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Norbert Tuśnio and Wojciech Wróblewski
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Preface to ”Artificial Intelligence and Sustainable

Energy Systems”

The problems that affect humanity are numerous and occur in different areas. Energy

sustainability, climate change, and the effects derived from pollutants and viruses are some of the

most relevant problems. The main objective of researchers is to provide solutions to these and other

problems.

In recent years, the use of artificial intelligence has increased considerably. Artificial intelligence

is used in different areas: energy, sustainability, medicine, health, mobility, industry, etc. Therefore, it

is necessary to continue advancing in the application of artificial intelligence to the aforementioned

problems. Energy is a precious commodity, and it is increasingly difficult to dispose of it

in a sustainable way. In this sense, renewable energy sources are essential, although the use

of conventional energy cannot be forgotten. Therefore, sustainable energy systems, integrating

renewable and non-renewable energy sources, smart systems, and new business models, are crucial.

Therefore, in this book, the best accepted and published articles on the topic ”Artificial

Intelligence and Sustainable Energy Systems” are presented. All articles refer to the themes indicated

above.

Luis Hernández-Callejo, Sergio Nesmachnow , and Sara Gallardo Saavedra

Editors
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Classification of Ground-Based Cloud Images by Improved
Combined Convolutional Network
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Abstract: Changes in clouds can affect the outpower of photovoltaics (PVs). Ground-based cloud
images classification is an important prerequisite for PV power prediction. Due to the intra-class
difference and inter-class similarity of cloud images, the classical convolutional network is obviously
insufficient in distinguishing ability. In this paper, a classification method of ground-based cloud
images by improved combined convolutional network is proposed. To solve the problem of sub-
network overfitting caused by redundancy of pixel information, overlap pooling kernel is used
to enhance the elimination effect of information redundancy in the pooling layer. A new channel
attention module, ECA-WS (Efficient Channel Attention–Weight Sharing), is introduced to improve
the network’s ability to express channel information. The decision fusion algorithm is employed to
fuse the outputs of sub-networks with multi-scales. According to the number of cloud images in each
category, different weights are applied to the fusion results, which solves the problem of network
scale limitation and dataset imbalance. Experiments are carried out on the open MGCD dataset and
the self-built NRELCD dataset. The results show that the proposed model has significantly improved
the classification accuracy compared with the classical network and the latest algorithms.

Keywords: convolutional neural network; classification of ground-based cloud images; combined
convolutional network; overlap pooling; attention mechanism

1. Introduction

Affected by short-term weather changes, the output power of PV power generation
is easily fluctuated [1,2]. At present, the forecasting of PV power becomes an important
method to reduce the impact of power fluctuations. Through power forecasting, the power
sector can reasonably dispatch PV resources and reduce the impact of power fluctuations on
grid-connected PVs. Dissipation and aggregation of cloud clusters in a short period of time
are important factors that cause fluctuations in output power. Besides, solar irradiance is
affected directly by the different types of clouds [3]. Different types of clouds have different
characteristics, such as thickness, height, and sky coverage, which affect the magnitude of
solar radiation received by the ground. Therefore, classification of clouds is crucial for PV
power prediction.

There are various forms of clouds belonging to the same category, and different cate-
gories of clouds are also a transitional relationship, so they have greater similarity, which
brings great challenges to the classification of clouds. In the early days, machine learning
based classifiers were often used to classify cloud images. For example, Heinle et al. [4]
used the K-nearest neighbors to classify the cloud by extracting the spectral and texture fea-
tures of the cloud image. Kazantzidis et al. [5] introduced cloud classification by counting
the color and texture features of cloud images, and at the same time considered multi-modal
information as the input of the improved K-nearest neighbors classifier. Zhao et al. [6]

Appl. Sci. 2022, 12, 1570. https://doi.org/10.3390/app12031570 https://www.mdpi.com/journal/applsci1
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proposed that the texture, local structure, and statistical feature were used as the input of
SVM and achieved an accuracy of 64.1% on the dataset of nine cloud categories.

With the continuous development of deep learning in recent years, the performance of
convolutional neural network (CNN) in the field of image classification has been greatly
improved. Because of better feature representation capabilities, CNN can mine more deep
semantic features from the image. Liu et al. [7] produced a MGCD dataset with 8000 ground-
based cloud images and corresponding meteorological data, yielding an accuracy as high as
87.9% with multi-modal fusion algorithm. Ye et al. [8] introduced a CNN to extract the fea-
tures of cloud images; fisher vector coding and SVM classifier are utilized for cloud images
classification. Zhang et al. [9] proposed a CloudNet model and obtained a high accuracy on
a self-built CCSN dataset containing 2543 cloud images. Huertas-Tato et al. [10] proposed
an ensemble learning algorithm to fuse the output probability vector of CNN and random
forest classifier to improve the classification accuracy. In [11], the network named MMFN
was proposed, which could learn extended cloud information by fusing heterogeneous
features in a unified framework. In [12], the task-based graph convolutional network was
introduced to obtain the correlation between cloud images, yielding an accuracy as high
as 89.48%.

There are many cloud image datasets available for reference in existing research. It can
be divided into satellite cloud images, part-sky ground-based cloud images, and all-sky
ground-based cloud images. There are many research methods for the classification of
satellite cloud images [13–16], and this classification is extremely effective for macro-level
meteorological analysis. However, satellite cloud images cover a large area and have few
local details. It is extremely difficult to analyze cloud clusters in a small patch of sky, which
makes it not widely used in the field of PV power generation. For the classification of
part-sky ground-based cloud images, there have also been many research methods [17–19].
However, part-sky ground-based cloud images have a small field of view and cannot meet
the large-scale PV power station requirements. The field of view of the all-sky ground-
based cloud images is generally 180°, which can capture most of the sky, as shown in
Figure 1. The collected cloud images have clear textures and rich structural features, which
are suitable for PV power stations of almost all sizes. However, there are still few studies
on this type of cloud images, and the amount of data in public datasets is also small.
In some existing studies, the accuracy of classification is low, which cannot well meet
the application in PV power generation. In response to the above problems, we made a
ground-based cloud images dataset with a larger amount of data and proposed a deep
learning-based ground-based cloud image classification method. The main contributions
are shown as follows:

(1) By collecting historical cloud images data published by the National Renewable
Energy Laboratory (NREL) on the US Measurement and Instrument Data Center (MIDC)
website, a ground-based cloud images dataset NRELCD (NREL Cloud Dataset) is con-
structed. The dataset contains 15,450 cloud images and is divided into 7 categories.

(2) A novel ground-based cloud images classification method by improved combined
neural network is proposed; overlap pooling kernels are used in the sub-network to
improve the effect of eliminating information redundancy and reduce the risk of overfitting.
The improved channel attention module ECA-WS is introduced after the pooling layer,
which further enhances the sub-network’s ability to express channel characteristics. The
synchronization of parameter optimization among sub-networks is realized by improving
the sub-networks. The decision fusion algorithm is used to weight the output of the two
sub-networks in the combined network to improve the classification accuracy significantly.

2



Appl. Sci. 2022, 12, 1570

Figure 1. Ground-based cloud images.

The rest of this paper is organized as follows: Section 2 briefly introduces some related
work; Section 3 describes a novel ground-based cloud images classification method based
on improved combined neural network; and Section 4 presents experimental results and
some discussion. At the end of this paper, some remarking points are given in Section 5.

2. Related Work

2.1. Deep Feature Extraction Network

ResNet50 [20] and VGG16 [21] deep convolutional neural networks are introduced
to obtain more deep features. ResNet50 is composed of multiple residual blocks, and
each residual block added a direct connection channel. The residual learning algorithm
can reduce the loss of information when the feature is propagated to the deeper network.
VGG16 replaces a larger size convolution kernel by stacking multiple 3 × 3 size convolution
kernels, which ensures that the network can learn more complex nonlinear mapping modes
while obtaining the same receptive field.

2.2. ECA Attention Mechanism

The attention mechanism can redistribute the originally evenly allocated resources
according to the importance of the objects. The contrast between different features is
enhanced and useful features are more prominent. Many attention mechanisms such as
MAT [22], IHSM&EFRM [23], CBAM [24], SE [25], and ECA [26] have been applied in
various visual tasks. MAT module consists of a soft attention unit and an attention transition
unit, which allows the transition of attentive motion features to enhance appearance
learning at each convolution stage and enrich spatio-temporal object features. This module
is of great value in video analysis tasks. IHSM&EFRM are used in the human–object
interaction detection task, and they enhance the expression of human and object features,
respectively. CBAM module includes channel and space dual attention, which improves
the feature extraction ability of the network in multi-dimensions. SE module uses squeeze-
and-excitation to learn the relationship among each channel and assign different weights
to different channels. Though dimensionality reduction can reduce model complexity, it
destroys the direct correspondence between channel and its weight. ECA module proposes
a local cross-channel interaction strategy without dimensionality reduction based on the
SE. This method can adaptively select the size of the 1D convolution kernel.

The ECA module is shown in Figure 2, where X and X′ represent input and output
feature maps, and w, h, c represent their width, height, and channel dimensions, respectively.
As shown in Equation (1), after using global average pooling (GAP) on the input feature
map X, a channel coding vector γgap with a size of 1 × 1 × c is obtained.

γgap =
1

wh

w,h

∑
i=1, j=1

Xij·, X ∈ Rw×h×c, (1)

ηgap = σ(Vgap
k γgap), Vgap

k ∈ Rc×c, (2)

3
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Figure 2. ECA attention module.

As shown in Equation (3), where Vgap
k is a band weight matrix. The channel weight

vector ηgap can be obtained after normalization by the σ (sigmoid) function. The k can be
adaptively calculated according to

k = ψ(c) = | log2(c)
y

+
b
y
|odd, (3)

ψ(·) indicates the mapping relationship between c and k. | · |odd indicates the nearest odd
number. y and b are custom mapping parameters, here 2 and 1. The feature vector obtained
after 1D convolution still maintains its original dimension.

2.3. Decision Fusion

Different networks have different classification probability for the same sample, which
is embodied in the output vector of the network. When the output probabilities of each
category are close to equal, it can be considered that the corresponding network hardly
makes a positive judgment on the sample [27]. If multiple networks are used to make joint
decisions, the probability of the sample being correctly classified will greatly increase, as
shown in Figure 3.

Figure 3. Multiple network fusion decision. When the probabilities of different categories are nearly
equal, use a smaller value to multiply the vector. Otherwise, use a larger value to multiply the vector.

3. Our Proposed Methods

The model consists of four parts, which are deep feature combined network, overlap
pooling, improved ECA module, and decision fusion. The specific structure of the model is
shown in Figure 4.

4
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Figure 4. Classification network model of ground-based cloud images.

3.1. Combined Network

The existing ground-based cloud images classification is usually based on a single
channel network. However, there are limitations on performance of feature extract. At the
same time, there is no such requirement as real-time for the classification of ground-based
cloud images in PV power prediction. Therefore, in order to improve the classification
accuracy, a combined network is used to improve the ability of the model for feature
extraction. Here, ResNet50 and VGG16 networks are used to extract the depth and width
feature of images. ResNet50 can extract more deep semantic features in ground-based
cloud images because of its depth advantages. However, the network scales four times
the width and height dimension of the first convolutional layer, resulting in the loss of
some image features during subsequent convolutions. The first-stage convolutional layer
of VGG16 can perform feature extraction at the input dimension, so the feature extraction
advantage on the width and height dimension is more obvious.

In our experiments, we found that the results of ResNet50 tend to be stable when
training on a dataset with less data, while VGG16 undergoes overfitting, which degrades
the accuracy. Such results are unfavorable for decision fusion, and the decision fusion
algorithm can only perform its best when the performance between sub-networks is close to
the same. In this regard, we improve the pooling layer structure and the ECA-Pro module
to ensure that the accuracy of VGG16 will not be degraded.

3.2. Overlap Pooling

Most of the clouds in the ground-based cloud images are grayish-white, and the back-
ground sky shows a uniform blue color. This results in a high degree of similarity between
adjacent pixels of the image. This similarity leads to a higher information redundancy in
ground-based cloud images compared to other images and also makes the VGG16 network
more prone to overfitting. The network parameter quantity and overfitting caused by the
image information redundancy can be reduced through the feature map pooling. How-
ever, the 2 × 2 pooling kernels cannot significantly improve the down-sampling quality of
high-redundancy images.

As shown in Figure 5, a pooling kernel of size 3 × 3 is used instead of the original
pooling kernel. The redundancy of features can be eliminated while the common features
of adjacent receptive fields will be extracted. The pooling step is set to 2, which makes
the pooling kernels overlap each other and adjacent receptive fields overlap each other as
well. At the same time, the feature correlation and the overfitting suppression ability of the
network are promoted.

5
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Figure 5. 3 × 3 overlap pooling kernel.

3.3. Improved ECA

Referring to the ground-based cloud image sample in Figure 1, due to the all-sky
imager being utilized to acquire the image, only the inscribed circular part of the image
is the effective area, and the surrounding four corners are invalid black pixels. Therefore,
although GAP has strong noise suppression capabilities, it still does not work well for the
special images. To avoid the above-mentioned problems, global max pooling (GMP) is used
to prevent the introduction of invalid parts in the feature calculation, which improves the
ability of channel feature extraction to a certain extent. The GMP is shown in Equation (5)

γgmp = max
i∈[1,w]
j∈[1,h]

(Xij·), X ∈ Rw×h×c, (4)

Like global average pooling, the vector γgmp is multiplied by the band weight matrix
Vgmp

k . The output obtained is the channel weight vector ηgmp

ηgmp = σ(Vgmp
k γgmp), Vgmp

k ∈ Rc×c, (5)

Then, the ECA attention module is spliced with the pooling layer, GAP and GMP are
employed to jointly extract the global features of X. It should be noted that GAP and GMP
are used here in parallel to aggregate the spatial information of the two feature maps. If
GAP is executed before GMP, then after the GMP operation, all the values less than the
maximum value in the feature map will be discarded, and this is the useful information
processed by GAP.

X′ = σ(ηgap + ηgmp)X, ηgap ∈ R1×1×c, ηgmp ∈ R1×1×c, (6)

where X′ represents the output of the entire attention module.
In the ECA module, there are two combinations of GAP and GMP. As illustrated

in Figure 6a,b, we named them the weight sharing method (ECA-WS) and the weight
independent method (ECA-WI), respectively.

6
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(a) (b)

Figure 6. Improved ECA. (a) GAP share weights with GMP (ECA-WS); (b) GAP and GMP weight
independent (ECA-WI).

In ECA-WS, GMP uses the same band weight matrix with GAP, that is, vgap
k = vgmp

k .
It hardly increases the parameters of the ECA module but improves the feature extraction
capability of the module. In ECA-WI, GMP uses the different band weight matrix with GAP,
that is, vgap

k �= vgmp
k . However, this method not only increases the network parameters but

also reduces the correlation between the two global pooling. This may lead to the instability
of the combined network performance, which is also proved by comparative experiments.
Therefore, ECA-WS attention mechanism is used to improve the characterization ability of
the channel characteristics of the VGG16 sub-network after each stage of pooling.

3.4. Decision Fusion

Considering the significant effects of fusion of multiple networks on the improvement
of classification performance, a weighted algorithm is introduced to fuse the output results
of the two sub-networks.

Details of the algorithm are shown as follows,

li = σ(xi) =
1

1 + e−xi
, i ∈ [1, 2], (7)

first, the σ function is used to normalize each network output values. Where xi indicates
the output vector of the i-th sub-network.

The normalized probability distribution is expressed as

Pi =
lim

∑n
j=1 lij

,
{

m ∈ [1, n]
i ∈ [1, 2]

, (8)

where Pi is the probability vector output by the network, lim is the value of the m-th
category, and n indicates the number of cloud image categories.

The output probability matrix of the transformed combined network is expressed as

P =

[
P1

P2

]
, (9)

Subsequently, the information entropy Hi of the probability distribution of each net-
work output is

Hi = −
n

∑
j=1

Pij log2 Pij, i ∈ [1, 2], (10)

7
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The greater information entropy, the greater uncertainty of the network prediction
results and the higher probability of being misdiagnosed. Therefore, a lower weight should
be assigned. The weight whi of sub-network is given as follows

whi =
e−Hi

∑n
k=1 e−Hk

, i ∈ [1, 2], (11)

The weight wcm of each category according to the number of samples of different
categories is defined as follows

wcm =
1 − Nm

Ntotal

∑n
j=1(1 −

Nj
Ntotal

)
,
{

m ∈ [1, n]
i ∈ [1, 2]

, (12)

where Nm represents the number of samples in the m-th category and Ntotal represents the
total number of samples.

Multiply the sub-network weight wci and category weight wci with the original output
vector x. The weighted matrix W of the combined network is written as

W =

[
wh1wc1x11 wh1wc2x12 · · ·wh1wcnx1n

wh2wc1x21 wh2wc2x22 · · ·wh2wcnx2n

]
, (13)

Add W in rows,

W ′ =

[
2

∑
i=1

whiwc1xi1,
2

∑
i=1

whiwc2xi2, · · · ,
2

∑
i=1

whiwcnxin

]
, (14)

Take the maximum index of the column to be the final classification decision result,

lable = arg max(W ′). (15)

4. Result and Discussion

4.1. Dataset for Classification

The NRELCD and the MGCD dataset are used to prove the effectiveness of the method
in this paper. The NRELCD dataset comes from the historical ground-based cloud images
published by the National Renewable Energy Laboratory (NREL) in the United States. The
image size is 1024 × 1024 pixels and the collection period is from 2018 to 2020. We screened
15,450 images with distinct category characteristics and analyzed the effect of each category
on solar radiation attenuation to produce a dataset specific to the PV power sector.

The amount of solar radiation received by the PV panels is a direct factor affecting
the power generated by PV. According to the method described in the literature [28], we
collected the all-day radiation for days when there was only one cloud genus in the sky
and also for the nearest cloudless day to that day. As shown in Figure 7, the two data are
compared to see the effect of each cloud category on the solar radiation attenuation. Nearly
similar cloud types are combined according to the degree of attenuation of solar radiation
by each type of clouds. Cloud categorization is not as clear as other categorization tasks.
Clouds are sometimes in a transitional state and their classification is highly controversial.
We did not use those transition state cloud images as part of the dataset but instead forced
them to be classified in a practical application using a trained classifier. Since the cloud
images in the NRELCD have continuity in time, the adjacent images are relatively similar.
Random distribution of the dataset to the training set and the test set will cause the accuracy
to be high, which is not in line with the actual situation. Therefore, the first 70% of the
dataset is used as the training set and the rest as the test set according to the acquisition time.

8
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Figure 7. Effect of different cloud genera on solar radiation attenuation. Altocumulus and Cirrocu-
mulus are infrequent, we have boxed the time of occurrence in red.

Different categories of clouds have different probabilities of occurring in different
regions. In order to adapt the power prediction to the real environment, there are different
cloud classification criteria. We try to test the classification ability of the model under
different cloud classification criterias with two datasets with different categories. The
MGCD dataset [7] also includes 7 categories, with a total of 8000 ground-based cloud
images, each of which corresponds to 4 modals of weather data. The data format of
cloud images is JPEG, and the size is 1024 × 1024 pixels. The training set and the test set
contain 4000 cloud image samples, respectively. We only use cloud image samples in the
dataset for experiments. Mixed clouds in the MGCD dataset are composed of multiple
categories of clouds. Objectively speaking, these combinations have different effects on
solar radiation, so putting mixed clouds into one category is not reasonable in practice, but
this classification criterion is informative for testing model performance. Table 1 shows the
number of samples in each dataset, while Figures 8 and 9, respectively, listed the cloud
samples of the two datasets.

9
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Table 1. Ground-based cloud images dataset.

NRELCD MGCD

Type
(ABBR.)

Train Test Quantity
Type

(ABBR.)
Train Test Quantity

Cirrus and Cirrostratus
(Ci and Cs) 1673 716 2389

Cumulus
(Cu) 690 748 1438

Altocumulus and Cirrocumulus
(Ac and Cc) 876 376 1252

Altocumulus and Cirrocumulus
(Ac and Cc) 400 331 731

Altostratus and Stratus
(As and St) 1534 658 2192

Cirrus and Cirrostratus
(Ci and Cs) 650 673 1323

Stratocumulus
(Sc) 1362 585 1947

Clear sky
(Clear sky) 650 688 1338

Cumulus
(Cu) 1410 605 2015

Stratocumulus, Altostratus and Stratus
(Sc, St and As) 500 463 963

Cumulonimbus
(Cb) 1293 555 1848

Cumulonimbus and Nimbostratus
(Cb and Ns) 600 587 1187

Nimbostratus
(Ns) 2652 1155 3807

Mixed
(Mixed) 510 510 1020

Total 10,800 4650 15,450 Total 4000 4000 8000

(a) (b) (c) (d) (e) (f) (g)

Figure 8. NRELCD dataset. (a) Ci and Cs; (b) Ac and Cc; (c) As and St; (d) Sc; (e) Cu; (f) Cb; (g) Ns.
Considering that there are extremely high structural similarities between certain types of clouds, this will
make their impact on PV power generation very similar or almost the same. Some changes are made
to the International Meteorological Organization’s cloud classification standards. The main work is to
combine the original cirrus and cirrostratus, altocumulus and cirrocumulus, and altostratus and stratus.

(a) (b) (c) (d) (e) (f) (g)

Figure 9. MGCD dataset. (a) Cu; (b) Ac and Cc; (c) Ci and Cs; (d) clear sky; (e) Sc, St and As; (f) Cb and
Ns; (g) mixed. This dataset combines altocumulus and cirrocumulus, cirrocumulus and cirrostratus,
stratocumulus and stratus and altostratus, and cumulonimbus and nimbostratus, respectively.

10
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4.2. Experimental Setup

In the experiment, the Ubuntu 18.04 operating system with 128 G of running memory
and an RTX3090 graphics card with 24 G of video memory are implemented. The deep
learning framework is Pytorch1.7.1, and the CUDA version is 11.1.

Data augmentation on the cloud images were performed to increase the noise of the
dataset and the robustness of the model. The operations included (1) random horizontal
flip, (2) vertical flip, (3) grayscale with a probability of 50%, (4) random rotation of 45°, and
(5) random change of brightness, contrast, saturation, and hue. The input cloud images’
size was adjusted to 224 × 224 pixels, and transfer learning was used to train these cloud
images. The learning rate of two sub-networks is fixed to 0.000001, and the Adam optimizer
is used to optimize the gradient operation. The batch size of training and testing are both
set to 50. The epoch of the NRELCD dataset was set to 200, and the epoch of the MGCD
dataset was set to 100.

4.3. Ablation Experiment

Ablation experiments are used to compare several improved methods proposed in
this paper. The results are listed in Table 2. Where CN is combined network, OP is overlap
pooling, ICN is improved combined network we proposed, CC is the number of correct
classifications, P is average accuracy, R is average recall, F1 is average F1-score, Acc is
overall classification accuracy, and K (Kappa) is consistency index.

Table 2. Ablation experiment.

Method
MGCD/4000 Test Samples NRELCD/4650 Test Samples

CC P R F1 Acc K CC P R F1 Acc K

ResNet50 3522 85.67% 86.12% 85.69% 88.05% 0.8593 4373 93.33% 93.12% 93.12% 94.04% 0.9291
VGG16 3488 84.77% 84.86% 84.76% 87.20% 0.8492 4378 93.40% 93.30% 93.27% 94.15% 0.9304

CN 3551 86.23% 87.02% 86.53% 88.78% 0.8679 4411 94.17% 94.23% 94.17% 94.86% 0.9389
CN + OP 3557 86.77% 86.87% 86.69% 88.93% 0.8696 4436 94.88% 94.67% 94.77% 95.40% 0.9453

CN + OP + ECA 3585 87.59% 87.91% 87.55% 89.63% 0.878 4440 94.91% 94.79% 94.84% 95.55% 0.9471
ICN 3603 88.09% 88.15% 87.85% 90.08% 0.8834 4445 95.11% 94.93% 95.01% 95.60% 0.9477

Table 2 illustrates the performance of the model at various stages from the basic
structure to the final structure. In the ICN model, accuracy of the MGCD dataset is increased
by 2.03% and 2.88%, respectively, compared with the sub-networks ResNet50 and VGG16,
while the accuracy of the NRELCD dataset is increased by 1.56% and 1.45%, respectively.
Figure 10 is the accuracy curve of the model on different datasets as the epoch increases.
As shown in Figure 9a, VGG16 produces overfitting in training on MGCD dataset. At this
time, the parameters of the ResNet50 are still being further optimized. The overfitting
phenomenon is suppressed effectively on improved VGG16(VGG16 + OP + ECA-WS), and
the parameter optimization of the two sub-networks is close to synchronization, which
provides a good prerequisite for decision fusion. As illustrated in Figure 10b, improved
VGG16 is better than VGG16 in performance on the NRELCD dataset with a larger scale.
The optimization process of the two sub-networks is also almost synchronized in time.
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(a) (b)

Figure 10. Experimental results of different datasets. (a) Accuracy of MGCD, (b) accuracy
of NRELCD.

4.4. Overlap Pooling Experiment

To verify the effect of overlap pooling, the pooling kernels in the VGG16 were changed
to 2 × 2, 3 × 3, 4 × 4, and 5 × 5.

In Figure 11, it can be seen that the 3 × 3 overlap pooling kernel has the highest
accuracy on the two datasets. The main reason is that the 3 × 3 overlap pooling kernel has
a greater ability to eliminate the redundancy of image feature information than the 2 × 2
pooling kernel while retaining useful information. At the same time, a larger kernel may
reduce information redundancy while causing more useful information to be lost in the
pooling process, thereby affecting the overall performance of the network.

Figure 11. Variation of classification accuracy with respect to the kernel size.

4.5. Attention Mechanism Experiment

To verify the role of the attention mechanism, GRAD-CAM [29] is used to visualize the
VGG16, VGG16 and ECA, and VGG16 and ECA-WS. A piece of ground-based cloud image
is randomly selected from different categories. The results are shown in Figures 12 and 13.
Network’s attention to the cloud area can be increased significantly by embedding the
ECA attention mechanism into the VGG16 network. However, sometimes it can only focus
on part of the cloud or focus part of the attention on the sky background. The ECA-WS
attention mechanism we proposed can focus attention on image areas with more inter-class
differences, which improves the classification ability of the network.
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Figure 12. MGCD category heat maps.

Figure 13. NRELCD category heat maps.

Different attention mechanisms are used for comparative experiments, and the results
are listed in Table 3, where backbone is combined network with improved pooling layer.
CBAM module, SE module, ECA module, ECA-WI module, and ECA-WS module are
introduced, respectively, based on backbone.

Table 3. Comparative result of attention mechanisms.

Attention Mechanisms MGCD NRELCD

Backbone + CBAM 88.95% 94.51%
Backbone + SE 89.51% 95.30%

Backbone + ECA 89.63% 95.55%
Backbone + ECA-WI 89.53% 95.55%
Backbone + ECA-WS 90.08% 95.60%

In Table 3, the ECA-WS module has the best performance on improving the accuracy
of network classification than other attention modules. However, the ECA-WI cannot
improve the performance of the module and may even lead to a decrease.
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4.6. Classification Method Experiment

From Table 4, the performance of method [4] based on texture or spectral feature on
the two datasets is worse deep learning. Cloud images have more texture features and deep
semantic features than other images, and only by acquiring more image features can we
satisfy the classification needs of such images. In recent years, CNN has been widely used
in ground-based cloud images classification tasks, thanks to its powerful feature extraction
capabilities. Method [9] has shown good results on both datasets. Methods [7,11] fuse
multimodal meteorological data and CNN, and achieved accuracy rates of 87.90% and
88.63%, respectively.

While good classification accuracy is achieved on other classic CNN models, the
one that achieved the highest on our model had accuracy of the MGCD dataset that
reached 90.08% and of the NREL dataset, it reached 95.60%. The combined network greatly
optimizes the probability distribution of the classification output vector. By comparing with
the latest algorithms and single network, the results show that the method in this paper
has a greater improvement in classification accuracy, and it also proves the generalization
ability of the method. For ground-based cloud images collected in different regions, the
model has strong robustness, which will play a positive role in the field of PV power
generation forecasting.

Table 4. Comparative experiment of classification methods.

Methods MGCD NRELCD

Method [4] 68.90% 75.61%
Method [9] 81.14% 92.17%
Method [7] 87.90% -
Method [11] 88.63% -
ResNet50 88.05% 94.04%
VGG16 87.20% 94.15%
GoogleNet 87.53% 93.54%
Inception_v3 88.32% 94.20%
MobileNet_v2 86.92% 93.73%
Ours 90.08% 95.60%

Note. References [7,11] use the meteorological data in MGCD, and NRELCD does not contain meteorological data.

5. Conclusions

In this paper, a combined network-based ground-based cloud images classification
method is proposed. Specifically, the ResNet50 and VGG16 networks are combined using
decision fusion algorithm, which uses dual weights to weight the output of the sub-
network. In addition, to optimize the parameters of the two sub-networks to approach
synchronization, overlap pooling is used to replace the original VGG16 pooling layer.
At the same time, the ECA-WS module is embedded after the pooling layer to improve
the cross-channel interaction capability of the network. We constructed the NRELCD
dataset that meets the actual application scenarios and used the MGCD dataset to verify
the advanced nature of the network model.

At present, our classification of clouds is only based on image features. In reality, there
are many physical characteristics that can provide a basis for cloud classification, such as
height, thickness, and speed. In the future, we will consider using these parameters in
classification research to improve the performance of the model.

Author Contributions: All authors made significant contributions to the manuscript. W.Z. and T.C.
conceived, designed, and performed the experiments, and wrote the paper; B.H. and C.B. collected
data and performed the experiments; A.Y. analyzed the data and performed the experiments; L.C.,
M.T. and Y.Z. revised the paper and provided the background knowledge of cloud classification. All
authors have read and agreed to the published version of the manuscript.

14



Appl. Sci. 2022, 12, 1570

Funding: This research was funded by the Key Research and Development Project of Zhejiang
Province, Grant Number 2021C04030, and the Public Project of Zhejiang Province, Grant Number
LGG21F030004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data collected in this study came from the National Renewable
Energy Laboratory, available at https://midcdmz.nrel.gov/apps/sitehome.pl?site=BMS (accessed
on 1 May 2021). The MGCD dataset can be obtained from (shuangliu.tjnu@gmail.com).

Acknowledgments: The all-sky cloud images in the NRELCD dataset were obtained by the National
Renewable Energy Laboratory in the United States. The MGCD dataset used in the experiment was
also allowed by Liu Shuang’s team. We would like to express our sincere thanks.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References

1. Raza, M.Q.; Nadarajah, M.; Ekanayake, C. On recent advances in PV output power forecast. Sol. Energy 2016, 136, 125–144.
[CrossRef]

2. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Shah, N.M. Review on forecasting of photovoltaic power generation based on machine
learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [CrossRef]

3. Govender, P.; Sivakumar, V. Investigating diffuse irradiance variation under different cloud conditions in Durban, using k-means
clustering. J. Energy South. Afr. 2019, 30, 22–32. [CrossRef]

4. Heinle, A.; Macke, A.; Srivastav, A. Automatic cloud classification of whole sky images. Atmos. Meas. Tech. 2010, 3, 557–567.
[CrossRef]

5. Kazantzidis, A.; Tzoumanikas, P.; Bais, A.F.; Fotopoulos, S.; Economou, G. Cloud detection and classification with the use of
whole-sky ground-based images. Atmos. Res. 2012, 113, 80–88. [CrossRef]

6. Zhuo, W.; Cao, Z.; Xiao, Y. Cloud classification of ground-based images using texture–structure features. J. Atmos. Ocean. Technol.
2014, 31, 79–92. [CrossRef]

7. Liu, S.; Duan, L.; Zhang, Z.; Cao, X. Hierarchical multimodal fusion for ground-based cloud classification in weather station
networks. IEEE Access 2019, 7, 85688–85695. [CrossRef]

8. Ye, L.; Cao, Z.; Xiao, Y.; Li, W. Ground-based cloud image categorization using deep convolutional visual features. In Proceedings
of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015;
pp. 4808–4812.

9. Zhang, J.; Liu, P.; Zhang, F.; Song, Q. CloudNet: Ground-based cloud classification with deep convolutional neural network.
Geophys. Res. Lett. 2018, 45, 8665–8672. [CrossRef]

10. Huertas-Tato, J.; Martín, A.; Camacho, D. Cloud type identification using data fusion and ensemble learning. In Proceedings of
the Intelligent Data Engineering and Automated Learning (IDEAL), Guimaraes, Portugal, 4–6 November 2020; pp. 137–147.

11. Liu, S.; Li, M.; Zhang, Z.; Xiao, B.; Durrani, T.S. Multi-evidence and multi-modal fusion network for ground-based cloud
recognition. Remote Sens. 2020, 12, 464. [CrossRef]

12. Liu, S.; Li, M.; Zhang, Z.; Xiao, C.; Durrani, T.S. Ground-Based Cloud Classification Using Task-Based Graph Convolutional
Network. Geophys. Res. Lett. 2020, 47, e2020GL087338. [CrossRef]

13. Jin, W.; Gong, F.; Zeng, X.; Fu, R. Classification of clouds in satellite imagery using adaptive fuzzy sparse representation. Sensors
2016, 16, 2153. [CrossRef] [PubMed]

14. Kostornaya, A.A.; Saprykin, E.I.; Zakhvatov, M.G.; Tokareva, Y.V. A method of cloud detection from satellite data. Russ. Meteorol.
Hydrol. 2017, 42, 753–758. [CrossRef]

15. Christodoulou, C.I.; Michaelides, S.C.; Pattichis, C.S.; Kyriakou, K. Classification of satellite cloud imagery based on multi-
feature texture analysis and neural networks. In Proceedings of the 2001 International Conference on Image Processing (ICIP),
Thessaloniki, Greece, 7–10 October 2001; IEEE: Piscataway, NJ, USA; pp. 497–500.

16. Chen, X.; Liu, L.; Gao, Y.; Zhang, X.; Xei, S. A Novel Classification Extension-Based Cloud Detection Method for Medium-
Resolution Optical Images. Remote Sens. 2020, 12, 2365. [CrossRef]

17. Luo, Q.; Zhou, Z.; Meng, Y.; Li, Q.; Li, M. Ground-based cloud-type recognition using manifold kernel sparse coding and
dictionary learning. Adv. Meteorol. 2018, 2018, 9684206. [CrossRef]

18. Kliangsuwan, T.; Heednacram, A. Feature extraction techniques for ground-based cloud type classification. Expert Syst. Appl.
2015, 42, 8294–8303. [CrossRef]

19. Wang, Y.; Shi, C.; Wang, C.; Xiao, B. Ground-based cloud classification by learning stable local binary patterns. Atmos. Res. 2018,
207, 74–89. [CrossRef]

15



Appl. Sci. 2022, 12, 1570

20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

21. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–14.

22. Zhou, T.; Wang, S.; Zhou, Y.; Yao, Y.; Li, J.; Shao, L. Motion-attentive transition for zero-shot video object segmentation. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Hilton New York Midtown, NY, USA, 7–12 February 2020;
pp. 13066–13073.

23. Zhou, T.; Wang, W.; Qi, S.; Ling, H.; Shen, J. Cascaded human-object interaction recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 4263–4272.

24. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

25. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

26. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020;
pp. 1–12.

27. Chen, W.; Liu, W.; Li, K.; Wang, P.; Zhu, H.; Zhang, Y.; Hang, C. Rail crack recognition based on adaptive weighting multi-classifier
fusion decision. Measurement 2018, 123, 102–114. [CrossRef]

28. Matuszko, D. Influence of the extent and genera of cloud cover on solar radiation intensity. Int. J. Climatol. 2012, 32, 2403–2414.
[CrossRef]

29. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, A.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017; pp. 618–626.

16



Citation: Mameri, F.; Delacourt, E.;

Morin, C.; Schiffler, J. 0D Dynamic

Modeling and Experimental

Characterization of a Biomass Boiler

with Mass and Energy Balance.

Entropy 2022, 24, 202. https://

doi.org/10.3390/e24020202

Academic Editor: T M Indra Mahlia

Received: 30 November 2021

Accepted: 28 December 2021

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

0D Dynamic Modeling and Experimental Characterization of a
Biomass Boiler with Mass and Energy Balance

Fateh Mameri 1, Eric Delacourt 1,2, Céline Morin 1,2,* and Jesse Schiffler 3

1 CNRS, UMR 8201–LAMIH, University Polytechnique Hauts-de-France, 59313 Valenciennes, France;
fatehmameri@hotmail.fr (F.M.); Eric.Delacourt@uphf.fr (E.D.)

2 INSA Hauts-de-France, 59313 Valenciennes, France
3 CNRS, UMR 7357–ICube, University Strasbourg, 67412 Illkirch, France; schiffler@unistra.fr
* Correspondence: Celine.Morin@uphf.fr

Abstract: The paper presents an experimental study and a 0D dynamic modeling of a biomass
boiler based on the Bond Graph formalism from mass and energy balance. The biomass boiler
investigated in this study is an automatic pellet boiler with a nominal power of 30 kW with a
fixed bed. The balances allow to model as time function the flue gas enthalpy flux variation and the
thermal transfers between the flue gas and the walls of the boiler subsystems. The main objective is
to build a model to represent the dynamic thermal behavior of the boiler. Indeed, small domestic
boilers have discontinuous operating phases when the set temperature is reached. The global thermal
transfer coefficients for the boiler subsystems are obtained according to an iterative calculation by
inverse method. The boiler has an average efficiency of 67.5% under our operating conditions and the
radiation is the dominant thermal transfer by reaching 97.6% of the total thermal transfers inside the
combustion chamber. The understanding of the dynamic behavior of the boiler during the operating
phases allows to evaluate its energy performances. The proposed model is both stimulated and
validated using experimental results carried out on the boiler.

Keywords: energy balance; biomass boiler; heat exchanger; 0D modeling; Bond Graph; global
thermal transfers; inverse method

1. Introduction

Biomass plays a significant role in the development of clean and sustainable heat
production processes with a large reduction of CO2 emissions [1]. There are multiple
ways to exploit energy potential of biomass, e.g., by pyrolysis [2], gasification or other
bio-chemical processes using bacteria to generate gaseous and liquid biofuels or by direct
combustion to generate heat and electricity [3–5]. Even if biomass has a lower calorific
value than other fuels, such as fossil fuels, this source of energy remains cleaner with
some reserves [6]. The biomass can be valued for the simultaneous production of heat and
electricity from CHP (Combined Heat and Power) plants [7,8].

In the thermal conversion of biomass, there are multiple physical and chemical pro-
cesses that have an influence on the performances of industrial and domestic applications,
such as furnaces, industrial burners and biomass boilers [9], the exergy analysis must
be used in order to find the best way to recover the maximum of mechanical work in a
CHP (combined heat and power) unit. Biomass boilers provide a direct conversion of
biomass into energy by combustion. They are widely investigated in several configurations
according to delivered power: biomass domestic boiler of 24 kW, 27 kW and 32 kW [10–12],
industrial biomass boiler of 4 MW [13].

Dynamic modeling of energy systems can be used for the design, the optimization or
the control of the studied process. Tognoli and Najafi [14] provided a detailed dynamic
model of an industrial fire-tube boiler with five different geometrical configurations. The
dynamic model developed consists of two main sections separated on the flue gas side and
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the evaporating shell. Both sides are integrated employing an energy balance. Then, a PID
tuning was implemented for each boiler to control the vapor pressure, while responding
to a demand with variable mass flow rate. The operation of the boilers was simulated to
meet four different steam demand profiles. A wood pellet micro-cogeneration system with
steam engine was modeled by Bouvenot et al. [15] and implemented in the TRNSYS code.
Both theoretical and experimental approaches have been adopted to develop the model.
The authors presented the dynamic response of the installation and took into account the
steady and transient states. A dynamic model applied to two biomass boilers with nominal
power of 6 and 12 kW was presented by Carlon et al. [16]. The model developed with
TRNSYS calculates the mass and energy balances of the boilers under time variable inputs.
It describes the operation of the boiler under dynamic conditions and provides the chemical
composition of the flue gases from the chemical composition of the wood pellets and the
value of the excess air and by adopting the assumption of a complete conversion of the mass
of fuel. The model has been tested for two modes of boiler operating conditions: full and
variable load and steady and transient states. The results of the modeling showed a better
agreement with the experimental data during steady operation as well as in dynamic mode.

The modeling of thermofluidic systems related to heat and power generation are
also described in terms of mechanical work generation processes. We can note for exam-
ple, a study on the modeling of ORC (Organic Rankine Cycle) systems investigated by
Ziviani et al. [17]. The authors presented an overview of the problems related to ORC mod-
eling and developed an efficient and powerful simulation for an ORC system adapted to the
exploitation of low-grade thermal energy. Other physical systems are modeled like ECE (Ex-
ternal Combustion Engine), for example Stirling or Ericsson engines [18–20]. Due to their
promising future paths for energy cogeneration by coupling them with thermodynamic
systems, small biomass boilers were also studied from this type of approach. However,
they raised several concerns, ranging from design to dynamic control [21]. Inappropriate
power requirement definition and inadequate control can affect the boiler performances
and reduce its efficiency. To facilitate the design process and overcome upstream design
failing, the modeling represents a very interesting approach.

The dynamic behavior of this kind of system is generally described by non-linear
differential equations. A suitable method, as the Bond Graph formalism, is necessary
to well understand physical interactions in a such thermofluidic system. Therefore, an
appropriate model that represents a system involving energy transfers can be extracted in a
structured way [22]. The Bond Graph method is based on a graphic structure representing
the power exchanges between different physical entities considered in multidisciplinary
dynamic systems. It was initiated by Paynter in 1961 [23] and then developed by Karnopp
and Rosenberg [24]. This tool is adapted to the modeling of the physical processes involved
in different energy fields (hydraulic, mechanical, electrical, chemical and thermal). Bond
Graph formalism allows to develop a parametrized model with an unified language that
interprets the power transfers within the system considered explicitly through its graphic
structure. Bond Graph investigations have been carried out on energy systems such as hot
air engines (Ericsson engine [19]), Heating, Ventilation and Air-Conditioning (HVAC) sys-
tems [25], industrial biomass boiler [26], endoreversible heat engine [27], thermo-hydraulic
system [28] and in chemical engineering [29]. Ould-Bouamama et al. [30] have developed a
dynamic model using Bond Graph methodology for an industrial chemical reactor. The
purpose of this application is to design a monitoring and survival platform in case of failure.

The modeling of biomass boilers operation has been the subject of several studies.
Mathematical models based on thermodynamic laws have been developed to represent
the dynamic behavior of the boilers during operating phases such as start-ups and load
changes [31]. Åström and Bell [32] developed a simple non-linear model based on the
first law of thermodynamics and configured with the basic design data of the boiler.
Sandberg et al. [33] presented a dynamic model based on the mass and energy balances of
a biomass boiler to study the effect of fouling on boiler performances. Table 1 summarizes
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the experimental and numerical studies of the literature about different systems (boiler,
furnace, reactor and engine).

Table 1. Review of energy system modeling.

Reference Device Study Power Main Objective

Strzalka et al. [8] Biomass grate
furnace

Mathematical
modeling 6 kW Model-based optimization of control strategies of

grate furnaces.

Li et al. [9] Biomass boiler Thermodynamic
modeling

Conventional exergy analysis and advanced
exergy analysis of a real biomass boiler.

Kang et al. [10] Biomass boiler Experimental
investigation 24 kW Evaluation of the performances of a domestic

wood pellet boiler.

Gómez et al. [11] Biomass domestic
boiler CFD modeling 27 kW

Simulation of the boiler operation under transient
conditions. The effect of the parameters
influencing the combustion process has

been studied.

Ziviani et al. [17] ORC system Dynamic modeling
(AMESim)

Progress and challenges related to the operation
of ORC (Organic Rankine Cycle) systems.

Féniès et al. [18] Stirling engine
Theoretical modeling

and experimental
study

18 W

Establishment of two models, thermal and
electrical, and study of the influence of dead
volume, the natural frequency of mechanical

oscillations and thermal conduction between the
hot and cold sides for engine optimization.

Abdulmoneim et al. [22] Thermal power
generation station

Dynamic modeling
(Bond Graph)

Modeling of hybrid power plant: pump, boiler,
economizer, evaporator, super heater, drum

and pipe.

Creyx et al. [19] Ericsson engine Dynamic modeling
(Bond Graph)

Dynamic model of the expansion cylinder of an
open Joule cycle Ericsson engine.

Ould-Bouamama et al. [30] Chemical reactor Dynamic modeling
(Bond Graph) Modeling of a chemical reactor for monitoring.

Sandberg et al. [33] Biomass boiler Dynamic modeling 157 MW Biomass boiler dynamic model.

Persson et al. [34] Biomass boiler
and stove

Dynamic modeling
(TRNSYS) 10 kW

Development and validation of a dynamic
boiler/pellet stove model based on

experimental measurements.

Published studies on the dynamic modeling of boilers often refer to black box or
grey box models. There are some studies describing white box models but the detail of
the modeling is often incomplete (use of components of commercial tool libraries rather
opaque or description of physical phenomena modeled without specifying the interactions
between them).

In this work, a 0D dynamic model of a domestic biomass boiler is provided using the
Bond Graph formalism to simulate its dynamic behavior and to understand all the heat
transfers involved in the boiler. The 0D model is based on mass and energy balances. It
characterizes all the heat exchanges between the flue gas and the walls of the subsystems
constituting the boiler. This dynamic modeling makes sense with domestic boilers whose
operation is typically discontinuous unlike larger industrial boilers. The thermal needs of
the house are variable which results in intermittent operation of the boiler. The strength of
dynamic zonal modeling is to be able to predict the time evolution of different state variables
of a complex system by coupling some fields of physics (mechanics, thermodynamics, . . . ).
Moreover, it is possible, during the simulation, to insert time boundary conditions from
in-situ measurements. The local evolution of the state variables is much less detailed
than with CFD modeling but the dependencies of one zone with another are better taken
into account with a 0D dynamic modeling. Moreover, CFD simulations are generally
performed in steady state (averaged) because of the high computational cost in unsteady
state, contrary to the dynamic 0D model which is able to predict the impacts on coupled
systems. CFD and dynamic 0D modeling are therefore to be implemented according to the
targeted objectives and the simulations results can hardly be compared. However, they can
be efficiently coupled in multi-scale approaches. The objective of this study is to model the
dynamic behavior of the boiler during the operating phases in order to take into account
the variability of the heat production with regard to the thermal load of the heating network
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or of any system which could be connected to it (hot air machine for example in the case of
a CHP plant).

Compared to other dynamic modeling, the interest of Bond Graph methodology by its
explicit graphic structure is to make clearer the modeling process of coupled multi-physical
phenomena with blocks linked together by power links where effort and flow variables as
well as causality are explicit. This methodology is very well adapted to model a system
with thermal and mass transfers described with linear or non-linear differential equations.

The Bond Graph formalism was not developed in the literature to study the thermal
transfers between the different fluids in a low power biomass boiler during the transient
operating phases but it is increasingly used for the modeling of thermofluidic systems in
general. Thanks to this formalism and its clarity, it is then possible to highlight the boiler
components where the thermal transfers must be optimized and to understand the physical
interactions. Moreover, there is a lack of experimental data for low power biomass boiler
in the literature, these data are essential to develop a dynamic model by considering the
real operating cycle of the boiler. An innovative way is used in this study by coupling
experimental values and 0D modeling at each time step of the calculation with an analysis
of energy performances for a domestic biomass boiler.

In the paper, the biomass boiler is described with all sensors used for the measurement
of temperatures and mass flow rates. Then, the methodology is explained and the dynamic
model 0D of the boiler is presented. Experimental and numerical results are discussed.

2. Description of the Biomass Boiler

2.1. Experimental Setup

The study is focused on an automatic domestic wood pellet boiler with a power of
30 kW Figure 1), equipped with a water-flue gas heat exchanger whose main role is to
recover a part of the heat energy in the flue gas and transfer it in the water. The water
circulation in the hydraulic circuit is ensured by a pump. The introduction of the pellets
into the burner of the boiler is done by a screw that operates cyclically as long as the
temperature of the outlet water is lower than the setpoint temperature. When the setpoint
temperature is reached, the pellet supply stops. The primary air arrives through trapdoors
located in the lower part of the boiler and its circulation is ensured by an exhaust fan
mounted on the top cover of the boiler which is controlled by a lambda probe located in
the chimney of the boiler. To dissipate the heat of the working fluid, the hydraulic circuit
is connected to two air heaters located to outside of the test cell. In order to carry out
an experimental characterization of the boiler, several sensors are installed at different
locations in the boiler (Figure 1). An electromagnetic flowmeter with an operating range of
20 to 500 dm3/h with an uncertainty of 0.5% measures the water mass flow rate (

.
mexp

w ) cir-
culating in the boiler heat exchanger. The flue gas mass flow rate (

.
mexp

fg ) is calculated from
pressure and temperature measurement in the chimney (Pitot wing system connected to a
micromanometer (uncertainty 5% and K-type thermocouple (uncertainty 0.75%) on their
measurement ranges respectively). The water temperature at the inlet (Texp

w,in) and outlet
(Texp

w,out) of the water-flue gas heat exchanger are recorded by two platinum Pt100 probes
(uncertainty 0.8%). A K-type thermocouple is inserted at the chimney (uncertainty 0.75%)
for the measurement of the flue gas temperature (Texp

fg,exh). Another type S thermocouple
(uncertainty 0.25%) is placed in the central axis of the combustion chamber to measure the
instantaneous evolution of the flue gas temperature (Texp

fg,cc).

K-type thermocouples (uncertainty 0.75%) are placed in the burner (Texp
fg,bur), on the

top and bottom sides of the combustion chamber (Texp
fg,top and Texp

fg,bot). Two other K-type
thermocouples (uncertainty 0.75%) are also welded to each side of the combustion chamber
wall (Texp

wall,outer) and (Texp
wall,inner). A K-type thermocouple (uncertainty 0.75%) is placed at

the outlet of the heat exchanger tubes (Texp
fg,exit) (Figure 1). The flue gas temperature mea-

surements in the burner and the combustion chamber have been corrected from radiative
effects. Indeed, with such temperature levels, the radiative dissipation of the thermocou-
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ples is significant. Several methods exist to take into account this phenomenon which
underestimate the true value of the temperature. The method used is the extrapolation
method [35,36] which consists in using two thermocouples with wires of different diame-
ters and therefore with different hot welds diameter (here 0.95 mm and 0.64 mm) placed
at the same position. The radiative flux exchanged is assumed to be proportional to the
surface of the hot weld, resulting in a zero radiative flux when the surface of the weld is
infinitely small. From the two measured temperatures, an extrapolation allows to obtain
the temperature value for a zero-weld surface corresponding to an absence of radiation.
In our case study (in the flame and its vicinity), as an example, for a 1000 ◦C temperature
measurement, the corrective value to be applied reach 170 ◦C. In this paper, the superscript
“exp” corresponds to experimental measurements. The quantities calculated by the model
have no superscript.

Figure 1. Thermocouples positions and hydraulic circuit. (1) Burner. (2) Combustion chamber.
(3) Flue gas extraction. (4) Screw feeder. (5) Air inlet. (6) Water-flue gas heat exchanger.

The flue gas temperature evolution in the combustion chamber measured at radius of
90 mm and height of 330 mm obtained during the boiler operating cycle is plotted versus
time and correlated with the pellets mass flow rate (Figure 2). It shows a strong dependence
between the quantities of pellet supplied by a feed screw and the temperature increase of
the flue gas in the boiler combustion chamber. The burnt gas temperature varies between
600 and 1100 ◦C. It increases with the arrival of pellets and decreases with their complete
consumption. As mentioned above, the pellets are introduced into the boiler burner by
a feed screw that rotates with a PWM duty cycle as long as the water temperature at the
outlet of the heat exchanger is lower than the set temperature. This operating mode is
controlled by a pulse-width modulation control. When the set temperature is reached, the
pellet supply stops. Thus, a long stop of the pellet supply (12 min) can be observed in
Figure 2. The pellet supply disruptions induce a drop in the burnt gas temperature in the
combustion chamber with a temporary delay. The time lapse between the increase and
drop of flue gas temperature defines a thermal cycle. The pellets mass flow rate is deduced
from the calibration of the feed screw, according to the angular position of the screw. All
sensors are connected to a data acquisition system with a dedicated code developed under
Labview software.
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Figure 2. Boiler operating cycle.

2.2. Energy Balance of the Boiler

Although estimated from the rotation speed of the screw during a calibration phase
without combustion, the mass flow of pellets is difficult to obtain accurately over short
operating times of the screw. In fact, the quantity of pellets introduced by the screw by
PWM method is not constant between each cycle because more or less large pellet clusters
are detached from the screw. Moreover, the combustion is not instantaneous, it would
be necessary to introduce a dynamic combustion model of solid biomass to calculate the
heat release as a function of time. The boiler model presented here can be modified in the
future by integrating this combustion dynamics. The pellet combustion is therefore not
modelled, so the heat generated during the combustion of the pellets has been calculated
using the experimental mass flow rate and the experimental temperature of the flue gases
in the burner. Then, the heat flux provided by the combustion of pellets is estimated from
the following equation:

•
Hfg,bur(t) =

•
m

exp
fg (t).

[
cp

(
Texp

fg,bur

)
.
(

Texp
fg,bur(t)− Tref

fg,bur

)
+ ΔH0

ref

]
(1)

With: .
Hfg,bur: heat flux released from pellet combustion (W)
.

mexp
fg : experimental flue gas mass flow rate (kg.s−1)

Texp
fg,bur: experimental flue gas temperature in the burner (K)

Tref
fg,bur: reference temperature for flue gas in the burner (298 K)

ΔH0
ref: standard formation enthalpy of gas in the burner (J.kg−1).

Considering the majority presence of N2 and O2 (air excess close to 1) in the mixture
and for a first approximation, we assume that the mixture is composed as a gas including
only pure species. We can therefore assume that ΔH0

ref = 0.
The energy balance of the boiler is established at each time step. It represents the heat

exchanges between the flue gas and the boiler structure, the heat flux recovered by the
water in the water-flue gas heat exchanger and the losses at the boiler exhaust. The outer
wall of the boiler is assumed to be adiabatic because the boiler is very well insulated and
the losses with the environment are negligible compared to the other heat flux. The losses
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are more significant from the boiler outlet through the exhaust pipe but this part is not
modeled here. The heat flux released from the pellets combustion is then given by:

•
Hfg,bur(t) =

•
Hfg,exh(t) + Δ

•
Hw(t)+

•
Qwall(t) (2)

With: .
Hfg,exh: exhaust heat flux (W).

Δ
.

Hw: heat flux transferred to the water (W).
.

Qwall: heat flux stored in the boiler structure (W).
The flue gases resulting from the combustion of the pellets go through the boiler

subsystems (Figure 3 dashed red line) and exchange heat with their walls. Due to the
transient phases, the walls store or yield a quantity of heat flux from or to the flue gases:
the heat flux stored in the combustion chamber walls

.
Qwall,cc, in the inner wall of the

heat exchanger
.
Qwall,HEx and in the walls of the flue gas tubes

.
Qwall,tub. The walls of the

subsystems store some heat flux, consisting of three parts:

•
Qwall =

•
Qwall,cc +

•
Qwall,HEx +

•
Qwall,tub (3)

Figure 3. Energy balance of the boiler.
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Each of these heat fluxes is calculated in the subsystems from inlet and outlet flux
(Figure 3):

•
Qwall,cc =

•
Q1 −

•
Q2 (4)

•
Qwall,HEx =

•
Q3 −

•
Q4 (5)

•
Qwall,tub =

•
Q6 −

•
Q5 (6)

The heat flux transferred to the inner walls of the heat exchanger and the flue gas
tubes is partially transferred to the water.

Δ
•
Hw =

•
Q4 +

•
Q5 −

•
Qw,st

Δ
•
Hw =

•
m

exp
w ·
(

cw

(
Texp

w,out

)
·Texp

w,out − cw

(
Texp

w,in

)
·Texp

w,in

)
Δ

•
Hw =

•
Hw,out −

•
Hw,in

(7)

With
.

Qw,st: heat flux stored by the water in the heat exchanger (W).

3. 0D Bond Graph Modeling

The modeling of the main components of the boiler system, such as the combustion
chamber, the flue gas tubes and the heat exchanger is performed using Bond Graph
formalism. The boxes in Figure 4 represent the subsystems of the studied boiler, where
the half-arrows characterize the thermal and hydraulic Bond Graph links between the
subsystems. The word Bond Graph model describes here the thermal and mass transfers
between subsystems. Causalities (I) are also present in order to indicate the variables
at the origin of the system dynamics. In Figure 4, the combustion chamber box is not
detailed, it includes the flue gas path from burner to the bottom of the heat exchanger. The
combustion chamber temperature noted Tfg,cc is located inside this box but not appears in
the Inlet/Outlet Bond Graph links.

Figure 4. Word Bond Graph model.

3.1. 0D Model of the Boiler

The 0D dynamic model of the boiler is shown in Figure 5 with all the boiler subsystems
(burner, combustion chamber, heat exchanger). The time variation of mass flow rate and
temperature of both water and flue gas is considered. As input conditions, the experimental
flue gas temperature Texp

fg,bur in the burner and the experimental mass flow rate of the flue

gas
.

mexp
fg are introduced as time files. The water-flue gas heat exchanger is also modelled

by providing the experimental water mass flow rate
.

mexp
w and the experimental inlet water

temperature Texp
w,in as input conditions. The model is therefore stimulated with real limit
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conditions and then validated with other experimental measurement obtained at the same
time than these limit conditions values. This method improves the validation of the model.

Figure 5. 0D model of the boiler.

The storage and/or removal of thermal energy in the walls in the different zones
of the boiler (refractory concrete, walls of the combustion chamber and walls of the heat
exchanger) are modeled by the following law:

•
Qwall,i = mwall,i × cwall,i ×

dTwall,i

dt
= ∑∅diss (8)

With: .
Qwall,i: heat flux stored in the wall of the system i (W).
∅diss : dissipative fluxes between wall and flue gas (W).
mwall,i: wall mass of the system i (kg).
cwall,i: wall specific heat of the system i (J/kg−1.K−1).
This expression is traduced to a ‘C’ element (C1, C7, C3, C10) (Figure 5) in the bond

graph formalism because the flux is a function of the derivative of the effort:

h
The causality applied to these ‘C’ elements is always a flux causality because at the

beginning of the simulation, it is the temperatures (efforts) that are known and then allow
calculation of dissipative heat fluxes (conductive, convective and radiative ones). So, in
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these differential equations solving, the value of temperatures of the next time step are
obtained from the integration of the flux balance at the current time.

Twall,i(t) =
1

mwall,i × Cwall,i

∫ t

0

•
Qwall,idt (9)

where
.

Qwall,i is calculated from a heat flow balance between all dissipative fluxes ∅diss
(Equation (8)) and therefore obtained with a ‘0′ junction centered in the wall.

The dynamic behavior of the boiler depends on the interaction between the both
hydraulic and thermal systems. The ‘RS’ elements (R11, R12, R16, R18 and R23) have been
used to couple them in order to calculate enthalpy flux (10) from inlet temperature and mass
flow rate. The power input of each RS elements is defined with an effort causality which
means that the temperature value (effort) of thermal power input is knows at the start of
each calculation step. RS elements then calculate the enthalpy flux, which is necessary for
each flux balance carried out by the zero junctions on the path of the flue gas labelled by
the dashed red line. The enthalpy flux of flue gas at the inlet and outlet of each ‘RS’ element
.

Hfg,in and
.

Hfg,out (Figure 6) is calculated with the following Equations (10) and (11) and
the same hypothesis than the Equation (1):

•
Hfg,in(t) =

•
m

exp
fg (t).

[
cp

(
Tfg,in

)
.
(

Tfg,in(t)− Tref
fg

)
+ ΔH0

ref

]
(10)

•
Hfg,out(t) =

•
Hfg,in(t) (11)

With:

Figure 6. RS element example.
.

Hfg,in(t): calculated flue gas enthalpy flux at the RS-element inlet (W), equal to
.

Hfg,bur
.

Hfg,out(t): calculated flue gas enthalpy flux at the RS-element outlet (W), equal

to
.

Hfg,bur

Texp
fg,bur(t): experimental temperature in the burner (K)

Tfg,cc(t): calculated flue gas temperature (K) imported from the following ‘0′ junction
in the combustion chamber.

.
mexp

fg (t): experimental flue gas mass flow rate (kg.s−1).
Pfg: experimental pressure in the boiler (Pa) supposed constant because pressure

losses are low and not easy to model in 0D due to the complexity of the geometry.
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The Figure 6 illustrates one of the ‘RS’ elements. This one is located between the
burner outlet and the combustion chamber.

The thermal transfers by conduction and convection are modeled by equations of the
following form:

•
Qdiss(t) =

1
Rth

. ΔT(t) (12)

With: .
Qdiss(t): dissipative flux (W).
Rth: thermal resistor (K.W−1).
ΔT(t): temperature difference (K).
Here, the flux

.
Qdiss(t) directly depends on the effort ΔT(t) (not derivative link)

whether it’s linear or not. In this case the ‘R’ element is used in the bond graph formalism:

ΔT(t) is obtained with a ‘1’ junction which consist in an effort balance and then can
calculate the temperature difference.

R4, R5, R21, R22, R8, R9 and R25 quantify the conductive exchanges through the walls.
In a cylinder, the thermal conductive resistance Rcd is given by:

Rcd,i =
ln
(

r2,i
r1,i

)
2π.λi.Hi

(13)

With:
r2,i: outside radius of the system i (m).
r1,i: inside radius of the system i (m).
λi: thermal conductivity of the system i (W.m−1.K−1).
Hi: height for the system i (m).
R3, R6, R20, R10, and R2 deal with the convective transfers between the flue gas and

the different walls of the boiler. They are calculated from the convective resistance Rcv:

Rcv,i =
1

hg,i.Si
(14)

With:
hg,i: global thermal transfer coefficient of the system i (W.m−2.K−1).
Si: exchange surface of the system i (m2).
The global thermal transfer coefficients hg,i, including convective and radiative effects,

for the different geometrical configurations in the boiler are obtained according to a first
stage of simulation by inverse method. Indeed, the radiative effects of the flame or the
gases with the walls are complex to model in 0D. This method is based on the energy
balances presented in Section 2.2 for each zone. Heat fluxes are calculated by using experi-
mental wall and flue gas temperatures as well as experimental water temperatures (and
calculated temperatures by the dynamic 0D model when the experimental measurement is
not available). These experimental temperature values are introduced into the model at
each calculation time step. They thus allow at each time step to calculate the value of hg,i as
illustrated in the following relations (Equation (15)) in order to use it for the calculation
of the parietal fluxes in the model. This method allows to obtain temporal evolutions
of hg,i coefficients like the one presented in Figure 7 and was implemented only once as
a prerequisite to the main simulation. This allowed to determine the global coefficients
even in areas where we were unable to place thermocouples probes by using temperatures
calculated as close to reality as possible since in places where temperatures were measured,
the model took them into account at each time step. This combination of measured and
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calculated quantities inside a behavioral model is similar to a HIL (Hardware in the Loop)
process.

Figure 7. Global thermal transfer coefficient inside the combustion chamber.

By example, the variation of the flue gas enthalpy flux between the inlet and the outlet
of the combustion chamber Δ

.
Hfg,cc(t) is calculated at each time step. The global heat flux

exchanged between the flue gas and the combustion chamber wall
.

Qfg,cc(t) is calculated
at each time step also. By performing a balance between the two heat fluxes, the value
of global thermal transfer coefficient is deduced for each time step (Equation (15)). The
time evolution of a global thermal transfer coefficient, including radiative and convective
transfers, near the inside combustion chamber is shown in Figure 7. The peaks observed are
due to the low temperature difference between the flue gas and the wall of the combustion
chamber. With the induced errors on the global thermal transfer coefficients higher than
2000 W.m−2.K−1), they cause discrepancies in the calculation carried out by the dynamic
model. This adds complexity to the choice of the computation scheme.

Δ
•
Hfg,cc(t) =

•
m

exp
fg (t)·

⎛⎜⎜⎝cp,fg

(
Texp

fg,cc(t)
)

.Texp
fg,cc(t)︸ ︷︷ ︸

cc outlet

− cp,fg

(
Texp

fg,bur(t)
)

.Texp
fg,bur(t)︸ ︷︷ ︸

cc intlet

⎞⎟⎟⎠
•
Qfg,cc(t) = hg,cc.Scc

(
Texp

fg,cc(t)− Texp
wall,cc(t)

)
hg,cc(t) =

Δ
•
Hfg,cc(t)

Scc

(
Texp

fg,cc(t)−Texp
wall,cc(t)

)
(15)

With:
Δ

.
Hfg,cc: variation of the flue gas enthalpy flux between the inlet and the outlet of the

combustion chamber (W)
.

Qfg,cc: global heat flux exchanged between the flue gas and the combustion chamber
wall (W)

cpfg: flue gas specific heat at constant pressure (J.kg−1.K−1).
Scc: combustion chamber exchange surface (m2).
hg,cc: global thermal transfer coefficient for the inner wall of the combustion chamber

(W.m−2.K−1).
Texp

wall,cc: experimental temperature of the inner wall of the combustion chamber (K).
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For this example, apart from the peaks mentioned above, an average value of
hg = 200 W.m−2.K−1 has been selected. The results presented in Figures 8 and 9 show that
this approximation leads to some errors in the calculated water and flue gas temperatures.
Indeed, we could identify here two operating regimes:

- hg = 300 W.m−2.K−1 for t = 0–170 min
- hg = 100 W.m−2.K−1 for t = 170–250 min.

Figure 8. Comparison of experimental and calculated water temperatures at the outlet of the water-
flue gas heat exchanger.

Figure 9. Comparison of experimental and calculated flue gas temperature at the outlet of the flue
gas tubes.

These two operating regimes can be identified in Figure 10, the combustion is con-
tinuous until t = 170 min and then an operating cycle is set up as presented in Figure 2.
The choice of only one value for the global coefficient generates an under estimation of the
transfers on the first phase and an over estimation on the second one as it can be noticed in
Figures 8 and 9.
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Figure 10. Comparison of experimental and calculated flue gas temperatures in the combustion chamber.

Nevertheless, the change of operating regime is difficult to take into account here in an au-
tomated way without modeling the pellet supply mechanism and their subsequent combustion.

In order to differentiate radiative and convective heat exchanges in the boiler, the
convective heat fluxes are calculated using the Newton’s law and the convective coefficients
from Equation (16). Knowing Reynolds number as well as Prandtl, Nusselt numbers was
determined from the semi-empirical correlations of Dittus-Boelter [37] and Gnielinski [38],
adapted to the studied configurations. Nusselt number then allows to calculate the convec-
tive exchange coefficient within the geometric configurations remaining inside the boiler.
Table 2 includes the semi-empirical correlations used to calculate Nusselt number.

Nu =
h.Dh
λfg

(16)

With:
Dh: hydraulic diameter (m).
λfg: flue gas thermal conductivity (W.m−1.K−1).
h: convective coefficient (W.m−2.K−1).

Table 2. Semi-empirical correlations used for the calculation of Nusselt number.

Location Flow Configuration Correlations Valid Range

Combustion chamber and
flue gas tubes

[37]
Inside a cylinder Nu = 0.023Re0.8

Dh
Pr0.4

(
1 +
(

Dh
H

)0.7
) 0.7 ≤ Pr ≤ 120

104 ≤ ReDh ≤ 1.2 105

2 ≤ Dh ≤ 20

Passage between the
combustion chamber and

inner wall of the heat
exchanger [38]

Inside an annular
duct–fixed walls Nu = 0.023Re0.8

Dh
Pr0.4(r2/r1)

0.14 0.7 < Pr < 100
ReDh > 2000

Finally, the calculation of the water temperature at each instant is obtained by a flux
balance represented by the area inside the blue dotted lines in Figure 5.

The flux balance consists of the algebraic sum of the enthalpy input/output fluxes
calculated by the ‘RS’ elements (respectively ‘R14’ and ‘R15’) with the convective heat fluxes
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calculated with the thermal resistances ‘R2’, ‘R7’ and ‘R19’. The water temperature is then
calculated from the integration of the flux balance performed in the ‘C2’ element.

3.2. Flue Gas Thermodynamic Properties

To take into account the variation of the thermodynamic properties of the flue gas in
the boiler, correlations have been used for each property as a function of the temperature.

In this section, all the correlations used to calculate the thermodynamic properties are
detailed. The properties are: density ρfg from the perfect gas law with R = 8.314 J/mol−1/K−1,
thermal conductivity λfg, dynamic viscosity μfg, and specific heat cpfg of the flue gas
resulting from the combustion of the pellets. The mass fraction used to calculate some
properties is evaluated from the molar fraction deduced from Equation (17). The correlation
versus temperature of cpfg is introduced in the 0D model to calculate enthalpy flux. The
other thermodynamic properties correlation are used to calculate Reynolds and Prandtl
numbers in order to deduce the convective transfer coefficients introduced above.

The thermodynamic properties of flue gas are obtained by adding the properties of
each species multiplied by the corresponding molar or specific fractions. The mixture of
these species is given by the combustion reaction.

From an elementary analysis, the chemical formulation of pellet is C36.725H71.6O30.475.
Then, the combustion reaction of pellets in air is given as below:

C36.725H71.6O30.475 + 39.388(1 + eair)(O2 + 3.76N2)
→ 36.725 CO2 + 35.8 H2O + 39.388.eair.O2 + 148.097(1 + eair)N2

(17)

With eair the air excess.
As discussed before, it is assumed that the pressure in the boiler remains constant and

equal to the atmospheric pressure and the specific fractions of the combustion products
also remain constant during the boiler cycles and in the different zones. Knowing that the
boiler operates with an air excess of 80% (eair = 0.8), the correlations used are presented in
Table 3.

