of different RF parameter settings.

Max. Depth Iterations CC RAE (%) RRSE (%)

0 100 0.8901 44.909 45.7124
10 200 0.8904 44.8519 45.6262
20 500 0.8907 44.7255 45.5394

4.1.6. Support Vector Machine

The support vector machine (SVM) algorithm was optimized by tuning the kernel
and filter type parameters to improve its performance. The results obtained are presented
in Table 7. We found that a combination of the poly kernel and the normalization of the
training data resulted in the least error rates across both RAE and RRSE. In this case,
both the polynomial and normalized polynomial kernel combined with normalization
of the training data achieved the same performance. However, we note that it will be of
greater value computation wise to avoid the normalization expenses of the poly kernel,
thus implying that using the simple poly kernel should suffice for the present case. Similar
to the GR algorithm, the RBF kernel yielded the largest error rates with the same plausible
reasons as stated for the GR algorithm applying as well to the SVM algorithm. Summarily,
an average of 38.15% reduction in the error rate was achieved by using the poly kernel
over the RBF, thus reemphasizing the importance of hyperparameter tuning in the use of
ML algorithms.
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Table 7. Performance of different SVM parameter settings.

Kernel Filter Type CC RAE (%) RRSE (%)

Poly kernel Normalized training data 0.8836 44.2875 47.1576
Poly kernel Standardize training data 0.8835 44.2983 47.1763

RBF Normalized training data 0.8654 71.6087 73.5864
RBF Standardize training data 0.8703 46.9236 50.3859

Normalize Poly Kernel Normalized training data 0.8836 44.2875 47.1576
Normalize Poly Kernel Standardize training data 0.8835 44.3023 47.1848

4.1.7. Comparison of the Different Methods

Following the hyperparameter tuning process, the best performing models of the
different algorithms were compared, and the results obtained are presented in Table 8. To
this effect, the following metrics were compared across the different models, namely CC,
RAE, RRSE, MAE, and RMSE. Our findings indicate that although it may seem that some
algorithms performed better than others, nevertheless, the performance gap suffices only
marginally. For example, there existed only a 1.899% reduction in the error rate in using
the ANN over the GR model in terms of their RAE. A difference of about 3.553% in the
RRSE existed between the SVM and the RF algorithm. Thus, suggesting an insignificant
difference between the different models, sequel to a proper hyperparameter tuning process.

Table 8. Comparison of the different methods based on their best parameter settings.

Methods CC RAE (%) RRSE (%) MAE RMSE

ANN 0.8894 43.8782 45.764 833.8811 1046.1255
GR 0.8905 44.7277 45.5645 850.8696 1040.5409

k-NN 0.8905 44.7124 45.5615 850.5788 1040.4722
LR 0.89 44.3709 45.657 844.0817 1042.6523
RF 0.8907 44.7255 45.5394 850.5656 1039.2409

SVM 0.8836 44.2875 47.1576 842.4953 1076.9213

No model performed best across all the different metrics, thus emphasizing the need
to avoid comparing different ML models using only a single metric. For example, although
the ANN performed best considering the RAE, it generated the smallest RRSE values
compared to the other models. Since these different metrics tell different stories, it is
essential to consider our analysis across each metric as against a single metric. To this effect,
by rendering a higher RRSE value, we note that the ANN model may have been plagued by
more outliers than the other methods. This observation is again supported by examining
the MAE against the RMSE in Table 8, which shows a higher RMSE than other methods,
except the SVM.

In addition, we examined the CC values of the different models, with results of the
correlation matrix presented in Figure 3. By comparing the CC achieved by the different
models against the target demand, we observed that a CC < 0.9 was obtained across all
models. This implies a good positive correlation between the predicted and the target
demand values. In addition, we can observe that a CC ≈ 1 was obtained between the
different models, further emphasizing that the different models all predicted the same
values. In particular, the ANN, GR, KNN and RF models all performed equally with little
to distinguish them.
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Figure 3. The correlation matrix of the different methods for the system hourly demand dataset.

Finally, in quantitative terms, a Tukey comparative test of the different models was
performed, and the output results are documented in Table 9. The Tukey test is a multiple
comparison procedure that can be used to find means that are significantly different from
each other. The aim in using this test is to quantitatively determine whether there exists
a significant difference between the mean results obtained across the different models or
not. Further details regarding the Tukey test can be accessed in [46]. The symbols used
to interpret the range of the p-values, p, obtained for all the Tukey tests reported in this
article, are provided in Table 10. An examination of Table 9 indicates that there was no
significant (ns) difference between the target and predicted data of the different models (see
column 5 of Table 9). It also confirms that there was no significant difference between all
other methods as well, with p-values all averagely being greater than 0.997. These results
support the correlation findings of Figure 3, further emphasizing that following a proper
hyperparameter tuning exercise of the different algorithms, they all perform, on average,
the same, with little or no significant difference between them.

4.1.8. Visual Assessment of Predicted Values of the Different Methods

Figure 4 presents the target and predicted values generated by the different models. It
is immediately obvious that the graphs are practically overlapped, which further confirms
that the models achieved similar performance levels. Essentially, there was only very little
difference between the predictive values and the target data prior to the 120th h (i.e., day 5),
beyond which a significant error difference was observed. This can be explained noting
that a stable pattern existed within the first 5 days, followed by some drop in the target
demand level between the 6th and 7th day (i.e., from 120 to 168 h), a period which was
not properly tracked by the different methods. This implies that the different ML methods
may perform best under conditions with well-defined patterns, and otherwise under heavy
stochastic conditions.

4.2. Hourly Renewable Generation

In this section, we discuss our findings pertaining to the photovoltaic (PV) and wind
hourly generation datasets. We note that the best-performing models obtained in the
hyperparameter tuning section were used here.
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Table 9. System hourly demand: Tukey test comparison of the performance of the different models.

Comparison Mean Diff.
95.00%

CI of Diff.
Below

Threshold?
Summary

Adjusted
p Value

Target vs. ANN −48.69 −669.1 to 571.7 No ns >0.9999
Target vs. GR 58.07 −562.3 to 678.5 No ns >0.9999

Target vs. k-NN 58.07 −562.3 to 678.5 No ns >0.9999
Target vs. LR 58.07 −562.3 to 678.5 No ns >0.9999
Target vs. RF 63.45 −556.9 to 683.8 No ns >0.9999

Target vs. SVM −125.1 −745.5 to 495.3 No ns 0.997
ANN vs. GR 106.8 −513.6 to 727.2 No ns 0.9987

ANN vs. k-NN 106.8 −513.6 to 727.2 No ns 0.9987
ANN vs. LR 106.8 −513.6 to 727.2 No ns 0.9987
ANN vs. RF 112.1 −508.2 to 732.5 No ns 0.9983

ANN vs. SVM −76.37 −696.8 to 544.0 No ns 0.9998
GR vs. k-NN −0.00167 −620.4 to 620.4 No ns >0.9999

GR vs. LR 0.00125 −620.4 to 620.4 No ns >0.9999
GR vs. RF 5.383 −615.0 to 625.8 No ns >0.9999

GR vs. SVM −183.1 −803.5 to 437.3 No ns 0.9767
k-NN vs. LR 0.002917 −620.4 to 620.4 No ns >0.9999
k-NN vs. RF 5.385 −615.0 to 625.8 No ns >0.9999

k-NN vs. SVM −183.1 −803.5 to 437.3 No ns 0.9767
LR vs. RF 5.382 −615.0 to 625.8 No ns >0.9999

LR vs. SVM −183.1 −803.5 to 437.3 No ns 0.9767
RF vs. SVM −188.5 −808.9 to 431.9 No ns 0.973

Table 10. The p-value range and their corresponding symbol and interpretation used in the Tukey
tables.

Symbol Range Interpretation

ns p > 0.05 not significant
* p ≤ 0.05 weakly significant
** p ≤ 0.01 significant
*** p ≤ 0.001 very significant
**** p ≤ 0.0001 extremely significant

Figure 4. System hourly demand: target demand compared against the predicted demand generated
by the different models using their best hyper-parameter values.
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4.2.1. Photovoltaic Generation

The performance results of the different models based on the PV dataset are presented
in Table 11. In terms of the CC, although the GR model achieved only a slightly higher
margin (<0.001) than the ANN and LR models, we can easily conclude that there was no
significant difference between the different models. This implies that the predicted results
are highly positively correlated with the target demand. Similar high CC values were
also obtained between the different models as shown in the correlation matrix of Figure 5.
Therein, it can be seen that only the k-NN and RF models had slightly lower CC values
to the other models. This may be because both models achieved the lowest CC value as
against the target demand. Nevertheless, for use cases where only the data pattern suffices
as the main interest to the designer, then any ML method can be used.

Table 11. Performance of the different methods for photovoltaic (PV) power generation.

Methods CC RAE (%) RRSE (%) MAE RMSE

ANN 0.9833 21.7619 27.9011 163.8525 231.0859
GR 0.9835 16.292 23.1943 122.6677 192.1026

k-NN 0.9460 16.212 23.1527 122.0658 191.7581
LR 0.9834 16.333 23.1825 122.9761 192.0049
RF 0.9460 16.2378 23.1726 122.2594 191.9225

SVM 0.9824 15.3522 22.3847 115.5917 185.3969

Figure 5. The correlation matrix of the different methods for the photovoltaic power generation dataset.

By examining the error performance of the different models via the RAE and RRSE in
Table 11, it can be observed that the ANN performed the poorest. Thus, it can be said that a
25.503% decrease in the RAE can be achieved by using the k-NN instead of the ANN for
the PV power prediction use case. Although this seems large, nevertheless, further analysis
following the Tukey comparative test suggests that there was no significant difference
between the predicted means of the different models. This can be seen in Table 12, where it
is concluded that there was no significant difference in the predicted means of the different
models. Thus, this suggests that any model may suffice for PV power forecasting purposes
sequel to a proper hyperparameter tuning exercise.
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Table 12. Photovoltaic power generation: Tukey test comparison of the performance of the
different models.

Comparison Mean Diff.
95.00%

CI of Diff.
Below

Threshold?
Summary

Adjusted
p Value

Target vs. ANN 144.9 −81.66 to 371.4 No ns 0.4884
Target vs. GR 97.92 −128.6 to 324.4 No ns 0.8628

Target vs. k-NN 97.91 −128.6 to 324.4 No ns 0.8628
Target vs. LR 97.92 −128.6 to 324.4 No ns 0.8628
Target vs. RF 98.13 −128.4 to 324.7 No ns 0.8616

Target vs. SVM 87.07 −139.4 to 313.6 No ns 0.9173
ANN vs. GR −46.94 −273.5 to 179.6 No ns 0.9965

ANN vs. k-NN −46.95 −273.5 to 179.6 No ns 0.9965
ANN vs. LR −46.94 −273.5 to 179.6 No ns 0.9965
ANN vs. RF −46.73 −273.3 to 179.8 No ns 0.9965

ANN vs. SVM −57.79 −284.3 to 168.7 No ns 0.9891
GR vs. k-NN −0.00628 −226.5 to 226.5 No ns >0.9999

GR vs. LR 0.00178 −226.5 to 226.5 No ns >0.9999
GR vs. RF 0.2102 −226.3 to 226.7 No ns >0.9999

GR vs. SVM −10.85 −237.4 to 215.7 No ns >0.9999
k-NN vs. LR 0.008063 −226.5 to 226.5 No ns >0.9999
k-NN vs. RF 0.2165 −226.3 to 226.7 No ns >0.9999

k-NN vs. SVM −10.84 −237.4 to 215.7 No ns >0.9999
LR vs. RF 0.2084 −226.3 to 226.7 No ns >0.9999

LR vs. SVM −10.85 −237.4 to 215.7 No ns >0.9999
RF vs. SVM −11.06 −237.6 to 215.5 No ns >0.9999

Finally, a visual assessment of the predicted against the target PV generation results
is presented in Figure 6. Here, it is observed that a close performance was achieved
between the predicted values of the different models and the target data. The overlapping
graphs in Figure 6 also confirm that the models all performed similarly with little to
distinguish them visually. Since the pattern obtained for PV generation demonstrates
strong regularity with peak generation often obtained during midday (at peak sunshine),
consequently any model can be used for predictive purposes, typically after properly
tuning the model’s hyperparameters.

Figure 6. Photovoltaic power generation: Target and predicted demand generated by the different models.
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4.2.2. Wind Generation

The performance of the different models based on the wind power generation dataset
is presented in Table 13. It is immediately clear that the models performed poorly under
this use case, with each model particularly suffering from very high error rates and low
CC values. Albeit low, it is also seen that the CC values are, on average, the same for the
models when compared to the target data. However, high and positive CC values are
obtained when compared between the different models as shown in the correlation matrix
of Figure 7. This confirms that the different models all performed similarly with almost
perfect correlation between their predicted values.

Table 13. Performance of the different methods for wind power generation.

Methods CC RAE (%) RRSE (%) MAE RMSE

ANN 0.558 98.7794 99.8968 279.4048 344.7094
GR 0.5559 80.9548 85.1445 228.9867 293.8042

k-NN 0.5559 80.9542 85.1432 228.9848 293.7998
LR 0.5486 81.229 85.609 229.7621 295.4071
RF 0.5565 80.7043 84.9551 228.2781 293.1508

SVM 0.5884 77.8575 81.5118 220.2257 281.269

The error rates as measured via the RAE and RRSE indicate that the ANN generated
the highest error rate, and thus is reported as the poorest performer. Essentially, the RRSE
values of each model return higher than their corresponding RAE values, which indicates
the presence of outliers across the different models under the wind prediction use case.
On the other hand, the SVM model suffices as the best performer, as it achieved a 21.18%
reduction in the RAE as compared with the ANN model.

Figure 7. The correlation matrix of the different methods for the wind power generation dataset.

A Tukey test was conducted to examine the differences in the mean values of the
models, and the results obtained are presented in Table 14. We observed that, unlike in
the PV power prediction and the system hourly demand datasets, there was a significant
difference in the mean performance of the different models and the target data. This can be
seen in column 4 of Table 14 with very low associated p-values, where the performance of
the ANN model is also indicated to be significantly different from all other models.

354



Sustainability 2022, 14, 2546

Table 14. Wind power generation: Tukey test comparison of the performance of the different models.

Comparison Mean Diff.
95.00%

CI of Diff.
Below

Threshold?
Summary

Adjusted
p Value

Target vs. ANN −213 −274.4 to −151.6 Yes **** <0.0001
Target vs. GR −112.4 −173.8 to −50.96 Yes **** <0.0001

Target vs. k-NN −112.4 −173.8 to −50.96 Yes **** <0.0001
Target vs. LR −112.7 −174.1 to −51.27 Yes **** <0.0001
Target vs. RF −111 −172.4 to −49.56 Yes **** <0.0001

Target vs. SVM −94.63 −156.1 to −33.19 Yes *** 0.0001
ANN vs. GR 100.6 39.16 to 162.0 Yes **** <0.0001

ANN vs. k-NN 100.6 39.16 to 162.0 Yes **** <0.0001
ANN vs. LR 100.3 38.86 to 161.7 Yes **** <0.0001
ANN vs. RF 102 40.56 to 163.4 Yes **** <0.0001

ANN vs. SVM 118.4 56.93 to 179.8 Yes **** <0.0001
GR vs. k-NN −0.00093 −61.44 to 61.43 No ns >0.9999

GR vs. LR −0.3068 −61.74 to 61.13 No ns >0.9999
GR vs. RF 1.396 −60.04 to 62.83 No ns >0.9999

GR vs. SVM 17.77 −43.67 to 79.21 No ns 0.979
k-NN vs. LR −0.3059 −61.74 to 61.13 No ns >0.9999
k-NN vs. RF 1.397 −60.04 to 62.83 No ns >0.9999

k-NN vs. SVM 17.77 −43.67 to 79.21 No ns 0.979
LR vs. RF 1.703 −59.73 to 63.14 No ns >0.9999

LR vs. SVM 18.08 −43.36 to 79.51 No ns 0.9771
RF vs. SVM 16.37 −45.06 to 77.81 No ns 0.9862

Finally, a visual assessment of the predicted values of the different models can be
made, based on the results of Figure 8. We observed that the different models only matched
the rising patterns of the target data while failing to track periods of low wind power
generation. This implies that the inherent irregularities in the wind power generation
pattern typically limited the output performance of the different models. We also observed
that the predicted values of the ANN model deviated largely from the target as well as
from the other models, thus justifying its poor performance as noted in Tables 13 and 14.
Consequently, because of the highly stochastic nature of wind, it may be difficult to apply
ML models for predicting wind power generation, thus warranting the need for improved
methods in this regard.

Figure 8. Wind generation: Target and predicted demand generated by the different models.
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4.2.3. Runtime Performance of the Different Algorithms

We performed a runtime evaluation of the various algorithms on both the PV and
wind datasets, and the results are shown in Table 15. To begin, it is important to note that
the following conditions were met prior to conducting these experiments:

1. The same datasets (i.e., PV and wind data) were used to evaluate each algorithm.
2. Both the training and testing runtime performance was measured and reported.
3. To ensure that no extra processing time was incurred by the PC, only the simula-

tion software was kept running as the foreground process during each simulation
period. This was accomplished by closing all other foreground processes in the PC’s
task manager.

4. Finally, the timing results shown in Table 15 were obtained by averaging the results of
50 independent runs of each algorithm.

Table 15. Timing performance of the different algorithms under both the PV and wind datasets.

PV Wind

Methods
Training Time

(s)
Test Time

(s)
Training Time

(s)
Test Time

(s)

ANN 2.14 0.08 2.24 0.07
GR 0.63 0.26 0.55 0.28

k-NN - 0.1 - 0.09
LR 0.04 0.09 0.02 0.07
RF 0.25 0.15 0.12 0.08

SVM 0.52 0.07 0.14 0.07

Table 15 shows the empirical run-time results of each algorithm. However, it should be
noted that because the k-NN is an unsupervised method, there was no need for a training
process, and thus, no results are provided for it. According to these results, the LR achieved
the shortest training time in both datasets, while the SVM algorithm achieved the quickest
testing time in the PV dataset while having the same testing time as the ANN and LR in the
wind dataset. Often, because testing time is most important to the user during real-time
operation, we note that the SVM performed best; however, statistical significant analysis of
these timing results shows otherwise in Table 16.

Table 16. Statistical significance test (Tukey’s comparison test) of the test time of the different algorithms.

Tukey’s
Multiple

Comparisons
Test

Mean
Diff.

95.00%
CI of Diff.

Below
Threshold?

Summary
Adjusted
p Value

ANN vs. GR −0.195 −0.2832 to −0.1068 Yes *** 0.001
ANN vs. k-NN −0.02 −0.1082 to 0.06825 No ns 0.9326

ANN vs. LR −0.005 −0.09325 to 0.08325 No ns 0.9999
ANN vs. RF −0.04 −0.1282 to 0.04825 No ns 0.5242

ANN vs. SVM 0.005 −0.08325 to 0.09325 No ns 0.9999
GR vs. k-NN 0.175 0.08675 to 0.2632 Yes ** 0.0017

GR vs. LR 0.19 0.1018 to 0.2782 Yes ** 0.0011
GR vs. RF 0.155 0.06675 to 0.2432 Yes ** 0.0033

GR vs. SVM 0.2 0.1118 to 0.2882 Yes *** 0.0008
k-NN vs. LR 0.015 −0.07325 to 0.1032 No ns 0.9784
k-NN vs. RF −0.02 −0.1082 to 0.06825 No ns 0.9326

k-NN vs. SVM 0.025 −0.06325 to 0.1132 No ns 0.8545
LR vs. RF −0.035 −0.1232 to 0.05325 No ns 0.6371

LR vs. SVM 0.01 −0.07825 to 0.09825 No ns 0.9964
RF vs. SVM 0.045 −0.04325 to 0.1332 No ns 0.4217
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It should be noted that only the test time results of Table 15 for both the PV and
wind datasets were subjected to the Tukey statistical test. Thus, the Tukey test results in
Table 16 reveal that there were no statistically significant (ns) differences in the test time
of the different algorithms, albeit for the GR algorithm, which yielded the longest test
time compared to the other methods. The GR algorithm’s relatively slower performance
may be attributed to the effect of the Gaussian kernel, which is known to add additional
processing requirements to the method. However, because the difference in the testing
time performance was less than 0.195 s across all methods (see column 2 of Table 16),
it is possible to conclude that any of these algorithms can be used for real-time power
demand/supply prediction use cases in smart grid systems.