Table 3. Correlations for the calculation of the flue gas thermodynamic properties (i = CO2, H2O, O2,
N2). The constants A, B, C, D and E were fixed for each species and for each property.

Flue Gas
Thermodynamic

Properties
Correlations Units

Temperature
Range (K)

Min–Max

Density
ρi =

PMi
RT

ρfg(Tfg) =

(
∑
i

yi
ρi(Tfg)

)−1
; yi =

mi
mtot

;
kg.m−3 298–1500 0.23–1.22

Thermal
conductivity

[39]

λi = A + BTfg + CT2
fg + DT3

fg

λfg =
∑
i

xiλiM1/3
i

∑
i

xiM1/3
i

, xi =
ni

ntot

W.m−1.K−1 298–1500 2.32 10−2–8.65 10−2

Dynamic viscosity
[40]

μi(T) = A + BT + CT2 + DT3

μfg(Tfg) =
∑
i

xiμi(Tfg)
√

Mi

∑
i

xi
√

Mi

Pa.s−1 298–1500 1.711 10−5–5.42 10−5

Specific heat
[41]

cp,i(Tfg) = A + BTfg + CT2
fg + DT3

fg + E/T2
fg

cp,fg(T) = ∑
i

yicp,i(Tfg)
J.kg−1.K−1 298–1500 1090–1374

3.3. Solver Scheme

The Bond Graph method uses a system of algebraic-differential equations to describe
the dynamic of the modeled system. The accuracy of the dynamic model is based on the
choice of the computation scheme used to efficiently solve these differential equations. The
resolution scheme used in our model is the Runge-Kutta fourth order formula (RK4) [42,43]
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which is a particulate case of Runge-Kutta method. This method is recommended when
the required accuracy is very high but it requires more CPU time than simpler methods (for
this study about 5 min). This method is based on the iteration principle, i.e., an estimation
of the solution is calculated from the previous solution. The principle is to approach the
next value yn+1 at time tn+1 by the current value yn obtained at time tn combined with a
function taking into account the iteration step (δ) and the estimated slope. The slope is
obtained by the weighted average of four slopes (k1, k2, k3 and k4), where each slope is the
product of the iteration step and an estimated slope. The slope is specified by the function
F on the right side of the differential equation [44,45].

The following problem is then considered:

.
y = F(t, y) with y0= f(t 0

)
→ y = f(t) (18)

From a known initial condition, the RK4 method is given by the equation:

yn+1 = yn +
δ

6
(k1 + 2k2 + 2k3 + k4) +

(
δ5
)

(19)

δ = tn+1−tn, 1 < n < N (20)

where
k1= F(tn, yn) (21)

k2= F
(

tn +
δ

2
, yn +

k1

2

)
(22)

k3= F
(

tn +
δ

2
, yn +

k2

2

)
(23)

k4= F(tn + δ, yn+k3) (24)

The RK4 method is of order 4, this means the error committed at each step is of the
order of δ5, whereas the total accumulated error is of the order of δ4.

4. Results and Discussion

The experimental results are discussed to characterize the boiler operation. They are
then compared to the simulations. In order to validate the model, measurements of the flue
gas temperature profiles in the combustion chamber and at the heat exchanger outlet as
well as measurements of water temperature at boiler outlet are carried out.

The dynamic model input data are the experimental flue gas temperature in the burner
(Texp

fg,bur), the experimental water temperature at the boiler inlet (Texp
w,in), the experimental

flue gas mass flow rate (
.

mexp
fg ) and the experimental water mass flow rate (

.
mexp

w ).
The thermal behaviors of the flue gas in the boiler and the water in the heat exchanger

are investigated.
From the analysis of the flue gas temperature profiles in the combustion chamber

(Figure 10), sudden and fast temperature changes occur during the boiler start-up due to the
uncontrolled combustion of a large mass of pellets during this step. Before the combustion
start, pellets are heated during several minutes (about 15 min) with an air heater. During
the entire control phase (regulation phase between 30–270 min), the flue gas temperatures
remain very high and display fluctuations. Then, they decrease progressively during the
cooling phase (270–355 min). The fast fluctuations observed are due to the quantities
of pellets supplied every 20 s. These fluctuations are also observed on the temperature
profiles calculated from the 0D model as a consequence of the limit condition that is an
experimental measurement of the flue gas temperature in the burner. We can note that a
notable difference exists between the calculated temperature and the one measured during
the beginning of the combustion phase (just after the start-up jump). This difference is
undoubtedly linked to the fact that the quantity of pellets burning in this phase is very
important (accumulation before combustion start), also the gasification is such that the
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combustion continues in the upper combustion chamber (above the burner zone). The
model only integrates the combustion in the burner and therefore does not integrate this
excess of heat release in the combustion chamber area.

This problem would have been the same using a combustion model of the pellets in
the burner area. It would be necessary to separate the combustion in the 2 zones (burner
and combustion chamber) and thus to find a key of distribution of the combustible gases in
each zone. This key is not easy to find because the problem is related to unsteady 3D aero
thermochemical phenomena.

The water temperature at the heat exchanger outlet is also examined. As noted for the
flue gas temperature, a drastic increase of the water temperature can be observed during
the start-up phase. During this phase (0–30 min), the water circulates in closed circuit
until to reach a temperature of 325 K (Figure 8). This process is imposed by the mixing
valve (3-way valve) resulting in a significant increase of the water temperature. After this
step, the hot water is redirected to the cooling circuit. The fluctuations observed during
the cooling phase are due to the intermittent operation of the water pump to maintain as
long as possible the boiler body closed to the operating conditions if the boiler needs to be
restarted.

Here, the differences between the calculated and measured values are not significant.
Differences of 5 ◦C are nevertheless noted in the cyclic operation zone (170–250 min), this is
perhaps linked to the overestimation of the global exchange coefficients in this operation
mode as mentioned at the end of Section 3.1.

The instantaneous evolutions of the experimental and calculated flue gas temperature
at the outlet of the flue gas tube of the water heat exchanger are plotted in Figure 10. The
flue gas temperature at the flue gas tube outlet has the same evolution as in the combustion
chamber. Nevertheless fluctuations are filtered by the thermal inertia of the different parts
of the boiler along the flue gas path. The temperature of the flue gas remains relatively
high at outlet of the tubes (~573 K).

As mentioned at the end of Section 3.1, here the under estimation of the wall global
exchange coefficients on the stabilized phase and the under estimation on the cyclic phase
is notable. In the stabilized phase, the underestimation of the thermal wall fluxes limits the
thermal dissipation of the gases and thus also the reduction of their temperature. In the
cyclic phase, the overestimation of the fluxes increases abnormally the wall transfers and
reduces the flue gas temperature. Significant temperature differences remain during the
cooling phase of the boiler.

The time evolution of the water enthalpy flux variation between inlet and outlet,
calculated by the dynamic model, is plotted in Figure 11. The heat flux drops to zero when
the pump stops.

Figure 11. Variation of water enthalpy flux.
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The instantaneous thermal power delivered to the water can be calculated as:

Δ
•
Hw(t) =

•
m

exp
w

(
cw(Tw,out).Tw,out−cw

(
Texp

w,in

)
.Texp

w,in

)
(25)

With:
Δ

.
Hw(t): water enthalpy flux variation (W).

Texp
w,in : experimental water temperature at the heat exchanger inlet (K).

Tw,out: water temperature at the heat exchanger outlet calculated by the dynamic
model (K).

cw: water specific heat at an average temperature of 328 K (4183/kg−1.K−1).
The amount of heat flux transmitted to the water remains very low during the start-

up phase of the boiler and then increases drastically after the start of the combustion.
After the start of combustion, an increase of the heat transmitted to the water can be
observed between 30 and 50 min in Figure 11. This progression exists because some heat
from combustion is first accumulated by the metal walls inside the boiler before being
completely transferred to the water when the walls reach an established thermal regime.
Considering only the regulation phase represented by the period from the combustion start
time (30 min) to the boiler shutdown (270 min), the heat flux transmitted from the flue
gas to the water of the heat exchanger is quite stable and close to 37 kW. The fluctuations
observed on the flue gas temperature during the cyclic phase are well absorbed by the
inertia of the walls and the water. After the boiler shutdown and during the cooling phase,
intermittent operation of the pump is observed. When the pump is shut down, the walls
of the heat exchanger transmit heat to the volume of water became motionless in the heat
exchanger, which explains the peaks of enthalpy flux as soon as the pump is started up
again.

From the dynamic model of the boiler, it is also possible to calculate its efficiency, lost
power, heat flux stored by the walls and released by combustion in the burner.

According to the manufacturer, the boiler must have an average efficiency of 85%
under nominal operating conditions (thermal power of 30 kW). In this study, the duty cycle
(PWM) of the pellet supply screw was modified to increase the power of the boiler in order
to saturate the downstream thermal load and thus create thermal control cycles suitable to
unsteady operating conditions.

The efficiency can be defined as the ratio of the enthalpy flux variation of the water
heat exchanger and the heat flux released from pellet combustion:

η(t) =
Δ

.
Hw(t)

.
Hfg,bur(t)

(26)

The instantaneous evolution of the efficiency calculated by the model at each moment
t is presented in Figure 12. Its evolution is drastically affected by the fluctuations of flue
gas temperature. The boiler has an average efficiency of 67.5%. This low efficiency value is
not surprising because the overpower generated in our test case cannot be fully absorbed
by the capacity of the gas-water exchanger of the boiler. The thermal power of the boiler is
nevertheless increased (37 kW instead of 30 kW).

Several parameters impacting the response of the 0D model can be highlighted. For
example, an influence on the thermal behavior of the flue gas with the mass flow rate
can be distinguished at the tube outlet. As the experimental flue gas mass flow rate is
used as input condition, during the cooling phase a significant discrepancy between the
evolution of the calculated and experimental flue gas temperatures is recorded as shown in
Figure 13a.
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Figure 12. Calculated boiler efficiency.

(a) 

(b) 

Figure 13. Influence of the flue gas mass flow rate at the flue gas outlet on the 0D model response.
(a): With experimental flue gas mass flow rate, (b): With a flue gas mass flow corrected for each boiler
operating phase.

35



Entropy 2022, 24, 202

This discrepancy can be explained by a low value of flue gas flow rates during the
cooling phase (Figure 13a) according to the accuracy of the measurement chain (Pitot tube
associated with a micromanometer and a thermocouple), which involves a maximum error
of 40%. By adjusting the mass flow rate value of the flue gas, staying within the uncertainty
range of the flowmeter, a clear improvement of the model response is observed (Figure 13b).

A heat flux balance in four zones of the boiler is performed by using the equations
introduced in Section 2.2 and allows to compare the radiative and convective heat flux. The
convective heat flux is calculated by using the convective coefficients obtained from the
semi-empirical correlations given in Table 2 and the total heat flux φtot is obtained by using
the global thermal transfer coefficients calculated from the inverse method by carrying out
flux balances inside the boiler using Equations (3)–(6), previously introduced in Section 2.2.
The radiative flux can be then deduced from the total heat flux, knowing the convective
heat flux.

Due to the presence of large temperature gradients in the boiler, combustion products
such as water vapor (H2O), carbon dioxide (CO2) and soot particles radiate significantly.
Radiation is the dominant thermal transfer in the boiler and must be compared to the total
thermal transfers (Table 4).

Table 4. Heat flux balance.

Location φrad/φtot (%)

Inside the combustion chamber 97.6
Outside the combustion chamber (annular passage) 96.8
Inside the heat exchanger (flue gas side) 96.1
Inside the flue gas pipes 95.6

5. Conclusions

A 0D dynamic modeling of a domestic biomass boiler of low power was developed
by using Bond Graph formalism that allows to represent the coupled multi-physical phe-
nomena, to study the thermal transfers between the different fluids during the transient
operating phases, to evaluate the energy performances of the boiler and to take into account
the variability of the heat production. The local evolution of the state variables is much less
detailed than with CFD modeling but the dependencies of one zone with another are better
taken into account with a 0D dynamic modeling. A biomass combustion model was not
developed in this study but the combustion reaction of pellets in air allowed to calculate the
thermodynamic properties of the flue gas in the boiler used in the 0D model. This model
based on mass and energy balances was validated with experimental results, in particular
the flue gas temperature in several locations of the boiler and the water temperature at
the heat exchanger outlet. Some experimental data and 0D modeling at each time step of
the calculation were coupled. The thermal transfers between the flue gas and the water
circulating inside the heat exchanger and between these two fluids and the boiler structures
were simulated. The experimental results showed a dependence of the evolution of the
flue gas temperature in the combustion chamber as a function of the quantity of pellets
supplied, according to the thermal cycle of the boiler. This directly affects the operating
conditions of the boiler and generates important temperature fluctuations in the combus-
tion chamber, which could significantly affect the operation of a hot air machine in the case
of a conversion into a micro cogeneration unit. Indeed in this case, the air-gas exchanger
of such an installation would be located in the zone where the temperature is the highest
and thus closest to the flame. A calculation of the global thermal transfer coefficients by
inverse method was done in the subsystems of the boiler. A good agreement between the
experimental measurements and the simulation has been found and the origins of the dif-
ferences have been identified, such as the excess of heat release in the combustion chamber
above the burner zone not integrated in the model. It has been shown that the boiler has
an average efficiency of 67.5% and the radiation is the dominant thermal transfer in the
boiler by reaching 97.6% of the total thermal transfers inside the combustion chamber. The
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0D dynamic model of the boiler during the operating phases allows not only to evaluate
its energy performances but also to highlight the boiler components where the thermal
transfers must be optimized.

The modeling of pellet combustion using a heat release law adapted to solid biomass
combustion associated with an efficient identification of the pellet mass flow rate will make
it possible to improve this model and make it independent of experimental boundary
conditions. The radiative transfers being preponderant but difficult to model in 0D for
mutual exchanges between gases, particles and walls, a detection of the different combus-
tion phases and this according to the presence or not of flame in each of the zones would
allow to better parameterize the global exchange coefficients which moreover will be able
to be identified with the help of the proposed inverse method. The modeling methodology
developed will allow the study of a complex unit, such as a CHP plant by coupling the
different models for each component.
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Nomenclature

cp,fg(T) Flue gas specific heat (J.kg−1.K−1) at constant pressure, function of temperature T
cw Water specific heat (J.kg−1.K−1)
cwall Wall specific heat (J.kg−1.K−1)
Dh Hydraulic diameter (m)
H Combustion chamber height (m)
hg Global thermal transfer coefficient (W.m−2.K−1)
.

Hfg,[area] Enthalpy flux of the flue gas in a specific area (W)
.

Hw,[area] Enthalpy flux of the water in a specific area (W)
k1 First slope of Runge-Kutta fourth order formula
k2 Second slope of Runge-Kutta fourth order formula
k3 Third slope of Runge-Kutta fourth order formula
k4 Fourth slope of Runge-Kutta fourth order formula
mwall Wall mass (kg)
.

mexp
fg Experimental flue gas mass flow rate (kg.s−1)

.
mexp

pellets Experimental pellets mass flow rate (kg.s−1))
.

mexp
w Experimental water mass flow rate (kg.s−1)

pw Water pressure (Pa)
pfg Flue gas pressure (Pa)
.

Qw Heat flux transferred to the water (W)
.

Qwall Heat flux stored in the boiler structure (W)
.

Qfg,cc Convective heat flux exchanged between the flue gas and the combustion chamber
wall (W)

.
Qwall,HEx Heat flux stored in the heat exchanger wall (W)
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.
Qwall,tub Heat flux stored in the walls of the flue gas tubes (W)
r1 Inside radius (m)
r2 Outside radius (m)
Rcd Conduction resistance (K.W−1)
Rcv Convective resistance (K.W−1)
S Exchange surface (m2)
t Time (s)
Tamb Ambient temperature (K)
Texp

fg,bot Experimental flue gas temperature at the bottom of the heat exchanger (K)
Texp

fg,bur Experimental flue gas temperature in the burner (K)
Texp

fg,cc Experimental flue gas temperature in the combustion chamber (K)
Texp

fg,exh Experimental flue gas temperature in the chimney (boiler exhaust) (K)
Texp

fg,exit Experimental flue gas temperature at the flue gas tubes outlet (K)
Texp

w,in Experimental water temperature at the inlet of the heat exchanger (K)
Texp

w,out Experimental water temperature at the outlet of the heat exchanger (K)
Tfg,in Calculated flue gas temperature at the RS-element inlet (K)
Tfg,out Calculated flue gas temperature at the RS-element outlet (K)
Texp

fg,top Experimental flue gas temperature at the top of the combustion chamber (K)
Texp

wall,inner Experimental temperature of the inner wall of the combustion chamber (K)
Texp

wall,outer Experimental temperature of the outer wall of the combustion chamber (K)
Twall Calculated wall temperature (K)
Subscripts

air Air
amb Ambient
bur Burner
bot Bottom
cc Combustion chamber
cd Conductive
cv Convective
exit Exit
exh Exhaust
fg Flue gas
g Global
HEx Heat Exchanger
in Inlet
rad Radiative
tub Tube
top Top
tot Total
out Outlet
w Water
wall Wall
Superscript

exp Experimental Value
Greek symbols

Δ Variation of thermodynamic quantity
λi Wall thermal conductivity (W.m−1.K−1)
λfg Flue gas thermal conductivity (W.m−1.K−1)
ρfg Flue gas density (kg.m−3)
μfg Flue gas dynamic viscosity (Pa.s)
η Boiler efficiency (%)
δ Iteration step of Runge-Kutta fourth order formula
Dimensionless numbers

Re Reynolds number
Pr Prandtl number
Nu Nusselt number
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Abstract: An artificial retina neuron is proposed and implemented by CMOS technology. It can be
used as an image sensor in the Artificial Intelligence (AI) field with the benefit of ultra-low power
consumption. The artificial neuron can generate signals in spike shape with pre-designed frequencies
under different light intensities. The power consumption is reduced by removing the film capacitor.
The comparator is adopted to improve the stability of the circuit, and the power consumption of
the comparator is optimized. The power consumption of the proposed CMOS neuron circuit is
suppressed. The ultra-low-power artificial neuron with variable threshold shows a frequency range
of 0.8–80 kHz when the input current is varied from 1 pA to 150 pA. The minimum DC power is
35 pW when the input current is 5 pA. The minimum energy of the neuron is 3 fJ. The proposed
ultra-low-power artificial retina neuron has wide potential applications in the field of AI.

Keywords: artificial retina neuron; spike; CMOS; Axon-Hillock circuit; ultra-low power

1. Introduction

Compared with the traditional Von Neumann architecture computer, the human
brain shows stronger associative memory and thinking in images. It also has a greater
potential ability than existing computers in solving complex problems such as function
approximation, complex classification and clustering [1]. Moreover, compared with current
existing computers, the human brain is not only more powerful, but it is also smaller and
consumes less power. Therefore, the realization of the artificial neural network (ANN) to
mimic the human brain intelligence has become a hot subject for research recently [2]. The
human brain is composed of many complex interconnected neurons, and the information
interaction between neurons is what forms the thinking ability. Designing a reasonable and
efficient neuron unit is an important point for imitating the thinking ability of the human
brain [3,4].

The first-generation ANN consists of threshold gates [5]. Its principle is using the
threshold gate to judge the output result by counting the binary sum of the inputs. If the
inputs’ summation is larger than the threshold value, it is considered to be high level (1);
otherwise it is low level (0). It can be seen that the function of the first-generation ANN is
very limited and that it can only process binary data. This is still far removed from the real
biological neuron. The second-generation ANN is based on the encoding of the frequencies
of the neuron pulses [6]. By stacking multiple layers of the neurons and applying a back
propagation algorithm, a neural network can be constructed, which is known as deep
learning neural network. This network is widely used in machine learning, brain-machine
interfaces, image sensors, etc. [7]. Although the second-generation ANN is powerful, its
energy consumption and efficiency are still not good enough compared with the biological
network. Moreover, there is a big difference in the process of communicating with the
spikes of neurons in the human brain in the underlying logic. Faced with these problems,
the third-generation ANN has been proposed recently. Its neuron units are much closer
to biological neurons, in that they can communicate with each other using spike signals.
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For this reason, it is also called spiking neural networks (SNN) [8]. The neuron in the
SNN is not activated in every iteration state. It can be activated only when the membrane
voltage reaches a certain value. When a spike neuron is activated, it generates a spike
signal, which is transmitted to other neurons [9]. After the transmission, its membrane
potential is changed accordingly. The spike generated by a biological neuron is used for
encoding and processing the biological information. The artificial neural network shows
a far superior ability in implementing real-time behavior systems or detailed large-scale
simulations of neural systems than other digital tools and simulators [10].

The retina is a key tissue and can obtain visuosensory information efficiently, a subject
that has been intensively studied recently [11–13]. By the pre-processing of optical infor-
mation on the retina, the input light is transferred into the corresponding neural signal,
which is encoded into the spike pattern for further transmission into a higher processor.
Mimicking the biological retina, the artificial neuron model is designed based on CMOS
technology, which is used to convert the optical pixel signals into specific spikes with
certain frequencies. Billions of neurons with complex connections could build a large
and efficient biological computing system. Figure 1 shows the schematic diagrams of the
biological retinal system and the artificial ones. With the very large number of retinal cells
in the artificial neuron structure, it is important to optimize the energy efficiency of the
artificial neurons by reducing the power consumption. One of the most important issues of
the artificial neuron in a neuromorphic system is how to decrease the power consumption.

Figure 1. Schematic diagram of the working mechanism of the artificial neurons mimicking the
biological retina.

With the continuous investigation of the working mechanism of neurons, some ar-
tificial neuron circuits have been proposed. In [14], a neuron circuit based on the leaky
integrate-and-fire (LIF) model is proposed. This circuit can realize the spike timing de-
pendent plasticity (STDP) function of the neuron [15]. However, due to the existence of
the multiple trans-conductance amplifiers in the circuit, the power is too high to be imple-
mented practically. In [16], a circuit based on the Morris-Lecar (ML) model is proposed,
as shown in Figure 2. Because the ML model is similar to the ion transport mechanism
of the real neurons, the circuit can be used to mimic the real neurons [17]. However, due
to the existence of many conductive paths in the circuit, its static power consumption is
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relatively high. Moreover, the adopted large capacitances Cm and CK limit its operating
frequency. In [18], the circuit is simplified to reduce its power consumption, making the
circuit display excellent merits in terms of its power consumption and area. However, the
circuit is unstable and susceptible to the influences of the PVT variables.

Figure 2. Artificial neuron circuits based on ML model. As drawn in [16].

In this paper, a novel artificial neuron circuit is proposed that has ultra-low power
while keeping robust variation tolerance. The circuit shows minimum layout area and can
be integrated into large-scale arrays for mimicking the biological systems. The structure of
the proposed artificial neuron circuit is described in the paper. The analysis and the results
of the artificial neuron retina are reported.

2. The Principle of Axon-Hillock Circuit

Figure 3 shows the Axon-Hillock circuit, which is considered to be the traditional
artificial neuron circuit [19]. It was proposed by Mead in 1989 and has been widely used
in many works [20,21]. The input current Iin is commonly generated by a photodiode, in
which different light intensities correspond to different magnitudes of the induced currents.
The current Iin charges the membrane capacitor Cmem. The capacitor Cmem is the model of
the retinal neuron’s membrane with the ionic current across it.

Figure 3. Traditional Axon-Hillock structure. Iin is the current generated by the photodiode. Cmem is
the capacitor of the neural membrane.

The amplifier in Figure 3 is the main part for the generation of the neuron spike, in
which two invertors, inv1 and inv2, are included. At the initial state, both the values of Vout
and Vmem are zero. The capacitor Cmem is charged by Iin, so that the voltage Vmem on Cmem
is pulled up by the charging current. When Vmem exceeds the threshold voltage of inv1, the
invertor flips and a spike signal is generated by the output port. At this moment, Vout is at
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a high enough level to turn on the reset transistor, Mreset. The reset current is set by Vpw.
If it is larger than the input current Iin, the membrane capacitor is discharged. Therefore,
Vmem is decreased continuously until it reaches the amplifier’s switching threshold again.
In this way, a cycle is finished and the next cycle starts again.

The circuit in Figure 3 can imitate the characteristics of a stimulated retinal neuron, in
which the output of the electric spike signal with a certain frequency can be generated and
adjusted. It is a kind of classical SNN circuit. Based on the circuit, some research works
propose useful solutions on how to reduce the power consumption. In [18], the Cmem
capacitor is replaced by the parasitic part of the MOSFET of the first-stage inverter. Without
the capacitor Cmem, the proposed solution can effectively reduce the power consumption
of the neuron circuit. In the above design, the spike is related to the threshold voltage of
inv1, which is determined by the process characteristics of the MOSFET device. However,
the process parameters of MOSFET are generally variable in a certain scale, which easily
leads to large deviation and affects the accuracy of the neural network calculation.

To diminish the possible influences of the process variations, a specific reference
voltage Vthr is introduced, accompanied with a comparator for the implementation of the
circuit, as shown in Figure 4 [10]. The adoption of the comparator can increase the process
variation tolerance and improve the robustness of the artificial neuron. However, the power
is increased according to the additional comparator and the related reference voltage Vthr.
In this way, further improvement should be addressed to improve its characteristics. The
following section shows the detailed information of the improvement.

Figure 4. The artificial neuron with the reference voltage Vthr. As drawn in [10].

3. Design of Novel Artificial Neuron

Based on the operation principle of the neuron, the new designed artificial neuron is
shown in Figure 5. In the design, the adjustable voltage threshold is adopted. With the
current charging, Iin can inspire the artificial neuron to generate the mimicked spikes with
a certain frequency with ultra-low power consumption.

The setting of the voltage threshold is achieved by combining the comparator and the
traditional Axon-Hillock circuit. As shown in Figure 5, the inverter with the two devices,
M1 and M4, is the main part in the amplifier. At the same time, the inverter composed of
M1 and M4 also operates in the comparator. The comparator with a mirror current source
includes four transistors, M0, M1, M3 and M4.

With the positive input, the gate of M0 is the input of the reference threshold voltage
Vthr. With the negative input, the gate of M1 is the input of the membrane voltage Vmem.
When the voltage Vmem is higher than the threshold voltage Vthr, the comparator output
voltage Vc is zero. Otherwise, when Vmem is lower than Vthr, Vc is set as Vdd. As the
first stage inverter of the amplifier, M1 and M4 act as the same function as the inv1 of the
Axon-Hillock in Figure 3. Therefore, if Vmem is increased to be the threshold voltage Vthr,
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the output of the artificial neuron reaches a high level by the output of the second invertor.
For the proposed circuit in Figure 5, M1 and M4 are common-shared by the amplifier and
the comparator. The common-shared design can effectively reduce the number of neuron
circuits and therefore decrease the power consumption of the artificial neuron.

Figure 5. Schematic of the artificial neuron designed in the work. The comparator and the amplifier
share the branch of M1 and M4 together. M2 is the tail current source supplied by the Vout in this
work. M2′ is the common tail current source supplied by the reference voltage Vb.

The power consumption is the key factor to be considered in the artificial neuron
design [22]. To reduce the power consumption, one effective solution is to remove the
membrane capacitor. As shown in Figure 5, the parasitic capacitance in the negative half
cycle of the comparator is used as a part of the capacitance. At the initial state, the output
voltage Vout is zero. Therefore, the feedback capacitor Cfb can also be regarded as the
membrane capacitor and charged by the input current Iin. The output voltage Vout is
connected with the gate of M7. Therefore, M7 is not only a switch of the reset current Ir,
but also the current source of Ir.

To further reduce the power consumption, the tail current source of the comparator is
effectively processed. In general, the offset voltage of the tail current source M2′ is provided
by the reference voltage Vb. However, the branch of M2′, M0 and M3 is always at the
conduction state because of the existence of Vthr and Vb. In this situation, the quiescent
current always exists even without the input current. Therefore, the neural circuit still has a
large amount of power loss during the sleeping state. To solve the problem, Vb is not used
anymore.

As shown in Figure 5, the actual bias of the M2 is provided by the output voltage Vout
of the artificial neuron. When there is no input current, Vout is zero and there i no static
current through M2. The reduction of the tail current of the comparator can effectively
decrease the power consumption. The operation process of the artificial neuron is shown
in Figure 6. At the initial state, there is no light irritation. The output of the photodiode is
zero. Therefore, the input current Iin is also zero without the light irritation. The membrane
voltage Vmem is at a low level, which is lower than the threshold voltage Vthr. Therefore,
the output voltage is low. No reset current is generated because the transistor M7 is at the
off-state. As the input increases, Tr also shrinks, and the frequency of the output spike
becomes higher.
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Figure 6. The schematic diagram of the operation process of the artificial neuron. Vmem is the voltage
of the membrane capacitor. Vout is the output of the artificial neuron. Tr is the time of the resting
state.

When the light is switched on, the dc current Iin is produced by the photodiode. The
capacitor Cfb is charged by Iin. Therefore, the membrane voltage Vmem is increased during
the charging process. Before Vmem reaches the threshold voltage, the output voltage of
the neural circuit Vout is kept at a low level. When Vmem exceeds Vthr, the Vc of the first
stage inverter is switched to a low level quickly. Meanwhile, Vout of the second inverter
is quickly changed from 0 to Vdd. The membrane voltage Vmem is pulled up to the level
of Vout by the feedback capacitor to maintain the stable state of the comparator and the
invertors. As Vout rises, the reset current source M7 is turned on and generates the reset
current Ir. Because Ir is greater than the input current Iin, the membrane voltage Vmem
decreases back to the threshold voltage Vthr. Thus, the output voltage of the comparator
and artificial neuron are reset to their initial state. The re-closed reset current source M7
causes the feedback capacitor to be charged by input current again.

The rest time Tr is controlled by the input current, the feedback capacitance and the
threshold voltage at the same time. The resting time is inversely proportional to the input
current Iin, but proportional to the feedback capacitance Cfb and the reference voltage Vthr.

4. Result and Discussions

The proposed circuit is simulated with SMIC 40 nm CMOS process. The sizes of the
transistors in the circuit are shown in Figure 7. In order to reduce the leakage currents of
the transistors and suppress the static power consumption of the circuit, the channel length
of M7 is set to 120 nm. The feedback capacitor Cfb is set to 5 fF. The power supply voltage
is set to 500 mV and the reference voltage Vthr to 50 mV. The default value of the input
current Iin is 5 pA.

Figure 7. Schematic diagram of the designed circuit, with the information of the sizes of the transistors.
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Figure 8 shows the relationship between the output voltage Vout and the membrane
voltage Vmem with different reference voltages Vthr. In the figure, the value of Vthr is varied
from 30 mV to 70 mV. It can be seen that the flip point of the output is changed from
80 mV to 110 mV corresponding to the different Vthr values. This means that the reference
voltage of the comparator has a proportional effect on the flipping point of the output,
while the traditional one depends entirely on the process parameters of the inverter [14–16].
Adoption of the comparator reduces the influence of process parameters on the circuit
flipping mechanism and improves the robustness of the circuit [10]. The sweep simulation
with Vthr varied from 0 to 100 mV is conducted and the same tendency can be obtained,
showing the circuit to have a wide operating range.

Figure 8. The relationship between the output voltage Vout and the membrane voltage Vmem under
different reference voltages Vthr varied from 30 mV to 70 mV.

As illustrated in Figure 5, the tail current of the comparator is cut off by the gate
control on M2. The gate of M2 is directly connected with the output voltage. At this point,
except for the weak leakage current of M3 and M7, there are no static currents on the other
MOS transistors in the neural circuit. The static power consumption can be suppressed
effectively. When the input current is not 0, the tail current source M2 is turned on by Vout,
providing the current for the comparator. When Vmem exceeds Vthr, the two branches of
the comparator are all switched on. All of the transistors in the neural circuit except M6
and M7 have current flowing through.

The total power consumption of the neural circuit and the energy loss by a spike signal
in the range of input current from 1 to 150 pA are shown in Figure 9a. The power P is the
product of the supply voltage Vdd and the DC current. E denotes the energy consumption
per spike. With the increment of Iin, the charging speed of the feedback capacitor and the
frequency of the state are accelerated. The minimum power is 35 pW with the input current
5 pA. The energy consumed by a spike is as low as 3 fJ. The cycle period is shrunk with the
increasing of the input current Iin. In the tradeoff of the cycle time, the energy consumed
by a spike signal is decreased, being opposite to the increment of the circuit power.

47



Electronics 2022, 11, 365

Figure 9. Power consumption and the output frequency results of neural circuits. (a) The variation of
the power P and spike energy E with the input current. (b) The variation of the spike frequency with
the input current.

As shown in Figure 9b, the frequency of the spike signal is positively correlated with
the input current. As the input current increases, the charging speed of the current on
the feedback capacitor increases, which can significantly reduce the charging time of the
membrane voltage. With the intensity of the input signal triggering the circuit, the output
spike signal of the corresponding frequency is generated, which is the artificial neural
source that imitates the working mechanism of the biological neuron, and it is also the core
of the SNN signal encoding.

As shown in Figure 10, the artificial neurons in different schemes of the tail current
sources (with M2 or with M2′) are compared in terms of the power consumption. The
voltage offset of the tail current source of M2 is connected directly with the output voltage
Vout. The tail current source consisting of M2′ is provided with a voltage offset by a separate
voltage source. It can be seen, in Figure 10a, that the power consumption in the activated
state of the Vout-biased tail current source (with M2) is significantly lower than that of the
fixed-biased tail current source (with M2′). Similarly in Figure 10b, the power consumed
by each spike in the circuit using the Vout-bias current source M2 is also reduced.

Figure 10. The comparison of power and spike energy between the artificial neurons using the tail
current source in M2 and M2′. (a) P is the power of the circuit with M2. P’ is the power of the circuit
with M2′. (b) E is the spike energy of the circuit with M2. E’ is the spike energy of the circuit with M2′.

The neuron unit in SNN is not activated during the iterations, so the power consump-
tion in the standby state accounts for the main part of the total power consumption. When
the input current is 0, the DC current is 6.5 pA, which means a standby power consumption
of 3.25 pw. However, if a fixed-biased tail current source M2′ is used, the DC current in the
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standby state increases to 80 pA due to the presence of the on-state current, which means a
static power consumption of 40 pW. This is intolerable in a low-power neuron circuit. The
use of a Vout-biased tail current source significantly reduces the overall power consumption
of the circuit.

In order to verify the influence of the supply voltage Vdd and ambient temperature
on the working frequency, the circuits are verified under the conditions of the feedback
capacitance of 5 fF and the input current of 40 pA [20]. As shown in Figure 11a, with the
increase of the power supply voltage Vdd, the emission frequency decreases. With the
voltage range of 0.44–0.56 V, the variation of the frequency is approximately 1.5%. This
means that the circuit is less affected by the power supply ripple and that the circuit is
robust to the potential power supply voltage noise. The relationship between the firing
frequency and the temperature is shown in Figure 11b. With the temperature increasing,
the firing frequency tends to increase. The maximum variation of the emission frequency is
approximately 6% in the range of 27–41 ◦C.

Figure 11. The influence of the supply voltage and the temperature on the transmitting frequency.
(a) The variation of the firing frequency with the supply voltage. (b) The variation of the firing
frequency with the temperature.

The transient state simulation results of the neural circuits are shown in Figure 12.
When the input current Iin is zero, the membrane voltage Vmem and the output of the
artificial neuron remain at zero. When the input current is 5 pA (Iin in Figure 10), Vmem is
increased with the charging by the input current. Afterwards, by the presence of the reset
current source M7, Vmem is decreased. In this way, the spikes with certain frequency can be
generated, as shown by the Vout result in Figure 12.

Figure 13 shows the layout of the designed neuron circuit. Thanks to the shrinking
process size, its area is only 13 μm2, which makes it easy to implement the integration of
the neuron arrays with thousands of the retina cells.

The designed retinal circuit is fabricated based on standard CMOS 40-nm technology.
Figure 14 shows the input and output waveforms of the retina with different input currents.
Figure 14a shows the input current waveform. After the artificial retina processing, the
output voltage is shown in Figure 14b. As the input changes from 6.3 pA to 9.4 pA, the
interval between output spikes changes from 0.27 ms to 0.19 ms, that is, the frequency
changes from 3.7 kHz to 5.3 kHz. For the performance of the fabricated chip, when
the working voltage is 500 mV, the overall power consumption is 23 μW, which is mainly
consumed by the reference voltage part. With the input current of 5 pA, and the temperature
changing from 25 ◦C to 40 ◦C, the output spike frequency is varied within 2.3%. When the
supply voltage is varied from 440 mV to 550 mV, the maximum output spike frequency
is changed within 7.4%. The artificial neuron circuit can generate the spikes with the
frequency ranging from 0.8–80 kHz when the input current is changed from 1 pA to 150 pA.
It can be seen that the measured result coincides with the simulated ones.
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Figure 12. The transient simulation results of neural circuits. Iin is the input current generated by
the photodiode. Vout is the output of the artificial neuron. Vmem is the voltage of the membrane
capacitor.

Figure 13. The layout photo of the designed neuron circuit, with area 13 μm2.

Figure 14. The input and output waveforms of the designed artificial retinal neuron circuit based on
the fabricated chip. The different spikes correspond to different input currents. (a) The waveform
of the input current, in which the amplitude of the input current is increased from 6.3 pA to 9.4 pA.
(b) The output waveform, in which the output spike voltage is generated by different time intervals.
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To get a clear comparison with the other similar published works, Table 1 lists the
key results of the designed circuit and the other published works. The results in the paper
show better performance, especially in terms of the ultra-low power consumption. The
power consumption of the design in the paper is approximately 35 pW, which is compatible
with the result in [18]. In [18], the power supply voltage is 200 mV, while the voltage in
this paper is 500 mV. The layout area of the design is also smaller than those of the other
published results. Besides the low power consumption of the design, the robustness of the
circuit is the other advantage. For [18], both the capacitor Cmem and the comparator are
removed to obtain the low power consumption, with the sacrifice of the robustness of the
circuit.

Table 1. Comparison of the design in this paper and the design in others.

Work Process (nm)
Spiking

Frequency
(kHz)

Area (μm2) Power (W)
Energy

Efficiency
(pJ/Spike)

[18] 65 15.7 31 30 p 0.002
[23] 65 1900 120 78μ 41
[24] 350 0.1 1887 40 p 17.4
[14] 90 0.1 442 40 p 0.4
[16] 65 26 35 105 p 0.004

This work 40 0.8–80 12 35 p 0.003

The adopted comparator can improve the stability of the circuit. The stability is an
important parameter for the neurons used in the network. In a circuit without a comparator,
the flip threshold is determined by the threshold of the MOS transistor itself, which is
easily affected by the PTV variables. For example, the circuit in [18] is more susceptible
to PVT factors without using a comparator. In the simulation results, the spike frequency
fluctuates up to 20% by the temperature and up to 25% by the supply voltage. For the
circuit in the paper, the fluctuation is controlled successfully within 6% by the temperature
and within 1.5% by the voltage. It can be seen that the circuit in the paper can improve the
temperature fluctuation by three times and the voltage fluctuation by 16 times when it is
compared with [18].

5. Conclusions

The artificial retinal neuron is used to mimic the biological neuron in hardware im-
plementation and is widely used in neuromorphic computing and image sensors. In this
paper, a novel artificial retinal neuron with ultra-low power is proposed and demonstrated.
With the combination of the comparator and the Axon-Hillock circuit, the artificial neuron
not only achieves the setting of the voltage threshold, but also reduces the power loss of
the circuit dramatically. In addition, the regulated tail current source by the output of
the artificial neuron reduces the leakage current at the static state. The artificial neuron
can generate spikes in frequency ranging from 0.8 to 80 kHz when the input current is
varied from 1 pA to 150 pA. The minimum DC power is 35 pW at the 5 pA of the input
current. The minimum energy consumption of a spike is as low as 3 fJ. It is verified that the
proposed artificial neuron circuit can be used to convert the light intensity into the spike
signal effectively with ultra-low power consumption.

Author Contributions: Q.W. conceived the idea and wrote most of this paper. G.P. wrote the paper
together. Y.J. took part in the discussion, provided expertise and supervised the work. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by a grant from National Natural Science Foundation
of China (NSFC)—award number 61774078.

Conflicts of Interest: The authors declare no conflict of interest.

51



Electronics 2022, 11, 365

References

1. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network
Applications: A Survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]

2. Carvalho, G.; Pereira, M.; Kiazadeh, A.; Tavares, V.G. A Neural Network Approach Towards Generalized Resistive Switching
Modelling. Micromachines 2021, 12, 1132. [CrossRef]

3. Tacchino, F.; Macchiavello, C.; Gerace, D.; Bajoni, D. An Artificial Neuron Implemented on an Actual Quantum Processor. Npj
Quantum Inf. 2019, 5, 1–8. [CrossRef]

4. Kurenkov, A.; DuttaGupta, S.; Zhang, C.; Fukami, S.; Horio, Y.; Ohno, H. Artificial Neuron and Synapse Realized in an
Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching. Adv. Mater. 2019, 31, 1900636.
[CrossRef] [PubMed]

5. Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65,
386. [CrossRef]

6. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagnet
Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

7. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489.
[CrossRef] [PubMed]

8. Joubert, A.; Belhadj, B.; Temam, O.; Héliot, R. Hardware Spiking Neurons Design: Analog or Digital. In Proceedings of the 2012
International Joint Conference on Neural Networks, Brisbane, Australia, 10–15 June 2012; pp. 1–5. [CrossRef]

9. Yang, J.Q.; Wang, R.; Ren, Y.; Mao, J.Y.; Wang, Z.P.; Zhou, Y.; Han, S.T. Neuromorphic Engineering: From Biological to Spike-Based
Hardware Nervous Systems. Adv. Mater. 2020, 32, 2003610. [CrossRef]

10. Indiveri, G.; Linares-Barranco, B.; Hamilton, T. Neuromorphic Silicon Neuron Circuits. Front. Neurosci. 2011, 5, 73. [CrossRef]
11. Yang, X.; Xiong, Z.; Chen, Y.; Ren, Y.; Zhou, L.; Li, H.; Zhou, Y.; Pan, F.; Han, S. A Self-Powered Artificial Retina Perception System

for Image Preprocessing Based on Photovoltaic Devices and Memristive Arrays. Nano Energy 2020, 78, 105246. [CrossRef]
12. Lee, C.L.; Hsieh, C.C. A 0.5 V/1.8 V High Dynamic Range CMOS Imager for Artificial Retina Applications. IEEE Sens. J. 2015, 15,

6833–6838. [CrossRef]
13. Yu, Z.; Liu, J.K.; Jia, S.; Zhang, Y.; Zheng, Y.; Tian, Y.; Huang, T. Toward the Next Generation of Retinal Neuroprosthesis: Visual

Computation with Spikes. Engineering 2020, 6, 449–461. [CrossRef]
14. Cruz-Albrecht, J.M.; Yung, M.W.; Srinivasa, N. Energy-Efficient Neuron, Synapse and STDP Integrated Circuits. IEEE Trans.

Biomed. Circuits Syst. 2012, 6, 246–256. [CrossRef] [PubMed]
15. Emelyanov, A.V.; Nikiruy, K.E.; Serenko, A.V.; Sitnikov, A.V.; Presnyakov, M.Y.; Rybka, R.B.; Sboev, A.G.; Rylkov, V.V.; Kashkarov,

P.K.; Kovalchuk, M.V.; et al. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
Nanotechnology 2019, 31, 045201. [CrossRef] [PubMed]

16. Sourikopoulos, I.; Hedayat, S.; Loyez, C.; Danneville, F.; Hoel, V.; Mercier, E.; Cappy, A. A 4-Fj/Spike Artificial Neuron in 65 nm
CMOS Technology. Front. Neurosci. 2017, 11, 123. [CrossRef] [PubMed]

17. Morris, C.; Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981, 35, 193–213. [CrossRef]
18. Danneville, F.; Loyez, C.; Carpentier, K.; Sourikopoulos, I.; Mercier, E.; Cappy, A. A Sub-35 Pw Axon-Hillock Artificial Neuron

Circuit. Solid State Electron. 2019, 153, 88–92. [CrossRef]
19. Mead, C. Analog VLSI and Neural Systems; Addison-Wesley Longman Publishing Co.: Hoboken, NJ, USA, 1989.
20. Olsson, J.A.M.; Hafliger, P. Mismatch Reduction with Relative Reset in Integrate-and-Fire Photo-Pixel Array. In Proceedings of

the 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore, MA, USA, 20–22 November 2008; pp. 277–280. [CrossRef]
21. Ganguly, C.; Chakrabarti, S. A Leaky Integrate and Fire Model for Spike Generation in a Neuron with Variable Threshold and

Multiple-Input–Single-Output Configuration. Trans. Emerg. Telecommun. Technol. 2019, 30, e3561. [CrossRef]
22. Bai, Y.; Fan, D.; Lin, M. Stochastic-Based Synapse and Soft-Limiting Neuron with Spintronic Devices for Low Power and Robust

Artificial Neural Networks. IEEE Trans. Multi Scale Comput. Syst. 2018, 4, 463–476. [CrossRef]
23. Schuman, C.D.; Potok, T.E.; Patton, R.M.; Birdwell, J.D.; Dean, M.E.; Rose, G.S.; Plank, J.S. A Survey of Neuromorphic Computing

and Neural Networks in Hardware. arXiv 2017, arXiv:1705.06963.
24. Yao, E.; Basu, A. VLSI Extreme Learning Machine: A Design Space Exploration. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25,

60–74. [CrossRef]

52



Citation: Wang, X.; Xu, N.; Meng, X.;

Chang, H. Prediction of Gas

Concentration Based on

LSTM-LightGBM Variable Weight

Combination Model. Energies 2022,

15, 827. https://doi.org/

10.3390/en15030827

Academic Editors:

Luis Hernández-Callejo,

Adam Smoliński, Sara
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Abstract: Gas accidents threaten the safety of underground coal mining, which are always accompa-
nied by abnormal gas concentration trend. The purpose of this paper is to improve the prediction
accuracy of gas concentration so as to prevent gas accidents and improve the level of coal mine safety
management. Combining the LSTM model with the LightGBM model, the LSTM-LightGBM model is
proposed with variable weight combination method based on residual assignment, which considers
not only the time subsequence feature of data, but also the nonlinear characteristics of data. Dur-
ing the data preprocessing, the optimal parameters of gas concentration prediction are determined
through the analysis of the Pearson correlation coefficients of different sensor data. The experimental
results demonstrate that the mean absolute errors of LSTM-LighGBM, LSTM and LightGBM are
1.94%, 2.19% and 2.77%, respectively. The accuracy of LSTM-LightGBM variable weight combination
model is better than that of the two above models, respectively. In this way, this study provides a
novel idea and method for gas accident prevention based on gas concentration prediction.

Keywords: coal mine safety; LSTM; LightGBM; LSTM-LightGBM variable weight combination; gas
concentration prediction

1. Introduction

Energy is the engine of economic development and the lifeblood of national econ-
omy [1]. Coal is crucial with respect to the energy strategy of China, which is also caused
by the feature of resource distribution in China, but also it determines that the solution to
energy problems should depend on coal. For a long time, safety has always been one of the
important issues during the process of coal mining. Gas accidents are a particularly serious
problem. Through the investigation and analysis of coal mine gas accidents, it is found
that not accurately grasping the law of gas concentration changes is the main reason for
gas accidents [2]. Thus, if the inner rules can be explored and the gas concentration can be
predicted relatively accurately [3], it will be of great importance to reduce the occurrence of
gas accidents.

So far, many domestic and foreign scholars have conducted a great amount of research
on gas concentration prediction [4]. Normally, gas concentration prediction methods can be
broadly divided into two categories, one of which is using gas geomathematical modeling
methods, and the other of which is based on machine learning methods. However, since
the change of gas concentration is not a simple static process, and there are highly complex
nonlinear relationship among its the influencing factors, it is still a great challenge for the
current gas concentration prediction models to predict gas concentration accurately and
efficiently [5].

The prediction of gas concentration using the gas geomathematical model requires
detailed measurements of multidimensional attributes of the geological environment sur-
rounding the mine and the underground environment, such as mining depth, permeability
of coal seam, stability of coal seam and thickness of the coal seam. Wang et al. [6] con-
structed the gas concentration prediction equation based on one-dimensional regression
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analysis. Zhang et al. [7] established the multivariate prediction model of gas concentration
using the actual measured parameters of gas gushing from the mined area. Lu et al. [8]
combined the gas gushing characteristics and gas gushing mechanism to construct a mathe-
matical model of gas geology. However, based on the kind of methods for gas concentration
prediction, it is not easy to obtain necessary input data, and not possible to achieve real-
time prediction. Furthermore, in the process of model building, the prediction equation
needs to be adjusted artificially based on experience, and it lacks the consideration of gas
concentration time-series correlation.

As machine learning becomes more and more widely used in many fields, machine
learning algorithms have been applied to gas concentration prediction. The previous studies
focusing on prediction of gas concentration are mainly based on single factor, historical gas
data or conventional single machine learning models such as the recurrent neural network
(RNN) [9], eXtreme gradient boosting (XGBoost) model [10], the random forest model
(RF) [11], backpropagation (BP) neural network [12] and long short-term memory (LSTM)
network [13]. These algorithms have been used to predict the gas concentration in the
short term. A comparison between the prediction values of gas concentration in several
machine learning models demonstrated that LSTM network has a better generalization
ability, and it can deal with nonlinear time sequence data on the basis of solving the
defect of traditional recurrent neural network [14]. The light gradient boosting machine
(LightGBM) [15] operates faster and it is accurate compared with that of XGBoost in the
multiple benchmarks and public data set test. To further improve the precision of gas
prediction, a few researchers have attempted to predict the gas concentration by combining
several single machine learning models. Xun et al. [16] constructed a CNN-LSTM model.
Lin et al. [17] combined PSO-BP neural network to predict the gas content of coral beds.
Wen et al. [18] developed a BP neural network model based on Gray theory. Xu et al. [19]
developed a IGSA-BP combination prediction model that had a better prediction accuracy
than that of the single machine learning model. Zhang et al. [20] constructed a prediction
model based on a combination of wavelet noise reduction and LSTM. Han et al. [21]
constructed a gas concentration residual correction model based on Markov model and Gray
neural network. However, majority of the combination models place the first prediction
results into another model for the secondary prediction or sum up the prediction results of
the two models to utilize the average value. Combination models that adopt this strategy
do not “integrate” two single-machine models; this also results in their prediction accuracy
still not meeting the needs of underground coal mine safety production.

Considering the drawbacks of the abovementioned studies, in this paper, the historical
data of this survey site was selected as the time sequence factor, and the historical data
of other survey sites at the working face was selected as a spatial topological factor, and
these were combined. An analysis of the correlation between the attribute data and gas
concentration is used to define the attribute requirements of the input data. According
to the data time sequence and nonlinear characteristics, the variable weight combination
model [22] of the LSTM network and the LightGBM model was developed to dynamically
predict the gas concentration for the next 10 h. The model conquers the difficulty in obtain-
ing data and inability to predict in real time by traditional gas geomathematical models
and improves the accuracy of gas concentration prediction using the improved variable
weight combination method of residual weighting. The prediction of gas concentration
change trend can be as an important reference for safety management in coal mines to take
measures such as gas extraction, water misting, boosting wind speed and other methods in
time to ensure a better prevention of gas accidents.

2. Date Source

Since coal is the main source of energy in China, the safety problems related to coal
mining have attracted significant attention. A large volume of gas gush is generated in
the working face of the gas mine during the process of the production. By referring to the
pre-decessor’s data collection scale when predicting the gas concentration, [23,24] in this
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study, 10,000 sets of data were collected from 11 different survey sites at the working face
of a coal mine in Shanxi Province from 19 March 2021 to 24 March 2021. The description of
data attribute is shown in Table 1.

Table 1. Data attribute description of each measuring point at a working face.

Measurement Point
Name

Measurement Point
Description

Index Max Value Min Value

MGas Mixed methane
concentration in air entry % CH4 0.7 0

EGas Methane concentration of
back air in air inlet drift % CH4 0.7 0

Gas1
Methane concentration in
the downwind side of the

tunnel
% CH4 0.79 0.16

Gas2 Methane concentration in
working face of air entry % CH4 0.4 0

YCO1
Concentration of carbon

monoxide in the downwind
side of tunnel drilling

ppm 6 0

YCO2

Concentration of carbon
monoxide at the head of the
belt conveyor in the air inlet

lane

ppm 6 0

WS Back air speed in air entry m/s 1.2 0.2

FC Dust on working face of air
entry mg/m3 0 0

ET Back air temperature in air
entry

◦C 13.3 10.8

GD Mixed instantaneous flow
in air inlet pipeline m3 19.29 0

SM
Smoke on the downwind

side of the head of the belt
driven into the air entry

mg/m3 0 0

2.1. Missing Data Processing

Due to various force majeure factors in the data collection, transmission and storage
scenarios, some data can be missing. Missing data can cause serious impediments to
subsequent data correlation analysis and the construction of gas concentration prediction
models. In addition to reducing the validity of the data, it can also lead to inaccuracies
in the overall data analysis task and produce incorrect analysis results. Hence, this paper
adopts the average method to fill in the missing data. The data filling equation is given
as follows:

x̃ =

n
∑

i=1
xi

n
(1)

In the above formula, x̃ represents the missing data series,
n
∑

i=1
xi represents the total of

all data in the data set and n represents the number of nonmissing data in the data set.

2.2. Normalization Process

In order to eliminate the impact of the dimensionality between the gas multiparameter
time series, it is necessary to perform data normalization. Following data normalization of
the raw data, the indicators are in the same order of magnitude and suitable for compre-
hensive comparative evaluation. Meanwhile, normalization provides a certain degree of
numerical comparability of features among different dimensions. The original time series x
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is normalized by applying min–max normalization. The normalization formula is given
as follows:

x∗ =
x − xmin

xmax − xmin
(2)

where x* is the normalized value, xmax, xmin are the maximum and minimum values of the
sample data respectively.

2.3. Feature Selection

After the data have been preprocessed, it is necessary to select meaningful features
to input into the machine learning algorithms and models for training. Generally, feature
selection is divided into the following two main steps:

2.3.1. Correlation Analysis

In order to fulfill the requirements of gas concentration prediction and to strengthen
the situational awareness and extrapolation capability of the prediction model, in this paper,
we use the Pearson correlation coefficient to describe the degree of correlation between gas
concentration at the working face and its impact factors. The equation is given as follows:

ρX,Y =
cov(X, Y)

σXσY
(3)

In the above equation, ρX,Y represent the Pearson correlation coefficient of two con-
tinuous variables X, Y, cov(X, Y) represents the covariance between them, and σX and σY
represent the standard deviations of the variables X and Y.

2.3.2. Eliminate Redundant Features

Using the Pearson correlation coefficient to obtain the weights of each feature, the
features with weights less than a threshold value are eliminated. Afterward, the mutual
information is calculated for the features in the remaining data set two by two. Mutual
information refers to the extent of information shared between two features. If the value
of mutual information is greater than the threshold, the feature with the smaller weight is
considered redundant and is removed. The equation for calculating mutual information is
given as follows:

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(4)

In the above formula, p(x,y) is the joint probability distribution function of X and Y,
and p(X) and p(Y) are the marginal probability density functions of X and Y.

3. Materials and Methods

3.1. LightGBM

XGBoost should be defined before explaining about LightGBM [25], XGBoost is an
improved boosting algorithm of the gradient boosting decision tree (GBDT), which is GBDT
in essence, but it strives to maximize the speed and efficiency. Conventional GBDT adopts
classification and regression tree (CART) as the base classifier, and XGBoost supports
the multiple base classifiers to compensate for the shortcoming in the accuracy of single
CART prediction. However, the disadvantages associated to XGBoost are that it stores
feature sorting results, which occupy a massive amount of memory, and it severely affects
cache optimization.

Compared with that of XGBoost, LightGBM [26] is a relatively new tree-based gradient
boosting variant. It adopts the histogram algorithm to ensure that an algorithm utilizes less
memory and has a low computational cost. Layer-by-layer growth is a conventional method
used for tree based combination (including XGBoost) growth decision trees. LightGBM is
different from that of XGBoost, as it does not utilize the conventional decision tree growth
strategy and it introduces leaf-by-leaf growth strategy. In contrast to layer-by-layer growth,
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leaf-by-leaf growth strategy converges faster and consumes lesser memory. Layer-by-layer
growth strategy and leaf-by-leaf growth strategy are shown in Figure 1.

Figure 1. Layer-by-layer growth and leaf-by-leaf growth.

3.2. LSTM

LSTM [27] consists of a set of cyclic subnetworks named according to the memory
blocks. Each memory block consists one or multiple self-connected memory cells and
three gating units: input gate, output gate, and forget gate. Similar to that of the recurrent
neural network (RNN), the hidden unit is horizontally connected back to the hidden unit.
However, the hidden unit of RNN is replaced by the memory cell with gating function.
The diagram of LSTM structure of a single cell is shown in Figure 2.

ft = σ(w f · [ht−1, xt] + b f ) (5)

it = σ(wi · [ht−1, xt] + bi) (6)

C̃t = tan h(wc · [ht−1, xt] + bc) (7)

Ct = ft × Ct−1 + it ∗ C̃t (8)

Ot = σ(wo · [ht−1, xt] + bo) (9)

ht = Ot × tan h(Ct) (10)

Figure 2. LSTM structure diagram.
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In the above formula, ƒt represents the forget gate. It is used to control whether or
not to filter the hidden cellular state of the upper layer in the LSTM. it represents the
input gate, C̃t is the cell state at the previous moment, Ct is the cell state at the present
moment, Ot represents the output gate, xt and ht represent the input and output at the
current moment and σ and tanh represent the sigmoid function and hyperbolic tangent
function, respectively. The forget gate, input gate, output gate and the weight matrix of
the cell state are represented by wf, wi, wo and wc respectively. bf, bi, bo and bc represent the
offset vector of the forget gate, input gate, output gate and cell state, respectively.

3.2.1. Activation Function

The sigmoid function is used as the activation function for the forgetting, input and
output gates in the LSTM. The tanh function is used as the activation function when
generating candidate memories. Both are saturated functions. If a nonsaturated activation
function is used, the past and present memory blocks will be superimposed all the time,
resulting in memory misalignment and making it difficult to achieve the gating effect [28].

Sigmoid is a commonly used activation function in gating structures. It compresses the
values to between 0 and 1, which can help update and forget information. In fact, sigmoid
activation function is the common choice for almost all modern neural network modules
in gating.

Tanh activation function is used to generate candidate memories. This is due to
the fact that tanh function has a larger gradient than the sigmoid function, which makes
the model converge faster. Likewise, if a nonsaturated activation function is used to
generate the candidate memory, it is likely that the output values may explode or the
gradient may disappear. Hence, in this paper, we choose tanh activation function as the
activation function.

3.2.2. Overfitting

High fit is a key sign of a good model. However, in the process of model fitting, if
the pursuit of high R-squared is pursued, it is likely that some of the characteristics of the
training sample itself will be taken as general properties that all potential samples will have.
As a result, this can lead to a reduction in the generalization performance of the model.
This phenomenon is called “overfitting” in machine learning and cannot be completely
avoided in model training. All we can do is “reduce the risk”, and currently, there are
several ways to prevent model overfitting:

1. Data enhancement: Employing more data for model training helps to better identify
signals and avoid identifying noise as signals.

2. Pretermination: Pretermination prevents overfitting by stopping the iteration of the
model before it converges on the training data set.

3. Regularization: Regularization refers to the process of optimizing the objective func-
tion or cost function by adding a regular term after the objective function or cost
function, typically L1 regular or L2 regular, etc.

4. Dropout: Dropout is implemented by randomly “removing” the hidden units from
the neural network after the model training has started.

In order to prevent overfitting of the LSTM model in this paper, pretermination and
the addition of a dropout layer are used. First, by recording the best validation accuracy so
far during the training process, when after five consecutive iterations, no better validation
accuracy is produced, then we can terminate the model early by default. Furthermore, we
add a dropout layer to the model to reduce the complex coadaptation between neurons.
Once the hidden layer neurons are randomly removed, the fully connected network is
sparse, which can effectively reduce the synergistic effect of different features and enhance
the generalization ability of the model. Due to the addition of the dropout layer, the model
has a certain randomness in prediction, so the 10 predictions of the LSTM model are taken
and averaged as the final prediction result.
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3.3. Grid Search Algorithm

A reasonable set of model parameters is the basis for building a good model, and
the impact of hyperparameters on the effectiveness of the model is crucial. The grid
search algorithm refers to an exhaustive list of parameter values. By combining the values
determined by the range of values for each parameter and the search step, a “grid“ is
generated by listing all possible results. Subsequently, the combinations are used to train
the model, and an optimal combination of parameters is returned after all combinations
have been tried.

3.4. Improved Variable Weight Combination Model

During the gas concentration prediction performed by the conventional combination
model, different models are adopted to predict the gas concentration with the same working
face. The appropriate weights are assigned to the prediction values, and then combined.
The combined prediction model can reduce the effect of random factors of the single
forecasting model and effectively improve the prediction precision.

In this study, LSTM-LightGBM equal weight combination model, LSTM-LightGBM
residual weight combination model, and improved LSTM-LightGBM variable weight
combination model were developed.

3.4.1. Development of Single Machine Learning Model

Ensuring the prediction accuracy and performance of single machine learning model
is the basis of determining the combination model—specifically, based on previous research
and parameter comparison between LSTM neural network models. Using the grid search
algorithm mentioned in Section 3.3 for hyperparameter search optimization of the LSTM
model, it is determined that the search range of the first layer cell count is from 20 to
200 with a search step of 20, the search range of the second layer cell count is from 10 to
100 with a search step of 20 and the number of iterations is set to 10 to 40 with a search
step of 10. The layer of the network model was set to 2. The activation probability of the
dropout layer was set to 0.2, the number of the unit in the first layer was set to 100, the
number of units in the second layer was set to 50 and the activation function was set to
Tanh. The optimization algorithm adopted the Adam algorithm, and the iteration number
was set to 20 times.

Grid search algorithm [29] was used to optimize the superparameter of LightGBM
model. The final parameters of the model were set as: max _depth = 6, learning _rate = 0.2,
n _estimators = 180, subsample = 0.6, colsample _by tree = 0.85, silent = True.

3.4.2. Weighing of the Residual Combination Model

It is a common method to provide a single model a proper weight to develop the
combination model under the condition that the accuracy of the single machine learning
model remains the same. This can improve the accuracy of the model [30]. The most
extensively used weighting method is equivalent weighting. In general, the method of
equivalent weighting is simple, and it has a good universality and participation. However,
it does not reflect the importance that the model attaches to the prediction results of different
single models, and it is possible that the determined weight is considerably different from
that of the actual importance of the prediction results. The residual weighting combination
model is expressed as:

h(xt) =
m

∑
i=1

ωi(t − 1) fi(xt) (11)

ωi(t−1) =
1

ϕi(t−1)
m
∑

i=1

1
ϕi(t−1)

(12)
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m

∑
i=1

ωi(t − 1) = 1, ωi(t − 1) ≥ 0 (13)

where wi(t − 1) is the weight of the ith model at the moment of t − 1, ƒi(xt) is the prediction
value of the ith model, h(xt) is the prediction value of combination model, ϕi(t − 1) is the
square sum of the predictive errors of ith model at the moment of t − 1. The central idea of
residuals weighting is to assign the weight to describe the importance of the model based
on the error between the prediction value and the real value.

3.4.3. Weighting of Improved Variable Weight Combination Model

Compared with that of the conventional prediction method, there are a few improve-
ments in data input dimension in this study. Conventional gas concentration prediction
models only adopt the single dimension input model. The improved algorithm proposed
in this study adopts multidimension input method based on data correlation analysis. It
reveals the constraint of the single dimension input model, and it provides a theoretical
basis to explore the relationship between other compounds and gas concentration.

LSTM-LightGBM variable weight combination model was developed using the im-
proved variable weight combination method based on residual weight. The residual
weighting model was improved based on weight of the moments obtained in Formula (12),
and the optimal m value was calculated. The average of the weights of the first m moment
was used for the initial weighting. The expression for the initial weighting is:

ωj(t) =
1
m

m

∑
k=1

ωi(t − k) (m = 6), (14)

After gaining the weight of the models from Formulas (12) and (14), the absolute value
of the error between the predicted value and the true value of each combination model at
the moment of t is calculated as δi,t and δj,t.

δi,t =
m

∑
i=1

ωi(t) fi(xt)− f̂ (xt) (15)

δj,t =
m

∑
i=1

ωj(t) f j(xt)− f̂ (xt) (16)

The values of δi,t and δj,t, are compared. If δi,t < δj,t, the new weight wj(t) of the
combination model will replace the previous weight wi(t). Otherwise, the previous weight
will remain unchanged.

3.5. Construction Flow of Prediction Model

The construction flow of the prediction model is shown in Figure 3. The main processes
include data preprocessing, prediction of the single machine learning model, construction
of the variable weight combination prediction model and the evaluation and analysis of
the model prediction [31].

(1) Data preprocessing: Data preprocessing is an important link before data modeling,
which fundamentally determines the quality of the data work and the output value.
The data in this study was obtained from the working face of a coal mine in Shanxi
Province. The data is relatively complete. Therefore, the data are directly normalized.
The data attribute and the data correlation are considered and the suitable data from
the data set is selected for the model training.

(2) Development of single machine learning model: After the data set is divided according
to the scale of the training set:verification set:testing set = 7:2:1, the LSTM model and
LightGBM model are trained by the data of the training set, and the data of verification
set is used to adjust the parameters and monitor if the model has been fitted. The data
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of the test set are placed into two models, respectively, and the prediction results of
the single machine learning model are obtained.

(3) Development of improved variable weight combination model. The weight of each
single machine learning model is determined by the improved weighting method
shown in Section 3.4.3 to ensure that the improved prediction model can be obtained.

(4) Model evaluation analysis: According to the indexes of the model evaluation, the pre-
diction ability of the improved model was compared and the change in the prediction
effect of the model is analyzed.

Figure 3. Prediction flow of LSTM-LightGBM variable weight combination model.

3.6. Evaluation Index

The mean absolute percentage error (MAPE) is not applicable because the actual value
of the data used in this study includes zero. Therefore, the evaluation index used in this
study is root mean square error (RMSE) and mean absolute error (MAE). The formula is
as follows:

RMSE =

√√√√ 1
m

m

∑
i=1

(ŷi − ypre)
2

(17)

MAE =
1
m

m

∑
i=1

∣∣(ŷi − ypre)
∣∣ (18)

In the formula, m is the number of samples, ŷi is the true value, ypre is the forecast
results. The actual value will be closer to the predicted value if the value of the loss function
is smaller, and this ensures a higher accuracy of the model prediction.

When there is a certain amount of error in the prediction, the value of the root mean
square error will also be larger, so the root mean square error is used to characterize the
degree of dispersion of the error value. As the error values of the mean absolute error are
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absolutized, there is no situation where the positive and negative errors in the mean error
cancel each other out. Thus, the mean absolute error can better reflect the actual situation
of the prediction errors.

4. Results

4.1. Prediction Factor Analysis

There are multiple transformations and interactions between the gas mixture and
other compounds at different measuring points [32]. Therefore, the correlation between the
concentration of the gas mixture and other compounds is analyzed.

In statistics, the Pearson product–moment correlation coefficient (PPMMC) [33] is used
to measure the correlation between variables. To avoid experimental uncertainties, data
from three different coal mines were selected for correlation analysis, and the visualization
of the correlation between the mixed gas concentration and the data was determined using
heat diagram.

As shown in Figure 4, the “FC” data in this working face are zero, and a correlation
with the mixed gas concentration was absent. There is a strong correlation between
“EGas”, “Gas1”, “Gas2” and the mixed gas. However, by calculating the values of mutual
information between “EGas”, “Gas1” and “Gas2”, we found that “EGas“ has the largest
mutual information value and is greater than the threshold value, so it can be considered
that “Gas1” and “Gas2” are redundant features; thus,“Gas1 “and “Gas2” are not used as
input data.

Figure 4. Correlation analysis of data.

The four variables “EGas, WS, ET and GD” were selected as the input of the prediction
model, and the correlation analysis between the input variables and the mixed gas concen-
tration is shown in Figure 5. According to previous experiments conducted on methane
adsorption, an increase in temperature can reduce the gas adsorption capacity and it can
effectively promote the rapid desorption and diffusion. Meanwhile, the activity of the
methane molecule increases, which promotes the pore expansion of coal bodies, particularly
of the small gaps. This significantly improves the methane diffusion of coal bodies. The
diffusion coefficient dynamically changes with an increase in the temperature. In this study,
the least squares method was used for fitting, as shown in Figure 5a. A positive correlation
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between the concentration of mixed gas and the ambient temperature was observed, which
revealed the mechanism of the dynamic process of gas diffusion proposed by Liu [34] et al.

 
(a) (b)  

 
(c)  (d)  

Figure 5. Correlation analysis between gas concentration and input data: (a) Scatter plot of correlation
between mixed methane concentration and ambient temperature; (b) Scatter plot of correlation
between mixed methane concentration and back air methane concentration; (c) Scatter plot of
correlation between the concentration of mixed methane and the instantaneous flow of pipeline; (d)
Scatter plot of correlation between mixed methane concentration and working velocity and back air.

In this study, the back air methane concentration and mixed methane concentration
exhibited a stronger correlation. The back air pipe is mainly used to receive the air flow
after cleaning the working face, and a large volume of gas will be produced during the
process of production at the mine working face. At the working face, the main gas sources
are the falling coal gas emission and coal wall gas. Different gas sources follow different
rules of gas emission [35].

4.1.1. Law of Falling Coal Gas Emission

The coal body will crack during the process of mining, causing a change in gas
occurrence conditions. A large volume of gas changes into a free state from the adsorption
state, and it might enter into the tunnel with the air flow. The volume of falling coal gas
emission is closely related to falling coal, the falling coal fragmentation, the content of coal
seam gas and residual gas. The intensity of coal falling gas emission is shown in Formulae
(19) and (20).

q1 =
q10

(1 + t)α (19)

Q1 =
∫ T

0
q1θMdt (20)

In the function, q1 represents the emission intensity per weight of falling coal gas at
unit time of t + 1, unit is m3/(min.t). q10 represents the intensity of gas emission at initial
moment of falling coals with the unit of m3/(min.t). t represents the exposure time of

63



Energies 2022, 15, 827

falling coals with the unit of min. α is the attenuation coefficient, Q1 is the absolute gas
emission from falling coals in the process of mining with the unit of m3/min. M represents
the mining weight per unit time with the unit of t/min. θ is the degree of fragmentation.

4.1.2. Law of Coal Gas Emission of in Working Face

The gas released from the coal enters the air stream through the surface of the coal
wall according to Duthie’s law and the law of diffusion. During the process of continuous
mining, fresh coal wall is constantly exposed, mining pressure constantly changes, and the
gas pressure balance state near the working face changes. A large volume of gas flow out
along the coal cracks and pores gushing lane, the gushing intensity of the coal wall gas is
shown in Formulas (21) and (22).

q2 =
q20

(1 + t)β
(21)

Q2 =
∫ T

0
q2Hvdt (22)

In this function, q2 represents gas emission intensity of back coal wall at the time of t +
1 with the unit of m3/(min.m2). The q20 is gas emission intensity at the initial moment of
coal wall with the unit of m3/(min.m2). t is the exposure time of coal wall, with the unit of
min. β is the attenuation coefficient, Q2 is absolute emissions of coal wall gas in the process
of mining with the unit of m3/min. H is the thickness of coal mining layer with the unit of
m. v is the cutting speed of coal mining machine with the unit of m/min.

After entering the lane from the above gas source, methane will form a mixture of gas
and air with uneven concentration, and the mixture will migrate by concentration diffusion
and convection mixing in the airflow. After fresh air flow passes through the working
face of mines, partial methane gas in the mining face is diluted and carried. Therefore,
the methane concentration in the back air can accurately reflect the change in the methane
concentration in the mining face.

4.2. Model Prediction Analysis and Comparison

To verify the accuracy of the improved LSTM-LightGBM, the LSTM, LightGBM, XG-
Boost, LSTM-LightGBM (Equivalent weighting) and LSTM-LightGBM (Residual weight)
were selected for comparative experiments. The errors of the different models were com-
pared as shown in Figure 6.

From the figure above, it can be observed that the prediction accuracy of the variable
weight combination model is higher than that of the single machine learning model and
the conventional combination weighting model. The comparison between the values of
MAE and RMSE of the models is shown in Table 2.

Table 2. Comparison between evaluation indexes of each model.

Model MAE RMSE

LSTM 0.0219 0.0306
LightGBM 0.0277 0.0377
XGBoost 0.0253 0.0352

LSTM-LightGBM (Equivalent
weighting) 0.0214 0.0276

LSTM-LightGBM (Residual
weighting) 0.0201 0.0279

LSTM-LightGBM (Variable
weight combination) 0.0194 0.0261
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Figure 6. Prediction result and real results of each model.

The MAE and RMSE values of LSTM model were the average value of the LSTM
model which were trained ten times. After the analysis, the MAE and RMSE values of
the improved LSTM-LightGBM variable weight combination model were increased by
3.5% and 6.5%, respectively, compared with that of the LSTM-LightGBM residual weight
combination model, and by 11.4% and 14.7%, respectively compared with that of the LSTM-
LightGBM single machine learning model. The improved variable weight combination
method has a higher prediction accuracy.

4.3. Model Universality Analysis

During the selection of study area, strong local features were observed at different
working faces of the coal mine at different locations. To verify the universality of the
algorithm, the prediction and analysis of gas concentration were performed in different
coal mines. The coal mines selected were Mine A in Shanxi, Mine B in Guizhou, and Mine
C in Anhui.

It can be observed from Figure 7 that the prediction error of the modified variable
weight combination model is smaller than that of the conventional model, and the increase
in Mine A is the most obvious. MAE value increased by 18.5% and 29.2%, respectively,
compared with that of the LSTM model and the LightGBM model. RMSE increased
by 22.9% and 30.4%, respectively, compared with the LSTM model and the LightGBM
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model. Therefore, the prediction results of the improved variable weight combination
model with three different coal mine gas concentrations demonstrated that the prediction
accuracy was improved. This demonstrates the universality of the improved variable
weight combination model.

 

Coal mine A Coal mine B Coal mine C
LSTM-MAE 0.0146 0.0173 0.0124

LightGBM-MAE 0.0168 0.0182 0.0128

Variable weight
combination-MAE 0.0119 0.0167 0.0103

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

 

Coal mine A Coal mine B Coal mine C
LSTM-RMSE 0.0214 0.0245 0.0195

LightGBM-RMSE 0.0237 0.0242 0.0165

Variable weight
combination-RMSE 0.0165 0.0231 0.0144

Figure 7. Analysis of evaluation index applied to different coal mines.

5. Discussion

In this study, a variable weight combination model was developed by adopting
the methane concentration, wind speed, ambient temperature, gas drainage, and the
historical data of mixed gas. Working faces of different mines were selected to predict the
gas concentration in the future 10 h. In the improved LSTM-LightGBM variable weight
combination model, the MAE value and RMSE value were 0.0194 and 0.0261, respectively.
These values were smaller than that of the prediction values of 0.0224 and 0.0317 obtained
in the ARIMA model proposed by Zhang et al. [36] and the 0.0207 and 0.0303 of S-GRU
model proposed by Chang et al. [37]. This was because an LSTM neural network with
better time sequence prediction and the LightGBM model with better performance in the
nonlinear model were predicted in the form of variable weight combination. It considered
the time sequence feature of the data and the nonlinear feature of data. For analysis
and comparison result of the gas concentration, the improved LSTM-LightGBM variable
weight combination model was better than that of the conventional LSTM-LightGBM
equivalent weight assignment model and LSTM-LightGBM residual weight assignment
model. Considering the difference in prediction error between the LSTM network and
the LightGBM model at different moments, the combination model adopted different
weights for the prediction values at different moments to combine the advantages of both
the models.
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In this study, data from coal mine at several locations were selected to explore the
performance of the regional model. Additionally, downhole temperature, wind speed and
methane gas were selected as prediction factors to determine the effect of factors for gas
concentration prediction [38]. To improve the prediction accuracy of gas concentration,
suitable factors such as weather and ground surface temperature, depth of coal seam,
inclination of coal bed, top and bottom lithology of coal bed should be considered in
the future.

6. Conclusions

Based on LSTM and LightGBM model with the variable weight combination model,
the prediction method of gas concentration was improved. In this model, the time sequence
feature and the nonlinear relationship between the input feature and gas concentration
were considered. By the data pre-processing and feature selection, it makes the model
converge faster and avoids the degradation of prediction accuracy due to redundant
features. Sigmoid function is selected for the activation function of the gate structure of the
LSTM model. Tanh activation function is selected to generate candidate memories. These
gates increase the convergence speed of the model. Moreover, they guarantee that the model
does not suffer from the problem of exploding output values and vanishing gradients. In
comparison to traditional single machine learning gas concentration prediction models,
LSTM models have a higher prediction accuracy.

Compared with that of single machine learning model and other conventional combi-
nation weighting models, the prediction result of the variable weight combination model
was closer to that of the real value with a small error. It provides better prediction accuracy,
and high reliability. It can give a reference for gas accidents prevention and promote the
safety of coal mines.

This study focused on the prediction and analysis of gas concentration using the
underground attribute information only including temperature, wind speed, methane
gas. Nevertheless, the change of gas concentration is affected by complex factors and
conditions [39]. In future research, it is important for us to consider more comprehensive
factors of gas concentration, such as roof pressure, minging depth, inclination angle of coal
seam and ground weather information.
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Abstract: Machine learning (ML) has increasingly received interest as a new approach to accelerating
development in materials science. It has been applied to thermoelectric materials research for dis-
covering new materials and designing experiments. Generally, the amount of data in thermoelectric
materials research, especially experimental data, is very small leading to an undesirable ML model.
In this work, the ML model for predicting ZT of the doped BiCuSeO was implemented. The method
to improve the model was presented step-by-step. This included normalizing the experimental ZT of
the doped BiCuSeO with the pristine BiCuSeO, selecting data for the BiCuSeO doped at Bi-site only,
and limiting important features for the model construction. The modified model showed significant
improvement, with the R2 of 0.93, compared to the original model (R2 of 0.57). The model was
validated and used to predict the ZT of the unknown doped BiCuSeO compounds. The predicted
result was logically justified based on the thermoelectric principle. It means that the ML model can
guide the experiments to improve the thermoelectric properties of BiCuSeO and can be extended to
other materials.

Keywords: thermoelectric materials; thermoelectric properties; machine learning; BiCuSeO

1. Introduction

Electricity consumption is increasing continuously as a result of technological progress.
Thermoelectric is one of the interesting alternative energy technologies, which can convert
heat to electricity and vice versa. This technology provides many benefits, such as envi-
ronmentally friendly energy sources, scalability, and silent operation. Unfortunately, the
generic thermoelectric bulk modules perform with an efficiency of about 3–5% [1], which is
lower than other alternative energy sources such as solar cells with an efficiency of up to
30% [2]. In order to develop a better thermoelectric performance, thermoelectric materials,
the heart of the technology, need to be better developed. The key performance of ther-
moelectric materials is determined from the dimensionless Figure-of-Merit (ZT), defined
as ZT = S2σ

k T [3] where T, σ S, and k are the absolute temperature, electrical conductivity,
Seebeck coefficient, and thermal conductivity, respectively. Various methods have been
investigated to enhance ZT, and thus, the performance of the material.

Traditional approaches to investigate thermoelectric materials are by experiments and
computational methods based on density functional theory (DFT). In general, experiment-
ing requires expertise, instrument, and advanced technology, which consume considerable
resources. Furthermore, it is difficult to control overall variables and may require a long
acquisition period. Alternatively, the computational simulation needs less time and is
profitable in complete control over the essential variables. Nonetheless, there are also many
challenges for the DFT simulation related to microstructures of material. It needs high-
performance computing apparatus, usually in large computing clusters, which is difficult
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to be accessed by individuals. Additionally, the simulation was merely employed to some
specific systems and required approximations to minimize runtime on complex systems.
To accelerate the development and discovery of novel thermoelectric materials, machine
learning (ML) becomes an attractive approach. ML is a data-driven method that utilizes
statistical mathematics to analyze the data. It can predict micro and macro properties and
the correlation between the parameters of the materials [4].

To accelerate the material research, advances and applications of ML have been
developed continuously [4–7]. The ML was currently supported by several online databases,
algorithms, and frameworks [8,9]. The ML model for predicting materials properties
was usually implemented via a classical algorithm, such as regression, determined by
yi = a0 + a1x1 + a2x2 + . . . + anxn, i = 1, 2, . . . n, where yi is the target or predicting
value, ai is the regression coefficient automatically calculated by an ML algorithm, and xi
is the feature or descriptor for representing the character of materials. Even though there
are many ways to generate the features, Magpie is the software that originates features
for material science by using physical properties. They are operated with mathematics
requiring only chemical formula [10]. Furthermore, the features have the potential to
build an ML model with advantages in a comfortable and quick method for searching
new candidate materials [11,12]. With many advantages, ML has the potential to be a new
approach to accelerate the discovery of thermoelectric material with high performance.

Related Work

Recently, ML applications in thermoelectric materials have been increasingly investi-
gated due to high accuracy and less time-consuming. For example, Iwasaki et al. reported
the ML model that accelerated the discovery of new candidate materials by generating
features from the chemical formula confirmed with the experiment [12]. In their investiga-
tion for the spin-driven thermoelectric effect (STE) device, the descriptors for training the
ML model were generated automatically from the composition with a composition-based
feature vector (CBFV) [13]. The results showed that some features, such as atomic weight,
spin, and orbital angular momenta, play an important role in thermopower. In addition,
Wang et al. studied the CuxBi2Te2.85+ySe0.15 system with ML [14]. The correlation between
microstructure and thermoelectric properties was investigated with the principal compo-
nent analysis (PCA) and the regression algorithm. Furthermore, apart from predicting the
properties of new materials, ML could design the experimental conditions to obtain a high
ZT value. Hou et al. presented an effective way to find the optimal chemical composition
of the Al2Fe3Si3 thermoelectric compound [15]. With the Bayesian Optimization (BO) algo-
rithm, ML can be applied to the experiment effectively. The power factor can be improved
by about 40% compared to the sample with the initial Al/Si ratio of 0.9. Moreover, the
author claimed that the framework of this study could be extended to the extrinsic doping
of Al2Fe3Si3. These related works can be summarized in Table 1.

Table 1. Summary of the research investigating thermoelectric properties with ML.

Datasets Input Output R2 Remark Ref.

112
temperature, chemical

potential, atomic
radius, etc.

Thermopower -
Thermopower

improved an order
of magnitude

[13]

17 chemical composition ZT 0.99
design experiment

condition providing
high ZT

[14]

5 Al/Si ratio Power factor - increase 40% of
power factor [15]

The previous related research generally exploited the data from the first principle
calculation or from one laboratory. Our present work made a contribution over the pre-
vious related research by exploring the experimental datasets available in literature to
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construct the ML model. We then used the model to predict the thermoelectric properties
of BiCuSeO. BiCuSeO is a class of thermoelectric oxides considered a new candidate for
high-performance p-type thermoelectric materials [16]. Even though the material was only
discovered in 2010, thermoelectric researchers have paid much attention to this compound,
and continuous publications have been reported since then [17–24]. This compound has a
complex ZrSiCuAs layered structure, as shown in Figure 1. It consists of the conducting
(Cu2Se2)2− layers alternatively stacked by the insulating (Bi2O3)2+ layers. Due to distinct
functionalities and the weak bonding between these two layers, BiCuSeO showed outstand-
ing thermoelectric properties and outperformed most thermoelectric oxides [25]. Therefore,
intense research interest is focusing on BiCuSeO to lift the thermoelectric performance
and ZT even higher. The most common approach to enhance ZT is by extrinsic doping
some elements into the BiCuSeO structure to lower thermal conductivity, increase carrier
concentration, and optimize electrical transport properties [25–27]. Nevertheless, since
there are numerous available dopants, tedious experiments are required. Therefore, ML
could be a wise choice to address the issue by providing guidance for appropriate effective
doping of BiCuSeO.

Figure 1. The crystal structure of BiCuSeO consists of conducting (Cu2Se2)2− layer and insulating
(Bi2O3)2+ layer. It also shows the dopant substituted at the Bi site.

In this work, the ML model was constructed to provide the guidelines for effective
doping of the BiCuSeO system. The ML model was built and tested by collecting data
from available published articles (2010–present). Step-by-step, we improved the accuracy
of our model so that the predicted ZT value from the model closely matched with the
experiment. We then extracted the features/descriptors representing the characteristics
of materials and discussed their correlation to the physical parameters of the materials.
Finally, we used the ML model to predict the suitable dopants in the BiCuSeO system,
which can improve thermoelectric properties and lift the ZT of the doped compound with
respect to the pristine BiCuSeO. We truly believe that our work and technique would be
very useful for experimental researchers working to improve the thermoelectric properties
of the BiCuSeO compounds.
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2. Materials and Methods

Thermoelectric databases for the BiCuSeO compounds were collected from published
articles from 2010 to the present (available in the supplementary information, Table S1).
They were then tabulated in Excel for the convenience to import into the Jupyter Notebook
software. The descriptors or features for building classical ML models were generated
from the collected chemical formula via Magpie. The physical and chemical properties of
the element were manipulated by mathematical operators, such as average, summation,
min, mode, max, and median, and a total of 154 features were obtained. Then, the total
datasets were split into a training set (85%) and a test set (15%). The training set was
used to teach ML to find the pattern of the data, whereas the test set was used to test the
accuracy of the model. Due to the small size of datasets compared to other ML research in
materials science [11], the models were built by using different regression algorithms [28],
namely, forest regression (RF), Gradient Boosting Regressor (GBR), kneighbor regressor
(KN), extraboost tree (ET) and xgboost (XGB). These regression algorithms were determined
from a simple linear relationship according to:

yi = a0 + a1x1 + a2x2 + . . . + anxn, i = 1, 2, . . . n, (1)

where yi is the target or predicting value, ai is the regression coefficient automatically
calculated by an ML algorithm, and xi is the features or descriptors for representing the
character of materials. The algorithm which showed the best performance was selected.

Two metrics were used to evaluate the model’s accuracy, i.e., (1) the coefficient of
determination (R2) and (2) the root mean squared error (RMSE). The R2 was determined by:

R2 = 1 − SSE
SST

, (2)

where
SSE = ∑n

i=1{yi − ŷi}2,

and
SST = ∑n

i=1{yi − y,}2

and the RMSE was determined by:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (3)

where yi, ŷi, and y are defined as experimental, predicted, and average target value or ZT.
The features or descriptors that are important to the model were exposed automatically

via the function method from the regression model. Additionally, before bringing the model
to use, a final step was to validate the model by Leave One Out Cross Validation (LOOCV).
Finally, we used our ML model to predict the ZT value of the BiCuSeO compounds doped
at the Bi site (Bi1-xAxCuSeO, where A is the dopant and x was set to 0.02). To discover a
candidate to maximize the ZT value, the dopant (element A) was not in the original datasets
and could possibly be done by experiments. Converting the materials into the numerical
feature vectors benefits thermoelectric material researchers to build the ML model and
discover new candidate material with the only chemical formula.

In the next section, we presented the results for improving the ML model step-by-
step until obtaining the desirable ML model. The processes along with the thermoelectric
principle of BiCuSeO material were discussed.

3. Results and Discussions

Firstly, the data of BiCuSeO research reporting ZT values were extracted from literature
(a total of 264 datasets). Then, the ML model was constructed using CBFV to generate 154
features from the chemical formula. Due to relatively small datasets compared to other
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ML research in materials science [11], several regression algorithms were employed. The
algorithm which showed the best performance was selected.

The results from the ML model are plotted in Figure 2. The x-axis is the experimental
ZT, referring to the reported ZT values extracted from the literature. The y-axis is called the
‘predicted ZT’, the ZT values predicted from the ML model based on the exact chemical
formula of BiCuSeO compounds. All related features (a total of 154 features) were included
in the model. The orange circles represent data from the training set, whereas the blue
squares refer to data from the test set. The dotted line plotted as a guide-to-eyes is an
ideal line when the predicted value perfectly matches the experiment. We evaluated the
accuracy of the model using two metrics: (1) the coefficient of determination (R2), and (2)
the root mean squared error (RMSE). R2 accounts for how well the model can capture the
correlation between the features and the ZT value, whereas RMSE is used to evaluate the
model accuracy regarding the error from prediction. The perfect fit would result in the R2

of 1 and RMSE of 0.

Figure 2. The plot of the Predicted ZT versus the Experimental ZT from the ML model using ET
regressor. The total datasets of 264 datasets were used, resulting in the R2 of 0.57 and the RMSE
of 0.13.

Figure 2 shows the R2 of 0.57 and the RMSE of 0.13 from the test set. The R2 value
is relatively low, implying that the model is not very accurate. The model inaccuracy
lies in the original data from the experiment database. The reported ZT values of the
pristine BiCuSeO from several research groups varied significantly. For example, Farooq
et al. reported the ZT of 0.25 [29], but Yang et al. reported the ZT of 0.42 [30] for the
same compound (BiCuSeO). These points are explicitly shown in Figure 2, where the
orange squares line up horizontally at the ‘predicted ZT’ around 0.3. The discrepancy
was due to the experimental details, such as processing parameters, microstructures, etc.,
which strongly affect the ML performance because the ML models were trained with the
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features that were extracted from chemical formulas only. The variations from experimental
parameters were not included in the ML model, resulting in the model’s inaccuracy.

To improve the model’s accuracy, we had to eliminate the experimental dependent
variables. To do that, we normalized the experimental ZT by the ZT of the pristine
BiCuSeO from each publication. For instance, Farooq et a. reported the ZT of BiCuSeO
and Bi0.99Cd0.01CuSeO of 0.25 and 0.43 [29], while Yang reported the ZT of BiCuSeO and
Bi0.98Pb0.02CuSeO of 0.42 and 0.66 [30]. By normalizing, the ‘experimental ZTnormalized’
of Farooq’s BiCuSeO and Bi0.8Cd0.2CuSeO became 1.0 and 1.72, whereas ‘experimental
ZTnormalized’ of Yang’s BiCuSeO and BiCu0.8Zn0.2SeO were 1.0 and 1.57. The normalization

can be determined as ZTnormalized =
ZTdoped

ZTundoped
. In other words, by using this process, the

‘experimental ZTnormalized’ of the pristine BiCuSeO from any publication was turned into
unity. The ‘experimental ZTnormalized’ of the doped BiCuSeO thus indicated the ratio of
improvement between the doped BiCuSeO and the pristine BiCuSeO. The ML model was
then reconstructed such that the ZT was only related to the chemical formulas, and other
experimental dependent variables were eliminated.

The results from the ML model after normalizing all 264 datasets are presented in
Figure 3, with the R2 of 0.78 and RMSE of 1.48 for the test set. The R2 of 0.78 in Figure 3 is
larger than the R2 of 0.57 in Figure 2, indicating the improvement of the model’s accuracy.
However, the higher RMSE (1.48) in Figure 3 compared to Figure 2 (RMSE = 0.13) does
not mean that its prediction’s error is worse. In fact, it is incorrect to compare the RMSE
between the two figures because the data ranges are not the same. The scales in both axes
in Figure 2 range between 0 and 1.2, whereas Figure 3 ranges from 0 to 20.0. Hence, it is
expected that the RMSE in Figure 3 tends to be higher.

Although the R2 for the ML model in Figure 3 is relatively high, there are still outliers
that deviated from the ideal line, for instance, the orange square and the blue circle on
the right of the figure, leading to the reduction of R2. This situation occurred even when
the selected features in the model were already optimized. Therefore, we tried improving
our ML model further by analyzing the original datasets. We found that the outliers and
inaccuracy of the model could be from the different doping sites in the BiCuSeO compound.
In general, doping elements in BiCuSeO is done by substituting atoms at different sites,
written in a chemical formula Bi1-xAxCu1-yBySe1-zCzO1-wDw, where A, B, C, and D are
dopants. Sometimes, dual dopings were done at one or more sites. The purpose of doping
in each site is different, such as lowering thermal conductivity, bandgap engineering, and
tuning electrical transport properties [17]. We assumed that our ML model could not
capture the pattern from the data including all variations. Therefore, we analyzed the data
and grouped the datasets into a few sub-groups. The major sub-group (145datasets) was
the BiCuSeO compound doped at the Bi site (Figure 1), for instance, Bi0.98K0.02CuSeO [31].
This group is vital from the thermoelectric perspective. The BiCuSeO structure consists
of two layers: the conducting (Cu2Se2)2− layers and the insulating (Bi2O3)2+ layers. The
electrical transport pathway is mainly limited to the Cu2Se2 layers, whereas the Bi2O2
layers behave as a charge reservoir [32]. Thus, doping at the Bi site provides extra charge
carriers for thermoelectric power factor tuning without interrupting the carrier transport.
Therefore, the ML was reconstructed based on these datasets.

Figure 4 shows the results from the ML model based on 144 datasets for the Bi-doped
BiCuSeO. The R2 was considerably increased to 0.89, with the RMSE of 0.40, indicating the
improvement of the model’s accuracy. However, decreasing the amount of data and using
many features (154 features) could lead to overfitting, which means the model shows high
performance on the training dataset but low performance on the test set [33]. To address
the issue, we exported the features or descriptors representing the material characteristics
from our ML model and ranked them according to their importance to the model. There
were a total of 154 generated features, but the first 30 important features are shown in
Figure 5. We then optimized the ML model by including only the important features. We
have tried including the first 3, the first 6, the first 9 . . . and so on important features in the
model. The best-performance model was obtained when the first 12 important features (as
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highlighted in Figure 5) were used. Figure 6 shows the results from such a model, with
the R2 of 0.93 and the RMSE of 0.33 for the test set, an improvement in accuracy from the
model in Figure 4. If one compared the model in Figure 6 to the primitive model in Figure 2,
the accuracy performance increased >63%. However, before bringing the model to use, the
generalization of the model was carried out via Leave One Out Cross Validation (LOOCV).
This method is appropriate, particularly for small-size datasets [5]. The validation resulted
in the RMSE of 0.71 for the training dataset, which means that the predicted ZTnormalized
values from the model have an error of ±0.71.

Figure 3. The plot of the Predicted ZTnormalized versus the Experimental ZTnormalized from the ML
model using RF regressor. The total datasets of 264 datasets were used, resulting in the R2 of 0.78 and
the RMSE of 1.48.
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Figure 4. The plot of the Predicted ZTnormalized versus the Experimental ZTnormalized from the ML
model using ET regressor. The total dataset of 145 datasets was used, resulting in the R2 of 0.89 and
the RMSE of 0.40.

The physical meaning of the important features in Figure 5 is worth discussing. The
most important feature is the min_NUnfilled. The prefix min refers to the minimum
number of the element’s properties obtained from Magpie software, whereas the NUnfilled
accounts for the total number of unfilled electrons in electronic shells (s, p, d, f). For
example, the NUnfilled of He is 0 from its electronic configuration (1s2), whereas the
electronic configuration of Na is 1s2 2s2 2p6 3s1 resulting in the NUnfilled of 1. In the case
of the BiCuSeO compound, the NUnfilled of Bi, Cu, Se, and O is 3, 1, 2, and 2, respectively,
and hence, the min_NUnfilled of BiCuSeO is 1, according to the minimum NUnfilled of
Cu. For the doped compound, such as Bi0.94Mg0.03Pb0.03CuSeO, the min_NUnfilled of
this compound is 0 because the NUnfilled of Mg equals 0. By using Pearson correlation
analysis, it was found that the lower the min_NUnfilled, the higher the ZTnormalized. The
lowest min_NUnfilled (0) was found in the BiCuSeO doped with, for example, Mg, Ca, Sr,
Ba. These elements are divalent ions (Mg2+, Ca2+, Sr2+, Ba2+). When they were substituted
for Bi3+, an extra +1 charge was generated for charge neutralization. This extra charge
increased the carrier concentration of the BiCuSeO system, leading to optimization of power
factors [17,34,35]. Therefore, it is reasonable for min_NUnfilled to be the most important
feature for our ML model.
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Figure 5. Exported features from the ML model, ranked according to their importance. The first
12 features are: 1. min_NUnfilled = minimum of total number of unfilled valence orbitals of the
elements in the material (Bi1-xAxCuSeO), 2. range_SpaceGroupNumber = range of space group of
T= 0 K ground state structure of the elements, 3. max_ SpaceGroupNumber = maximum of space
group of T = 0 K ground state structure of the elements, 4. dev_Row = deviation of row on periodic
table of the elements, 5. sum_NfValence = summation of number of filled f valence orbitals of
the elements, 6. dev_NValence = deviation of total number of valence electrons of the elements, 7.
min_Electronegativity = minimum of Pauling electronegativity of the elements, 8. avg_NfValence =
average of number of filled f valence orbitals of the elements, 9. range_Electronegativity = range of
Pauling electronegativity of the elements, 10. range_NUnfilled = range of total number of unfilled
valence orbitals of the elements, 11. sum_GSvolume_pa = DFT volume per atom of T = 0 K ground
state, 12. max_NpUnfilled = maximum of number of unfilled p valence orbitals of the elements.
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Figure 6. The plot of the Predicted ZTnormalized versus the Experimental ZTnormalized from the ML
model using ET regressor. The total dataset of 145 datasets was used with the first 12 important
features, resulting in the R2 of 0.93 and the RMSE of 0.33.

Finally, we used the optimized ML model to predict ZTnormalized of the doped BiCuSeO
at Bi-site (Bi1-xAxCuSeO, where A is the dopant and x = 0.02). We selected some elements
that were not already in the model datasets, and such elements could be synthesized exper-
imentally. Figure 7 shows the predicted ZTnormalized value for some candidate materials.
The highest ZTnormalized belongs to the Si-doped compound, which is reasonably justified.
It was reported that doping light elements at the Bi-site in BiCuSeO could promote carrier
mobility from the decreased carrier scattering [36]. Since Si can be considered as a light
element, doping Si for Bi is likely to promote carrier mobility and increase ZT. Moreover,
the DFT simulation of the Si doping at Bi-site showed the increased electrical conductivity,
with a slight decrease in the Seebeck coefficient, from the modified electronic band near the
Femi level, resulting in a large power factor. On the other hand, the Cl-doped compound
exhibited the lowest ZTnormalized value from the model. This result is understandable. The
previous experiment reported that doping Cl at Se-site negatively affected the ZT value, by
increasing both electrical resistivity and thermal conductivity [37]. Thus, Cl is unlikely to
be a good candidate for doping in BiCuSeO.
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Figure 7. Predicted ZTnormalized values for the selected Bi0.98A0.02CuSeO compounds, where A is the
dopant shown in the y-axis.

The step-by-step development of the ML model with improving performance was
presented. It was used to guide a new candidate material for enhancing ZT value. However,
the limited data from experiments was an obstacle to constructing the accurate ML model.
Apart from that, it was also found that training the ML model requires both good and bad
results. Generally, most published articles reported only good results (large ZT), but in fact,
various data (positive or negative results) are necessary to improve the ML model.

4. Conclusions

We have developed the ML model for predicting the thermoelectric Figure-of-Merit
(ZT) of the BiCuSeO compounds. The model was improved step-by-step to achieve rela-
tively high accuracy. The ML initially showed a relatively low R2 of 0.57. We then improved
the model’s accuracy by normalizing the experimental ZT of the doped BiCuSeO with the
pristine BiCuSeO. The modified ML model showed improved accuracy with an R2 of 0.78.
Furthermore, we selected the data for the BiCuSeO doped at Bi-site only and reconstructed
the model. The R2 increased to 0.89, indicating the enhanced model’s accuracy. Last but not
least, only 12 important features were used in the model, which resulted in the increased
R2 to 0.93 and the RMSE of 0.33. Furthermore, the most important feature, min_NUnfilled,
was discussed and correlated to the physical parameters of materials. The model predicted
the substantial ZT improvement for the Si-doped BiCuSeO material, which is scientifically
sound from the thermoelectric principle. Therefore, the ML model of this work can provide
a guideline for experimental researchers for improving the thermoelectric properties of
BiCuSeO and can be extended to other thermoelectric materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15030779/s1, Table S1: The sources of literature data, showing
the dopants, the substitution sites, and the references.
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and Yacouba Kassouri 4

1 Department of Physics, University of Medical Sciences, Ondo 351104, Nigeria; logundele@unimed.edu.ng
2 Department of Mathematical and Computer Science, University of Medical Sciences, Ondo 351104, Nigeria
3 Faculty of Economics and Business, Institute of Applied Economic Sciences, University of Debrecen,

H-4032 Debrecen, Hungary; mohannad.alobid@econ.unideb.hu (M.A.); istvan.szucs@econ.unideb.hu (I.S.)
4 Department of Economics and Finance, Nisantasi University, Istanbul 25370, Turkey;

yacouba.kassouri@nisantasi.edu.tr
* Correspondence: ookunlola@unimed.edu.ng

Abstract: In Nigeria, the high dependence on fossil fuels for energy generation and utilization in
various sectors of the economy has resulted in the emission of a large quantity of carbon dioxide
(CO2), which is one of the criteria gaseous pollutants that is frequently encountered in the environ-
ment. The high quantity of CO2 has adverse implications on human health and serious damaging
effects on the environment. In this study, multi-decade (1971–2014) CO2-emissions data for Nigeria
were obtained from the World Development Indicator (WDI). The data were disaggregated into
various emission sources: gaseous fuel consumption (GFC), liquid fuel consumption (LFC), solid fuel
consumption (SFC), transport (TRA), electricity and heat production (EHP), residential buildings and
commercial and public services (RSCPS), manufacturing industries and construction (MINC), and
other sectors excluding residential buildings and commercial and public services (OSEC). The analy-
sis was conducted for a sectorial trend using a rank-based non-parametric modified Mann–Kendall
(MK) statistical approach and a change point detection method. The results showed that the CO2

emissions from TRA were significantly high, followed by LFC. The GFC, LFC, EHP, and OSEC had
a positive Sen’s slope, while SFC, TRA, and MINC had a negative Sen’s slope. The trend analysis
indicated multiple changes for TRA and OSEC, while other sources had a change point at a particular
year. These results are useful for knowledge of CO2-emission sources in Nigeria and for future
understanding of the trend of its emission for proper environmental planning. The severe effects of
CO2 on the atmospheric environment of Nigeria may be worsened in the future due to some major
sources such as transportation services and electricity generation that are inevitable for enviable
standard of living in an urban setting.

Keywords: CO2; emission sources; WDI data; trend analysis; Mann-Kendall

1. Introduction

Globally, carbon dioxide (CO2) is one of the common environmental pollutants, and
it accounts for more than 70% of the greenhouse effects. It also has varieties of adverse
effects on human health and environmental implications [1]. It affects the amount of solar
radiation that penetrates through the atmosphere and reaches the surface of the earth
as well as outgoing radiation from the surface of Earth. The potential atmospheric and
ecological implications of CO2, among others, consist in global warming, irregular rainfall
pattern, over-flooding, extreme weather phenomena, sea-level rises, alterations in crop
growth, and disruptions to aquatic water systems. The excessive accumulation of CO2 in
the atmosphere alters the atmospheric radiation budget either by the absorption or emission
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of heat [2]. The human activities that contribute to the atmospheric CO2 are agriculture,
urbanization, deforestation, mining, transportation, fuel combustion, waste disposal, and
burning. Apart from anthropogenic activities, the atmospheric concentration of CO2 could
also be increased from natural emission sources such as organic decomposition, ocean
release, and volcanic eruption in the regions of the world that are prone to tectonic activity,
although in a small quantity compared to that emitted from human activities.

The increasing economic activities and technological advancement in the developed
and developing countries has greatly boosted economic growth and development, leading
to the setting of industries and diversification in industrial activities. In Nigeria, the eco-
nomic activities cover industrial, manufacturing, agricultural, financial, educational, and
tourist sectors. These sectors heavily and solely depend on petroleum and petrochemical
resources as the primary sources of energy for effective operations and existence of the
sectors due to an epileptic power supply from the natural grid. Despite the contribution of
economic activities to gross domestic product (GDP), each sector remains a potential source
of CO2 emissions into the atmosphere. Apart from these, the Nigerian population had
increased tremendously in the past few decades. The United Nations reported Nigeria as
Africa’s most-populous country with about 60% growth from 1990 to 2008 and 170 million
people as of 2012. It is projected to reach 0.5–1 billion people by the early 21 century [3].
Other anthropogenic activities such as deforestation, bush burning, and transportation
could also increase CO2) in the atmosphere. The oil and gas sector also emits a large
quantity of CO2 due to gas flaring, illegal refinery, illegal oil refining, frequent pipeline
explosions, gas leakage, and venting. Industrial processes such as petroleum-processing
refinery, smelting, cement industry, and mining contribute significantly to the atmospheric
load of CO2. In urban centres, road transportation has been reported to be a major source
that contributes about one-fifth of the total CO2 emissions [4,5]. The International Energy
Agency [6] found road transportation as a whole to be responsible for 20% of CO2 emission.
In the residential area, most houses rely on kerosene, fuel wood, generators for domes-
tic purposes, cooking, lighting of rural and urban household bulbs, and other electrical
appliances where power supplies and distribution are often inconsistent and unreliable.
The industries also depend on diesel-powered backup generators for production activities
as an alternative to the epileptic power supply [7]. Open burning is a common practice
in the urban areas where the waste disposal and management are poorly organised. This
contributes to a significant amount of CO2 emissions into the atmosphere.

A large number of studies have been conducted on CO2 emissions globally by em-
ploying different statistical tools in developed and developing countries. Most studies
ascertained both local and global atmospheric implications of CO2 and reported energy
consumption due to economic growth and development as the main reason for increased
CO2 concentration in the atmosphere. This might be due to the fact that trend analysis
requires long-time-period data of several decades, which were not available by the real-time
measurement in most studies. Short monitoring periods and a small sample size could not
be used for trend analysis due to difficulty in identification of rates of change as well as
their interpretations. Moreover, the historical to present-day CO2 emissions sources and
distribution among different sectors of the economy are scarce. The analysis of multidecade
and historical CO2 emissions data are of paramount scientific and practical relevance in the
prediction of a country’s economic development and as well in developing a framework for
its emission-reduction strategies to safeguard human health and to sustain environmental
quality [8].

The monitoring of CO2 is highly imperative as it forms the basis of data collection
for decision making, regulatory purposes, and future forecasting. However, very few
studies have been reported on continuous measurements of CO2 concentrations. Despite
the fact that several studies have reported various emission sources of CO2 at both local
and regional levels, the monitoring periods in most studies are short, yielding a small data
size. The inconsistency in data-collection procedures also posed a difficulty in obtaining
CO2 emissions data. These drawbacks are overcome in this study by employing secondary
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emissions data collected by an international monitoring organisation. Therefore, this study
models CO2 emissions from various sectors in Nigeria using data sourced from the World
Bank database.

Previous studies on the trend analysis of CO2 emissions were conducted in advanced
and emerging countries [9–14]. For instance, [10] found evidence for statistically significant
trends in CO2 emissions of the following countries, namely, India, South Korea, the Islamic
Republic of Iran, Mexico, Australia, Indonesia, Saudi Arabia, Brazil, South Africa, Taiwan,
and Turkey, including the world total. The authors concluded that projections for CO2
emissions are influenced by several factors, including fuel consumption types, economic
growth rates, and political initiatives. In the case of CO2 emissions from car travel in Great
Britain, [11] found that, although CO2 emissions continued to increase, the growth rate
became substantially lower in the beginning of the 2000s. [12] demonstrated that based
on a medium GDP growth rate for 2015–2030 under a business-as-usual scenario, the CO2
emission trends of China’s primary aluminium industry could increase by 60%. By looking
at sectoral CO2 emissions in 41 world regions, [2] found that CO2 emissions will continue
to increase in the construction sectors in all countries. Based on the survey of the available
studies, little or no consideration has been given to a natural-resource-rich country like
Nigeria. To the best of our knowledge, this is the first study exploring the possible trends
and tipping point in CO2 emissions across different sectors in an oil-dependent developing
country. This study departs from the former studies and attempts to fill several gaps in
the existing literature in at least two points. First, our study contributes to the growing
literature on the determinants of CO2 emissions by examining trends and the tipping point
in CO2 emissions in order to find out the sector contributing the most to environmental
pollution in the study area. Secondly, it is well established that CO2 emissions are not
globally uniform across different sectors [15]. The consideration of CO2 emissions by
sectors could provide new insights on future development and sustainable management of
CO2 emissions across economic sectors.

Parametric and non-parametric statistical tests are some of the approaches used to
detect trends of environmental data such as hydrological and hydrometerological data.
Parametric tests had been considered to be more powerful, but their main drawback is
that the data must be independent, identical, and normally distributed [16]. These are
rarely true in environmental data. The non-parametric test overcomes this limitation in
its approach via Mann-Kendall trend analysis [8,16–20]. Therefore, this study employed
World Development Indicator (WDI) data to conduct the trend analysis of CO2 emissions
from different sources and sectors in Nigeria using a non-parametric Mann-Kendall test.
The research questions driving the study were: is there a presence of monotonic trend in
the disaggregated CO2 emission data? what is the magnitude of the trend change? and
what is the change point of the trend in each of the CO2 emissions data? The remainder of
the article is structured as follows: Section 2 discusses the methodology; Section 3 presents
statistical tools employed to answer the research questions put forward in the study; results,
discussion, and policy implications are presented in Sections 4 and 5 has the conclusion.

2. Methodology

2.1. Source of Data and Coverage

This study was conducted in Nigeria, a country in sub-Saharan Africa with per capita
CO2 emissions of around 2.8 tonnes. CO2 emissions data in the country were sourced from
the World Development Indicators of 2018 with respect to sources and sectors. Detailed
information on the selected sources and sectors is presented in Table 1. Based on the
available information, the study used data from 1971 to 2014 indicating a total of 44 data
points for each of the variables. Recent period could not be incorporated due to availability
of the data.
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Table 1. Variable Description.

Variable ID Description. CO2 Emissions from:

GFC Gaseous fuel consumption (% of total)

LFC Liquid fuel consumption (% of total)

SFC Solid fuel consumption (% of total)

TRA Transport (% of total fuel combustion)

EHP Electricity and heat production, total (% of total fuel combustion)

RBCPS Residential buildings and commercial and public services (% of total fuel
combustion)

MINC Manufacturing industries and construction (% of total fuel combustion)

OSEC Other sectors, excluding residential buildings and commercial and public
services (% of total fuel combustion)

Source: World Development Indicator (WDI), 2018.

2.2. The Mann-Kendall Test

The Mann-Kendall (MK) test is rank-based non-parametric statistical method that is
used to determine the monotonic upward or downward trend of a time series and long-
term data in predicting the future outcome by using historical records [8,21]. The basic
assumptions of the MK test are that a value can always be declared less than, greater than,
or equal to another value; that data are independent; and that the distribution of data
remain constant in either the original or transformed units [17]. The MK test had been used
widely by several researchers most especially in climatological, hydrological, visibility, and
air-pollution studies [12,13,19,20,22–24]. In this study, the MK test was applied to CO2
emissions data based on its invariance to data transformation and wide application in
environmental studies. Briefly, the fundamental equations for calculating Mann-Kendall
statistics S, V(s), and standardized test statistics Z are as follows [17,25,26]:

S =
n−1

∑
i=1

n

∑
j=i+1

sig(Xj − Xi) (1)

here i = 2, 3,. . . n; j = 1, 2,. . . i − 1 and

sig(Xj − Xi) =

⎧⎨⎩
+1i f (Xj − Xi) > 0
0i f (Xj − Xi) = 0
−1i f (Xj − Xi) < 0

(2)

A normal approximation to the Mann-Kendall test with variance V(s) is given as:

V(s) =
1

18

[
n(n − 1)(2n + 5)−

q

∑
p=i

tp(tp − 1)(2tp + 5)

]
(3)

here p = 2, 3, . . . q, tp is the number of ties for the pth value, and q is the number of tied values.

Z =

⎧⎪⎪⎨⎪⎪⎩
S−1√
VAR(S)

i f S > 0

0i f S = 0
S+1√
VAR(S)

i f S < 0
(4)

where Xi and Xj are the time series data in the chronological order, n is the length of the
time series, tp is the number of ties for pth values, and q is the number of tied values. A
positive Z value implies an upward trend in the data series, while a negative value indicates
a downward trend. Additionally, if |Z| > Z

1−α/2
, (Ho) is rejected. This shows the presence
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of a statistically significant upward or downward monotonic trend in the data series. The
critical value of Z

1−α/2
for an alpha level of 0.05 from the standard normal table is 1.96.

To reach this objective, the first step is to identify the major sectoral pattern of emission
contributions to the total atmospheric CO2 load. The magnitude of the trend is estimated
by Sen’s slope approach, which is the slope interpreted as a change in measurement per
change in time.

Q′ =
xt′ − xj

t′ − t
(5)

Q
′

is the slope between data points x
′
t and xt, which are the data measurement at time

t
′

and xi. The Sen’s slope estimator is simply given by the median slope:

β =

⎧⎨⎩
Q N+1

2

′, Nisodd

1
2

(
Q

′
N
2
+ Q

′
N+2

2

)
, Niseven (6)

N is the number of calculated slopes. A positive value of β indicates an increasing
trend, and a negative value indicates a decreasing trend in the time series data.

Peculiar features of time series data, which can affect the results of the MK test, are
the presence of seasonality patterns and serial autocorrelation [25]. However, significant
serial correlation present in time series data can be accounted for by using the modified MK
test via a non-parametric block bootstrap technique, which incorporates the Mann-Kendall
trend test [21,27]. The block bootstrap is a powerful approach in the presence of series that
are serially autocorrelated [28,29]. This technique uses the predetermined block lengths in
resampling the original time series, thus retaining the memory structure of the data. If the
value of the test statistic falls in the tails of the empirical bootstrapped distribution, there is
likely a trend in the data.

The existence of seasonality patterns and serial autocorrelation in the time series data
was checked by plotting the autocorrelation coefficients against lags (correlogram). The
autocorrelation coefficients for lag were calculated as follows [24,25].

rk =
∑n−k

i=1

[(
xi −

−
x−
)(

xi+k −
−

x+
)]

[
∑n=k

i=1

(
xi −

−
x−
)2]1/2[

∑n=k
i=k+1

(
xi −

−
x−
)2]1/2

(7)

3. Statistical Analysis

The variables were summarised using descriptive statistics and one-way analysis
of variance, while preliminary time series analysis was done using a time plot and the
autocorrelation function (ACF) to detect patterns, seasonality, and serial autocorrelation.
Each of the research questions were answered using the block bootstrap Mann-Kendall test,
Sen’s slope, a sequential plot, and the signed Wilcoxon test. All analysis was carried out in
the R statistical software package with a concentration on the modifiedmk, trend change,
and Wilcoxon functions

4. Results, Discussion, and Policy Implications

The descriptive statistics of the variables are presented in Table 2. It showed that
CO2 emissions from the transport (TRA) sector were significantly higher than those from
other channels, while emissions from liquid fuel consumption (LFC)and electricity with
heat production (EHP)were next to it in the rank with the former greater than the latter.
In addition, CO2 from gaseous fuel (GFC), manufacturing industries and construction
(MINC), as well as residential buildings and commercial and public services (RBCPS) were
statistically different from each other. However, no statistical significance was found in the
CO2 emissions from solid fuel consumption (SFC) and other sectors, excluding residential
buildings and commercial and public services (OSEC). The time plot of the series presented
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in Figure 1 showed that the series have a sinusoidal pattern with a significant peak and a
trough at different periods indicating likelihood of the trend. The autocorrelation function
(ACF) of each variable is depicted in the Figures 2 and 3. The vertical line (a “spike”) on
the graphs corresponds to each lag, while the height of each spike showed the value of
the autocorrelation function for the lag. The spike that rises above or below the dashed
lines indicated statistically significant autocorrelation at that lag. The occurrence of spikes
above and below the dashed line of the ACF plot in the variables considered in the study
clearly revealed the presence of serial autocorrelation. As earlier noted, the presence of
serial autocorrelation posed a serious setback for the traditional Mann-Kendall test, and
this can result in the detection of a false trend. One of the robust methods that account
for serial autocorrelation in Mann-Kendall test is the block-bootstrapped Mann-Kendall
Test (BBMKT). Hence, this resampling and modified version of MKT was used to calculate
the test statistic for each of the variables. The number of bootstrapped simulations and
the block length used for the test were 2000 and 5, respectively. The result of the test is
presented in Table 3. The table shows the Z-value, the S-value, the Sen’s slope, and the
change period, which indicated the BBMKT test-statistic value, the direction of the trend,
the magnitude of the trend, and the period in the series where the direction of the trend was
reversed. Consequently, the null hypothesis that there is no existence of a monotonic trend
in GFC, SFC, EHP, RBCPS, and MINC data cannot be rejected at 5% level of significance
in that the absolute values of the test statistic in these variables were greater than 1.960.
However, the presence of a monotonic trend in the CO2 emissions from LFC, TRA, and
OSEC cannot be ascertained at a 5% level. In terms of the direction of the trend, the positive
value of the S-statistic for GFC, LFC, EHP, and OSEC indicated that these variables had
an upward trend during the period under consideration, while emissions from SFC, TRA,
RBCPS, and MINC had a downward trend. The rate of change in the trend as depicted by
Sen’s slope revealed that GFC, LFC, EHP, and OSEC increased annually by 63.2%, 39.6%,
47.0%, and 6.5%, respectively, while the annual rate of decline in emissions form SFC,
TRA, RBCPS, and MINC were estimated to be 2.3%, 11.9%, 24.1%, and 21.8%, respectively.
Figure 4 presented the sequential trend-change-detection plot. The point of intersection
of the prograde and the retrograde on each plot marked the change point. The probable
change point for GFC, LFC, and EHP were detected to be 1986, 1975, and 1987, respectively
while that of SFC, RBCPS, and MINC were 1982, 2004, and 1984, respectively. However,
the plots of TRA and OSEC intersected at several locations because there were no clear
trends in them. In summary, a statistically significant monotonic trend was found in the
GFC, SFC, EHP, RBCPS, and MINC data. The rates of increase in emissions from GFC
and EHP were found to be 63.2% and 47.0%, respectively. This indicated that emissions
from GFC accounted for about 57.4% of the increment due to it and EHP. Additionally,
emissions from SFC, RBCPS, and MINC had reduced over the period under consideration
with 2.3%, 24.1%, and 21.8%, respectively. This indicated that emissions from RBCPS and
MINC were 10 and 9 times more likely to reduce when compared with the rate of reduction
in SFC, respectively.

Table 2. Descriptive statistics of the disaggregated emissions data.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

GFC 44 16.540 d 9.721 1.091 8.390 23.443 34.411
LFC 44 43.371 b 19.251 15.518 32.507 57.404 76.819
SFC 44 0.436 g 0.537 0.009 0.088 0.471 2.071
TRA 44 47.935 a 5.060 35.389 43.818 52.239 56.305
EHP 44 27.540 c 6.718 13.587 22.983 32.363 39.062

RBCPS 44 9.853 f 4.088 2.465 6.577 12.171 17.292
MINC 44 11.493 e 3.410 4.250 9.611 13.972 18.430
OSEC 44 3.191 g 2.979 0.028 1.453 4.065 11.406

The supercrpts indicates significant difference at 5% level with a > b > c > d > e > f > g. Mean separation was done
by Duncan Multiple Range Test (DMRT).
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Figure 1. Time plot of CO2 emissions data.

Table 3. Modified Mann-Kendall analysis results.

Variable Z-Value S-Value Sen’s Slope Change Period

GFC 6.423 636 0.632 1986

LFC 1.224 122 0.396 1975

SFC −5.795 −574 −0.023 1982

TRA −1.912 −190 −0.119 Multiple

EHP 6.908 684 0.470 1987

RBCPS −5.229 −518 −0.241 2004

MINC −5.836 −578 −0.218 1984

OSEC 1.588 158 0.065 Multiple
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Figure 3. Autocorrelation function of CO2 emissions data.
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Figure 4. Sequential trend-change-detection plot.

The subject of trend detection in CO2 emissions data has received a great deal of
attention lately, especially in connection with the anticipated changes in global climate [30].
The Mann-Kendall approach used in our study allowed us to detect different trend types
not only monotonically but also non-monotically. The simulation results indicate the
significance of monotonic trends in CO2 emissions from gaseous fuel consumption, solid
fuel consumption, electricity and heat production, residential buildings, and manufacturing
industries and construction sectors. Based on these findings, one may claim that controlling
carbon emissions from the aforementioned sectors mainly depends on monitoring the
inherent monotonic trends. As a result, the forecasting exercise of CO2 emissions trends in
these sectors can be improved based on information about the monotonic trends of CO2
emissions. However, the presence of non-monotonic trends in CO2 emissions stemming
from liquid fuel consumption, the transport sector, and other sectors excluding residential
buildings make it difficult to predict the future trends of CO2 emissions based on the
dynamics of CO2 emissions in these sectors. This is partly due to the complex structure
of CO2 emissions in these sectors [30–34]. By looking at the direction of the trends, we
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observed that GFC, LFC, EHP, and OSEC displayed an upward trend with annual rates of
63.2%, 39.6%, 47.0%, and 6.5%, respectively. Governments should improve energy efficiency
in the gas fuel consumption sector, the liquid fuel consumption sector, fuel combustion
from other sectors, and electricity and heat-production sectors and should save energy by
converting the current raw fuel sources from heavy to light oil, promoting research and
development activities of low-carbon fuels, particularly those with fuel consumption. This
will reverse the current positive trend observed in fuel consumption. Another key finding
is that the annual rate of decline in emissions from SFC, TRA, RBCPS, and MINC were
estimated to be 2.3%, 11.9%, 24.1%, and 21.8%, respectively. Despite evidence of decreasing
trends, it is important to indicate that the rate of decrease is relatively lower compared
to the annual increasing rate of GFC, LFC, EHP, and OSEC. This indicates that further
efforts are required to formulate appropriate incentives to increase energy conservation
and reduce emissions from SFC, TRA, RBCPS, and MINC—for example, by creating a fuel
standard for public transport and particular vehicles.

5. Conclusions

The study focused on the trend analysis of carbon dioxide emissions, which was
disaggregated into various components based on the sources and sectors of the economy
generating them. The modified Mann-Kendall test, which corrects for the presence of
a seasonal effect via block bootstrap was used to study the likelihood of a monotonic
trend as well as its direction, magnitude, and change point in the dataset. Based on the
results, gaseous fuel, solid fuel, liquid fuel, etc. all showed an upward trend and breaks
at various periods covered in the study. However, no specific break can be established in
emissions from transportation. The conclusion from the study suggests that CO2 emissions
from various sectors have maintained an upward trend and this portends serious health
implications and environmental hazards. This most-dangerous and prevalent greenhouse
gas is the major cause of climate change, which results in food-supply disruptions, extreme
water, and increased wildfires, as well as respiratory diseases through smog and air pollu-
tion. An industrialized country like Nigeria needs an enhanced Carbon-Dioxide Emissions
Reduction Strategy (CDERS) to reverse the growth rate. This underscores the fact that all
human activities that trigger this leading greenhouse gas have to be discouraged. It is also
paramount to note that there are few or no sectors of the economy globally that do not
contribute to greenhouse gas production. Ranging from manufacturing to agriculture to
transportation to power production and so on, all release greenhouse gases to the atmo-
sphere, and reduction in all emissions can be achieved through advanced practices that
deviate from fossils fuels. Another potent dimension of CDERS is the use of technologies
that decrease greenhouse gas emissions, and this includes swapping fossil fuels for renew-
able sources, boosting energy efficiency, and discouraging carbon emissions by putting
a price on them. Bearing in mind sustainable development, the improvement in energy
efficiency and a workable energy supply system with low or no CO2 is imperative. The
results of this study create a scenario for a better understanding of CO2 emissions in Nigeria
as well as the knowledge of emission trends. As part of CO2-reduction measures, there is
a need for development of a framework for emissions control, proper ecosystem balance,
utilization of greenbelts, and the development of control measures for the mitigation of
anthropogenic CO2 emissions. The energy-efficiency strategies and conservation practices
should also be considered for future CO2 emission reduction.
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Abstract: Offshore sites show greater potential for wind energy utilization than most onshore sites.
When planning an offshore wind power farm, the speed of offshore wind is used to estimate various
operation parameters, such as the power output, extreme wind load, and fatigue load. Accurate
speed prediction is crucial to the running of wind power farms and the security of smart grids. Unlike
onshore wind, offshore wind has the characteristics of random, intermittent, and chaotic, which will
cause the time series of wind speeds to have strong nonlinearity. It will bring greater difficulties
to offshore wind speed predictions, which traditional recurrent neural networks cannot deal with
for lacking in long-term dependency. An offshore wind speed prediction method is proposed by
using a clockwork recurrent network (CWRNN). In a CWRNN model, the hidden layer is subdivided
into several parts and each part is allocated a different clock speed. Under the mechanism, the long-
term dependency of the recurrent neural network can be easily addressed, which can furthermore
effectively solve the problem of strong nonlinearity in offshore speed winds. The experiments are
performed by using the actual data of two different offshore sites located in the Caribbean Sea and
one onshore site located in the interior of the United States, to verify the performance of the model.
The results show that the prediction model achieves significant accuracy improvement.

Keywords: clockwork recurrent network; offshore site; strong nonlinearity; wind speed prediction

1. Introduction

With the increasingly severe global climate problem, the sustainability of traditional
fossil fuels is facing huge challenges, and the development of renewable energy (RE) is
becoming inevitable [1]. RE, including wind energy, geothermal energy, and solar energy,
cannot only reduce carbon emissions, but also achieve sustainable development [2,3]. As
one form of RE, wind energy is widely used around the world on account of its wide
distribution, huge reserves, and environmental friendliness [4]. At the same time, wind
power is also one of the most commercially viable and dynamic RE sources due to its low
cost and permanent nature. On account of its relatively mature technology and commercial
conditions for large-scale development, wind energy has been the fastest growing energy
source in recent years. [5]. According to the data from the Global Wind Energy Council,
global wind power is accelerating its deployment, driven by the carbon-neutral trend. The
latest data show that the total global wind power bidding volume in the first quarter of
2021 is 6970 MW, 1.6 times that of the same period last year [6].

However, wind energy resources are susceptible to environmental changes, such as
geography, climate, and seasons. It brings great difficulties to wind power utilization. In
addition, the ecological problem with wind power is that it may disturb birds. Therefore,
accurate offshore wind speed prediction is of great help to the development of wind power.
However, there are still some factors that affect the prediction accuracy, among which
the major challenge is historical data. Regrettably, potential offshore sites have not had
enough records of wind speed for various reasons in the past. Consequently, it is a major
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technical challenge for risk assessment using only short-term records of historical wind
speed data. Nevertheless, unlike onshore wind, offshore wind has the characteristics
of random, intermittent, and chaotic, which will cause the time series of wind speeds
to have strong nonlinearity [7], inevitably bringing greater difficulties to offshore wind
speed predictions.

Within past studies, scholars have proposed various wind speed prediction methods.
There are three main categories, including physical models, statistical models, and machine
learning models. Physical models make predictions by monitoring the terrain, climate,
and other factors. Among the physical models, numerical weather prediction (NWP) is
a commonly used model that simulates physical interactions in the atmosphere based
on conservation equations (kinetic energy, potential energy, and mass) [8,9]. However,
different locations and fields bring about variability in the NWP models and their model
resolutions. The resolution of the model data seriously affects the prediction accuracy
and the datasets are hard to obtain [10]. Statistical models mainly use historical data to
make predictions. The commonly used statistical models are Gaussian process regression
(GPR) [11,12], autoregressive (AR) [13], autoregressive moving average (ARMA) [14],
autoregressive integral moving average (ARIMA) [15], and seasonal ARIMA [16]. However,
when the nonlinear characteristics are prominent, the prediction performance of these
models decreases significantly [17]. Comparatively, machine learning is often performed
to predict wind speed because of its ability to fit stronger nonlinearity, which includes the
multi-layer perceptron (MLP) [18], back propagation neural network (BPNN) [19], radial
basis function neural network (RBFNN) [20], support vector machine (SVM)/support
vector regression (SVR) [21–26], echo state network [27], deep belief networks [28], and
convolutional neural network (CNN) [29]. However, these models still have various
problems in their application, such as getting stuck in local optimum solutions, overfitting,
and low convergence rates.

Recently, the recurrent neural network (RNN) is proposed to model sequential data
or time series data [30]. RNN, as a type of artificial neural network that uses a simple
but elegant mechanism, addresses the drawback of vanilla neural networks and keeps
the characteristic of the autoregressive model. It brings to RNN the ability to solve the
nonlinear problem of time series data. Therefore, RNNs achieve great performances when
modeling sequential data and have become one of the most valuable breakthroughs in deep
learning model preparation in recent decades. Meanwhile, many studies on wind speed
prediction have emerged in recent years, which use RNN models [30,31] or hybrid RNN
models [32–36]. At the same time, researchers constantly optimized the network structure
of the RNN to improve its performance. Several new models based on RNNs, such as
long and short term memory networks (LSTMs) [37–48], bidirectional LSTM (BiLSTM) [49],
gated recurrent units (GRUs) [50], clockwork recurrent neural networks (CWRNNs) [51],
and dilated recurrent neural networks (DRNNs) [52], have been proposed to solve problems
of RNN, including vanishing gradients and the long-term dependency, and improve the
performance of RNNs.

CWRNN, which adopts a special mechanism to solve problems of simple RNNs
and contains an even smaller number of parameters than simple RNNs, was proposed
in 2014 [53]. CWRNN breaks up neurons in the hidden layer into different parts, and
neurons in the same part work at a given clock speed. At the same time, only a few parts
are activated. It makes CWRNN have a certain memory mechanism that can solve the long-
term dependency problem. Additionally, it has shown better performances than common
RNNs and even LSTM in various tasks. Xie et al. applied CWRNN to muscle perimysium
segmentation. They utilized CWRNN to handle biomedical data, and experiment results
show that CWRNN outperforms the other machine learning models [54]. Feng et al.
used CWRNN to estimate the state-of-charge of lithium batteries and showed that this
method achieves impressive results [51]. Lin et al. proposed a trajectory generation method
for unmanned vehicles based on CWRNN. The performance of the CWRNN method
is verified by experiments. The study also compared CWRNN with LSTM in several
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metrics [55]. Achanta et al. investigated CWRNN for statistical parametric speech synthesis.
The experimental results show that the architecture of the CWRNN is equivalent to the
RNN with LI units, and outperforms the RNN with dense initialization and LI units [56].
Presently, the methods based on CWRNN have been used in various fields, such as speech
recognition and stock prediction [57]. As far as we know, it has not been used in wind
speed prediction.

To solve the strong nonlinear problem and achieve a higher prediction accuracy, an
offshore wind speed prediction method is proposed, which is based on the CWRNN. In
the proposed method, the hidden layer is subdivided into several parts and each part is
allocated a different clock speed. Under the mechanism, the long-term dependency of
RNNs can be easily addressed. The trained CWRNN model can output an instantaneous
prediction for data from the previous sampling step. The experiments are performed to
validate the performance of the model by the actual wind speed data of two different
offshore sites and one onshore site.

The main contributions of this study are as follows:

• An offshore wind speed prediction method is proposed based on the CWRNN. Com-
pared with the other RNNs, the CWRNN adopts a special mechanism to solve long-
term dependency. The experiments prove that the method can effectively solve the
problem of strong nonlinearity in offshore wind speed, and improve the prediction
accuracy by over 38% in terms of the different kinds of evaluation criteria compared
with simple RNNs.

• The method fully exploits the ability of RNNs to solve nonlinear problems with time
series data. Compared with the traditional machine learning models, the proposed
method keeps the characteristics of the autoregressive model, which improves the
performance in prediction accuracy.

• Hyperparameters, such as the number of network parts that are the key influencing
factors of the model, and the different part periods are thoroughly analyzed, which
seriously affect the performance of predicting the offshore wind speed.

The rest of the paper is organized as follows: Section 2 introduces the related theory;
Section 3 describes the overall implementation process of this method; Section 4 presents
the experiment results; the results are discussed in Section 5; and Section 6 summarizes the
whole paper.

2. Theoretical Background

There is an inherent concept of sequential data that incrementally progresses over time.
As we all know, traditional neural networks (NNs) are good at solving nonlinear problems
and perform well in most cases. However, they lack the inherent trend for the persistence
of sequential data. For example, a simple feedforward NN cannot really understand the
meaning of a sentence according to the order of input data in the context. The RNNs settle
the shortcomings of the original NNs with an ingenious mechanism, which gives them the
advantage in time modeling. This section provides a brief overview of the RNN, LSTM,
and CWRNN.

2.1. RNN

RNN is a specific NN that is designed to model sequential data or time- series data.
The principle of RNN is to feed the output of the previous layer back to the input of the
next layer, which gives RNN the ability to predict the output of the layer. In the RNN,
the neurons in different layers of the NN are compressed into a single layer, as shown in
Figure 1.
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Figure 1. The structure of a simple RNN.

As seen in Figure 1, at time t, the input is a combination of the input at t and the
output at a previous time, t − 1. This feedback mechanism improves the output of the time
step t. The calculation formula for output yO

t at time step t is:

yH
t = fH

(
WH ·yH

t−1 + UI ·xt

)
(1)

yO
t = fO

(
WO·yH

t−1

)
(2)

where WH , UI ,WO are the weight matrices of the hidden layers, input layer, and output
layer; xt is defined as the input vector at t; and yH

t and yH
t−1 are defined as the hidden

neurons at different times. fH(·) and fO(·) are defined as different activation functions.
Here, the biases of the neurons are omitted.

RNNs must use a context when making predictions and, in this case, must also learn
the required context. The shortcoming of the RNN is that, when training the model, the
gradient can easily vanish or explode, which is mainly because of the lack of long-term
dependency. Researchers proposed some techniques to solve the problems, such as LSTM,
which uses a gate mechanism.

2.2. LSTM

LSTM, as a special type of RNN, can keep long-term information from the input
sequence, which makes up for the difficulties of RNN in learning long-term information,
and solves the problems of RNN gradient disappearance and gradient explosion. The
framework of the LSTM unit is shown in Figure 2. LSTM and RNN have the same chain
structures, but their repeating modules are different. Unlike the repeating module in a
standard RNN that contains a single layer, LSTM has multiple layers of neurons. These
neurons constitute the forgetting gate, the input gate, and the output gate of LSTM. The
status updates and output updates for the three gates are described below.

Figure 2. The structure of LSTM.
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Forgetting gate: this gate control unit determines how much information the cell state
discards. The status update, ft, of the forgetting gate at the time, t, is as follows:

ft = fO

(
Wf ·yH

t−1 + U f
I ·xt

)
(3)

where Wf is defined as the weight matrix of the forgetting gate, and U f
I is defined as the

weight matrix between the hidden layer of the forgetting gate and the input layer.
Input gate: this gate control unit determines to what extent the input information, xt,

at the current moment is added to the memory cell stream. The status update, it, of the
input gate is as follows:

it = fO

(
Wi·yH

t−1 + Ui
I ·xt

)
(4)

where Wi is defined as the weight matrix of the input gate, and Ui
I is the weight matrix

between the hidden layer of the input gate and the input layer.
After the work of the input gate and the forgetting gate is completed, the state of the

memory cells, ct, is updated as follows:

c̃t = fH

(
Wc·yH

t−1 + Uc
I ·xt

)
(5)

ct = ft·ct−1 + it·c̃t (6)

where Wc represents the weight matrix of the memory cells, and Uc
I is the weight matrix

between the hidden layer of the memory cells and the input layer.
Output gate: after the internal memory cell state is updated, the output gate controls

how much memory can be used in the network update at the next moment. The state
update, ot, of the output gate at the time, t, is as follows:

ot = fO

(
Wo·yH

t−1 + Uo
I ·xt

)
(7)

where Wo is defined as the weight matrix of the output gate; Uo
I is the weight matrix between

the hidden layer of the output gate and the input layer; and bo represents the offset.
Finally, the network output at moment t is:

yH
t = ot· fH(ct) (8)

yO
t = fO

(
WO·yH

t

)
(9)

To alleviate the gradient exploding and vanishing problems, an LSTM block that
embeds three gates into the hidden neurons of the RNN is generally applied to process the
time series data, and achieves a good result in most cases. It is easier to understand that the
complex network structure increases the stability and ability of the model. However, it also
makes the network computationally more expensive. Meanwhile, the performance of the
complex deep learning neural network models, especially LSTMs, depends on the quantity
and diversity of the data.

2.3. CWRNN

The structure of the CWRNN is close to that of a simple RNN with three layers. The
difference between these two models is that the CWRNN divides the neurons of the hidden
layers into n parts; each part has a clock speed, Ti, where Ti ∈ {T1, T2, · · · , Tn}. Therefore,
each part handles the input data at a different frequency, as shown in Figure 3. The parts
with a long clock speed can handle long-term information, and the parts with a short clock
speed are used to handle the continuous information.

101



Energies 2022, 15, 751

Figure 3. The framework of the CWRNN.

WH and Wi are defined as the weight matrices of the hidden and input layers, respec-
tively, which are divided into n blocks. At the same time, WH is also an upper triangular
matrix, as shown in Figure 4. At any time step, t, only the related rows of the work parts WH
and Wi are activated. Then, the output vector, yH , was updated in the same way. The other
parts keep the output values unchanged. The update mechanism is shown in Figure 4.

Figure 4. Update process of the hidden units at t = 6.

WH =

⎛⎜⎝ WH1
...

WHn

⎞⎟⎠ Wi =

⎛⎜⎝ WI1
...

WIn

⎞⎟⎠ (10)

WHi =

{
WHi for (t MOD Ti) = 0
0 otherwise

(11)

Therefore, the parts with a long clock-speed handle the long-term information, and
the parts with a short clock-speed handle the continuous information. The two parts are
independent of each other and work well.

Having the same number of hidden neurons, the CWRNN processes much faster than
a simple RNN, because only the corresponding parts are updated at each step. In the case
of this exponential clock setting, when n > 4, the CWRNN can run faster than the RNN,
which has the same neurons [53].
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3. Framework of the Prediction Method

3.1. The Procedure

The framework of the proposed method is described in Figure 5. The procedure is
divided into four steps.

Figure 5. The procedure of the proposed method.

Step 1: data processing. Wind speed raw data are normalized to [0, 1] at first, then
preprocessed to the format required for the CWRNN model.

Step 2: model setting. The hyperparameters are set to fit the model, including the
hidden layer parts, length of series input, and number of neurons. The influence of these
hyperparameters will be discussed later, in detail.