5. Conclusions

The goal of this study was to determine whether there is a statistically significant
difference in the performance of various well-known simple machine learning (ML) mod-
els when they are applied to the prediction of power demand and supply. In order to
accomplish this, six well-known machine learning methods were tested using data from
the Eskom database, which included hourly system demand and renewable generation
datasets. The ML algorithms considered include the artificial neural network, Gaussian
regression, K-nearest neighbor, linear regression, random forest, and the support vector
machine, among other methods of data analysis. Fairness was achieved by ensuring that
the hyperparameters of each algorithm were fine tuned to the greatest degree possible.
Our findings suggest that, within the confines of the datasets used in this study, there was
little/no statistically significant difference between the different models in terms of both
quantitative and qualitative measures, which is particularly noteworthy, given that they
were all meticulously fine tuned. Additionally mentioned is the importance of reporting as
many metrics as possible, particularly the correlation coefficient and absolute and squared
errors, in order to ensure that fair conclusions are formed when comparing different ma-
chine learning algorithms. Based on the fact that each metric often reports a separate
performance measure and that selective reporting may result in erroneous conclusions,
this requirement is recommended. Furthermore, when it came to estimating the wind
power generation dataset, all of the models performed poorly, which we attributed to the
extremely stochastic nature of wind energy as a source of energy, as previously stated
in the literature. This may imply that improved models for smart grid systems may be
required, particularly in areas where wind power constitutes a significant portion of the
generated electricity. In spite of this, it is possible that any ML model can still be used
for power prediction in smart grid systems, particularly in situations where demand and
generation follow regular patterns, and provided that the model’s hyperparameters are
properly tuned based on the type of input data being used. Finally, we stress that further
robust investigations, particularly those based on the use of larger datasets from a wider
range of sources, should be strongly encouraged in order to either substantiate or refute
the conclusions of the present paper.
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Abbreviations

The following abbreviations are used in this article:

ANN Artificial neural network
CC Correlation coefficient
ELM Extreme learning machine
EPN Ensemble prediction network
FFANN Feed-forward artificial neural network
GR Gaussian regression
KELM Kernel-based extreme learning machine
k-NN k-nearest neighbor
LR Linear regression
LSTM Long short-term memory
MAE Mean absolute error
ML Machine learning
MLP Multilayer perceptron
MSE Mean square error
MVR Multi-variable regression
PV Photovoltaic
RAE Relative absolute error
RBF Radial basis function
RF Random forest
RMSE Root mean square error
RRSE Root relative square error
RSA Republic of South Africa
RSS Residual sum of squares
SA Simulated annealing
SVM Support vector machine
WT Wavelet transform
[•] Brackets
(•) Parentheses√• Square root
dy/dx Derivative
|| • || Euclidean norm
∑ Summation
| • | Absolute value
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Abstract: In this paper, a generalized sliding mode observer design method is proposed for the
robust reconstruction of sensors and actuators faults in the presence of both unknown disturbances
and uncertainties. For this purpose, the effect of uncertainty and disturbance on the system has
been considered in generalized state-space form, and the LMI tool is combined with the concept
of an equivalent output error injection method to reduce the effects of them on the reconstruction
process. The upper bound of the disturbance and uncertainty are minimized in the design of the
sliding motion so that the reconstruction of the faults will be minimized. The design method is
applied for actuator faults in the generalized state-space form, and then with some suitable filtering,
the method extends as sensors and actuators coincidentally faults. Since in the proposed approach,
the state trajectories do not leave the sliding manifold even in simultaneous sensors and actuators
faults, then the faults are reconstructed based upon information retrieved from the equivalent output
error injection signal. Due to the importance of the robust fault reconstruction in the wind energy
conversion system (WECS), the proposed approach is successfully applied to a 5 MW wind turbine
system. The simulation results verify the robust performances of the proposed approach in the
presence of unknown perturbations and uncertainties.

Keywords: sliding mode observer; fault detection; robust fault reconstruction; linear matrix inequali-
ties (LMIs)

1. Introduction

In recent decades, industrial processes are becoming more and more complex; thus,
ensuring the operational reliability of these processes is an important task. Among them,
fault detection and isolation (FDI) methods play a pivotal role in making the process reli-
able. The sensor and actuator faults are known as the most frequent faults that occur in
many control systems such as satellite/aircraft [1,2], wind turbines [3,4], vehicles suspen-
sion system [5,6], offshore platforms [7], motor drives [8], power systems, and renewable
energies [9,10]. In the event of a fault occurrence, the reliability and efficiency of the system
are severely affected, and thus, the fault reconstruction is an important issue in the context
of FDI approaches, and various types of research have been done in this field. However,
when the system is subject to the uncertainty and disturbance, at the same time, identifying
and reconstructing simultaneous sensor and actuator faults are still challenging issues that
need to be addressed carefully.

In [11], a PI observer is proposed for fault estimation purposes based on convex
structures and by employing nonquadratic Lyapunov functions. As a result, less conser-
vative conditions in the form of LMIs are obtained. In [12], the sensor and actuator faults
reconstruction problem is addressed by only considering the uncertainty in the model.
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In [13], the actuator fault reconstruction (AFR) problem is investigated by introducing two
observers: one to estimate unknown inputs and the other to facilitate fault reconstruction.
A particular kind of actuator faults in manipulator systems, i.e., joint luck failure, is con-
sidered in [14], and two kinds of reconfiguration schemes are proposed to cope with this
issue. In [15], a fault-tolerant control technique is studied for electro-hydraulic actuators.
In this reference, an unknown input observer is used to reconstruct sensor faults in the
presence of disturbances. In [16], a fault-tolerant sliding mode controller was designed
for a class of fuzzy T-S systems subject to actuator saturation, external disturbances, and
time-varying delay. Sliding mode control is a variable structure control method that is
well known in nonlinear system control. In [17], integral sliding mode control is pro-
posed to a new five-dimensional four-wing hyper chaotic system with hidden attractor.
An adaptive finite-time sliding mode control is proposed in [18] to construct a family of
nine new chameleon chaotic systems subjected to uncertainties and disturbances. In [19],
a new synchronous quasi-sliding mode control (QSMC) is studied for Rikitake chaotic
system. A selection on switching surface and the existing of QSMC is also considered in
this reference. A composite sliding mode observer is proposed in [20] to study multi-sensor
fault diagnosis and active fault-tolerant control in a PMSM drive system. For the FDI of a
class of uncertain Lipschitz nonlinear systems, an adaptive robust sliding mode observer
(SMO) is proposed in [21], where both external disturbance and faults are considered. A
second-order sliding mode observer is considered in [22] to reconstruct sensor faults in
an air-path system of a heavy-duty diesel engine in the presence of disturbance. In [23],
an adaptive estimation approach is proposed to recover the bias fault of sensors in a class
of nonlinear systems subject to unstructured uncertainty. In [9], the fault detection and
fault-tolerant control problem for multi-area power systems with sensor failures were
considered using a descriptor form SMO. In [24], an adaptive SMO and a descriptive form
observer are combined to reconstruct the sensor and actuator faults where the stability
analysis was performed by the Lyapunov method. For a linear system with disturbance
and time-varying delay, an adaptive estimation approach is presented in [25] for AFR.
The problem of fault-tolerant controller design for a synchronization problem of complex
dynamical networks subject to actuator faults and saturation was investigated in [26,27].
In [28], a time shift approach for AFR with a time-delay of output is introduced by using
an SMO. For wind turbine faults detecting, a new technique is proposed in [29] as a signal
reconstruction modeling technique. In the mentioned paper, to detect faults at an early
stage, multiple indicators are also calculated. A new data-driven sensor FDI technique is
presented in [30] using interval-valued data and an enhanced reconstruction approach to
develop fault isolation. Various methods for a simultaneous actuator and sensor faults
reconstruction have been proposed in the literature. Inspired by a singular system theory, a
descriptor observer design is presented in [31] to reconstruct the actuator fault based on
the transformed coordinate system. In [32], both faults are simultaneously reconstructed in
a special class of nonlinear system described by the Takagi–Sugeno model. In [33], a new
robust and simultaneous actuator and sensor faults estimation is proposed for a class of
LPV systems described with polytopic representation where the parameters evolve in the
hypercube domain.

Discrepancies between the actual process and its model such as model uncertainties
and disturbances cause misleading of fault detection and reconstruction. The problem of
simultaneous fault detection and reconstruction of sensors and actuators in the presence
of both uncertainties and unknown disturbances has been addressed in this paper. A
noticeable feature of the proposed approach is that the inherent differences between the
effect of uncertainty and disturbance on the system have been considered in the design
of sliding mode observers in a generalized state-space form when faults occur at both
sensors and actuators coincidentally. This problem is efficiently addressed in this paper,
where two different distribution matrices are incorporated to represent perturbations and
uncertainties in the system. Then, LMI and the equivalent output error injection (EOEI)
methods have been used to design a robust SMO. Since the state trajectories of SMO do
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not leave the sliding manifold in the presence of the uncertainties and disturbances, then
the sensor and actuator faults are reconstructed based upon information retrieved from
the equivalent output error injection signal. In order to verify the robust performances
of the proposed approach, we applied it to a 5 MW wind turbine system. The wind
energy conversion system (WECS) is a typical large and complex nonlinear system with
random and intermittent wind force. In the electrical power system, the safety of electrical
equipment is the basis for ensuring the stability and reliability. Fault reconstruction’s aim is
to guarantee the security of electrical power system operation and industry production. For
this reason, we proposed fault reconstruction to ensure the safe and efficient operation of
wind turbines. The wind turbine systems actuators and sensors have the highest probability
of failure, which has the greatest impact on the WECS safe and efficient operation. A robust
fault-tolerant control for a Takagi–Sugeno fuzzy model is studied for the wind energy
conversion system in [34].

The rest of this paper is organized as follows. Description of the system in the presence
of an actuator and sensor fault, disturbances and uncertainties, and design of the proposed
SMO are presented in Section 2. A robust AFR employing the EOEI approach is presented
in Section 3. Sensor fault reconstruction is studied similar to the actuator fault method
by introducing a new state in Section 4. Simulation results and concluding remarks are
provided in Section 5.

2. Description of the Problem

We consider a class of uncertain systems in the presence of fault and disturbance
given as:

ż(t) = Az(t) + Bu(t) + M∂(t, y, u) + Dd(t) + F fa(t)

y(t) = Cz(t) + Fs fs(t)
(1)

where B ∈ Rn×m, A ∈ Rn×n, C ∈ Rp×n, M ∈ Rn×k, D ∈ Rn×q, F ∈ Rn×r, and Fs ∈
Rp×l denote the matrices of inputs, states, outputs, unknown bounded uncertainties,
disturbances, actuator faults, and sensor faults, respectively. We assume p ≥ q, p ≥ l,
n > p ≥ r, and F and C are full column rank matrices. We also assume that fa(t) is a
bounded unknown function indicating the fault of actuators, where ‖ fa(t)‖ ≤ α(t), and α
is a known function. Furthermore, the unknown bounded function ∂(t, y, u) denotes the
system’s uncertainty and ‖∂(t, y, u)‖ ≤ β, where β > 0 is a known parameter. Moreover,
d(t) denotes the disturbance signal, which is bounded ‖d(t)‖ ≤ d0, where d0 is a positive
constant.

Assumption 1. It is assumed that rank(CF) = rank(F) = r and the system with (A, F, C)
matrices has all its invariant zeros in the LHP.

It is important to note that p < n implies that some states may not be observable.
To cope with this issue, the following theorem is utilized to extract the observable and
unobservable parts of the system in (1) with fs(t) = 0 where the matrix F only appears in
the observable subsystem.

Theorem 1. Assuming the conditions of Assumption 1 are satisfied and fs(t) = 0, then, there
exist linear nonsingular transformations z̃ = Tbz̄ and z̄ = Tcz such that:

Ã =

[
A1 A2
A3 A4

]
, C̃ = [0p×(n−p), T ], F̃ =

[
0r×r
F2

]
(2)

where F2 =

[
0(p−r)×r

F22

]
∈ Rr×r and T ∈ Rp×p is orthogonal and nonsingular, A1 ∈

R(n−p)×(n−p), B̃T = [BT
1 , BT

2 ], D̃T = [DT
1(n−p)×q

, DT
2p×q

], M̃T = [MT
1(n−p)×k

, MT
2p×k

].
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Proof. First, consider Tc = [Nc, CT ]T , where columns of Nc span the null space of C and
are orthonormal. Then, one obtains:

˙̄z(t) = Tc AT −1
c︸ ︷︷ ︸

Ac

z̄(t) + TcB︸︷︷︸
Bc

u(t) + Tc M︸︷︷︸
Mc

∂(t, y, u)

+ TcD︸︷︷︸
Dc

d(t) + TcF︸︷︷︸
Fc

fa(t)

ȳ = T −1
c C︸ ︷︷ ︸
Cc

z̄ = [ 0(n−p) Ip ]z̄.

(3)

It can be seen that only the last p states are present at the output. Now, considering

Fc =

[
f1(r×r)

f2(p×r)

]
, we define a nonsingular linear transformation matrix Tb as:

Tb =

[
I(n−p) − f1

(
f T
2 f2

)−1 f T
2

0p×(n−p) T T

]
(4)

where the QR decomposition of f2 is used to obtain T . Then, by using z̃ = Tbz̄, one obtains:

˙̃z(t) = Ãz̃(t) + B̃u(t) + M̃∂(t, y, u) + D̃d(t) + F̃ fa(t)
ỹ(t) = C̃z̃(t)

(5)

where

Ã =

[
A1 A2
A3 A4

]
, F̃ =

[
0r×r
F2

]
, D̃ =

[
D1
D2

]
C̃ =

[
0p×(n−p), T

]
, B̃ =

[
B1
B2

]
, M̃ =

[
M1
M2

]
.

(6)

The following SMO is considered:

˙̃̂z(t) = Ã ˆ̃z(t) + B̃u(t)− G̃leỹ(t) + G̃nv
ˆ̃y(t) = C̃ ˆ̃z(t).

(7)

where ˆ̃y(t) and ˆ̃z(t) denote the estimation of outputs and states, respectively. The output
estimation error is represented by eỹ(t) = ˆ̃y(t)− ỹ(t). Furthermore, the observer gains
G̃n, G̃l ∈ Rn×p will be defined in the following.

The sliding variable v has a nonlinear discontinuous term to maintain the sliding
motion, which is given as:

v =

{
0, ∀eỹ = 0

−ρ(t, y, u)
∥∥eỹ

∥∥−1eỹ, ∀eỹ 
= 0
(8)

where the upper bound for the fault plus uncertainty and disturbance is represented by the
gain factor ρ(t, y, u) ∈ R.

The gain G̃n is chosen as:

G̃n =

[ −LT T

T T

]
P−1

0 (9)
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where P0 = PT
0 ∈ Rp×p is a PDF design matrix that will be calculated in the following and

L is defined as:

L =
[

L0 0
]
∈ R(n−p)×p (10)

where L0 ∈ R(n−p)×(p−r) is adjusted such that (L0 A31 + A1) is Hurwitz, where A31 repre-
sents the first p − q rows of A3.

Now, the following theorem is recalled from [35].

Theorem 2. Assume an observer dynamic as given in (7), a Lyapunov matrix P̃, and a matrix
G̃l satisfying:

P̃ =

[
P1 P1L

LT P1 T T P0T + LT P1L

]
(Ã − G̃lC̃)T P̃ + P̃(Ã − G̃lC̃) < 0

(11)

where L defined in (10) and P1 ∈ R(n−p)×(n−p). Then, the observation error e(t) Δ
= ˆ̃z(t)− z̃(t) is

asymptotically stable.

Considering Assumption 1, it can be shown that there exists a stable sliding motion
on the sliding surface given as [36]:

S =
{

e(t)|C̃e(t) = 0
}

. (12)

Then, one obtains:

ė(t) = (Ã − G̃lC̃)e(t)− M̃∂(t, y, u)

−D̃d(t) − F̃ fa(t) + G̃nv
. (13)

Lemma 1. The error dynamics in (13) is bounded in the region Ω defined as:

Ω =
{

e|‖e‖ < 2(μ2β + μ1d0)
/

μ0
}

(14)

where μ0 = −λmax(Ãc), μ1 =
∥∥P̃D̃

∥∥, μ2 =
∥∥P̃M̃

∥∥, Ãc = −(G̃lC̃ − Ã)T P̃ − P̃(G̃lC̃ − Ã).

Proof. Define V = eT P̃e. Then

V̇ = eT Ãce − 2eT P̃M̃∂(t, y, u)− 2eT P̃D̃d(t)

−2eT P̃F̃ fa(t) + 2eT P̃G̃nv
. (15)

From (16) and considering ‖∂(t, y, u)‖ ≤ β and ‖d(t)‖ ≤ d0 and utilizing the Cauchy–
Schwartz inequality, yield:

V̇ ≤ −μ0‖e‖2 + 2‖e‖μ1d0 + 2‖e‖μ2β − 2eT P̃F̃ fa(t) + 2eT P̃G̃nv. (16)

Using (6), (9), and (11), it is simply verified that P̃F̃ = C̃T P0C̃F̃ and P̃G̃n = C̃T . Then,
considering eỹ(t) = C̃e(t) = C̃(z̃(t)− z(t)), ‖ fa(t)‖ ≤ α and (8), one obtains:

V̇ ≤ 2‖e‖μ1d0 − μ0‖e‖2 + 2‖e‖μ2β
−2

(
ρ(t, y, u)− α(t, u)

∥∥P0C̃F̃
∥∥)∥∥eỹ

∥∥
≤ −‖e‖(μ0‖e‖ − 2μ1d0 − 2μ2β).

(17)

Therefore, if ‖e‖ > 2(μ2β + μ1d0)
/

μ0, then V̇ < 0, and this implies that e(t) will
converge to the following bounded region:
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Ω =
{

e|‖e‖ < (2μ1d0 + 2μ2β)
/

μ0
}

. (18)

Now, we show that with the proper selection of ρ(y, u, t), the sliding surface in (13) is
reached in finite time. Define:

TL =

[
In−p L

0 T

]
. (19)

Using this transformation, the matrices in (6), (9), and (11) are converted to the
following form:

A = TL ÃT −1
L =

[ A1 A2
A3 A4

]
, M = TL M̃ =

[ M1
M2

]
Gn = TLG̃n =

[
0

P−1
0

]
, F = TLF̃ =

[
0(n−p)×r

F2

]
D = TLD̃ =

[ D1
D2

]
, C = C̃T −1

L = [ 0p×(n−p) Ip]

P = (T −1
L )T P̃T −1

L =

[
P1 0
0 P0

]
(20)

where:

A1 = A1 + LA3, M1 = M1 + LM2, D1 = D1 + LD2
A3 = T A3, M2 = T M2, D2 = T D2, F2 = T F2.

(21)

Therefore, the error in (14) becomes:

ėl(t) = (A− GLC)el(t)−M∂(t, y, u)−Dd(t)
−F fa(t) + Gnv

(22)

where

el = TLe =
[

e1
eỹ

]
, GL = TLGl =

[ GL1
GL2

]
. (23)

Using this, (23) can be decomposed as:

ė1(t) = A1e1(t) + (A2 − GL1)eỹ(t)
−M1∂(t, y, u) − D1d(t)s

ėỹ(t) = A3e1(t) + (A4 − GL2)eỹ(t) + P−1
0 v

−M2∂(t, y, u)−D2d(t)−F2 fa(t).

(24)

The following theorem proposes a proper choice of ρ to guarantee finite time conver-
gence to the sliding surface S.

Theorem 3. The error dynamic (23) reaches the sliding surface S in finite-time Ts ≤
√

V(0)

η0

√
λmin(P−1

0 )
and stays there forever, if:

ρ(t, y, u) ≥ ‖P0D2‖d0 + ‖P0M2‖β + ‖P0F2‖α+
2‖P0A3‖(μ1d0 + μ2β)/μ0 + η0.

(25)

366



Energies 2022, 15, 1411

Proof. Define the candidate Lyapunov function V = eT
ỹ P0eỹ. Then:

V̇ = eT
ỹ

(
P0(A4 − GL2) + (A4 − GL2)

T P0

)
eỹ+

2eT
ỹ P0A3e1 − 2eT

ỹ P0F2 f − 2eT
ỹ P0D2d−

2eT
ỹ P0M2∂ + 2eT

ỹ v

(26)

where 2eT
ỹ v = −2ρ

∥∥eỹ
∥∥. Then, by using the Cauchy–Schwartz inequality, one gets:

V̇ ≤ −2
∥∥eỹ

∥∥( ρ − ‖P0A3‖‖e1‖ − ‖P0F2‖α−
‖P0D2‖d0 − ‖P0M2‖β

)
. (27)

From (15), (24), and (25) we conclude that ρ − ‖P0A3‖‖e1‖ − ‖P0M2‖β − ‖P0D2‖d0 −
‖P0F2‖α = η0 > 0 and ‖e1‖ < 2(μ2β + μ1d0)

/
μ0. This results:

V̇ ≤ −2η0
∥∥eỹ

∥∥ ≤ −2η0

√
λmin

(
P−1

0

)√
V. (28)

Therefore, using (29) and the finite-time stability theorem (see Theorem 4.2 of [37]),
we conclude that the estimation error converges to zero, and the sliding motion reaches S

in finite-time Ts ≤ 1
η0

√
V(0)

λmin(P−1
0 )

.