Step 3: train model. For model training, we used a mini-batch stochastic gradient
descent and Adam optimizer to minimize the mean square error (MSE) for the prediction
vectors. The parameters can be trained through the back propagation of standard error.

Step 4: model test. Some prediction and evaluation indexes of the training model,
such as the mean absolute error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE), and coefficient of determination (R2), are performed to verify the
prediction performance.

3.2. Dataset

The experimental datasets are from three wind speed measure sites, among which two
are located offshore in the Virgin Islands, between the Atlantic Ocean and the Caribbean
Sea, and the other onshore site is located in Humeston, Iowa, U.S.A. [58,59]. This study first
conducts experiments on two offshore wind speed datasets to verify the proposed model, and
then conducts experiments on the onshore wind speeds to verify the generalization of the
model. Three data sets and their division in the model are described in Figure 6. The data are
collected from 2012–2014. The sampling period in the data set is 10 min and each dataset has
3000 points. Table 1 shows the data of the wind speed at three different locations. It depicts
the minimum, average, maximum, and standard deviation values (Stdev).
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Figure 6. Datasets of Site1, Site2, Site3, and the data segmentation method.

Table 1. Data statistics on the wind speed at the three locations.

Site
Metrics

Average(m/s) Maximum(m/s) Minimum(m/s) Stdev (m/s)

Site1 5.6655 11.7630 0.3600 2.0553
Site2 7.4647 14.4030 1.8014 1.7486
Site3 9.1397 17.4560 0.3870 3.3416

3.3. Evaluation Metrics

To quantitatively describe the performance of all the methods, four different indicators,
MAE, MAPE, RMSE, and R2, are used to analyze the results. The calculation formula of
each indicator is shown in Table 2. For all the formulas, yi is the true value, ŷi is the
predicted value, yi is the average of the samples, and N is the length of the samples.
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Table 2. Calculation formulas for the four evaluation indicators of the experiment.

Evaluation Metrics Equations

MAE MAE = 1
n

n
∑

i=1
|yi − ŷi|

MAPE MAPE = 1
N

N
∑

i=1

∣∣∣ yi−ŷi
yi

∣∣∣
RMSE RMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2

R2
R2 = 1 −

N
∑

i=1
(yi−ŷi)

2

N
∑

i=1
(yi−yi)

2

4. Results

The proposed method was programmed with Python using Tensorflow and Keras.
The following results and discussions were accomplished on a laptop computer with a
system of Windows 10, an Intel Core i5-1135G7 @2.40 GHz, and 16 GB of memory. The
source codes of the baseline models will be publicly available on the website [60].

4.1. Comparison with the RNNs

In reference [53], the CWRNN demonstrates that it outperforms both the RNN and
LSTM networks in the experiments. In this study, to verify the advantages of CWRNNs,
three other RNN models, including simple RNNs, LSTMs, and BiLSTMs, were used to
make offshore wind speed predictions. The same dataset was used to train and evaluate
the models. All the models have the same hyperparameters, which are shown in Table 3.
The prediction results are shown and described in Figure 7 and Table 4.

Table 3. The numerical metrics of the prediction results by CWRNNs and RNNs of Site1.

Hyperparameters
Settings

(All Models, including the RNN, LSTM, BiLSTM, and CWRNN, have
the Same Hyperparameters)

Input numbers 60
Hidden layers 1

Hidden neurons 200
Dense layers 1

Optimizer RMSprop
Learning rate 10-3

Epoch 200
Batch size 100

Figure 7. Comparison results of the proposed model with RNNs of Site1.
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Table 4. The numerical metrics of the prediction results by CWRNNs and RNNs of Site1.

Model Parameters
Run Times

(Mean Value of 10 Times)

Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

Simple RNN 40,601 128.3919 s 0.7207 10.8733 1.0116 0.5988
LSTM 161,801 743.7911 s 0.6222 8.5401 0.8304 0.7296

BiLSTM 323,601 1666.8021 s 0.5443 7.8204 0.7551 0.7764
CWRNN 40,801 77.7866 s 0.4572 6.7873 0.6566 0.8310

As shown in Figure 7, compared with the true data for Site1, the prediction curves
of all the RNNs are close to the real curve of the true wind speed data, which means they
have all captured the tendency of true wind speed. It relies on the powerful ability of
RNNs in a modeling time series. In contrast to other RNNs, the prediction curve of the
CWRNN appears to be closer to the real curve, which verifies that the CWRNN has a better
performance in solving strong nonlinear problems.

Table 4 lists the corresponding MAE, MAPE, RMSE, and R2 values. The indexes of
the RNN are the worst because the RNN cannot remember long-term dependency due
to the vanishing gradient. In comparison to the other RNNs, CWRNNs achieves great
accuracy, with lower MAE, MAPE, RMSE and higher R2. Furthermore, it can be observed
from Table 4 that the CWRNN almost has the same parameters as the simple RNN, but the
LSTM and BiLSTM have large parameters, which are computationally expensive; hence,
the LSTMs are slow, which is also shown in Table 5. In comparison to all the RNNs, the
CWRNN resulted in fewer runtimes because only parts were updated at every step.

Table 5. Average and standard deviation of prediction results by the CWRNNs and RNNs of Site1.

Model

Evaluation Metrics

MAE MAPE RMSE R2

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Simple
RNN 0.7207 0.0974 10.8733 1.5279 1.0116 0.0896 0.5988 0.0749

LSTM 0.6222 0.0539 8.5401 0.6652 0.8304 0.0715 0.7296 0.0492
BiLSTM 0.5443 0.0334 7.8204 0.5151 0.7551 0.0362 0.7764 0.0217
CWRNN 0.4572 0.0044 6.7873 0.0311 0.6566 0.0044 0.8310 0.0023

Table 5 shows the mean and standard deviation values of the metrics of the prediction
results. All the metrics data in the following figures are the average of 10 times.

As shown in Figure 8, compared with the true data of site2, the same conclusion as Site1
can be obtained. Compared with the other RNNs, the prediction curve of the CWRNN still
appears to be closer to the real curve, by which the performance of the CWRNN has been
verified again. These numerical results can also be obtained from Table 6. Compared with the
other RNNs, the CWRNN also achieves better accuracy, with a lower MAE, MAPE, and RMSE,
and a higher R2, which shows that the CWRNN can deal with strong nonlinear problems.

To verify the generalization of the proposed model, Site3, which is an onshore wind
power station, was selected for verification. Compared with the offshore sites, the wind
speed of Site3 changes more slowly, as is shown in Figure 9. From the figure, it can be
observed that the RNN is still the worst model among all the RNNs. The reason may be
that we set the same hyperparameters in the experiments, which included the input length.
The RNN has a poor ability in its long-term dependency. The numerical result in Table 7
also verifies the conclusion. The CWRNN continues to show the best prediction results
in both the onshore and offshore wind speed data, which verified that the CWRNN has a
better performance in wind speed predictions.
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Figure 8. Comparison results of the proposed model with the RNNs of Site2.

Table 6. The numerical metrics of the prediction results by the CWRNNs and RNNs of Site2.

Model
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

Simple RNN 0.6719 9.5407 0.8794 0.6362
LSTM 0.4952 6.3373 0.7256 0.7523

CWRNN 0.4430 5.8871 0.6799 0.7825

Figure 9. Comparison results of the proposed model with the RNNs of Site3.

Table 7. The numerical metrics of the prediction results by the CWRNNs and RNNs of Site3.

Model
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

Simple RNN 1.6685 22.5562 1.7986 0.5955
LSTM 0.4315 5.7073 0.7715 0.9288

CWRNN 0.3843 5.0672 0.6446 0.9480

The evaluation metrics of all three sites are recorded together, as shown in Figure 10.
It can be seen that the model achieves a better performance at all three sites, which means
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the proposed method has good generalization. Furthermore, Site3, which was an onshore
site, achieved the best performance out of all of the sites; its wind speed could be more
easily predicted in comparison to the other offshore sites.

Figure 10. Evaluation metrics of Site1, Site2, and Site3.

4.2. Comparison with the Traditional Neural Networks

In order to verify the powerful ability of CWRNNs for time series prediction, the
proposed method was compared with the traditional neural networks. In this experiment,
the MLP, BPNN, and CNN, as traditional neural networks that are powerful machine
learning models often used in different fields, were tested to perform the time series
prediction task. The results are shown and described in Figure 11 and Table 8.

Figure 11. Comparison results of the proposed model with traditional NNs.

Table 8. The numerical metrics of the prediction results by CWRNNs and traditional NNs.

Model
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

MLP 0.86 24.9 1.18 0.45
BPNN 0.53 7.99 0.76 0.78
CNN 0.61 8.58 0.79 0.76

CWRNN 0.46 6.79 0.66 0.83

It is obvious from the figure that MLP achieves the worst result. MLP, as a typical
simple NN, has shortcomings, such as a slow learning speed, easily falling into local
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extremum, and learning may not be sufficient. The result shows that MLP fails to learn
from the wind speed data. The results also show that BPNN and CNN have worse
performances in wind speed prediction. In most cases, BPNN and CNN have the powerful
ability to solve nonlinear problems. However, they are not good at dealing with time series.
Compared with the traditional neural networks, CWRNN appears to be more powerful in
time series processing. Table 8 shows the numerical metrics of the prediction results, which
further illustrates the above conclusion.

4.3. Comparison with Different Hyperparameters

There are many hyperparameters to set up a CWRNN model. Some hyperparameters
are shared by RNN models, such as hidden layer parts, hidden layer neurons, the number
of hidden layers, and the length of time series inputs. In essence, the CWRNN is a type of
RNN that has the same network framework and mechanism of the backward pass of the
error propagation. Therefore, the influence of the shared hyperparameters on the network
is roughly the same. However, the CWRNN has some unique hyperparameters. The
following experiments will focus on the specific parameters of CWRNNs.

4.3.1. Comparison with Different Part Numbers

The number of hidden layer parts is an important hyperparameter of the CWRNN,
which has a great impact on the performance of the model. In the experiment, by changing
the value of the hyperparameter, the influence on the accuracy of the model is evaluated.
By setting different numbers for the hidden layer parts and training the model, we then
used the evaluation metrics to evaluate the model’s accuracy. The number of parts was set
as (2, 4, 5), with all other parameters being the same.

The results are shown and described in Figure 12 and Table 9. From the results, we
find that the least number of parts has the worst accuracy. When the number of parts
increase to 4, we achieved the highest prediction accuracy. When the number raised to 5,
the accuracy was lower than 4 parts, and higher than 2 parts. However, at the same time,
the cost time of training the model significantly increased. Therefore, the value of four
parts was the best choice in this study.

Figure 12. Comparison results of the proposed model with different part numbers.

Table 9. The numerical metrics of the prediction results with different part numbers.

Part Number Values
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

2 [1,2] 0.4835 6.9156 0.686 0.8155
4 [1,2,4,8] 0.4572 6.7873 0.6566 0.8310
5 [1,2,4,8,16] 0.4719 6.8052 0.6725 0.8227
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4.3.2. Comparison with Different Part Periods

The part period is another hyperparameter that is unique to CWRNNs. The exponential
series is often used as the part period. However, some other functions can be used for the part
period, such as the linear function, Fibonacci function, logarithmic functions, or even fixed
random periods. Different part periods will cause the different performances of the model. In
this experiment, four different part periods were used to test the performance of the CWRNN.
All the hidden layer parts were set to 4 and the other parameters were the same.

The results are shown in Figure 13 and Table 10. The four part periods were the linear
series, odd series, triple series, and exponential series. Compared with the other series, the
part period using the exponential series resulted in the model achieving the best performance.
The result of the triple series shows great competitiveness, which means that the series gap
increases with the increase in the number of periods and is thus a better choice.

Figure 13. The results comparison of the proposed model with different part periods.

Table 10. The numerical metrics of the prediction results with different part periods.

Part Periods Values
Evaluation Metrics (Mean Value of 10 Times)

MAE MAPE RMSE R2

1 [1,2,3,4] 0.4948 7.0096 0.6973 0.8094
2 [1,3,9,27] 0.4655 6.7413 0.6673 0.8254
3 [1,3,5,7] 0.4806 6.9184 0.6822 0.8175
4 [1,2,4,8] 0.4572 6.7873 0.6566 0.8310

5. Discussion

An offshore wind speed prediction method using CWRNNs is proposed and is verified
by the wind speed dataset of offshore and onshore sites. The results are further discussed
and analyzed in the following contexts:

(1) As is commonly known, RNN is excellent at modeling sequential data with a simple
mechanism. However, with the increase in the dependency length, which means
more context is needed, the RNN cannot learn from the input data. There are some
techniques to improve the RNN. LSTM, which uses the gating mechanism, is proposed
to solve problems, including vanishing gradients and long dependency. It is easier to
understand that the complex network structure increases the model stability. However,
the performance of most machine learning models, especially complex deep learning
neural network models, depends on the quantity and diversity of the data. Naturally,
if a machine learning model has a lot of parameters, it needs a proportional number
of samples to perform well.

The CWRNN is another type of RNN, which breaks up the neurons in the hidden
layer into different parts, and the neurons in the same part work at a given clock speed
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to address long term dependency. The parameters of the CWRNN are close to the simple
RNN. This indicates that the CWRNN is more suitable for the case of a small sample size
than LSTM. Meanwhile, the CWRNN employs an ingenious mechanism for activating
neurons parts at different clock speeds, which can efficiently learn the long-term time series
information, thus solving strongly nonlinear problems. At the same time, the CWRNN
only updates neuron parts at a specific clock rate, which reduces the computation cost.

(2) There is an inherent concept of sequential data or time series data that incrementally
progresses over time. As we know, traditional NNs are good at solving the nonlinear
problem and perform well in most cases. However, they lack the inherent trend of
persistence for obtaining sequential data. A simple feedforward NN cannot really
understand the meaning of a sentence according to the order of input data in the context.
CNNs have been extremely successful in the computer vision field. However, they have
difficulties in dealing with time series data. The RNN, as a type of neural network,
keeps the characteristics of the autoregressive model, and also has the ability to model
sequential data. Furthermore, for the human neural system, the vision channel and the
memory channel are different channels that have different mechanisms.

Recently, the attention mechanism is one of the most valuable breakthroughs in deep
learning model preparation in the last few decades. Unlike the vanilla RNN approach,
it proposes to help monitor all the hidden states in the encoder sequence for making
predictions. It can assign the weight values to the extracted information to highlight the
important information that the attention mechanism seems to break the barriers between
the vision channel and memory channel. However, it still has a great number of parameters,
which also need a large number of sample data. For now, the CWRNN is a good choice to
solve strong nonlinear problems with limited samples.

(3) Hyperparameters can directly impact the performance of machine learning models.
Therefore, to achieve the best performance, the optimization of the hyperparame-
ters plays a crucial role. In addition to the common parameters of the RNNs, the
CWRNN has some unique parameters. The setting of these parameters requires a
complex parameter tuning process and the appropriate parameters will result in a
great improvement to its performance.

In this study, some unique parameters were discussed, which were based on the ex-
periment results. However, the common parameters of the RNNs still affect the model
performance. Considering the shared RNN parameters together with the intrinsic parameters
of the CWRNN will be a big project. Tuning these parameters requires further research.

6. Conclusions

This study proposes an offshore wind speed prediction method based on CWRNNs.
The CWRNN breaks up neurons in the hidden layer into different parts, and neurons
in the same part work at a given clock speed to address long term dependency, which
can effectively solve the problem of strong nonlinearity in offshore wind speed. The
performance of the proposed method is verified by three datasets from two different
offshore sites and one onshore site. The experimental results show that the proposed model
achieves a significant improvement in its prediction accuracy.
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Abstract: In this work, a new approach was developed for the detection of engine misfire based
on the long short-term memory recurrent neural network (LSTM RNN) using crank speed signal.
The datasets are acquired from a six-cylinder-inline, turbo-charged diesel engine. Previous works
investigated misfire detection in a limited range of engine running speed, running load or misfire
types. In this work, the misfire patterns consist of normal condition, six types of one-cylinder misfire
faults and fifteen types of two-cylinder misfire faults. All the misfire patterns are tested under wide
range of running conditions of the tested engine. The traditional misfire detection method is tested
on the datasets first, and the result show its limitation on high-speed low-load conditions. The LSTM
RNN is a type of artificial neural network which has the ability of considering both the current
input in-formation and the previous input information; hence it is helpful in extracting features of
crank speed in which the misfire-induced speed fluctuation will last one or a few cycles. In order
to select the engine operating conditions for network training properly, five data division strategies
are attempted. For the sake of acquiring high performance of designed network, four types of
network structure are tested. The results show that, utilizing the datasets in this work, the LSTM
RNN based algorithm can overcome the limitation at high-speed low-load conditions of traditional
misfire detection method. Moreover, the network which takes fixed segment of raw speed signal as
input and takes misfire or fault-free labels as output achieves the best performance with the misfire
diagnosis accuracy not less than 99.90%.

Keywords: engine misfire; pattern recognition; fault detection; LSTM; time-frequency analysis

1. Introduction

Engine misfire is a phenomenon of no-burning in cylinder which may be caused by
insufficient fuel injection, bad fuel quality, insufficient ignition energy, or mechanical failure,
etc. Since misfire fault will cause abnormal engine running condition and air pollution,
many researchers have been trying to put forward effective methods to achieve accurate
and real-time misfire detection.

The techniques for engine misfire detection can be categorized according to the utilized
sensor signals, which includes the method using engine body vibration signal [1], the
method using acoustic signal [2], the method analyzing exhaust gas temperature [3], the
method monitoring in-cylinder iron current [4], and the method using crank speed [5].
The method using engine body vibration signal could sample much information, since the
vibration signal is sampled with high resolution and is related to in-cylinder combustion.
However, a large amount of computation is required for processing vibration data. The
method using acoustic signal has not solved the problem of noise interference in practical
implementation. The method analyzing the temperature of exhaust gas is limited by the
sensor’s response time. The method monitoring in-cylinder iron current needs to modify
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the engine body. The method using crank speed has been adopted by many researchers,
since the crank speed can be sampled relatively easily and cannot be easily contaminated
by uncorrelated noise.

The misfire detection methods based on crank speed can be categorized into physical
model-based algorithms and data-driven diagnosis algorithms.

The model-based method is used to diagnose engine misfire by building the relation-
ship between crank speed and in-cylinder pressure based on the engine dynamic model.
Zheng et al. [5] designed a Luenberger sliding mode observer to estimate engine combus-
tion torque based on experimental crank speed of a four-cylinder engine. Rizvi et al. [6]
proposed a hybrid model for simulating the relationship between engine power and crank
speed fluctuations. Misfire was detected by using Markov chain. Helm et al. [7] estimated
engine torque based on a parametric Kalman filter. Misfire was detected by employing the
estimated torque and an interacting multiple model algorithm. Hmida et al. [8] proposed
the torsional model of crankshaft. The Lagrange method and Newmark algorithm were
employed to derive the equations of motion. The appearance of sidebands around the
acyclic frequency was adopted to detect misfire.

The model-based algorithm can lead to very accurate results if properly executed.
Nevertheless, the method needs precise engine model parameters which is hard to gauge
accurately. The damping is an example that cannot even be measured. Meanwhile, the
complexity of model-based algorithm may not permit the real time implementation of the
algorithm [9]. Therefore, this method has not been widely used in industrial application.

The data-driven diagnosis algorithms provide another way of misfire detection, in
which the misfire related characteristics are extracted directly from crank speed instead of
deriving the excitation torque or in-cylinder pressure. Misfire is detected by distinguishing
the misfire related characteristics from fault free. The representative data-driven method
is the engine roughness method which is proposed by Plapp et al. [10] and is still used
in modern vehicles. However, this method is limited on high-speed low-load conditions
when the number of engine cylinders is not less than six.

Another data-driven method is conducted by analyzing the typical frequencies of
crank speed. Taraza et al. [11] utilized the lowest three harmonic orders of crank speed
as an indicator for one-cylinder misfire detection. Geveci et al. [12] analyzed the first and
the second harmonic components of crank speed under normal and cylinder 1# misfire
conditions at various speeds and loads. This method is limited as well, since the speed
spectrum of two-cylinder misfire fault may be confused with one-cylinder misfire patterns.

Over the past about twenty years, machine learning algorithms developed rapidly and
have been exploited in misfire detection research field [13]. Compared with the algorithms
that one or some human-designed indicators are calculated for misfire detection, the
machine learning algorithm could extract more fault features from one signal or could
process many signals at the same time. Not only the crank speed, but also the engine
vibration and in-cylinder pressure have been used in the machine learning algorithm as
reported in the literature.

Li et al. [14] utilized the crank speed and the techniques including the empirical mode
decomposition, kernel independent component analysis, Wigner bispectrum and support
vector machine (SVM) for detecting misfire of a marine diesel engine. Chen and Randall [15]
designed a misfire detection method which consists of three stages: fault detection, fault
localization and fault severity identification. This method was achieved by using the
lowest four harmonic orders of crank speed and a fully connected artificial neural network
(ANN). Jung et al. [16] distinguish misfire and fault-free conditions using crank speed and
Kullback–Leibler divergence. SVM was utilized as the automatic classification tool. Gani
and Manzie [17] also employed the SVM technique and crank speed for classifying normal
condition, intermittent misfire and continuous misfire in cylinder 6# of engine. The accuracy
approached 100% in test dataset. In the work of Sharma et al. [18], the statistic features
of vibration signals, like standard deviation, kurtosis, median and so on, were selected as
fault features for misfire detection. The decision tree algorithm was employed for fault
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classification. As reported by Moosavian et al. [19], wavelet denoising technique, ANN,
least square support vector machine, and D–S evidence theory were applied for misfire
detection. The final classification accuracy of 98.56% was achieved by using acoustic and
vibration signal under idle condition. Gu et al. [20] utilized multivariate empirical mode
decomposition and SVM techniques for a twelve-cylinder diesel engine misfire detection.
Qin et al. [1] designed a deep twin convolutional neural network with multi-domain inputs
for misfire detection. Since the vibration signal was employed, the authors also studied
the algorithm’s performance when there was strong environmental noise on the vibration.
Jafarian et al. [21] employed vibration signals from four sensors placed on the engine
for misfire detection. The fast Fourier transform (FFT) was used for feature extraction;
the ANN, SVM, and k-nearest neighbor (kNN) algorithms were used for classification.
Liu et al. [22] took many signals, including engine speed, exhaust temperature, and fuel
consumption, as the inputs of ANN for misfire detection. Bahri et al. [23] detected misfire
of a homogeneous charge compression ignition engine by using in-cylinder pressure and
ANN model.

It can be seen that the mentioned data-driven diagnosis algorithms mainly focused on
the classical feature extraction methods, such as human-designed threshold, FFT, wavelet
transform and empirical mode decomposition, and traditional pattern recognition methods,
such as fully connected ANN and SVM. Thus, the algorithm performance often depends
on the proper selected features and the domain expertise in engine misfire. In addition,
the mentioned algorithms based on machine learning either mainly considered a few
engine speed and load conditions, or only considered a few one-cylinder misfire types. In
practice, the fault features would change with the engine running conditions or different
misfire types, and for a data-driven algorithm especially a machine learning algorithm, the
sample size is an important factor for the algorithm training. Therefore, there is still some
research work needs to do for applying the machine learning based algorithms into actual
industrial scenario.

Recurrent neural network (RNN) is a type of neural network which is good at process-
ing sequence data. Sequences may be of finite or countably infinite length, and may be
temporal or non-temporal. Examples of time-indexed data include the audio recordings
which are sampled at fixed intervals. In fact, RNNs are frequently applied to sequences
whose meaning are directly related to the data order but no explicit notion of time [24].
Engine crank speed is a type of sequence that the prior motion will affect the later motion.
For example, assuming the firing order of a six-cylinder engine is 1-5-3-6-2-4, if misfire
occurs in the first cylinder, not only the instantaneous speed variation of the first cylinder
changes, but also the fourth cylinder. Therefore, RNN is hopeful for misfire detection. For
the earlier RNN, it was difficult to handle the problems of vanishing and exploding gradient
that occurred when training RNN across many steps [25]. Therefore, in this paper, the
RNN with long short-term memory (LSTM) [26] which overcomes the training difficulties
is utilized.

Compared with misfire detection studies in literature, the main contribution of this
paper is as follows.

• A new misfire detection method that is based on LSTM RNN is proposed.
• Datasets for network training and testing are acquired in wide range of speed and

load conditions of the tested diesel engine, which ensures the diversity of datasets and
makes the network more applicable.

• For a six-cylinder engine, limited studies [12,16,22,27] have considered the detection
of two-cylinder misfire faults which include more misfire types and may disturb the
detection of one-cylinder misfire and even cause misdiagnosis. In this paper, besides
the one-cylinder misfire faults, all the fifteen two-cylinder misfire faults are considered
as well.

The rest of the paper is organized as follows. In Section 2, the experiment setup and
diesel engine rig tests are introduced. The speed characteristics under misfire and the
limitation of traditional misfire detection method are described in Section 3. The scheme
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of misfire diagnosis and the LSTM algorithm are introduced in Section 4. In Section 5, the
experimental results are analyzed and discussed. Finally, conclusions are given in Section 6.

2. Experimental Equipment and Data Acquisition

2.1. Test Rig Setup and Data Acquisition System

The test engine was a four-stroke, six-cylinder-inline diesel engine. In order to adjust
the fuel injection parameter conveniently, a diesel engine with electronic unit pump was
employed. In addition, with larger number of cylinders, an engine would operate steady,
so the fault features of misfire would become weaker relatively [28]. Thus, a six-cylinder
engine was selected. The basic technical data of engine is shown in Table 1. A hydraulic
dynamometer was connected to the engine for providing external load. A flexible shaft
coupling was mounted to connect the engine crank shaft and the dynamometer. Figure 1
shows the picture of the whole test-rig.

Table 1. Engine specifications.

Parameter Value

Engine type CY6BG332
Configuration Six-cylinder, inline, four-stroke
Air intake Turbocharged, intercooled
Firing order 1-5-3-6-2-4
Fuel injection system Electronic unit pump
Total displacement 5.95 L
Compression ratio 18.5
Rated power 88 kW @ 2200 r/min
Maximum torque 450 Nm @ 1000–1800 r/min

 

Figure 1. The test-rig.

A Kistler high-temperature pressure piezoelectric sensor, Type 6058A, was mounted in
cylinder 1# through the glow plug hole for verifying misfire occurrence in cylinder chamber.
A magnetic sensor, which was mounted opposite to the teeth on the flywheel was used
to measure the angular speed of the crankshaft. The sensors’ signals were synchronously
sampled and primarily processed using Siemens LMS SCM05 system with 24-bit ADC
resolution and a maximum sampling rate of 102.4 kHz.

2.2. Test Description

The measurements were conducted over the engine speed range 800–2200 r/min with
interval 100 r/min, at different load levels, as shown in Figure 2. For each engine speed
and load value, the measurements were operated under normal, one-cylinder misfire and
two-cylinder misfire conditions. The misfire types are shown in Table 2. Including normal
condition, the total fault types are 22. The misfire condition was achieved by setting the
injection parameter zero on the programmable electronic control unit.
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Figure 2. Engine operating conditions.

Table 2. All the misfire types.

Categories Misfire Types

Normal condition Fault-free
One-cylinder misfire 1#, 2#, 3#, 4#, 5#, 6#

Two-cylinder misfire
Two consecutive cylinders. 1#5#, 3#5#, 3#6#, 2#6#, 2#4#, 1#4#;
Two cylinders with one-cylinder interval. 1#3#, 5#6#, 2#3#, 4#6#, 1#2#, 4#5#;
Two cylinders with two-cylinder interval. 1#6#, 3#4#, 2#5#.

The tests were conducted in an intensive engine running speeds and loads, and varied
in a wide range. Partial data were used for network training and the rest were used for
network testing. The size of training dataset had been set from large to small until an
optimal size was achieved.

3. The Speed Characteristics under Misfire and the Limitation of Traditional Misfire
Detection Method

When misfire occurs, the instantaneous engine crankshaft speed will drop and the
subsequent speed will rise up compared with the normal conditions. The variation of the
whole speed curve will be larger. An example is shown in Figure 3a, under the running
condition of 1000 r/min and 100 Nm, when a misfire occurs in cylinder 1#, as the dash
curve indicates, the speed becomes different from the normal condition. When the engine
speed is high and the load is low, as shown in Figure 3b, the variation rule of instantaneous
crankshaft speed becomes unclear, and the difference between normal and misfire condition
also becomes indistinguishable. Moreover, when two-cylinder misfire occurs, the fault
features expressed from engine speed curve is easily confused with that of one-cylinder
misfire condition, especially under the high-speed and low-load conditions. Figure 4a,b
show the comparison between speed curves of one-cylinder misfire and two-cylinder misfire.

 
(a) (b) 

Figure 3. In-cylinder pressure and corresponding engine speed under normal and cylinder 1# misfire
conditions. (a) Under 1000 r/min and 100 Nm. (b) Under 1900 r/min and 100 Nm.
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(a) (b) 

Figure 4. Instantaneous engine speed comparison between cylinder 1# misfire and cylinders
1# and 2# misfire conditions. (a) Under 1900 r/min and 100 Nm. (b) Under 2000 r/min and no-
load condition.

Therefore, for detecting misfire accurately, the fault features that can reduce or elimi-
nate the interference from engine speed and load should be found. One way to eliminate
the impact of engine running range is to divide it into small blocks and then find fault
features for each block [27]. However, this will increase workload when the engine running
range is large. The better way is to find or design an algorithm that can extract useful
feature or can learn more features for the whole engine running conditions.

An example of the traditional methods which is called engine roughness method
is introduced as below. This method calculates a misfire indicator that is based on the
difference of two consecutive angular accelerations. Equation (1) presents the calculation
of the indicator [10].

Si = (Ti+1 − Ti)/T3
i (1)

where Si is engine roughness of the ith cylinder. Ti is the time period from ignition of the
ith cylinder to ignition of the next cylinder in firing order.

Figure 5 shows the results of indicator S under different engine speeds and different
misfire patterns. When misfire occurs in cylinder i, the corresponding Si will become larger
than the predefined threshold. An example is shown in Figure 5a, the threshold can be
defined in range 15–19, and when Si is detected larger than the threshold, it is thought
the misfire happened in the cylinder i. This method is limited at the high-speed low-load
conditions. As shown in Figure 5b, under 1900 r/min and no-load condition, it is hard
to determine the threshold, and the two-cylinder misfire modes are easily confused with
one-cylinder misfire modes.

The unsatisfied results appeared at high-speed and low-load conditions are caused
by the background noise which has approximately the same order of magnitude with the
value related to the misfire presence. The reasons for relatively higher background noise
are mainly from the different burning behaviors caused by the systematic nonuniformity.
In addition, with the speed increasing and load decreasing, the signal to noise ratio will
decrease since the useful features caused by misfire will decrease. Figure 6 presents the
standard deviation of crankshaft speed under 800 r/min and no-load conditions. The
standard deviation is calculated once per cycle, the points in Figure 6 which are shown
in the form of mean value and standard deviation are calculated from 200 cycles of data.
The results clearly show that when misfire occurs, the amplitude of speed variation will
increase, and this is helpful for extracting misfire features. However, when engine speed
becomes higher and load becomes lower, the amplitude of speed variation decreases,
and the amplitude difference between normal and misfire patterns also decreases, as
shown in Figure 7. Then, the signal to noise ratio decreases. The limitation of the engine
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roughness method proves that it is hard to use too few features to achieve a perfect fault
detection result.

Since LSTM RNN is good at learning features of sequences, the LSTM RNN is utilized
in this paper to detect misfire and to overcome the limitation of traditional algorithm.

 
(a) 

 
(b) 

Figure 5. Engine roughness under normal and misfire conditions. (a) Under 1200 r/min and no-load
condition. (b) Under 1900 r/min and no-load condition.
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Figure 6. Mean values and standard deviations of the standard deviation of crankshaft speed under
800 r/min and no-load condition with different misfire patterns. Manner 1 represents misfire of two
consecutive cylinders in firing order; manner 2 represents misfire of two cylinders with one-cylinder
interval; manner 3 represents misfire of two cylinders with two-cylinder interval.

Figure 7. Standard deviation of one cycle speed under different speeds and loads with different
misfire patterns. Fill areas mean error bars. Under each speed, the five points from left to right in a
curve represent the five loads which are no-load, 100 Nm, 150 Nm, 200 Nm and 250 Nm. Moreover,
manner 1, manner 2 and manner 3 have the same meaning with those in Figure 6.

4. The LSTM RNN

The classical artificial neural networks are design to extract features from datasets
whose sub-samples are independent with each other. In some application scenarios, like
natural language processing, the meaning of a whole sentence is dependent on the meaning
and order of the previous and later words. RNNs are designed to be applied in this kind
of research field. RNNs are connectionist models that capture the meaning of sequences
via cycles in the network. Basic architecture of an RNN is shown in Figure 8, which is an
unfold architecture.
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Figure 8. Basic architecture of an RNN module, showing shared parameters.

As presented in Figure 8, the forward pass of an RNN module looks the same as that
of a multi-layer perceptron which has a single hidden layer. The main difference is that the
activations of the hidden layer are from both the current input layer and the hidden layer
activations from the previous step, as described in Equation (2) [29]. Equation (3) calculates
the output value or vector. Thus, an RNN will map the input sequences into output.

h(t) = f
(

b + Wh(t−1) + Ux(t)
)

(2)

y(t) = Vh(t) (3)

where W, U and V are the weight matrices. b, x, h, f, and y donate the bias vector, input
vector, hidden layer vector, activation function and the output vector, respectively.

The classic RNN has the problem of a vanishing gradient [30]. In addition, sometimes
gradient explosion will also occur. This is because the error surface is either very flat or very
deep after updating weights in many time steps. This problem is also called the long-term
dependency problem. One effective way to solve this problem is using gating mechanism
to control the information passing path, such as LSTM.

LSTM RNN has the basic structure of RNN, which is a chain of repeating modules.
The main difference of an LSTM RNN from other RNNs is the structure of the module,
which is marked with shadow area in Figures 8 and 9. In a module of LSTM RNN, three
gates are designed to control the output.

Figure 9. LSTM schematic. I, input gate; II, forget gate; III, output gate.

The main line of an LSTM module is the calculations of input vector, cell state and
output, as indicated by the blue dot and arrow in Figure 9. First of all, the input vector
of LSTM module is acquired by concatenating the outputs of the previous module and
the current inputs. Secondly, two gates are designed to adjust the cell state. As shown
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in Figure 9, the input gate is applied to decide whether the current inputs will be used
to update the cell state. By the same principle, the forget gate is applied to adjust the
proportion of previous cell state in the current one. This makes an LSTM module have the
memory function. Then the cell state will be updated and stored for the LSTM module
of next step. Next, an output gate is designed to adjust the output of the updated cell
which has been rescaled by a tanh activation function firstly. Finally, the output will be
transported to the next layer and the next module.

Equations (4) and (5) show the calculation of new candidate vector c̃(t) and input
gate vector i(t); Equation (6) calculates the forget gate vector f (t); the cell state c(t) can be
updated by Equation (7); the output gate vector o(t) is calculated by Equation (8); and the
final output h(t) will be acquired by Equation (9) [24]. The output vectors of these three
gates are all the values between 1 and 0, which will make the outputs of corresponding
layer change from original value to 0.

c̃(t) = tanh
(

Wc · [h(t−1), x(t)] + bc

)
(4)

i(t) = sigmoid
(

Wi · [h(t−1), x(t)] + bi

)
(5)

f (t) = sigmoid
(

Wf · [h(t−1), x(t)] + b f

)
(6)

c(t) = f (t) ◦ c(t−1) + i(t) ◦ c̃(t) (7)

o(t) = sigmoid
(

Wo[h(t−1), x(t)] + bo

)
(8)

h(t) = o(t) ◦ tanh(c(t)) (9)

where sigmoid and tanh are activation functions. x(t) is the input vector from training
or testing dataset. h(t−1) and h(t) are the current and previous outputs of LSTM module,
respectively. [h(t−1), x(t)] means concatenating h(t−1) and x(t). bc, bi, b f , and bo are biases.
Wc, Wi, Wf , and Wo are weight matrices. ◦ means Hadamard product. When the network
is trained, bc, bi, b f , and bo are initialized with ones. For Wc, Wi, Wf , and Wo, each weight
matrix is the concatenation of two matrices which are corresponding to h(t−1) and x(t),
respectively; accordingly, the two parts of a weight matrix are initialized, respectively. In
this work, both the two parts of each weight are initialized as uniform distribution which is
shown in Equation (10) [31].

W ∼ U

[
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

]
(10)

where nj and nj+1 is the element number layer j and j + 1, respectively.
This is the key mechanism of LSTM RNN. The network training is also based on back

propagation through time (BPTT) strategy and gradient descent algorithm. Up to now,
there have been many types of variants on the LSTM, such as adding peephole connections,
using coupled forget and input gates, gated recurrent unit, depth gated RNNs and so on.
As reported in Greff’s work [32], the result of comparing these popular LSTM variants
shown that there were not significant differences among them. Therefore, the standard
LSTM RNN is adopted in this paper.

5. Signal Processing and Results Analysis

5.1. Network Training Strategy

The experiments have been described in Section 2.2. There are 70 different engine
running speeds and loads conditions in total. For each condition, 22 misfire types were
conducted. Under each fixed speed, load and misfire type condition, 200 cycles data were
sampled. Thus, the number of total datasets is 308,000 (22 × 70 × 200 = 308,000), and one
dataset corresponds to one engine power cycle which contains 120 speed data point.
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The datasets were acquired in a dense speed and load range. However, for industrial
application, it would be better to use small number of datasets to train a well-performed
neural network. Five division modes of training and testing datasets were attempted,
as described in Table 3. The arrangement of mode 1 will be attempted firstly, and if the
test result is higher than 90%, the rest arrangements will be tested. The arrangements of
modes 2_a, 2_b, 2_c, and 2_d are shown in Figure 10, in which the training datasets are
the conditions in shadow, the rest datasets are for testing. The arrangements in Figure 10a,
c will be attempted first, and if the test results are higher than 90%, the arrangements in
Figure 10b,d will be tested.

Table 3. Description of the training and testing datasets arrangement.

Description

Mode 1 All the datasets are arrange randomly, then 70% datasets are
chosen for network training and the rest for network testing.

Mode 2_a As shown in Figure 10a.
Mode 2_b As shown in Figure 10b.
Mode 2_c As shown in Figure 10c.
Mode 2_d As shown in Figure 10d.

 
(a) (b) 

 
(c) (d) 

Figure 10. Different arrangements of training and testing datasets. (a) Arranging training data
in 100 r/min interval. (b) Arranging training data in 200 r/min interval. (c) Arranging training
data in dense speed and load interval. (d) Arranging training data in sparse speed and load in-
terval. The engine running conditions in grey shadows are used for network training, the rest for
network testing.
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In order to achieve a better performance of the LSTM RNN, four different structures
of input layer and output layer have been tested.

i. The first structure takes the original speed sequence as input. As shown in Figure 11a,
one LSTM cell has one input element and one output element. For each engine cycle
there are 120 speed points, and 120 output elements correspondingly. The output
types are the normal and misfire types in Table 2.

ii. For the second structure, inputs are the same as those in the first structure. For each
cycle, there is only one output element at the last LSTM cell. As shown in Figure 11b,
when the 120 input elements have been calculated, one detection result will be output.
The output types are the normal and misfire types in Table 2.

iii. In the third structure, one LSTM cell processes 20 raw speed points which correspond
to the interval of ignition from one cylinder to the next. As shown in Figure 11c, the
output of one LSTM cell consists of two categories: normal and misfire, which is
different from those in the first and second structures.

iv. The inputs of the fourth structure are not the raw speed data, but the lowest 20 real
and 20 imaginary parts of the frequency-domain results of instantaneous speed, as
shown in Figure 11d. The output types are the normal and misfire types in Table 2.

 
(a) (b) 

 
(c) (d) 

Figure 11. Different types of LSTM RNNs utilized in this paper. (a) LSTM with sequence inputs and
sequence outputs. (b) LSTM with sequence inputs and last outputs. (c) LSTM with segment inputs
and sequence outputs. (d) LSTM with segment inputs and sequence outputs.

The basic parameters for these four types of networks are summarized in Table 4.
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Table 4. The basic parameters of networks utilized.

The 1st Network The 2nd Network The 3rd Network The 4th Network

Preprocessing None None None
Fourier
synchrosqueezed
transform

Input mode of LSTM Sequence Sequence Sequence Sequence
Input size 1 1 20 40
Dimensionality of LSTM cell state
(Number of hidden layer elements) 20 3, 5, 10, 20, 40, 80 3, 5, 10, 20, 40, 80 3, 5, 10, 20, 40, 80

Output mode of LSTM Sequence Last Sequence Sequence
Output size of fully connected layer 22 22 2 22

Postprocessing None None Combining per
cycle None

5.2. Results Analysis
5.2.1. The First Network Structure

For the first structure which is designed as Figure 11a, one input group consists of
10 datasets, that is 1200 (120 × 10) speed data points. One output group has the same
length with the corresponding input. The network consists of one input layer, one LSTM
layer, and one output layer. The initial learn rate is 0.01 and the learn rate drop period is 3.
The adaptive moment estimation method is adopted for network training. The number
of elements of hidden layer is 20. When the training and testing datasets are arranged as
mode 1, the final training and testing accuracies are 17.35% and 15.36%, respectively. Since
the accuracies are not high, no more tests are attempted.

5.2.2. The Second Network Structure

The second structure is designed as Figure 11b. One input group consists of one
dataset which is 120 speed data points. Only the last LSTM cell outputs prediction result.
The network consists of one input layer, one LSTM layer, and one output layer. The initial
learn rate, the learn rate drop period, and the training algorithm are the same as those in
the first structure.

When the training and testing datasets are arranged as mode 1 (described in Table 3),
the element numbers of LSTM layer, which are 3, 5, 10, 20, 40 and 80, have been tested. The
corresponding training and testing accuracies are drawn in Figure 12. It is thus clear that
when the training datasets are arranged as mode 1, 5 elements are enough for the network
training, and the corresponding training and testing accuracies are 99.23% and 99.20%.
Since the accuracies are very high, the datasets arranged in modes 2_a, 2_b, 2_c and 2_d
are tested and the results are shown in Figure 13. It can be seen that utilizing the training
datasets in a sparser manner, the acceptable performance can also be acquired. It seems
that with less training data, it will be easier to train a network that can achieve the accuracy
higher than 95%, such as the network trained in modes 2_b and 2_d.

5.2.3. The Third Network Structure

The third structure is designed as Figure 11c. One input layer consists of 20 elements
which correspond to the interval of one-cylinder working. The output of one LSTM
cell consists of two categories which are normal and misfire, and each LSTM cell has a
corresponding output. The output indicates whether the current powering cylinder is
fault-free. The initial learn rate, the learn rate drop period, and the training algorithm are
the same as those in the first method.

The training and testing datasets are arranged as Table 3. The training strategy is also
by changing the numbers of hidden layer elements, which are 3, 5, 10, 20, 40 and 80. The
training and testing results under mode 1 are summarized in Figure 14. The training and
testing results under modes 2_a, 2_b, 2_c, and 2_d are summarized in Figure 15. Since the
outputs are calculated for each cylinder, it is unable to compare the original results with
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other methods. Therefore, when we calculate the accuracy, the results for one cylinder are
converted to that for one cycle. The concrete method is to group every six consecutive
outputs from cylinder 1# and tag each group according to the fault cylinders. If three
or more fault cylinders are detected in one cycle, the result will be categorized as a fault
prediction. Compared with the second network structure, the third network structure has
higher accuracy with the same number of hidden layer elements. For most of the five data
division modes, 95% accuracy can be achieved with no more than 5 hidden layer elements.

Figure 12. Training and testing accuracies of the second network structure and division mode 1. The
cyan circle marks the accuracy that is more than 95% with the lowest hidden element number.

(a) (b) 

 
(c) (d) 

Figure 13. Training and testing accuracies of the second network structure. (a) Mode 2_a. (b) Mode
2_b. (c) Mode 2_c. (d) Mode 2_d. The cyan boxes mark the accuracies that are more than 95% with
the lowest number of hidden layer elements.
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Figure 14. Training and testing accuracies of the third network structure and data division mode 1. The
dark yellow circle marks the accuracy that is more than 95% with the lowest hidden element number.

 
(a) (b) 

 
(c) (d) 

Figure 15. Training and testing accuracies of the third network structure. (a) Mode 2_a. (b) Mode
2_b. (c) Mode 2_c. (d) Mode 2_d. The dark yellow circles mark the accuracies that are more than 95%
with the lowest number of hidden layer elements.

5.2.4. The Fourth Network Structure

The fourth structure is designed as Figure 11d. One input layer consists of 40 elements
which are the lowest 20 real and 20 imaginary parts of the frequency-domain results of the
speed signal. For the normalization of inputs, the 20 real parts and the 20 imaginary parts
are normalized, respectively. The frequency-domain results are acquired by transforming
the raw speed using Fourier synchrosqueezed transform algorithm [33]. As a type of
time-frequency analysis method, the Fourier synchrosqueezed transform algorithm could
acquire the instantaneous frequency-domain information more precisely than short-time
Fourier transform. This advantage is helpful for abstracting fault features from the speed
signal. Since there are 60 teeth of the flywheel, the sample rate is set as 60. The data length
of one cycle is 120, and the data length of 2’s power could achieve high computational
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speed; thus, the truncated data length is set as 128. A Kaiser window is utilized for reducing
spectral leakage. Considering that the output is in the manner of sequence which means
each LSTM cell has an output, the accuracy is calculated according to the last output of one
cycle. Figures 16 and 17 present the training and testing results using the fourth structure.

Figure 16. Training and testing accuracies of the fourth network structure and data division mode 1.
The purple circle marks the accuracy that is more than 95% with the lowest hidden element number.

 
(a) (b) 

 
(c) (d) 

Figure 17. Training and testing accuracies of the fourth network structure. (a) Mode 2_a. (b) Mode
2_b. (c) Mode 2_c. (d) Mode 2_d. The purple circles mark the accuracies that are more than 95% with
the lowest hidden element numbers.

Like the previous methods, the main variables are also the data division mode and the
number of hidden layer elements. The results show that it is easy to achieve high accuracies
which are more than 95% when the training data and testing data are arranged in mode 1.
However, when the data are arranged as modes 2_a, 2_b, 2_c and 2_d, 20 or more hidden
layer elements are needed for achieving 95% accuracy.
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5.2.5. Results Comparison

(a) Through the above analysis, it is known that it acceptable training and testing accura-
cies can be achieved by using LSTM RNN.

(b) Compared with other network structures, the first network structure cannot achieve a
satisfactory accuracy and is not studied further. The second, third and fourth network
structures can achieve an accuracy which is more than 95%.

(c) From the point of view of data division mode, under mode 1, the second, third and
fourth network structures can achieve accuracy more than 95%. The performance of
these three structures is good, since 10 hidden layer elements have made them meet
requirements and even 3 elements are enough for the third network. Under modes
2_a, 2_b, 2_c, and 2_d, the training and testing datasets are divided in the rule that
they have no intersection on engine speed and load conditions. Under these four
modes, even all the three methods could achieve accuracy more than 95%, to our
minds, the third method performed the best since it could reach 95% accuracy with
the least number of hidden layer elements.

(d) In addition, when we tested the third network on data division mode 2_d with 5
and 10 hidden layer elements, it was found that the testing accuracy was higher than
the training accuracy, as shown in Figure 15d. Taking the network structure with
10 hidden layer elements as an example, the confusion matrices are shown in Figure 18.
The main increase of testing accuracies is marked by red boxes. It can be seen that
many accuracies have increased to more than 95%. The increment may be caused by
the testing data that belongs to the same fault category with the training data, but
is sampled under different engine running speed or load. The network with 5 or
10 hidden layer elements just grasped the fault features of the training data unevenly.
Therefore, the increase of total accuracy can be seen as a random result. However, the
detection accuracy on the normal condition has decreased to 85%. Since the learning
ability of network is determined when the network structure is determined, if there
happened some excellent results on partial conditions, there must be some bad results
correspondingly. The difference between excellent and bad results may be big or
small, even the total accuracies are almost the same. In this case, the bad results
occurred on the normal conditions. The accuracy of 85% is unacceptable on one hand,
on the other hand, the misdiagnosis should be avoided on normal conditions since
the normal conditions are the most common conditions for a vehicle. The results also
indicate that both the total accuracy and the accuracy of each fault category should be
acceptable especially under the condition of large datasets.

(e) In industrial applications, the smaller training dataset would be better for reducing
workload for a calibration engineer. The best performance of the second, third and
fourth networks under modes 2_a, 2_b, 2_c, and 2_d are summarized in Table 5. These
accuracies are acquired with 40 or 80 hidden layer elements. By comparing the testing
accuracies, the third network performs the best. Nevertheless, the difference between
each network and each data division mode are not large. Both the training data
size and the testing accuracy are the factors we considered, thus the third networks
with data division mode 2_b and data division mode 2_c are recommended, and the
numbers of hidden layer elements are 80 both. For further analysis, the confusion
matrices of the training and testing results are drawn in Figures 19 and 20. Some
conclusions can be drawn as follows.

• It can be seen that the distribution of misdiagnosed results is scattered. The
number of most misdiagnosed results do not exceed 10.

• In Figure 19, the main misdiagnosis results occur on normal, cylinder 3# misfire,
cylinders 1# and 3# misfire, cylinders 4# and 5# misfire, and cylinders 4# and 6#
misfire conditions. In Figure 20, the main misdiagnosis results occur on normal,
cylinder 3# misfire, cylinders 4# and 5# misfire, and cylinders 4# and 6# misfire
conditions. The misdiagnosed results are related to the true results, for example,
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when misfire occurs in cylinder 3#, the predicted result is misfire in cylinders 3#
and 5#.

• The most common running condition for an engine is normal condition. By
observing the results in Figures 19 and 20, the worse misdiagnosed case is for
normal condition which is presented in Figure 19b. However, the detection
accuracy on this normal condition is 98.91% (8902 ÷ 9000 = 98.91%), which is a
relatively high detection accuracy. Meanwhile, since the network performs well
on the worst misdiagnosis case, it can be concluded that the detecting accuracy
for each type of fault is acceptable.

(a) 

(b) 

Figure 18. Training and testing results by using the third network and data division mode 2_d. (a)
Training result. Total accuracy is 97.40%. (b) Testing result. Total accuracy is 98.12%. The red boxes
mark the accuracies that increase more than 4%. The magenta boxes mark the accuracies that decrease
more than 4%.
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Table 5. The best accuracies for different networks under different data division modes.

Mode 2_a (%) Mode 2_b (%) Mode 2_c (%) Mode 2_d (%)

The second network 99.99 98.93 99.98 99.44 99.99 99.69 100 99.37
The third network 99.98 99.76 99.95 99.90 99.98 99.96 99.99 99.83
The fourth network 99.99 99.14 99.97 98.83 99.97 99.33 100 99.06

For each mode, the left column is training accuracy, the right column is testing accuracy.

(a) 

(b) 

Figure 19. Confusion matrices of the results acquired with the third network and data division mode
2_b. (a) Training result. Total accuracy is 99.95%. (b) Testing result. Total accuracy is 99.90%.
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(a) 

(b) 

Figure 20. Confusion matrices of the results acquired with the third network and data division mode
2_c. (a) Training result. Total accuracy is 99.98%. (b) Testing result. Total accuracy is 99.96%.

5.3. Comparison with Similar Research Efforts in the Literature

Table 6 provides a comparison of the results of this paper and some similar research
efforts in the literature. Considering different application demands, the researchers con-
ducted their studies on different types of engines. The main differences among these
research works are the selection of engine running speed, running load, misfire types and
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the fault detection algorithms. Although different research objects may lead to a different
performance of an algorithm, such as that the four-cylinder engine has more clear fault
features than the six-cylinder engine with the same displacement, the detection accuracy
will still prove the effectiveness of an algorithm. On the whole, the accuracies reported
in Table 6 are all relatively high, the comparison confirms the good performance of the
algorithm utilized in this paper. In addition, many misfire types have been tested in
this paper, which means more classification labels are needed for the algorithm, this also
proves the effectiveness of the LSTM RNN algorithm. From the point of view of machine
learning algorithm application, it is helpful for evaluating the network effectiveness if the
datasets for network training and testing are sampled under different engine speed or load
conditions. For example, if the network is trained on 1000 r/min and 1200 r/min, and it
performs well on 1100 r/min, it is reasonable to infer that the network will perform well on
1150 r/min; however, if both the network training and testing are conducted under
1000 r/min and 1200 r/min, it is hard to evaluate the network performance on 1100 r/min
or 1150 r/min. Compared with some research works in Table 6, the algorithm proposed
in this paper are tested on the engine running conditions that are different from those for
network training, which proves the feasibility of the algorithm.

Table 6. Comparison of our results with the similar works in the literature.

Similar Works Details

Qin et al. [1]

Engine type: four-cylinder diesel engine
Signal: vibration
Speed: 1300 r/min, 1800 r/min, 2200 r/min
Load (Nm): not mentioned
Misfire type: 1#, 2#, 3#, 4#, 1#2#, 2#3#, 2#4#
Methods: a deep twin convolutional neural network
Accuracy: >97.019%

Jafarian et al. [21]

Engine type: four-cylinder engine
Signal: vibration
Speed: 2000 r/min
Load (Nm): not mentioned
Misfire type: 1#, 2#, 1#2#
Methods: FFT for feature extraction; ANN, SVM, and kNN for
classification
Accuracy: >97%

Moosavian et al. [19]

Engine type: four-cylinder gasoline engine
Signal: vibration, sound
Speed: idle speed (867 r/min)
Load (Nm): no load
Misfire type: 1#, 2#
Methods: wavelet denoising, ANN, least square support vector machine,
Dempster–Shafer evidence
Accuracy: 98.56%

Jung et al. [16]

Engine type: six-cylinder engine
Signal: crank speed
Speed: 500–4500 r/min, (step is 500 r/min)
Load (Nm): not mentioned
Misfire type: 1#, 2#, 3#, 4#, 5#, 6#
Methods: model-based algorithm
Accuracy: no quantitative result. The algorithm performs well except low
load and speed conditions.
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Table 6. Cont.

Similar Works Details

Zheng et al. [5]

Engine type: four-cylinder gasoline engine
Signal: crank speed
Speed: 800–1150 r/min
Load: not mentioned
Misfire type: 1#, 2#, 3#, 4#, 1#3#, 2#4#, 1#4#, 2#3#
Methods: state observer for combustion torque estimation; ANN for
classification
Accuracy: >52/54 (96.30%)

Boudaghi et al. [34]

Engine type: four-cylinder gasoline engine
Signal: crank speed
Speed: 1250–4000 r/min
Load: 10–50%
Misfire type: 1#, 2#, 3#, 4#, 1#3#, 2#4#, 1#4#, 2#3#
Methods: extracting physics-based parameter
Accuracy: >94%

Shahida et al. [35]

Engine type: twelve-cylinder diesel engine
Signal: crank speed
Speed: 720 r/min
Load: 0–100%
Misfire type: A1#, A6#
Methods: one-dimensional convolutional neural network
Accuracy: >99.7%

This paper

Engine type: six-cylinder diesel engine
Signal: crank speed
Speed: 800–2200 r/min, (step is 100 r/min)
Load: no-load to 250 Nm
Misfire type: 1#, 2#, 3#, 4#, 5#, 6#,1#2#, 1#3#, 1#4#, 1#5#, 1#6#, 2#3#, 2#4#,
2#5#, 2#6#, 3#4#, 3#5#, 3#6#, 4#5#, 4#6#, 5#6#
Methods: LSTM RNN
Accuracy: >99.90%

6. Conclusions

In this paper, an LSTM RNN based approach for engine misfire detection is proposed.
The traditional misfire detection method has limitations on the high-speed and low-

load engine operating conditions. Hence, the traditional misfire detection method is
conducted on the datasets to verify its feasibility first; and the reason of the limitation,
that one threshold is insufficient to extract the fault feature when the background noise is
high, is concluded. In order to extract the fault features extensively and effectively, unlike
previous works, the LSTM RNN is a powerful technique on sequence signal processing is
utilized to detect misfire. In addition, for the sake of ensuring the feasibility of proposed
algorithm, two-cylinder misfire faults are tested beside one-cylinder faults, and a wide
range of engine working speed and load conditions which including the high-speed and
low-load conditions are tested.

The LSTM RNNs are designed according to the characteristic of speed signal. Four
kinds of input layer structures are designed. These inputs contain instantaneous raw speed
signal, a fixed segment of raw speed signal, and the extracted real and imaginary parts
of speed signal. Moreover, five data division modes are attempted to explore the optimal
training data size. These training datasets can be categorized into two parts: the training
data that has running condition intersection with the testing data, and the training data
that has no running condition intersection with the testing data. The testing results show
that the sequence-input-sequence-output LSTM RNN which utilizes raw speed data could
not achieve acceptable detecting accuracy. The second, third and fourth LSTM RNNs could
achieve accuracies more than 98%. The best performance is achieved by the third LSTM
RNN with data division mode 2_c, and the testing accuracy is 99.96%. Meanwhile, the
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third LSTM RNN with data division mode 2_b is also recommended, because it has the
relatively high testing accuracy 99.90% and small training data size as well.

In this study, misfire detection is conducted on complete misfire conditions. It is
also significant that misfire fault could be detected when it is not severe. Therefore, in
further research, the slight misfire fault including partial misfire will be utilized to im-
prove the detection sensitivity of the proposed algorithm. In addition, future work will
include developing hardware for misfire detection of this engine as well. The LSTM
RNN models developed in this study will then be written into the hardware to provide
misfire information.
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Abstract: The use of unmanned aerial systems (UAS) is becoming increasingly frequent during
search and rescue (SAR) operations conducted to find missing persons. These systems have proven
to be particularly useful for operations executed in the wilderness, i.e., in open and mountainous
areas. The successful implementation of those systems is possible thanks to the potential offered
by unmanned aerial vehicles (UAVs), which help achieve a considerable reduction in operational
times and consequently allow a much quicker finding of lost persons. This is crucial to enhance
their chances of survival in extreme conditions (withholding hydration, food and medicine, and
hypothermia). The paper presents the results of a preliminary assessment of a search and rescue
method conducted in an unknown terrain, where groups were coordinated with the use of UAVs
and a ground control station (GCS) workstation. The conducted analysis was focused on assessing
conditions that would help minimise the time of arrival of the rescue team to the target, which in real
conditions could be a missing person identified on aerial images. The results of executed field tests
have proven that the time necessary to reach injured persons can be substantially shortened if imaging
recorded by UAV is deployed, as it considerably enhances the chance of survival in an emergency
situation. The GCS workstation is also one of the crucial components in the search system, which
assures image transmission from the UAV to participants of the search operation and radio signal
amplification in a difficult terrain. The effectiveness of the search system was tested by comparing
the arrival times of teams equipped with GPS and a compass and those not equipped with such
equipment. The article also outlined the possibilities of extending the functionality of the search
system with the SARUAV module, which was used to find a missing person in Poland.

Keywords: unmanned aerial systems; search and rescue operations; missing people; data transmis-
sion devices; automatic flight

1. Introduction

Every year ca. 20,000–30,000 people go missing in Poland. Most of them are found
on the day of their disappearance, but approximately 4000 continue to be missing over a
longer period [1]. As it comes to search and rescue operations, the key factor in this type of
situation is the time required to reach the missing person. Until recently, specialist search
and rescue groups used specially trained dogs or modern basic technological solutions,
such as thermal imaging. Nowadays, units delegated to such actions tend to deploy a
wide assortment of technological solutions, which was presented in [2] for three different
operational paradigms supporting this type of action in the field, and factors that affect
the determination of the best paradigm in the human–robot system were specified, which
include the following.

• Sequential operations—a strategy appropriate for search operations that need to be
executed in a difficult terrain, with restricted mobility, in situations with limited
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available human resources operating in the field and where the likelihood of the
missing person’s presence is evenly distributed over a large area;

• Remote-controlled operations—suitable for situations where the mission manager has
more access to relevant information from the field than from the base station;

• Base-directed operations—appropriate for areas that offer high mobility for the field
search team, but not enough information that would be required to conduct a hasty search.

The location of a missing subject is crucial to allow selecting the most advantageous
paradigm under the given circumstances and modelling the behaviour of missing persons
in a given situation is just as important. The technologies used so far greatly contribute
to reducing the time required to reach missing subjects, which is particularly significant
in the case of injuries caused by falls, hypothermia, dehydration and chronic illnesses.
However, those technologies need to be continuously improved to reduce the mission times
to a minimum.

In Poland search and rescue operations involve a lot of specialised units, among
others also the State Fire Service, which carries such operations in the basic, specialist and
specialised fields of international humanitarian assistance [3]. In Poland, in situations of
disappearances taking place in an open ground, the leading entity is the police, which,
on the basis of a concluded agreement, cooperate with search and rescue groups both in
the structures of the state and volunteer fire brigades and other civil associations, e.g.,
Mountain Voluntary Rescue Service [4].

Unmanned aerial systems supported by devices that provide communication and data
transmission from UAVs are increasingly frequently used in search and rescue operations
for missing persons. This technology is still being validated by fire protection units,
among others. Consequently, an attempt was made to develop a solution to support
this type of action in the open ground, which involved the Main School of Fire Service
(MSFS) and Volunteer Fire Department (VFD) Niegoszowice. The undertaken analysis
demonstrates the effectiveness of actions taken by rescuers using UAS and supported
by a GCS workstation, which assures a local Wi-Fi network and web server, internet
access, video transmission from UAVs to mobile devices and a powerful radio station.
The study takes into consideration not only UAVs as such, but also the environment related
to their operation and coordination of ground groups and modern devices for image
transmission and communication assurance. Until now, the use of UAVs has consisted
of terrain observation and image analysis, including thermal imaging. A part of the
performed tasks included producing an orthophotomap composed of images taken from
one or many UAVs. An analysis of the orthophotomap made it possible to determine
the location coordinates of the missing subject. The effectiveness of the use of UAVs in
search and rescue operations was proven (Tychy [5], Lincolnshire and Fort Wayne [6]).
However, this is not the full extent of their capabilities, and the advancements in this
technology confirm the increasingly frequently implemented direction, and namely the use
of automated systems based on artificial intelligence [7]. One such solution is the SARUAV
software, which facilitates and speeds up search and rescue operations in which UAVs are
used [8]. The system is a very useful tool that can be crucial in many search and rescue
operations. Mountain Volunteer Rescue Service successfully used the system during a
search operation for a missing person. The incident took place on 29 June 2021 [9].

The literature indicates that similar solutions exist in the area under study, such as
Loc8 software or the MOBNET system. The differences between these and SARUAV are
shown in Table 1.
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Table 1. Comparison of the capabilities of the SARUAV system and other solutions with
similar functionality.

Item
System (Software or

Specialist UAV)
Description of System Source

1.
Search and Rescue with

Unmanned Aerial
Vehicle

Algorithm for searching for missing persons in
undeveloped areas. The system has 2 modules for

the following:
1. Determining the maximum human walking range in a

given time.
2. Automatic image analysis and identification of

potential human locations.

[8]

2.
Loc8: Image Scanning

Software for Search and
Rescue

Software used to scan images or videos after entering
colour that is being searched for (e.g., clothing). Finding a

match is signalled by an alarm and indication of the
location. The target is then verified and rescuers are

dispatched to the location. It can even analyse
satellite images.

[10]

3.

Mobile network for
people’s location in

natural and man-made
disasters

A system for locating victims during natural disasters and
crisis situations, such as earthquakes, hurricanes or major
blizzards. The basic assumption of its operation is related

to the fact that the searched person has a working and
switched-on mobile phone.

[11]

4. Multi-task UAV

A rotary wing flying platform designed for flight in
mountainous terrain at negative temperatures, high

altitudes and strong winds. Equipped with an avalanche
detector, cameras (daylight and thermal imaging) and

various payloads (rescue kits, special explosive cartridge
for controlled triggering of an avalanche). Capable of fully

autonomous flight and terrain search.

[12]

5.
MAGI: Multistream

aerial segmentation of
ground images

A fast image recognition algorithm with which, thanks to
the hardware used, real-time performance can be

achieved. The model is suitable for operations where time
is critical, such as fire detection and search and

rescue operations.

[13]

6. RGDiNet: efficient
onboard object detection

A multimodal platform for real-time object detection that
can be mounted on a UAV and which is insensitive to

changes in the brightness of the
surrounding environment.

[14]

The analysis shows that there are several image recognition systems on the market,
but only SARUAV works offer a ready-made map, which makes it possible to determine
the area that could be reached by the missing subject, based on their speed and taking into
account terrain difficulties.

There is also a trend to build dedicated UAS appropriately to the type of threat, but
the optimal solution in search and rescue operations seems to be to use any UAV to take
pictures and then send the rescue teams to the place pre-designated by the software. This is
how both the SARUAV and Loc8 software are designed.

Consequently, the aim of this publication is to analyse the process of cooperation
between particular services and the effects of search and rescue activities, as well as to
estimate the conditions for minimising the time of arrival of rescuers to the injured person
in open areas. An outline is made of UAVs and IT technologies (such as GCS workstation),
which are capable of supporting the search for missing persons and should be in use by
services responsible for safety and civil protection.

In the experiment carried out in Nowy Dwór Mazowiecki, during the testing phase,
selected systems supporting search and rescue operations (UAVs, and command suitcase)
were used. For formal reasons, the SARUAV system was not used for testing, and a
concept was presented that extended the functionality of the coordinated search and rescue
group with the SARUAV system. We found some license restrictions in one province
due to the lack of availability of appropriate digital maps. For each launch of the system,
it is necessary to prepare dedicated spatial data, and the automatic detection of people
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works in a specific area “purchased” by the recipient of the system. Evidence of the
effectiveness of the presented concept with the SARUAV model was demonstrated in
the form of positive results of finding a living person and may constitute an effective
extension of the functionality of the system used in search and rescue operations [15].
The solution uses a nested k-means algorithm to detect people in aerial photos from
close proximity [16]. The software uses a variety of non-statistical detection methods [15].
The SARUAV system was trained on pictures of people wearing clothes of different colours
and patterns (including smaller objects: children and dogs on the pictures). The training
sets were made with the engagement of the study participants. The SARUAV system
effectively detects the figures of any dressed adults and children, and the presence of dogs
(it does not detect big animals). The key parameter for the SARUAV system is the ground
sample distance (GSD), which depends on the flight altitude and the characteristics of the
camera. It is best to fly so that the GSD is less than 3 cm / px. The two detection algorithms
work in parallel, only on nadir and RGB images. The conducted near infrared (NIR) tests
gave less satisfactory detection results. From the perspective of the algorithms used, the
far-infrared imaging has insufficient resolution.

2. Methods

The conducted research focused on the characteristics, specifics and prospects of
deploying UAVs in rescue operations. Tests related to the usage of UAVs in rescue opera-
tions, prepared by the VFD, took place on 8 July 2021 at the Base of Training and Rescue
Innovation at the Main School of Fire Service in Nowy Dwór Mazowiecki (Figure 1).

Figure 1. Practice area on the training grounds in Nowy Dwór Mazowiecki. Source: Google Maps.

Hardware and software components of the VFD concept system (listed in the
Appendix A) were subjected to testing, as well as the possibility of using UAVs and the
GCS workstation (Figure 2).

The MSFS took part in simulated operations. The participants of those simulations
coordinated actions, using preview and the public address system integrated with UAVs.
The tests verified the complementarity of the information exchanged, which can be used in
operations, along with the level of interoperability between the SFS and the VFD.

The participants were divided into two groups with Alpha and Delta identifiers.
Starting from different locations on the training ground, they were to reach a specific point
according to commands received via radio from the head of the rescue operation (HRO),
who directed them by comparing an orthophotomap of the terrain with their position
indicated by the drones. Additionally, communication failures were simulated in the Alpha
group. The HRO could only transmit commands and messages via the speaker mounted
on the DJI Mavic 2 Enterprise Dual drone. However, there was no return radio channel,
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and the accuracy of the executed commands was judged by the HRO on the basis of the
drones’ image. Two parts of this phase of the exercise were executed. In the first one, the
participants of the study went into action without prior preparation and without having at
their disposal any locating equipment (GPS, compass). It was not easy to coordinate their
work, and the commands, directions, reference points proved to be ambiguous. Despite
these difficulties, both teams were successfully led to the set-out point. At the second
attempt, the participants of the exercise already knew the terrain and were equipped with
locating devices; therefore, the time of reaching the target was significantly shortened.

Figure 2. GCS workstation designed and built by VFD members. Photo: N. Tuśnio.

The experimental methods included the study of the following:

• Resilience of the radio communication system to interferences and harsh terrain conditions;
• Resistance to communication interference between UAV and the control device;
• Elements that can excite frequencies that could affect the work of UAV during operations;
• Elements that reduce the risk of losing control to an acceptable level of risk;
• The quality of images from UAV cameras and their usefulness in operations;
• The audibility and intelligibility of messages emitted from the UAV integrated public

address system;
• The time required to search for a missing person without and with the system.

Tests using UAVs: AUTEL EVO II and DJI Mavic 2 Enterprise Dual were executed
according to the guidelines provided in [17–19] and in internal VFD working arrangements.
A simulation was carried out of search and rescue operations, during which teams were
coordinated with the use of UAVs. A prototype GCS workstation was used, which allowed
real-time viewing of UAVs on the HRO workstation [20].

In the first stage of the exercises, a precise orthophotomap of the area was produced.
For this purpose, a UAV AUTEL EVO II with a camera of 8K resolution was used, which
performed a flight at an altitude of 90 m in the mode of serial nadir images (camera directed
perpendicularly to the surface of the earth) [21]. The flight route was prepared in the ladder
method. This method allows a regular coverage of the area with shots overlapping each
other in 50%–70% to enable the establishment of a very accurate orthophotomap of a given
site, which can then serve as a basis for further operational activities. A similar method
was successfully used during the Biebrza National Park fire in Poland in 2020 [22].

Three exercise scenarios were carried out as part of the research: 1—creation of
orthophotomap in field conditions; 2—coordination of ground groups; and 3—terrain
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observation with using a thermal imaging camera. In each case, three people controlled the
flight operation (UAV operator, observer technician, and team leader).

A time measurement technique allowed recording the experiment on a video camera
and then reading out the individual task times.

On the day of the experiment, the weather conditions in Nowy Dwór Mazowiecki
were as follows: cloudless, light rainfall (1 mm), daytime temperature 29 ◦C, pressure
1019.5 hPa, and wind speed 20.25 km/h, direction south-east.

A search algorithm involving HRO targeting teams equipped with GPS and a compass
was used, and tests were executed of the effectiveness of operations without this equipment
and in the event of communication failure.

2.1. Structure and Organisation of the UAVs Section

The organisational structure of the UAVs section during operational activities arises
not only from aviation law regulations (the specific role of the UAV operator), but also from
actual operational needs.

The UAV operator is the person responsible for the execution of each flight and makes
the final decision of whether a flight can be performed at a given location. It is his/her
responsibility to carry out the technical inspection of the UAV before take-off, control it and
assure safety of the mission performed.

The responsibility of a technician, also acting as an observer, is the preparation of other
necessary equipment including running the GCS workstation, establishing communications
with other units and observing the UAV flight. During the exercise, he/she remains with
one of the cadet teams to assess their performance. The role of the technician is also to
secure the area of flight operations to make sure that especially take-offs and landings are
done in a manner safe for bystanders.

The team leader acts primarily as a liaison between the UAVs unit and the HRO (or
other services). His/her task is to be a kind of information filter so that the operators can
fully concentrate on their tasks. He/she is also responsible for coordinating the activities of
various operators who, controlling UAVs in the same space, must correlate their actions so
as to ensure an adequate level of flight safety.

An important issue when conducting operations involving the use of unmanned aerial
systems is the time of data transmission. A method is adopted in the organisation of
operational activities that introduces parallel actions upon arrival in the area of operation
in the following operational algorithm:

1. Operators prepare the UAVs for launch procedure in the shortest operational time
possible while maintaining relevant safety rules.

2. The technician prepares GCS workstation and activates communication systems
including the LTE/5G Wi-Fi mast.

3. The flight team leader establishes a detailed action plan with the other participants
involved in the operation and supervises the completeness of the launch procedures.

All this allows launching of the UAV within 3 min of arrival in the operational area.
The first image in the GCS workstation can be obtained as early as in the 6th minute, and
the image in the mobile devices of the participants of the operation in the 8th minute after
the start of the operation.

2.2. Equipment Resources

The VFD unit is equipped with the following technology and software (Table 1 in the
Annex A lists the equipment used during the exercises):

1. Two UAVs: DJI Mavic 2 Enterprise Dual and AUTEL EVO II.
2. PIX4Dreact—the application enables the mapping of the area of action (making an

orthophotomap). On the basis of the UAV flight, an accurate and up-to-date situational
map is established in field conditions.
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3. Live preview RTMP—the image from the drones is visible on monitors (laptop, GCS
workstation) and on smartphones of the participants. It is also possible to transmit
the image via the Internet.

4. Internet access—a Wi-Fi MESH network with Internet access is set up. This enables
information to be passed on quickly to rescuers.

5. LOCAL WWW—the GCS workstation has its own web server, which makes it possible
to record and present information that is relevant for the operation (e.g., search report).

6. SARUAV—supports the search for missing persons through numerical modelling of
movements and analysis of images from UAVs.

7. Thermal imaging camera—one of the UAVs equipped with it, together with a telemetry
system, allows precise identification of temperatures in the field of view of the camera.

8. NFRS radio communications—high-power mobile radio with high-performance an-
tenna that allows maintaining communications in difficult conditions.

9. Internal radio communication—communication within the group of UAV operators
takes place on dedicated equipment and frequencies so as not to cause interference or
interference with other services.

Worthy of particular attention is the GCS workstation developed by VFD members
(see Figure 3 for a working diagram), which allows the following:

1. Multiplication (replication) of drone images and their transmission to other devices
both on the Internet and on a local network.

2. Creating a local Wi-Fi network to provide access to the Internet and to local informa-
tion as well as video from UAVs.

3. Communication set-up also in difficult terrain conditions, where ordinary mobile or
portable radios are unable to cope with communication requirements (it is equipped
with a mobile radio in the SFS radio communication standard with an antenna of high
energy gain).

Figure 3. Operational diagram of an operational group equipped with UAV and GCS workstation.

A key issue in the assembly of the GCS workstation is the proper separation of all
connections and the elimination of any potential radio interference.

Both the Wi-Fi network and UAVs communication operate in the 2.4 and 5 GHz
standards. It is therefore important to choose the optimal slot (channel) for connections
to avoid possible interference with the connection between UAVs and control equipment.
This may be done by using high quality Ubiquiti network devices, which constantly verify
the network occupancy.

All cables and connections used in the GCS workstation need to be shielded to min-
imise potential interference. A consistent power source and high quality converters and
voltage stabilisers guarantee the stable operation of the entire solution.
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2.3. Selected Scenarios

Scenario 1. Development of an orthophotomap in field conditions.

• The concentration point acts as a field command centre.
• Site mapping action is carried out to plan and support subsequent activities.
• The action area is not known to the rescuers beforehand. It was necessary to produce

an orthophotomap of the area in field conditions quickly and precisely, which was
essential for further actions.

• Performing a ladder flight, creating a series of photos for processing in PIX4Dreact
application—UAV AUTEL EVO II was used.

• Video transmission from the UAV to the concentration point and live video retrans-
mission to the participants’ mobile devices—use of GCS workstation system.

• Estimation of distances between sites and planning access from three sides by different
ground teams—using the orthophotomap created beforehand.

• Activities of two-person ground teams when choosing different routes to reach—based
on the developed orthophotomap.

Scenario 2. Coordination of ground teams.

• The concentration point acts as a field command centre.
• Coordination of ground teams—follow-up action after Scenario 1.
• Ongoing monitoring of the passage of two ground teams; the Commander may relay

commands via radio from the command centre to the ground teams, e.g., to modify
the route of the UAVs.

• Simulation of radio communication failure in one of the groups (radio failure), trans-
mission of the command from the Commander to the ground group using the inte-
grated speaker system UAV DJI Mavic 2 Enterprise Dual (Figure 4).

Figure 4. DJI Mavic 2 Enterprise Dual—UAV with mounted speaker. Photo: K. Orzepowski.

• Arrival of the first team to the operation site (selected object on the training grounds).

Scenario 3. Ground observation using a thermal imaging camera.

• The concentration point serves as a field command centre.
• A fly-around of the operations site, carrying out observations with the use of a thermal

imaging camera, live viewing visible in the field command centre—use was made of a
DJI Mavic 2 UAV.

• Indication by the commander by radio of particularly dangerous places to conduct
operations.

• Assuming static positions by other available UAVs in designated places over the
operation site, live transmission of images of implemented actions taken from differ-
ent perspectives, continuous monitoring by each UAV of the assigned area (person
or object).
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3. Results

The solution adopted in Scenario 1 allowed the development of a precise, up-to-date
map of operations on the entire area of over 25 ha in less than 20 min (this time should be
shorter than the flight duration of the available drone). This turned out to be greatly helpful
in conducting real rescue actions in an unknown area. It made it possible to determine
the required forces, the route of access, key locations, etc., in a remote and therefore safe
way. This method also allows assessing the differences in the image of a given area, e.g.,
following fires, floods, hurricanes or other disasters, which is also extremely important
during search operations after building disasters caused by earthquakes.

Two battle groups, designated Alpha and Delta, were deployed to perform the task
in Scenario 2. Rescuers from Section A and Section B were deployed in two locations
characterised by a differentiated terrain. Both the A section and B section were tasked
to reach the simulated incident site. The HRO directed the rescue teams using radio
communications based on a photomap of the terrain and imagery transmitted from UAVs.
A simulation was made of radio communication failure, and the integrated sound system
in the DJI Mavic 2 Enterprise Dual UAV was used as a surrogate environment. However,
there was no return radio channel, and the accuracy of the executed commands was
assessed by the HRO based on the UAVs image. Therefore, this type of communication
was unidirectional and only suitable for use in emergency situations.

Two variants of this particular phase of the exercise were carried out. In the first
variant, the rescuers started executing the assigned actions without previous preparation
and without locating equipment (GPS, compass). The coordination of their work turned
out to be difficult (as only the direction of the needed turn had been specified) and the
commands, directions and reference points proved to be quite ambiguous. Despite these
difficulties, teams A and B were successfully led to the planned point.

In the second variant, the HRO and rescue teams were equipped with GPS and a
compass. This allowed reaching the destination in a much shorter time, and both command
and coordination proved to be more efficient.

The implementation of Scenario 3 that involved using a thermal imaging camera
made it possible to further improve the effectiveness of search and rescue operations for
missing persons carried out in the wilderness. In such situations, however, there are some
limitations due to the fact that the camera is unable to scan solid materials. It is therefore
only possible to look for the outlines of objects that actually emit heat. The thermogram
only shows small, warmer spots that may indicate a person standing behind bushes and
trees (Figure 5).

Figure 5. Small warmer spots visible in the thermogram (to the left of the green square), which may
indicate a person standing behind bushes and a tree. Photo: W. Pruss.
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The above scenarios show that the time necessary to reach a target (e.g., a lost subject)
depends to a large extent on the supporting technologies used. This means that the applied
solutions should be extended with new functionalities. Support in this regard can be
provided by the SARUAV software, which provides a real possibility of the optimal use
of drones in the search for missing people. The system enables this technology to be used
quickly, efficiently and inexpensively, without the need of involving an additional group of
people or other resources in the search [23].

The most important functionality of the SARUAV system is the automatic detection
of people.

For example, it is possible to survey an area of ca. 3 ha with great accuracy, us-
ing a drone in approximately 10 min by taking about 150 aerial photographs with very
high lateral and longitudinal coverage and high field resolution of the images (less than
2 cm/px) [23].

This set of images is automatically processed by the SARUAV system in 2–3 min, and
false positives can be filtered out in further 3–5 min in a verification panel designed for this
purpose.

By using two detectors with different methodological underpinnings, the system
maximises the probability of human detection in an unattended mode and minimises the
number of false negative readings [23].

The time needed for an automatic analysis of aerial photographs and evaluation of
its results was under 10 min, so the full process of implementing the flight and detection
described above came down to ca. 20 min, and two people were sufficient to operate it (i.e.,
the drone operator and the analyst operating the computer).

An analogical search of a 3-hectare area conducted by a team of rescuers, for example,
with the use of the quick-three method (this method assumes that rescuers are divided into
groups of three, and one of the rescuers in each group is equipped with a device with a
GPS receiver), would take much longer, and the task would have to be carried out by a
significantly higher number of people, which entails an increase in the cost of the action.

The system estimates the field coordinates of indicated people with a high accuracy
and allows the generation of clear map reports that can be displayed on any stationary or
mobile device. After the detection, the analyst transmits the map report to the rescuers,
giving them a chance to quickly reach the location of the missing person.

Full field operability means that the detection process can take place entirely in the
field, the calculations are performed on a mid-range laptop computer that does not need
internet access and communication with high computing power servers.

What is more, the SARUAV solution is not related to any specific UAV platform, so
its use in the work of rescuers does not represent a substantial financial barrier. On the
contrary, using a SARUAV system can become an element that allows savings if it is a tool
that complements standard search methods [23].

However, the newly introduced software does not have the capability of analysing
infrared images and videos or to work at night.

The two SARUAV detection algorithms operate in parallel, only on nadir and RGB
images. Tests conducted in the near infrared (NIR) gave less satisfactory detection results.
It also seems to be inefficient to work on images taken in the far infrared–thermal imaging,
as the resolution is insufficient from the viewpoint of algorithms.

SARUAV detection algorithms work on high-resolution RGB imagery, and conse-
quently, their application for night-time images is somewhat limited. Even if night flights
were possible from a legal perspective, the images acquired during such a flight are often
of insufficient quality for detection to be possible.

Exceptions may be made for areas that are very well lit by artificial light, or for flights
with an additional powerful light source mounted on the aerial unmanned vehicle. Such
a reflector could be directed downward to illuminate the terrain being photographed,
and flights should take place at an altitude that allows appropriate illumination while
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contemporaneously maintaining all safety conditions. SARUAV already carried out the
first positive tests of this solution.

The cost of the equipment used is as follows:
SARUAV is an innovative IT system to support the search for missing persons—an

annual licence for one province costs EUR 1869, including VAT.
The AUTEL EVO II UAV drone is a cost ranging from EUR 1500 to 7000, including VAT.
DJI Mavic II Enterprise Dual UAV drone costs around EUR 3000, including VAT.
To be able to point out a practical application of the above-described software, ten

full search flights were analysed, which involved between 14 and 145 nadir aerial images.
A review was then carried out of a total of 668 images taken with the use of UAV-mounted
cameras. These included missions carried out in both lowland and upland sites. The areas
monitored varied in coverage: from simple detections in grasslands and wastelands, to
pinpointing people in areas with varying coverage over a small area, to difficult detections
in mixed forests outside the vegetative period.

Table 2 provides a tabular summary of the results (the human detector was not familiar
with the 668 images previously entered).

Table 2. Effectiveness of the SARUAV system depending on relief and land cover.

Flight No. Land Relief Land Cover 1 Number of Photos
Number of Persons

Effectiveness [%]
Actual Detected

1 upland a 37 3 3 100
2 upland a 124 1 1 100
3 upland a 98 1 1 100
4 upland b 115 8 7 87.5
5 lowland c 20 7 7 100
6 lowland c 20 7 6 85.7
7 upland d 14 3 3 100
8 upland d 18 3 3 100
9 lowland d 77 6 6 100
10 upland e 145 31 30 96.8

Σ 668 70 67 100
1 a—temperate broadleaf and mixed forest (lack of leaves outside the vegetative season), b—temperate broadleaf
and mixed forest, meadow, developed areas, football field, c—fallow, low vegetation, single trees without leaves,
d—meadow, e—temperate broadleaf and mixed forest (lack of leaves outside the vegetative season), meadow,
castle. Source: SARUAV [23].

It is recommended that in operational activities, photogrammetric flights with high
lateral and longitudinal coverage (at least 60/80%) be executed with the use of the SARUAV
system to serve as a basis of further analyses. This means that the person being searched for
can be registered in multiple images. The reason why this solution is proposed is because it
reduces the probability that a person could remain undetected if he/she is not visible from
certain camera positions (e.g., at the border of a meadow and a forest).

The column ‘effectiveness’ contains a summary of the percentage of detected persons
in relation to the actual number of persons out in the wilderness, where the detection of a
person is considered to be effective if the SARUAV system detects automatically at least
one image covering his/her location in the field (or potentially covering if the person is
obscured in some images).

Ref. [24] specified cases of application of the developed methodology in operational
conditions that resemble real ones. As part of the research work, several scenarios were
worked out of searching for missing persons in mountain and lowland environments, taking
into consideration sites with different characteristics (exposed, covered with vegetation
or snow). At this point, it should be emphasised that the system was subjected to critical
verification by its testing in simulated operational conditions similar to actual ones. The
identified problems provided invaluable help in developing the final form of the system
(for the production phase). The most valuable conclusion that arises from this study is that
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the use of the system makes it possible for rescuers to find a missing person in an open area
within just 1 hour. The conclusions formulated at the end of this publication provide a very
specific summary of the design and practical functionality of the SARUAV system.

4. Discussion and Summary

4.1. Drone Module

Technological advancements make it possible to deploy UAVs during various types
of search and rescue operations, as well as during natural disasters. As demonstrated by
actions executed by the police, firefighters and voluntary organisations, the use of UAVs in
search operations has contributed to reducing the time needed to find missing persons [8].
The use of UAVs in search and rescue operations can help achieve a significant reduction
in the number of victims of various types of accidents, and through the use of avalanche
victim detectors, they can also provide support during search operations after avalanches
have descended [25].

Adequate technological equipment of drone modules, as well as good coordination in
operational activities and developed cooperation of various services (state and voluntary),
will contribute to increasing the effectiveness of search operations. It should also be pointed
out that cooperation between different formations should include an increase in the number
of specialist training courses to deepen theoretical and practical knowledge (along with an
analysis of actions taken), as well as joint search manoeuvres in various areas and terrains.
The practical use of knowledge and experience could significantly affect the system of
searching for missing persons and increase the effectiveness of operations.

4.2. UAV Ground Control Station

Members of the VFD designed and executed a GCS workstation dedicated to actions
involving the use of rotary wing UAVs. The tested system allows streamlining the commu-
nication between HRO, UAV section and search participants, and thanks to the possibility of
radio signal amplification and the transmission of necessary data, it is also appropriate for
searching people in mountainous areas. Before now, when this solution was not available
yet, problems arose in obtaining radio communication due to the demanding and difficult
terrain owing to the presence of rocks and ridges, as well as deposits of various deposits.
Since radio communication was supported by relay stations, a significant improvement in
signal quality has been achieved.

4.3. SURUAV System

The undertaken operational activities could be supported by the use of SARUAV
software, the effectiveness of which was proven during a rescue operation conducted
in a mountainous terrain with large forest complexes in the Low Beskid (June 2021).
While searching for a lost male subject aged 65 years (the person in need of assistance was
ailing and was not carrying a phone) first of all, traditional search and rescue methods were
used. After the lapse of more than 20 h, the decision was made to provide support by using
a specialised drone and the SARUAV system. As a result of this solution, after 4 additional
hours, the rescue team was able to find the lost subject.

Figure 6 shows a photo in which the SARUAV software identified the missing person
(this would have been very difficult when visually reviewing multiple photos, and the
further difficulties were such factors as tall, two-metre-high grass and the passage of a
storm, after which the dogs lost the trail).

The software automatically detects people in aerial photos by indicating places where
a person could potentially be—it carries out aerial human detection. The algorithm sets
out the search site, where the UAV takes hundreds of photos. Thanks to the software,
several hundred photos are analysed in only a few minutes, which would be absolutely
impossible for the human eye to analyse, particularly given such quantities, maintaining
this kind of speed and accuracy—it would simply not be able to notice the missing person.
When a person is detected by the SARUAV system, a location pin is placed on the map,
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and the UAV operator then knows exactly where to direct the rescuers. Such a solution
is innovative on a global scale because this technology allows a significant reduction in
time needed to find a missing person during search and rescue operations, which clearly
has an advantageous impact on the further health and life of the victim. In its analysis, the
SARUAV system can take into account such inconspicuous elements as a hat lying on the
ground (which can be an excellent indication in the case of a real search) or an image of a
dog running alone (its owner may be present close by). Works are underway to adapt the
system for search operations on water.

Figure 6. Image processed by the SARUAV application indicating the missing person. Source: [15].

Exercises conducted at the MSFS Field Training and Rescue Innovation Base have
shown that access to specialised equipment and modern solutions is a guarantee of a
shorter time that would be required to achieve the intended objective.

The use of UAVs is proven to facilitate efficient mapping of the search area, followed by
coordinated operations using a GPS and compass module, and in an emergency situation
by relaying messages and commands from the HRO to teams and sections via a speaker
integrated into the drone.

One of the most common technologies in AI, the so-called neural networks, can be
used to support this type of activity. The algorithm has several inputs via which information
is received, and an “inference module” that generates an output signal on the basis of input
information and their weights. The processed information is then directed to the output
and passed on. In this way, an image seen by a camera, for example, can be compared with
a previously created pattern. These patterns can be further developed, and machines can
be taught new patterns through the process of machine learning.

Such a solution that involves the SARUAV system is already available for implemen-
tation by the police, fire and border guards, as well as mountain and water rescue units.
Its functioning requires basic information, such as the last known location of the lost person.

The availability of the SARUAV module during tests and real search actions would
make it possible to extend the activities performed by an automatic analysis of aerial
photographs and searching for a missing person on them. The system has high detection
efficiency and successfully distinguishes human silhouettes from other elements of the
environment, such as animals, vegetation or rocks [26].

5. Recommendations

1. The application of the above outlines the organisational scheme of the UAV sections
along with dedicated solutions to support equipment communication, and team
liaison allows UAVs to be launched within 3 min of arrival in the operational area.
The first image in the GCS workstation can be obtained already in the 6th minute, and
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the image in the mobile devices of the participants of the operation in the 8th minute
after the commencement of the operation.

2. The use of SARUAV software allows replacing human labour associated with time-
consuming analyses of images taken from the air with automatic image recognition. In
combination with the possibility of covering the area of operations by a larger number
of UAVs, this provides an extremely efficient system for the search for missing persons.

3. Search and rescue activities should be oriented at assuring that the ability to carry out
rescue operations on a basic level could become universal for all NFRS entities [27].

4. The nationwide cooperation of the police with search and rescue groups and other en-
tities should be further intensified and developed, involving, inter alia, the launching
of joint undertakings (training, sham search operations) the purpose of which com-
prises exchanging experience, mutual requirements and consolidation of knowledge
in the search for missing persons [28].

5. In the area of scientific development in the context of search and rescue operations, it
is necessary to conduct research to reduce the time it takes to find a missing person.
In this respect, there is a need to improve the technical parameters of components of
search coordination systems:

• UAVs—increase in flight duration;
• Data transmission devices—increased speed of information transfer (including

high quality images);
• GCS workstation—extending capabilities by subsequent modules (currently:

ensuring stable communication in the official SFS radio bands, creation of own
Wi-Fi network in the MESH system, preview on the monitor and transmission of
the image from UAVs to the participants of the action in possession of any mobile
device, acting as a web server with important data concerning the conducted
action, and strengthening of mobile telephony signal).

6. The conducted research related to the organisation of search and rescue operations
confirmed the following:

(a) The need to develop cooperation between rescue parties and improve coordi-
nation of actions undertaken on a previously unknown terrain;

(b) The benefits of setting up a command post in the vicinity of the incident and
starting to support the HRO by viewing the situation from above;

(c) In the case of a lack of communication, the solution to the problem turned
out to be GCS workstation being on the equipment of the UAVs VFD section,
which uses antennas that are much more robust.

6. Conclusions

Unmanned aerial vehicles (UAVs), commonly known as drones, are becoming increas-
ingly common and keep gaining new functionalities. Currently, they are one of the most
innovative elements in the activities of rescue services, including the State Fire Service (SFS).

On 8 July 2021, on the premises of the MSFS Field Training and Rescue Innovation Base
in Nowy Dwór Mazowiecki, tests were conducted to verify the characteristics, specifics
and prospects of using drones in rescue operations. During the exercises, the hardware
and software used by VFD were tested as well as the possibilities of using UAVs and
GCS workstation.

The scheduled exercise scenarios included terrain mapping—producing a map under
field conditions, coordination of ground groups, evaluation of the terrain (object fire) with
the use of a thermal imaging camera, and precise observation of a designated object (region
and person).

The research participants were involved in various simulated actions. They coor-
dinated the action, using mounted speakers and the UAVs preview. The aim of joint
exercises was to achieve an improvement of techniques and skills of coordination of actions
and cooperation.
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Moreover, the article also presents aspects related to the use of unmanned aerial
systems supported by image recognition software based on artificial intelligence algorithms.
The SARUAV system of searching for missing persons, dedicated in particular to open
spaces, the main part of which is the algorithm of detecting silhouettes of people from
images acquired from UAVs, is being used in Poland by 4 VFD units and 2 MVRS groups.
The SARUAV solution was developed and tested in cooperation with the MVRS Jurassic
Group. Field tests of the system have pointed to a high performance of the algorithm,
and the results were published in [24,29,30]. The system received very positive feedback
from, among others, MVRS, but also from the FlyTech UAV company from Krakow, which
produces professional BIRDIE UAVs that can be used in the SAR rescue system.

The system was also proven effective in a real-life situation, where time was of
the essence.
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Appendix A

Table A1. List of equipment used in the exercises 1.

Type of Equipment Additional Equipping Operating Limitations

UAV AUTEL EVO II 4 battery packs
Live Deck transmission

systemControl unit
Battery charging station

Weather without precipitation
Temperature from −10 to +40 ◦C
Flight duration 25–38 min on one
battery (depending on weather)

Wind speed < 40 km/h
Battery charging time approx. 80 min

UAV DJI Mavic II
Enterprise Dual

3 battery packs
Spotlight

Loudspeaker
Thermal imaging camera
Battery charging station

Weather without precipitation
Temperature from −10 to +40 ◦C

Flight duration 18–25 min on a single
battery (depending on

weather conditions)
18 min—using the spotlight

20 min—using the loudspeaker
Wind speed < 40 km/h

Battery charging time approx. 80 min

Ground Control Station
Workstation

Motorola transceiver 4600e
(mobile) + antenna with high

energy gain
Wi-Fi network
LTE network

19” monitor for viewing live from
UAV AUTEL

Redistribution of images to
mobile devices

Power distributor for
4 socketsMast (tripod) for

installation of antennas—at a
distance of up to 10 m from

GCS workstation

A 230 V alternating current source
is required

Power (depending on the number of
receivers) approx. 1000–1500 W

Weather without precipitation or use in
a sheltered location

Temperature from −18 to +45 ◦C
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Table A1. Cont.

Type of Equipment Additional Equipping Operating Limitations

ACER Laptop SD card reader
Wireless mouse

230 V power supply (included in
estimated power of GCS

workstation)
Ability to view live image

from UAV

Weather without precipitation or use in
a sheltered location

Temperature from −10 to +40 ◦C

Samsung Tablet
A10—for the

operation UAV

USB-C power adapter Weather without precipitation

5 pcs. Motorola GP360
Radiotelephone for

communication within the
group of UAV operators

Chargers Temperature −18 to +45 ◦C

1 Source: [20].
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Abstract: Based on the classical spectral representation method of simulating turbulent wind speed
fluctuation, a harmonic superposition algorithm was introduced in detail to calculate the homoge-
neous turbulence wind field simulation in space. From the view of the validity of the numerical
simulation results in MATLAB and the simulation efficiency, this paper discussed the reason for the
bias existing between three types of turbulence intensity involved in the whole simulation process:
simulated turbulence intensity, setting reference turbulence intensity, and theoretical turbulence inten-
sity. Therefore, a novel spectral correction method of a standard deviation compensation coefficient
was proposed. The simulation verification of the correction method was carried out based on the
Kaimal spectrum recommended by IEC61400-1 by simulating the uniform turbulent wind field in
one-dimensional space at the height of the hub of a 15 MW wind turbine and in two-dimensional
space in the rotor swept area. The results showed that the spectral correction method proposed in
this paper can effectively optimize the turbulence intensity of the simulated wind field, generate
more effective simulation points, and significantly improve the simulation efficiency.

Keywords: uniform wind field simulation; turbulence intensity; deviation of standard deviation;
spectral representation

1. Introduction

The random turbulent wind is one of the critical factors causing the fatigue load
of wind turbine blades. Aerodynamic analysis of wind turbines under the influence of
turbulence is a vital basis for designing the ultimate load and fatigue load [1]. Meanwhile,
with the trend of large-scale and flexible blades, the coupling of nonlinear aerodynamic
and structural problems with the environment becomes more complex. Therefore, it is
of great significance to establish a pulsating wind field model with high adaptability to
multiple design conditions and complicated incoming flow environments in line with
engineering applications.

In engineering practice, considering the speed of the solution and data processing
is important. While using the computational fluid dynamics (CFD) method to solve
Navier-Stokes equations results in a high accuracy, this method is complex and heavily
dependent on computer performance. Accordingly, the current research on turbulent wind
field simulation tends to be based on classical stochastic process theory. The PSD (power
spectral density) function is employed to simulate the time history of pulsating wind
speed. Regularly, Harris spectrum, Von Karman spectrum, Simiu spectrum, and Kaimal
spectrum are applied to power spectral density models [2–6]. Shinozuka proposed the
harmonic synthesis method to settle the matter of the stationary Gaussian random process
and non-stationary random process of wind speed time history simulation, introducing the
double index frequency combined with FFT technology to achieve the ergodic properties
of each state of the simulation curve [7,8]. Lagrange interpolation, Hermite interpolation,
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PoD-based interpolation, and other interpolation methods [9–11] have significantly reduced
the number of analog signal decompositions and have further optimized the operation
efficiency. In essence, the power spectrum simulation method is a Monte Carlo numerical
statistical method. To date, most studies have mainly concentrated on how to optimize the
algorithm to improve the computational efficiency in order to solve more dense simulation
points, or to verify the fitting degree between the power spectrum simulating fluctuating
wind speed and the original spectrum [12–14]. However, few scholars have paid attention
to the turbulence intensity of the simulated fluctuating wind field and the validity of the
time history of the simulating point fluctuating wind speed.

Based on applying the spectral representative method to simulate wind speed, the
significant standard deviation’s bias, generated due to valuing a truncated simulated fre-
quency interval and the simulation processing itself, respectively, is proposed to shorten the
time required to complete the method by creatively introducing a compensation coefficient.
The corrective method modifies the original power spectral density function to produce
more effective simulated points in the uniform simulated wind field that can generate
the simulated turbulence intensity, meeting the set requirements. Moreover, this paper
also discussed the correction method’s further development by expanding its usage to the
two-dimensional level. The modified method would be verified by simulating the uniform
fluctuating wind field of a 15 MW referenced wind turbine, which may lay the foundation
for simulating a turbulent field that is applied to a larger scale wind turbine.

2. Materials and Methods

2.1. Turbulent Wind Field Model

In a turbulent wind field, the wind speed can be decomposed into average wind speed
and fluctuating wind speed. Thus, the simulated three-dimensional wind speed at any
simulation point is the linear superposition of the average wind speed and fluctuating wind
speed in longitudinal, transverse, and vertical directions [2], which can be calculated by:

Ṽ(z, t) = U(z) + v(z, t) (1)

where, U(z) denotes the average wind speed, v(z, t) denotes the fluctuating wind speed of
a simulated point, z denotes simulated height, and t denotes time.

When setting the average wind speed, the influence of wind shear must be considered
for large wind turbines whose installation height is usually higher than 100 m. Commonly
used wind shear models include exponential model and logarithmic model, and the stable
modified logarithmic model was used in this paper [8], which can be calculated by:

u(z) =
u∗

κ

(
ln

z
z0

− ψ

)
(2)

where, u∗ denotes friction velocity, it can be represented as u∗ = 0.045Vre f − 0.012, Vre f ,
which means the reference mean wind speed; κ denotes Von Karman constant, under
neutral atmospheric conditions, κ = 0.4; z0 denotes terrain roughness parameter, which

can be calculated as z0 = Ac
(u∗)2

g , where Ac = 0.034 when the terrain type is an offshore
area, g denotes the acceleration of gravity; and ψ denotes the stability function when in the
neutral condition, its value is 0.

Pulsating wind speed is regarded as a stationary Gaussian random process. According
to the stochastic process theory, the power spectral density function combines with the
coherence function, which is set to describe the wind speed correlation between two
different points that may generate different wind speeds during a period in a stochastic
wind field while a smaller separation distance of any two points will bring a greater
correlation, is used to simulate the pulsating wind speed time history [15].
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2.2. Basic Algorithm for Simulating Fluctuating Wind Speed Time History

Considering the simulation process at a certain point vj(t), (j = 1, 2, 3, . . . , m) in
the turbulent wind field in space, the basic algorithm for simulating and solving the
one-dimensional M-variable turbulent wind field

{
vj(t)

}
is described, and its algorithm

flow is shown as follows:

(1) According to the sampling theorem [16], the simulation parameters are set in the
frequency domain, including:

• Sampling frequency fs, in order to ensure that the analog signal can be recon-
structed accurately without aliasing, fs is required to be greater than two times
the value of Fmax, Fmax indicates the upper limit of the analog frequency range,
which denotes also the cut-off frequency in this paper;

• The initial frequency Fmin and cutoff frequency Fmax, which are selected by
considering the dimensionless power spectral density function image and the
influence of truncation error in the simulation frequency range on the simulation
variance [17], the frequency step size is denoted by d f = Fmax−Fmin

N , where N
represents the frequency sampling number.

(2) Set simulation parameters in the time domain, including:

• Sampling interval dt, dt = 1/ fs;
• Analog time points M, generally M = 2N.

(3) Set the basic parameters of the simulated wind field, including simulation points m,
simulation height z, and spacing between simulation points dr, etc.

dr =
(

z
m − 1

)
·
√(

xk − xj
)2

+ (yk − yj)
2 (3)

where, xk, xj, yk, yj represent the abscissa and ordinate values of simulation point k and
simulation point j, respectively.

(4) Calculate the cross-spectral density matrix of each frequency sampling point {S( fn)},
(n = 1, 2, 3, · · · , N):

S( fn) =

⎡⎢⎢⎢⎣
S11 S12 · · · S1m
S21 S22 · · · S2m

...
...

. . .
...

Sm1 Sm2 · · · Smm

⎤⎥⎥⎥⎦ (4)

where, S( f ) denotes the power spectral density function, Sjj denotes the autocorrelation
spectrum of corresponding points, and Skj(k �= j) denotes the cross-correlation spectrum
between two simulated points, (k = 1, 2, 3, · · · , j), which can be calculated as:

Skj( fn) =
√

Sk( fn)Sj( fn) · coh(k, j; f ) (5)

Since the cross-correlation function of the fluctuating wind speed in one-dimensional
space does not involve the change of height, the cross-correlation spectrum between
the simulated point j and other simulated points is consistent, and the cross-correlation
spectrum of the fluctuating wind speed in one-dimensional space can be obtained by the
following formula:

Skj( fn) = Sj( fn) · coh(k, j; f ) (6)

(5) Combined with the double-indexed frequency method, the Cholesky decomposition
method is performed on the cross-spectral density matrix of sampling points at each
frequency, and the decomposed lower triangular matrix is obtained, that is:

S( fkn) = H( fkn)HT( fkn) (7)
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fkn = (n − 1)d f + (k/m)d f (8)

where, fkn denotes the double-indexed frequency; H( fkn) denotes the decomposed lower
triangular matrix.

(6) Random phase obedience φkn is introduced and subjected to independent random distri-
bution among intervals (0, 2π), carrying out the Fast Fourier transformation, namely:

Gkn(t) = FFT(Bkn) (9)

Bkn(nd f ) =
{

H(nd f + (k/m)d f )eiφkn , (0 ≤ n < N)
0, (N ≤ n < M)

(10)

(7) Employing harmonic superposition method to generate the wind speed time history
of the simulated point j samples, and vj(t) can be calculated by Equation (11):

vj(p · dt) =
√

2d f Re(
j

∑
k=1

Gjkexp(i
k
m

· 2πd f · p · dt) (11)

where, p = 1, 2, 3, · · · , (M · m − 1).

2.3. Power Spectrum Correction Method

In the practical application of simulating a uniform pulsating wind field, since the
dimensionless power density spectrum of one-dimensional space accords with Gaussian
distribution (Figure 1 shows the longitudinal dimensionless wind speed power density
spectrum curve of several classical spectra), the relationship between the simulating pulsat-
ing wind speed variances σ2 and the power spectrum density function S( f ) is defined as
below [18,19]:

σ2 =
∫ ∞

0
S( f )d f (12)

Therefore, when the analog frequency range [Fmax, Fmin] is a segment interval and is
cut out from the spectral density function originally defined interval (0, ∞), theoretically,
the variance of the simulated fluctuating wind speed σtheory

2 is defined as:

σtheory
2 =

∫ Fmax

Fmin

S( f )d f (13)

The defined standard deviation of the fluctuating wind speed σ can be determined
by an empirical formula in the simulation algorithm (e.g., Equation (20) in Section 3.1),
according to the calculation formula of turbulence intensity IT = σ/v(t), choosing the
segment interval [Fmax, Fmin] will cause the simulated results to produce truncated standard
deviation, which will inevitably affect the numerical error of the simulated turbulence
intensity due to the existence of the deviation of σ and σtheory. The deviation between the
two can be calculated as:

ε =

∣∣∣∣σtheory − σ

σ

∣∣∣∣ (14)

The standard deviation’s deviation ε affects the simulated turbulence intensity to a
certain extent, and the smaller the deviation is, the smaller the influence is.
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Figure 1. The longitudinal dimensionless velocity of the wind power density spectrum curve.

It can be seen from Equations (12)–(14) that when increasing the proportion of the
interval length in the simulated frequency interval, the theoretically calculated standard
deviation’s deviation will decrease. However, it can be seen from the simulation algorithm
introduced in Section 2.2 that the frequency step has a significant impact on the simulation
results. On the other hand, according to the formula d f = Fmax−Fmin

N , after determining
the basic range of the simulation frequency interval, a slight change caused by the minor
increase in cutoff frequency relative to the magnitude of N is almost negligible. When the
ratio of the turbulence integral length to the average wind speed Xk = Lk/U is constant,
the upper limit of the interval expands to the right indefinitely, and the deviation will not
significantly decrease [10].

This is also consistent with the simulation conclusion in this paper: under the same
simulation conditions, when the initial frequency changes by one step unit, the impact
on the standard deviation’s deviation ε is significantly greater than that when the cutoff
frequency changes by one step unit (see Section 3.2 for details). In addition, the simulation
results also show that the theoretical truncation bias ε caused by the truncation of the
simulation frequency range will affect the numerical value of the simulated object in the
simulation process, which leads to the simulation bias ε̂. Simulation deviation is not only
related to truncation deviation, but also to the setting of other simulation parameters and
the application of interpolation methods. The simulated deviation is a manifestation of
the error generated by simulating the turbulence intensity, which can be expressed by the
following calculation formula:

ε̂ =

∣∣∣∣ σ̂ − σ

σ

∣∣∣∣ (15)

where, σ̂ denotes the standard deviation of actual simulated wind speed.
Considering df = Fmax−Fmin

N , if the magnitude of the frequency sample N is increased
by an order (usually N is an exponential form with base 2), the simulation bias can in-
deed be reduced, but at the same time the computational memory will be doubled and
the simulation speed will be seriously slowed down. Take the analog frequency range
[Fmax, Fmin] = [10−5, 12], and the other simulation conditions are consistent with the case of
one-dimensional simulation in Section 3. The simulation experiment results are shown in
Table 1.

Table 1 and Figure 2 show that increasing the scale N causes the whole standard
deviation bias of the turbulent wind field simulation to almost linearly reduce, or even
when increased to N = 214, the overall standard deviation’s bias of the turbulent wind field
has reached the truncation error, but with a significant disadvantage of longer running
time, and a great computing cost if more simulated points are set in the turbulent wind
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field space. On the other hand, this result is not very ideal. When increasing the magnitude
of N, the simulated turbulence intensity of more simulation points falls outside the range
of reference turbulence intensity and the defined turbulence intensity and needs to be
removed, resulting in an unnecessary waste of computing resources.

  

(a) (b) 

Figure 2. (a) The deviation of standard deviation at a different frequency sampling
magnitude; (b) Simulated turbulence intensity at a different frequency sampling magnitude.

Table 1. The relationship between the frequency sampling points scale and simulated deviation.

Test No. Test 1 Test 2 Test 3

magnitude of N N = 212 N = 213 N = 214

ε̂min 0.0026 0.0026 0.0131
ε̂ave 0.2146 0.1151 0.0615
ε̂max 0.3998 0.2122 0.1049

CPU time 40s 84s 212s

To sum up, the correction method should realize the minimum truncation deviation
εmin in theory and the minimum simulation deviation ε̂min generated in the actual simu-
lation process, without adding more frequency sampling points to reduce the simulation
efficiency. In addition, the method should generate as many effective simulation points as
possible (effective simulation points are defined as the simulation points whose simulated
turbulence intensity ÎT falls within the range of reference turbulence intensity Ire f and
defined turbulence intensity IT).

Consider the error values of truncation bias ε and simulation bias ε̂:

Δε = ε̂ − ε (16)

Introduce compensation coefficient β:

β = (1 + Δε)2 (17)

If the variance σ2 in the PSD function is substituted into the compensation coefficient
β, then the original factor will be corrected σ2

β .

3. Results and Discussion

Given the IEA 15 MW (NREL) wind turbine [20], its basic parameters are shown in
Table 2, and frequency domain simulation parameter settings as shown in Table 3.

162



Appl. Sci. 2022, 12, 66

Table 2. 15 WM wind turbine parameters.

capacity 15 MW
wind turbine diameter D 240 m

hub height Z 150 m
the reference mean wind speed Vre f 10.59 m/s
reference turbulence intensity Ire f 0.14

Table 3. Frequency domain simulation parameters.

One-Dimensional
Space

Two-Dimensional Space

number of simulated points m 40 49

simulated point spacing dr 6(k − j) Calculate according to the
Formula (3) in Section 2.2

frequency sampling number N 212 212

analog time points M 213 213

3.1. Power Density Spectrum and Coherence Function Selection

Kaimal spectrum is widely used to describe the spectral density during wind speed [21],
and its simulation results are more conservative when applied to the fatigue load design of
wind turbines. The function expression of Kaimal spectrum in IEC61400-1 4th Edition [18]
is as below, Xk = Lk/U represents the ratio of the turbulence integral length to average
wind speed (k = 1, 2, 3 represents the longitudinal, transverse and vertical component
spectra, respectively):

S( f ) = σk
2 4Xk

(1 + 6 f Xk)
5/3 (18)

IEC61400-1 uses an exponential form of coherence function, which is expressed
as follows:

Coh(r, f ) = exp[−12((
f r
u
)

2
+

(
0.12

r
Lk

)2)0.5
]

(19)

In Equation (18), according to IEC61400-1, the parameters of the longitudinal compo-
nent are calculated as follows:

(1) Wind speed definition standard deviation σ1:

σ1 = Ire f
(
0.75U + b

)
; b = 5.6m/s (20)

where, Ire f = 0.14, determined by 15 MW wind turbine design grade Class IB; U = 10.59 m/s.

(2) Integral scale parameter L1:

L1 = 8.1Λ1 (21)

The longitudinal integral scale parameters at the height of the hub Z are:

Λ1 =

{
0.7Z, (Z ≤ 60 m)
42 m, (Z ≥ 60 m)

(22)

The horizontal and vertical components of turbulence spectrum parameters simulating
a three-dimensional fluctuating wind speed are shown in Table 4.

Table 4. Turbulence spectrum parameters of horizontal and vertical components.

Main Parameters σk Lk

the transverse (k = 2) 0.8σ1 2.7Λ1
the vertical (k = 3) 0.5σ1 0.66Λ1
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3.2. Determine the Analog Frequency Range [Fmax,Fmin]

By setting the initial frequency Fmin ∈
[
10−5, 10−1], setting the cut-off frequency

Fmax ∈ [1, 10] (step by 101 units and 1 unit respectively to form an 5 × 10 analog frequency
interval matrix), and performing integral operations one by one according to Equation (13),
the ratio of the standard deviation of the truncated interval integral to the standard devia-
tion of the fully defined interval integral is η = σtheory/σ, the result of which is shown in
Figure 3a. By combining this with the 3σ principle, it can be found that when the initial
frequency Fmin < 10−4 and cut-off frequency is given any value, the standard deviation
ratio η will always fall within a confidence interval of +2σ, as the cutoff frequency increases,
η infinity goes to +3σ, therefore, it achieves a value of Fmin = 10−4.

Under the same simulation conditions, the simulation frequency interval element
from the matrix described above was substituted, one by one, into the uniform turbulent
wind field simulation algorithm, for simulating fluctuating wind speed of time history
in one-dimensional space (at hub height), accompanied with the standard deviation’s devi-
ation and truncation deviation. The comparison between the two is shown in Figure 4b.
The figure shows that when Fmin = 10−4, the simulation bias ε̂ does not decrease signifi-
cantly with the increase of the simulation frequency range, the truncated bias step rises
when Fmax > 6, instead. To weaken the distortion of the analog signal, the cutoff frequency
Fmax = 5 was selected to simulate the uniform turbulent wind field in one-dimensional
space (at the height of the hub) and two-dimensional space (at the swept surface of the
wind wheel), respectively, (the distribution of simulated points of these two types of spatial
wind field simulation are shown in Figure 4a,b, as above) considering the truncation error
and simulation error comprehensively, and the compensation coefficient was determined.

 

(a) (b) 

Figure 3. (a) The ratio of cut-off standard deviation and defined standard deviation along with the
cut-off frequency change curve; (b) Standard deviation scatter distribution under different cut-off
frequency intervals.
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(a) (b) 

Figure 4. (a) One-dimensional spatial simulation point distribution diagram; (b) Two-dimensional
spatial simulation point distribution diagram.

n

3.3. Compensation Coefficient β Correction Method

According to Section 3.2, the time history simulation of the fluctuating wind speed
in a turbulent wind field is performed under the condition that the simulated frequency
range is determined as [Fmax, Fmin] = [10−4, 5]. The main parameters are shown in Table 5,
and the distribution of the standard deviation error and compensation coefficient at each
simulated height in space is obtained, as shown in the Figure 5.

The longitudinal Kaimal spectrum is modified by considering the compensation
coefficient β:

S0( f ) =
σ1

2

β

4X1

(1 + 6 f X1)
5/3 (23)

where, X1 = L1/U.

Table 5. The compensation coefficient of relevant parameters.

Object Parameters Numerical Value

fully defined standard deviation σ 2.2727
truncated standard deviation σtheory 2.2476

the standard deviation of wind field simulation σ̂ 2.4883
truncated standard deviation’s bias ε 0.0110
simulated standard deviation’s bias ε̂ 0.0949

Figure 5. The distribution of correction factor of simulated points for two-dimensional space.
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After compensation and correction, the main parameters of one-dimensional space
are shown in Table 6.

Table 6. Parameters’ contrast between being corrected and uncorrected.

Mock Generated Objects Uncorrected Corrected

simulated standard deviation σ̂

Maximum 2.7103 2.4802
Minimum 2.1604 1.9818
Average 2.4883 2.2954

simulated standard deviation’s bias ε̂
Maximum 0.1925 0.1280
Minimum 0.0024 0.0031
Average 0.1020 0.01

simulated turbulence intensity ÎT 0.1755 0.1619

The modified simulated point fluctuating wind speed diagram is shown as Figure 6.

 
(a) (b) 

Figure 6. 10 min fluctuating wind speed time history diagram of points: (a) One-dimensional space
for points 20, 21, 40; (b) Two-dimensional space for points 1, 25, 49.

A comparison of the power spectral density at simulated points and power spectral
density related to simulated wind speed before and after modification is shown in Figure 7.
Among which, the line of the ‘Corrected Spectrum Simulated’ represents the power den-
sity spectrum of the fluctuating wind speeds that are generated by the corrected Kaimal
spectrum; the line of the ‘Corrected Spectrum’ represents the corrected Kaimal power
density spectrum itself; the line of the ‘Original Simulated Spectrum’ represents the power
density spectrum of the fluctuating wind speed that are generated by the original Kaimal
spectrum; the line of the ‘Original Spectrum’ represents the original Kaimal power density
spectrum itself.

Comparison of the standard deviation, standard deviation’s bias, and turbulence
intensity of the simulated wind speed before and after modification is shown in Figure 8.
Among which, in Figure 8a,c,e, the line of the ‘Corrected Simulation’ represents the standard
deviation/standard deviation’s deviation/turbulence intensity of the fluctuating wind
speed that is simulated by corrected Kaimal spectrum and generated by 40 points in a
one-dimensional simulated wind field; the line of the ‘Original Simulation’ represents the
standard deviation/standard deviation’s deviation/turbulence intensity of the fluctuating
wind speed that is simulated by the Kaimal spectrum and generated by 40 points in a
one-dimensional simulated wind field; the line of the ‘Corrected mean value’ represents
the mean value of the simulation results from the corrected Kaimal spectrum among
40 points in a one-dimensional simulated wind field; the line of the ‘Original mean value’
represents the mean value of the simulation results from the Kaimal spectrum among
40 points in a one-dimensional simulated wind field; in Figure 8e, the line named ‘Defined’
represents the defined turbulence intensity IT ; the line named ‘Referenced’ represents
the reference turbulence intensity Ire f ; in Figure 8b,d,f, the surface named ‘Corrected’
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represents the standard deviation/standard deviation’s deviation/turbulence intensity of
the fluctuating wind speed of the points varying along with the simulated heights generated
by the corrected Kaimal spectrum in a two-dimensional wind field; the surface named
‘Uncorrected’ represents the standard deviation/standard deviation’s deviation/turbulence
intensity of the fluctuating wind speed of the points varying along with the simulated
heights generated by the Kaimal spectrum in a two-dimensional wind field; and the surface
named ‘Defined’ represents the defined standard deviation/turbulence intensity of the
fluctuating wind speed of the points varying along the simulated heights.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. The power density spectrum fitting: (a) One-dimensional simulated point 20 being corrected
and uncorrected; (b) Two-dimensional simulated point 1 being corrected.; (c) One-dimensional simu-
lated point 21 being corrected and uncorrected; (d) Two-dimensional simulated point 25 being cor-
rected; (e) One-dimensional simulated point 40 being corrected and uncorrected; (f) Two-dimensional
simulated point 49 being corrected.
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Concerning the longitudinal one-dimensional space spectrum correction method and
the lateral spectrum and the vertical spectrum parameters in Table 4, 20 evenly distributed
simulation points are set to verify whether the compensate correction method suggested is
applicable for the lateral spectrum and the vertical spectrum. A one-dimensional simulation
of three-dimensional wind speed is acquired, and the three-dimensional fluctuating wind
velocity contour map and 3 d surface figure of simulation point 10 are shown in Figure 9.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. The contrast of standard deviation of simulated points between being corrected and
uncorrected: (a) One-dimensional space; (b) Two-dimensional space; The contrast of standard de-
viation deviation of simulated points between being corrected and uncorrected: (c) One-dimensional
space; (d) Two-dimensional space; The contrast of turbulence intensity of simulated points between
being corrected and uncorrected: (e) One-dimensional space; (f) Two-dimensional space.
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(a) (b) 

Figure 9. (a) The three-dimensional fluctuating wind velocity contour map of point 10; (b) Standard
The three-dimensional fluctuating wind velocity 3D surface of point 10.

The above results show that:

(1) The standard deviation ε̂ generated by the Kaimal spectrum simulation of a one-
dimensional turbulent wind field decreases from 0.102 to 0.01, and the reduction is
9.2 times, and the error of truncation deviation ε is only 10%;

(2) The numerical values of the Kaimal power density spectrum with a modified com-
pensation coefficient β simulating the overall turbulence intensity ÎT of the spatial
turbulent wind field are closer to the defined turbulence intensity IT , which is de-
fined as the ratio of the fully defined standard deviation to the average wind speed
IT = σ/U. In the one-dimensional wind field, the corrected Kaimal spectrum can
provide more simulated points that are conservative, according to Figure 8a,c, and
the mean value of standard deviation has declined by 0.2 point while the standard
deviation’s deviation has dropped over 84.2%. Moreover, it can be drawn from
Figure 8e that the turbulence intensity value of 45% (18/40) of the simulated points
set in the simulation process finally reach the interval of [Referenced, Defined] after
the spectrum is corrected, compared with that of the uncorrected spectrum simulation
result, which has increased 35%. Therefore, the rate of efficient simulation points in
the wind field has obtained a significant promotion. As can be seen from Figure 8e,f,
the overall turbulence intensity of the compensated corrected turbulent wind field
(referring to the “corrected mean value” line and “Defined” surface, respectively, in
Figure 8) is very close to the turbulence intensity defined by the wind field;

(3) The Kaimal power density spectrum simulation with the modified compensation
coefficient β generates a more simulated point of fluctuating wind speed turbulence
intensity that is distributed within the IEC reference turbulence intensity and defined
turbulence intensity range, which can be effectively used in load design evaluation;

(4) According to Figure 7, the line of the ‘Corrected Spectrum Simulated’ can always
fit well with the line of the ‘Corrected Spectrum’, just like the line of the ‘Original
Simulated Spectrum’ and the line of the ‘Original Spectrum’ does, which indicates
that the fluctuating wind speed generated by the Kaimal power density spectrum
simulation with the modified compensation coefficient β can perfectly fit the modified
self-power spectrum and meet the requirements of engineering applications.
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4. Conclusions

(1) The truncation standard deviation’s bias ε that is generated due to the simulated fre-
quency range truncating from the fully defined range affects the simulated turbulent
intensity ÎT of the fluctuating wind speed. Reducing the error between the trunca-
tion standard deviation σtheory and the defined standard deviation σ can effectively
reduce the effect and take the simulated turbulence intensity ÎT closer to the defined
turbulence intensity IT ;

(2) Under the same simulation conditions, the influence of the initial frequency Fmin
on the truncation standard deviation’s bias ε is significantly greater than that of the
cutoff frequency Fmax. When Fmin < 10−4, the ratio of truncation standard deviation
σtheory to defined standard deviation σ has fallen within the confidence interval of 2σ.
Under this value, the value range of cutoff frequency Fmax can be within [5,10], and
the truncation deviation is small enough;

(3) The turbulence intensity of the turbulent wind field simulated by the Kaimal spec-
trum of IEC61400-1 and IEC referenced the exponential coherent function is more
conservative and more consistent with the defined turbulence intensity;

(4) The calculation method of the compensation coefficient β proposed in this paper is
not that precise, for its value would change with the simulated height and distance.
Nevertheless, the correction methodology can be employed to any wind speed PSD
model for wind speed time-history simulation in uniform space.
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Abstract: A convolutional neural network (CNN) autoencoder model has been developed to generate
3D realizations of time-averaged velocity in the wake of the wind turbines at the Sandia National
Laboratories Scaled Wind Farm Technology (SWiFT) facility. Large-eddy simulations (LES) of the
SWiFT site are conducted using an actuator surface model to simulate the turbine structures to
produce training and validation datasets of the CNN. The simulations are validated using the
SpinnerLidar measurements of turbine wakes at the SWiFT site and the instantaneous and time-
averaged velocity fields from the training LES are used to train the CNN. The trained CNN is then
applied to predict 3D realizations of time-averaged velocity in the wake of the SWiFT turbines under
flow conditions different than those for which the CNN was trained. LES results for the validation
cases are used to evaluate the performance of the CNN predictions. Comparing the validation LES
results and CNN predictions, we show that the developed CNN autoencoder model holds great
potential for predicting time-averaged flow fields and the power production of wind turbines while
being several orders of magnitude computationally more efficient than LES.

Keywords: convolutional neural network; wind turbine; wake flow predictions; large-eddy simulation

1. Introduction

In a wind farm, turbine wake interactions cause power losses and may increase fatigue
loads on downwind wind turbines [1,2]. Therefore, the accurate prediction of turbine wakes
is an important consideration in wind farm layout optimization, which can improve the
efficiency of power production and reduce the overall levelized cost of energy. As a result,
extensive efforts have been made on analytical and numerical models for the estimation of
turbines wake [3–6].

Due to the simplicity and low computational cost, engineering models are widely
used to predict wake flows and optimize wind farm power production, especially in
industrial applications. The very first and extensively studied model was proposed by
Jensen [7]. This model was derived from mass conservation, assuming a top-hat shape
distribution of velocity deficit in the wake. However, the top-hat wake shape assumption is
an oversimplification of the actual wake flow, which can be represented more accurately by
a Gaussian distribution [8–10]. Furthermore, more complex real-life characteristics of wake
flows have also been considered to improve the accuracy and flexibility of the Gaussian
models, including the double-Gaussian type velocity profile of the near wake [11,12], three-
dimensional effects [13,14], more accurate models for turbulence intensities [15], wind
turbine yaw offset [16], atmospheric stability, and Coriolis force [17]. Although these
models are efficient, the accuracy varies significantly from case to case [18,19], especially
in the near wake region [12,20]. In addition, wake overlapping effects are not accurately
described, as shown by Archer et al. [21].
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Compared to engineering models, computational fluid dynamic (CFD) models can
provide a better physics-based description of the dynamics of the turbine wakes, such as
wake meandering [22–24] and the effects of atmospheric stability [25]. Moreover, some
CFD models can even take into account the effect of complex terrain topology [26–28] in
addition to the turbine tower and the nacelle [29,30]. The prediction of the velocity deficit
and turbulent kinetic energy using the CFD methods is more accurate than engineering
models [31]. However, the CFD methods employing LES are computationally expensive,
and their use in wind farm optimization is becoming prohibitively expensive.

The development of machine learning and artificial intelligence has encouraged re-
searchers to explore data-driven models to predict the wake and power production of
turbines in a wind farm. For example, Japar et al. [32] used five different machine-learning
methods, i.e., linear regression, linear regression with feature engineering, nonlinear re-
gression, artificial neural network (ANN), and support vector regression (SVR), to estimate
wind turbine power production based on free stream wind speed, wind direction and the
turbine position in the wind farm. Although the more elaborate models, i.e., ANN and
SVR, have higher accuracy, they slightly deviate from the measured power production in
the high wind speed case. Sun [33] developed an ANN to predict power production of
wind farms that considers wake effects for varying wind direction, wind speed, and yaw
angle. The trained model successfully predicted the power production and was used to
optimize the yaw angle of each wind turbine. However, these power production models
need a large amount of input parameter combinations for the training and may only be
applied to a particular wind farm. When considering the effects of more parameters, for
example, turbulence kinetic energy, the whole neural network has to be retrained.

Other data-driven machine learning models have focused on the prediction of the
velocity deficit of the wake. Wilson et al. [34] used Random Forest and Multilayer Per-
ceptron (MLP) models to interpolate and predict wind velocity in the turbine wake, but it
cannot be applied in different wind fields. Ti et al. [35,36] developed an ANN to predict the
velocity deficit and turbulent kinetic energy field in the turbine wake from the incoming
wind velocity and turbulence intensity. However, the method requires a large amount of
CFD simulation results for training. Yang [37] developed a neural network model to predict
the instantaneous position of the meandering turbine wake, using the upwind velocity,
turbine torque, and turbine thrust as input features. Zhang and Zhao [38] proposed a neural
network combining different dimensionality reduction techniques to predict the velocity
field of distributed fluid systems and applied it successfully to predict the flow field of both
a single turbine and turbine arrays. King et al. [39] proposed a Gaussian Process (GP) model
to correct wind turbine flow field predictions from low-fidelity models, e.g., RANS model,
to high-fidelity models, e.g., LES model. Ali et al. [40] used a Long-Short Term Memory
(LSTM) model to successfully predict wind velocity fluctuation at specific locations in the
turbine wake for a long time period. Renganathan et al. [41] combined an MLP and GP
with a Convolutional Neural Network (CNN) decoder to map the wind turbine operation
parameters, such as inflow wind speed, turbulent intensity, turbine power generation,
atmospheric-boundary layer (ABL) Richardson number, rotor angular speed, and pitch
angle, to the wake flow field. In addition to wake reconstruction, data-driven methods
have also been used to identify and characterize turbine wakes. Aird et al. [42] developed a
mask Region based Convolutional Neural Network (R-CNN) model that identifies turbine
wakes in Lidar scan images with high accuracy, even with some missing data points, and is
also able to character wake shapes in its forming and dissipating.

Despite these contributions, the accuracy of the existing algorithms for velocity field
predictions varies with flow conditions and wind farm layouts, limiting their application
for wind farm optimization. In this study, we develop a CNN autoencoder model for
generating 3D realizations of time-averaged turbulent wake flow of wind turbines at the
Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) site in Lubbock, Texas.
The site includes three Vestas V27 wind turbines to investigate the performance of the
downwind turbine versus the upwind turbine wake. SpinnerLidar measurements of the
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upwind turbine wake at the SWiFT facility have been used to validate the LES results of
our in-house virtual flow simulator code, Virtual Flow Simulator (VFS-Wind model). After
these validation comparisons, a series of LESs of the SWiFT site were conducted to produce
instantaneous and time-averaged flow field results to train and test the CNN. Subsequently,
the so-trained CNN was employed to predict the time-averaged flow field of new wind
conditions. A data augmentation technique is employed to handle the location sensitivity
problems of the CNN. The CNN predictions for the validation test cases were compared
against the simulation results of the separately done LES validation case not used in the
CNN training. In addition, the predicted time-averaged flow field of wind turbines was
used to predict the time-averaged power production of the wind turbines.

This paper is organized as follows. In Section 2, the governing equations of the
numerical model and the computational details of the LES of the SWiFT site are presented.
In Section 3, the CNN autoencoder algorithm is described, followed by the results and
discussion in Section 4. Final remarks can be found in Section 5.

2. Numerical Methods

2.1. Governing Equations

Simulations of the SWiFT site are performed by the LES module of the in-house
incompressible Navier-Stokes solver code–VFS-Wind model. In the VFS-Wind code, the
incompressible turbulent flow is described by the filtered Navier-Stokes and continuity
equation written in curvilinear coordinates given as [43]:
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is the contravariant volume flux, p is the pressure, ρ is the fluid density, μ is the dynamic
viscosity of the fluid, τij is the sub-grid stress tensor for LES, which is modeled using the
dynamic Smagorinsky sub-grid scale (SGS) model [44], and fl is the body force.

2.2. Numerics

In the VFS-wind code, the governing equations are discretized on a hybrid staggered/non-
staggered grid in space. The convective terms are discretized using second-order accurate
central differencing. For the divergence, pressure gradient, and viscous-like terms, the dis-
cretization used is the second-order accurate, three-point central differencing method [45].
The time derivatives are discretized using a second-order backward differencing scheme [46].
The discrete flow equations are time-integrated using an efficient, second-order accurate
fractional step methodology in conjunction with a Jacobian-free, Newton-Krylov solver for
the momentum equations and a GMRES solver enhanced with the multigrid method as a
preconditioner for the Poisson equation.

2.3. Actuator Surface Model

The wind turbine blades and nacelle are modeled using the actuator surface method
developed by Yang and Sotiropoulos [47]. This method describes the flow field on the
background Cartesian mesh and the wind turbine on the Lagrangian mesh following the
actuator surfaces. Velocities on the actuator surfaces are interpolated from the background
mesh using the smoothed discrete delta function proposed by Yang et al. [48]. Actuator
surfaces of wind turbine blades are represented by chord lines along the radial direction.

175



Energies 2022, 15, 41

Lift and drag forces on blades are calculated similarly to the actuator line model, using the
blade element momentum theory. For the nacelle actuator surfaces, the normal component
of force is calculated by reconstructing the wall-normal velocity near the actuator surface to
satisfy the non-penetration constraint, and the tangential forces are computed as a function
of the local incoming velocity and a friction coefficient that parameterizes the effects of
near-wall turbulence and the effects of surface geometry. Then the counterforces to the
flow field ( fl in Equation (2)) are calculated by distributing the forces on the blades to the
background mesh using the above-mentioned interpolation method. Details of the actuator
surface method can be found in Yang and Sotiropoulos [47].

3. Computational Details of SWiFT Site Simulation

The SWiFT facility, located in Lubbock, Texas, is an experimental site supported by the
U.S Department of Energy to investigate turbine wakes and turbine-turbine interactions. It
is comprised of three research-scale wind turbines and two meteorological towers (METs).
The layout of wind turbines is as shown in Figure 1b. The wind turbines, Vestas V27s, have
rotor diameters of D = 27 m and hub heights of 32.1 m. A nacelle mounted Technical
University of Denmark (DTU) SpinnerLidar is installed on turbine T1 to measure the
turbine wake. The two METs are located upwind against the predominant wind direction to
measure the atmospheric inflow. Details of the SWiFT facility can be found in Berg et al. [49].

Figure 1. (a) is the diagram of the computational domain. (b) is the relative location of three turbines.

A series of LESs were performed to generate 3D flow fields of the SWiFT site for a
variety of inflow conditions, which give rise to different turbine wake interaction config-
urations. The computational domain of the real-scale modeled SWiFT site is shown in
Figure 1a. It has a length of L = 80D, a width of W = 24.9D, and a height of H = 37D.
Free-slip boundary condition is applied to the top and periodic condition along the span-
wise direction. A logarithmic law of wall boundary condition is applied to the ground,
which is given by

u = u∗/κ ln(z/zo), (3)

where u∗ is the friction velocity, κ is the von Karman constant, and zo = 0.0037D is the
surface roughness height. The outlet is given by the Neumann boundary condition, and the
inlet is fed with a fully-developed turbulent flow generated by a precursor simulation as
described below. Three wind turbines are located over 8D downwind from the inlet. Each
turbine has a hub height of h = 1.19D and a rotor diameter of D = 27 m. Turbine 2 is 2.99D
west and 0.2D south from turbine 1. Turbine 3 is 5D north from turbine 1. The arrangement
of the turbines is shown in Figure 1b. To generate different wake conditions, we conducted
simulations for four wind directions (150◦, 0◦, 330◦, and 274◦, taking south as 0◦) as shown
in Figure 2. Although the wind directions do not perfectly align with the cardinal directions,
for the sake of brevity, they would be referred to as North-East, South, South-West, and
West, respectively, through the rest of the paper. The flow domain is rotated in different
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wind directions to ensure the x-axis is always along the wind directions. In addition, five
wind velocities are considered for each direction (U∞ = 7, 9, 11, 13, 15 m/s).

Figure 2. Diagram of wind turbine configurations in different wind directions; (a) north-east (150◦),
(b) south (0◦), (c) south-west (330◦), and (d) west (274◦). Solid lines marked using T1, T2 and T3
represent the location of three turbines. Dashed lines represent the wake of each turbine.

The computational domain is discretized with a grid resolution of Δx = 0.177D
and Δy = 0.089D, along the windwise and spanwise directions, respectively. A constant
resolution of Δz = 0.089D was given along the wall-normal direction up to a height of
7.46D and a grid stretching up to the top of the domain with a final resolution of Δz = 1.48D.
Therefore, a uniform grid is obtained in the bottom area that the turbines are located. The
details of the computational domain are shown in Table 1.

Table 1. Geometrical and wind characteristics of the SWiFT site model simulations used for the
training and validation of the CNN. U∞ is the free-flow velocity. Re is Reynolds number. D is the
diameter of the turbine rotor (=27 m). Nx, Ny, and Nz are the number of computational grid nodes in
windwise, spanwise, and vertical directions, respectively. Δx, Δy, and Δz are the special resolution in
windwise, spanwise, and vertical directions, respectively.

H 37D Nx × Ny × Nz 451 × 143 × 281
W 24.9D Δx 0.177D
L 80D Δy 0.089D

U∞ (m s−1) 7, 9, 11, 13, 15 Δz 0.089–1.481D
Re 5.7 × 108 Δt (s) 2 × 10−4 H/U∞

D (m) 27

Precursor simulation of a neutral atmospheric boundary layer has been performed to
prescribe the velocity at the inlet of the SWiFT site simulations. The precursor simulation
has the same grid size and boundary conditions as the SWiFT site numerical domain. The
initial transient of the simulation was discarded. After the mean kinetic energy of the
computational domain reached steady state, velocities at a plane located in the center of
the channel were saved at a Δt = 2.0 × 10−4H/U. The time-averaged velocity profile and
turbulent intensity of the precursor simulation are shown in Figure 3.
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⎯

Figure 3. Ten-minute time-averaged (a) velocity profile and (b) turbulence intensity; (◦) met-tower
measurements and (–) precursor simulation.

4. Validation of the Computational Model

A numerical simulation of a single wind turbine has been performed to validate the
actuator surface model of the SWiFT wind turbine (Vestas V27) [50]. Numerical results
are compared against MET data, the turbine supervisory control and acquisition system
(SCADA), and SpinnerLidar measurements performed at the SWiFT facility by Sandia
National Laboratories and the National Renewable Energy Laboratory [51]. Details of the
field experiment and data acquisition can be found in Herges et al. [51].

An initial comparison of the inlet velocity profile obtained from the precursor simula-
tion and the measurements was performed. Measurements of the 10-min time-averaged
velocity and turbulence intensity obtained from a MET 2.5D upwind from the wind turbine
are compared against the precursor simulation in Figure 3. Although the velocity profile
shows good agreement, the turbulence intensity of the precursor simulation shows to be
slightly larger than that obtained from the met-tower measurements. Furthermore, the
difference in the turbulence intensity seems to be amplified with height, which suggests
a slight decrease in turbulent kinetic energy due to atmospheric stratification may have
occurred. However, the difference in the turbulence intensity is negligible, around 1% at
hub height and 2.7% at 2.15D.

The yaw misalignment of the wind turbine was recorded with the SCADA system.
Due to the constantly changing wind direction and the turbine yaw controller not perfectly
tracking the wind during the measuring campaign, a time-dependent yaw offset is pre-
scribed to the wind turbine in the simulations to match the measured flow misalignment,
shown in Figure 4. In addition, the high-frequency fluctuations of the measured yaw
offset, due to the small-scale turbulent coherent structures, are filtered by applying a locally
weighted scatterplot smoothing with a window size of 100s to the offset signal. Therefore,
a smoother yawing is prescribed to the turbine in the numerical simulation.
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⎯ ⎯Figure 4. Yaw offset in time between the wind and the turbine; (–) SCADA measurement and (–)
prescribed to the turbine on the numerical simulation.

The numerical results are compared against the 10-min line-of-sight velocity mea-
surements in the wake of the T1 wind turbine obtained from the nacelle-mounted DTU
SpinnerLidar device [51]. The SpinnerLidar performed 984 scans at a constant focus dis-
tance from the device every two seconds. In addition, measurements were performed at
1D to 5D behind the wind turbine by varying the focus distance. The SpinnerLidar cycled
the focus distance from 1D to 5D every 30 s.