Now, an LMI-based approach is proposed to obtain an appropriate gain matrix G̃l . In
this regard, Theorem 2.2 requires finding a matrix P̃ that satisfies:

(Ã − G̃lC̃)T P̃ + P̃(Ã − G̃lC̃) < 0. (29)

As discussed in [36], an inequality of the form (30) can be alternatively solved by the
following set of inequalities:

P̃ > 0, ÃT P̃ + P̃Ã − C̃TU−1C̃ + P̃QP̃ < 0 (30)

where U ∈ Rp×p and Q ∈ Rn×n are PSD matrices. Applying the Schur lemma, (31) is
converted to the following LMI:[

P̃Ã + ÃT P̃ − C̃TU−1C̃ P̃
P̃ −Q−1

]
< 0. (31)

The matrix P̃ is obtained by solving the LMI (32), and then:

G̃l = P̃−1C̃TU−1. (32)

3. Robust Actuator Faults Reconstruction

In this part, assuming that the proposed SMO gains in (7) are well-designed, an
efficient approach is proposed for a robust AFR procedure. Relying on the results of
Theorem 2.3, one obtains that eỹ = ėỹ = 0 as t → ∞. Then:

ė1(t) = A1e1(t)−M1∂(t, y, u)−D1d(t) (33)

0 = A3e1(t)−M2∂(t, y, u)−D2d(t)−F2 fa(t) + P−1
0 veq

where veq is obtained by approximating v in (8):

veq = −ρ(t, y, u)eỹ
(
ε +

∥∥eỹ
∥∥)−1 (34)
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where ε > 0. From (34), one obtains:

ė1(t) = (LA3 + A1)e1(t)− (M1 + LM2)∂(t, y, u)
− (D1 + LD2)d(t)

0 = T
(

A3e1(t)− M2∂(t, y, u)−
D2d(t)− F2 fa(t)

)
+ P−1

0 veq.
(35)

This implies:

P−1
0 veq = T

( −A3e1(t) + M2∂(t, y, u)+
D2d(t) + F2 fa(t)

)
. (36)

Now, the goal is to minimize or eliminate the effects of disturbance and uncertainty
signals on the AFR. To this end, the reconstruction signal is defined as:

f̂i = WT T P−1
0 veq (37)

where W = [W1, F−1
22 ]. Multiplication of both sides in (37) by WT T implies:

f̂i(t) = + fa(t)− WA3e1(t) + [WD2, WM2]

[
d(t)

∂(t, y, u)

]
. (38)

From (36), we have:

e1(s) = −(sI − (LA3 + A1))
−1×

[LD2 + D1, LM2 + M1]

[
d(t)

∂(t, y, u)

]
.

(39)

Substitution of (40) in (39) results:

f̂i(t) = fa(t) + G(s)
[

d(t)
∂(t, y, u)

]
G(s) =

[
WD2 WM2

]
+

WA3(sI − (LA3 + A1))
−1×[

LD2 + D1 LM2 + M1
]
.

(40)

Therefore, the effect of
[

d(t)
∂(t, y, u)

]
on the fault reconstruction signal will be mini-

mized or bounded if:

‖G(s)‖∞ < ξ (41)

where ξ is a small constant. Let define P̃ in (31) as:

P̃ =

[
P̃11 P̃12
P̃T

12 P̃22

]
> 0 (42)

where P̃22 ∈ Rp×p and P̃11 ∈ R(n−p)×(n−p). By applying the Bounded Real Lemma
(BRL) [38], the inequality (42) is converted to:⎡⎢⎣ Φ11 Φ12 −(WA3)

T

ΦT
12 −ξ I (W

[
D2 M2

]
)

T

−WA3 W
[

D2 M2
]

−ξ I

⎤⎥⎦ < 0

Φ11 = P̃11 A1 + AT
1 P̃11 + P̃12 A3 + AT

3 P̃T
12

Φ12 = −(P̃11
[

D1 M1
]
+ P̃12

[
D2 M2

]
).

(43)
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By solving (44), one obtains W and P̃. Then, by substituting W in (38) results:

f̂i(t) � fa(t). (44)

4. Robust Sensor Fault Reconstruction

In this case and without loss of generality, we define a new state yn(t) ∈ Rp that
converts (1) with fa(t) = 0 to a similar form presented in the previous section, i.e., (1) with
fs(t) = 0, so that a similar algorithm can be used. To this aim, let us define:

ẏn(t) + Anyn(t) = Any(t) (45)

where An is a stable PD matrix. Then, one obtains:

ẏn(t) = −Anyn(t) + AnCz(t) + AnFs fs(t). (46)

Now, an augmented system with n + p states is defined as:[
ż(t)

ẏn(t)

]
=

[
A 0

AnC −An

]
︸ ︷︷ ︸

AN

[
z(t)

yn(t)

]
+

[
B
0

]
︸ ︷︷ ︸

BN

u(t)

+

[
0

AnFs

]
︸ ︷︷ ︸

FN

fs(t) +
[

D
0

]
︸ ︷︷ ︸

DN

d(t) +
[

M
0

]
︸ ︷︷ ︸

MN

∂(t, y, u)

yn(t) =
[

0 Ip
]︸ ︷︷ ︸

CN

[
z(t)

yn(t)

]
. (47)

Using this augmented model, it is evident that the sensor fault reconstruction (SFR)
can be handled similar to the AFR procedure discussed in the previous section.

5. Simultaneous Sensor and Actuator Faults Reconstruction

In this section, a more general case is investigated where the sensor and actuator faults
occur simultaneously, i.e., fs(t) 
= 0 and fa(t) 
= 0. Before proceeding to the main results,
some precalculations need to be done. As discussed earlier, the nonsingular transformation
matrices H = [H1, H2]

T and T exist such that:

T AT −1 =

[
A1 A2
A3 A4

]
, T B =

[
B1
0

]
,

T Fa =

[
Fa1

0

]
, T D =

[
D1
0

]
, T M =

[
M1
0

]
,

HCT −1 =

[
C1 0
0 C4

]
, HFs =

[
0

Fs2

]
.

(48)

Then, the system (1) in the new coordinates z̄ = T z =

[
z̄1
z̄2

]
and ȳ = Hy =

[
ȳ1
ȳ2

]
is decomposed as ⎧⎨⎩

˙̄z1(t) = A1z̄1(t) + A2z̄2(t) + B1u(t)
+Fa1 fa(t) + D1d(t) + M1∂(t, y, u)

ȳ1(t) = C1z̄1(t)
(49)

{
˙̄z2(t) = A3z̄1(t) + A4z̄2(t)
ȳ2(t) = C4z̄2(t) + Fs2 fs(t)

. (50)
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By defining z̄3 =

[
z̄2
fs

]
and C5 =

[
C4 Fs2

]
, Equation (51) can be rewritten as:

N ˙̄z3 = Ā3z̄1 + Ā4z̄3 + F̄s2 fs
ȳ2 = C5z̄3

(51)

where ⎧⎨⎩
˙̄z1(t) = A1z̄1(t) + A2z̄2(t) + B1u(t)

+Fa1 fa(t) + D1d(t) + M1∂(t, y, u)
ȳ1(t) = C1z̄1(t)

(52)

{
˙̄z2(t) = A3z̄1(t) + A4z̄2(t)
ȳ2(t) = C4z̄2(t) + Fs2 fs(t)

. (53)

Considering Ā2 = [A2, 0], from (50) one obtains:

˙̄z1(t) = A1z̄1(t) + Ā2z̄3(t) + B1u(t) + Fa1 fa(t)
+D1d(t) + M1∂(t, y, u)

. (54)

Combining (50)–(54), we get:⎧⎨⎩
˙̄z1(t) = A1z̄1(t) + Ā2z̄3(t) + B1u(t)

+Fa1 fa(t) + K1ψ(t, y, u)
ȳ1(t) = C1z̄1(t)

(55)

{
N ˙̄z3 = Ā3z̄1 + Ā4z̄3 + F̄s2 fs
ȳ2 = C5z̄3

(56)

where K1 = [D1, M1], K̄2 = [D̄2, M̄2], ψ(t, y, u) =
[

d(t)
∂(t, y, u)

]
. Based on the above results,

the following theorem characterizes the proposed method for simultaneous reconstruction
of the sensor and actuator faults in the presence of disturbances and uncertainties.

Theorem 4. Consider the faulty system (55) and (56), and assume the observer structure as:

(N + VC5)ẋ = (Ā4 − L1C5)x + L2(y1 − C1 ˆ̄z1)

+Ā3 ˆ̄z1 + Ā4(N + VC5)
−1Vy2

(57)

ˆ̄z3 = x + (N + VC5)
−1Vy2 (58)

˙̄̂z1 = A1 ˆ̄z1 + Ā2 ˆ̄z3 + B1u(t) + Ḡnv(t)− Ḡley1 . (59)

Then, the observer error is bounded if there exist P1 = PT
1 , P3 = PT

3 , and K satisfying the
following LMIs ⎡⎣ Q11 P1 Ā2 P1K

∗ Q22 Q23
∗ ∗ −I

⎤⎦
︸ ︷︷ ︸

Q

< 0 (60)

P1 > 0, P3 > 0 (61)

where ∗ denotes the transpose of each symmetric element, and

Q11 = AT
1 P1 + P1 A1 + λ2

∥∥T −1
∥∥2 Im,

Q23 = P3(N + VC5)
−1

Q22 = Q23 Ā4 − KC5 − ĀT
4 QT

23 − CT
5 KT

+λ2
∥∥T −1

∥∥2 In+p−2m

. (62)
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Furthermore, the observer error bound is given as follows

‖e‖ < σ = 2λ−1
min(Q)

∥∥∥∥∥P3

[
0

(V2 F̄s2)
−1

]∥∥∥∥∥+ σ0 (63)

where σ0 is a small positive scalar.

Proof. For the observer (57)–(59), with ey1 = ŷ1 − y1 = C1e1 we have:

v(t) = −ρ0( ˆ̄z1 − z̄1)(‖( ˆ̄z1 − z̄1)‖)−1 (64)

L2 = Ā3C−1
1

L1 = (N + VC5)P3K
(65)

where ρ0 is a positive scalar. Defining e1 = ˆ̄z1 − z̄1, e3 = ˆ̄z3 − z̄3 and using (57)–(59)
one obtains:

ė1 = (A1 − ḠlC5)e1 + Ā2e3 − Fa1 fa(t)
+Ḡnv(t)− K1ψ(t, y, u)

ė3 = − Q23 Ā4(N + VC5)
−1︸ ︷︷ ︸

Q′
23

e3 − Q23 F̄s2 fs
. (66)

Defining s(t) = e1(t) and V = 1
2 sT P1s, we get:

V̇ ≤ ‖P1e1‖
( ∥∥(A1 − ḠlC5)e1 + Ā2e3

∥∥− ρ0Ḡn
−‖Fa1 fa(t)‖ − ‖K1ψ(t, y, u)‖

)
(67)

where Ḡnv(t) = −ρ0Ḡne1‖e1‖−1. Choosing ρ0 ≥
∥∥Ḡ−1

n
∥∥(

l
∥∥(A1 − ḠlC5)

∥∥+ ∥∥Ā2
∥∥− ‖Fa1‖ − ‖K1‖

)
ε, implies that after a finite time, we have e1(t) =

ė1(t) = 0. Then, one obtains

0 = Ā2e3 − Fa1 fa(t) + Ḡnv(t)− K1ψ(t, y, u). (68)

Now, the following actuator reconstruction signal is defined:

f̂a = WḠnveq(t) (69)

where W = F−1
a1

. To preserve sliding motion, v(t) must take in the average veq(t) =

−ρ0e1(‖e1‖+ ε)−1. Then, multiplying (68) by W results:

f̂a = −WĀ2e3 + fa(t) + WK1ψ(t, y, u). (70)

Then, one obtains

f̂a − fa = −WĀ2e3 + WK1︸︷︷︸
Z

ψ(t, y, u)

→
∥∥∥ f̂a − fa

∥∥∥ < υ′ + ‖Z‖ψ(t, y, u)
(71)

where υ′ >
∥∥WĀ2e3

∥∥ is a small positive constant. Assuming ‖Z‖∞ < υ′′ with υ′′ > 0, results:∥∥∥ f̂a − fa

∥∥∥ < υ. (72)

For small υ, it implies f̂a ≈ fa. Then, from (66) one obtains

ė3 + Q′
23e3 = σ = −Q23 F̄s2 fs. (73)
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Now, the following sensor reconstruction signal is defined:

f̂s = Wsσ (74)

where Ws = (−Q23 F̄s2)
−1. Then, one obtains

‖ ˆ̄z3 − z̄3‖ ≤ σ. (75)

This implies f̂s ≈ fs and completes the proof.

Remark 1. Regarding the design parameters tuning, it is worthwhile to mention some points. The
parameter ε in (34) should be initially selected as a very small scalar and then gradually increased
such that it approximates the output error injection v and fulfills the design requirements. The
parameter ξ in (41) is a small constant that satisfies the LMI conditions (43).

Remark 2. In practice, both sensor and actuator faults may occur simultaneously. Therefore, unlike
most existing approaches dealing with sensor and actuator faults separately, our proposed approach
takes care of simultaneous sensor and actuator faults, which can be a critical issue in some systems
such as aircraft, wind turbines, etc., which need some more technical cares to have much better
performance and efficiency.

The step-by-step procedure of applying the proposed design algorithm is summarized
as follows:

(I): Use (2) and (4) to obtain the new coordinate system as defined in Theorem 2.1 (Tc, Tb,
and T are obtained).

(II): In the case of robust AFR, solve the LMI (44) to obtain P̃, which minimizes the effects
of disturbances and uncertainties. Then, design the observer gains using (9) and (33).
Finally, the actuator fault is reconstructed using (38).

(III): In the case of robust SFR, first construct the augmented system equations proposed in
(48). Then, apply (I) and (II) to the augmented system to solve SFR.

(IV): In the case of simultaneous sensor and AFR, first use (49) to obtain the new coordinate
system.

(V): Considering the proposed observer structure in Theorem 5.1, solve the LMIs (60) and
(61) to obtain P1, P3, and K. Then, design the observer gains using (64) and (65). Finally,
the actuator and sensor faults are reconstructed using (69) and (74).

6. Simulation Results

To verify the effectiveness of the proposed approaches, we consider a 5 MW wind
turbine subject to the actuator and sensor faults in the presence of disturbances and un-
certainties. The model and the parameters of the wind turbine used in the simulations are
taken from [4] as following:

ẋ(t) = Ax(t) + Bu(t) + Dd(t) + M∂(t, y) + F fa(t)
y(t) = Cx(t) + Fs fs(t)

A =

⎡⎢⎢⎢⎢⎣
0 1.0000 −0.0406 0 0

−88.8900 −0.8889 0.0361 6.685e − 45 0
32552 325.2 −13.22 0 −0.1

0 0 0 −6.6670 0
0 0 0 0 −10

⎤⎥⎥⎥⎥⎦, B = F =

⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0

10 0
0 6.6667

⎤⎥⎥⎥⎥⎦

C =

⎡⎣ 0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎦, D =

⎡⎢⎢⎢⎢⎣
1
0
1
0
1

⎤⎥⎥⎥⎥⎦, M =

⎡⎢⎢⎢⎢⎣
1

−0.5
1
0
0

⎤⎥⎥⎥⎥⎦, Fs =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦.
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The state and the control input vectors are denoted as

x(t) =
[

Θ(t) Ωr(t) Ωg(t) β(t) Tg(t)
]T

u(t) =
[

βr(t) Tg,d(t)
]T

where Θ(t) the torsion angle, Ωr(t) the rotor speed, Ωg(t) the generator speed, β(t) the
pitch angle, and Tg(t) the generator torque are the state variables and Tg,d(t) the desired
generator torque and βr(t) the pitch angle command are the control input of the wind
turbine model.

6.1. Actuator Fault Reconstruction

First, the following stabilizing controller is designed:

u(t) =
[ −14.34 −1.26 −0.01 0.33 −3.06

21.89 0.28 0.07 −0.82 9.37

]
x(t).

During the simulation, we assume x(0) = [0.5, 1, 1, 1.5, 0.5]T; the disturbance d(t) =
u(t − 25) and the uncertainty ∂(t, y, u) = [0, 0.5, 2]y are also considered. It is easy to check
that Assumption 1 is satisfied for this system, so the proposed method is applicable. Using
the results in Theorem 2, the transformation matrix Tb is calculated as:

Tb =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 −1

⎤⎥⎥⎥⎥⎦.

Then, the LMI (44) is solved to minimize the effects of disturbances and uncertainties.
Consequently, the observer gains and the AFR are obtained using (9), (33), and (38) as:

Gl =

⎡⎢⎢⎢⎢⎣
−0.1 −3.3 0
0.01 0.1 0
−1.55 71.6 0
−0.8 1.55 0

0 0 −0.1

⎤⎥⎥⎥⎥⎦, Gn =

⎡⎢⎢⎢⎢⎣
−0.001 0.07 0
0.001 −0.07 0
2.75 2.68 0
1.37 1.3 0

0 0 −0.13

⎤⎥⎥⎥⎥⎦.

The associated matrices L and P0 are calculated as:

L =

⎡⎣ 1 1 0
−1 −1 0
0 −1 1

⎤⎦, P0 =

⎡⎣ −13.35 14.06 0
14.06 −14.05 0

0 0 7.53

⎤⎦.

The Lyapunov matrix P is also obtained from (30):

P =

⎡⎢⎢⎢⎢⎣
8.41 0 0.1 −0.8 0

0 5.65 −0.01 0 0
0.1 0 0 −0.1 0

−0.81 0 −0.1 0.72 0
0 0 0 0 7.53

⎤⎥⎥⎥⎥⎦.

The parameters ε and ρ are selected as 0.5 and 10, respectively. Then, choosing
ξ = 1 × 10−3, the matrix W is calculated as W = [−0.676,−0.581,−0.28].

Figures 1 and 2 show the effectiveness of the proposed AFR algorithm reconstruct-
ing faults simultaneously occurring in both actuators in the presence of the mentioned
unknown disturbances/uncertainties.
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Figure 1. Illustration of robust actuator fault reconstruction (fault on the first actuator).
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Figure 2. Illustration of robust actuator fault reconstruction (fault on the second actuator).

6.2. Sensor Fault Reconstruction

First, by choosing An = 20I3×3, the matrices of the associated augmented model in (48)
are obtained.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
8.9 −1 0 0 0 0 0 0
25.5 32.25 −13 0 0 0 0 0

0 0 0 −7 0 0 0 0
0 0 0 −10 0 0 0 0
0 0 0 0 −20 0 0 0
0 20 0 0 0 −20 0 0
0 0 20 0 0 0 −20 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

10 0
0 6.68
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎣ 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎦, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0.5
1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Fs =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Then, using a similar procedure the matrix Tb is obtained as:

Tb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using this coordinate transformation, the equivalent model is obtained. Then, a stabi-
lizing controller is designed as u(t) = Kz(t), where:

K =

[ −201.7 −10.1 −0.1 2.7 −0.1 1.3 −8.4 56
−4214.3 −6 −18.7 31.5 0.3 1.2 −188.2 84.4

]
.

In this case, we assume x(0) = [1, 0.5, 1, 0.5, 1.5, 1, 2, 0.5]T , ∂(t, y, u) = [0.3,−0.5, 0], y =
0.3z5 − 0.5z6, and d(t) = u(t − 20). Using a similar procedure, the observer gains are
obtained for the augmented system as:

Gn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1 0 −0.16
0 −0.1 0.16

−0.01 0 −0.43
−0.01 −0.01 0.3

0 0 0.3
0 −0.01 −1.3

−1.3 0 1.3
−1.3 −0.3 −20.7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Gl =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.04
−0.01 −0.01 0
−0.45 −2.15 0
−0.69 −0.97 0
−14.26 −938.31 0

2.77 239.93 0
−0.74 −2.77 0

0 0 −0.07

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The parameters ε and ρ are selected as 0.1 and 15, respectively. Then, choosing
ξ = 1 × 10−3, the matrix W is calculated as W = [−0.651,−1.923, 0.309]. In Figures 3–5,
the performance of the proposed robust SFR is illustrated in the presence of the distur-
bances/uncertainties.
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Figure 3. Illustration of robust sensor fault reconstruction (pitch angle sensor fault).
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Figure 4. Illustration of robust sensor fault reconstruction (rotor speed sensor fault).
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Figure 5. Illustration of robust sensor fault reconstruction (generator speed sensor fault).

6.3. Simultaneous Actuator and Sensor Faults

First, using the transformation in (49), the system is decomposed as in (50) and (51).
Then, using the results in Theorem 5, the LMIs (60) and (61) are solved, and the observer
gains are obtained from (64) and (65):

Gn =

⎡⎣ 0.41 −0.43 −1.25
−0.27 0.12 −0.16
−1.16 −0.24 −2.25

⎤⎦, Gl =

⎡⎣ 8.87 −66.57 2.22
10.45 −0.6 0.52
−2.45 7.92 −0.52

⎤⎦.

Finally, the simultaneous actuator and sensor faults are reconstructed using (69) and
(74). In this case, the parameters are chosen as given in the previous part. Figures 6 and 7
show the comparison of the simultaneous actuator and sensor fault reconstruction of the
proposed method with [32] in the presence of ∂(t, y, u) = [0.3,−0.5, 0], y = 0.3z5 − 0.5z6,
and d(t) = u(t − 20). The results verify that despite the existence of unknown disturbance
and uncertainty, the proposed method performs well in the reconstruction of both sensor
and actuator faults.

Considering the dynamics of disturbance in the sliding mode observer design, there
was a reduced impact of disturbance in fault reconstruction in comparison with the ap-
proach presented in [32]. In other words, the proposed approach in Theorem 5 has the
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quick response in the fault reconstruction process when disturbance is entered to the sys-
tem. In order to measure and investigate the performance of the proposed methods, it
is required to use quantitative criteria. In Table 1, the norm specifications of the sensor
and actuator fault detection errors for the proposed approach and the method represented
in [32] are calculated. As can be seen in Table 1, the proposed approach improves the
accuracy of the actuator fault reconstruction more than 10% and the accuracy of the sensor
fault reconstruction more than 4%.
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Figure 6. The simultaneous actuator and sensor fault reconstruction using the approach proposed in
Theorem 5.
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Figure 7. The simultaneous actuator and sensor fault reconstruction using the approach presented
in [32].
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Table 1. The comparison of the norm specification of the simultaneous faults reconstruction.