To mimic the SpinnerLidar measurements, the velocity field of the numerical results
are decomposed into a line-of-sight velocity (VLOS) with vertex, or origin, at the location
of the nacelle. For higher fidelity in the comparison to the measurements, the simulated
VLOS field is sampled at the approximate spatial coordinates and time as the SpinnerLidar
measurements. The scattered data from the numerical simulation and the SpinnerLidar
are interpolated into a spherical surface mesh to compute the 10-min time-averaged VLOS.
A comparison of the horizontal line-of-sight velocity profiles at hub height is shown
in Figure 5. Computed velocities in the wake of the turbine are slightly overestimated
compared to the SpinnerLidar measurements, specifically close to the center of the rotor.
Although the nacelle is modeled and avoids the formation of an unphysical jet in the center
of the rotor (commonly observed in standard actuator line models), the momentum deficit
seems slightly under-estimated. However, the numerical results from VFS-Wind show
good agreement with the SpinnerLidar measurements.

⎯ ⎯

Figure 5. Time-averaged line-of-sight velocity: (◦) SpinnerLidar and (–) numerical LiDAR from the
LES; (a) 1D, (b) 2D, (c) 3D, and (d) 4D behind the wind turbine.
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5. CNN Autoencoder Model

We employed a CNN autoencoder model to predict the time-averaged flow field by
extracting the key flow field features from instantaneous LES results. The CNN algorithm
was originally developed to handle image recognition and image classification tasks [52,53].
Therefore, the CNN has some inherent advantages in handling high-dimensional data:
it generally consists of convolutional layers and down-sampling layers that can reduce
dimensions of the input image and extract abstract features of the image; the weight
sharing concept (it will be explained in the next paragraph) used in CNN allows it to
handle high-dimensional data using less learnable parameters and avoid location sensitivity
problem [52]. As a variant architecture, the CNN autoencoder (Figure 6) consists of an
encoder, which extracts features from input data, and a decoder, which is an inverse of the
encoder. As a result, such CNN would enable the image reconstruction from the extracted
features. Because of its ability to reconstruct field data, the CNN autoencoder has become a
popular tool in the field of fluid dynamics, as well [54–57]. For these reasons, we employed
the CNN autoencoder model in this study.

Figure 6. Schematic of the encoder-decoder CNN. Feature maps are depicted as solid boxes. Convo-
lutional layers are depicted as gray dash lines. L × W × H × channels represents the dimensions of
each feature map. L, W, and H represent the resolution of the input image in windwise, spanwise
and vertical directions, respectively. The layer type, filter size, and stride size of each layer are shown
below it. Strides represent the movement step-size of the convolutional filter.

The architecture of the CNN autoencoder used in this work is illustrated in Figure 6.
The encoder part includes three 3-dimensional convolution layers for extracting features
and down-sample the input data. Each convolution layer includes multiple channels
corresponding to different features to be learned. The convolutional layer embedded with
a nonlinear activation function and bias operates as follows [55]:

ql
i = σ

(
kl

i ⊗ ql−1 + bl
i

)
, (4)

where ql
i is the output of ith channel in the lth convolutional layer, σ is the rectified linear

unit (ReLU) nonlinear activation function [58], kl
i is the ith trainable convolutional filter,

⊗ is the convolution operator, ql−1 is the input of the lth convolutional layer and bl
i is the

ith bias.
In Figure 7, we demonstrate the concept of the convolution operation. In this figure, x

is a 4× 4 input image with paddings of zero, k is a 3× 3 convolution kernel (or filter), while
y is the output of the convolution operation. The convolution window is traversed through
the padded input image in both horizontal and vertical directions, where the convolution
operation with the filter is performed. The step size of each move is the stride—i.e., the
step size from red square to orange square. In the convolution operation, the filter can
extract features from the input image, and the learnable weights stay unchanged as the
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convolution window moves. As a result, the weights of the filter are shared through the
whole input image, and because of the weight sharing only one filter with nine weights is
required to extract a feature through the entire padded image—instead of 16 different filters
corresponding to each output element. In this approach, the filter will be independent of its
location leading to fewer learnable weights and thus a more efficient training process. The
convolution operation consists of an inner product between the convolution window (i.e.,
the red dashed box in the input of Figure 7) and the filter to generate the corresponding
output element (e.g., the red dashed box in the output of Figure 7). Since the convolution
operation reduces the image size, paddings of zeros are used to control the output size.
For instance, the output size of the original 4 × 4 input image in Figure 7 (solid boxes
in x) is 2 × 2 (solid boxes in y). However, with paddings, the output has the same size
as the original input. In practice, the convolution operation can work on both 2- and
3-dimensional inputs.

Figure 7. Schematic of the convolution operation. x is the input, k is the convolution kernel, y is the
output. Zeros around the input are padding. The orange and red squares represent corresponding
input and output cells of the first and second convolution operation, respectively.

Since the convolution operation only involves a linear transformation, an activation
function is needed to provide the nonlinear transformation into the CNN. Compared to the
sigmoid or hyperbolic tangent activation functions, a rectified linear unit (ReLU) in hidden
layers can increase the computational efficiency of the machine learning algorithm [58].
The ReLU function is given by [58]

σ(θ) = max(0, θ), (5)

where θ is the result of convolution operation plus the linear bias.
The decoder contains two transpose convolution layers, which are the inverses of

the convolution layers, and a convolution layer to up-sample the data and construct the
flow field. The discrepancy between output and the target values during the training
iterations is calculated using the mean square error (MSE) loss function. Then, the weights
in convolutional filters and the biases are updated by the backpropagation algorithm to
minimize the loss function [59].

To determine the parameters of the CNN architecture, i.e., the number of layers and
channels, and the kernel and stride sizes, a series of parameter combinations are tested
to ensure the highest accuracy of results and least number of learnable parameters. The
padding sizes are elaborately determined to guarantee the correct output size.

6. Results and Discussion

We carried out LES of the SWiFT site under four different wind directions and five
different wind velocities to train and validate the predictions of the CNN. First, we carried
out the LES for all cases and discarded the initial two flow-through times—i.e., the duration
of time it takes for an air particle to travel through the wind farm. Subsequently, the
numerical simulations were continued until the first and second-order turbulence statistics
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were fully converged. The convergence of the time-averaged flow field is determined using
a time-history-analysis approach reported in Khosronejad et al. [60]. During the training
process, the fully converged instantaneous flow fields were fed into the CNN at the input
layer, while the time-averaged flow field was designated as the target of CNN at the output
layer. We note that the samples used in the training and, consequently, validation processes
are taken from smaller domains around each turbine. These subdomains are 6D long, 3D
wide, and 1D high. The turbine is located 2D downwind from the inlet and centered along
the spanwise direction (Figure 8).

Figure 8. Schematic of the local area around turbine of CNNs sub-domain. The dashed line shows
the plane of the rotor.

A schematic of the training procedure is shown in Figure 9. The input of each sam-
ple is composed of five neighboring snapshots with 1000 time-step intervals to convey
the information of flow field fluctuations—induced by the wake meandering and large
turbulent structures from the incoming flow. To examine the effect of the number of in-
put snapshots on the accuracy of the trained CNN’s predictions (for the time-averaged
results), we conducted a systematic analysis in which we used a different number of input
snapshots and calculated the computational errors. The computational error refers to the
difference between the CNN’s and LES results of the training and validation cases. Our
findings for the relation between the number of input snapshots and the corresponding
computational errors are shown in Figure 10. As seen in this figure, after five snapshots,
the computational errors seem to plateau, suggesting that five snapshots are enough to
reconstruct the time-averaged flow field. The target value of the CNN at the output layer is
a statistically converged time-averaged flow field. Therefore, each training sample consists
of five instantaneous snapshots and the time-averaged flow field.

Figure 9. Schematic of the training procedure to develop the CNN. The instantaneous velocity fields
are fed into the CNN as the input signal while the time-averaged windwise velocity field is enforced
as the target of the output signal.
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(a) (b) 

Figure 10. Mean square error as a function of the number of input snapshots; (a,b) present the
computational errors of the CNN for the training and test dataset, respectively.

The case we considered for the training of the CNN includes the SWiFT site with
the north-east wind direction and wind speed of U∞ = 7 m/s. The learning rate of the
CNN had an initial value of 0.001 with a decay rate of 0.7 in a step size of 500 training
epochs. Overall, 99 samples were used in the training process which took 1500 epochs of
iterations until the loss curve was fully converged. The prediction of the training case is
compared with the LES result in Figure 11. The difference between CNN prediction and
the LES result is presented in Figure 12. Velocity profiles from six spanwise cross-sections
are compared in Figure 13. The high accuracy of the CNN prediction demonstrates that the
CNN is well trained.

Then the CNN is validated using 19 cases. Similar to the training, five successive
snapshots (i.e., five instantaneous flow field data taken from five successive time steps) are
time-averaged to produce the limited time-averaged flow field and used as the input to the
trained-CNN to generate the reconstructed time-averaged flow field. The CNN-predicted
time-averaged flow fields are then compared against the time-averaged results of separately
conducted LES. For brevity, we only present the comparison of the overlapped turbine
wakes for the four cases, e.g., north-east with U∞ = 15 m/s, south with U∞ = 13 m/s,
south-west with U∞ = 11 m/s and west with U∞ = 9 m/s. In Figure 14, we plot the
windwise velocity contours from top views at the hub level and side views at the hub layer.
In Figure 15, we plot the difference between the CNN predictions and LES results. Addi-
tionally, velocity profiles taken from six spanwise cross-sections are compared in Figure 16.
In the north-east (Figures 14a, 15a and 16a) and south-west (Figures 14c, 15c and 16c) wind
direction cases, the presented turbines are 6D downwind of the other turbines. As seen in
these figures, the trained CNN has been able to accurately resemble the velocity deficit in
both the upwind and downwind wakes. The largest discrepancy is observed for the cases
with the south (Figures 14b, 15b and 16b) and west (Figures 14d, 15d and 16d) wind direc-
tions, with the latter showing the maximum discrepancy. The present turbines are 5D and
3D downwind of the other turbines in the south and west case, respectively. The difference
in the LES versus the CNN computed velocity fields seems to be caused by the proximity
of the wind turbines, i.e., the closer the two turbines, the greater the computational error
of the CNN predictions. We note that the CNN results for the velocity fields upwind of
the turbines (Figure 15b,d, and profiles I, II in Figure 16b,d) in both the south and west
cases seem to be slightly over-estimated. However, the CNN could predict the wake of
the centered turbine with great accuracy, suggesting that the relatively higher discrepancy
upwind of the turbine is due to the location sensitivity of the trained CNN. Theoretically,
because of the “weight sharing” feature of the CNN, a trained CNN should be able to
reconstruct the turbine wake at any location within the domain. However, the turbines
and their wakes have almost the same location in all the training samples and the upwind
wake does not strongly affect the training subdomain. Therefore, the trained CNN deems
sensitive to turbine location.
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Figure 11. Contours of time-averaged velocity normalized with the free-flow velocity for wind
turbines in the training case. Top view cross-sections are at hub-height and side-view cross-sections
are at the rotor center. Contours are from the CNN, the CNN with data augmentation method
(CNNDA), and the LES results.

Figure 12. Contours of velocity difference between CNN and LES results normalized with the free-
flow velocity for wind turbines in the training case. Top view cross-sections are at hub-height and
side-view cross-sections are at the rotor center.

Figure 13. Velocity profiles along the spanwise direction at I, II, III, IV, V, and VI in Figure 11. (–) LES,
(Δ) CNN, and (◦) CNN with data augmentation.
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Figure 14. Contours of time-averaged velocity normalized with the free-flow velocity for wind
turbines. (a) wind turbine 2 in north-east case; (b) wind turbine 3 in south case; (c) wind turbine 3
in south-west case; (d) wind turbine 1 in west case. Top view cross-sections are at hub-height and
side-view cross-sections are at the rotor center. Contours are from the CNN, the CNN with data
augmentation method (CNNDA), and the LES results.
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Figure 15. Contours of velocity difference between the CNN and LES results normalized with the
free-flow velocity for wind turbines. (a) wind turbine 2 in the north-east case; (b) wind turbine 3 in
the south case; (c) wind turbine 3 in the south-west case; (d) wind turbine 1 in the west case. Top
view cross-sections are at hub-height, and side-view cross-sections are at the rotor center.

Figure 16. Velocity profiles along the spanwise direction at I, II, III, IV, V, and VI in Figure 14. (a) wind
turbine 2 in the north-east case; (b) wind turbine 3 in the south case; (c) wind turbine 3 in the
south-west case; (d) wind turbine 1 in the west case. (–) LES, (- -) Analytical model, (Δ) CNN, and
(◦) CNN with data augmentation.
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To overcome the location sensitivity problem, we used the data augmentation tech-
nique. In this approach, instead of having a fixed location, the subdomains around the
turbines are randomly moved up to 5D upwind. We also increase the size of training sam-
ples by a factor of five. Using this approach, the training samples contain the turbines and
their wakes which are randomly scattered in each subdomain. The training and validation
results of the CNN trained using the data augmentation technique (CNNDA) are depicted
in Figures 11–16. The velocity deficits in the upwind wakes of the south and west cases
are predicted more accurately in comparison to the results without data augmentation
(Figure 15b,d, and I in Figure 16b,d). However, the discrepancies of the velocities around
the turbines are still large in Figure 15b,d, because in these cases, the interaction with
upwind turbine’s wake is stronger than the training case.

The analytical model developed by Bastankhah and Porté-Agel [9] is used to compare
against the CNN model. In this analytical model, the velocity deficit in the wake of a
turbine is described as [19]:

Δu
u0

=

⎛⎜⎝1 −
√√√√1 − CT

8
(

σyσz
D2

)
⎞⎟⎠ exp

(
−0.5

[(
y
σy

)2
+

(
z
σz

)2
])

, (6)

where the Δu is the velocity deficit in the wake, u0 is the mean wind velocity perceived by
the wind turbine, CT is thrust coefficient, σy and σz are the wake widths in spanwise and
vertical directions, respectively, which are given by [19]:

σy

D
= ky

x
D

+ 0.2

√
1 +

√
1 − CT

2
√

1 − CT
, (7)

σz

D
= kz

x
D

+ 0.2

√
1 +

√
1 − CT

2
√

1 − CT
, (8)

where ky and kz are the wake growth rates in spanwise and vertical directions, respectively.
In the training and validation cases, CT = 0.8. The wake growth rates ky = 0.075 and
kz = 0.075 are obtained by fitting the training case. For the turbines in the wake, a wake
superposition model is considered [61]:

u = Uhub −
√

∑n
i Δu2

i , (9)

where Uhub is the free stream velocity at the hub height, u is the velocity in the wake of
current turbine, Δui is the wake velocity deficit of the ith turbine in stand-alone condition,
n is the number of superposition wakes. The velocity profiles of the analytical model
are presented in Figure 16. The analytical model has a good performance in far wakes.
However, the velocity deficits are overpredicted in the near wake areas (III in Figure 16) and
underpredicted in the near upwind areas (II in Figure 16). In comparison, the presented
CNNDA model seems to have a better performance than the analytical model in predicting
the velocity field.

The discrepancy between the CNNDA predictions and the LES time-averaged results
were quantified using the coefficient of determination (R2), mean absolute error (MAE), root
mean square error (RMSE), and the mean absolute relative error (MARE). These statistical
error indices are defined as follows [62]:

R2 = 1 −
∑N

i=1

(
ψi(CNN) − ψi(LES)

)2

∑N
i=1

(
ψi(CNN) − ψi(CNN)

)2 , (10)
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MAE =
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i=1
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N

, (11)

RMSE =
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i=1

(
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)2

N
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, (12)

MARE =
1
N ∑N

i=1

∣∣∣ψi(CNN) − ψi(LES)

∣∣∣
ψi(LES)

, (13)

where ψi(CNN) is the predicted value (of time-averaged windwise velocity component)
using the CNNDA, ψi(LES) is the value obtained from the LES model, ψi(CNN) is the mean
predicted value using the CNNDA, and N is the total number of samples, i.e., the total
number of computational nodes in the subdomain surrounding the turbine.

The discrepancies between the CNNDA predictions and the LES time-averaged results
for the four cases are presented in Table 2. The CNNDA predictions maintain high accuracy
for the turbines located in the free flow for all wind conditions (i.e., various magnitudes
and directions). The largest discrepancies are observed for the turbines located in the wake
and, specifically, the west wind direction case, where the distance between the turbines is
the smallest. Nevertheless, the R2 for all cases are over 0.95 and the RMSE less than 3%,
which is quite remarkable.

Table 2. Statistical error indices of the CNNDA relative to the LES results for different wind direc-
tion cases.

Wind Direction Turbine R2 MAE RMSE MARE

NE
T1 0.99 0.0055 0.0097 0.01
T2 0.99 0.0066 0.0111 0.01
T3 0.99 0.0045 0.0080 0.01

S
T1 0.98 0.0083 0.0147 0.02
T2 0.98 0.0080 0.0162 0.01
T3 0.97 0.0106 0.0149 0.02

SW
T1 0.97 0.0102 0.0095 0.02
T2 0.98 0.0074 0.0143 0.01
T3 0.92 0.0166 0.0201 0.03

W
T1 0.95 0.0140 0.0256 0.03
T2 0.95 0.0138 0.0267 0.03
T3 0.96 0.0116 0.0181 0.02

The computational efficiency of the proposed CNN model has a great advantage over
the LES. For each case, the LES required over 8 × 104 CPU hours to generate the time-
averaged flow fields. In comparison, although the proposed CNN model requires about
10 CPU hours for training, the well-trained model only requires 50 s to reconstruct the time-
averaged flow field. Considering the LES requires 9.6 × 103 to generate the instantaneous
flow fields for inputs, the total cost of the proposed CNN model is still 88% less than
the LES.

Now we turn our attention to the possibility of using the proposed CNN to predict
aerodynamic power production of the individual turbines using the predicted velocity
fields as follows:

Paero =
1
2

ρAu3, (14)

where Paero is the aerodynamic power production, ρ = 1.225 kg m−3 is the air density, A
is the frontal rotor area, and u is the mean time-averaged windwise velocity component
over the rotor area. In Figure 17, we compare the aerodynamic power productions of the
four turbines using the LES results and CNNDA predictions. Wind velocities of the four
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cases range from 7 m/s to 15 m/s. Even though the velocity field discrepancies between
LES and CNNDA are satisfactory, all wind turbines across all wind velocities overestimated
the predicted power productions. As expected, the largest discrepancy is at turbine 1 in the
west wind direction case, where the velocity deficit around the rotor area is underestimated
(for instance, II in Figure 16d).

Figure 17. Power production of turbines located in the wake.

7. Conclusions

In this study, we examined the capability of the CNN autoencoder to reconstruct
the time-averaged flow field around the wind turbines at the SWiFT facility and predict
turbine power output. LES of the SWiFT facility with four different wind conditions (i.e.,
north-east, south, south-west, and west directions with wind speeds of 7, 9, 11, 13, and
15 m/s) were performed to generate training and validation data for the CNN. A six-layer
CNN autoencoder was developed and trained using both instantaneous and time-averaged
LES results around three individual turbines using the north-east wind direction case. The
input of every sample is constructed using five instantaneous velocity fields to reflect the
temporal variations of turbulent structures. Subsequently, the trained CNN is validated
and compared with time-averaged results of the additional large-eddy simulations. Based
on the findings of this study, the following conclusions can be drawn:

(1) The trained CNN can successfully predict the time-averaged flow field around indi-
vidual turbines, while the data augmentation technique can effectively address the
location sensitivity of the trained CNN. The predicted flow field clearly reflects the
main features of the turbine wakes obtained from LES. The velocity profiles drawn
from CNN predictions agree well with LES time-averaged results and the overall
relative errors are no more than 3%. The presented model has a good generality in
different wind speeds. However, wake overlapping will affect the accuracy of the
predictions. Different turbine distances lead to different wake-turbine interaction
effects and, thus, the flow structure near the turbine varies significantly. Since the
CNN model is only trained using one turbine wake interaction case, the generality in
different wake interaction cases is approvable. In a future study, we will consider more
wake overlapping cases in the training dataset to enable better flow field predictions.

(2) The computational cost associated with the LES to generate the time-average flow field
for each case was over 8 × 104 CPU hours, whereas the CNN required nearly 50 s to
reconstruct the same flow field. Considering the training cost of about 10 CPU hours
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and the cost of LES to produce instantaneous flow field (i.e., 9.6 × 103 CPU hours)
for the inputs of the CNN, the total cost of the proposed CNN is 88% less than that of
the LES. Therefore, the proposed CNN algorithms could enable reliable predictions of
the wake flow field at a fraction of the cost required by the LES.

(3) The CNN predictions for the aerodynamic power productions were in good agree-
ment with the LES results, except for the turbine located in the near wake of the
upwind turbine owing to an underestimation of the velocity deficit within the wake.
Overall, the comparisons between the LES results and CNN predictions of the SWiFT
wind turbines demonstrate the potential of the developed CNN autoencoder for pre-
dicting time-averaged flow fields and the power production of wind turbines while
being several orders of magnitude less computationally expensive than high-fidelity
numerical simulations.
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Abstract: Frequency and voltage deviation are important standards for measuring energy indicators.
It is important for microgrids to maintain the stability of voltage and frequency (VF). Aiming at the
VF regulation of microgrid caused by wind disturbance and load fluctuation, a comprehensive VF
control strategy for an islanded microgrid with electric vehicles (EVs) based on Deep Deterministic
Policy Gradient (DDPG) is proposed in this paper. First of all, the SOC constraints of EVs are added
to construct a cluster-EV charging model, by considering the randomness of users’ travel demand
and charging behavior. In addition, a four-quadrant two-way charger capacity model is introduced
to build a microgrid VF control model including load, micro gas turbine (MT), EVs, and their random
power increment constraints. Secondly, according to the two control goals of microgrid frequency
and voltage, the structure of DDPG controller is designed. Then, the definition of space, the design
of global and local reward functions, and the selection of optimal hyperparameters are completed.
Finally, different scenarios are set up in an islanded microgrid with EVs, and the simulation results
are compared with traditional PI control and R(λ) control. The simulation results show that the
proposed DDPG controller can quickly and efficiently suppress the VF fluctuations caused by wind
disturbance and load fluctuations at the same time.

Keywords: islanded microgrid; electric vehicles; charger capacity model; VF control; DDPG

1. Introduction

Microgrid refers to a small power generation and distribution system that is composed
of distributed power sources, energy storage devices, energy conversion devices, related
loads, monitoring, and protection devices. It is an autonomous system that can realize
self-control, protection, and management. In addition, the microgrid can operate in grid-
connected mode and islanded mode. In islanded mode, the power quality of the microgrid
is usually maintained by the micro sources and flexible loads [1]. At the same time, with
the development of vehicle-to-grid (V2G) technology, the research of EVs in the areas of
grid peak and valley filling, suppression of power fluctuations, and microgrid stability
control has also been deepened [2,3], which brings opportunities and challenges to the VF
regulation of microgrids.

Due to the limited capacity of the islanded microgrid, ensuring the stability of fre-
quency and voltage is the key for the operation safety of microgrid. In [4], a VF strategy of
an islanded microgrid based on fuzzy logic controller is proposed, which can control active
and reactive powers and decrease power losses of the microgrid, thus the effectiveness
and robustness of the proposed controller over the conventional proportional- integral
controller. In [5], a decoupled VF controller for DGs is proposed, which is able to keep the
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grid VF magnitude constant, so as to enhance the resilience and increase the penetration of
renewable energy to the stand-alone microgrid. In [6], an optimized solution is proposed
for minimizing both frequency and voltage deviations. The simultaneous control of VF is
achieved with proper load sharing among the DG units. However, the system parameter
setting of the traditional control strategy mentioned above is complicated, and the control
performance needs to be further improved when faced with complex working conditions
such as wind disturbance and load fluctuation.

Therefore, various intelligent algorithms are gradually being widely used in the control
of microgrids. In [7], a new scheme for the online minimization of harmonic distortion
of an islanded microgrid based on a population-based optimization method is proposed,
presenting a new central controller to optimize network voltage harmonics according
to particle swarm optimization (PSO) algorithm, while active power is shared between
distributed generation units. In [8], a coordinated load shedding control scheme based on
Double-Q learning for an islanded microgrid is proposed to solve the problem of how to
determine the appropriate load shedding amount and objects when frequency is disturbed
by considering the relationship between the active power and frequency deviation of each
distributed energy resource. However, the intelligent controllers mentioned above can only
regulate frequency or voltage, that is, they cannot take both of frequency recovery and
voltage adjustment.

Meanwhile, in the construction of the microgrid model, the access of EVs is not consid-
ered, and the boundary of the output power of each unit is ignored. Thus, there is room for
further optimization in the microgrid model and control strategy. EVs have become a new
type of distributed energy storage unit with its energy saving, environmental protection,
and flexibility [9,10], which can provide power support for the islanded microgrid and
improve its operational flexibility through V2G technology. In [11], an islanded microgrid
LFC model including loads, distributed power sources, MT, EVs, and their constraints is
established. However, the output power boundary of the EVs charging station model in
this paper is a fixed value, which does not match the actual situation. In [12], a microgrid
including micro gas turbine (MT), EVs, distributed power, and loads is established, and
an improved robust model predictive frequency control strategy of microgrids with EVs
is proposed, which can better suppress the frequency fluctuation with a faster response
speed than other methods, but the random output power boundary is not refined from
the perspective of cluster EVs. In addition, none of the above references considers the
reactive power regulation effect of EVs on voltage stability. In fact, the power boundary
of the charging station can be affected by user travel demand, charging behavior, and the
characteristics of EV clusters. Thus, the active power P and reactive power Q output by
the EVs charging station can be adjusted according to the control command and the power
factor angle of the charger, so as to complete the stability control of VF.

In summary, the randomness of users can affect the charging behavior of EVs stations.
In addition, there is no suitable intelligent control algorithm that can use EVs to realize
the coordinated control of the VF of the islanded microgrid. Thus, a VF coordinated
control strategy based on Deep Deterministic Policy Gradient (DDPG) is proposed in
this paper, which is applied to the VF control of an islanded microgrid with EVs. The
main contributions are as follows: (1) In order to solve the problem of randomness in
the charging boundary of EVs caused by the users’ randomness, the VF control model of
EVs is established. The SOC constraint condition of the EVs is established, and a four-
quadrant two-way charger capacity model is introduced. Thus, a microgrid VF control
model including load, MT, EVs, and their random power boundary is built; and (2) the
voltage and frequency fluctuations can be caused by wind disturbance and load fluctuations.
Thus, the DDPG controller with online learning and experience playback capabilities is
selected. The convergence characteristics of DDPG are great, so it can coordinate the
frequency recovery and voltage regulation of the islanded microgrid greatly. (3) In order
to achieve effective regulation of voltage and frequency at the same time, the structure of
DDPG controller is designed according to the two control goals of microgrid frequency
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and voltage. In addition, then the definition of space, the design of global and local reward
functions, and the selection of optimal hyperparameters are completed. Thereby, it can
simultaneously meet the VF control requirements.

2. Microgrid Control Model with EVs

The VF control in microgrid can be realized by distributed power supply, energy
storage device, etc. In addition, EVs can also participate in microgrid VF regulation. For the
VF control of microgrid, the microgrid control system of distributed power supply, load,
MT, and EVs is established in this section.

2.1. Electric Vehicle Control Model

As a flexible energy storage device in microgrid control, EVs can regulate the charge
and discharge power of the battery according to the instructions of the controller, thereby
to control the interaction of active power with the grid [13]. At the same time, charger
scheduling is applied to realize the regulation of voltage or reactive power. The two-way
charger can realize four-quadrant operation [14], and the power factor cannot determine
the transmission direction of reactive power, so the operating quadrant of the charger
cannot be determined. Taking the power factor angle as the control variable can determine
the transmission direction and magnitude of active and reactive power together, which is
more conducive to the two-way transmission control of active and reactive power between
the grid and the EV.

The function of EVs in microgrid control is similar to that of energy storage devices.
In terms of active power, the charging and discharging power ranges of EV are limited
within ±λe, due to the limits of inverter capacity. The Emax is the maximum capacity of
EVs station. In addition, the recommended maximum capacity Ermax = 0.9Emax and the
recommended minimum capacity Ermin = 0.1Emax are set to ensure the safe and stable
operation of EV station. When the current capacity E of the EVs station is higher than
the Ermax, the EV stations can discharge to the microgrid, and the discharge power range
is 0–λe. Similarly, if the current capacity of the EVs station is lower than the Ermin, the
EV station can be charged from the microgrid within the charging power range is −λe–0.
In addition, the EV control model can be affected by users’ uncertain factors such as the
randomness of travelling demands and charging behavior of users.

Firstly, the randomness of user travel demand affects the capacity and limitation of
the charging station to be random. Therefore, it is necessary to establish the constraints of
SOC to ensure that the user’s normal travel is still satisfied under the interaction between
EVs and the grid. In addition, the initial SOC of the battery in this paper is set as a
random number [15] obeying Gaussian distribution, and its probability density function is
expressed as Equation (1):

f (s) = 1
σs
√

2π
e
−(s−μs)

2

2σ2
s (1)

where μs represents the average value of SOC, and σs represents the standard deviation.
According to the 2017 National Household Travel Survey (NHTS) of the US Depart-

ment of Transportation [16], it can be obtained that the daily mileage L obeys lognormal
distribution, and its probability density function is as follows:

f (L) = 1
LσL

√
2π

e
−(lnL−μL)

2

2σ2
L (2)

where μL represents the average value of the daily mileage L, and σL represents the
standard deviation.

According to the daily driving mileage, the charging time Tc is calculated:

Tc =
LQ100
100Pc

(3)
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where Pc is the charging power, and Q100 is the power consumption per 100 km.
For the leaving time Tleave, it is required that Tleave ≥ Tc. Thus, Tleave is set as follows:

Tleave = (1 + σT)Tc (4)

where σT is a positive random number.
Based on the above parameters, the demanded SOC for future travel named SOCm

can be calculated [17]:

SOCm= S0 +
L

Lmax
(5)

where S0 is the initial SOC for EVs.
Therefore, for EVs in the station, the SOC can be maintained within the range of

[SOCrmin, SOCrmax]. SOCrmax and SOCrmin are the recommended maximum and minimum
value of SOC, which can ensure the life of the battery. To satisfy the sufficient SOCm to
make sure the follow-up driving when EVs leave, the constraint conditions are added to
the SOC of EVs, as shown in Figure 1. The blue dotted line represents the charge boundary,
which means that the EV can no longer charge when the SOC reaches SOCrmax. The red
dotted line represents the discharge boundary, which means that the EV can no longer
discharge when the SOC reaches SOCrmin. The solid green line represents the boundary of
forced charging, which means that the EV is forced to charge to ensure the SOCm when
leaving the charging station.

SOCrmax

Tleave

SOCm

SOC

t

S0

SOCrmin

0

Discharge 
boundary

Charge 
boundary

Forced 
charging

Figure 1. Boundary of charging and discharging constraints for EVs.

Furthermore, in terms of active power, the rated charging power of a single EV
can be set to P ch

EV,i, and the rated discharging power to P dis
EV,i The relationship between

the charging power of a single EV and the charging and discharging state can be ob-
tained as follows: When SOCi ≥ SOCrmax, the single EV can discharge positive power
increment 0 < ΔPEV,I < P dis

EV,i, which can ensure that SOCi is controlled below SOCrmax.
When SOCi ≤ SOCmin, the single EV can only be charged, that is, only the negative power
increment can be discharged −P ch

EV,i < ΔPEV,i < 0, which can ensure that SOCi is controlled
above SOCrmin. When SOCrmin < SOCi < SOCrmax, the single EV can be charged and dis-
charged. Thus, the power increment satisfies −P ch

EV,i < ΔPEV,i< P dis
EV,i. In summary, the
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instruction distribution of the EVs station through the controller is shown in Figure 2. In
addition, the charging and discharging constraint boundary of a single EV can be obtained
as follows:

P+
EV,i(t) =

{
0 , t ≥ Tleave,i, 0 ≤ t < Tleave,i andSOCEV,i(t) ≤ SOC−

EV,i(t)

Pdis
EV,i(t) , 0 ≤ t < Tleave,i and SOCEV,i(t) > SOC−

EV,i(t)
(6)

P−
EV,i(t) =

{
0 , t ≥ Tleave,i, 0 ≤ t < Tleave,i and SOCEV,i(t) ≥ SOC+

EV,i(t)

Pch
EV,i(t) , 0 ≤ t < Tleave,i and SOCEV,i(t) < SOC+

EV,i(t)
(7)

EV charging station

< <rmin rmaxiSOC SOC SOC ≥ rmaxiSOC SOC ≤ rminiSOC SOC

Δ EVa

... ...1 i evN

Δ Δ & EV EVP Q

Figure 2. The distribution of controller commands in the charging station.

The charging and discharging constraint boundary of the cluster EVs’ PEV can be
obtained from the boundary of a single EV as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P−
EV(t) < ΔPEV(t) < P+

EV(t)

P+
EV(t) =

nEV
∑

i=1
P+

EV,i(t)

P−
EV(t) =

nEV
∑

i=1
P−

EV,i(t)

(8)

where nEV is the number of EV.
In addition, the active power capacity calculation is related to the number and the

SOC state of EV:

Ect =
Nev

∑
i=1

(SOCi × Ei)/Eall (9)
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where Ei represents the active power capacity of a single EV, Eall represents the total
active power capacity of EVs, and Ect represents the real time active power capacity of the
EVs station.

From this, it can be obtained that the output power ΔPEV of the EV charging station
during the charging and discharging process should meet the following constraints:⎧⎪⎨⎪⎩

0 < ΔPEV < λe , Ect > Ermax

−λe < ΔPEV < λe , Ermin < Ect < Ermax

−λe < ΔPEV < 0 , Ect < Ermin

(10)

when Ect > Ermax, the real time active power capacity Ect of the EV station is higher than
the recommended maximum capacity Ermax, due to the rapid increase in the number
of EVs in the charging station. When Ect < Ermin, the number of EVs in the charging
station is too small, or the EVs in the charging station are all in a low battery state. When
Ermin < Ect < Ermax, the EV station can either discharge to the microgrid or charge from
the microgrid.

Furthermore, the capacity state E of the EVs station is related to the EVs existing in the
EVs station in different SOC states. Therefore, by combining Equations (8) and (10), it can
obtain the constraint of active output power ΔPEV considering the travel demand of users,
the number of electric vehicles, and the real-time SOC of electric vehicles as:⎧⎪⎨⎪⎩

0 < ΔPEV ≤ P+
EV(t) , Ect > Ermax

P−
EV(t) ≤ ΔPEV ≤ P+

EV(t) , Ermin < Ect < Ermax

P−
EV(t) ≤ ΔPEV < 0 , Ect < Ermin

(11)

After obtaining the boundary of the active discharge power ΔPEV of the EVs, the
reactive power boundary can be obtained through the power factor angle of the charger,
and the circuit topology of the four-quadrant bidirectional charger mostly uses a double-
buck AC–DC half-bridge conversion circuit, a traditional AC–DC half-bridge conversion
circuit, and an AC–DC full-bridge conversion circuit. The capacity curve of the charger is
shown in Figure 3 [18].
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Capacitive 
discharge

Inductive 
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C

B
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minϕmaxϕ

A

Figure 3. The capacity curve of the charger.
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ϕ is the power factor angle when the apparent rated power is ΔSEV. ϕmin and ϕmax
are the minimum and maximum power factor angles of the charger. The positive axis of the
P axis and Q axis represents the energy transferred from the grid to the EV charger. When
the active power is OA, the adjustable range of reactive power is CC’, and the length of
OB is the apparent rated power ΔS. In addition, the relationship of the active and reactive
power ΔPEV and ΔQEV can be charged by Figure 3, as in the Formula (12):

ΔQEV = ΔPEV tan ϕ (12){
ϕmin < ϕ < ϕmax
−ϕmin < ϕ < −ϕmax

(13)

Thus, the power factor angle needs to meet the operating characteristics of the charger,
and when ΔPEV > 0, the grid feeds active power to the EVs, when ΔQEV > 0, the grid feeds
reactive power to the EVs.

In summary, the boundary of the output power increment of the EV charging station
is affected by the number of EV in the charging station NEV, SOC state, electric vehicle
charging station real time capacity E, and the angle of charging power factor.

2.2. VF Control Model of Microgrids with EVs

The output characteristics of distributed wind power and photovoltaic system are
random, and load fluctuations simultaneously affect the output of active and reactive
power. Therefore, in the process of microgrid VF control in this paper, the wind power
and photovoltaic system are equivalent to disturbance sources [19]. In addition, the load
response characteristics of wind power system and photovoltaic power system are similar,
so only the microgrid load VF control under the wind power disturbance is considered,
and it is applied using recorded historical data [20]. In addition, the MT is added to the
microgrid system as a main control unit in this paper to ensure the flexibility and validity
of microgrid regulation.

The structure of the microgrid is in Figure 4. The microgrid includes a MT, EVs,
distributed wind power, and load.

Power grid

Micro gas turbine

AC
DC

DC
AC Wind power 

system

EVs charging station

Load

Switch

Transformer

Δ  EVP Δ  LPΔ  EVQ Δ  LQ

Δ  WQ Δ  WP MTQΔ Δ  MTP

Figure 4. Structure of the islanded microgrid.
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ΔPL and ΔQL are the load disturbance power, ΔPW and ΔQW are the wind disturbance
power, ΔPMT and ΔQMT are the power variation of MT, and ΔPEV and ΔQEV are the power
variation of EVs.

3. The Design of Microgrid VF Controller Based on DDPG

In the islanded microgrid, it is important to maintain the stability of VF, but there are
some control problems such as various uncertainties and nonlinearities caused by DGs
and EVs, which can inevitably cause the VF fluctuation and make it deviate from the
reference value.

In addition, the Deep Reinforcement Learning (DRL) with online learning, experience
playback capabilities and other advantages, is suitable for nonlinear systems [21]. Therefore,
in this paper, a VF controller based on DDPG for islanded microgrid with EVs is designed.
The frequency and voltage deviation is fed back to the DDPG controller, which adjusts the
power output of each unit to ensure the stability of the frequency and voltage of the system.

3.1. Theoretical Analysis of DDPG

Q-learning and Deep Q-learning (DQN) are typical value-based reinforcement learning
algorithms that use value functions to learn the optimal strategy during the interaction with
the environment [22]. However, since the Q-learning cannot process continuous signals,
it is necessary to discretize the action space. Therefore, it is difficult to realize the precise
control of MT, EVs and chargers, which is not suitable for the design of this paper.

In addition, the learning of the DDPG can be carried out in a continuous action
space [23]. The DDPG contains four networks, namely actor current network, actor target
network, critic current network, critic target network. At t, the actor current network
parameter is θ, and the actor target network parameter is θ′, the critic current network
parameter is ω, the critic target network parameter is ω′.

In the above four networks, the actor current network can generate action at according
to the current status st. The actor target network can generate the action at + 1 at the t + 1
time according to the subsequent state of the environment. The critic current network can
calculate the value Rt corresponding to the status st and action at. The Critic target network
can generate the value of Qvalue

′ (st + 1, at+1|ω′) based on subsequent state st+1 and action
at + 1, which is used to calculate the target value y, as shown in the Formula (14):

y = rt + γQvalue
′
(st+1, at+1, ω′) (14)

where γ is a discount factor and 0 < γ < 1, Qvalue
′ (st + 1, at + 1|ω′) is the value generated by

subsequent state st + 1 and action at + 1, which is used to calculate the target value y.
Meanwhile, the critic current network parameter ω is updated by the gratial direction

of the neural network using a mean square difference loss functional Formula (15). In
addition, the parameter of the actor current network θ is updated through the gradient of
the neural network, as shown in Formula (16):

L =
1
m

m

∑
j=1

(
yj − Q

(
sj, Aj, ω

))2

(15)

∇J(θ) =
1
m

m

∑
j=1

[
∇aQ(s, a, ω)

∣∣∣s=sj ,a=πθ(s)∇θπθ(s)
∣∣∣
s=sj

]
(16)

where m is the number of samples, yj is the target value of the j sample, Q(sj,aj,ω) is the
output value of the critic current network for the j sample, and πθ(·) is the output value of
the actor current network.

200



Electronics 2022, 11, 17

Furthermore, it is necessary to update the critic target network and actor target network
parameters by Equation (17):

ω′ ← τω + (1 − τ)ω′

θ′ ← τθ + (1 − τ)θ′
(17)

where τ is an update coefficient, which is generally small.
In addition, the E is a termination function, which is to determine whether the Agent

enters the termination. If the Agent enters the termination state, the iterative process stops
and a new round of state sequence starts. If the Agent enters the non-termination state, the
iterative process of the wheel can be continued.

In summary, status information, reward value, action information, and termination
status information {s, a, R, s′, E} are formed into a sample unit and stored in the empirical
playback set D. Then, m sample units of set D are taken to be trained by Formulas (14)–(17).
A total of T rounds is trained, and the training step length of each round is Tm. The specific
training process is shown in Figure 5.

If s’ is in the end state or 
if it has reached the maximum 

training step size

Start

Initialize s to the first state of the current     
state sequence

Get action a based on state s in the          
actor current network

Perform action a to get new state s', reward 
R and termination state information E

Store the five-tuple of {s, a, R, s', E} into the 
experience replay set D

 Sample m samples from set D and update the  
parameters of critic and actor current network 

by the equation (15)-(16)

Update the parameters of the critic and        
actor target network

s=s'

If the training converges
 or if it reaches the maximum                        

number of training

The end

N
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N

Initialize  and  randomly, set ’= , =
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Figure 5. Structure of the islandeded microgrid.
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3.2. Design of DDPG VF Controller Structure

Considering MT and EV output power increment limiting constraints, a VF controller
structure based on DDPG is proposed, as shown in Figure 6. The controller is composed
of two layers: coordinate layer and control layer. The coordinate layer provides real-time
regulation signal ΔA to the control layer according to the frequency deviation Δf, voltage
deviation ΔU, and the real-time boundary of output power of EV charging station, and
then controls the output power of MT and EV to quickly suppress the frequency and
voltage deviation.

EV

MT

Coordinated layer  Control layer

  Q  

D
D

PG
 netw

ork

The state space

The action space

Reward function

Hyperparameter

ΔU

±
EVP

±
EVQ

Δ EVa

Δ MTa

Δf

 
Figure 6. Microgrid LFC controller structure based on DDPG.

3.3. Definition of Space and Reward Function

As mentioned above, the state set of the control system is frequency deviation ΔF(t),
voltage deviation ΔU(t), and the real-time boundary of output power of EV charging station
P ±

EV(t) and Q±
EV(t), so the state space S can be defined as follows:

S = [ΔF(t) , ΔU(t), P+
EV(t), P−

EV(t), Q+
EV(t) , Q−

EV(t)
]

(18)

In addition, the joint action set A of the DDPG controller, namely the output of the
controller, should be a real-time set of dispatch instruction of the active and reactive power
output of MT, the output active power of EVs, and the power factor angle of the charger.
Thus, the action space A can be defined as follows:

A = [ΔAP,MT (t), ΔAP,EV (t), ΔAQ,MT (t), ΔAϕ ,EV (t)] (19)

In addition, then, China’s power safety work principle stipulates that the frequency
of the power system during normal operation should be within the range of 50 ± 0.2 Hz,
and the voltage deviation should within 5%. Thus, on this basis, a certain adjustment
dead zone is considered, the discrete set of real-time frequency deviation ΔF(t) can be
set as (−∞, −0.2), [−0.2, −0.15), [−0.15, −0.10), [−0.10, −0.03), [−0.03, 0.03], (0.03, 0.10],
(0.10, 0.15], (0.15, 0.2], (0.2, +∞), unit of Hz, and the discrete set of real-time voltage de-
viation ΔU(t) can be set as (−1,−0.05), [−0.05, −0.03), [−0.03, −0.02), [−0.02, −0.01),
[−0.01, 0.01], (0.01, 0.02], (0.02, 0.03], (0.03, 0.05], (0.05,1), unit of p.u.

Meanwhile, the control objectives in this paper are: 1©Restore the frequency to the
rated value; 2©Regulate and control the voltage to restore to the best state. As a result,
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a comprehensive reward function including two local reward functions can be set up to
coordinate frequency recovery and voltage adjustment:

R = r f + ru (20)

r f =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 |Δ f | < 0.03

−μ1|Δ f | 0.03 ≤ |Δ f | < 0.10

−μ2|Δ f | 0.10 ≤ |Δ f | < 0.15

−μ3|Δ f | 0.15 ≤ |Δ f | < 0.2

−μ4|Δ f | 0.2 ≤ |Δ f |

(21)

ru =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 |ΔU| < 0.01

−δ1|ΔU| 0.01 ≤ |ΔU| < 0.02

−δ2|ΔU| 0.02 ≤ |ΔU| < 0.03

−δ3|ΔU| 0.03 ≤ |ΔU| < 0.05

−δ4|ΔU| 0.05 ≤ |ΔU| < 1

(22)

where R is the global reward, rf is the frequency reward, ru is the voltage reward, μ1, μ2, μ3
and μ4 are the weights corresponding to the reward function of each control region in the
frequency penalty item rf, and δ1, δ2, δ3 and δ4 and are the weights corresponding to the
voltage control regions.

The control process needs to control the frequency through rf, when |Δf | is in adjust-
ing dead zone [−0.05, 0.05] Hz, and the frequency meets the minimum error requirement of
normal operation, so the maximum reward value given to the DDPG controller at this time
is 0. When |Δf | is respectively in normal control (0.05, 0.10) and (0.10, 0.15) Hz, auxiliary
control area (0.15, 0.2) Hz, emergency control area (0.2, +∞) Hz, the controller can get the
corresponding negative incentives, namely the penalty value. Meanwhile, when voltage
control is performed, the voltage needs to be regulated by ru, when |ΔU| is in adjusting
dead zone [−0.01, 0.01], the maximum reward value given to the DDPG controller at this
time is 0, and when |ΔU| is respectively in normal control (0.01, 0.02) and (0.02, 0.03),
auxiliary control area (0.03, 0.05), emergency control area (0.05, 1), the controller can get the
corresponding penalty value.

When determining the values of the above parameters, it should be noted that the size
of the reward value can affect the convergence effect and the learning speed. Therefore,
it is necessary to perform simulation tests based on actual calculation examples, and the
specific process will be discussed later.

In summary, the state space and reward function designed in this paper can realize
the simultaneous adjustment of voltage and frequency. When the frequency is restored,
it can consider whether the voltage exceeds the limit, and, when adjusting the voltage, it
can also consider whether the frequency deviates from the rated value, which significantly
improves the overall stability of the microgrid.

3.4. The Selection of Hyperparameter

In DRL, it is necessary to provide the agent with a set of optimal hyperparameters to
improve the performance and effect of learning [24].

First of all, the larger the discount factor γ, the more the agent attaches importance to
past experience and can give up current interests and pursue overall interests. However,
if γ is too large, it will also cause the training of agent to fail to converge. The greater the
learning rate α, the faster the agent converges, but the worse the stability; the smaller the α,
the better the stability, but the slower the agent converges. Therefore, the convergence speed
should be improved on the premise when the agent training can converge. In addition, the
design of network structure can be discussed from two aspects: network type and network
depth. The choice of network type depends largely on the state space, and the state space
of the control system in this paper is frequency and voltage deviation, which belong to
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one-dimensional vector, so the full connection layer can better meet the requirements of the
storage strategy set. In addition, the network depth determines the generalization ability
of the neural network, which includes the number of layers of the neural network h and
the neurons in each layer u.

In addition, the specific values of γ, α, h and u need to be selected according to the
calculation example.

3.5. Summary of Control Strategy

In summary, the control strategy of this paper is carried out in the following steps:

1. Firstly, definite the state set of the control system as ΔF(t), ΔU(t), P ±
EV(t) and Q±

EV(t).
In addition, the action space can be defined as ΔAP,MT (t), ΔAP,EV (t), ΔAQ,MT (t),
ΔAϕ ,EV (t).

2. Secondly, the parameters are adjusted according to the actual calculation example,
and the values of the reward function coefficients and hyperparameters are obtained.

3. Thirdly, perform agent training according to the process in Figure 5, and obtain the
optimal value function Q network Qϕ(s,a).

4. Finally, in different cases, input disturbances to the islanded microgrid system, and
the agent can generate corresponding actions based on the disturbances to adjust the
output of each unit, so as to ensure the frequency and voltage balance of the islanded
microgrid system.

4. Simulation Results

In order to evaluate the control effect of the above strategy, the coupled islanded
microgrid system is built as shown in Figure 7. In addition, the specific settings of equip-
ment parameters are shown in Table 1. The verification of the calculation examples in this
paper is carried out through simulation experiments. The computing platform is a PC with
i7-1165G7@2.80GHz CPU and 16 GB RAM, and the software environment is Windows
10 Professional and MATLAB R2021a.
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Figure 7. Microgrid LFC controller structure based on DDPG.

In the microgrid, there is a MT with capacity of 40 kW, a WT with capacity of 20 kW,
an EV station1 with capacity of 16 kW, an EV station2 with capacity of 14 kW, and 60 kW
ordinary loads. In addition, this paper assumes that the initial state of the microgrid is
stable. Thus, when there is no external disturbance, the power output of MT, EV stations,
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WT, and conventional loads are always in balance. Therefore, in the following calculation
examples, only the per-unit value of the power fluctuations of MT, EVs stations, WT, and
load need to be considered.
Table 1. Parameters of equipment in microgrids.

Unit Parameter Meaning Value

MT

Tf time constant of governor 10 s
Tt time constant of generator 0.1 s
R f speed regulation factor 0.005 Hz/p.u.

λPmtd lower limit of active power variation −0.025 p.u.
λPmtp upper limit of active power variation 0.025 p.u.
λQmtd lower limit of reactive power variation −0.025 p.u.
λQmtp upper limit of reactive power variation 0.03 p.u.

EV1

Te1 time constant of EV 1 s
λPed1 lower limit of active power variation −0.016 p.u.
λPep1 upper limit of active power variation 0.016 p.u.
λQed1 lower limit of reactive power variation −0.015 p.u.
λQep1 upper limit of reactive power variation 0.015 p.u.
nEV1 Initial number of EVs in station1 40

EV2

Te2 time constant of EV 1.5 s
λPed2 lower limit of active power variation −0.014 p.u.
λPep2 upper limit of active power variation 0.014 p.u.
λQed2 lower limit of reactive power variation −0.0135 p.u.
λQep2 upper limit of reactive power variation 0.0135 p.u.
nEV2 Initial number of EVs in station2 35

4.1. Pre-Learning Stage

Before the controller is used, it needs to undergo a random trial and error learning
process, which is called the pre-learning stage. In the initial stage of pre-learning, the
controller has not accumulated any experience and has no intelligent control ability [25].
Only after accepting various state actions can the optimal value function Q network Qϕ(s,a).
Therefore, the wind and load disturbances superimposed by various different amplitudes
and different types of functions are set up for repeated training of the controller. Meanwhile,
according to the output capacity change data of the electric vehicle charging station, a
boundary function of the output power increment that changes randomly over time is set.
Take active power disturbance and the output boundary of the active power of EVs as
examples. The random disturbance of a certain training process is shown in Figure 8.
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Figure 8. Random perturbation function in the pre-learning phase: (a) Random Function of Active
Power Disturbance; (b) Random Function of EV Output Power Boundary.

Meanwhile, through a large number of simulation studies, μ1, μ2, μ3, and μ4 are
referred as 1, 5, 10, and 20, respectively, δ1, δ2, δ3 and δ4 are referred as 5, 20, 50, and
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100 respectively, and α and γ are referred as 0.01, 0.09. Meanwhile, the number of learning
iterations of the DDPG controller is set to 500, each with 500 steps, and the step length is
0.1 s. Therefore, six groups of parameters (h, u) are set for the convergence test, and the
learning results are shown in Table 2. It can be seen that the reward value of the system at
convergence is the highest when h = 5 and u = 50.

Table 2. Convergence test results under different parameters.

SN Parameter Settings Average Reward Final Award

1 h = 3, u = 50 −34.037 −1.83622
2 h = 3, u = 200 −26.673 −1.20923
3 h = 5, u = 50 −21.096 −0.65307
4 h = 5, u = 200 −27.075 −1.35723
5 h = 10, u = 50 −34.572 −2.54778
6 h = 10, u = 200 −40.922 −3.04643

Thus, when h = 5 and u = 50, the pre-learning process of the agent is shown in Figure 9.
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Figure 9. The complete trend graph of the reward function: (a) The complete trend graph of the
reward function; (b) the trend graph of the reward function for the last 50 iterations.

It can be seen that the agent basically converges after 80 iterations, and the system
judges that the learning process has been completed and stops the training after 248 iter-
ations. In this case, the average reward is −21.096 and the final award is 0.65307, which
shows that the controller can complete the subsequent simulation at this time.

4.2. The Implementation of Constraint Conditions in the EV Model

In order to verify the implementation of constraint conditions in the EV model, this
paper selects several typical monomer EV SOC simulation situations as examples, as shown
in Figures 10 and 11. In addition, to ensure the life of battery, the initial SOC is set between
SOCrmin = 0.2 and SOCrmax = 0.8.

The first situation in Figure 10 shows that, when SOC < SOCrmin, the EV will be forced
to enter the charging state. Only when SOC > SOCrmin can the EV participate in system
regulation. The second situation in Figure 10 shows that, when the EV is close to the leaving
time and SOC < SOCm, it will turn to the forced charging state to ensure that the SOC
reaches the expected SOCm when leaving the charging station. In general, the changes in
the SOC of EVs participating in the regulation of the microgrid are shown in Figure 11. The
SOC of EVs will change in the constraint range.

4.3. Case Study

After completing the pre-learning phase and the verification of the EV SOC constraints,
the example can be simulated under different operation scenarios. Meanwhile, in order to
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evaluate the effect of DDPG controller proposed in this paper, traditional PID controller and
R(λ) controller are used in the same scene respectively, and the corresponding controller
parameters are shown in Table 3.
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Figure 10. Changes of SOC of EVs at critical value.
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Figure 11. Changes of SOC of EVs in the normal range.
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Table 3. PID and R(λ) controller system parameters.

Controller Describe Parameter Value

PID
Proportional gain KP 4

Integral gain Ki 1.18
Differential gain KD 0.5

R(λ)
learning rate α 0.01

discount factor γ 0.9
network depth (h, u) (3, 10)

4.3.1. Case 1: The Response of Wind Power Disturbance

First of all, wind power disturbance is added to the islanded microgrid system, and
wind mainly provides active power disturbances to the grid. In order to compare the
adjusting speed of each controller, the wind power disturbance ends after 43 s. The
disturbance setting is shown in Figure 12.
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Figure 12. Wind power disturbance.

There is not the fluctuation of reactive power in this case, so the impact of voltage
fluctuation is not considered here. The variation of frequency deviation under wind power
disturbance is shown in Figure 13. Meanwhile, according to the simulation results, this
paper takes the absolute value of |Δf | as the evaluation object, and sets the threshold of
the frequency deviation excellence rate to 2 × 10−4 Hz, and defines Trecover as the time
which is taken for |Δf | to recover to 5 × 10−5 Hz after the wind power disturbance ends.
The results of the control test under wind disturbance are shown in Table 4.
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Figure 13. Performance of frequency control under wind power disturbance.
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Table 4. Frequency simulation results under wind disturbance.

Indicators PID R(λ) DDPG

Average (Hz) 0.9215 × 10−3 0.1159 × 10−3 0.0267 × 10−3

Maximum (Hz) 7.174 × 10−3 1.148 × 10−3 1.133 × 10−3

Proficiency (%) 30.56% 92.07% 98.35%

Trecover (s) 34.25 23.95 0.75

It can be seen from Figure 13 and Table 4 that, compared with the PID controller, the
DDPG and R(λ) controller with the ability of online learning and experience playback can
more effectively deal with the highly random disturbance. Under the wind disturbance, the
frequency fluctuation of the islanded microgrid under the DDPG controller can be limited
in 2 × 10−4 Hz, and the excellent rate can reach 98%, which is significantly better than
the traditional controller. In addition, if only analyzed from the perspective of frequency
control, the control strategy of DDPG and R(λ) controller in this paper possesses virtues
of great control effect, smaller amplitude of frequency fluctuation, and faster regulation
speed than a traditional controller. Furthermore, the regulation speed of DDPG controller
is much faster than a R(λ) controller.

Furthermore, the power variations of each equipment in islanded microgrid under
the DDPG controller are shown in Figure 14. It can be seen that, when the system suffers
disturbance, the MT undertakes the main work of frequency regulation, and the output
power of EV charging station is also significant. In addition, when the limit is reached, the
power variations of different charging stations are different.
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Figure 14. Power variations of each equipment under wind power disturbance.

4.3.2. Case 2: The Response to Load Power Disturbance

The fluctuation of load power is gentler than that of wind power, but the load change
is abrupt and can cause fluctuations in active and reactive power at the same time. In
this case, load power variations are set as ΔPL = −0.025 p.u during 10–40 s, ΔPL = 0.005
p.u during 40–55 s, ΔPL = −0.0025 p.u during 55–70 s, ΔPL = 0.015 p.u during 70–150 s,
ΔQL = −0.04 p.u during 7.5–34 s, ΔQL = −0.015 p.u during 34–66 s, ΔQL = 0.005 p.u during
66–96 s, ΔQL = −0.0075 p.u during 96–150 s. The specific setting of load disturbance is
shown in Figure 15.
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Figure 15. Load power disturbance: (a) load active power disturbance; (b) load reactive
power disturbance.

The DDPG controller is compared with traditional PID and R(λ) controller, and the
frequency and voltage fluctuation are shown in Figures 16 and 17. The same as the case 1,
this part takes |Δf | and |ΔU| as the evaluation object, and sets the threshold of the |Δf |
excellence rate to 2 × 10−4 Hz, the |ΔU| excellence rate to 0.01 p.u. Meanwhile, Trecover is
defined as the time which is taken for |Δf | to recover to 5 × 10−5 Hz and |ΔU| to recover
to 0.002 p.u after the load power disturbance no longer changes. Thus, the statistical results
of the control test under load disturbance are shown in Tables 5 and 6.
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Figure 16. Performance of frequency control under load power disturbance.
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Figure 17. Performance of voltage control under load power disturbance.

210



Electronics 2022, 11, 17

Table 5. Frequency simulation results under load disturbance.

Indicators PID R(λ) DDPG

Average (Hz) 0.995 × 10−3 0.437 × 10−3 0.0521 × 10−3

Maximum (Hz) 3.54 × 10−3 1.63 × 10−3 1.09 × 10−3

Proficiency (%) 9.6% 16.7% 98%

Trecover (s) / / 0.13

Table 6. Voltage simulation results under load disturbance.

Indicators PID R(λ) DDPG

Average (p.u) 0.0093 0.0021 0.00047

Maximum (p.u) 0.0569 0.0112 0.0023

Proficiency (%) 30.3% 83.07% 100%

Trecover (s) / / 9.2

It can be seen from Figures 16 and 17 and Tables 5 and 6 that, when the load changes,
compared with the PI controller and R(λ) controller, the DDPG controller can ensure that
the frequency deviation of the microgrid is maintained within ±1 × 10−3 Hz Hz, and the
voltage deviation is also close to 0, which is much smaller than the control index of the
power quality of the power grid. In addition, compared with the R(λ) controller, the DDPG
controller can coordinate the frequency recovery and voltage adjustment of the islanded
microgrid, so as to meet the VF control requirements at the same time, which has superior
dynamic control characteristics.

Furthermore, the power variations of each equipment are shown in Figure 18. The MT
in the micro grid is used as the main source to maintain the stability of the VF amplitude of
the microgrid, while the EV1 and EV2 as the slave sources are mainly responsible for the
regulation of the active power of the microgrid and also participate in the regulation of the
reactive power. In addition, due to the randomness of users, the output power boundary of
EV charging stations is random, showing obvious jagged shapes.
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Figure 18. Power variations of each equipment under load power disturbance: (a) active power
increment; (b) reactive power increment.

5. Conclusions

To solve the problem in which the stability of island microgrid is greatly affected by
random power sources, and it is difficult to control frequency and voltage together, a VF
control strategy of islanded microgrids with EVs is proposed in this paper. The randomness
of charging behavior is considered, and an islanded microgrid system including MT, WT,
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EVs stations, and loads is established. Thus, a VF synergistic control strategy based on
DDPG is proposed. The simulation results show that:

1. Compared with PID controller, the DDPG controller with the ability of online learning
and experience playback can more effectively deal with the highly random distur-
bance. Under the wind disturbance, the frequency fluctuation of the islanded micro-
grid under the DDPG controller can be limited in 2 × 10−4 Hz, and the excellent rate
can reach 98%, which is significantly better than the traditional controller.

2. Compared with the R(λ) controller, the DDPG controller in this paper can coordinate
the frequency recovery and voltage adjustment of the island microgrid, so as to meet
the VF control requirements at the same time, which is more suitable for the stable
control of the microgrid. When the load changes, the DDPG controller can ensure that
the frequency deviation of the microgrid is maintained within ±1 × 10−3 Hz, and the
voltage deviation is also close to 0.

3. The EV charging station has the characteristics of small inertia and fast regulation
speed in the microgrid control, which can play an important role in VF regulation;

4. The realization effect of the constraint conditions in the EV model is great. The
single EV can judge whether it participates in the adjustment of the microgrid system
according to the SOC situation.

For microgrid systems with more complex structures and larger volumes, it is neces-
sary to consider the multi-microgrid interconnection technology. In addition, multi-agent
algorithms such as MA-DDPG, COMA, CommNet, etc. will also be applied to the control
of multi-microgrid. The follow-up work will focus on in-depth analysis and research in
these directions, and add corresponding hardware circuit experiments or semi-physical
simulation experiments.
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Abstract: For energy sustainability, the integrated energy distribution system (IEDS) is an efficient
and clean energy system, which is based on the coordinated operation of a power distribution
network, a gas distribution network and a district heating system. In this paper, considering the
damage of natural disasters to IEDS, a demand management strategy is proposed to improve
resilience of IEDS and ensure stable operation, which is divided into three stages. In the first stage,
the electricity, natural gas and thermal energy are co-optimized in the simulating fault state to develop
the importance ranking of transmission lines and gas pipelines. In the second stage, the natural
disasters are classified as surface natural disasters and geological natural disasters. According to
the types of natural disasters, the demand management strategy includes semi-emergency demand
management scheme and full-emergency demand management scheme in the electrical resilience
mode and the integrated resilience mode, respectively. In the third stage, the non-sequential Monte-
Carlo simulation and scenario reduction algorithm are applied to describe potential natural disaster
scenarios. According to the importance ranking of transmission lines and gas pipelines, a demand
management strategy is formulated. Finally, the proposed strategy is applied on an IEEE 33-bus
power system and a 19-node natural gas system. Its effectiveness is verified by numerical case studies.

Keywords: demand management; integrated energy distribution system; resilience; co-optimization;
non-sequential Monte-Carlo simulation; scenario reduction algorithm

1. Introduction

With the development of society and economy, predatory energy consumption has
caused environmental pollution [1] and energy crisis [2]. The integrated energy distribution
system (IEDS) [3,4] takes full account of electricity, natural gas, heat and other forms of
energy coupling. It can achieve the effect of energy mutual benefit according to the energy
consumption characteristics of electricity, natural gas and heat. Hence, IEDS is an efficient
and clean energy system.

On the other hand, frequent natural disasters have severely affected the energy system.
In 2011, the Great East Japan Earthquake caused power outages in 8.71 million homes in
the affected area [5]. In 2012, approximately 7.5 million customers suffered power outages
in the Hurricane Sandy in New York and the disaster caused an economic loss of 65 billion
US dollars [6]. Many typhoons from the Pacific will land in China every year. For example,
Jiangsu Province was hit by a typhoon in 2016, which caused two 500-kV transmission
lines, four 220-kV transmission lines, and eight 110-kV transmission lines to trip and left
many customers without power [7]. In this regard, it is necessary and exigent to enhance
the IEDS resilience. The IEDS resilience is derived from the extension of power system
resilience, which can be defined as the ability to anticipate, resist, absorb and recover from
disruptions caused by extreme natural disasters such as earthquakes and hurricanes [8].
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At present, the previous studies mainly focused on power system resilience [9–15].
Two types of strategies can be adopted to enhance resilience: operational measures [9–11]
and hardening measures [12–15]. The operational measures include scheduling flexible
back-up resources [9], using decentralized control strategies [10] and altering network
topology [11]. The study in [9] proposes dispatching mobile emergency generators to
restore critical loads and improve power distribution system resilience. In [10], the net-
worked micro-grids (MGs) are scheduled by a decentralized control strategy, which can
improve power quality by supporting and interchanging electricity among the networked
MGs. In [11], power grid reconfiguration is adopted in an active distribution system to
reduce load demand response and improve power grid resilience. On the other hand, the
hardening measures mean physically enhancing the infrastructure to reduce its suscepti-
bility to disruptions [12], In [13], a tri-level defender-attacker-defender (DAD) model is
proposed and its result can provide the system hardening decisions.

Due to the increasing interaction among the electricity distribution system, natural
gas distribution system and district heating system, it is not suitable to consider power
system resilience solely and it is necessary to consider integrated energy system resilience.
However, the literature contains little research on IEDS resilience [14,15]. The study in [14]
considers that the overhead power grid can be hardened by replacing fragile overhead
transmission lines with underground natural gas pipelines and proposes a two-stage robust
model to formulate this issue. Combined with the natural gas system, the DAD model is
further expanded in [15] to accommodate electricity and gas storage facilities. The existing
enhanced resilience methods in the aforementioned research are listed in Table 1.

Table 1. The existing enhanced resilience methods.

System Types References Enhanced Resilience Methods

Power system

[9] Scheduling flexible back-up resources

[10] Decentralized control strategy for MGs

[11] Grid reconfiguration

[12]
Enhancing infrastructure

[13]

Integrated energy system
[14]

Enhancing infrastructure
[15]

This paper Demand management

Although the IEDS resilience has not been fully studied yet, there is much research
focusing on the operation of integrated energy system [16–19]. In [16], an integrated
framework based on the Newton-Raphson technique is proposed to solve the steady-state
energy flow among electrical, natural gas, and district heating networks. Furthermore,
the study in [17] proposes a coordinated optimal operation method of the regional energy
internet, considering the combined cooling, heating and power (CCHP) units. The study
in [18] proposes a robust day-ahead scheduling model for electricity and natural gas
system, which minimizes the total cost including fuel cost, spinning reserve cost and cost
of operational risk while ensuring the feasibility for all scenarios within the uncertainty set.
In particular, the study in [19] proposes a novel linear method for Weymouth equation of
natural gas system, which develops a more robust, flexible and tractable formulation of the
integrated power and gas network.

The above research on the integrated energy system operation lay the foundation for
IEDS resilience. Therefore, motivated by the aforementioned facts, this paper proposes a
novel demand management strategy for improving the resilience of the power distribution
network and gas distribution network in different types of natural disasters. The demand
management strategy is divided into three stages. In the first stage, the critical transmission
lines and gas pipelines are identified by co-optimizing electricity, natural gas and thermal
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energy under the assumptive fault. In other word, the importance ranking of transmission
lines and gas pipelines are developed by simulating fault state. In the second stage, the
natural disasters are classified as surface natural disasters (SNDs) and geological natural
disasters (GNDs). The demand management strategy includes two modes. In the case of
SNDs, the demand management strategy adopts the electrical resilience mode, in which
the overhead transmission lines in power distribution system will be damaged, while the
underground gas pipelines in gas distribution system still work without fault. In the case of
GNDs, the demand management strategy adopts the integrated resilience mode, in which
both overhead transmission lines and underground gas pipelines will be damaged. In the
third stage, the non-sequential Monte-Carlo simulation and scenario reduction algorithm
are applied to describe potential natural disaster scenarios. According to the importance
ranking of transmission lines and gas pipelines, the demand management strategy is
formulated. The advantages of the proposed strategy are demonstrated by numerical
case studies.

The objective of the study is to propose a demand management strategy for resilience
enhancement of IEDS against natural disasters and prove the effectiveness and practicality
of this strategy. The major contributions of this paper are summarized as follows:

(1) Aiming at improving the IEDS resilience, this paper proposes a demand manage-
ment strategy, which innovatively expands the traditional demand management in the
power system.

(2) The demand management strategy includes semi-emergency demand management
scheme and full-emergency demand management scheme in the electrical resilience mode
and the integrated resilience mode, respectively. In the electrical resilience mode, gas
distribution system can operate normally and play a role of energy storage to help power
distribution system reduce demand response load. In the integrated resilience mode, the
whole integrated energy system suffers damage and demand management is required.

(3) The demand management strategy is formulated in accordance with the importance
of transmission lines and gas pipelines, taking into account the impact of the transmission
grid and gas transmission network structure on demand management, which can increase
the resilience of IEDS and reduce the economic subsidy cost of demand management.

The rest of this paper is organized as follows. The type of natural disasters, the
stochastic approaches, and the framework of demand management strategy are discussed
in Section 2. Then, Section 3 presents the scheduling model for the IEDS. In Section 4,
numerical results are provided to validate the proposed strategy. Finally, Section 5 draws
main conclusions in this paper.

2. The Demand Management Strategy for the IEDS under Natural Disasters

2.1. The Type of Natural Disasters

In this paper, natural disasters are divided into SNDs and GNDs according to whether
the underground gas pipeline is destroyed or not. The SNDs include hurricane, typhoon
and blizzard, while the GNDs include earthquake, landslide and mud-rock flow. The
typical surface natural disaster and geological natural disaster are shown in Figure 1.

Because the overhead transmission lines are exposed to the environment, they are
vulnerable to SNDs, such as typhoons and hurricanes. However, the underground gas
pipelines have a certain resistibility to SNDs, so the gas distribution system can operate
normally in the case of SNDs. Hence, the gas distribution system plays a role of energy
storage to helps power distribution system improve resilience. In summary, the mode in
which the overhead transmission lines are destroyed and the underground gas pipelines
are not destroyed is called the electrical resilience mode.

On the other hand, both overhead transmission lines and underground gas pipelines
may be damaged by the GNDs. In this case, the underground gas pipelines will be
destroyed, and the gas distribution system also needs to be restored. Therefore, the mode
in which the overhead transmission lines and the underground gas pipelines are destroyed
is called the integrated resilience mode.
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In this paper, the proposed demand management strategy can be applied to two types
of natural disasters. The main difference between the two modes is whether the gas loads
need to be reduced in the recovery process.

Figure 1. The typical surface natural disaster and geological natural disaster. (a) Satellite cloud
picture of “Sangmei” typhoon; (b) Satellite telemetry picture of Wenchuan Earthquake.

2.2. The Fragility Curves and Stochastic Approaches

The non-sequential Monte-Carlo simulation method generates many disaster scenarios
with the random parameters of typhoon or earthquake. In order to get a typical disaster
scenario, the scenario reduction algorithm is applied to reduce the number of samples.
Then, as a calculation result of the scenario reduction algorithm, several main scenarios
and their weights are derived. A detailed description of this algorithm can be found in [20].

The failure probabilities of the overhead transmission lines and underground gas
pipelines in each simulated scenario are provided through their fragility curves, which
express their failure probability as a function of the disaster parameter. The generic fragility
curves of the overhead transmission lines and underground gas pipelines are shown in
Figure 2 [8].

Figure 2. The generic fragility curves. (a) The fragility curve of overhead transmission line under
typhoon; (b) The fragility curve of underground gas pipeline under earthquake.

2.3. The Framework of the Demand Management Strategy

As noted earlier, the demand management strategy is divided into three stages and its
framework is depicted in Figure 3.

The first stage is the pre-disaster stage, in which the power distribution system, gas
distribution system and district heating system co-optimize under the assumptive fault
to identify critical transmission lines and gas pipelines, which is formulated in Section 3.
Then, the second stage is mainly to distinguish the modes of demand management strategy
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corresponding to different types of natural disasters. On this basis, the third stage generates
the simulated scenarios and develops the demand management scheme.

Figure 3. The framework of the demand management strategy.

3. Model Formulation

3.1. Objective Function

The goal of scheduling is to minimize the total operation cost of IEDS as shown in
(1). Please refer to the Abbreviations for the explanation of the variables, indices, sets
and parameters.

min{
Ns
∑

s=1
λs(

T
∑

t=1
( ∑
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t ppur
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))}
(1)

The goal of the optimization is to minimize operation cost. The operation cost includes
9 parts, which can be divided into 3 categories. The first category is purchasing cost,
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including active power purchased (i) from electricity transmission system, reactive power
purchased (ii) from electricity transmission system, natural gas purchased (iii) from gas
transmission system, reactive power purchased (iv) from combined heating and power
(CHP) units. The second category is demand response cost, including active power load
demand response (v), reactive power load demand response (vi), gas load demand response
(vii), and heat load demand response (viii). The third category is penalty cost, including
penalty cost of wind power curtailment (ix).

3.2. The Power Distribution System Constraints

The branch flow model is widely applied to compute the alternative current power
flow of a power distribution system, but it is not suitable for optimization problems, because
this model includes the power flow constraints, which is non-convex. For this difficulty,
the second-order cone (SOC) relaxation is employed to relax the non-convex constraints in
the branch flow model [21]. In detail, following the SOC relaxation method, the power flow
equality constraints are replaced by inequality constraints and this modification still ensures
the exactness, so the non-convex branch flow model is converted to the DistFlow model.
Furthermore, the DistFlow model can be linearized to formulate microgrid operation
constraints. In fact, the linear DistFlow model has been extensively used and justified in
power distribution systems.

The linear DistFlow model gives constraints (2)–(13).
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Specifically, (2) and (3) imply active power balance and reactive power balance, which
means that the active (or reactive) power injection amount is equivalent to outflow amount
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at each bus. (4) is the DistFlow equation, which relates the active power and reactive power
flows of a transmission line to the voltage magnitude of its two terminal buses. (5) and
(6) denote active power limit and reactive power limit on overhead transmission lines,
respectively. (7) and (8) refer to the active (or reactive) power purchasing limits. (9) gives
voltage limit at each bus. (10) and (11) imply the load demand response of active power
and reactive power, respectively. (12) and (13) describe power outputs of wind generators.

3.3. The Gas Distribution System Constraints

The operation constraints of the gas distribution system are shown in (14)–(19).

∑
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igs ,t,s − z2
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(14) denotes natural gas balance, which means that the natural gas flow injection
amount is equivalent to amount at each node. (15) refers to gas flow limit in gas pipelines.
(16) refers to the active natural gas purchasing limits. In order to avoid damage or malfunc-
tion of gas pipeline caused by too low or too high gas pressure, (17) gives gas pressure
limit at each node. (18) implies load demand response of natural gas. (19) is the Weymouth
equation, which relates gas flow in gas pipeline and pressure of its two terminal nodes.
Specifically, the direction coefficient β(zigs ,t,s, zjge ,t,s) describes the relationship between
gas flow direction and gas pressure value at both ends of gas pipeline, which is denoted
as follows:

β(zigs ,t,s, zjge ,t,s) =

{
1zigs ,t,s ≥ zjge ,t,s
−1zigs ,t,s < zjge ,t,s

igs ∈ δgs(n), jge ∈ l(igs), ∀t, ∀s (20)

(20) denotes the fact that gas flow runs from higher pressure to lower pressure. More-
over, the Weymouth equation (19) can be rewritten as (21).
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Apparently, since gas flow is squared, its direction cannot connect to gas pressure
value. In other words, the direction coefficient is useless in (21). For the flow direction
problem, (21) is equivalently reformulated as (22)–(25) by the Big-M theory with additional
binary variables [22].
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− M
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1 − δigs jge ,t,s
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igs jge ,t,s ≤ Mδigs jge ,t,s igs ∈ δgs(n), jge ∈ l(igs), ∀t, ∀s (25)

It is worth mentioning that the quadratic terms in (22) and (23) are nonlinear, which
makes the optimization model difficult to solve, so the quadratic terms are linearized by
the piecewise linear approximation method. The gas pressure square magnitude (i.e.,z2

igs ,t,s)
in (19) can be directly replaced by a positive continuous variable Zigs ,t,s. However, the
same approach cannot be applied to tackle gas flow square magnitude, because the linear
terms of gas flow are expressed in natural gas balance constraint (14) and gas pipelines
limit constraint (15). Therefore, as an efficient piecewise linear approximation method, the
incremental linearization method [19] is employed to deal with the nonlinearity of gas flow
square magnitude, which is appropriate for mixed-integer linear programming.
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shown in (26):
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2 f

g
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]
igs ∈ δgs(n), jge ∈ l(igs) (28)

The size of interval is calculated by (27) and the number of intervals is calculated by
(28). Corresponding to each xigs jge ,k, the ordinate value is calculated by yigs jge ,k = x2

igs jge ,k.
Figure 4 shows the piecewise linearization of nonlinear function. The quadratic function
(solid red line) is approximated by piecewise linear function (solid blue line).

Figure 4. The piecewise linearization of nonlinear function.

Then, the linear terms of (22) and (23) are formulated by
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0 ≤ μigs jge ,t,s,k ≤ 1 igs ∈ δgs(n), jge ∈ l(igs), ∀t, ∀s, ∀k (31)

μigs jge ,t,s,k+1 ≤ ξigs jge ,t,s,k ≤ μigs jge ,t,s,k igs ∈ δgs(n), jge ∈ l(igs), ∀t, ∀s, k = 1, 2, · · · , KP − 1 (32)

where μigs jge ,t,s,k and ξigs jge ,t,s,k are auxiliary variables at kth interval of piecewise linear
function. Constraints (32) ensures that there is at most one index k of an interval with
0 < μigs jge ,t,s,k < 1 and other indexes are equal to 0 or 1. Specifically, μigs jge ,t,s,k+1 = 0, if
ξigs jge ,t,s,k = 0; μigs jge ,t,s,k+1 = 1, if ξigs jge ,t,s,k = 1.

From the above, the operation constraints of the gas distribution system consists of
(14)–(19) and the nonlinear constraint (19) is reformulated by (22)–(25) and (29)–(32).

3.4. The District Heating System Constraints

The district heating system constraints consist of heat balance and operation of heat
generating equipment, which includes CHP units, electrical heat pumps (EHPs) and boilers.

The heat balance constraint:

∑
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0 ≤ hdemand
t,s ≤ hload

t,s ∀t, ∀s (34)

The constraints (33) means that the heat generating amount is equivalent to heat
demand amount in the district heating system. (34) implies load demand response of heat.

The CHP units constraints are as follows:

pCHP
iCHP ≤ pCHP

iCHP ,t,s ≤ pCHP
iCHP iCHP ∈ δCHP(b), ∀t, ∀s (35)

qCHP
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hCHP
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iCHP f CHP
iCHP ,t,s iCHP ∈ δCHP(b), ∀t, ∀s (38)

(35) and (36) denote output limit of CHP units, which means that active power and re-
active power must be between the minimum output and maximum output. (37) and (38) im-
ply power generation efficiency and heat production efficiency of CHP units, respectively.

The EHPs constraints are as follows:

0 ≤ pEHP
iEHP ,t,s ≤ pEHP

iEHP iEHP ∈ δEHP(b), ∀t, ∀s (39)

hEHP
iEHP ,t,s = ηEHP

iEHP pEHP
iEHP ,t,s iEHP ∈ δEHP(b), ∀t, ∀s (40)

(39) denotes power consumption limit of EHP. (40) refers to heat production efficiency
of EHP.

The boilers constraints are as follows:

0 ≤ f boi
iboi ,t,s ≤ f

boi
iboi iboi ∈ δboi(n), ∀t, ∀s (41)

hboi
iboi ,t,s = ηboi

iboi f boi
iboi ,t,s iboi ∈ δboi(n), ∀t, ∀s (42)

(41) denotes natural gas consumption limit of boiler. (42) refers to heat production
efficiency of boiler.

The proposed scheduling model of IEDS is a mixed integer linear programming
(MILP), which can be solved with the solvers, such as CPLEX, GUROBI.
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4. Numerical Results

4.1. The Operation of IEDS

The proposed hardening strategy is examined on a test system, which consists of IEEE
33-bus power distribution system, 19-node gas distribution system and district heating
system, shown in Figure 5. The numbers without brackets in Figure 5 represent the node
number, and the numbers with brackets represent the line number.

Figure 5. The integrated energy distribution system.

As shown in Figure 5, there are three CHP units, two EHPs, two boilers and three
wind generators. In fact, the three energy systems are geographically overlapping. For
convenience, Figure 5 is a schematic diagram of the wiring of three systems.

First of all, in order to facilitate the explanation of the test system, the operation of
IEDS is introduced in normal state, which is the basis of fault operation. The supply of
active power load, gas load and heat load are shown in Figure 6.

As shown in Figure 6, the supply and demand of IEDS are balanced at each time slot
in normal operation. However, if the overhead transmission lines or underground gas
pipelines are broken, the energy supply will be restricted and load demand will not be
met, so an effective demand management strategy is urgently needed to alleviate the tight
supply of IEDS.

4.2. The Importance Ranking of Transmission Lines and Pipelines

After breaking transmission lines and pipelines, the amount of load demand response
is calculated at each simulating fault state. This section calculates the economic subsidy
caused by load demand response. The corresponding economic subsidy caused by the
damaged transmission lines and pipelines is shown in Tables 2 and 3.

Then, according to the economic subsidy in each fault state, the importance of trans-
mission lines and pipelines is ranked, which is divided into three levels. In the A-level and
B-level, economic subsidy is greater than 120 K and 60 K, respectively. Economic subsidy
less than 60 K is the C-level.
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Figure 6. The supply of load in normal state. (a) The supply of active power load; (b) The supply of
gas load; (c) The supply of heat load.

4.3. The Electrical Resilience Mode and Integrated Resilience Mode

In the electrical resilience mode, the surface natural disasters are simulated. In total,
100 fault scenarios are generated by non-sequential Monte-Carlo simulation, and then
5 main scenarios are obtained by scenario reduction algorithm, which are used to calculate
the fault operation conditions caused by the surface natural disasters. The main scenario
with the largest probability is 0.34. Transmission lines No. 6, 14, 17, 19, 29, and 30 have
failed. After the failure, the power load cannot be fully supplied. Comparing the normal
operation state, a demand response is required, as shown in Figure 7.
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Table 2. The economic subsidy of the damaged transmission lines.

A 232.1 K 213.7 K 199.5 K 187.7 K 187.5 K 183.2 K 162.0 K 156.4 K 143.0 K 142.5 K 133.7 K 131.0 K

Line Number 18 23 12 30 19 13 28 14 20 31 24 15

B 119.4 K 109.9 K 106.4 K 98.5 K 88.9 K 84.2 K 71.4 K 63.5 K 62.8 K

Line Number 1 16 29 21 17 32 6 7 3

C 58.4 K 58.1 K 56.9 K 56.5 K 56.2 K 56.2 K 55.9 K 55.7 K 54.4 K 54.3 K 54.3 K

Line Number 5 4 11 10 22 9 8 2 25 26 27

Table 3. The economic subsidy of the damaged pipelines.

A 155.0 K 146.4 K 136.9 K 135.8 K 131.4 K 126.0 K

Pipeline Number 20 19 11 18 7 1

B 117.3 K 113.4 K 106.8 K 101.2 K 96.2 K 91.1 K 86.7 K 83.0 K 83.0 K 77.2 K 64.8 K

Pipeline Number 6 2 12 13 8 3 4 17 5 10 9

C 54.2 K 51.1 K 8.2 K

Pipeline Number 14 16 15

Figure 7. The power load supply situation. (a) The power load supply situation in normal operation
state; (b) The power load supply situation in failure operation state.

As shown in Figure 7, destruction of transmission lines results in an amount of power
loads that cannot obtain electricity through outsourcing. The wind turbines are damaged
due to natural disasters and the output decreases. At this time, the distribution network
forms many small island grids, and CHP provides power supply to the island grids.

However, affected by the supply capacity of CHP, a certain amount of power load is
still needed as a demand response resource to participate in demand management. This
demand management scheme that considers the support of the natural gas system to
the distribution network is called a semi-emergency scheme in this paper, and it is not
necessary to use all demand response capabilities.

In the integrated resilience mode, the geological natural disasters are simulated.
Similarly, 100 failure scenarios are generated and reduced to 5 main scenarios to analyze
the operation of IEDS after geological natural disaster. The main scenario with the largest
probability is 0.29. Transmission lines No. 7, 9, 14, 16, 20, 26, and 29 have failed. Gas
pipelines No. 4, 8, 11, and 15 have failed. After the failure, not only can the power load not
be fully supplied, but the natural gas is also unable to supply all the gas load due to the
failure of some pipelines. The power load and gas load supply conditions are shown in
Figure 8.
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Figure 8. The power load and gas load supply situation. (a) The power load supply situation in
failure operation state; (b) The gas load supply situation in failure operation state.

As shown in Figure 8, after the natural gas distribution network was destroyed by
geological natural disasters, some gas pipeline failures caused a gap in natural gas supply.
The red shaded part in Figure 8b is the amount of natural gas involved in gas load demand
response, which is equal to the total gas load minus the largest purchased natural gas in
each period.

In addition, due to the difficulty of gas supply, CHP’s ability to support power supply
is extremely weak, so they all operate at a very low level of power generation. At this time,
since the power load cannot get assistance from the natural gas system, almost all loads
have to participate in demand management. This demand management scheme that does
not consider natural gas support is called full-emergency scheme in this paper, and it is
necessary to use all demand response capabilities.

It is worth mentioning that regarding the supply of heat load, in the electrical resilience
mode, although pumps cannot provide heat due to insufficient power supply, gas can
be used to provide sufficient heat through the boilers without causing heat load loss. In
the integrated resilience mode, due to the failure of No. 8, 11, and 15 pipelines, No. 1
boiler cannot obtain gas for heating, and No. 2 boiler is used for heating, supplementally.
Although part of the heat load is involved in demand response, it is not the focus of this
paper and will not be analyzed in detail.

4.4. The Demand Management Strategy

From the above, the demand management strategy includes a semi-emergency de-
mand management scheme and a full-emergency demand management scheme, according
to the type of natural disaster. Moreover, the demand management strategy is based on
the importance of lines and pipelines. As shown in Tables 1 and 2, the failure of each
transmission line and gas pipeline corresponds to a certain economic subsidy to the load
participating in the demand response. According to the semi-emergency scheme and the
full-emergency scheme, the upper and lower cost limits of the corresponding demand
management for each failure transmission line and gas pipeline can be obtained, as shown
in Figures 9 and 10.

As shown in Figures 9 and 10, according to the faults caused by natural disasters
generated by non-sequential Monte-Carlo simulation, the economic subsidies for demand
management caused by the failure of various transmission lines and gas pipelines fluctuate
relatively widely. Therefore, the demand management strategy proposed in this paper can
obtain the optimal demand management cost according to the failure situation, which can
ensure that IEDS can not only improve the resilience, but also have a lower operating cost.
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Figure 9. The economic subsidy of power demand response.

Figure 10. The economic subsidy of gas demand response.

5. Conclusions

IEDS is an efficient, clean and sustainable energy system. However, increasingly
frequent natural disasters pose a severe threat to the security of IDES. Hence, this paper
studies demand management for IEDS to improve resilience against extreme events. The
demand management strategy includes a semi-emergency demand management scheme
and a full-emergency demand management scheme, according to the resilience mode.
The strategy generation process is divided into three stages. In short, combined with
component generic fragility curves, through the non-sequential Monte-Carlo simulation
method and the scene reduction algorithm, the main scene of the failure caused by the
natural disaster is simulated, and then according to the importance ranking of transmission
line and gas pipeline the demand management economic subsidy costs under different
failure situations are obtained. The main conclusions are summarized as follows:

(1) The proposed scheduling model of IEDS co-optimizes the electricity, natural gas
and thermal energy in normal and failure operation state, which promotes efficient and
sustainable energy consumption.

(2) This paper proposes a demand management strategy, which innovatively expands
the traditional demand management in a power system. The demand management of
the IEDS includes two parts: power demand management and gas demand manage-
ment. This paper analyzes the economic subsidies for demand response in these two
parts, respectively.

(3) The demand management strategy proposed in this paper can increase the re-
silience of IEDS and reduce the economic subsidy cost of demand management.
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Abbreviations
Indices and Sets

t Index of hours running from 1 to T.
s Index of scenarios running from 1 to Ns.
b Index of buses running from 1 to Nbus.
n Index of nodes running from 1 to Nnode.
ipe/ipg Index of power/natural gas purchase points.

ils/ile Index of overhead transmission line
start/end points.

jle/jls
Index of overhead transmission line end/start
points corresponding to ils/ile.

igs/ige Index of gas pipeline start/end points.

jge/jgs Index of gas pipeline end/start points
corresponding to igs/ige.

iw Index of wind generators.

iCHP/iEHP/iboi Index of CHP units/electrical heat
pumps/boilers.

δpe(b)/δpg(n) Set of power/natural gas purchase points.

δls(b)/δle(b)
Set of overhead transmission line
start/end points.

l(ile)/l(ils)iw Set of adjacent buses.
δgs(n)/δge(n) Set of gas pipeline start/end points.
g(ige)/g(igs) Set of adjacent nodes.

δCHP(b)/δCHP(n)
Set of access points of CHP units in power/gas
distribution system.

δEHP(b)/δboi(n)/δw(b)
Set of access points of electrical heat
pumps/boilers/wind generators.

Parameters

T Duration of scheduling horizon.
Ns Number of scenarios.
Nbus Number of buses
Nnode Number of nodes
λs Probability of scenarios s.

cp
t /cq

t /c f
t

Active power/reactive power/natural gas
price at hour t.

cq
iCHP Cost of reactive power from CHP units iCHP.

πp/πq/π f /πh
Subsidy cost of active power/reactive
power/natural gas/heat load
demand response.

κw
iw

Penalty cost of wind generator iw

power curtailment.

pload
b,t,s / qload

b,t,s
Active power load/reactive power load at bus
b in Scenarios s at hour t.

229



Sustainability 2022, 14, 5

f load
n,t,s

Natural gas load at node n in Scenarios s at
hour t.

hload
t,s Heat load in Scenarios s at hour t.

rils jle /xils jle
Resistance/reactance of overhead transmission
line ij.

Vbase Base value of voltage.

pl
ils jle /ql

ils jle
Maximum active/reactive power of overhead
transmission line ij.

ppur/qpur Maximum active/reactive power purchased
from IEDS.

Vb/Vb Maximum/minimum voltage at bus b.

pw
iw ,t,s

Forecasted output of wind generator iw in
Scenarios s at hour t.

φiw Power factor of wind generator iw.
Kigs jge Gas flow constant of gas pipeline ij.

β(zigs ,t,s, zjge ,t,s)
Direction coefficient of gas flow in gas
pipeline ij.

f
g
igs jge Maximum natural gas flow of gas pipeline ij.

f
pur Maximum natural gas purchased from IEDS.

zn/zn Maximum/minimum pressure at node n.
M Sufficiently big number
xigs jge ,k Abscissa breakpoints of domain
yigs jge ,k Ordinate value corresponding to xigs jge ,k
εigs jge /KP Size/number of interval.

pCHP
iCHP /pCHP

iCHP

Maximum/minimum active power output of
CHP units iCHP.

qCHP
iCHP /qCHP

iCHP

Maximum/minimum reactive power output of
CHP units iCHP.

ηCHP,ele
iCHP /ηCHP,heat

iCHP Electrical/heat efficiency of CHP units iCHP.

pEHP
iEHP / f

boi
iboi

Maximum power/gas consumption of EHP
iEHP/boiler iboi.

ηEHP
iEHP /ηboi

iboi Heat efficiency of EHPiEHP/boiler iboi.
Variables

ppur
ipe ,t,s/qpur

ipe ,t,s/ f pur
ipg ,t,s

Active power/reactive power/natural gas
purchased from IEDS in scenarios s at hour t.

pdemand
b,t,s /qdemand

b,t,s / f demand
n,t,s /hdemand

t,s

Active power/reactive power/natural
gas/heat load demand response at bus b/at
node n in Scenarios s at hour t.

pw,cut
iw ,t,s

Power curtailment of wind generator iw in
Scenarios s at hour t.

pw
iw ,t,s/ qw

iw ,t,s
Scheduled active/reactive power output of
wind generatoriw in Scenarios s at hour t.

qw
iw ,t,s

Scheduled reactive power output of wind
generator iw in Scenarios s at hour t.

pCHP
iCHP ,t,s/qCHP

iCHP ,t,s
Active power/reactive power of CHP unit
iCHP in Scenarios s at hour t.

pEHP
iEHP ,t,s

Power consumption of electrical heat pump
iEHP in Scenarios s at hour t.

pl
ils jle ,t,s/ql

ils jle ,t,s
Active power/reactive power of overhead
transmission line ij in Scenarios s at hour t.

Vils ,t,s/Vjle ,t,s
Voltage at overhead transmission line
start/end point in Scenarios s at hour t.

Vb,t,s Voltage at bus b in Scenarios s at hour t.

f CHP
iCHP ,t,s

Gas consumption of CHP unit iCHP in
Scenarios s at hour t.
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f boi
iboi ,t,s

Gas consumption of boiler iboi in Scenarios s at
hour t.

f g
ige jgs ,t,s

Natural gas flow of gas pipeline ij in Scenarios
s at hour t.

zigs ,t,s/zjge ,t,s
Gas pressure at gas pipeline start/end point in
Scenarios s at hour t.

zn,t,s Gas pressure at node n in Scenarios s at hour t.

δigs jge ,t,s
Binary variable of gas flow direction of gas
pipeline ij in Scenarios s at hour t.

Zigs ,t,s/Zjge ,t,s
Gas pressure square at gas pipeline start/end
point in Scenarios s at hour t.

μigs jge ,t,s,k/ξigs jge ,t,s,k

Auxiliary continuous/binary variable at kth
interval of gas pipeline ij in Scenarios s at
hour t.

hCHP
iCHP ,t,s

heat output of CHP unit iCHP in Scenarios s at
hour t.

hEHP
iEHP ,t,s

Heat output of electrical heat pump iEHP in
Scenarios s at hour t.

hboi
iboi ,t,s

Heat output of boiler iboi in Scenarios s at
hour t.
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Abstract: To reach the “30·60” decarbonization target (where carbon emissions start declining in
2030 and reach net zero in 2060), China is restructuring its power system to a new energy-based one.
Given this new situation, this paper reviews previous studies on the power market and highlights key
issues for future research as we seek to adapt to the new power system (NPS). Based on a systematic
literature review, papers on the operational efficiency of the power market, participants’ bidding
strategies and market supervision were identified. In a further step, papers with high relevance were
analyzed in more detail. Then, key studies that focused on market trading under China’s new power
system were picked out for further discussion. New studies were searched for that pertained to
new energy mechanisms and bidding, the transition from coal-fired power, flexible resources and
the technical applications of simulations. The quantitative analysis supports the construction of a
basic paradigm for the study of power markets that is suitable for the new power system. Finally,
the theoretical basis and application suggestions for power market simulations are introduced. This
study summarized the existing research on the power market and further explored the key issues
relating to the power market as it adapts to the NPS, hoping to inspire better research into China’s
power sector, and promote safe, low-carbon, and sustainable development in China’s power industry.

Keywords: new power system (NPS); power market; new energy; flexible resources; experimental
economics; agent-based computational economics

1. Introduction

The reform of a power system is a major measure and an important part of China’s
energy restructuring. Since the second round of the electricity reform that was launched
in 2015, China’s power market has been further liberalized [1]. Meanwhile, the Chinese
government has pledged to halt further CO2 emissions by 2030 and become carbon neutral
by 2060 [2]. This requires higher levels of sustainable development in the power system. In
recent years, China has been accelerating the replacement of fossil fuels. The proportion of
new energy in primary energy consumption continues to rise. Renewable energy power
output reached 2.2 trillion kilowatt-hours in 2020, accounting for 29.5% of national electric-
ity consumption. China has fulfilled its commitment that non-fossil energy consumption
must account for at least 15% of the primary energy consumption by 2020 as scheduled [3].
In March 2021, China’s Central Financial and Economic Affairs Commission called for
the building of a new power system (NPS) with new energy as the main source. This
government directive is vital to the power industry’s direction of development. Against
this background, it is particularly important to study the new power system and the power
market trading systems that feature a high proportion of renewable energy.
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Sustainability 2021, 13, 13409

The new power system, compared with traditional power systems, functions in new
industrial models. Every part of the power system, including power generation, grid
operation, and power load control and energy storage, is changing. On the power supply
side, renewable energy will gradually become the main source of electricity generation. On
the consumption side, many prosumers are emerging. With regard to grid operation, large-
sized grids still dominate, while multiple forms of grids will coexist. From the perspective
of the whole system, the operating mechanism and balancing mode will undergo profound
changes. The new power system is a clean and low-carbon, safe and controllable, flexible
and efficient, intelligent and friendly, open and interactive system. The change of the power
market will follow these trends.

At present, China’s power market is based on the provincial power market, and power
trading is based on medium- and long-term contracts. A spot trading pilot for power
is being promoted in the provincial market. New energy power generation enterprises
have priority clearance rights in some provinces. That means that they are allowed to sell
electricity directly at the volume that they bid, or that they can even sell power without
applying for trading volume and prices before the transaction. Their power output will
be bought at market prices without any quoting before the trade. Meanwhile, researchers
are accelerating the search for strategies to promote regional power markets, which can
prompt new energy companies to participate further in the market.

In terms of thermal power, the utilization hours of traditional coal power units are
declining as the proportion of new energy is rising [4]. Government requirements for
carbon emission reduction are also squeezing the living space of thermal power, as burning
clean coal will surely make it more expensive. At present, China’s coal-electric installation
accounts for about 50% of the power system. Its survival is not only related to the develop-
ment of the power system, but also related to the social economy and people’s livelihoods.
We need to pay enough attention to the survival of thermal power. Problems also exist
for new energy and the flexible resources that are participating in the power market. The
value of flexible resources has not been clarified, and there is no corresponding market
mechanism to ensure that large quantities of electricity generated from renewable energy
resources can be consumed at market prices. The market mechanisms of auxiliary services
also needs to be improved urgently.

Due to the two-track characteristics of China’s power market, with both government
planning and active markets, a series of issues concerning market operation and con-
vergence are emerging, including the disposal of imbalanced funds [5,6], power market
supervision/market power testing [7–9], demand response [10], renewable energy partic-
ipating in the electricity market [11], the synergy between the electricity market and the
carbon market, and the construction of future financial markets for power and market
mechanisms for standby capacity. There is no mature international experience that can be
drawn on that would help solve these problems.

The goal of this systematic review is to find solutions to develop the Chinese power
market, combining China’s actual situation with successful foreign experience in power
market construction and operation. Therefore, a basic paradigm for the study of power
markets is identified by analyzing primary studies that are related to issues on market
entities and operational mechanisms. Then, key issues pertaining to power market con-
struction as it relates to China’s new power system (NPS) are discussed. To achieve these
objectives, we conducted the research guided by the following questions:

1 What are the hot topics in primary studies regarding the construction and operation
of power markets, and how do these topics interconnect with each other?

2 What are the key issues in the study of power markets as the system seeks to adapt to
the NPS, which will feature a high proportion of new energy?

3 What is the basic paradigm for the study of power markets that would be suitable for
the NPS?

4 Which theoretical basis can help simulate the power market to further research into
power market mechanisms under the NPS?
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5 From which dimensions should simulation modeling be established and how should
researchers set related parameters?

The review is structured as follows. Section 2 describes the methodology. Section 3
introduces the analysis of general issues that concern researchers in the study of power
markets according to primary research. Sections 4 and 5 discuss key points related to
the NPS power market from both theoretical and practical perspectives. In Section 4, key
issues and basic paradigm for studying the power market under the NPS are presented,
while specific suggestions for the applications of power market simulations are provided
in Section 5. Section 6 gives the conclusions and implications.

2. Methodology

The systematic literature review (SLR) framework [12] is adopted in this work to
identify, evaluate, interpret and describe the existing body of knowledge on power markets.
We focus especially on the operation and supervision of the power market and the bidding
strategies adopted by market participants that have caught the most attention. This study
follows PRISMA guidance [13] for articles so that we can formulate robust and reproducible
research. Figure 1 illustrates the design and logical framework of the respective literature
review. The research questions have been outlined in Section 1.

Question formulation

Locating studies

Search period: English (1980 - July 2021); Chinese (2000 - July 2021)

Information sources: Web of Science, Elsevier, Google Scholar, CNKI (China National Knowledge Infrastructure)

Search strings:  As shown in Figure 2

Inclusion Criteria and Exclusion Criteria: As shown in Step 2

Study selection and evaluation: total number of publications found: 5608     total number of publications used: 170

(Section 1)

(Section 2)

Analysis guided by Question 1
(Section 3.1)

Analysis guided by Question 2
(Section 3.2)

Analysis guided by Question 3
(Section 3.3)

Analysis guided by Question 4
(Section 4.1)

Analysis guided by Question 5
(Section 4.2)

Reporting and using the results
(Section 5 and 6)

Figure 1. Review Design for the Study of Power Markets as Researchers Adapt to the NPS in China.

We carried out the search process in five steps, including identifying the informa-
tion sources, defining the eligibility criteria, composing the search strategy and selection
processes, which aims to present unbiased, rigorous, and auditable results.

Step 1: Classify the search strings groups and identify the information sources.
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This review has searched for both previous studies of the power market and new
studies that show how research is adapting to the NPS, focusing on the research objectives
and main research questions. Older studies on the power market were searched for
with three groups of strings, including “power marker operation”, “bidding strategy”
and “power market supervision”. New studies were searched for with four groups of
strings with terms that include “high renewable energy”, “coal-fired power units”, “flexible
resources” and “technical application”. The search criteria groups are shown in Figure 2.

Power Market Operation

( power market  OR electricity market ) AND

( operation efficiency OR pricing mechanism OR 

market structure  )

Bidding strategy

Power Market Supervision

( power market  OR electricity market ) AND ( bidding 
strategy OR decision making )

( power market  OR electricity market ) AND ( supervision )

High Renewable Energy Market Mechanism & Bidding  
TS = (high renewable energy) AND  AK=(market) AND (TS = 

mechanism OR TS= bidding))

Coal-fired power transition

Flexible resources

TS = (coal-fired power) AND TS = (transition) AND TS = (market)

AK = (bidding OR power mechanism ) AND TS = (flexibility)

Technical Application
TS = ( power market  OR electricity market ) AND

AK= (experimental economics) OR AK = (agent based computational 
economics)

Previous studies New studies

Figure 2. SLR search criteria.

Meanwhile, relevant databases that could be searched were also determined in this
stage. We collected literature primarily from Web of Science, Elsevier, Google Scholar
and CNKI (China National Knowledge Infrastructure). Other websites of authoritative
research institutions that we used included the National Renewable Energy Laboratory
and the Lawrence Berkeley National Laboratory. Collectively, these databases covered the
main published papers/reports, unpublished manuscripts and conference papers (full-text
access) that focused on the power markets of China and foreign countries.

Step 2: Set eligibility criteria for inclusion and exclusion of identified papers.
Eligibility criteria were determined in this phase to exclude ineligible studies from

this review. There were several standards for studies to be included or excluded:

• Papers should be in social sciences, business and economics, energy, or relative fields.
• The title or subject must be strictly matched with the search strings. For example,

papers that focused on storage efficiency in the power market [14] could be found
when we searched for “power market operation efficiency”. Alternatively, articles that
used experimental methods with neural networks [15] could also be found when we
searched for “experimental economics”. These kinds of articles should be excluded.

• Papers or reports must be written in English or Chinese. Literature in other languages
was excluded in this review.

• English articles must be published between 1980 and 2021 (access in July 2021) and
Chinese articles must be published between 2000 and 2021.

• Articles must have at least one keyword in the title or abstract, or cover the topic in
the full article.

Step 3: Search and export the studies on power markets.
Based on the search criteria groups in Figure 2, suitable combinations of Boolean

variables, such as “AND”, “OR”, and “NOT”, were employed to find the suitable literature.
Because there are a range of topics that pertain to the power market, which has been
studied extensively, “precise search” was used during the search process. The rankings
of the literature were based on their relevance to the strings, which is helpful for further
selection. Then, the identified studies were exported for deduplication in Step 4. The
detailed search processes are as follows:
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Firstly, papers published in refereed journals were searched for using the “Power
Market Operation” criteria, which resulted in 1023 primary papers being selected from
the business and economics fields from the Web of Science. With the same search strings,
411 papers were found in Elsevier, and 307 papers were found in the CNKI.

Secondly, the term “Bidding strategy”, searched for in Web of Science, resulted in
896 papers that were indexed in the fields of business and economics. A further 1460 papers
were found in the field of economics and energy in Elsevier, while 177 papers were identi-
fied in the CNKI, which was much lower than the number of that in the English databases.

Thirdly, studies on “power market supervision” were searched for using the strings.
In this step, 180 papers were found in Web of Science, and, of these, 176 papers satisfied
the inclusion criteria. Only three of 72 papers were selected from Elsevier, however. We
found 121 articles that were published in the Chinese database.

Then, new studies regarding renewable energy, coal-fired power units, and flexible
resources and “technical applications” were searched for using the same method. As a
result, 187, 54, 132 and 51 of them were identified in Web of Science, respectively, while 13,
2, 2 and 48 of them were selected in Elsevier, and 18, 5, 5 and 66 of them were identified in
CNKI. All eligible papers were exported for further deduplication.

Step 4: Remove duplicates of searched papers.
Because the search process was carried out using different groups of strings, Cites-

pace [16] was used to remove the duplicates in this review. We removed 189 previous
studies in this phase according to the names of the exported .txt files of all of the suitable
literature.

Step 5: Choosing eligible and relevant studies.
With the assistance of the relevance ranking function in the databases, the last pages

with less relevant articles were excluded from further selection. After selecting the most
relevant articles, we screened their titles, abstracts, and keywords. The illegible papers were
excluded based on the inclusion and exclusion criteria. Then, we further read the conclusion
and implications to identify the most important pieces of literature. Finally, through careful
reading of the full text, we used the “snowballing” method to find articles that were not
identified in the search. This meant that we found a wide range of literature. We removed
194 articles that were duplicates. The screening led to the exclusion of 4256 publications
that did not meet the eligibility criteria. There were 893 old studies and 232 new studies
that were further analyzed. Finally, a total of 170 studies were included in the review. To
express the search process more clearly, the search strategy flow is shown in Figure 3.

After reviewing research hotspots and solutions of power markets around the world,
general issues in the study of power markets were summarized. Then key issues in the
study of power markets as it pertains NPS were put forward. This involves mechanisms
and strategies for renewable energy, the survival and transformation of coal-fired power
plants, and the value realization for flexible resources. After theoretical analysis, technical
applications of experimental economics and agent-based computational economics in
the study of NPS as it relates to the power market are presented. Further, simulation
and parameters in terms of power system, power market and market participants are
implemented.
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Figure 3. Search process.

3. Key Issues and the Basic Paradigm of Research into New Power Systems in the
Power Market

After merging and splitting the spot sales and future trading markets [17], the Nordic
power market finally grew into a situation where financial markets for power and spot
trading complemented each other. Following the NETA [18] (New Electricity Trading
Arrangements) and the BETTA [18] (British Electricity Trading and Transmission Arrange-
ments), the UK has gradually liberalized the market for large and small industrial users
and achieved efficient cross-border trading of electricity. With a high proportion of nu-
clear power and relatively low standard electricity prices, France has relevant experience
in regulating the market pricing mechanisms that are adapted to a high proportion of
nuclear power. In addition, issues related to electricity markets in Australia [19], Califor-
nia [20], Brazil [21], New Zealand [22] and Germany [23], have also been hotly debated
in academia. It can be seen that the construction of electric power markets varies from
country to country, due to the unique characteristics of power systems that results from
different national conditions.

At present, China’s power market is constructed around the provincial electricity
energy market, with power transactions relying on medium- and long-term contracts.
Research on China’s power market is focused on the spot trading of electricity, and mainly
revolves around the design of spot market price mechanisms, the bidding games of market
subjects, and the interface mechanism between spot trading, medium- and long-term
contracts, and auxiliary services. The further development of the power selling side, with
energy storage equipment operators and other emerging entities participating in the electric
sector and auxiliary services market, is also attracting the attention of scholars. Some other
emerging hot research issues include demand response prices or incentives, power financial
markets, electricity retail market prices and package design, as well as market risk and
market assessment.

3.1. General Issues in the Study of Power Markets

A healthy power market depends on sound market mechanisms, competitive market
subjects and strong market supervision. A large amount of research and practice has therefore
been carried out on the operational efficiency of the power market, market subject strategies
and market supervision and evaluation. Detailed research issues are shown in Figure 4.
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General Study of 
Power Market

Electricity Market 
Operation Efficiency

Bidding Strategies of 
Market Players

Market Supervision

Impacts of Environment and Policies

Power System Investment

Demand Response

Assessment of Market Operation Efficiency

Market Structure Design

Pricing Mechanisim

Generation Companies

Energy Retailers

Energy Consumers

Market Power

Market Players’ Credits

Information Disclosure

Market Risks Warning

Figure 4. General Issues in the Worldwide Study of Power Markets.

3.1.1. Operational Efficiency of the Power Market

This part reviewed literature which studied market mechanisms or operational ef-
ficiency. Therefore, such papers that studied energy efficiency [24] or the operational
efficiency of power plants [25] in a market were excluded. After the selection and evalua-
tion of search results with “power market operation efficiency” strings, only 70 papers in
the databases corresponded tightly with this topic. In addition, five reports were added
into the pool for further analysis.

Around the time of the first power system reform in China, the operational efficiency of
the power market was mainly analyzed theoretically and empirically from the perspective
of market power [26]. Some scholars also studied the key problems facing the operational
efficiency of the power market from a market structure perspective [27]. Other scholars
put forward systemic theories and evaluation methods for the operational efficiency of the
power market [28].

Apart from evaluating market efficiency [19] based on actual market operation data,
foreign scholars have also studied the factors affecting the efficiency of market operations,
such as price mechanism design, market structure design, market power, demand response,
power system investment and environmental policies, as shown in Table 1. These studies
provide a powerful reference for designing new market systems or behaviors.

Table 1. The Study of Power Markets: General Issues and References.

Research on the Operation of the Power Market References

Price mechanism
design

Regional marginal pricing [29]
Locational marginal pricing [30]
Capacity pricing mechanism [31–34]

Ancillary service pricing mechanism [35]
Combined clearing of power energy and ancillary service [36]

Distributed trading mechanism [37]

Market structure design [38]

Market power Evaluating metrics [19,39–46]
Evaluating methods [47–50]

Demand response [51–54]

Market efficiency assessment [19]

Investment in power systems [55,56]

Environmental policy [57–59]
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Pricing mechanisms are the core of market operation design. A lot of practice and
research on the applicability and effect of pricing mechanisms has been carried out by
the industrial sector and in academia. For example, the original pricing mechanism of
the Texas power market in the US was based on regional marginal pricing in the early
stage of market construction, but it changed to a node marginal pricing mechanism [30]
in 2010 as the market operating efficiency decreased with the deepening of power system
congestion in the region. Focusing on the redispatching market in Europe, some scholars
have quantitatively assessed the impact of regional pricing and node tariff mechanisms
on the operational efficiency of the power system in a market environment where there
is incomplete competition [60]. Such studies provide useful references for the design of
electricity pricing mechanisms. According to other investigations, pricing mechanisms
in China vary from province to province. Gansu and Jiangsu implement the regional
marginal price [29], and the clearing price in the province is the same. Shanxi, Zhejiang
and Guangdong, on the other hand, implement the locational marginal price, meaning
that the clearing prices in different nodes fluctuate. Based on a full development of the
electric energy market, PJM, California and other power markets in the Americas began to
explore the key role [31–34] that capacity pricing mechanisms play in balancing between
strengthening the reliability of power systems and increasing income for power producers.
In addition, because distributed power supply has developed rapidly, reaching a large
scale in recent years, its trading mechanisms [37] have also aroused wide concern.

Demand response is the process whereby end users adjust their own electricity con-
sumption behavior in response to time-based rates. End users are provided with com-
pensation [61] for reducing power usage when wholesale market prices are high or the
reliability of power systems is threatened. At present, foreign research on demand response
is focused on resident demand response strategies [62,63], business user demand response
models and optimization methods [54], as well as on microgrids. Some other emerging
flexible resources are also seen as key elements [64] of demand response, including flexible
loads [65–67], as well as resource aggregators (RA) [54] that combine distributed power
supplies, energy storage systems, and controlled loads.

The optimization of investment planning in power systems is the subject of power
trading research at the macro level. Investment is also an important means of building a new
power system in stages. However, most research on investment planning in power systems
is focused on the physical characteristics of the electricity system, while influences from
market factors are ignored by most studies. Typical simulation software for investment
planning for power systems include Energy Plan [68], SWITCH [69–71], NEPLAN [72] and
PLEXOS [73]. Only PLEXOS takes into account market factors (including recent and real-
time market price movements, changes in demand, market risks, etc.), ancillary services
and system flexibility. It can also simulate carbon trading management, showing the near-
real re-emergence of multi-market coupling and system-to-market coupling. However,
other investment planning simulation software are based on the technical and economic
characteristics of the power system. They take into account environmental or policy impact,
rather than the impact of inner-market factors on system investment planning. Such
software specializes in long-term planning and optimization of the energy structure of
the system.

3.1.2. Bidding Strategy of Market Participants

The quotation strategy is where the feedback from market participants corresponds
to the power market mechanism, and it is also an effective test of the market mechanism.
In early research, most scholars focused on power producers. They judged their winning
probability by predicting the market clearance price [74], or their competitor’s strategy [75],
and drew their own bidding strategy based on the probability theory method. The game
theory revenue matrix and incomplete competition game models were also the tools that
they used to form their own bidding strategies.
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During the first round of power system reform in China, a power generation side
competition model was formed because the state-owned power grid company is the only
buyer. Around 2002, many scholars studied the bidding strategies of power generation
enterprises that were based on coal and other fossil fuels, and obtained rich research re-
sults. The quotation strategies that were used in those studies were mainly based on cost
analysis [76], electricity price forecasts [77], optimal methods [78] and game theory [79].
After that, some scholars used power market simulation experiments to study the bidding
strategies and bidding trading systems of power producers based on EWA algorithms [80],
Repast algorithms [81], Agents [82,83], and MAS [84]. However, those strategies only
served traditional thermal power plants, and the target market was limited to provincial
electricity energy markets. The market is changing as China pushes ahead with a new
round of power system reform. The power selling side of the market is opening. The types
of market participant are increasing, and trading variety is growing. The focus of current
research has moved to the portfolio strategies of market participants (represented by power
producers, electricity sellers and large users) to cope with medium- and long-term contracts
(physical and financial), spot trading, ancillary services and carbon markets. With the
progress of technology, research on new market subjects has gradually increased. The
bidding strategies of virtual power plants or hybrid power plants [85], microgrids, load
aggregators [86], prosumers, energy storage and electric vehicles are becoming hot issues.
Some studies have identified trading strategies for a certain type of market, and some
researchers have proposed joint optimization strategies for multiple types of markets. Com-
mon research methods include two-stage robust optimization, which takes into account
risks, and the Markov decision process [87]. Typical references are as shown in Table 2.

Table 2. Typical Literature on Market Players’ Bidding Strategies.

Market Players Strategy Target References

Traditional power
producers

Medium- and long-term market [88]
Day-ahead market [89]
Real-time market [90]

Day-ahead market and real-time market combined [91]
Electricity retailer Day-ahead market [92,93]

Virtual power plant Day-ahead market and ancillary services [94,95]

Microgrids
Day-ahead market [96]

Day-ahead market and real-time market combined [91]
Electric energy market and ancillary services [97,98]

Prosumer
Day-ahead market [86]

Day-ahead market and ancillary services [99]

Energy storage Day-ahead market [100]
Real-time market and ancillary services [101]

Electric vehicles
Day-ahead market [102]

Day-ahead market and ancillary services [103]

As can be seen from the table above, most of this research is focused on the electric
energy market. The joint strategy for real-time markets and ancillary services is an espe-
cially hot research issue. There is little research that focuses on a single secondary service
and capacity market strategy. It is worth noting that the market participation strategy for
new thermal power units with flexible regulation capabilities has not yet been studied.
However, the right strategy is crucial for thermal power units to survive during market
reforms. Under new situations, when developing trading strategies, thermal power units
should consider not only the income from selling electricity, but also potential benefits from
providing ancillary services or spare capacity through flexible resources. Risk aversion
through financial contracts [104–106], arbitrage and linkage strategies with the carbon
market should also be taken into account. For instance, Bjorgan analyzed the impacts of
resources constraints when utilizing a portfolio of contracts to manage adverse markets
risks [104]. Furthermore, T. S. Chung introduced a new electricity forward contract that
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included a bilateral financial contract that allows both the seller and buyer to cope with
market price fluctuations [105]. Focusing on the forward risk premia, Spodniak studied
the differences between the trading price of electricity in forward contracts and the spot
prices to hedge transmission risks [106]. In addition, the feasibility of trading strategies
that combine new energy, thermal power, gas and energy storage and other sources is also
worth exploring.

3.1.3. Power Market Regulation

A sound electricity market requires regulation. Power market regulators around
the world perform nearly the same functions, including detecting potential risks to the
healthy operation of the market (usually to detect whether market participants behave in
accordance with market rules, standards and processes), judging whether market partici-
pants use market power appropriately, looking for defects in market rules and detecting
how regional transmission organizations (RTO) influence market operations [107]. Market
regulators usually exist in four major forms: (1) a single regulation department that is
embedded in the system scheduling operational structure, (2) a single regulatory body
that is independent of the system scheduling agency, (3) a single regulatory body that
is controlled by the government, and (4) a dual regulatory body, one that belongs to the
system scheduling agency, and the other which is independent. Typical regulators include
the Office of Gas and Electricity Markets (Ofgem) in the UK, the European Securities and
Markets Authority (ESMA), the Australian Energy Market Commission (AEMC) and the
Australian Energy Regulator (AER), as well as the Federal Energy Regulatory Commission
(FERC) in the US.

A variety of operational risks within the power market have been studied by aca-
demics, including supply-side market structure risks, mechanism design risks, the credit
risks of market participants, power system security risks and external environmental risks.
As an important index of market supervision, market power has attracted much attention
from researchers.

In research outside of China, S. Prabhakar Karthikeyan [108] and his team compre-
hensively expounded a range of market power assessment indicators, common simulation
tools, as well as common theories and algorithms. After analyzing typical cases in different
countries, they proposed measures to control market power. Common indicators of market
power assessment include the Herfindahl–Hirschman index (HHI) [39], the Lerner index
(LI) [40,41], the must-run ratio (MRR) [42] and the residual supply index [43]. In addition,
the system interchange capacity (SIC) [44], the location privilege (LP) surplus deviation
index [45], the contribution congestion factor matrix [46] and other indicators have been
put forward and applied by some scholars. Some other scholars claim that HHI evaluation
has shortcomings, and have thus put forward a method to evaluate market power in
the electricity sector based on oil market simulation [109]. In terms of regions, electricity
markets in California of US [110,111], Wales (UK) [112], Germany [113], India [114], and
Iran [114] has been surveyed to evaluate their market power.

The research on market power by Chinese scholars can be divided into three major
types. For the first type, researchers presented a review of market power regulation and
mitigation measures in foreign electricity markets, such as North America and northern
Europe. For the second type, which is based on market power indicators, researchers
carried out market efficiency assessments and proposed risk warnings for power produc-
ers. This research was conducted before the second round of power reform. Some were
based on principal component analysis [47], and some were based on game theory [48,49].
Only Zhang Fuqiang [50] and his team considered the strategic behavior of power pro-
ducers and used intelligent simulations to evaluate market power in different settlement
modes. A third type of research has emerged since China deregulated its retail power
market in the second round of power reform. This type focuses on the market power
of various participants [115], including electricity producers [116], retailers and users.
Some of the recent studies help electricity producers discover spot markets using support
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vector machines (SVM). Some other research has been conducted on the breakdown of
medium- and long-term contracts, taking into account the market power of the parties to
the contracts [117].

In order to help market participants avoid risks, market designers provide financial
instruments based on the operating boundaries of power systems when designing price
mechanisms, such as contracts for differences (CFD), transmission congestion contracts
(TCCs), and financial transmission rights (FTRs). In addition, some scholars have proposed
the concept of an operational health degree for power markets [118], which can be used to
measure the electricity market so as to help government departments, system operators
(e.g., independent system operators, ISOs) and market management committees monitor
market conditions in a timely manner and take appropriate measures if necessary.

3.2. Key Issues in the Study of Power Markets as the System Adapts to the New Power System

As a major measure for reaching China’s carbon reduction targets, constructing a new
power system based on renewable energy is a complex systematic project that involves
various sides in the electricity sector, including electricity producers, grids and load control
sources. There will be new requirements for every part of the power system. Electricity
generation units should be more flexible and capable of coordinating with the grid. The
grid should be optimized for the configuration of clean energy. End users are expected to
interact flexibly with the grid to help ensure power security. The market mechanism is
the basic guarantee when constructing a new power system. Furthermore, the operation
of new energy sources and thermal power units with regulatory capabilities and flexible
loads [119], needs to be reinterpreted under the new situation. Therefore, research on
how the power market needs to adapt to the new power system should be focused on
building market mechanisms to promote the participation of new energy in the market,
helping thermal power units survive during periods of market reform and discovering
flexible resources.

3.2.1. Mechanisms and Strategies for Renewable Energy Producers Participating in the
Power Market

Governments in different countries have introduced price mechanisms [120–122]
and incentive policies [123] to encourage renewable energy producers to produce more.
The fixed electricity prices and tradable green certification mechanisms [124] that were
introduced by the EU have been successful at stimulating renewable power generation.
Germany has introduced a fixed feed-in tariff mechanism, a market premium mechanism
and a bidding system for the different stages of renewable energy development. The
German government can adjust its fiscal incentives flexibly considering the downward
trend of renewable energy costs. With these policies, Germany is seeing a rapid growth
in renewable energy production. The United States and Australia promote new energy
through renewable energy quota systems and renewable energy certification mechanisms.
They guarantee the trading volume of wind and photovoltaic power through power
purchase agreements (PPAs), and encourage renewable energy companies to directly
participate in the wholesale electricity market based on contracts for difference (CFDs).

Problems appear when renewable energy producers participate in the electricity
market. Firstly, the wholesale price in the power market has fallen as the scale of new
energy generation has rapidly expanded. Falling prices have suppressed investment from
conventional power suppliers, and this may harm the safety and stability of the whole
power system. Secondly, the unstable output from new energy generation makes the
markets’ clearing prices more volatile. The gap between clearing prices in day-ahead
markets and real-time markets widens, adding to the uncertainty regarding the returns
gained by conventional thermal power plants. Thirdly, the climbing market share of
renewable energy poses challenges to the design of market mechanisms.

Research into the power market is currently focusing on how to innovate the spot
market price mechanism, auxiliary service price mechanism and capacity price mechanism
to adapt to the new market, which now features a high proportion of new energy. Many

243



Sustainability 2021, 13, 13409

scholars are proposing new market mechanisms for auxiliary services that are adapted
to the new situation [125]. Godoy and his team are among these researchers. They de-
signed a cost-based ancillary services market mechanism and verified its technical and
economic feasibility through a simulation of the Chilean [126] electricity market. Some
scholars studied the joint clearance of the electricity spot market and the auxiliary services
market [127–129], while some others have proposed mechanisms to prompt flexible re-
source providers, including energy storage [130] and distributed power supply [131], to
participate in the secondary services market.

The optimization of the power system and microgrid structure in the green power
market [132] is also attracting the attention of researchers. S. Arango Aramburo [133]
has studied the impact of the access to new energy on the investment cycle of power
system capacity. A. Hasankhani [134] compared the differences between the scale of
renewable energy in smart microgrids before and after participating in the power market,
and optimized the energy management of microgrids. The issue of how demand response
contributes to promoting new energy electricity connections to the grid [135] has also been
explored, and researchers weighed the relationship between the scale of demand response
and social welfare.

3.2.2. The Survival and Transformation of Coal-Fired Power Units

The rapid expansion of new energy power generation is squeezing out traditional coal-
fired power plants. Firstly, coal-fired power generators have to keep their overall utilization
hours at low levels because large quantities of electricity generated from renewable energy
sources must be consumed before thermal power. Meanwhile, coal power plants have to
adjust their own output to make up for new energy generation and maintain the stable
operation of the grid. When electricity generated by renewable resources is sufficient,
thermal power units need to reduce their output. When renewable power plants are unable
to support power consumption at peak times, thermal electric plants need to increase their
generation. Thus, the operational cost of coal-fired power plants is rising. Secondly, the
wholesale price of electricity is falling as a result of the rapid expansion of renewable power
generation. Coal-fired power plants are losing competitiveness due to falling electricity
prices. Some thermal power plants even report severe losses in regions with high prices
of coal. Thirdly, the environmental cost of coal-fired power plants is also rising because
China is promoting green and low-carbon development through the carbon trading market,
which further cuts the competitiveness of thermal power plants. Fourthly, the complexity
and cost of decision making is surging as coal-fired power plants adapt to the power and
carbon market linkage system. It is a new challenge for traditional power suppliers which
have just become accustomed to the market environment in the past few years.

However, thermal power accounts for more than 60% [136] of China’s total installed
power capacity, with nearly 50% generated by coal-fired power plants. Therefore, the
thermal power sector plays an important role in China’s power security. Meanwhile, China
is limited to just relying on energy storage and demand-side resources to provide auxiliary
services for the new power system. Flexible thermal power units’ capacity for adjusting
electricity consuming load and frequency is worth exploring, especially with the target
of transforming 200 million KW of coal-fired power units into flexible resources during
China’s 14th five-year plan period [137]. In addition, the survival and development of
coal-fired power units is also worth an in-depth discussion from the perspective of people’s
livelihood. Therefore, whether coal-fired power plants can be successfully transformed
through technological improvements and reasonable market mechanisms is a key issue for
the construction of the new power system.

3.2.3. Value Realization and Supporting Mechanism for Flexible Resources

The value of flexible resources in the new power system is expected to be realized
using market mechanisms. More and more attention is being paid to the value of flexible
resources, including energy storage, electric vehicles, demand-side resources and thermal
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power plants with flexible regulation capabilities. However, current research on flexible
resources is generally limited to optimization planning or resource allocation within power
systems, discussing, for example, the system optimization of flexible resources for power
supply, grid operation and load management. Another limited research issue is studying
how to optimize the configuration of flexible resources for adequate demand response [138].
Only a few studies have explored the value [139,140] of flexible resources in the electricity
market, which lack systematic quantitative analysis. Significantly, there are no studies on
value modeling, market system design, and simulation deduction and decision analysis
when it comes to flexible resources that will operate under market conditions within the
new power system. To fill in this gap, we need to recognize the value of flexible resources
and design a market mechanism that can clearly reflect price signals, so as to help renewable
energy resources participate in the electricity market.

3.3. Basic Paradigm for the Study of Power Markets under the New Situation

A power market is a complex economic system, with branches forming where the
system couples with others. To simplify this study, we built a framework with three
dimensions, including market operations, market player strategies and market supervision,
to outline a basic paradigm for power market research under the new situation. As shown
in Figure 5a, the power market operates through the interaction of different sub-markets.
Depending on its different functions, transaction times and spaces, the power market can
also be divided into different submarkets. Market players make strategic decisions in
different scenarios based on the market mechanisms, which leads to diverse market results.
The interaction between market participants and the market operation mechanisms affects
the health of the power market. Connecting all kinds of market players, the power trading
center is responsible for publishing market information, organizing transactions of different
types, managing the credit of market participants and assessing market risk. The dispatch
center checks the safety of the power system according to the clearing information of the
trading center, and forms the final clearing and dispatch orders. The market supervision
department supervises the credit of market players, information disclosure, market force
detection and risk warning. As shown in Figure 5b, the power system, market mechanisms
and strategies of market participants are key factors that help us understand market
systems. These three aspects will be further discussed in the following part of this paper.

 
(a) (b) 

Figure 5. Basic paradigm for the study of power markets: (a) research dimensions of power market; (b) general process of
power transactions.

Typical types of power markets include the electric energy market, the auxiliary
services market, the capacity market, the power financial market and the transmission
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rights market. The electric energy market can be further divided into the wholesale
market and the retail market according to the trading volume. In the wholesale market,
participants can trade through the trading center, or they are allowed to make direct
transactions through bilateral negotiations.

From the perspective of the time dimension, the electric energy market can be divided
into the medium- and long-term market, and the spot trading market. The medium- and
long-term power market is designed to avoid market risks and maintain the safety of
power systems. Transactions in the medium- and long-term market can be made either
physically or in a financial manner. From the perspective of the spatial dimension, power
markets can be classified as provincial markets, regional markets, national markets and
transnational markets, according to the different structures of the power grids. Different
countries choose different trading modes according to the unique structures of their grids.

Auxiliary services are helpful for maintaining the reliable operations of the grid
and ensuring the quality of electricity transmission. The ancillary services market is an
important complement to the spot market. As China advances the reform of the power
market, a key issue is how it can determine the supply boundaries [141] and supply costs
of auxiliary services within the auxiliary services market. Another hot issues is how the
supply costs would change [142] with different operational strategies.

One study [141] is a review of the international research results from studies of auxil-
iary service standby mechanisms that are based on the actual operations of regional power
markets, covering the types of auxiliary service standby mechanisms, the coordination and
optimization mechanisms of the standby power market, and methods for assessing backup
demand. If the auxiliary services market is regarded as the safety mechanism to ensure
the stability of power system in real time, then the capacity market is the mechanism that
ensures the stable supply of electricity over the medium and long term. The key issue when
studying the capacity market is how to encourage market participants to build effective
power generation units, improve investment efficiency and ensure the stable supply of
electricity [143] under the premise of reducing investment costs. Financial derivatives
are important tools for risk management in the power market. In the power markets of
typical countries, market participants use contracts for difference (CFDs), power futures
and power options products and other financial derivatives [144,145] to suppress the risks
from fluctuating spot prices.

With the urgent need to build a new power system and market trading system, it is
especially necessary to explore the market mechanisms, capacity mechanisms or capacity
markets [146], and market interface mechanisms that can be adapted to China’s own
conditions. Under China’s new power system, based as it is on renewable energy, the
important value of flexible resources, an emerging market resource, needs not only to
be quantified, but also to be realized under the market mechanisms. Therefore, whether
to design a new market mechanism for renewable energy and flexible resources, how to
design and connect the mechanisms, what effect the new mechanism could bring, and
other questions are issues worth exploring. Further, the research on the portfolio and
bidding strategies of market participants, including traditional thermal power capacities
and emerging renewable energy and flexible resources, is of great significance to help
market players integrate into the new market conditions and to promote the healthy
development of the market.

4. The Theoretical Basis and Technical Applications of Power Market Simulations to
Help Markets Adapt to the New Power System

The effects of designing market mechanisms and conducting research into market
participants’ strategies need to be verified under specific market circumstances. Power
market simulation technology is an effective means of avoiding the loss of benefits that
the strategy’s design may cause to the actual system. The power market is an open and
dynamic, complex and adaptive system with parallel interactions and nonlinear dynamics.
Each market participant is independent but can interact with any other. Traditional simula-
tion tools that are based on unified decision making are not suitable for complex power
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systems with decentralized decision making as the basic feature [147]. The simulation of
power markets based on experimental economics and computational economics not only
considers the rational and irrational behavior that may occur in the real environment, but
can also simulate people’s limited rational decision making and realize complex compu-
tations using intelligent agent technology. Therefore, it is an effective tool for studying
market mechanisms and the strategies of market participants.

4.1. The Theoretical Basis of Power Market Simulation
4.1.1. Principles and Applications of Experimental Economics

Experimental economics (EE) is a branch of economics that uses data from experiments
to address economic questions. Experimental economics was developed in the second half
of the 20th century and matured during the 1960s and 1980s. Drawing on the experimental
methods that are used in the natural sciences, EE simulates the actual decision making that
goes into market transactions according to the strategy of selected subjects. Experimental
economics is used to prove the theoretical hypotheses of economics and test the effects of
specific rules in the economic system through controlled experiments. The research issues
of experimental economics have developed from simple theoretical tests to summarizing
regularities and forming new theories using systematic experiments. The design process of
economic experiments has also changed from simply copying the scenes in classic models
to designing “tailor-made” experiments [148] for new research issues.

With the development of computer technology, experimental methods have become
diversified, which makes large-scale experiments and remote interactive experiments fea-
sible. The scope of research has been extended from microscopic and purely theoretical
topics to macro [149], financial [150–153] and social networks [154]. Many government
agencies use the results from experimental economics research to guide practice [155]
in auctions and central bank policy making. Through systematic reviewing-related re-
search, some scholars divide experimental economics into seven branches [148]: individual
preference and decision making, game theory, industrial organization, labor economics,
public economics, finance, and macroeconomics. Power market simulations that are based
on experimental economics can help verify the theoretical value of the above theories
when studying multi-subject interactions in markets and market dynamics, providing a
key basis for understanding the competitive behavior and theoretical modeling of market
participants. Through power market simulation, we can also research the influence of
different trading mechanisms that consider the rational and irrational behavior of real
market participants on the efficiency of resource allocation.

4.1.2. Principles and Applications of Agent-Based Computational Economics

Only a limited number of market players can be considered to be the ‘rational eco-
nomic men’ of classical economics. Market participants’ behavior is not universal, and
it is therefore difficult to interpret using traditional mathematical models. With the con-
vergence of technologies in multiple fields and the progress of research and development
technologies, agent-based computational economics (ACE) has become an effective tool for
overcoming the shortcoming of traditional economics.

Through artificial intelligence and computer modeling and simulation technology,
ACE can be used to study complex phenomena in economic systems. Based on the system
evolution model, which constitutes a large number of independent market players, the
decision-making methods and intelligence levels of different market participants can be
calculated using a series of calculations. The simulation system based on agent-based
computational economics (ACE) can not only verify some existing economic theories,
but also address problems that cannot be well explained through other branches of eco-
nomics. For example, in the real market environment, even if there is no top-down
government/management influence, why do some market participants still follow behav-
ior patterns that are beneficial to the overall development of the market system? Such a
problem can be explained using agent-based computational economics (ACE).
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In addition, the ACE model can help researchers understand the impact of different
systems on the social efficiency and individual welfare of economic systems, and solve the
problems of long-term games and individual psychological behavior, which are weak points
in existing economic research. In power market simulations, each agent is given different
capabilities in their initial state. During the trial cycle, individual agents predict potential
changes in the market and give feedback based on their own characteristics. All agents
in the system compete with each other and influence each other, together constituting a
complex, dynamic, evolutionary system.

Major application scenarios of the existing research based on ACE are as follows. The
first type of research is the simulation of individual learning mechanisms, of which the
complex network evolution game, based on individual learning abilities, is a cutting-edge
problem [156]. This simulation method is mainly based on genetic algorithm and neural
network technology.

The second type is to depict behavior patterns. Typical research in earlier periods
concentrated on the impact of cultural communication on economic globalization. After
introducing the concept of open innovation, Chinese scholars combined computational
economics with open innovation problems, and gave market players different equity prefer-
ence attributes, so as to build a multi-intelligence simulation model. Then, market subjects’
preferred strategies, based on their different preference types in different innovation modes,
are deduced. Such research provides a useful point of reference [157] for studying open
innovation alliances and enterprise innovation development from the micro perspective.

Thirdly, the ACE model is also applied in the study of trading networks in economic
systems, focusing mainly on the formation and evolution of networks, as well as the
optimization of network organization. Social problems, such as the seasonal migration of
shepherds, are typical issues at the heart of this research.

The fourth is to study the market model based on ACE. The evolutionary process
and institutional influences on various kinds of markets attract the most researchers. The
simulation of the securities market conducted by SFI(Santa Fe Institute) [158] is a typical
scenario where ACE is applied.

4.2. Simulation Applications and Parameter Settings for the Power Market as It Adapts to the NPS

The power market simulation system is a comprehensive system that uses specific
rules and design processes to simulate the real power market based on the characteristics of
real power systems and real markets. The core modules of power market simulation cover
power system modeling, power market rules and the characteristics of market participants.
Based on the core modules, new scenarios can be designed by adding, deleting and
changing parameters, so as to study key issues and test hypotheses pertaining to market
constructions under the new power system.

4.2.1. Parameter Settings for the Modeling and Simulation of Power Systems

The modeling and simulation of power systems is based on the physical proper-
ties [159–161] of power systems, such as the structure of regional power supply, load, grid
nodes and the limit of power transmission lines. As China expects to embrace a new
power system with a large amount of renewable energy, the value of all kinds of electricity
generation units (especially flexible resources) needs to be verified for the new market
situation [162]. In order to simulate the market to study specific issues, a variable scenario
for modeling power systems can be constructed by adding the types and proportions of
electricity generation units. The types of units covered by the simulation include new
energy sources, energy storage (usually in form of electrochemical, hydrogen storage, and
flywheel), distributed power supplies and thermal power units with flexible regulation
capabilities. Common parameters of power system simulation that are based on electric
power system theory and prediction theory are shown in Table 3. In addition, under the
construction of the new power system, the market share occupied by new energy, the rate
of new energy penetration, and other indicators can be added. By adding such indicators,
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other issues [163], such as testing paths towards the dual carbon emission target, discover-
ing the value of diverse resources and improving the strategies of market participants, can
be researched under the simulation with extended parameters.

Table 3. Power System Simulation Parameters.

Parameters Description

Structure of the
power supply Type, location, installed capacity and other properties.

Forecast of electricity
output (accuracy)

generated from renewable
energy of the system

The reliability of the system can be verified by setting a proper
coefficient of power generation using renewable energy units.
Based on weather forecast data, the dispatch center estimates

potential output from renewable resources and provides the power
generation coefficient of new energy to market participants

for reference.

Standby rate
The standby rate is the ratio of the gap between the system’s total
available capacity and the peak load. It is an important index to

measure the reliability of the power system [164].

Number of nodes

The complexity of the power system can also be reflected by the
number of nodes.

The closer the location and number of nodes is set to the actual grid
topology, the more effective the power system simulation will be.

Power generation
schedule of units

Factors influencing the power generation schedule of the units
include system operation factors and non-system operation factors.

Power flow

Excited by the potential of the power supply, electric current flows
from the power supply to every load in the power system through
distribution components, and thus power is distributed throughout

the whole grid.

The constraint of power
flow in N-1

transmission section

When grid topology operates normally according to the given
constraint, if disconnecting any line in the section, power flow in

the rest of the lines is not overloaded. The constraint of power flow
in a section is the maximum allowable power current when the

section is running normally [165]. If the power flow surpasses the
limitation, a nodal price would be formed.