‖error‖2(Actuator) ‖error‖2(Sensor)

Theorem 5 29.04 99.07
[32] 32.61 103.87

Improvement (%) 10.9 4.6

7. Conclusions

In this paper, an efficient robust approach is proposed for simultaneous sensor and
actuator faults reconstruction in the presence of both unknown disturbance and uncertainty.
First, an SMO-based method was proposed, and the observer gains were derived utilizing
an LMI-based method. Then, considering that the system is subject to both disturbance and
uncertainty, a robust reconstruction method is proposed, and incorporating the concept
of BRL, the fault reconstruction problem is represented as an LMI problem and solved
using the available tools. Furthermore, utilizing a wind turbine system, the performance
and robustness of the proposed method were demonstrated. The proposed method can be
robust against of disturbances and uncertainties, which is the most important advantage of
our work. In contrast, the reconstruction of the faults is under the bounded disturbance,
which can be our work’s disadvantage. Finally, it is noted that although in many nonlinear
systems, the nonlinearity and the effects of linearization error can be captured by the
disturbances/uncertainties as considered in this paper, as an ongoing future work, it is
quite beneficial to extend the proposed approach for pure nonlinear models in the presence
of disturbances/uncertainties.
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Abstract: Energy demand has grown explosively in recent years, leading to increased attention of
energy efficiency (EE) research. Demand response (DR) programs were designed to help power
management entities meet energy balance and change end-user electricity usage. Advanced real-time
meters (RTM) collect a large amount of fine-granular electric consumption data, which contain
valuable information. Understanding the energy consumption patterns for different end users can
support demand side management (DSM). This study proposed clustering algorithms to segment
consumers and obtain the representative load patterns based on diurnal load profiles. First, the
proposed method uses discrete wavelet transform (DWT) to extract features from daily electricity con-
sumption data. Second, the extracted features are reconstructed using a statistical method, combined
with Pearson’s correlation coefficient and principal component analysis (PCA) for dimensionality
reduction. Lastly, three clustering algorithms are employed to segment daily load curves and select
the most appropriate algorithm. We experimented our method on the Manhattan dataset and the
results indicated that clustering algorithms, combined with discrete wavelet transform, improve the
clustering performance. Additionally, we discussed the clustering result and load pattern analysis of
the dataset with respect to the electricity pattern.

Keywords: demand response; discrete wavelet transform; Pearson’s correlation coefficient; principal
component analysis; clustering

1. Introduction

Smart grid technologies and applications capable of adaptive, resilient, and sustain-
able self-healing, with foresight for prediction under different uncertainties, improve the
reliability of the power system [1]. Furthermore, the smart grid allows bidirectional com-
munication that supports the demand response (DR) programs [2]. Demand response
technologies are widely applied and are constantly improving. The most common DR
programs can be categorized into the following two classes: price-based programs and
incentive-based programs. Price-based programs contain time of use (ToU), real time
pricing (RTP) and critical peak pricing (CPP), which aim to motivate the end-user to change
their consumption behavior [3]. On the other hand, incentive-based programs reach a
consensus with consumers to reduce electricity consumption. Examples of these schemes
are direct-load control (DLC), interruptible/curtailable service (I/C), demand bidding/buy
(DB), etc. [4]. Considering various end-user consumption behaviors, it required the utility
companies to design reasonable strategies. Therefore, it is necessary to analyze end-users’
consumption data to acquire the load patterns.

Advanced metering infrastructure (AMI) and smart meters have been adopted to
automatically collect energy consumption data at a fine granular interval, which is usually
in intervals of 1 h, 30 min, or even 30 s [5]. Most countries have vigorously deployed smart
meters because of the potential value of consumption data [6]. The massive amount of data
sampled by smart meters could be used for research, typically load forecasting, customer
segmentation, pricing/incentive mechanism, scheduling and control [7].
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However, the extracted load consumption data lack labels, hence, the need of clus-
tering techniques to segment the electricity consumption data. In addition, with the high
time resolution advanced smart meter implemented in the household, the massive data
will increase the complexity of the clustering method, called the “curse of dimensional-
ity” [8]. This is a problem for implementing clustering algorithms because most clustering
algorithms become intractable to process high-dimensional data input. To deal with the
issue of the curse of dimensionality, the load consumption data needs preprocessing i.e.,
dimensionality reduction.

This study proposed clustering for segment residential customer daily power data,
using discrete wavelet transform to extract features and reduce dimension by statistical
methods and principal component analysis (PCA). The dataset, named Multifamily Res-
idential Electricity Dataset (MFRED), contains 10-s resolution daily power data for 26
apartment groups, collected over 365 days in Manhattan, New York, 2019 [9]. First, data
cleansing and multi-level one-dimensional (1D) discrete wavelet transform were applied
on 8640-value daily load curves. Second, we reduced extracted feature dimensions. Finally,
clustering algorithms were implemented, and the evaluation of the methods was carried
out. Our main contributions of this work include the following: (1) a proposed method
to vastly reduce the daily load profile dimensionality, to accelerate the clustering, and (2)
the three cluster validity indices (CVI) imply that our proposed method to extract features
outperforms the clustering original data, especially on hierarchical clustering.

The paper is structured as follows: Section 2 briefly discusses the related works.
Section 3 describes the MFRED data. Section 4 explains the methodology in the study.
Analysis and results are presented in Section 5, with conclusions in Section 6.

2. Related Works

Clustering is unsupervised learning, which could group similar data with no label
attached to them [10]. Clustering algorithms can be classified into partitioning algorithms,
hierarchical algorithms, density-based algorithms, and grid-based algorithms [11]. The
authors of [12] implemented an improved K-means clustering method on load curves
and verified that it performed better than the original K-means algorithm. The authors
in [13] used modified fuzzy c-means (FCM) to extract representative load profiles of the
customers. Ordering points to identify the clustering structure (OPTICS) is one of the
density-based clustering models used to analyze consumer bid-offers in [14]. Gaussian
mixture model (GMM) clustering is widely used to segment households’ load profiles for
demand response [15].

Additionally, most clustering algorithms cannot properly process high dimensionality
data [16]. Most of the aforementioned works extracted consumption load patterns in terms
of hourly, 30-min, 15-min load data. However, the advanced high-frequent smart meter
could extract load data in intervals of 1-min, 30-s, and even 1-s, leading to large-scale
consumption data that increases computational complexity. Most clustering algorithms
evaluating the belonged cluster are calculated by distance. High dimensionality data
would consume more computational complexity in each iteration, resulting in more time
consumption. Hence, there are numerous studies about dimensionality reduction on
load curve clustering, using feature extraction, feature construction and feature selection.
In [17], the authors developed electricity price schemes based on demand patterns, using
k-means combined with PCA. In [18], the authors proposed singular value decomposition
to extract features before k-means clustering and evaluate the error sum of squares (SSE)
index to compare with direct clustering. In [19], they used a fused load curve k-means
algorithm, based on “Haar” discrete wavelet transform for reduce dimension, to obtain
the load patterns of consumers from China and the United States and evaluate clustering
performance by four CVI [20]. Xiao et al. [21] proposed a fusion clustering algorithm
to obtain the consumption characteristics, using load curve clustering, based on discrete
wavelet transform (CC-DWT).
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In this study, we implemented clustering to segment 10-s interval daily electricity con-
sumption data, using multi-level discrete wavelet transform, Pearson correlation coefficient,
and PCA techniques to preprocess the daily load profiles. The clustering evaluation result
shows our proposed method outperformed the conventional methods, without reducing
dimension.

3. Data

In this study, we used the Multifamily Residential Electricity Dataset (MFRED) [9],
which consisted of 390 apartments, from 1 January to 31 December 2019. This dataset was
collected by real-time metering and contained 246 million data from residential buildings
in Manhattan, New York, USA. The resolution of data was one sample per 10-s, providing
8640 data points in each daily profile. During the one-year period, some advanced meters
were offline due to various reasons (e.g., smart meters offline). Therefore, some electricity
data were not recorded in MFRED.

In the MFRED, the percentages of building stock prior to 1940, between 1940–1980,
post-1980 were 79%, 7%, and 14%, respectively. The ratios of the entire Manhattan building
stock prior to 1940, between 1940–1980, post-1980 were 86%, 6%, 8%, respectively, which
means the residential structure in our research is very similar to that of the whole of
Manhattan. In addition, considering the privacy leakage, the 390 apartments’ data were
reconstructed into 26 groups, called apartment groups (AG), which means each AG is made
up of 15 apartments that are more representative. Hence, the dataset recorded the average
real power (kW), reactive power (kVAR) and consumption (kWh), over 15 apartments,
from 26 apartment groups, every 10 s for 365 days. Here, we used one channel real power
data for our research. Figure 1 shows the distribution of daily energy consumption, and
the black dashed line represents the mean electricity consumption (8.21 kWh).

Figure 1. Daily energy consumption distribution.
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4. Methodology

Our proposed method consists of the following four major stages: data cleansing,
feature extraction, dimensionality reduction and clustering. Daily real power data are
obtained from MFRED, and the data are cleansed for the missing value. Multi-level discrete
wavelet transform is then applied to extract the features. In the dimensionality reduction
stage, we implement the following two methods to decrease the dimension: statistical
method combined with Pearson correlation and PCA. Finally, clustering algorithms were
applied to segment daily load curves by using selected features. The proposed method is
as shown in Figure 2.

Figure 2. The proposed system diagram for electricity pattern analysis by clustering domestic load
profiles.

4.1. Data Cleansing

Real and reactive power data were recorded in MFRED, where the real power data
is reserved for the purpose of clustering. The primary issue with real power data is the
missing values and anomalous values. Missing values are filled by averaging the previous
and post 10-s values. However, tens of thousands of continuous data were missed because
of the long-time breakdown of all meters on 09 July 2019, from 14:30 to 21:30 UTC. Therefore,
this day is not taken into consideration due to the large amount of missing data. Anomalous
values may be caused by the real-time meters (RTM) data collection accuracy, detected by
the following five-number summary: the minimum, the maximum, the sample median, and
the first and third quartiles. The single outlier was replaced by the average, the maximum
and itself. After data cleansing, the reconstructed subset consisted of 8640 ten-second
interval real power data (kW) in 364 days and 26 AGs. Thus resulting input data matrix
dimension is 9464 × 8640. Figure 3 illustrates the 8640-value diurnal load curves from
different AGs.
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Figure 3. Daily load curves from different AGs. Each daily load curve consisted of 8640 values from
meters every 10 s from 00:00:00 to 23:59:50.

4.2. Discrete Wavelet Transform

Wavelet transform contains continuous wavelet transform (CWT) and discrete wavelet
transform (DWT). Discrete wavelet transform is widely used in waveform processing,
including feature extraction in electroencephalography (EEG) [22], electromyography
(EMG) [23], time-series load curves [24,25], etc. DWT decomposes the signal into various
sets by passing through the low-pass filter and high-pass filter. The DWT and DWT
coefficients are given by Equations (1) and (2), respectively, as follows:

ψj,k(t) = 2−
j
2 ψ

(
2−jt − k

)
(1)

Wj,k = W
(

2j, k2j
)
= 2−j/2

∞∫
−∞

ψ
(
2−jt − k

)
dt (2)

where k is a signal index and j is the scale index.
The detailed coefficients are obtained from a high-pass filter, while approximation

coefficients are extracted from a low-pass filter, which could continue to decompose into a
high-pass filter and low-pass filter. Figure 4 shows the decomposition of the 3-level 1-D
discrete wavelet transform that we used in our research.

Figure 4. Diagram of the multi-level 1-D discrete wavelet transform.

To extract features from daily load curves, we implemented the three-level 1-D
Daubechies 4 (db4) discrete wavelet transform. Three-level means it will repeat one-
level 1-D discrete wavelet transform three times based on the previous approximation
coefficients. The Daubechies wavelet is preferred for feature extraction compared with Haar
wavelet which is the special case of Daubechies noted as db1. Haar wavelet is the simplest
and first wavelet transform which decomposes the discrete data using the two-length filter.
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Eight of filter length in db4 wavelet contains more details but it involves slightly higher
computational processes [19]. Thus, we employed db4 to compute the detailed coefficients
and approximation coefficients. Three detailed coefficient sets and one approximation
coefficient set are denoted as cD1, cD2, cD3, cA3, respectively. Figure 5 shows the four
components of the daily load curve while using a three-level 1-D db4 discrete wavelet
transform. The cA3 coefficients curve reflects a similar variation with the original load
curve, while the value of cD3, cD2, cD1 components is very close to 0, which contains de-
tailed information of daily load curve. For each daily power curve, the number of detailed
coefficients (cD1, cD2, cD3) and approximation coefficients (cA3) were 4323, 2165, 1086 and
1086, respectively.

Figure 5. The curves of the components using the db4 wavelet.

4.3. Dimensionality Reduction

This phase aims to reduce the dimensions from extracted features (cA3, cD3, cD2,
cD1). First, we used the statistical method to get the statistical variables (mean, std, min,
25%, 50%, 75%, max) from each daily coefficient (cA3_mean, cA3_std, cA3_min, cA3_25%,
cA3_50%, cA3_75%, cA3_max, cD3_mean, etc.). There were 28 features extracted from
the approximation and detailed coefficients. Second, we calculated Pearson’s correlation
coefficient, which measures the correlation of each two features. The correlation coefficient
values are between −1 and 1, the value close to 1 represents a high positive correlation
while the value close to −1 represents a high negative correlation [26]. High correlation
features can be replaced by other features with similar characteristics. The correlation
coefficient value is calculated from Equation (3), as follows:

rXY =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1

(
Yi − Y

)2
(3)

where n is the number of samples, Xi, Yi is the value of data, X is the mean value of X, and
Y is the mean value of Y.

The correlation heatmap that represents the coefficient matrix is shown in Figure 6.
According to the correlation heatmap, coefficients close to 1 or −1 imply redundant features.
For the purpose of reducing the dimension, we removed one of the features in which
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the absolute values of correlation coefficients are bigger than 0.95. Figure 7 shows the
correlation heatmap after eliminating the high correlation features.

Figure 6. Correlation heatmap representing the coefficient matrix of 28 features.

Figure 7. The selected features correlation heatmap after eliminating 12 highly correlated features.

PCA is one of the most appealing techniques that is widely used for dimensionality
reduction of large data sets [27]. Given the original high dimensional data, PCA can map
the data into k dimensions (k < original dimension) with principal components that are not
related to each other and still preserve the original information. The data are normalized
by z in the PCA process to obtain the feature vector composed of principal components
by finding the covariance, eigenvector, and eigenvalue. In our study, we applied the
PCA method to reduce the dimensionality to 3 components and still preserve 99 percent
variability. Thus input dimension is reduced to 28 from 8640 using DWT combined with
the statistical method and to 16 after correlation analysis. Finally, we have 3 component
features applying PCA transform.
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4.4. Clustering Method

Clustering load curves into groups is essential to identify load patterns [28]. For
comparison purposes, we implemented the following three different clustering methods:
k-means, hierarchical, and fuzzy c-means clustering.

4.4.1. K-Means Clustering

K-means is the most popular hard clustering algorithm goal to partition n data into k
clusters, with the grouped data close to its centroid [29]. The K-means method is imple-
mented as follows: First, determine the cluster number K then initial K centroids. Second,
allocate each sample to the nearest centroids according to the distance. Third, determine
the new K centroids that were generated by calculating the mean of the cluster points. Then,
repeat the second and third steps until the centroids are completely unchanged.

Determining the number of clusters is one of the major challenges in clustering.
The elbow method aims at finding the appropriate number of clusters by calculating the
score for a range of values of K [30]. In our study, we determined this parameter by
analyzing the following two metrics: distortion and Calinski–Harabasz score. Generally,
distortion scoring computes the within cluster sum of squared (WCSS) to select cluster
K [31]. Distortion score decreases with K increase. It is computed using Equation (4), as
follows:

WCSS(K) =
K

∑
h=1

∑
xi∈ch

‖xi − μh‖2 (4)

where K is the number of clusters, ch is the cluster h, μh is the hth cluster center, ‖xi − μh‖2

is the Euclidean distance between data point xi and its belonged centroid μh.
We applied Yellowbrick package to visualize the elbow method [32]. Figure 8 illustrates

the WCSS value in different K. By applying the elbow method for 1 ≤ K ≤ 10, the distortion
score reduces rapidly with increase in K until K = 3 and then reduces gradually. We also
employed Calinski–Harabasz analysis method in our study. It calculates the ratio of the
sum of between-clusters dispersion and inter-cluster dispersion for all clusters, as follows:

CH(K) =
∑K

h=1 nh‖ch − c‖2

∑K
h=1 ∑x(i)∈ch

‖xi − ch‖2
N − K
K − 1

(5)

where N is the total number of data points, K is the number of clusters, nh and ch are
the number of points and centroids of the hth cluster, respectively, c is the centroid of

data points. The higher value of
K
∑

h=1
nh‖ch − c‖2 means different cluster centroids are well

separated, while the lower value of
K
∑

h=1
∑

x(i)∈ch

‖xi − ch‖2 indicates that the points of cluster

are well centered. Therefore, the larger the value of the CH index, the more distinct the
clusters.

Figure 9 shows the scores according to the change in the value of K, and it has a
maximum value when K = 3. Even looking at the graph combined with the distortion and
Calinski–Harabasz scores, it proves that it is the optimal solution for k = 3.

4.4.2. Hierarchical Clustering

Hierarchical clustering algorithms are formed by iteratively dividing the groups
using bottom-up or top-down methods called agglomerative and divisive hierarchical
clustering [33]. In this study, we employed agglomerative hierarchical clustering to segment
load curves based on preprocessed features. The agglomerative builds up clusters starting
with a single object as a single cluster and then using distance metric to merge the two most
similar clusters [34]. Repeat until all of the objects are finally merged into a single cluster.
We use “Ward” linkage to compute the distance between the new cluster and the rest of the
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clusters, minimizing the variance of the merged clusters [35]. Ward linkage criterion can be
expressed as follows:

Δ
(
Xi, Xj

)
=

ninj

ni + nj
‖c(Xi)− c

(
Xj
)
‖2 (6)

where c(Xi) is the centroid of cluster i, ni denotes the number of points in cluster i.

Figure 8. Elbow method estimated by distortion.

Figure 9. Elbow method estimated by Calinski–Harabasz.

389



Energies 2022, 15, 1350

Figure 10 depicts the Ward linkage truncated dendrogram which present a tree struc-
ture to vasualize the clusters and the number belonged each cluster. Ward’s method
dendrogram displays the clustering structure of the data. The numerical data in Figure 10
means the distance between different cluster centers which is calculated by Equation (6).
The black dashed line represents the distance threshold which is 50. In addition, we com-
bined the Calinski–Harabasz index with dendrogram to determine the optimal number of
clusters (Table 1). According to the result, it can be confirmed that when K changes from 2
to 3, the Calinski–Harabasz index increases rapidly and then gradually increases thereafter.
The Calinski–Harabasz index and dendrogram indicate that three is the optimal number
for the value of K.

Figure 10. Agglomerative clustering dendrogram using Ward linkage.

Table 1. Calinski–Harabasz Index of agglomerative clustering.

Cluster(K) Calinski–Harabasz Index

2 13,409.27
3 18,170.62
4 18,235.64
5 18,414.97
6 19,879.79
7 19,482.06
8 19,626.11
9 19,368.50

4.4.3. Fuzzy c-Means Clustering

The fuzzy c-means (FCM) algorithm is one of the soft clustering algorithms, also
known as “soft K-means,” where each data object can belong to multiple clusters. The
fuzzy c-means algorithm has been widely used in many applications, such as consumer
behavior and market segmentation [36]. FCM aims to minimize the objective function, as
follows:

Jm =
N

∑
i=1

C

∑
j=1

um
ij ‖xi − cj‖2 (7)
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where m is the fuzziness parameter in the range of [1,+∞), uij is the degree of membership
of xi in cluster j, cj is the centroid of cluster j. The membership degree and cluster center
will be updated iteratively until the objective function value is smaller than the error. The
cluster center cj and membership degree uij and can be obtained as follows:

cj =
∑N

i=1 um
ij xi

∑N
i=1 um

ij
(8)

uij =
1

∑C
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(9)

The algorithm comprises the following steps:
Step 1: Determine the number of clusters, fuzziness parameter m and the error ε.

Step 2: Initialize the membership matrix U[0] using
c
∑

j=1
μj(xi) = 1.

Step 3: At k step, compute the centroid ck with equation (8).
Step 4: Update the new membership matrix U[k], U[k+1] with Equation (9).
Step 5: If ‖U[k+1] − U[k]‖ < ε, stop, else, return to step 3.
The main advantage of FCM is its suitability for overlapped data, its scalability and

simplicity, and accuracy. However, the time complexity of fuzzy c-means is more than
k-means. In our study, we selected the fuzziness index and error ε by grid search. The
optimal fuzziness index was determined as m = 1.25, and the error as ε = 1 × 10−5. Figure 11
shows the clustering result based on three principal components. The points from Cluster 1
and Cluster 2 are relatively compact, but Cluster 3 is more dispersed.

Figure 11. Clustering result with FCM applied when c is set to 3.
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5. Experiment Results and Analysis

In the clustering phase, we employed three different clustering algorithms to seg-
ment different daily load curves. Considering the diversity of clustering performance
evaluations, we selected three indices for validation, namely the silhouette coefficient,
Calinski–Harabasz index, and Davies–Bouldin index (DBI) [37], which are internal cluster-
ing criteria. The Calinski–Harabasz index has been described in Section 4. The silhouette
coefficient combines cohesion and separation. Cohesion indicates the similarity of points in
the same cluster. On the contrary, separation indicates the object compared to other clusters.
Specifically, the silhouette coefficient is calculated as follows:

SC =
b(i)− a(i)

max{a(i), b(i)} (10)

where a(i) indicates that cohesion is the mean distance between a sample and all other
points in the same cluster, and b(i) is the minimum value of the mean distance between an
object and all other objects in the nearest cluster, then, the equations of a(i) and b(i) are as
follows:

a(i) =
1

|Ci| − 1 ∑
j∈Ci ,i 
=j

d(i, j) (11)

b(i) = min
k 
=i

1
|Ck| ∑

j∈Ck

d(i, j) (12)

The value of silhouette is in the range of [−1,1]. If the silhouette coefficient is close to
1, it means that the model is suitable; a negative value indicates incorrect clustering. Higher
values of the silhouette coefficient imply that the model clustered well. Davies–Bouldin
index measures the average similarity between clusters, where the similarity compares
the distance between clusters with the size of the clusters themselves. For a given set of
clusters C = {c1, c2, . . . , ck}, ci is the most similar with cj. Davies–Bouldin index is defined
as follows:

DB =
1
k

k

∑
i=1

max
i 
=j

si + sj

dij
(13)

where k is the cluster number, si is the average distance between all objects in cluster i and
cluster i centroid, dij is the distance between ith and jth cluster centroids. The smaller value
of the Davies–Bouldin index implies that the clusters are separated properly.

We compared our proposed method with the original clustering algorithm without
reducing the dimension. Table 2 compares the three clustering results, presented by
calculating cluster validity indexes. The name of clustering methods that include ‘Original’
denotes the daily load data without reducing dimensionality. N denotes that the daily load
data were normalized by min–max normalization to rescale the data to fit in the range 0 to
1. Generally, normalizing the data before clustering could ignore the distance difference
between different variables. Equation (14) presents the formula for min–max normalization,
as follows:

x′ =
x − min(x)

max(x)− min(x)
(14)

According to the evaluation index, our wavelet-based preprocessing method slightly
improves clustering performance compared to the original method. However, the per-
formance of wavelet-based hierarchical clustering is better than hierarchical clustering
without dimensionality reduction. Compared with the three wavelet-based clustering
algorithms, the performance of k-means and FCM were similar, the silhouette coefficient
and Davies–Bouldin index of FCM were better than k-means. For hierarchical clustering,
the silhouette coefficient is the best, but the other two indices are worse than those of
k-means and FCM. In addition, the proposed method significantly saves the computation
time by dimensionality reduction.
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Table 2. Clustering evaluation comparison results of the proposed methods.

Methods SC CH DBI

Wavelet based
K-means 0.5101 13,643.7 0.7741

Wavelet based HC 0.5351 12,795.9 0.7909
Wavelet based FCM 0.5105 13,642.4 0.7736

Original_N_K-means 0.5103 13,642.4 0.7758
Original_N_HC 0.4105 11,431.5 0.8367

Original_N_FCM 0.5058 13,609.7 0.7759
Note: SC is Silhouette Coefficient, CH is Calinski–Harabasz Index, and DBI is Davies–Bouldin index. The larger
the SC and CH values, the better. Conversely, the smaller the DBI values, the better.

Based on our comparison, we adopt the wavelet-based fuzzy c-means method. In
three clusters, the first, second, and third clusters represent 66.54%, 26.84%, and 6.62% of
the daily load curves, respectively. Figure 12 shows the load patterns of the three clusters
and daily load curves. Cluster 1 and 3 represent the lowest and highest power consumption,
respectively. In each cluster figure, the bold red line represents the representative load
pattern, while the other curves represent the daily power usage in the cluster. Cluster 1
contains 6297 daily load curves, with stable power consumption; the average power usage
and average peak power were 0.187 kW and 0.438 kW, respectively. Cluster 2 contains
2540 daily load curves; the average power usage and average peak power were 0.517 kW
and 1.056 kW, respectively. Cluster 3 is composed of 627 daily load curves, which is the
highest power usage group and has the highest variability. For Cluster 3, the average power
usage and average peak power were 1.212 kW and 2.209 kW, respectively.

Figure 13 illustrates the average daily power usage box and whisker plot of three clus-
ters. Boxplot could present data distribution based on a five-number summary, including
minimum, first quartile, median, third quartile and maximum. There are some outliers
(data point in Figure 13) in cluster 2, while in cluster 3, many outliers fall beyond the
maximum value. As the power usage increases from cluster 1 to 3, the variation in power
also increases. The standard deviation of cluster 1 is 0.0829 kW, cluster 2 is 0.1329 kW, and
cluster 3 is 0.3193 kW.

Figure 14 shows the average power load pattern in four seasons of three clusters. It
appears that the three clusters have similar power usage characteristics in the four seasons,
i.e., the average power usage valley and peak at the same time every season, around 4 am
and 8 pm, respectively. Moreover, the household generally needs to use air conditioners to
control the indoor temperature during the summer; therefore, electricity usage is higher.
The winter consumption in the three clusters is less than that of the summer, insinuating
that most apartments have installed a heating system that is not taken into account in the
electricity data. Looking at all four seasons, electricity demand is stably required between
8 am and 2 pm in Cluster 1 (a) and Cluster 2 (b). The section that consumes the most power
is Cluster 3, and it can be seen that the power demand increases over time during the same
period.
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Figure 12. Daily load curves and load patterns of each cluster, (a) low load consumption group,
(b) middle load consumption group, and (c) high load consumption and instability group.

Figure 13. Box and whisker plot of average daily power (kW) usage in three clusters.
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Figure 14. Seasonal average load patterns in three clusters, (a) low load consumption group, (b) mid-
dle load consumption group, and (c) high load consumption and instability group in four seasons.
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6. Conclusions

High-frequency smart meters have been broadly deployed for collecting electricity
data. Our proposed method implements discrete wavelet transform to convert time-domain
data to frequency domain. We extracted detailed and approximate signals using a statistical
approach, then used Pearson’s correlation coefficients to filter the high correlation features.
To further reduce dimensionality, we applied PCA to preserve three features. The rest of the
three features were used to achieve the clustering algorithm. Our study aimed at obtaining
the representative load patterns from high time resolution daily load curves in Manhattan.
Our method reduces the large dimensions to increase efficiency in clustering. In addition,
it improves the clustering result slightly by estimating the silhouette coefficient, Calinski–
Harabasz index, and Davies–Bouldin index, then comparing the clustering without discrete
wavelet transform. From representative load patterns, the utility policymaker could design
a reasonable demand response scheme to maintain the power system stability and help
the utility maximize the profit and even reduce consumers’ electricity fees. Based on
Figure 14, policymakers could design three different advanced time of use tariffs, according
to electricity consumption volume and representitive load curves from the three clusters.
To each cluster, the electricity demand increases apparently from 4 pm to 8 pm, which could
influence the power system stability. It means the appropriate DR scheme is significant
during this period, such as load shifting/shedding. For future work, we suggest exploring
the sub-cluster from the previous clusters to get more detailed load patterns based on our
method.
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Abstract: Algeria is characterized by extreme cold in winter and high heat and humidity in summer.
This leads to an increase in the use of electrical appliances, which has a negative impact on electrical
energy consumption and its high costs, especially with the high price of electricity in Algeria. In this
context, artificial intelligence can help to regulate the daily consumption of electricity, by optimizing
the exploitation of natural resources and alerting the individual to avoid energy wasting. This paper
proposes a decision-making tool (IRRHEM) for managing electrical energy at smart home. The
IRRHEM solution is based on three elements: the use of natural resources, the notification of the
inhabitants in case of resources misuse or wasting behavior, and the aggregation of similar activities
at same time. Additionally, based on the proposed intelligent reasoning rules, residents’ behavior
and activities are represented by OWL (Ontology Web Language) and written and executed through
SWRL (Semantic Web Rule Language). Finally, the (IRRHEM) solution is tested in a home located in
Algiers city inhabited by a family of four persons. The IRRHEM performance evaluation results are
very promising and show a 3.60% rate of energy saving.

Keywords: decision-making tool; intelligent reasoning rules; energy saving; energy domain ontology;
smart home; protégé software; ontology web language; semantic web rule language

1. Introduction

A smart home allows its residents to control and manage the different home appliances
through the Internet [1]. The first developments in home automation appeared in the 1980s
thanks to the reduction of electronic and computer systems [2]. Therefore, the industry has
focused its experiments on the development of controllers, interfaces, and tools providing
comfort, security, and assistance within a building. Additionally, smart home management
systems use several technologies, such as the IoT, cloud computing, Internet, GSM, and
GPRS [3,4]. With a smart home, the indoor and outdoor surroundings of the dwelling
can be monitored remotely. Recently, thanks to smartphones and the development of new
technologies (for instance, apps and connected devices), the installation of smart homes
becomes easier as all electrical devices are connected through the Internet.

The term smart energy management has spread in recent years and it is associated
with several aspects of life, such as heating, cooling, and lighting systems [5]. This type
of management aims to save daily energy consumption through the use of AIT, such as
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MAS, and knowledge representation techniques, such as ontology [6–8]. Generally “energy
efficiency” is achieved by putting devices into sleep mode or by activating them only when
necessary. Electricity bills can be reduced to a much lower level, such as turning off lights
when a person can leave the room or adjusting a temperature according to a person’s
identity or preference. In addition, it becomes possible to track the amount of energy
consumed by various appliances at home and obtain forecasts for the future [9]. However,
the issue of electric energy has become a priority in most countries due to the increasing
need for energy in daily life, as a lot of research has been conducted to find suitable energy
management solutions [10]. Some of them have worked to find solutions for energy sources
that depend on clean energy sources, such as solar and wind energy [11]. Other research
works have taken an interest in moving electricity from the source to the place of storage or
consumption, seeking to find the shortest and least wasted electricity distance [12]. Djamel
Saba et al. [13] focused on the consumption process by explaining to consumers how to use
home appliances, as well as relying on smart solutions for energy consumption.

From an architectural point of view, there are many methods by which we can save
more energy at home, whether by insulating the walls and floors, as this process can
reduce between 20% and 25% of the heat loss at home [14]. The second method is to use
double-glazed windows, as the windows are a major source of heat loss and savings. The
third method relates to the use of a shared solar system for heating the water and the house.

In this paper, we focus on the development of an intelligent energy management
solution applied to the smart home. This latter is an open and complex system, it includes
some geographically distributed elements. In addition, the proposed solution is based
on three elements: the first concerns the exploitation of natural resources, the second
concerns the correction of occupants’ errors and notification of occupants, and the third
item concerns the grouping of similar activities at the same period. More precisely, the main
contribution of this paper can be summarized in developing a smart solution to choose
the most efficient energy sources as well as the best optimization technique that allows
obtaining the best configuration of the hybrid energy system.

The remainder of this document includes the energy-saving elements at home in
Section 2. Section 3 is reserved to present an IRRHEM design and development. The case
study and its simulation are presented in Section 4, followed by the analysis and discussion
in Section 5, and, finally, we conclude the paper.

2. IRRHEM Design and Development

In this section, we present the design, the development, and the scenarios on the
simulated environment of our IRRHEM proposed method. We begin with a presentation of
the used method, followed by a study of the work environment. The results of this study
will be used to develop the main elements of ontology (for instance, concepts, relations,
and rules of reasoning). The following steps are reserved for editing the ontological data,
testing, and validating the ontology. This section ends with the presentation of the scenarios
of the simulation of the solution and the display of the results.

2.1. Method Principle

Using the aforementioned elements, such as the building materials or specific electrical
devices, energy savings can be obtained, but they remain insufficient, whether due to the
random operation of the devices or to errors made by residents. Therefore, it is very
important to include automatic or smart solutions to achieve more energy savings. In this
context, this research work proposes an intelligent solution based on the ontology of energy
and intelligent reasoning rules. Through the interaction between intelligent reasoning rules
and the use of information stored in the knowledge base in the form of concepts (objects).
It is possible to regulate the use of household appliances, as well as to make the best use of
natural resources. Finally, the home occupants can be alerted to organize simultaneously
similar activities. To achieve the main objective, which is the ideal saving of electrical
energy consumption, a method has been developed, which includes many steps (Figure 1):
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Figure 1. The proposed IRRHEM method.

2.2. Work Environment Study

In this study, the internal environment of the home is affected by many negative
aspects that have a direct relationship with the residents, in particular:

χ Random setting of the electric air conditioner;
χ Leaving the water heater on continuously without setting the timer at night to use it

in the morning;
χ Not turning off lights when they are not needed, and not using natural light instead

of electricity (at specific times of the day);
χ Not unplugging electrical devices when not in use;
χ Not exploiting renewable energy resources;
χ Not using the refrigerator efficiently to avoid wasting electricity, for example, by

avoiding continuously opening and closing it so that cold air does not escape;
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χ Not using electric ovens correctly, for example, opening the oven door several times
to check the cooking level. It should also be noted that not using utensils that are the
same size as the stove, results in heat loss. Finally, a common mistake is not turning off
the stove minutes before the end of cooking, although the residual heat after turning
it off may be sufficient to complete the food cooking;

χ Putting hot food in the refrigerator causes an increase in energy consumption;
χ Keeping a lot of leftover food in the refrigerator may lead to an increase in power

consumption;
χ Cooking food without a “pot” lid, which increases the cooking time and therefore

increases the amount of electrical energy consumed;
χ Using the microwave to boil water instead of an electric kettle, although the first

appliance consumes a greater amount of electrical energy compared to the second
appliance;

χ Using the electric cooker instead of the electric kettle because the cooker needs time
to heat up also the cooker stays hot for up to twenty minutes even after the task is
completed and it is a waste of energy;

χ Failure to use modern electrical devices that do not require a lot of electrical energy
during their operation, as well as not consulting the technical side when purchasing
electrical devices (for example, not reading the label of the device, which explains its
classification in terms of consumption and energy efficiency);

χ Frequent use of the hot water cycle and not choosing the cold water cycle over hot
water (for example, uncertainty as to operating dishwashers at full capacity);

χ Not changing the air conditioning filters, because the accumulation of dust in the
filters causes the air conditioner to work twice as hard to push in cold air, and therefore
the consumption of a greater quantity of electric energy;

χ Not using LED bulbs that consume less energy;
χ Operating a clothes dryer instead of drying clothes with natural air and sun, which

leads to the additional consumption of electrical energy;
χ Opening the curtains when the air conditioner is on, causing heat to spread in the

room, resulting in an increase in work for the air conditioner and therefore higher
energy consumption;

χ Increasing the temperature of the washing machine, although heating the water does
not significantly affect the cleanliness of the clothes;

χ Failure to reduce the brightness of the TV screen, which may cause the TV to consume
more electricity;

χ Not using thermal insulation in buildings;
χ Failure to group similar activities at the same time, which causes additional uses of

electrical devices and thus the additional consumption of electrical energy;
χ Not using modern technologies to run the house and energy in particular, such as

artificial intelligence techniques, knowledge capitalization tools, and rules-based
reasoning tools linked to resident behavior.

After analyzing and studying previous work, the following propositions can be sug-
gested:

� Air conditioning accounts for about half of the electrical energy consumption in
homes. It should be remembered that 24 degrees Celsius is the perfect temperature to
balance comfort and energy saving at home [15]. In addition, it is necessary to ensure
that the air conditioning system is working efficiently;

� Instead of letting the water heater run constantly, it is better to turn it on only half an
hour before showering, or set the automatic timer switch to heat the water at night, so
that the water is ready in the morning [16];

� Individuals should have an awareness of turning off the lights at home when they
do not need them. It is also better to replace traditional lamps with modern ones; of
course, it is preferable to use natural light rather than bulbs [17];
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� Freezers and refrigerators must be used efficiently to avoid wasting electricity by
avoiding the constant opening and closing of the refrigerator door so that the cold air
does not escape;

� The process of opening the oven door several times to check the cooking stage of the
food results in heat escaping from inside the oven. When cooking on the stovetop, it
is recommended to use pots of the same size as the stovetop to retain heat. It is also
a good idea to reduce the heat so that the food is cooked evenly on all sides and the
utensils do not burn. Finally, the stove can be turned off a few minutes before the
food is fully cooked, as the heat will continue to cook the food for a while after being
turned off;

� It is important to make sure to buy electrical appliances with low power consumption,
and they usually carry the consumption class “A” or “A+”, because these appliances
are energy efficient [18];

� Dishwashers use the most energy in a home, so it is important to make sure they are
at a full capacity before operating them. It is recommended to not use the hot water
cycle and to opt for the cold water cycle. Additionally, it is recommended to use the
eco cycle option if the devices are equipped with this function;

� The use of thermal insulation in buildings, where studies have shown in this regard
that the use of insulation in walls and balconies can save up to 60% of electricity, in
particular in very hot regions;

� Use of high-efficiency air conditioning systems [19];
� Avoid continuously opening the refrigerator or freezer during the day;
� Closing the blinds when the air conditioner is operating state;
� Avoid opening the lid of the “pot” while cooking food;
� Disconnecting electrical appliances when not in use;
� It is better to use the electric kettle instead of the microwave;
� Avoid leaving the oven door open, because leaving the oven door open during cooking

leads to 50% more loss of electricity cooking;
� It is not necessary to increase the temperature of the washing machine since heating

the water practically does not affect the cleanliness of the clothes. It is best if the
temperature is between 30 and 40 degrees Celsius, which saves a lot of energy that
the washer uses to heat the water [20];

� It is important to reduce the brightness of the TV screen, where it is possible to reduce
the brightness of the image without affecting its quality. In addition, the bigger the
TV screen, the more electricity it consumes, and the lower the picture brightness, the
less the energy consumption;

� Take care to cook with the lid on the pot, as this helps reduce energy consumption. In
addition, the size of the utensils used should also be suitable for the size of the meal
being cooked;

� Making sure that the cooling degree of the food in the refrigerator is not more than
7 degrees Celsius and the cooling temperature in the freezer is not more than
18 degrees Celsius [21]. It is also recommended to place these devices in a cool
place and avoid placing them next to the oven, dishwasher, or heating devices.

All these proposals are really interesting to achieve energy savings without neglecting
the comfort of the inhabitants. However, there are other issues related to the characteristics
of forgetfulness and neglect that characterize the individual, which make the implementa-
tion of the above suggestions really difficult. On this basis, a suggestion was presented to
develop automatic (semi-automatic) and intelligent solutions, and conducted to ensure the
completion of the previous proposals. The proposed work is an intelligent solution based
on the ontology of energy management. This choice is justifiable due to the nature of the
system that is open, complex, and distributed. Then, the system concerned by this study is
characterized by a significant informational volume that requires flexibility in the presenta-
tion of knowledge of the ontology web language (OWL), which will be exploited to create
intelligent reasoning using the semantic web rules language (SWRL). The ontology carried
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out is applied to a house located in the city of Algiers. Finally, following a comparison
between two scenarios of energy consumption, the solution shows their importance from
the efficient energy saving viewpoint.

2.3. IRRHEM Architecture

IRRHEM offers an intelligent techniques energy management system based on an
Intelligent Context-Awareness Management (Intelligent-CAM). Intelligent-CAM uses con-
textual awareness ontology and intelligent reasoning to provide contextual information to
simulate the behaviors of a population and its surroundings.

From an architectural point of view, the architecture for the IRRHEM system is pro-
posed (Figure 2). IRRHEM is capable of better controlling the home environment (occu-
pants, equipment, and environment), all this is to ensure the main objective that concerns
energy optimization. Then, to obtain correct information and make appropriate decisions
about current situations, the Intelligent-CAM detects various situations related to the home
and its surroundings to provide full Context-Awareness to obtain the minimum number of
personnel interventions, as well as avoiding the wastage of energy. Finally, the structure of
the proposed solution is formed into seven models, namely:

2.3.1. Data Aggregate Model

This unit receives data from devices and sensors, such as temperature sensors and
lights. Moreover, it is responsible for modifying the environmental conditions by sending a
command to the operator’s infrastructures, such as the switch or any existing services. This
unit then sends the data collected from the smart building to the Intelligent-CAM model
for processing.

2.3.2. Intelligent CAM Model

This module provides Context-Awareness about what is happening in the smart
home. This Context-Awareness is useful for energy efficiency inference techniques to
provide the best services at the right time and place. Intelligent-CAM is responsible for
managing the Context lifecycle in the IRRHEM system. The context life cycle consists of
five phases. The first is “Context acquisition”, where contexts need to be obtained from
different sources, which may be physical (e.g., physical sensors) or virtual (e.g., virtual
sensors and software). The second is “Context-Awareness Constructor”, where the collected
data must be modeled and represented in a meaningful way. In this section, the ontology
technique is used. The third is the “Temporal Context”, in which the typical contexts
are preprocessed. This step improves the thinking stage and leads to a better result. The
fourth is “Context reasoning”, where the modeled data needs to be processed to extract
new information and generate high-level context information from low-level contextual
data. Finally, the “Context dissemination” distributes high- and low-level content text
to interested consumers (such as, energy-saving logical engines, user interfaces, or any
external services).

2.3.3. Energy Reasoning Engine Model

This is the part of the system that generates conclusions and decisions from the
available knowledge about the smart building, and plays an important role in implementing
the proposed solution by discovering the causes and contexts of energy waste using a set
of smart reasoning rules (presented in the next sections). The first step for this unit is to
arrange the positions in descending order. The benefit of this arrangement lies in dealing
with the most important and most wasted states of energy. It also provides measures
to save energy and eliminate energy waste by using SWRL rules, where those rules are
represented as conditional logic. Rulesets can also be managed and applied separately to
other functions, and each parent clause association rule can be linked to a list of executable
actions.
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Figure 2. Architecture of IRRHEM.

2.3.4. Intelligent home Ontology Model

Ontology is one of the best tools for representing the field of knowledge, particularly
in the management of energy in homes. Many works have been interested in this field,
the most important of which are the works of Degha et al., most of which, in their en-
tirety, suggest a structural framework for organizing smart building data [22]. It includes
machine-interpretable definitions of the basic concepts of the smart building field and the
relationships between them. These works include an important number of concepts, namely
human, environment, services, devices, places and Context-Awareness. The ontology-based
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formal context model can play a vital role in facilitating reasoning by representing the
knowledge of the home energy domain. The Semantic Web Rules Language (SWRL) is used,
where the rules are applied for different purposes; in addition, the Web Ontology Language
(OWL) is used to represent concepts, properties, and relationships. The names of concepts
and relationships taken from the ontology (described in detail in the Sections 2.4–2.6) are
represented.

2.3.5. Energy Home Database Model

A database is a systematic collection of data to support electronic storage and data
processing, and to make data management easier. In this paper, a central database was used
to store information about the building, such as hardware statistics, climate information, or
any events that occur inside the building. It provides different ways to access the data and
history, and it is used to automatically provide services if the same situation is repeated.

2.3.6. IRRHEM Interface Model:

A user interface module is used to interact with users and exchange information. The
goal of the user interface design is the ease of use in operating a device or software to
achieve the desired result. This generally means that the operator must provide minimum
inputs to achieve the desired output in the form of notifications and feedback, and this
interface can be a web-based application or the smartphone application.

2.3.7. Home Environment Model

The home environment is a space consisting of a group of objects and programs that
interact with each other (for instance, occupants, sensors, actuators, and appliances). The
creation of this environment and the selection of its components are carried out according to
systematic studies to achieve certain goals, such as saving energy. In general, the elements
of this environment belong to the passive category related to constructions and the active
category, which pertain to the programs and solutions that apply to the first category of
objects.

2.4. IRRHEM Concepts Presentation

An ontology is a formal and explicit representation of knowledge in a given domain
(e.g., the home environment), with the aim of efficiently using the data and ensuring
flexibility in the sharing and updating of ontologies [23,24]. However, a concept (classes) is
the basic element for an ontology; it represents a hardware or software object of the studied
environment.

2.4.1. “Call” Concept

There are many similar individuals’ activities that can be grouped in a single time (for
example, eating meals), so that there is the joint use of devices that consume electricity, and
thus benefit from an important energy saving method. It is only a reminder that the process
of grouping activities can be carried out without neglecting the comfort of the residents. To
ensure the latter, it is necessary to first collect the activities in a unified and short time, and
if this process causes harm to an individual, the time is expanded to be slightly longer and
therefore electricity consumption can also be obtained, but in a smaller amount than in the
first case (Figure 3).

2.4.2. “Sensor” Concept

The “sensor” concept is an essential element of the IRRHEM ontology; it detects the
information coming from the physical environment and reacts to it. The information cap-
tured can be light, heat, movement, humidity, pressure, or other environmental phenomena
(Figure 4). The output is typically a signal that is converted to an operator-readable display
at the location of the sensor, or transmitted electronically over a network for reading or
processing.
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Figure 3. Impact of the introduction of the “Call” concept in IRRHEM.

2.4.3. Other Concepts

The ontology model includes any hierarchy of concepts rooted in the “Home” concept,
which represents the residential environment. The model also includes disjoint secondary
hierarchies describing the categorizations of subdomain objects of the application domain
(such as, sensor, equipment, and activities) (Table 1).

Table 1. IRRHEM concepts.

Concept Description

Home Represents the place of residence
Resident Represents the home resident
TaskResident Represents the resident task
EquipmentHome Represents the electrical equipment
ActionEquipment Represents an action performed by the equipment
BehaviorResident Represents the resident behavior
WeatherHomeEnvironment Represents the climate that characterizes a home environment
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Figure 4. “Sensor” concept architecture in IRRHEM.

2.5. Attributes for IRRHEM Concepts

The attributes or properties are the functionalities, characteristics, or settings that
objects can own and share [25]. Each IRRHEM concept includes a set of attributes (Table 2).

Table 2. Some examples of the attributes for IRRHEM concepts.

Attribute Description Concept

ResidentName Resident name Resident
ResidentProfile Resident profile Resident
EquipmentAction Actions of equipment EquipmentHome
EquipmentPlace Place of equipment EquipmentHome

2.6. IRRHEM Relations

Relationships are the links that objects can have with each other [6]. An ontological
relation (hierarchical or descriptive) is a relation linking ontological concepts, constructed
from termino-ontological relations, and described in a formal language. A hierarchical
relationship expresses an inheritance of the properties of the concept (Table 3).

Table 3. Some examples for IRRHEM relationships.

Relation Description Related Concepts

ResidenttHasTask Everyone at home performs activities Resident, TaskResident
ResidentHasProfil Home resident possesses a profile Resident, ProfileResident

EquipmentHasAction Equipment can perform actions EquipmentHome,
ActionEquipment

EquipmentHasPlace Equipment is located in place the of the
home

EquipmentHome,
PlaceEquipment
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2.7. IRRHEM Instances

The use of ontology will depend on the ability to reason about individuals [26]. To
achieve this in a beneficial manner, it is necessary to have a mechanism for describing the
classes to which individuals belong and the properties they inherit due to their membership
in these classes. We can always assert specific properties about individuals, but the great
strength of ontologies lies in class-based reasoning. Finally, the extension of the class is the
set of individual members of a class (Table 4).

Table 4. Some examples for IRRHEM individuals (instances).

Individual Concept

TV EquipmentHome
Refrigerator EquipmentHome
Living room Place
Breakfast TaskResident

2.8. Intelligent Reasoning of IRRHEM

Regardless of the tools, their formalisms, or methods of inference, knowledge-based
systems, such as expert systems, are based on a clear separation between knowledge and
methods of inference [27]. Thus knowledge, instead of being nested in the structure of the
program (such as, the “if . . . then . . . else . . . ” commands of a programming language), is
considered as interchangeable data, susceptible to change [28]. It can be corrected, updated,
and exploited by programs (inference engines), which simulate reasoning mechanisms
and provide the interface with users [29]. Then, in any knowledge-based system or expert
system, the following components will be found at the base:

• The knowledge base is domain-specific and, unlike databases, is not limited to factual
knowledge, or data [30]. It brings together all the types of knowledge relevant to
the domain considered, namely, the description of objects and their relationships (for
example, in the form of ontology), rules to be applied to make a diagnosis or solve a
problem, and meta-knowledge making it possible to choose which rules apply.

• The system remains at all times, in its working memory, a base of known facts (or
instances of ontology). Thanks to it, the inference engine can choose the elements of
its knowledge base, for example, the rules to be used effeciently and according to the
facts available, and adapted to the problem posed [31]. The fact base grows as the
inference engine infers new facts by applying knowledge to the already known facts.

• The inference engine is the program that builds reasoning by drawing its materials
from the knowledge base and the fact base. By examining the fact base, it detects
interesting knowledge that can be applied to certain facts, connects them, and builds
a resolution plan. It deduces new facts from those provided at the start or during
the interaction by the user. Independent of the domain, the inference engine brings
together the reasoning mechanisms that will exploit the knowledge base.

• To these three essential components are added the interface modules, which are also
independent of the field of knowledge. Thanks to them, the expert can easily access
the knowledge base, modify it by correcting unnecessary or erroneous information, or
by adding precision. The user can follow the reasoning of the system in a language
that is natural to him, ask questions, and ask for explanations, without having to
acquire in-depth knowledge of expert systems or computing [32].

IRRHEM is based on intelligent reasoning rules formulated by predicate logic and
facts, whereby all the rules are loaded for the accomplishment of the tasks (Figures 5–7).

• Rule 1 (R1) is concerned with adjusting the temperature in a specific place at home
according to the wishes and the desires of residents. The use of this rule allows the
cooling to stop when the temperature becomes less than 28 degrees Celsius.
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• Rule 2 (R2) is concerned with adjusting the temperature in a specific place at home
according to the residents’ desire. The use of this rule allows for the heating system to
be stopped when the temperature becomes greater than 29 degrees Celsius.

• Rule 3 (R3) is concerned with adjusting the lighting of a specific place inside the home
to benefit from the external lighting, and thus turning off the lamps lead to the gain of
a large amount of energy. However, by measuring the internal lighting, estimated at
(10), and the external lighting, rated at (50), where we notice strong lighting outside,
can be used by opening the windows and curtains.

• For rule 4 (R4), in many cases, the light bulbs are left on despite the absence of people
from the home. This rule turns off all the light bulbs, except for the refrigerator,
because it contains food items, and a home security camera.

• Rule 5 (R5) is concerned with correcting some negative traits of individuals, such as
forgetfulness or neglect. For example, in many cases, electrical appliances are left
to operate despite the absence of individuals from the home. In this instance, when
people are absent from the home, this rule turns off all the electrical appliances, except
for the refrigerator, because it contains food items, and a home protection camera.

• Rule 6 (R6) allows the temperature of a particular place in the house to be adapted
according to the wishes of the inhabitant.

• Rule 7 (R7) is related to the process of grouping similar activities of the individuals. In
this example, the activity of the individual that takes the least time (50 min) is chosen.

Figure 5. Rules 1–3.

2.9. Ontological Data Editing

In computer science, ontology is a technical term that denotes an artefact designed
to be able to model the knowledge of a real or imaginary domain [33]. One of the first
objectives of developing ontology is to share the same understanding of the structure of
information between people. There are different reasons why it is necessary to develop
ontology [34]:

• Allow the reuse of knowledge in a field;
• Make explicit the hypotheses of a domain;
• Separate domain knowledge from operational knowledge;
• Analyze the knowledge of a domain;
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• Facilitate the interoperability between two systems;
• Ensure the reliability of knowledge;
• Facilitate the communication between users.

Figure 6. Rule 4 and Rule 5.

Figure 7. Rule 6 and Rule 7.

There are many free editors, such as Protégé 3.5, SWOOP, Ontolingua, KMgen, IsaViz,
and DOE. In this category of publishers, the best known and the most used is Protégé. It is
an open-source tool developed by Stanford University [35]. Since its first version, it has
significantly evolved and continues to evolve rapidly (Figure 8).

The “Protégé” software is employed to edit and read the “IRRHEM” ontology, where
all hierarchical categories are created for each concept with its properties and relationships.
Intelligent thinking rules are also an important part of implementing the proposed solution,
as additional components are used, such as SWRLTab for Protégé 3.5, which provides the
SWRL and SQWRL rule execution environment [36]. The next step is to use the debugger
in “Protégé” to check the correctness and consistency of the information entered in the
previous stages. In addition to that, we relied on previous ontology solutions, through the
process of importing them, which allowed us to save a lot of time and effort. Finally, the
language “JAVA”, can be used to develop IRRHEM modules.
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Figure 8. Editor “Protégé” graphical interfaces.

In the first step, the concepts of IRRHEM are introduced. The following steps concern
editing the relationships and instances. The final step concerns the editing of the intelligent
reasoning rules.

3. Case Study and Simulation

It is important to present the elements that are directly related to the consumption of
electrical energy in a home, such as climatic data, household appliances, and the activities
of residents. Then, to know the importance of the proposed solution (IRRHEM), two energy
consumption scenarios are presented (with and without the intervention of the proposed
solution).

3.1. Presentation of the IRRHEM Environment

The energy consumption scenarios were carried out on a family house located in the
city of Algiers in Algeria. Algiers is located in the north-center of the country and occupies
an interesting geostrategic position, both from the point of view of economic flows and
exchanges with the rest of the world, and from a geopolitical point of view. It extends over
more than 809 km2. The city of Algiers is bounded to the north by the Mediterranean Sea
with a coastline of 80 km, to the south by the Blida city, and to the west and east by the
cities of Tipaza and Boumerdes, respectively [37] (Figure 9). It is characterized by a latitude
of 36◦45′08” N, a longitude of 3◦02′31” E, and an elevation above sea level of 186 m. The
home in the study was inhabited by a family of four members (a father, mother, boy, and
girl) (Table 5).
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Figure 9. Geographic map of Algiers city [38].

The climate in Algiers is warm and temperate. In winter, the rains are much more
important in the city of Algiers than they are in summer. The annual average temperature
in the city of Algiers is 18.2 ◦C. The mean annual precipitation is 615 mm. The driest
month is July, with an average of 1 mm of rain. In addition, the record precipitation level is
recorded in November with an average of 94 mm of rain. The warmest month of the year is
August with an average temperature of 26.7 ◦C. The coldest month of the year is January
with an average temperature of 11.0 ◦C. The difference in precipitation between the driest
and wettest months is 93 mm. A variation of 15.7 ◦C is recorded over the year [39].

The family home contains a set of appliances that depend on electrical energy to
operate. Table 6 presents a number of electrical appliances, their electricity consumption
characteristics, and their location.

3.2. IRRHEM Scenarios

To know the effectiveness of IRRHEM, two scenarios were proposed: the first without
the intervention of IRRHEM (electricity consumption in a normal state) and the second
deals with the electricity consumption with the intervention of IRRHEM. In addition, 1 May
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2020, was selected to test IRRHEM. To measure the amount of energy consumed during
that day, we divided that day into units of time of one hour.

Table 5. Family members concerned with the study.

Family Member Age Function Preference Event/Activity

Father 45 Employee

• 25 ◦C ≤
Temperature ≤
28 ◦C

• Illumination ≥
20 Linux

• Sleeping
• Waking up from sleep
• Going to the bathroom
• Going to the bathroom

Mother 40 Housewife

• 21 ◦C ≤
Temperature ≤
26 ◦C
Illumination ≥
20 Linux

• Sleeping
• Fajr prayer
• Reading the Koran
• House cleaning

Boy 16 High school
student

• 27 ◦C ≤
Temperature ≤
29 ◦C
Illumination ≥
15 Linux

• Sleeping
• At school
• Returning from school

and going to the dining
room

Girl 13
A student in
middle
school

• 27 ◦C ≤
Temperature:
≤ 30 ◦C
Illumination ≥
15 Linux

• Sleeping
• At school
• Going to the kitchen

Table 6. Electrical equipment.

Place Electrical Equipment Number (N) Power (Pap)

Bathroom
Electric water boiler 1 1800
Washing machine 1 240
Economic lamp 2 25

Hall Economic lamp 3 25

Living room
Air conditioner (8000 BTU) 1 900
Economic lamp 3 25
Home internet router 1 7

Kitchen
Refrigerator combi (250 L) 1 175
Economic lamp 2 25
Microwave 1 1125

Garage
Camera 1 20
Electric car 1 3000
Economic lamp 4 25

Room
Air conditioner (6000 BTU) 1 700
Iron 1 800
Economic lamp 2 25

3.2.1. First Scenario (Without IRRHEM Intervention)

The amount of energy consumed is directly related to the activities of family members,
thanks to which it is possible to know the electrical devices used. What distinguishes the
energy consumption in this scenario is the presence of many disadvantages, such as the
non-exploitation of natural resources (e.g., sunlight) as well as the random exploitation of
electrical devices (Tables 7 and 8). Additionally, to calculate the energy consumption (Pap
(W)) by family members over a period (T (hours)), there are mathematical formulas in the
literature such as:

Eap(Wh) = Pap.T (1)
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It is also possible to calculate the energy consumed by a number of devices of the same
type using the following rule:

Eapt(Wh) = Eap.N (2)

The total power is calculated by the following mathematical rule:

Et(Wh) = ∑n
i=1 Eapt(i) (3)

where “i” is the equipment type.
The average values of the climate data in the period from 00 h: 00 m: 00 s to 00 h: 59 m:

59 s are: horizontal radiation (W/m2) 0, temperature 20 ◦C, and humidity 65% [40].
The average values of the climate data in the period from 11 h: 00 m: 00 s to 11 h: 59 m:

59 s are: horizontal radiation (W/m2) 0, temperature 29 ◦C, and humidity 80% [40].

3.2.2. Second Scenario (With IRRHEM Intervention)

Table 9 presents the results related to the IRRHEM intervention. These results are
based on the rules of intelligent thinking.

Table 7. Energy consumption scenario in the period: 01 h: 00 m: 00 s to 01 h: 59 m: 59 s.
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00
h:

00
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:0
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s–
00

h:
59

m
:5

9
s

Father Bedroom Sleeping Nothing Air conditioner
(6000 BTU) 1 60 700 700

22
05

Mother Bedroom Sleeping Nothing

Boy Room 2 Sleeping Nothing Air conditioner
(6000 BTU) 1 60 700 700

Girl Room 3 Sleeping Nothing Air conditioner
(6000 BTU) 1 60 700 700

/ / / / Refrigerator combi
(250 L) 1 60 170 170

/ / / / Camera 1 60 20 20

/ / / / Intercom 1 60 40 40

/ / / / Light (outside) 2 60 25 50

• In the periods from 00 h: 00 min: 00 s to 01 h: 00 min: 00 s and from 01 h: 00 min: 00 s
to 02 h: 00 min: 00 s, there is no activity for all family members, and therefore it is
impossibile to apply the rules of intelligent reasoning (because the execution of the
solution rules is linked mainly to the activity of individuals and the mistakes they
commit).

• In the periods from 05 h: 00 min: 00 s to 06 h: 00 min: 00 s and from 06 h: 00 min: 00 s
to 07 h: 00 min: 00 s, energy savings of 1225 watts and 1341.67 watts, respectively,
were observed through the intervention of rule “R1”, which relates to switching off
refrigeration equipment; rule “R4”, which relates to switching off electrical equipment
(except for the appliances that are necessary to operate constantly, such as refrigerators
and security equipment); rule “R5”, which relates to correcting the mistakes committed
and forgetfulness that characterize the family members of the home in many cases; rule
“R6”, which relates to the process of air-conditioning or heating a room in the home
according to personal choice; and rule “R7”, which relates to the process grouping the
similar activities of the family members.

415



Appl. Sci. 2022, 12, 1861

• From 07 h: 00 min: 00 s to 08 h: 00 min: 00 s, there is an energy-saving amount of
1395 watts, through the intervention of rule “R1”, the turning off of cooling equipment;
rule “R3”, the adjusting of indoor lighting according to the availability of light outside
the home; rule “R4”, the turning off of electrical equipment when a room is absent
of family members; rule “R5”, related to correcting errors and forgetfulness that
characterizes the members of the home; rule “R6”, hich relates to adjusting the air
conditioning according to individual preference; and rule “R7”, which relates to
grouping the similar activities of the members of the home.

• In the periods from 09 h: 00 min: 00 s to 10 h: 00 min: 00 s and from 11 h: 00 min: 00 s
to 12 h: 00 min: 00 s, energy savings of 16.6 watts and 108.33 watts, respectively, were
observed through the intervention of rule “R3”, related to adjusting the lighting of a
place in the home by taking advantage of external light; rule “R4”, related to turning
off electrical equipment (except for some equipment); rule “R5”, related to correcting
some negative characteristics of the family members, such as forgetfulness; and rule
“R7”, regarding the grouping of similar activities of individuals.

• In the periods from 12 h: 00 min: 00 s to 13 h: 00 min: 00 s, 15 h: 00 min: 00 s to
16 h: 00 min: 00 s, 16 h: 00 min: 00 s to 17 h: 00 min: 00 s, 17 h: 00 min: 00 s to
18 h: 00 min: 00 s, and 18 h: 00 min: 00 s to 19 h: 00 min: 00 s, energy-saving figures
of 8.33 watts, 54.17 watts, 66.17 watts, 8.33 watts, and 8.33 watts, respectively, are
observed through the intervention of rule “R3”, which relates to the optimum use of
sunlight for room lighting; rule “R4”, which concerns the switching off of electrical
equipment in the case of the absence of family members in the room; and rule “R5”,
related to correcting some errors committed by the family members, such as operating
some devices without using them, or forgetting about a device that is in use state.

Table 8. Energy consumption scenario in the period: 11 h: 00 m: 00 s to 11 h: 59 m: 59 s.
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11
h:

00
m

:0
0

s–
11

h:
59
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:5

9
s

Father Out of the
house / / / 0 0 0 0

36
7.

50
Mother

Kitchen He is out of the house
(at work) Lunch Light_Kitchen 2 45 25 37.50

Dining
room Going to the kitchen Lunch Light_DiningRoom 2 15 25 12.50

Boy

Dining
room

Returning from school
and going to the

dining room
Lunch Light_DiningRoom 2 10 15 8.33

Room 2 Going to Room 2 Preparation of
homework

Light_Room2 2 15 25 12.50
Laptop 1 35 50 29.17

Girl
Dining
room

Returning from school
and going to the

dining room
Lunch Light_DiningRoom 2 15 25 12.50

Room 3 Going to Room 3 Preparation of
homework Light_Room3 2 30 25 25.00

/ / / / Refrigerator combi
(250 L) 1 60 170 170

/ / / / Camera 1 60 20 20

/ / / / Intercom 1 60 40 40

/ / / / Light (outside) 0 60 25 0
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Table 9. The obtained results using IRRHEM intervention.

Time (h, min, s)
Energy Consumption

without IRRHEM
Intervention (W)

Energy Con-
sumption

with
IRRHEM

Intervention
(W)

Energy
Saved (W)

Rules Used
by IRRHEM

00 h: 00 min: 00 s–01 h:
00 min: 00 s 2380.00 2380.00 0.00 /

01 h: 00 min: 00 s–02 h:
00 min: 00 s 2205.00 2205.00 0.00 /

. . . . . . . . . . . . . . .
05 h: 00 min: 00 s–06 h:

00 min: 00 s 1505.00 280.00 1225.00 R1, R4–R7

06 h: 00 min: 00 s–07 h:
00 min: 00 s 2365.00 1023.33 1341.67 R1, R4–R7

07 h: 00 min: 00 s–08 h:
00 min: 00 s 1625.00 230.00 1395.00 R1, R3–R7

08 h: 00 min: 00 s–09 h:
00 min: 00 s 396. 67 396.67 0.00 /

09 h: 00 min: 00 s–10 h:
00 min: 00 s 1231.67 1215.00 16.67 R3–R5, R7

10 h: 00 min: 00 s–11 h:
00 min: 00 s 535.00 535.00 0.00 /

11 h: 00 min: 00 s–12 h:
00 min: 00 s 367.50 259.17 108.33 R3–R5, R7

12 h: 00 min: 00 s–13 h:
00 min: 00 s 1138.33 1130.00 8.33 R3–R5

13 h: 00 min: 00 s–14 h:
00 min: 00 s 930.00 930.00 0.00 /

14 h: 00 min: 00 s–15 h:
00 min: 00 s 230.00 230.00 0.00 /

15 h: 00 min: 00 s–16 h:
00 min: 00 s 2796.67 2742.50 54.17 R3–R5

16 h: 00 min: 00 s–17 h:
00 min: 00 s 1221.67 1155.00 66.67 R3–R5

17 h: 00 min: 00 s–18 h:
00 min: 00 s 238.33 230.00 8.33 R3–R5

18 h: 00 min: 00 s–19 h:
00 min: 00 s 238.33 230.00 8.33 R3–R5

. . . . . . . . . . . . . . .
22 h: 00 min: 00 s–23 h:

00 min: 00 s 84,980.00 84,980.00 0.00 /

23 h: 00 min: 00 s–00 h:
00 min: 00 s 2380.00 2380.00 0.00 /

4. Analysis and Discussion

Through the obtained results, it can be seen that the value of the energy consumed by
the IRRHEM solution intervention is less than or equal to the value of the energy consumed
without the intervention of this solution, which proves the IRRHEM solution efficiency in
many cases, including (Figure 10):

• Energy savings of 81.39% and 56.73% are obtained during the periods of 05 h: 00 min:
00 s to 06 h: 00 min: 00 s and from 06 h: 00 min: 00 s to 07 h: 00 min: 00 s, respectively,
based on:

– Turning off the “air conditioner 6000 BTU” in the parent’s room;
– Turning off the “air conditioner 6000 BTU” in the boy’s room;
– Turning off the “air conditioner 6000 BTU” in the girl’s room;
– Switching off all the electrical equipment in the event of the absence of occupants;
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– Contributing to the correction of negative characteristics of the family members,
such as making mistakes in the use of electrical equipment, as well as forgetting
to turn off equipment that is in a working state and not in use;

– Adapting the rooms of the home according to the family members’ wishes;
– Grouping similar activities for adapting the rooms of the home according to the

wishes of members (for example, “Fajr” prayer in congregation).

• Energy savings of 85.84% were obtained during the period of 07 h: 00 min: 00 s to 08 h:
00 min: 00 s, based on:

– Turning off the “air conditioner 6000 BTU” in the rooms of the parents, boy, and
girl;

– Turning off the electric light bulbs in the rooms of the home (except in special
cases) and taking advantage of the sunlight coming from outside of the house;

– When the family members are absent from a room, all electrical equipment is
turned off (except in special cases, such as the refrigerator or security equipment);

– Correcting some negative actions of individuals, such as leaving a device running
without it being needed, or forgetting to turn off a working device. In addition,
through this solution, a room in the home can be adapted according to the personal
preferences of the individuals, and also the similar activities of family members
can be grouped together to be conducted at the same time (for example, the
activity of eating meals together).

• Energy savings of 1.34% and 29.47% were obtained during the periods of 09 h: 00 min:
00 s to 10 h: 00 min: 00 s and from 11 h: 00 min: 00 s to 12 h: 00 min: 00 s, respectively,
based on:

– Exploiting the external lighting by opening windows and curtains and turning
off some (or all) of the lights bulbs;

– Turning off electrical equipment in the absence of family members. This solution
also addresses the case of an individual forgetting or operating equipment without
exploiting it. Finally, this solution aggregates the similar activities of family
members, simultaneously.

• Energy savings of 0.73%, 1.93%, 5.45%, 3.49%, and 3.49% were obtained during the
periods of 12 h: 00 min: 00 s to 13 h: 00 min: 00 s, 15 h: 00 min: 00 s to 16 h: 00 min:
00 s, 16 h: 00 min: 00 s to 17 h: 00 min: 00 s, 17 h: 00 min: 00 s to 18 h: 00 min: 00 s, and
from 18 h: 00 min: 00 s to 19 h: 00 min: 00 s, respectively, based on:

– Turning off some or all of the light bulbs by taking advantage of the sunlight;
– In case of the absence of all peoples from a room, the proposed solution take the

turning off of electrical appliances (except for some appliances, such as refrigera-
tors and security equipment);

– Correcting some errors committed in the exploitation of electrical equipment, as
well as cases of forgetfulness.

The employment of the IRRHEM solution in different regions results in energy-saving
that differs from one region to another. Even if this solution is applied to the same family,
we logically obtain different rates of energy consumption; this is due to three main reasons.
The first is the climatic factor, which has a great impact on energy saving, thanks to the
optimal exploitation of natural resources, such as temperature, lighting, wind. The second
factor focuses on home construction that concerns several points, such as home orientation,
the quality of the materials used in the construction, and home architecture. Finally, the
factor linked to the habits, cultures, and activities of residents also has a significant impact
on energy saving. However, for the IRRHEM solution to be universally applied in different
regions, a good design of the following elements is necessary:
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Figure 10. Energy consumption with and without the IRRHEM intervention.

• Profile: this concept is used to provide an explicit representation of many elements
of a smart home in a structured information model. In the IRRHEM solution, the
profile concept is divided into several subcategories to describe each concept in a
particular category as “ResidentProfile” for “Resident”. In addition, this concept is
very important and used for several purposes, such as increasing the comfort of the
residents and meeting the needs of the residents. Additionally, the category of the
profile concerns the “Home” concept that is considered as the starting point for all
other concepts, since this concept contains properties or information to describe the
smart home, such as: “HomeID”, “HomeLocation”, and “HomeSurfaceSize”.

• Activity scheduling: this concept presents a passive approach to energy efficiency
based on determining the optimal schedule for resident activities. It is characterized
by several advantages, among which is the optimization of energy consumption.

An important point that characterizes this solution concerns the possibility of extend-
ing this solution to future works (the flexibility in updating or exporting the ontology of
this solution to develop others), due to the use of the ontological approach, where the latter
presents one of the main reasons for choosing this approach.

5. Conclusions

Home automation is the binding between the various devices and systems at home,
so that they can all be controlled from anywhere, and the interaction required between
them. The intelligent system controls aspects such as lighting, heating, ventilation, air
conditioning, safety, security, and energy-saving. The latter is the main objective of the
IRRHEM solution.

To accomplish the IRRHEM solution, an energy ontology approach was chosen. This
choice is linked to the nature of domestic systems, which are characterized by their pos-
session of a large volume of information, mainly related to family members, household
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appliances, and climatic data. Therefore, to develop IRRHEM, a series of steps was fol-
lowed. The first step concerned a detailed study on the home environment; the results of
this step were used to build the conceptual model of the data. This model was edited using
the “Protégé” software and syntactically checked. The last step concerned the test of the
IRRHEM solution using two scenarios (with or without the IRRHEM solution intervention).
The results obtained show the importance of IRRHEM by saving 3.60% of energy. In
addition, IRRHEM made it possible to perform a set of actions, such as turning off elec-
trical appliances without reducing the comfort of the residents of the home. Additionally,
IRRHEM made it possible to:

� Group the residents’ activities to one time period, which allows for the saving of a
large amount of electrical energy through the unified use of electrical appliances;

� Switch off the heating systems (or switch on), according to the outside temperature
and the preference of the residents;

� Switch off the cooling systems (or switch on), according to the outside temperature
without neglecting the home residents’ comfort;

� Open and close the windows, curtains, and doors to take advantage of the outdoor
climate (sunlight, heat, and air);

� Turn off the lights in a certain area of the house (or all lights) when the residents of
the house are away from that area (or the whole house);

� Turn off all the appliances in the house, except certain appliances, such as the refriger-
ator and protective devices, if all the residents are absent from the house.

In addition, among the advantages of the IRRHEM solution is the flexibility to use
and update the knowledge base. Finally, the future works can be scheduled as follows:

χ With the development of technology, especially for household appliances, it is impor-
tant to update the information of the knowledge base;

χ Take into account untreated cases, such as the operation of the cooling and heating
system, before entering the house;

χ Integrating renewable energies sources (such as, solar and wind) at home.
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Abstract: Total transfer capability (TTC) is a vital security indicator for power exchange among areas.
It characterizes time-variants and transient stability dynamics, and thus is challenging to evaluate
efficiently, which can jeopardize operational safety. A leaning-aided optimal power flow method is
proposed to handle the above challenges. At the outset, deep learning (DL) is utilized to globally
establish real-time transient stability estimators in parametric space, such that the dimensionality of
dynamic simulators can be reduced. The computationally intensive transient stability constraints
in TTC calculation and their sensitivities are therewith converted into fast forward and backward
processes. The DL-aided constrained model is finally solved by nonlinear programming. The
numerical results on the modified IEEE 39-bus system demonstrate that the proposed method
outperforms several model-based methods in accuracy and efficiency.

Keywords: total transfer capability; surrogate assisted method; transient stability; deep learning;
interior point method

1. Introduction

Power systems are currently operated near their stability boundary with the significant
proliferation of interconnected grids and renewable penetration [1]. Therefore, online
monitoring to transfer security margin of inter-area power transfer is in urgent demand. In
the electric industry, total transfer capability (TTC), defined as maximum power exchange
allowed to withstand multifarious security contingencies, is a widespread metric to quantify
such a security margin. Limited by this issue, dispatchers generally use a conservative
constant of offline TTC to decide online operations. Undoubtedly, such TTC values can
incur the unwanted waste of line capacity and incorrect estimation to security margin. To
untie these knots, the essence is to accelerate TTC calculation.

Thus far, several approaches have been proposed to model TTC calculation [2–4].
Among them, methods with only steady-state considered are inapplicable for TTC evalua-
tion involving transient stability (TS) [5]. To enable TS assessment (TSA), TTC is preferred
to be modeled as TS constrained (TSC) programming problem. As the models shown
in [6–10], differential-algebraic equations (DAEs) representing system dynamics and TS
constraints are discretized throughout the time domain simulation period. And the re-
sulting differential equations are incorporated into the optimal power flow (OPF) model.
Nevertheless, as mentioned before, solving such models is quite computationally expensive
due to the high-dimensional and nonlinear DAEs involved. In light of this, under current
time-varying power grids, inefficient physics-dominated methods can be problematic for
fast TTC monitors.

Data-driven approaches have become mainstream to increase calculation speed for
security assessment in large-scale power systems [11–13]. Reference [11] proposed an
online measurement-based TTC estimator using the nonparametric estimation. Sun et al.
developed an automatic learning technique based on the linear least-squares fitting method
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to extract the TTC operating rules [12]. Unfortunately, these methods own two critical
drawbacks. One is that they are hard to capture nonlinear patterns. An empirical and
heuristic TTC calculation in the stage of prior sample production is the other problem.
It cannot ensure finding the most extreme operating conditions, leading to low fidelity
against true modes.

To overcome the first drawback, machine learning (ML) is a promising alternative
thanks to its strong nonlinearity learning ability. Reference [13] introduced a hierarchical
deep learning machine (HDLM) to successfully achieve real-time TSA, won over other
physics-based methods with respect to speed, and beat linear data-driven methods on
precision. But sustainable energy is under-investigated. In [14], a TSA framework based on
a long short-term memory network was proposed; it improved assessment accuracy by
learning from post-fault temporal PMU data dependencies. These applications manifest
that ML is a better choice than linear learning methods in nonlinearity modeling tasks. A
comparison table with the advantages and disadvantages of the above references is listed
in Table 1.

Table 1. A comparison table with the advantages and disadvantages of each reference.

References Type Advantages Disadvantages

[2–4] Physical-driven model Focus on steady-state;
easy to solve

Transient stability is
out of consideration

[6–10]
Physical-driven model
with transient stability

constraints

Involved transient
stability constraints

Computationally
expensive

[11–13] Data-driven model Faster calculation speed

Hard to capture
nonlinear patterns; or
sustainable energy is
out of consideration

On the other hand, ML can substitute the most time-consuming TSA modules and
partially participate in TTC calculation to deal with the second deficiency. This idea
follows the classical roadmap of using optimal power flow (OPF) to approach extreme
operations but tactfully bypasses high-dimensional modeling such that optimizers can
quickly solve TTC. It is technically termed as a learning-aided (also known as surrogate-
assisted) method (LAM) [15–18], which utilizes ML algorithms to surrogate the most
complex and computationally intensive parts in optimization problems. Reference [18]
proposed a method that makes a fusion between surrogates and the evolutionary algorithm
to improve the efficiency of optimizing high-dimensional expensive problems. In [1], LAM
is also utilized to solve the TTC constrained operation planning problem. The above studies
show that LAM can speed up solving optimization problems. At the same time, because it
is a data-mechanism hybrid-driven method rather than an utterly data-driven method, it
performs better in terms of fidelity.

By prioritizing both merits of physics- and data-driven modeling, this paper pro-
posed a learning-aided optimal power flow based fast TTC calculation methods with the
following features:

Deep belief network (DBN) is advocated to surrogate computationally intensive and
high-dimensional time-domain based transient stability modelling. This learning-aided
scheme allows us to significantly reduce complexity of TTC calculation.

• DBN backwards process is conducted to derive sensitivity of transient stability margin.
This sensitivity supports fast and accurate decision for the most extreme growth path
of generation and load. The TTC solved under such path is conservative and robust to
account for a reliable security indicator.

• Thanks to the above merits, interior point method (IPM) is then introduced to fast
calculate TTC. Specifically, DBN forwards and backwards processes respectively
provide fast and accurate transient stability inference and gradient information for
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IPM. This scheme is firstly used in OPF-based TTC calculation, and numerical studies
justified its merits of compromising calculation efficiency and accuracy.

• A comprehensive comparative study is constructed. Numbers of traditional methods,
such as the TSCOPF method [9], the sensitivity-based method [19], the repeated
power flow (RPF) method [20], and the direct data-driven method [21], are used to
demonstrate the superiority of our method.

The organization of this paper is as follows: Section 2 introduces TS constrained
optimal power flow (TSCOPF), adopted to model TTC calculation. The learning-aided
model for the TS constraints is introduced in Section 3. Section 4 details the proposed
solving scheme method, where the Jacobin and Hessian matrices of the learning model are
deduced to analytical form to enable combination with nonlinear programming. Section 5
illustrates the numerical study. Finally, the conclusion is presented in Section 6.

2. TTC Calculation with TSCOPF

We believe the OPF method is a brilliant choice because the optimization procedure
enables a theoretical search for extreme operating conditions representing TTC. Therefore,
TSCOPF is adopted to model TTC calculation problem in this section. According to [22],
the generic OPF method for calculating TTC can be formulated as follows:

Max f (y,u)
s.t. g(y,u) = 0

h(y,u) ≤ 0
(1)

where y,u are the state and control variable vector of the system; and g(·), h(·) are the set of
equality and inequality constraints, respectively.

(1) Objective function: It aims to maximize the sum of the active power output of all
generators in the source area, i.e.,

Max f (y,u) = ∑k∈Ssou PGk, (2)

where PGk is generator active power output at bus k; and Ssou means the source area
bus set.

(2) Static equality constraints: Power flow equations are formed under polar coordinates,
shown below:

PGi − PDi − Vi∑n
j = 1 Vj(Gijcosθij + Bijsinθij) = 0,

QGi − QDi − Vi∑n
j = 1 Vj(Gijsinθij − Bijcosθij) = 0

(3)

where PGi, PDi represent active generation and demand for bus i; QGi, QDi are reactive
generation and demand for bus i, respective; Vi and θi are the voltage magnitude and
phase angle of bus i, and θij = θi − θj; Gij + jBij is the driving point admittance and the
transfer admittance; n is the number of buses.

(3) Static inequality constraints:

PGi
min ≤ PGi ≤ PGi

max, Gi∈SG∪SW
QGi

min ≤ QGi ≤ QGi
max, Gi∈SG∪SW

Vi
min ≤ Vi ≤ Vi

max, i∈Sn
Pij ≤ Pij

max, ij∈Sl

(4)

where PGi
min, PGi

max, QGi
min, QGi

max are the lower and upper limits of the generator
active and reactive power at bus k, respective; Vi

min and Vi
max are the lower and

upper limits of the voltage at bus i; Pij
max is the transmission threshold of line ij; SG,

SW, Sn, Sl are the sets of generators, wind farms, buses, and lines.
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(4) Transient stability constraints: This paper adopts the classical generator model to
analyze transient stability. During the dynamic process, loads are modeled as constant
impedance. Hence, generic TS models can be simplified as follows:

x’(t) = ρc(x(t), y(t), u),
ψc(x(t), y(t), u) ≥ 0, c∈Sc, t∈(t0, tend]

(5)

where x, y are the algebraic and state variables; [x(t), y(t)] refers to the operating
condition during the transient period (t0, tend]; Sc is a set of pre-contingencies; ψc(·) is
the transient stability criterion used in this paper [23], and it is shown as follows:

|δi(t) − δCOI(t)| ≤ δthr, t∈(t0, tend]
δCOI(t) = (∑i Mi · δi(t)) / (∑i Mi), i∈{1, . . . ,nG}

(6)

where δi(t) is the rotor angles of generator i; δCOI(t) is the rotor angle under the center
of inertia (COI); δthr is the instability threshold that is usually set as 180 degree [23];
Mi represents the inertia constant of the ith generator; and nG denotes the number
of generators.

It should be mentioned the DAEs Equation (5) encompasses numerous time-domain
variables, i.e., δi(t). With more precise timestep and more contingencies to be checked, the
dimensionality of Equation (5) will be of exponential growth.

3. Proposed Surrogate Model

In TSC programming problem, exact state and parameter estimation for dynamic
components (e.g., synchronous generators) must be conducted to truly model the transient
process. This is difficult because large-scale state estimation is challenging regarding
efficiency and precision. A sensible alternative is to directly encapsulate transient stability
dynamics in a parameterized model so as to bypass state estimation. Rich data is needed,
fortunately, it can be easily gathered nowadays in smart grid.

As reported before, TSA significantly increases the computational burden of solving
the OPF model. To reduce the massive time-domain variables, a data-driven learning-aided
model is proposed. This model allows us to map Equation (5) into a parametric space, such
that the time-domain variables can be surrogated by ML structural parameters independent
of optimization, and few parallel forwards processes of ML are enabled to circumvent
quantities of DAEs.

3.1. Data Sample Generation

The first step of training such learning-aided models is data generation. To this end,
random operations are sampled and simulated under prior distributions of power systems.
To simplify illustrations, we respectively denote the input features and the target features as
X and Y. X covers almost all variables that SCADA can measure, while Y is the TS margin
index. Equation (7) details the data structure:

X = {PG, VG, PD, QD, Vb}, G∈SG∪SW , D∈SD
Y = {Γc}, c∈Sc

(7)

where PG and PD are the characteristic vector of active generator output and active load,
respectively; QD is the vector of reactive load; VG represents the voltage of buses where
generators are located; and Vb means the voltage of other buses. Γc represents the TS
margin of the corresponding operation. In this paper, TS index (TSI) is adopted to quantify
TS margin, which can be formulated as:

TSI = 100 × (δthr − |δmax|)/(δthr + |δmax|),
δmax = max(|δGi − δGj|), Gi,Gj∈SG

(8)
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where δmax is the maximum power angle difference during the post-fault duration.
Now turning to introduce calculation for Equation (7). To attain X, we firstly sample

controllable variables under their prior limits by Equation (9), and loads under historical
distributions by Equation (9):

Xgen = {X1
gen; . . . ; Xn

gen} = {P1
G, V1

G; . . . ; Pn
G, Vn

G},
Xload= {X1

load; . . . ; Xn
load} = {P1

D, Q1
D; . . . ; Pn

D, Qn
D}

(9)

where Xgen, Xload are the control and load variables subsets of X, respectively; n is the
number of samples.

The power flow program is then performed to get equilibrium points to determine the
state variables Vb. Notably, samples should be evenly distributed over operational space to
ensure the generalization ability of the learning-aided model. Therefore, Latin hypercube
sampling (LHS) is adopted to generate samples in this paper [24].

Afterward, we impose disturbances in contingencies for one equilibrium point of X
to obtain post-fault trajectories to compute TS margin Γc. Via traversing each point in
X, Y can be collected. Supervised learning can herewith be utilized to learn the learning-
aided model.

3.2. Deep Belief Network Based TSA Learning-Aided Model

According to the data structure, the deep belief network (DBN) is an advisable alter-
native for our goal. DBN is a probability generation model that stacks multiple restricted
Boltzmann machines (RBMs) and a fully connected layer. RBM is an unsupervised net-
work composed of a visible and hidden layer, and it can probabilistically reconstruct input
features by two-way connections between the two layers.

As an energy-based model, the energy function of RBM is calculated by [25]:

E(v,h) = − vTwh − aTv − bTh, w∈Rnh×nv, a∈Rnv, b∈Rnh (10)

where v,h are the visible and hidden layer matrices; a,b are the bias matrices of v,h respec-
tively; and w is the weight matrix between two layers. The joint probability distribution
P(v,h) of v and h is formulated by:

P(v,h) = Z−1 e−E(v,h), Z = ∑v,h e−E(v,h) (11)

where Z is the normalization factor that ensures the sum of the probability distribution is 1.
The marginal probability of v and h, which are also called the likelihood functions, can be
formulated as:

P(v) = Z−1∑h e−E(v,h), P(h) = Z−1∑v e−E(v,h) (12)

Due to the lack of intra-layer connections in RBM, the activations of units in the visible
and hidden layers are independent. Therefore, when the visible layer (or hidden layer)
units state is given, we can deduce the formulation of the conditional probability that an
individual unit of the hidden layer (or visible layer) is activated as:

P(hi = 1|v) = M(bi + ∑i wij · vj), hi∈h, vj∈v, wij∈w
P(vi = 1|h) = M(aj + ∑j wij · hi), aj∈a∈Rnv, bi∈b∈Rnh (13)

where M(·) is the activation function, and in the paper, it is the Sigmoid function. Then, the
conditional probability of h (or v) given v (or h) can be obtained:

P(h|v) = ∏nh
i = 1P(hi|v), P(v|h) = ∏nv

j = 1P(vj|h), hi∈h, vj∈v (14)

where nh,nv are the number of units in the hidden and visible layer, respectively.
Training RBM is to maximize the following likelihood L:

lnL = ln∏v∈StrainP(v), (15)
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where Strain is the training sample set. The commonly used numerical method for maximiz-
ing (15) is gradient ascent, which iteratively updates the parameters. Take w as an example,
and the weight wij is updated via Equations (16) and (17):

wij = wij + η · (∂ln(P(v)))/(∂wij), wij∈w (16)

(∂ln(P(v)))/(∂wij) = P(hi = 1|v)vj − ∑v P(v)P(hi = 1|v)vj, hi∈h, vj∈v (17)

where η is the learning rate.
DBN training consists of two parts: pre-training and fine-tuning. In the pre-training

part, any two connected layers except the fully connected layer can be regarded as an
RBM. These RBMs are trained to obtain better initial weights and to alleviate the gradient
disappearance problem. In the fine-tuning part, the trained RBMs are connected with the
fully connected layer. The sample sets [X, Y] and the global learning algorithm are then used
for supervised fine-tuning of the DBN, learning the mapping between input data and labels.
Thence, the mathematical model of an l-layer DBN can be simplified by Equation (18):

Ψ(X) = O(M(Dl − 1( . . . M(D1(X)) . . . ))), (18)

Di(xi) = wixi + bi, wi∈Rni × n(i−1), i = 1, . . . ,l − 1 (19)

wi = [wi
1, . . . ,wi

ni], wi
ni∈R1 × n(i−1)

bi = [bi
1, . . . ,bi

ni]
(20)

where O(·) is the output function of the fully connected layer, and O(x) = Dl(xl). The loss
function can be defined as the weighted sum of the estimated error and L2 norm, i.e.:

Min α‖Y − Ψ(X)‖2
2 + (1 − α)∑n

i = 1 ‖wi‖2
2, (21)

Equation (21) can be solved by training and fine-tuning the DBN model [24].
After training, the learning-aided model is reformed as Equation (22):

Γc = Ψc(X), c∈Sc (22)

3.3. Learning-Aided OPF for TTC Calculation

The trained learning-aided model is finally forwarded to replace (5)~(6) to mitigate
the TTC computational burden. The reformed learning-aided OPF for calculating TTC is
given as follows:

Maximize (2)
s.t. (3)~(4)

Γc ≥ 0, c∈Sc

(23)

In Equation (23), steady-state physics remains the same, but dynamics become a data
model. This modeling strategy possesses several merits: (1) it remarkably reduces the
solving complexity of the full physics version. (2) it preserves physics to decrease adverse
effects from significant learning errors. A common way to solve Equation (23) is gradient-
free algorithms [26–28]. However, these algorithms characterize cumbersome stochastic
search mechanism. A fast-solving algorithm for such physics and data hybrid model is still
under exploitation.

4. Proposed Solution Method

In this paper, the interior point method (IPM) [29] is conducted to solve (25). Towards
this end, the Jacobian and Hessian matrix of the trained DBN model is analyzed.
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4.1. Interior Point Method

For the sake of simplification, model Equation (23) is firstly reformed as the following
canonical form:

Max F(x),
s.t. G(x) = 0,

[H(x) ≤ 0] = [Hc(x) ≤ 0, HS(x) ≤ 0]
(24)

where F(x) is the objective function; G(x) = [G1(x), . . . ,Gm(x)]T is the nonlinear equality
constraints; H(x) = [H1(x), . . . ,Hr(x)]T is the non-linear inequality constraints, and Hc(x),
HS(x) are the constraints in (4) and the surrogate model in (23b), respectively; r,m are the
number of inequality and equality constraints.

Use IPM to solve Equation (24), and the steps are as follows [29]:

1. Add slack variables l = [l1, . . . , lr]T (l > 0) and u = [u1, . . . , ur]T (u > 0) to transform
H(x) into equality constraints;

2. Introduce the disturbance factor μ (μ > 0) to transfer F(x) into the barrier function,
which makes it impossible for the barrier objective function to find an extremal
solution on the boundary, and the optimal solution can only be obtained when the
constraints are satisfied;

3. Apply Lagrangian multiplier method to solve the transformed model, and the La-
grangian function is formulated as:

L = F(x) − ζTG(x) − zT[H(x) − l − Hmin] − ωT[H(x) + u − Hmax]
− μ∑r

i = 1 log(li) − μ∑r
i = 1 log(li),

(25)

where ζ,z,ω, are Lagrangian multipliers, respectively.
4. Calculate μ via Equation (26):

μ = σ(lTz − uTω)/2r, (26)

where σ denotes the central parameter.
5. Consider the Karush–Kuhn–Tucker (KKT) conditions and adopt the Newton method,

the matrix form of the modified equations can be deduced as:

Λ · Δx + (∂G(x)/∂x) · Δx = Φ,
(∂G(x)T/∂x) · Δx = G,

Λ = (∂2G(x)/∂x2)ζ + (∂2H(x)/∂x2)(z + ω) − (∂2F(x)/∂x2)
+ (∂H(x)/∂x)(u−1ω − l−1z)(∂H(x)/∂x)T,

Φ = −Lx − (∂H(x)/∂x)[L−1(Ll
μ + ZLz) + U−1(Lu

μ + WLω)]

(27)

where Lx, Lz, Lω, Ll
μ and Lu

μ are the partial derivatives of L to x, z, ω, l and u.

Besides, the corrections of z, ω, l and u can be calculated via (28):

Δz = L−1Ll
μ − L−1ZΔl,

Δl = (∂H(x)/∂x)TΔx − Lz,
Δω = U−1Lu

μ − U−1WΔu,
Δu = −(∂H(x)/∂x)TΔx + Lω

(28)

where Z = diag(z); W = diag(ω); L = diag(l); and U = diag(u).

6. Use the corrections calculated via Equations (27) and (28) to update the variables
as follows:

x(k + 1) = x(k) + αpΔx, ζ(k + 1) = ζ(k) + αdΔζ,
l(k + 1) = l(k) + αpΔl, z(k + 1) = z(k) + αdΔz,

u(k + 1) = u(k) + αpΔu, ω(k + 1) = ω(k) + αdΔω,
(29)
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where the step size αp and αd for each update are shown in Equation (30).

αp = 0.9995min[min(−li/Δli, li < 0; −li/Δui, ui < 0), 1],
αd = 0.9995min[min(−zi/Δzi, zi < 0; −ωi/Δωi, ωi > 0), 1], i = 1, . . . , r

(30)

7. Termination condition: if (lTz − uTω) < ε, the current x is output; else re-execute (4) to
(6). Here ε represents the specified threshold.

4.2. Deducing Analytical Surrogate Model for IPM

As shown in Equation (26), the gradient of functions F,G and H are needed in the
process of IPM. The gradient of F, G and Hc can be obtained directly. However, since the
surrogate model is a “black-box”, the gradient of Hs cannot be simply calculated. Based on
Equations (22) and (23), the gradient of Hs can be transformed into:

�Hs = �Γc = �Ψc(X), c∈Sc
�2Hs = �2Γc = �2Ψc(X)

(31)

Next, by DBN backwards process, Equation (31) is deduced to get the Jacobin and
Hessian matrix, which are also known as sensitivities of transient stability against optimiza-
tion variables. See Appendix A for the detailed DBN backwards process. The algorithm
flow and implementation of the proposed method are shown in Figure 1.

Figure 1. The flow chart of the proposed method.

5. Numerical Case Study

5.1. Test System

The proposed method is testified on the modified IEEE 39-bus system. The base
power of the system is 100 MW, and the system is divided into the source (Area I) and
sink (Area II) areas by four tie-lines 1–39, 2–3, 3–18, and 16–17, as shown in Figure 2. Two
wind farms with a total capacity of 500 MW are connected to buses 17 and 21. As shown
in Section 3.1, TSI calculated by power angle is adopted to quantify TS margin. So, this
paper assumes that the wind farms have sufficient reactive power reserves and low voltage
ride-through capability to ensure they do not trip. A three-phase short circuit on each
tie-line is pre-selected as the contingencies.

5.2. Learning-Aided Model Construction

As mentioned before, generation prior distribution is assumed to be a uniform distribu-
tion over generators’ nominal limits. Regarding generation and load balance constrained,
the total load is determined as the sum of generation. Nodal load is then acquired by
sampling from historical load distributions. As for the settings of time-domain simulation,
fault start time is 0.1 s, simulation period is 2 s, and timestep is 0.05 s. Following the
above preconditions, 10,000 samples are generated, of which the ratios to the training set,
validation set, and test set are 80%, 10%, and 10%.
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Figure 2. The modified IEEE 39-bus system for case study.

The DBN structure from the input layer to the output layer is {93-40-20-10-5-4}, where
the elements stand for neuron quantity. Sigmoid is selected as the activation function. After
training the samples, the DBN is forwarded to be tested on out-of-sample sets (i.e., test set).
The scatter of estimates vs. actual values and error distribution is shown in Figure 3. The
coefficient of determination (R2) is 0.9814, and the mean square error is 5.84 × 10−4. As
shown in Figure 3b, the error distribution approximately obeys a normal distribution, and
the mean and standard deviation of the estimation error are 0 and 0.023. It can be found
that 95% of the samples are in the interval of [−0.042, 0.046] through statistics, and the error
with the 95% confidence level of the normal distribution is 0.004. Figure 3 demonstrates
that the proposed learning model can render accurate TSA and strongly generalizes.

Figure 3. The visualization of testing the trained learning model: (a) estimate vs. true; (b) error distribution.

To further verify the performance of DBN, comparisons against back propagation
neural network (BPNN), support vector regression (SVR), and regression tree (RT) are
carried out, and the outcomes are given in Table 2. Mean square error (MSE) and square
correlation coefficient (SCC) are used to evaluate the performance. You can see clearly that
the DBNs beat other learning methods; thus, it can be concluded that DBN is the best one
in TSA tasks.

Table 2. Accuracy comparison of each TSI surrogate model on test sets.

Indicator 2-Layer DBN 3-Layer DBN BPNN SVR RT

MSE/p.u. 0.0054 0.0019 0.0023 0.0346 0.0927
SCC 0.9480 0.9712 0.9627 0.9171 0.8814
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5.3. The Results of TTC Fast Calculation

In this section, the proposed method is testified and compared with other methods,
such as the TSC-OPF method [9], the sensitivity-based method [19], the repeated power
flow (RPF) method [20], and the direct data-driven method [21]. These methods are
summarized in Table 3. M1 is to directly incorporate the DAEs into the optimization
problem by adopting the implicit integration rule. M2 uses trajectory sensitivity to achieve
TTC calculation. M3 gets the TTC by gradually increasing the generator power base on the
initial state and repeatedly calculating the power flow until a certain constraint is about to
be violated. And, M5 applies NNs to learn the mapping between system state variables
and TTC values. Moreover, to manifest the superiority of our methods, we have advanced
experiments under single- and multi-contingency conditions, of which the outcomes are
respectively visualized in Figure 4a,b.

Table 3. Different methods and pre-contingencies for TTC calculation.

Methods TSCOPF The Sensitivity-Based
Method

The Repeated Power
Flow Method

TSCOPF with
DBN-Assisted

Symbol M1 M2 M3 M4

single contingency multi contingency

Line 1–39 1–39, 2–3, 3–18, 16–17

Figure 4. The results of TTC calculation under four different methods: (a) Single contingency;
(b) Multi contingencies.

Figure 4 shows the TTC values calculated by the applied methods under 100 unseen
scenarios. The samples are sorted according to the ascending order of the TTC value
calculated by M1 to facilitate viewing, and the histogram shows the error between the TTC
values calculated by M1 and M4. Taking Figure 4b as an example, the TTC error of M4 is
within the acceptable range of [0, 0.5 p.u.], and the average error is 0.1019 p.u. The TTC
average errors of M2 and M3 are 0.2308 p.u. and 0.3547 p.u., respectively. Obviously, the
TTC value calculated by M4 has the smallest error among several comparison methods.
It illustrates that the proposed learning-aided OPF based method can calculate the TTC
value more accurately than the RPF and sensitivity-based method. This is because M4,
like M1, is modeled based on TSCOPF, which can better describe the system state and
has better fidelity than M2 and M3. In addition, it can search the extreme operating point
more accurately.

Furthermore, to verify the accuracy of the proposed method, it is compared with the
direct data-driven approach (symbol as M5). M5 takes the TTC calculated by M1 as the
sample label. Then, it utilizes the DBN model to learn the implicit relationship between
the input feature X and the target feature YTTC and forms a mapping. Figure 5 shows the
comparison results of M4 and M5 when the TTC calculated by M1 is used as the reference
value. It can be found that M4 has a smaller average relative error, 0.1019 p.u., than M5,
which is 0.3297 p.u., in 100 test samples. It means the proposed method has better fidelity
than direct data-driven methods.
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Figure 5. The results of TTC calculation under four different methods: (a) M4 compared with M1;
(b) M5 compared with M1.

In addition, time-domain simulations are performed for each test sample to verify
that the operation obtained when calculating the TTC value satisfies the TSCs. The post
-fault transient trajectory of rotor angle differences between the individual generators is
recorded. The result of a typical sample is shown in Figure 6, where Figure 6a is the
transient trajectories after sample initial power flow calculation. Then, utilize the proposed
method to calculate the TTC of this sample, and a new operating condition, whose transient
trajectories are shown in Figure 6b, can be obtained. It can be observed that the curves
have apparent fluctuations. The angle difference between Gen34 (the generator on bus 34)
and Gen39 (the generator on bus 39) has the most significant change and is close to the set
stability threshold, 180 degrees. It means that the system is operating at its TS boundary
at this time. In addition, Figure 6b illustrates that DBN can accurately estimate TSI, and
the sensitivity of transient stability margin can help OPF find boundaries of the system.
It demonstrates that the learning-aided model can follow the TSCs effectively when it
calculates the TTC. Furthermore, the learning-aided model can help the TSCOPF accurately
find the most extreme operating condition.

 

Figure 6. The post-fault transient trajectories of rotor angle differences of the test sample: (a) the
trajectories after sample initial power flow calculation; (b) after TTC calculation.

5.4. Efficiency Comparison

Figure 7 depicts solving time statistics, where the X-axis represents the number of faults
in pre-contingency, and the Y-axis is computation time. As shown in Figure 7, the runtime
of M1, M2, and M3 are significantly longer than that of M4 under single contingency
(i.e., one fault in pre-contingency). And, all algorithms consume more time to compute TTC
with more contingencies considered, except for M4. This is because M1, M2, and M3 all
need to calculate DAEs associated with TSCs in iterations, and the dimensions of DAEs are
higher as more contingencies are considered. However, M4 surrogates the time-consuming
part by learning-aided model, and reduces the computation time. The results claim that
the proposed method significantly outperforms other comparative methods with respect
to efficiency.
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Figure 7. Efficiency analysis.

6. Conclusions

Large-scale wind power penetration has increased the potential insecurity risk of inter-
area power exchange. Therefore, rapid and accurate security assessment for inter-corridors
is imperative. Towards this end, this paper proposes a learning-aided method for fast
TTC calculation. The TTC calculation is firstly modeled as transient stability constrained
optimal power flow. Then, to reduce the complexity of the TSCOPF model, DBN-based
learning-aided transient stability assessment is introduced to surrogate high-dimensional
and time-consuming time-domain constraints. In the end, the Jacobian and Hessian matrix
of the trained learning-aided model is derived; thereby, nonlinear programming is allowed
to solve the learning-aided TSCOPF model efficiently.

The result of the case study demonstrates that the learning-aided model can achieve
TSA with higher accuracy and generalization. Moreover, the learning-aided TSCOPF model
proposed in this paper can obtain more accurate TTC values than RPF, sensitivity-based,
and direct data-driven methods. This is because the proposed method can both take into
account the fidelity and efficiency of physics- and data-driven modeling by combining the
learning-aided model with the OPF. And compared with the heuristic search of RPF, the
OPF model can search the extreme operating point more accurately. On the other hand, due
to the use of the learning-aided model to surrogate the time-consuming TSA, it has higher
computational efficiency than other physics-driven methods, which means that it can be
applied online after sufficient offline training. Besides, the proposed method is not limited
to TTC-oriented research. Because of its high compatibility with other static or dynamic
models, it can be extended to other index calculations in the power system that require a
large amount of computation but require high efficiency. Other advanced machine learning
algorithms will be used to achieve better calculation performance in our future work. And,
it would also be meaningful to optimize and control the TTC.
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Appendix A

According to the chain rule, �Hs in (31) is:

∂Ψc(X)/∂xi = [dΨc(X)/dM(Dl − 1( . . . (M(D1(X))) . . . ))] × . . . × [dD1(X)/dX] × [dX/dxi]
= wl [dxM(Dl − 1( . . . (M(D1(X))) . . . )) × (wl − 1ei)],

(A1)

To simplify (A1), the following functions are defined:

wi
1 = w1ei (A2)

Al(X) = dxM(Dl( . . . (M(D1(X))) . . . )) × wl (A3)

∏l2
i = l1Ai(X) = Al1 × . . . × Al2, if l2 < l1 < l,

= Al2 × . . . × Al1, if l1 < l2 < l,
= 1, if l2 < l ≤ l1,
= Al1, if l1 = l2

(A4)

where dxM(Dl( . . . (X) . . . )) in (A3) can be derived from the following matrix formulation:

dxM(Dl( . . . (X) . . . )) = { [dDl_1( . . . (X) . . . )M(Dl
1( . . . (X) . . . )), 0, . . . , 0];

[0, dDl_2( . . . (X) . . . )M(Dl
2( . . . (X) . . . )), . . . , 0];

. . .
[0, 0, . . . , dDl_nl( . . . (X) . . . )M(Dl

nl( . . . (X) . . . ))]},

(A5)

Dl( . . . (X) . . . ) = [Dl
1( . . . (X) . . . ); . . . ; Dl

nl( . . . (X) . . . )] ∈ Rnl × 1,
Dl

k( . . . (X) . . . ) = wl
kM(Dl-1( . . . (X) . . . )) + bl

k (A6)

Using (A2)~(A4), the Jacobian matrix can be simplified to:

∂Γc/∂xi = wl[∏2
i = l − 1Ai(X)] × [dxM(D1(X)) × w1

i], (A7)

Similar to the derivation process of the Jacobian matrix, the Hessian matrix can be
obtained by the following formulations:

dxjAl(X) = d2
x,xjM(Dl( . . . (X) . . . )) × wl

= { [d2
x,xjM(Dl

1( . . . (X) . . . )), 0, . . . , 0];
[0, d2

x,xjM(Dl
2( . . . (X) . . . )), . . . , 0];

. . .
[0, 0, . . . , d2

x,xjM(Dl
nl( . . . (X) . . . ))] }

(A8)

d2
x,xjM(Dl

k( . . . (X) . . . )) = [d2M(Dl
k( . . . (X) . . . )) /d(Dl

k( . . . (X) . . . ))2] × wl ×
∏2

i = l − 1Ai(X) × [dxM(D1(X)) × w1
j],

(A9)

where, wl = w1
i if l = 1 in (A8) and (A9). And, defined (A10) as follows:

Λk = [∏l−1
i = k + 1Ai(X)] × dxjAk(X) × [∏1

i = k-1Ai(X)], if k ≥ 2,
= [∏l−1

i = k + 1Ai(X)] × dxjAk(X), if k = 1,
= dxjAk(X) × [∏1

i = k − 1Ai(X)], if k = l − 1
(A10)

Then, the Hessian matrix can be derived as (A11):

∂2Γc/(∂xi∂xj) = wl[Σ
l − 1

k = 1Λk] (A11)
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