Constraint of active
power balance

Active power balance means that active power on the generation
side and the consumption side is equal. The frequency of the power

system is directly related to the balance of active power, and the
auxiliary services of frequency regulation can be referenced.

Constraint of reactive
power balance

Reactive power balance is the condition that reactive power on the
generation side and the consumption side is equal. When the

reactive power is insufficient, the reactive compensation is required.

Plans for maintenance of
power generation,
transmission and

transformation equipment

Plans for maintenance covers two types of equipment, including
power generation equipment, as well as power transmission and

transformation equipment. The maintenance plans for power
distribution and transformation equipment affect the structure of

power transmission for a short time.

System load forecasting
(accuracy)

The dispatch center predicts the total load of the power system for
several days based on data obtained about the system. The

accuracy of system load forecasting directly affects the analysis of
market supply and the demand of market participants, and then

affects market quotation behavior.

4.2.2. Parameter Settings to Simulate the Rules and Conditions of the Power Market

The simulation of market rules and conditions is focused on market mechanisms and
related policies. Through setting different parameters, diverse market scenarios can be
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simulated. Market rules are reflected by a range of parameters, such as the entry and
exit of market players, symbols of trade, and rules of clearance and settlement. Market
conditions are simulated by the ratio of supply and demand, market forces and policy-
related indicators. Common parameter settings that are based on power market trading,
theory and industrial economics theory are shown in Table 4.

Table 4. Power Market Rules and Environment Simulation Parameters.

Parameters Description

Trading methods

Major trading methods include bilateral consultations, centralized
bidding and listing transactions. The spot trading market is divided
into the day-ahead market, the intra-day marker and the real-time

market. A variety of trading methods can be combined according to
the transaction cycle, thus new symbols can be built in to increase the

diversity of market symbols.

Trading transactions

Depending on different types of markets, typical symbols include
medium- and long-term (yearly, monthly, weekly) transactions,

contract power transfer, power generation rights trading, spot trading
and ancillary services trading. New trading instruments for renewable
energy and flexible resources will be added in order to meet the needs

of further construction in the power market.

Limitations on the
declared price

Based on the relationship between demand and supply, in order to
avoid market manipulation and vicious competition, minimum and

maximum declared prices must be set for the direct trading of
electricity in different transaction modes. Different ranges for price

limitations can be set through power market simulation to verify the
market’s capacity.

Rules for clearance

Major rules of clearance include high–low matching and unified
clearance. High–low matching is the priority match between the
highest spread on the demand side and the lowest spread on the

supply side. Whether the spread pair matches can be judged by the
following formula:
Ln − Sm ≥ 0, match

Ln − Sm < 0, not match
where Ln is the spread pair on the demand side, while Sm represents

the spread pair on the supply side.
Unified clearance refers to the selection of the last pair of spread pairs

that match successfully according to the principles of high–low
matching. The arithmetic average of the selected pair will be

designated as the closing spread of all participants. When studying the
development degree and diversification of the power market, different
rules of clearance and trading methods can be combined to conduct

diversified trading. Thus, the market affordability can be tested.

Settlement mechanisms

Settlement is reached either at the marginal electricity price or at the
actual declared price by power generations units:

min Fm, Fm =
I

∑
i=1

Com·Pi

where Fm represents the cost of power purchases paid by the grid, Pi
represents the power generation volume bid by the power producer

(or electricity generation unit) i, and i refers to power producer. I is the
total number of power producers, and Com represents the marginal

electricity price of the system.
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Table 4. Cont.

Parameters Description

Changing rate of the
balancing funds

account

As the price fluctuations of electricity bought from the power market
by the grid cannot be transmitted to power retail prices in time, a

balancing funds account is built to link power sales prices to power
purchase prices:

Vi =
Fi−Fi−1

Fi−1

where Vi is the changing rate of the funds in the balancing account, Fi
represents the amount of balancing funds this year, while Fi−1 refers

to the amount of balancing funds last year.

Market turnover rate

Market turnover rate is the ratio representing the number of market
participants declaring during the statistical period (which can also be
a transaction for one time) divided by the number of market subjects

that finally complete the transaction. The turnover rate is used to
analyze whether market competition is insufficient or judge collusion

by market participants:
Vi =

Fi
Gi

where Vi is the turnover rate, Fi refers to the number of market
subjects which finally complete the transaction, and Gi is number of

market participants declaring during the statistical period.

HHI

The Herfindahl–Hirschman index (HHI) is a composite index that
measures industrial concentration. It reflects the changes in market
share, i.e., the dispersion of the size of manufacturers in the market:

IHHI =
N
∑

i=1
(100Si)

2

where Si is the market share occupied by market supplier i per trade
sequence during the evaluation cycle, while N represents the number

of suppliers in the market during the evaluation cycle.

Renewable energy
subsidies

According to the effectiveness of the market mechanism and the
development of new energy, the amount of renewable energy subsidy
can be changed to verify the risks brought about by the marketization

of renewable energy resources.

Deviation parameters

The parameters reflecting the deviation of power generation (more or
less) on the generation side include the exemption range and the

appraisal price. The parameters measuring the deviation of electricity
consumption (more or less) also include the exemption range and the

appraisal price.

To study the key issues relating to the market trading system under the new power
system, the access of emerging market participants can be modified through the module
of participant characteristics. When designing market mechanisms to stimulate flexible
resources, it is necessary to make explicit the value and price conduction mechanism of the
flexible resources. Simultaneously, some parameters, including the price declaration mode,
the upper and lower limits of the price, the clearing method and the settlement method,
can be modified so as to check market feedback.

In addition, whether the symbols are sufficient to meet market demand can be verified
through combining multiple symbols and trading methods, with the actual situation in
the simulation area taken into consideration. To verify the settlement rules, the model,
content and the method of settlement that is used by different users can be combined and
simulated through power market simulation. Thus, the settlement rules, with their regional
characteristics, such as deviation assessment and double rule assessment, can be included
in the study.

4.2.3. Market Participant Characteristic Parameters

As the most basic units of the power market, market participants affect the construction
of the trading mechanism to a certain extent. The market subject module is focused on the
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characteristics of transaction behaviors and the strategies of market participants. In the
simulation system, the subject that is making decisions can be intelligent or real people.
Therefore, parameters are designed to simulate the characteristics of human-machine
decision making, including the type, quantity, distribution, feedback behavior and learning
ability of market participants. The parameters that are commonly used to simulate market
participants characteristic, which are based on power market theory, behavioral economics
theory and forecasting techniques, are shown in Table 5.

Table 5. Market Participants Characteristic Parameters.

Parameters Description

Power producer, asset
type and status

constraints

This parameter covers the type of units and operating parameters of
the power producer. When the user of the simulation system is the

power producer, the power generation enterprise can develop its own
strategies by simulating the trading strategy of its competitors based on

market conditions.

Cost composition

Cost is an important basis for making transaction decisions. Power
generation costs primarily cover start-up costs, empty operating costs,

fuel costs, environmental costs, and other economic costs. Under
China’s dual carbon reduction goal, environmental costs have become

an important constraint on the development of thermal power
enterprises. Power sales companies need to consider retail contract

prices, wholesale prices and other related parameters.

Marginal revenue of
the power

generation unit

This parameter refers to the income earned through increasing or
decreasing the power generation of the unit, and its relationship with

the power generation and market price is:
MRi =

d(PGi)
dGi

− P
where MRi is the marginal revenue of the power generation unit i, Gi

refers to the output of unit i, and P is the electricity price in the
power market.

Forecasts for market
prices and power

generation

A power plant forecasts its own power generation output based on its
installed capacity. Combining this with market price forecasts, the

power plant declares reasonable prices and a power generation plan.
At the same time, the market price and power generation coefficient

can also be set to verify the anti-jamming of the quoting strategy.

Power generation
plans

Power generation enterprises make production plans based on existing
contracts. Power market simulation provides users with a chance to
choose the optimal solution from different generation plans so as to

avoid market shocks.

Intelligent agent
simulation

Through simulating the trading behaviors of competitors, intelligent
agent simulation technology helps power producers to formulate their

own trading strategies. By simulating the transactions of multiple
participants, it can also help verify market results. Intelligent agents

can be divided into rational and irrational, or radical and conservative.
Commonly used parameters include the number of intelligent agents,

learning mechanisms and feedback mechanisms.

To better study the key issues relating to the market trading system under the new
power system, on the one hand, we should expand the research to cover a diversity of
market subjects. A range of participants, such as different renewable energy resources,
energy storage, distributed power supplies, flexible thermal power units, and flexible loads
that can respond to power consumption peaks, should be included. On the other hand,
stronger decision-making abilities should be developed for market subjects. Training the
learning, prediction, portfolio and risk management abilities of the intelligent agents is
helpful. By enriching the parameters for the simulation of market transaction behaviors,
the effect of different trading mechanisms can be tested, providing beneficial points of
reference for market participants for better decision making.
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5. Discussion

This paper provided a rigorous systematic review of the study of power markets with
clear framework conditions using pertinent literature databases and full-text access for
query articles. The disregard of non-English and non-Chinese language publications in
the databases and the disregard of conference articles without full-text access could be
regarded as limitations of this review. Moreover, the exclusion of the last pages papers in
the relevance rankings could also be a limitation.

This review covered existing research on the study of power markets, including market
operational efficiency, the bidding strategies of market participants and power market
supervision. Based on the search results, it can be concluded that English papers focused
more on bidding strategies than on the operational efficiency of markets. However, Chinese
papers paid more attention to the operational efficiency of markets and supervision than to
bidding strategy.

Previous studies on the operational efficiency of power markets mainly focused on
the structure design or evaluation. As illustrated in Section 3.1.1, such studies have three
major flaws. Firstly, such empirical analyses were limited to the unilateral bidding market
scenario that was formed during the first electric power reforms in China. Secondly,
previous researchers ignored the constraints and influences of environmental factors.
Thirdly, those studies have not considered the systematic impact of a high proportion
of new energy connecting to the power system and power market. Given the different
roles of market players, studies on bidding strategies can be sorted according to three
aspects, namely, generation companies’ strategies, energy retailers’ strategies, and energy
consumers’ strategies. With regard to the development of the power market, studies
on the strategies of prosumers [86], virtual power plants [94,95], microgrids [91] and
energy storage [91] were given more attention. Furthermore, most of them focused on
the spot market, especially the day-ahead market. Moreover, previous studies in the
bidding strategy field were implemented using cost analysis, electricity price forecasts,
optimization algorithms or game theory. Little research was conducted using a power
market trading simulation system, which is based on experimental economics and agent-
based computational economics. To some extent, these can provide points of reference
for bidding strategy studies that focus on the adaptation to the NPS. However, most of
them studied participants as price takers, and only a few publications [166] studied the
market strategies of flexible resources in joint energy and flexible product markets. This
work emphasized the significance of power market simulation systems for the study of
power markets, and proposed parameter setting suggestions for power system simulations,
power market rules simulation and market participants characteristics.

This literature review introduced several key issues in Section 3.2 that relate to the
adaptation to the NPS. In Section 3.2.1, relatively new studies were discussed, with 42 pa-
pers found that were published in Web of Science and 121 papers in Elsevier. However,
only two of these papers were published after the NPS was proposed. Only one of them
focused on the financial implications for investors in renewable energy [167]. The other
one introduced a day-ahead clearing model for the simultaneous energy and ancillary
services market with a high penetration of renewable energy sources [127]. Although some
papers also talked about market issues with renewable energy resources, most of them
focused more on power system operations [168,169] than the power market operations.
In conclusion, few studies discussed the mechanisms and strategies for an investor in a
market with a high amount of renewable energy.

Only five papers were identified as highly relevant publications based on in the “Coal-
fired power transition” search term. Some studies discussed phase-out issues [170,171],
rather than the transition strategy for coal-fired plants to adapt to the energy transition.
Although one paper [172] proposed that coal-fired power plant could be retired in Australia
in the future, it did not discuss the policy implications for coal-fired power plants during
this transition. Under the construction of the NPS, one should consider not only the income

253



Sustainability 2021, 13, 13409

from selling electricity, but also the potential benefits from providing flexibility using
coal-fired units.

As for the study of flexible resources in power markets, Muñoz [173] discussed the
current limitations of Chile’s electricity market going forward, which aimed to provide
incentives for the efficient resources to give the system more flexibility. Moreover, Das,
P. [174] argued that technology, policy and new modeling strategies are needed to expand
large-scale renewable energy, which supports the standpoint of this review.

6. Conclusions and Implications

Research on electric power markets are now discussing how the markets can adapt
to the new power system, which will be based on renewable energy. Market mechanisms,
market participants’ strategies, and market supervision are three key elements for the
healthy operation of the power market. This paper provided a rigorous systematic review
of the study of power markets given this new situation. The article also provided a
comprehensive overview of the key issues in the new studies on power markets and its
applications and techniques. After the analysis, a basic paradigm for the study of power
markets that is suitable for the new situation was put forward to provide a clear review
of the study of power markets and inspire better research on market trading mechanisms
under the new power system. The main contributions of our research are as follows:

1. The general issues of power market research were summarized in terms of market
operation, bidding strategies of market players, and market supervision. The quanti-
tative analysis shows that China’s previous power market studies paid more attention
to the market mechanism design and operation supervision. However, bidding
strategies were discussed more than power market supervision in other countries.

2. Key issues related to research on the power market were picked out for further study
as the market adapts to the new power system, which features a high proportion of
new energy. These issues include market mechanisms to promote the participation
of new energy, flexible resource value discovery and supporting mechanisms, as
well as the survival of thermal power units. The systematic review indicates that the
mechanism and strategies for a new energy-dominated power market were not fully
considered in previous studies. Moreover, for the survival of coal-fired power plants
in this new environment, most studies focused on the phase out issues rather than
the market mechanisms and strategies relating to their transformation. In addition,
research on flexible market products is still rare, although more attention is being
paid to this issue [174].

3. A basic paradigm for the study of power markets that is suitable for the new power
system was established, which provides the basic direction for power market research
under the new situation.

4. The theoretical basis of power market simulation was presented in our paper. Mean-
while, the applications of experimental economics and agent-based computational
economics in the study of power markets were reviewed. The quantitative analysis
shows that although the current studies can provide a point of reference for the study
of power markets, there are few pieces of literature on the new power market with
the application of EE and ACE. More research is needed in the future to adapt to the
construction of the NPS.

5. Specific parameter settings were recommended for simulating power market trans-
actions, which can serve as a theoretical basis and practical guidance for other re-
searchers to better study the power market.

The power market is a complex economic system. To better construct a new power
market that is dominated by new energies, more studies on the key issues are needed.
Studies on the new power market can be developed using EE and ACE techniques.,
which can help to reduce the costs of power market construction, promote the low-carbon
transformation of the electricity sector, and improve the market trading mechanisms of the
new power system.
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121. Hu, X.; Jaraitė, J.; Kažukauskas, A. The Effects of Wind Power on Electricity Markets: A Case Study of the Swedish Intraday

Market. Energy Econ. 2021, 96, 105159. [CrossRef]
122. Spodniak, P.; Ollikka, K.; Honkapuro, S. The Impact of Wind Power and Electricity Demand on the Relevance of Different

Short-Term Electricity Markets: The Nordic Case. Appl. Energy 2021, 283, 116063. [CrossRef]
123. Mays, J. Missing Incentives for Flexibility in Wholesale Electricity Markets. Energy Policy 2021, 149, 112010. [CrossRef]
124. The European Parliament; The Council of the European Union. Directive 2009/28/EC of the European Parliament and of the

Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing
Directives 2001/77/EC and 2003/30/EC; The European Parliament: Brussels, Belgium; The Council of the European Union: Brussels,
Belgium, 2009.

125. Banshwar, A.; Sharma, N.K.; Sood, Y.R.; Shrivastava, R. Renewable Energy Sources as a New Participant in Ancillary Service
Markets. Energy Strategy Rev. 2017, 18, 106–120. [CrossRef]

126. Godoy-González, D.; Gil, E.; Gutiérrez-Alcaraz, G. Ramping Ancillary Service for Cost-Based Electricity Markets with High
Penetration of Variable Renewable Energy. Energy Econ. 2020, 85, 10455. [CrossRef]

127. Goudarzi, H.; Rayati, M.; Sheikhi, A.; Ranjbar, A.M. A Clearing Mechanism for Joint Energy and Ancillary Services in Non-
Convex Markets Considering High Penetration of Renewable Energy Sources. Int. J. Electr. Power Energy Syst. 2021, 129, 106817.
[CrossRef]

128. Zarnikau, J.; Tsai, C.H.; Woo, C.K. Determinants of the Wholesale Prices of Energy and Ancillary Services in the U.S. Midcontinent
Electricity Market. Energy 2020, 195, 117051. [CrossRef]

129. Banshwar, A.; Sharma, N.K.; Sood, Y.R.; Shrivastava, R. Market Based Procurement of Energy and Ancillary Services from
Renewable Energy Sources in Deregulated Environment. Renew. Energy 2017, 101, 1390–1400. [CrossRef]

130. Glass, E.; Glass, V. Enabling Supercapacitors to Compete for Ancillary Services: An Important Step towards 100 % Renewable
Energy. Electr. J. 2020, 33, 106763. [CrossRef]

131. Hu, Q.; Zhu, Z.; Bu, S.; Wing Chan, K.; Li, F. A Multi-Market Nanogrid P2P Energy and Ancillary Service Trading Paradigm:
Mechanisms and Implementations. Appl. Energy 2021, 293, 116938. [CrossRef]

132. Stürmer, B.; Theuretzbacher, F.; Saracevic, E. Opportunities for the Integration of Existing Biogas Plants into the Austrian
Electricity Market. Renew. Sustain. Energy Rev. 2021, 138, 110548. [CrossRef]

133. Arango-Aramburo, S.; Bernal-García, S.; Larsen, E.R. Renewable Energy Sources and the Cycles in Deregulated Electricity
Markets. Energy 2021, 223, 120058. [CrossRef]

134. Hasankhani, A.; Hakimi, S.M. Stochastic Energy Management of Smart Microgrid with Intermittent Renewable Energy Resources
in Electricity Market. Energy 2021, 219, 119668. [CrossRef]

135. Ambec, S.; Crampes, C. Real-Time Electricity Pricing to Balance Green Energy Intermittency. Energy Econ. 2021, 94, 105074.
[CrossRef]

136. Lianhe Ratings. Research Report and Prospect of Thermal Power Industry in 2020. Available online: https://pdf.dfcfw.com/pdf/
H3_AP202101131450227605_1.pdf?1610555525000.pdf (accessed on 7 June 2021).

137. National Development and Reform Commission (NDRC). Circular of the National Development and Reform Commission and
the National Energy Administration on Carrying out the Transmission and Upgrading of Coal-Fired Power Units Nationwide.
Available online: www.gov.cn/zhengce/zhengceku/2021-11/03/content_5648562.htm (accessed on 7 November 2021).

138. Jian, Q.; Liu, X.; Yang, J.; Liu, C.; Wang, X.; Liu, D. Optimal Allocation of Power System Flexible Resources Considering Demand
Response. Mod. Electr. Power 2021, 38, 286–296.

259



Sustainability 2021, 13, 13409

139. Kazempour, J.; Hobbs, B.F. Value of Flexible Resources, Virtual Bidding, and Self-Scheduling in Two-Settlement Electricity
Markets with Wind Generation—Part I: Principles and Competitive Model. IEEE Trans. Power Syst. 2018, 33, 749–775.

140. Huang, B.; Hu, J.; Jiang, L.; Li, Q.; Feng, K.; Yuan, B. Application Value Assessment of Grid Side Energy Storage Under Typical
Scenarios in China. Electr. Power 2021, 54, 158–165.

141. Shi, J.; Guo, Y.; Sun, H.; Wu, C. Review of Research and Practice on Reserve Market. Proc. CSEE 2021, 41, 123–134+403.
142. Willis, L.; Finney, J.; Ramon, G. Computing the Cost of Unbundled Services [Power Transmission]. IEEE Comput. Appl. Power

1996, 9, 16–21. [CrossRef]
143. Sun, S.; Chi, D.; Yu, B.; Zhou, M. Building a new power market system and electricity price mechanism. Macroecon. Manag. 2021,

3, 71–77.
144. Leng, Y.; Gu, W. Operating Mechanism of Australian Electric Financial Derivatives Market and Its Implications for Electricity

Market Construction in China. Electr. Power 2021, 54, 36–43.
145. van Koten, S. The Forward Premium in Electricity Markets: An Experimental Study. Energy Econ. 2021, 94, 105059. [CrossRef]
146. Fang, X.; Hu, Q.; Bo, R.; Li, F. Redesigning Capacity Market to Include Flexibility via Ramp Constraints in High-Renewable

Penetrated System. Int. J. Electr. Power Energy Syst. 2021, 128, 106677. [CrossRef]
147. Liu, M.; Yang, L.; Gan, D. A survey on agent based electricity market simulation. Power Syst. Technol. 2005, 29, 76–80.
148. Bao, T.; Wang, G.; Dai, Y. Future oriented experimental economics: Literature review and Prospect. Manag. World 2020,

36, 218–237.
149. Duffy, J. Macroeconomics: A Survey of Laboratory Research. Handb. Exp. Econ. 2016, 2, 1–90.
150. Binmore, K.; Klemperer, P. The Biggest Auction Ever: The Sale of the British 3G Telecom Licences. Econ. J. 2002, 112, C74–C96.

[CrossRef]
151. Arifovic, J.; Duffy, J.M.; Jiang, J.H. Adoption of a New Payment Method: Theory and Experimental Evidence; Bank of Canada Staff

Working Paper; Bank of Canada: Ottawa, ON, Canada, 2017.
152. Blinder, A.S.; Morgan, J. Do Monetary Policy Committees Need Leaders? A Report on an Experiment. Am. Econ. Rev. 2008, 98,

224–229. [CrossRef]
153. Hommes, C.; Massaro, D.; Weber, M. Monetary Policy under Behavioral Expectations: Theory and Experiment. Eur. Econ. Rev.

2019, 118, 193–212. [CrossRef]
154. Davis, D.D.; Holt, C.A. Experimental Economics; Princeton University Press: Princeton, NJ, USA, 1993.
155. List, J.A.; Lucking-Reiley, D. Demand Reduction in Multiunit Auctions: Evidence from a Sportscard Field Experiment. Am. Econ.

Rev. 2000, 90, 961–972. [CrossRef]
156. Fan, R.; Ye, Q.; Du, J. Frontier Development of Agent—Based Computational Economics: A Survey. Econ. Rev. 2013, 2, 145–150.
157. Mi, J.; Lin, R. How equity preference affects open innovation: A study based on Computational Economics. Chin. J. Manag. Sci.

2015, 23, 157–166.
158. Arthur, W.B.; Holland, J.H.; Lebaron, B.; Palmer, R.; Taylor, P. Asset Pricing under Endogenous Expectation in an Artificial Stock

Market; Working Papers; Santa Fe Institute: Santa Fe, NM, USA, 1996.
159. Barrows, C.; Preston, E.; Staid, A.; Stephen, G.; Watson, J.-P.; Bloom, A.; Ehlen, A.; Ikaheimo, J.; Jorgenson, J.; Krishnamurthy, D.;

et al. The IEEE Reliability Test System: A Proposed 2019 Update. IEEE Trans. Power Syst. 2020, 35, 119–127. [CrossRef]
160. Gacitua, L.; Gallegos, P.; Henriquez-Auba, R.; Lorca, Á.; Negrete-Pincetic, M.; Olivares, D.; Valenzuela, A.; Wenzel, G. A

Comprehensive Review on Expansion Planning: Models and Tools for Energy Policy Analysis. Renew. Sustain. Energy Rev. 2018,
98, 346–360. [CrossRef]

161. Xu, Y.; Myhrvold, N.; Sivam, D.; Mueller, K.; Olsen, D.J.; Xia, B.; Livengood, D.; Hunt, V.; d’Orfeuil, B.R.; Muldrew, D.; et al. U.S.
Test System with High Spatial and Temporal Resolution for Renewable Integration Studies. In Proceedings of the 2020 IEEE
Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5.

162. Denholm, P.; Hand, M. Grid Flexibility and Storage Required to Achieve Very High Penetration of Variable Renewable Electricity.
Energy Policy 2011, 39, 1817–1830. [CrossRef]

163. Li, Z.; Chen, S.; Dong, W.; Liu, P.; Du, E.; Ma, L.; He, J. Low Carbon Transition Pathway of Power Sector Under Carbon Emission
Constraints. Proc. CSEE 2021, 41, 3987–4001.

164. Wang, B.; Xia, Y.; Xia, Q.; Zhang, H.; Han, H. Model and Methods of Generation and transmission scheduling of Inter-regional
Power Grid via HVDC Tie-line. Autom. Electr. Power Syst. 2016, 40, 8–13+26.

165. Li, X.; Zhang, G.; Guo, Z. N-1 principle steady state security restriction on power flow of transmission tie line group. Electr. Power
Autom. Equip. 2004, 11, 10–13+17.

166. Khoshjahan, M.; Moeini-Aghtaie, M.; Fotuhi-Firuzabad, M.; Dehghanian, P.; Mazaheri, H. Advanced Bidding Strategy for
Participation of Energy Storage Systems in Joint Energy and Flexible Ramping Product Market. IET Gener. Transm. Distrib. 2020,
14, 5202–5210. [CrossRef]

167. Castillo-Ramírez, A.; Mejía-Giraldo, D. Measuring Financial Impacts of the Renewable Energy Based Fiscal Policy in Colombia
under Electricity Price Uncertainty. Sustainability 2021, 13, 2010. [CrossRef]

168. Guo, W.; Liu, P.; Shu, X. Optimal Dispatching of Electric-Thermal Interconnected Virtual Power Plant Considering Market Trading
Mechanism. J. Clean. Prod. 2021, 279, 123446. [CrossRef]

169. Lasemi, M.A.; Arabkoohsar, A. Optimal Operating Strategy of High-Temperature Heat and Power Storage System Coupled with
a Wind Farm in Energy Market. Energy 2020, 210, 118545. [CrossRef]

260



Sustainability 2021, 13, 13409

170. Rentier, G.; Lelieveldt, H.; Kramer, G.J. Varieties of Coal-Fired Power Phase-out across Europe. Energy Policy 2019, 132, 620–632.
[CrossRef]

171. Trencher, G.; Healy, N.; Hasegawa, K.; Asuka, J. Discursive Resistance to Phasing out Coal-Fired Electricity: Narratives in Japan’s
Coal Regime. Energy Policy 2019, 132, 782–796. [CrossRef]

172. Webb, J.; de Silva, H.N.; Wilson, C. The Future of Coal and Renewable Power Generation in Australia: A Review of Market
Trends. Econ. Anal. Policy 2020, 68, 363–378. [CrossRef]

173. Muñoz, F.D.; Suazo-Martínez, C.; Pereira, E.; Moreno, R. Electricity Market Design for Low-Carbon and Flexible Systems: Room
for Improvement in Chile. Energy Policy 2021, 148, 111997. [CrossRef]

174. Das, P.; Mathuria, P.; Bhakar, R.; Mathur, J.; Kanudia, A.; Singh, A. Flexibility Requirement for Large-Scale Renewable Energy
Integration in Indian Power System: Technology, Policy and Modeling Options. Energy Strategy Rev. 2020, 29, 100482. [CrossRef]

261





energies

Article

Improving Artificial Intelligence Forecasting Models
Performance with Data Preprocessing: European Union
Allowance Prices Case Study

Miguel A. Jaramillo-Morán 1,*, Daniel Fernández-Martínez 1, Agustín García-García 2 and

Diego Carmona-Fernández 1

Citation: Jaramillo-Morán, M.A.;

Fernández-Martínez, D.; García-García,

A.; Carmona-Fernández, D. Improving

Artificial Intelligence Forecasting

Models Performance with Data

Preprocessing: European Union

Allowance Prices Case Study. Energies

2021, 14, 7845. https://doi.org/

10.3390/en14237845

Academic Editor: Nuno Carlos Leitão

Received: 18 October 2021

Accepted: 20 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Electronics and Automation, School of Industrial Engineering,
University of Extremadura, Avda. Elvas s/n, 06006 Badajoz, Spain; danielfm@unex.es (D.F.-M.);
dcarmona@unex.es (D.C.-F.)

2 Department of Economics, Faculty of Economics and Business Sciences, University of Extremadura, Avda.
Elvas s/n, 06006 Badajoz, Spain; agarcia@unex.es

* Correspondence: miguel@unex.es; Tel.: +34-924-289-928

Abstract: European Union Allowances (EUAs) are rights to emit CO2 that may be sold or bought
by enterprises. They were originally created to try to reduce greenhouse gas emissions, although
they have become assets that may be used by financial intermediaries to seek for new business
opportunities. Therefore, forecasting the time evolution of their price is very important for agents
involved in their selling or buying. Neural Networks, an artificial intelligence paradigm, have been
proved to be accurate and reliable tools for time series forecasting, and have been widely used to
predict economic and energetic variables; two of them are used in this work, the Multilayer Preceptron
(MLP) and the Long Short-Term Memories (LSTM), along with another artificial intelligence algorithm
(XGBoost). They are combined with two preprocessing tools, decomposition of the time series into
its trend and fluctuation and decomposition into Intrinsic Mode Functions (IMF) by the Empirical
Mode Decomposition (EMD). The price prediction is obtained by adding those from each subseries.
These two tools are combined with the three forecasting tools to provide 20 future predictions of
EUA prices. The best results are provided by MLP-EMD, which is able to achieve a Mean Absolute
Percentage Error (MAPE) of 2.91% for the first predicted datum and 5.65% for the twentieth, with a
mean value of 4.44%.

Keywords: European Union allowances; CO2 price prediction; emission allowances; neural networks;
forecasting

1. Introduction

Since the European Union (EU) created the Emission Trading System (EU ETS) in
2005 to combat climate change, it has become one of the cornerstones of the European
environmental policy, with strong implications for industrial activities and repercussions
that reach all economic and social sectors. Its main goal is to reduce greenhouse gas
emission. It is supposed that companies producing carbon emissions must effectively
manage associated costs by buying or selling rights to emit CO2, the so-called European
Union Allowances (EUAs). The EU ETS is a cap-and-trade system, which includes only
large stationary sources of emissions belonging to the most pollutant industrial sectors of
the European economy (power plants, oil refineries, ferrous metallurgy, cement clinker or
lime, glass—including glass fiber—ceramic products by firing, and pulp, paper and board).

Companies involved can either use EUAs to compensate their emissions or sell them
to others that need them [1]; they are allowed to trade emission allowances freely within
the EU, so the system seeks to ensure that overall emissions are reduced, but also that cuts
are made by those companies that can achieve the most efficient abatement costs [2,3].
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Although the main EUA market goal was to give firms an incentive to move towards
a less fossil fuel-intensive production, it also provides a new asset and new business
development opportunities for financial intermediaries. Thus, current allowance prices, as
well as the predicted EUA prices, are critical for companies, brokers, traders, and investors,
and they can also affect decarbonization investment decisions [4–7]. Therefore, it may be
stated that, although the market is designed to encourage decarbonization investments in
the industrial sectors subject to the system, the consideration of emission allowances as
financial assets introduces a new component that may complicate the market’s effectiveness
in environmental terms.

Regarding the consideration of EUA as financial assets, it would be helpful to obtain
short-term reliable forecasts, since agents involved in this market need to make quick
buying and selling decisions in order to obtain maximum profitability [8].

However, in terms of the environmental component underlying the market, agents
involved in the decisions need to use a longer time horizon. For the system to work
properly, the EUA market must provide information that incentivizes decarbonization
decisions, even though investments in technological improvements or fuel substitution can
take long payback periods. Therefore, incentives for decarbonization decisions must be
credible and long-lasting, so that, rather than the information contained in the day-to-day
fluctuation of prices, it is the trend of EUA prices that is of interest. In order to favor
market stability and fulfillment of the objective of incentivizing decarbonization decisions
by maintaining EUA prices, in 2019 the EU created a mechanism—the Market Stability
Reserve (MSR)—with the aim of removing the excess of emission allowances that had
generated the crisis since 2008. The MSR was designed to absorb excess EUAs in the
short-term and to match the supply of EUAs in case of severe shortages in the long-term.
However, EUA prices have risen sharply in the last years and this increase can hardly be
explained by the purchasing needs of the companies included in the system, but rather
by the arrival of other investors in the market, outside the polluting sectors, which are
governed by objectives other than those initially set out in the EU ETS. In this case, we are
talking about the behavior of EUAs as financial assets, whose price has shown not only
rapid growth but also high volatility in the short-term.

The evolution of EUA prices has complicated the current economic situation, as their
sharp rise has affected the costs of various sectors, causing significant increases in electricity
prices. For example, the wholesale electricity market prices in Spain in September 2021
are three times higher than the year before. Although the cost of EUAs is not the only
factor responsible for this price increase, according to some estimates [9], in the case of
Spain, around 20% of this increase would be related to the rise of CO2 prices in the EU
ETS. Other European markets have experienced an evolution of wholesale electricity prices
very similar to the Spanish one. In this way, the energy price increase in Europe has
become macroeconomically significant [10]. Several factors, in addition to the CO2 rising
trend, are responsible for the rise of electricity prices: an increase of natural gas demand
forced by higher demand of electric energy along with a decrease in renewable electricity
production and a significant increase in coal prices. The pricing system in European
(and other) electricity markets assumes that the price of electricity reflects the marginal
production cost of the most expensive technology involved in generation. Therefore, fossil
fuel power producers incorporate the price of EUAs into the marginal cost, passing on CO2
prices into electricity prices and, where appropriate, incentivizing investment in renewable
sources. The maintenance of high EUAs prices, although may be compatible with the
environmental objective of the system and reinforce the incentives for decarbonization,
can also lead to problems derived from the increase in costs in all sectors, including the
loss of commercial competitiveness in Europe. In addition, the effects of higher electricity
prices on consumers can be very significant, affecting different social classes in different
ways. Therefore, prediction of the time evolution of EUA prices has become a fundamental
tool for enterprises dealing with them, both for the short-term, to manage their day-to-
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day evolution—linked to its behavior as a financial asset—and the long-term, related to
investments and decisions aimed at reducing the emission of greenhouse gases.

Prediction of EAU prices can be carried out by organizing them as times series so that
tools usually used to carry out predictions in this field could be applied to obtain those
future price predictions. It is generally accepted that economic variables follow nonlinear
processes [11]; non-linearity represents a major difficulty when modeling the dynamics of
time series describing those economic (and financial) variables’ evolution [12,13]. To deal
with those kinds of complex problems, classical linear forecasting tools such as ARIMA
are used along with other forecasting tools in [14] a Fourier Series Expansion optimized
with Particle Swarm Optimization (PSO) was used to refine the predictions provided by a
seasonal ARIMA to forecast electricity consumption, while in [15] ARIMA was combined
with Autoregressive Conditional Heteroscedasticity (ARCH) to forecast CO2 emissions in
Europe. The hybrid models clearly outperformed the basic ARIMA. Nevertheless, other
forecasting tools which could provide more accurate predictions when dealing with a
nonlinear behavior have been also used. The ARCH and Generalized ARCH (GARCH)
models have proved very useful for financial time series analysis. Thus, they have been
also used to forecast CO2 allowance prices, sometimes without any other tool [16], where a
modification of its basic structure (fractionally integrated asymmetric power GARCH) is
used, integrated into another forecasting model such as Markov chains [4,13] or by forming
a hybrid model with other forecasting tool such as ARIMA [15].

Despite the good results obtained by those models with some time series, the develop-
ment of new forecasting tools based on artificial intelligence have driven many researchers
to use them to forecast time series, as they are especially well suited to deal with the
nonlinear behavior of complex series [17]. In this work several forecasting tools were tested
and Artificial Intelligence models clearly outperformed statistical ones such as ARIMA or
GARCH in electricity price forecasting. Between them, Neural Networks (NN) have been
widely used to forecast variables related to economy or energy, as they have been able to
provide very accurate predictions. One of the most popular ones is the Multilayer Percep-
tron (MLP); it is one of the first neural models developed, and despite its simplicity, it has
been widely used, as it is able to provide very accurate predictions of complex nonlinear
time series. There are several fields where it has been used, such as forecasting of electric
power transactions [18], natural gas demand [19], electric energy consumption [20], stock
market variables [21,22] or electricity prices [23]. Despite its simplicity, MLP has been able
to provide accurate and reliable predictions of different variables such as those mentioned
above. In fact, it is able to provide predictions that are as good as those obtained with
other more elaborated neural models and, indeed, to outperform some of them [18]. They
have been also used to forecast CO2 emission allowance prices [24,25]. In [24] it provided
direct predictions of EUA prices while in [25] it was combined with a mixed data sampling
regression (MIDAS) to forecast carbon prices in a Chinese market with the help of several
energy, weather and environmental variables. Nevertheless, MLP is not the only neural
model usually used for time series forecasting. The development of new complex neural
structures known as deep learning neural networks, so-called because of the high number
of processing elements, has driven many researchers to use some of those structures to
forecast time series [17]. Long Short-Term Memory (LSTM) is one of such structures, as it
has provided very accurate and reliable results when applied to carry out very complex
data processing such as speech or text recognition, and they are able to analyze the time
and contextual dependencies present in those problems. This is why they are supposed
to be able to provide accurate predictions in time series forecasting; indeed, they have
been used to predict electric energy load [26–28] or electricity prices [29]. In [29] LSTM
clearly outperformed ARIMA. In [27] LSTM made up a hybrid model with VMD and a
Genetic Algorithm, while in [28] LSTM combined with Empirical Mode Decomposition
(EMD) and information related to day similarity was able to provided better predictions
than ARIMA, MLP and Support Vector Regression (SVR). Other Artificial Intelligence
tools have been also used for time series forecasting such as Random Forest (RF), Gradient
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Boosting (GB) and Extreme Gradient Boosting (XGBoost) [30] or SVR [31], although neural
networks are nowadays the preferred option because they are better suited for the time
series forecasting problem. In fact, when comparing performances, neural networks usually
outperform other forecasting tools, especially those known as statistical methods such as
ARIMA [20,25,27–29].

Although the forecasting tools described are able to provide accurate and reliable
predictions when forecasting time series, a lot of work has been carried out in order to
improve their performance by preprocessing available data. The aim is to modify the
time series to provide several ones which could be more efficiently predicted or to extract
information about the series time evolution that could help the forecasting tools to improve
performance. The Empirical Mode Decomposition (EMD) decomposes a time series into
a set of subseries, each one with a proper oscillatory behavior which is easier to predict;
they are separately forecasted and then added to obtain the original series forecasting.
This is a heuristic algorithm that suffers from a lack of mathematical theory supporting it,
and to overcome this problem, the Variational Mode Decomposition has been developed.
They both have been used with different forecasting tools such as LSTM [27,28], SVR [31]
or spiking neurons [32]. A simplified version of those decomposition processes could be
obtained by splitting the time series only into its trend and fluctuations. In this way two
series are obtained: one describing the global trend of data and the other their seasonal
and cyclic oscillations. It has provided good results when applied to electric consumption
forecasting [20] and also to EUA prices prediction [33]. Another approximation to this
decomposition is a regression algorithm that samples a dataset at different frequencies
(MIDAS), which have been developed to deal with econometric series, and have been also
applied to carbon prices forecasting [25]. All these algorithms have provided good results,
and it is not possible to select one as the best option, since they all have their pros and cons
and selecting one or another depends on the problem at hand and the researcher’s own
experience. In any case, preprocessing has become a fundamental step in the forecasting
process, as many works have proved that it has improved the performance of forecasting
tools when properly selected and applied to the time series to be predicted.

There are not many works devoted to forecast CO2 prices [24,25,32,33]. Nevertheless,
the increasing interest in environmental preservation and the influence that free auctioning
of EUA has on the final price of electric energy have increased the interest of researchers in
this field. Several works have appeared in which CO2 allowance prices are predicted not
only in Europe but also in other countries [25,31]. Most of them use neural networks tools
along with some kind of preprocessing to carry out this task.

The aim of this work is to test several forecasting tools along with a proper preprocess-
ing of data to provide accurate and robust predictions of 20 days ahead of carbon prices;
usually, a one-day-ahead prediction is provided in most works. Nevertheless, multistep
predictions could be potentially more interesting than those of one only data ahead because
a more complete time evolution of the forecasted variable is provided. Despite this, there
are few works that provide multistep predictions [25,33,34]. So, in this work 20 future
prices are provided each time a prediction is carried out. In this way, both short and long-
term predictions are provided at once, so that this information could be valuable for both
traders considering EUA as financial assets (who carry out shot-term buying and selling op-
erations) and agents involved in decision-making related to decarbonization polices (who
would prefer a long-term prediction of the price evolution).Two neural networks (MLP
and LSTM) that have proved to be very accurate forecasting tools have been used. Another
machine learning tool (XGBoost) has also been tested because, although it has been little
used in time series forecasting, it has provided very good results in classification problems.
Two preprocessing strategies have been tested to improve the prediction accuracy: the
decomposition of the original time series into its trend and fluctuations components and
the Empirical Mode Decomposition. The results obtained were analyzed to find out the
structure providing the best performance. They showed that a proper preprocessing of data
before being predicted by the forecasting tools clearly improves the prediction accuracy.
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The paper is organized as follows: Section 2 describes the models used to forecast
future CO2 prices along with the preprocessing algorithms, while Section 3 describes the
figures of merit used to measure the forecasting performance and the data preprocessing
applied to the original time series to improve the forecasting models accuracy. Then,
the simulation results obtained with the three models tested and the two preprocessing
algorithms are described. In Section 4, those results are compared, and the best performance
identified. Finally, Section 5 presents the conclusions.

2. Materials and Methods

2.1. Artificial Intelligence Tools for Time Series Forecasting

Neural Networks are a set of artificial intelligence algorithms which simulate the
structure of brains to try to mimic some of their abilities. They have been widely used to
forecast time series because of their capability to learn the dynamic behavior of complex
systems. They have provided very accurate predictions when dealing with nonlinear
systems, where other tools fail to provide them. There are several neural models, although
only some of them are used to carry out time series forecasting. One of the most widely
used in these tasks is Multilayer Perceptron (MLP) [35]. It is a very simple classical model
which is organized in a multilayer structure, with an input layer, several hidden ones and
an output layer. Information is processed while it flows from input to output, which is why
they are known as Feedforward Neural Networks (FFNN). There are several neural models
which also process information following this data flow, although MLP is the most popular
one; however, they are not able to deal with data strongly dependent on past information,
such as that found in speech processing. Thus, in order to address these kinds of problems,
new neural models have been developed in which feedback has been added to a FFNN to
provide the network the ability to retain past information to be processed with present data.
Thus, information may flow back from one layer to another preceding it, or among neurons
in the same layer, providing the network with a kind of “memory”, as those data may be
seen as past states of the network which can be processed along with new data presented
to the network. These types of networks are known as Recurrent Neural Networks (RNN),
and some of their models have been used to predict time series, as they are supposed to
perform well in forecasting tasks because of their ability to process “past” information
along with the present data. Since their structure is more complex than that of FFNNs,
MLP will be first described and then, based on its structure, that of the RNN used in this
work will be studied.

2.1.1. Multilayer Perceptron

The succeed of MLPs to provide accurate predictions comes from the fact that they
have proved to be universal approximations [36,37], as they can approximate any con-
tinuous function with one hidden layer, provided that this one has enough neurons. Its
simplicity and simple programming, along with this property, have made them one of the
most popular neural models for time series forecasting. In MLPs, the first layer is actually
the set of input data to the neural network. In the hidden layer (or layers if several of them
are considered), the information provided to the network is processed and then passed to
the output layer, which provides the network response. Each neuron in a layer processes
the information it receives from all the neurons in the previous one:

yj = σ
(
∑ wji xi + bj

)
, (1)

where xi represents the ith input of the jth neuron, wji the strength (weight) of the connec-
tions between this neuron and all those in the previous layer, yj the neuron output and bj a
bias constant.
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σ(·) is an activation function which provides the network the nonlinear characteristic
that allows the identification of the nonlinear behavior inherent to complex dynamics. In
the hidden layers it is usually the hyperbolic tangent or the logistic function:

yj =
1

1 + e−(∑ wji xi+bj)
(2)

In the output layer, this function is usually a linear one, because it is usually assumed
that this layer only provides an adaptation of the neural network response to the data
structure.

The neural network’s ability to approximate any system is provided by its learning
capability. Thus, it must be trained to learn the behavior of the system it tries to reproduce.
To do this, it must be trained with a specific set of data which must be arranged in pairs of
network inputs (patterns) and desired outputs, so that each time one of those input patterns
is presented to the network it provides an output response, which must be compared with
the desired one to obtain an error measurement. The errors obtained for all the patterns will
be summed to obtain a global error whose value must be minimized by properly adapting
each neuron’s weights in order to guarantee that the network has learned all the patterns.
The algorithm performing this process is the well-known “Backpropagation” [35].

A dataset different from that used for training must be processed to validate the
network to guarantee that it is able to provide a proper response to patterns different from
those previously learned. When dealing with time series, this means that the network will
be able to provide an accurate prediction of future values when past ones are provided as
network inputs.

2.1.2. Long Short-Term Memories

Long Short-Term Memory (LSTM) [38] have a multilayer structure similar to that of
MLP, but now the neural outputs of a layer are fed back to all the neurons in that layer. In
addition, a sort of “memory” is stored in each cell, recording past information received
by the neuron. However, all this information—new data, feedback and “memory”—is
not processed by neurons directly; in fact, several activation gates decide which of them
will be used whether or not a neuron output will be provided. To carry out this control
process, the neural model of the LSTM has three activation gates which process data from
the previous layer along with those from neurons in the same one providing signals that
control inputs, “memory” update and output:

ij = σ
(

Wi·
[
xt, ht−1

]
+ bi

)
, (3)

f j = σ
(

Wf·
[
xt, ht−1

]
+ b f

)
, (4)

oj = σ
(

Wo·
[
xt, ht−1

]
+ bo

)
. (5)

In these formulas, Wi, Wf and Wo represent weight matrices while [xt, ht−1] represents
an input vector made up with data from the previous layer, xt, and feedbacks (one time
step delayed) from neurons in the same layer, ht−1. bo, bf and bo are bias weights. σ is an
activation function which may be the logistic one or the hyperbolic tangent, although the
first one is preferred for the activation gates.

The cell input is:
zj = σ

(
Wz·
[
xt, ht−1

]
+ bz

)
. (6)

where Wz and bz represent a weight matrix and a bias, respectively.

268



Energies 2021, 14, 7845

The cell “memory” ct
j is updated by taking into account both the cell input zj and its

past value ct−1
j according to the expression:

ct
j = ij · zj + f j · ct−1

j (7)

where ij decides whether or not new information is added to the “memory” and f j controls
whether old information should be retained or forgotten. Thus, it is usually known as the
“forget” gate.

Finally, the cell output is:
yj = oj · σ

(
ct

j

)
. (8)

As this cellular structure is rather more complex than that of other neural models, it is
usually known as “cellular block”, which, in addition, may be made up of one or several
neurons. In this last case, all the neurons in a block share the same control gates. Thus, a
layer will have several blocks, each one with one or several neurons. When used to carry
out very complex tasks, such as text or speech recognition, a high number of layers are
used. This is why this neural model (along with others with a high number of layers and
neurons in each one) is known as “deep learning” models.

LSTMs are trained with a variation of the well-known “Backpropagation” algorithm,
which is adapted to deal with the recurrent structure of this neural model. Two variants of
the basic algorithm are used: that known as “truncated Backpropagation Through Time”
(BPTT) for adjusting weights of cell outputs and output gates and “Real-Time Recurrent
Learning (RTRL),” used to adapt weights of cell inputs, input gates and forget gates [39].

2.1.3. XGBoost

XGBoost (Extreme Gradient Boosting) [40] is a machine learning algorithm for decision
trees boosting. It is an open-source library provided for most programming environments
used nowadays, and has become a very popular tool for machine learning, since it was
able to win many of the challenges proposed in the 2015 Kaggle and KDDcup competitions.
As previously stated, XGBoost is a machine learning system for tree boosting, that is to say,
XGBoost provides a procedure to define an ensemble of decision trees which carries out
classification or regression of the data presented as input to the model (this is why these
trees are usually known as CART: Classification and Regression Trees). A decision tree
provides an answer which may be binary (the data presented belongs or not to a certain
class) or numerical, which may be represented by a function. In tree boosting, this last one
is used, so that the output of the tree ensemble has the form:

ŷi =
K

∑
k=1

fk(xi), (9)

where xi represents an input (a vector defining a pattern to be classified), fk(xi) the function
describing the answer of each decision tree, K the number of trees and ŷi the answer of the
whole ensemble.

The whole tree ensemble is to be trained with a set of input-output pairs (xi, yi),
where xi represents the pattern to be classified and xi its desired output, by adjusting
the parameters defining the tree structure by minimizing a cost function in a supervised
process. Nevertheless, this is a harder problem than the learning strategies of other machine
learning models, such as the descend gradient usually used with neural networks, since
training all the trees at once may become too computationally intensive. Thus, a simplified
iterative strategy, known as “boosting”, is used to train one tree at each step.

The training process starts by fixing to zero the value of the first prediction:

ŷ0
i = 0. (10)
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In this expression, the superscript refers to the time step of the process. Now, a first
tree, defined by its representative function, is added to the tree ensemble, whose output is
now:

ŷ1
i = ŷ0

i + f1(xi) = f1(xi). (11)

This new tree is trained with a subset of the training dataset and then predictions for
the whole dataset are obtained. As a number of these predictions are probably different
from their expected values, a new tree is added and then trained with the set of misclassified
patterns. So, the ensemble prediction function now becomes:

ŷ2
i = ŷ1

i + f2(xi) = f1(xi) + f2(xi). (12)

The process is repeated until a certain accuracy is achieved, or the number of trees
reaches a certain previously fixed value. The prediction function of the tree ensemble will
be:

ŷt
i = ŷt−1

i + ft(xi) =
t

∑
k=1

fk(xi). (13)

The cost function to be minimized when training the trees is:

L = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (14)

where i stands for the number of patterns used for training and k for the number of trees.
l(ŷi, yi) is a measure of the errors obtained in each prediction. It is usually the Mean
Squared Error. Ω( fk) is a regularization term that measures the simplicity of the tree
structures. It helps to obtain a structure as simple as possible.

2.2. Data Preprocessing

Artificial Intelligence tools usually provide good performance when forecasting non-
linear time series. Even so, those results may be improved when input data are adequately
preprocessed in order to obtain a new dataset which could be more easily predicted by the
tool. Several works have proved the success of this strategy when applied to neural mod-
els [20,27,31,32,41]. Many times, preprocessing has a very sophisticated structure which is
more complex than that of the forecasting tool, therefore the question arises about whether
it is the forecasting tools which provide the prediction with success or the preprocessing
that is applied. To overcome this issue, two simple preprocessing strategies will be tested
in this work in order to prove that it is not necessary to use such complex structures to
improve the forecasting tool accuracy. The first one provides a simple decomposition of
the original series into its trend and superimposed oscillations while the second is a more
elaborated one, the Empirical Mode Decomposition (EMD), which decomposes the time
series into several simpler ones by means of an iterative procedure.

2.2.1. Trend and Fluctuations Decomposition

Many time series show a combination of different behaviors: long-term ones, which
define a certain trend of data, and short and medium-term variations superimposed on
it. Hence, it is usual in time series forecasting to decompose a time series into three
kinds of components: trend, seasonal, and cyclic. The first one represents, as pointed out
above, a long time rising or decreasing evolution, the second, an oscillatory evolution
associated to seasonal effects such as day of the week, month, season, weather, while the
third oscillation is caused by economic or social influences on data. Sometimes, a fourth
term related to noise may be also included, and in many time series, seasonal and cyclic
factors are difficult to identify as two isolated components, although the series shows a
clear oscillatory behavior. In those cases, the decomposition can be simplified if the series is
only split into trend and fluctuations, which comprise both seasonal and cyclic components
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around it (errors could be also assumed as integrated in this oscillatory component). This
decomposition will be used in this work because of its simplicity and easy programming.

To carry it out the trend component will be first extracted by means of a softening
process of the time series. There are a number of methods that can be used to do this
(splines, low-pass filters, moving average, etc.) although in this work, the moving average
with constant weights will be used because of its simplicity and because it has proved
to provide accurate predictions [20,33]. This algorithm replaces each element of the time
series by the mean value of the set made up of that element and (n−1) ones preceding it:

xt(t) =
1
n
(x(t) + x(t − 1) + . . . + x(t − (n − 1))). (15)

The fluctuations component will be obtained by subtracting the trend series from the
original one. Then, they are forecasted separately, and their predictions added to obtain
the prediction of the original series.

2.2.2. Empirical Mode Decomposition

As time series often have an oscillatory behavior, a good strategy to carry out the
preprocessing process could be to identify and extract periodical components which could
be more easily forecasted. This strategy has the drawback that it demands those compo-
nents to be associated with frequencies, which should be clearly identified, and this is not
usually the case. Instead, a lot of frequencies define the spectral profile of most of time
series. To overcome this problem, an empirical tool has been developed which decomposes
a time series with oscillatory behavior into a set of new series with an oscillatory behavior
closely related to a certain frequency. This tool is known as Empirical Mode Decomposition
(EMD) [42], and each one of the new series it provides is known as Intrinsic Mode Function
(IMF); it is a numerical method that requires adjustment until proper IMFs are obtained.
It is worth noting that an IMF is not a function but a time series which accomplish with
two properties: the number of local minima and maxima must be equal or differ only by
one and its mean value must be zero. The first condition may be also defined as: only one
extreme point can be between two consecutive zero-crossing points. The second one means
that the time series is stationary, a fact that makes its prediction easier.

In this way, an oscillatory time series can be decomposed into the sum of IMFs and a
residue:

x(t) = ∑
n

xn(t) + r(t). (16)

Taking into account these conditions, the EMD algorithm works as follows.
Take all maxima and minima points in the original time series and build two new

series by interpolating each set of points with cubic splines. Thus, two envelops will be
obtained, one for maxima and another for minima.

Obtain the mean series mn(t) of both envelops. Then, subtract this new one from the
original series. It is a candidate to be an IMF:

cn(t) = x(t)− mn(t). (17)

Verify whether this last series accomplishes the two properties of an IMF. If not, this
series will be considered as a new “original” series (xs(t) = cn(t)) and the processes of
maxima and minima extraction, mean calculation, subtraction and verification will be
repeated (s = 1, 2, . . . , S) until the series obtained accomplishes IMF’s conditions or a stop
criterion is achieved. This process is usually known as “sifting”.

Once a new IMF is obtained (xn(t) = cn(t)) it will be subtracted from the series from
which it was derived and the result will be considered as a new “original” one, which will
undergo the process described above:

xn(t) = xn−1(t)− cn(t). (18)
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The process will be repeated until a stop condition is achieved. Then, the last IMF will
be subtracted from its “original” series and the result will be considered as a residue.

This procedure demands two stop conditions: one for “sifting” and the other for the
whole process. The fists one should be accomplished when an IMF candidate fits the two
required conditions. Nevertheless, this could lead the algorithm to over-sifting, providing
a lot of meaningless IMFs. To avoid this effect, an early stopping criterion must be defined.
Usually, a low threshold for the IMF candidate variance is fixed, so that once it is reached,
the process will stop. The second stop condition will be reached when the residue, the
series obtained after a new IMF is subtracted from its “original” series, accomplished with
one of the following conditions: it is constant, has a constant slope or contains one only
extreme.

3. Results

The time series used in this work is the daily spot price of a ton of CO2 quoted on
the European Energy Exchange (EEX) in Leipzig, Germany. It ranges from 14 October
2009 to 1 January 2021 with a total of 2890 data, as seen in Figure 1. This plot shows two
different behaviors of prices: a more or less soft evolution with medium and low values
until 2018, and a clear rising trend with high values and steep variations after this year.
They have been arranged into a time series to train and then validate the performance of
the forecasting tools proposed in this work. Only past data of prices have been used to
forecast future values.

Figure 1. Daily spot prices of CO2.

It is usual in time series forecasting to use the first data (60–80% of them) to train
the model and the remaining (40–20%) to validate its performance. Two of such possi-
ble divisions have been tested in this work: 60–40% (training-validation) and 80–20%.
Training data will be used to learn the times series behavior by adjusting the model’s
inner parameters. Once the forecasting tool (neural networks or XGBoost) is trained, the
model so obtained is used to forecast with data from the validation dataset (the predictions
obtained in this manner will be compared with the actual values of this dataset to obtain a
measurement of the forecasting model accuracy).

Conversely, it should be taken into account that validation data with values signifi-
cantly higher than those used for training and with steep variations (as those at the end
of the time series) could jeopardize the accuracy of the forecasting models, as they have a
behavior different from those used form training. To find out whether or not this behavior
of the data worsens the performance of the forecasting models they will be also tested with
a simpler dataset with a less steep evolution: the time series made up with data from 2009
to 2016, where validation data are similar to those used for training. In other words, the last
data of the time series, those with higher values and steep variations, have been removed.
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The different forecasting structures defined in this work will be tested with both datasets
and their corresponding performances compared.

The different behavior of both datasets may be better understood when statistical infor-
mation describing their data distribution is provided. They may be seen in Tables 1 and 2.
The total number of data along their mean values, standard deviation, minimum and
maximum values and the values defining each quartile are presented. From these data it
may be concluded that the time series from 2009 to 2016 presents a more bonded behavior
with lower fluctuations. Information regarding the scaled versions of both datasets (see
below) is also provided.

Table 1. Statistics of the original dataset.

Original MinMax Standard

Data 2890 2890 2890
Mean 11.895 0.297 0.000

Std 7.44 0.224 1.000
Min 2.750 0.000 −1.229
25% 5.920 0.103 −0.803
50% 8.145 0.175 −0.504
75% 15.875 0.427 0.534
Max 33.440 1.000 2.896

Table 2. Statistics of the reduced dataset.

Original MinMax Standard

Data 1834 1834 1834
Mean 8.543 0.414 0.000

Std 3.848 0.271 1.000
Min 2.680 0.000 −1.523
25% 5.602 0.206 −0.764
50% 7.185 0.318 −0.352
75% 12.415 0.687 1.006
Max 16.840 1.000 2.156

The performance of predictions will be measured with two figures of merit: the Mean
Absolute Percentage Error (MAPE) and the Root Mean Squared Error (RMSE):

MAPE =
1
N

N

∑
i=1

∣∣∣∣Ai − Fi
Ai

∣∣∣∣·100, (19)

RMSE =

√√√√ 1
N

N

∑
i=1

(Ai − Fi)
2 (20)

where Ai is an actual datum, Fi a forecasted one and N the total number of data predicted.

3.1. Data Scaling

The structure of the data shown in Figure 1 suggests that it may be difficult for the
forecasting tool to provide accurate predictions because a lot of extreme values appear.
To overcome this problem, very common in both regression and classification problems,
data were scaled before using them, that is to say, they were transformed into a new
bounded dataset. In the programming environment used in this work, Python, there
are two algorithms which are mainly used to carry out this task: normalization and
standardization. The first one transforms the original dataset into another in which values
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are included in interval [1]. There are several ways to do this, although in this work, the
Min-Max one has been selected because of its simplicity:

xn
i =

xi − xmin
xmax − xmin

(21)

where xn
i represents the normalized datum, xi the original one and xmax and xmin the

maximum and minimum data in the original data set.
The second algorithm transforms the dataset into another one with zero mean and

variations normalized to the standard deviation of data. This process is carried out with:

xs
i =

xi − x
σ

(22)

where xs
i is the standardized datum, xs

i the mean of the whole data set and σ their standard
deviation.

Both algorithms will be used with all the forecasting tools used in this work to find
out which one provides the best performance. It is worth noting that a process opposite to
that of scaling must be applied to the forecasted data. The corresponding expressions will
be obtained by reversing Equations (21) and (22).

3.2. Model Simulation

In this work, three artificial intelligence forecasting models have been tested: two
Neural Networks (MLP and LSTM) and a popular machine learning tool widely used to
solve data science problems, XGBoost. Each model will be simulated with three different
preprocessing scenarios: no preprocessing, trend-fluctuations, decomposition, and EMD.

The first preprocessing method consists of splitting the CO2 emission allowance price
series into two subseries (Figure 2): its trend and fluctuations around it. They both will be
independently forecasted, and their predictions added to obtain the predicted price.

 
(a) (b) 

Figure 2. Trend-fluctuation decomposition of daily spot CO2 prices series: (a) Trend series; (b) Fluc-
tuations series.

In the second preprocessing model, the times series is split into eight stationary
subseries (Figure 3), IMFs, which are independently forecasted and then added.

Before preprocessing the dataset, it has been scaled with both Min-Max normalization
and standardization. The whole sequence of the different actions carried out to perform
forecasting is described in the flowchart presented in Figure 4. As it may be seen, the process
starts by scaling data and then splitting them into trend-fluctuations or IMF subseries,
which are independently forecasted by each model. The predictions obtained are added
to obtain the price predictions after rescaling the values provided by those summations.
When data are not split, they are directly processed after scaled. This process is the same
for both training and validation.
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Figure 3. Original time series and the 8 IMFs of the EMD of the daily spot prices of CO2.

Figure 4. Flowchart of the different actions carried out in the forecasting process.

As pointed out above two datasets have been used: a simpler one, in which the data
to be forecasted (validation subset) have a more or less stationary behavior, and the whole
dataset, in which the data to be forecasted have values higher than those used for training
with steep oscillations. The first defines a “simpler” problem without too extreme values
and a “smooth” evolution. The second represents a harder problem with data with a
different behavior from those used for training. The aim of defining two different scenarios
is to check whether or not the forecasting models are able to provide good performances
with both “easier” and “more difficult” problems of the same nature.

Regarding the two neural models, different numbers of layers and neurons in each
one were tested. Nevertheless, structures with several hidden layers did not provide
better performances than those with one only hidden layer. In fact, this last structure

275



Energies 2021, 14, 7845

outperformed those with several ones. This is a hardly surprising fact for a MLP because,
as pointed out above, an MLP with one hidden layer with enough neurons behaves as a
universal approximator. The case of LSTM is different, as it is usually used with a high
number of layers and neurons, making up what is known as a “deep learning” neural
network. However, this structure is applied to very complex problems, such as text or
speech processing. Forecasting time series, no matter how nonlinear it is, is a much simpler
problem to deal with. Thus, it looks reasonable to accept that a LSTM with one only layer
will be enough to obtain accurate predictions. Therefore, only the results obtained with
one hidden layer are presented in this work. The best performance was obtained with
100 neurons in the hidden layer for MLP and 100 memory blocks with one only cell in each
one for LSTM. In this last network, the depth of the time delays in feedback was 3. Higher
values were also tested, but the effect of gradient explosion appeared.

As these neural networks (and XGBoost) carry out a process of time series forecasting,
past data of prices are used to forecast future ones. Those past values (several data
preceding those to be forecasted) are the inputs to the neural networks (and XGBoost). The
number of past data which provides the most accurate predictions should be determined
by trial and error; therefore, several numbers of inputs between 1 and 100 were tested with
the three models for the two datasets used. For MLP, the best performances were obtained
with 60 inputs for the reduced dataset and 3 for the whole one. For LSTM, the best results
were obtained with 3 inputs for the 2 datasets.

Several structures were also tested for the XGBoost algorithm. The best results were
obtained with 1000 trees with a tree depth of 3 and 3 inputs for the two datasets.

The three forecasting models predicted 20 data at once, that is to say, they provided
forecasted values of the daily spot price of CO2 for the next 20 working days. So, the output
layer of both MLP and LSTM has 20 neurons. This value was selected because it represents
predictions for almost one month, four weeks, as the European Energy Exchange does not
work at weekend days. The aim of providing 20 future values is to obtain both short-term
and long-term predictions at once with one only forecasting model. The accuracy of the
predictions (errors) will refer to that of 1 day ahead, 2 days ahead, and so on for the
20 predicted data.

All simulations have been programmed in Python with Tensor Flow and Keras pack-
ages. The XGBoost library for Python has been also used. The programs have been run in a
personal computer with an Intel core i7-9700, 3.6 GHz with 32 Gbytes of RAM memory.
Simulations have intensively used the GPU included in a RTX 2070 SUPER graphic card
from Nvidia.

3.3. Prediction with MLP

The prediction errors (RMSE and MAPE) obtained with MLP are presented for both
the simplified dataset and the whole one in Tables 3 and 4. Several divisions of data for
training and validation were tested and the best results were obtained with 60–40% for the
first dataset and 80–20% for the second. This is hardly surprising, because the first one
takes into account data with values similar to those to be forecasted in the training subset,
nevertheless for the whole dataset a division of 60–40% does not consider data with a steep
rising trend for training, while in that of 80–20% a lot of data with that behavior are used.

The results in Table 3 show that the best performance was obtained when EMD was
used to preprocess the reduced dataset. Nevertheless, although the best results were
obtained with 60 inputs, a noticeable result was also obtained with a lower number of
inputs (3): while the short-term horizon predictions are clearly improved those of the long-
term ones got worse, providing a wider range of errors (as the higher standard deviation
obtained shows). So, they both have been included in Table 3 as structures providing
the best performance. It is difficult to decide which of them is the most accurate; in fact,
it becomes a matter of preference; it depends on which prediction horizon the user is
interested in.
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Table 3. Predictions with MLP for the reduced data set (2009–2016). 60% of them were used for
training and 40% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD (3 Inputs) EMD (60 Inputs)
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

1 0.19 2.38 0.21 2.59 0.13 1.59 0.20 2.47
2 0.23 2.94 0.25 3.05 0.15 1.84 0.21 2.69
3 0.26 3.27 0.27 3.48 0.15 1.81 0.21 2.66
4 0.29 3.60 0.32 4.01 0.25 3.38 0.22 2.83
5 0.32 4.22 0.36 4.53 0.18 2.21 0.24 3.00
6 0.35 4.52 0.38 4.79 0.20 2.53 0.24 2.95
7 0.39 4.97 0.40 5.13 0.21 2.73 0.22 2.73
8 0.41 5.25 0.43 5.41 0.24 3.12 0.24 3.04
9 0.42 5.35 0.49 6.11 0.25 3.23 0.26 3.32
10 0.45 5.77 0.52 6.43 0.26 3.41 0.27 3.42
11 0.48 6.04 0.55 6.76 0.26 3.41 0.26 3.29
12 0.51 6.41 0.57 7.00 0.28 3.68 0.27 3.42
13 0.53 6.66 0.63 7.81 0.31 4.04 0.33 4.31
14 0.53 6.67 0.63 7.72 0.36 4.80 0.30 3.74
15 0.55 6.90 0.67 8.23 0.32 4.18 0.35 4.54
16 0.58 7.23 0.67 8.22 0.34 4.53 0.29 3.64
17 0.59 7.42 0.71 8.71 0.38 5.04 0.32 3.90
18 0.62 7.74 0.75 9.15 0.36 4.71 0.31 3.91
19 0.64 7.92 0.75 9.19 0.40 5.33 0.34 4.49
20 0.64 7.99 0.77 9.42 0.40 5.24 0.35 4.44

Mean 0.45 5.66 0.52 6.39 0.27 3.54 0.27 3.44

Std 0.14 1.69 0.18 2.11 0.08 1.15 0.05 0.64

Table 4. Predictions with MLP for the whole data set (2009–2020). 80% of them were used for
training and 20% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.72 2.19 0.72 2.24 0.92 2.91
2 0.97 2.99 0.96 2.99 0.97 3.14
3 1.18 3.66 1.16 3.66 1.01 3.26
4 1.35 4.18 1.31 4.13 1.08 3.48
5 1.51 4.60 1.49 4.67 1.16 3.68
6 1.64 5.05 1.63 5.11 1.19 3.75
7 1.74 5.42 1.75 5.47 1.22 3.91
8 1.86 5.77 1.82 5.76 1.28 4.05
9 1.94 6.19 1.91 6.01 1.35 4.30

10 2.04 6.47 2.00 6.23 1.45 4.69
11 2.13 6.72 2.08 6.43 1.42 4.52
12 2.20 6.98 2.15 6.71 1.48 4.78
13 2.28 7.25 2.23 6.91 1.52 4.85
14 2.38 7.52 2.31 7.15 1.55 4.98
15 2.45 7.73 2.39 7.41 1.60 5.03
16 2.53 7.89 2.46 7.64 1.64 5.22
17 2.64 8.29 2.53 7.86 1.69 5.43
18 2.70 8.49 2.62 8.15 1.73 5.51
19 2.78 8.64 2.65 8.35 1.76 5.68
20 2.86 9.00 2.74 8.68 1.77 5.65

Mean 2.00 6.25 1.95 6.08 1.39 4.44

Std 0.60 1.92 0.57 1.78 0.27 0.85
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The results obtained when the whole dataset was used (Table 4) show that, again, the
best predictions were obtained when EMD was used to preprocess the input data. It is
worth noting that these results were obtained, in all cases, with only 3 inputs.

When comparing the results obtained with the two datasets, it may be seen that
those obtained with the whole dataset are worse than those obtained with the reduced
one. Nevertheless, these worse results are not too high, and it may be stated that reliable
predictions were obtained. This fact shows the robustness of MLP as a forecasting tool, as
its performance has suffered only a slight worsening when dealing with more complex
data. In addition, it only needed three inputs to provide those results with the whole
dataset, a structure much simpler than that with 60 inputs for the reduced one.

3.4. Prediction with LSTM

Tables 5 and 6 show the results obtained with the two datasets used. The best results
were obtained with a distribution training-validation 60–40% for the reduced data set
and 80–20% for the whole one, a distribution equal to that obtained with MLP. Results in
Table 5 shows that now the best performance was obtained when no preprocessing was
applied to the reduced dataset. The accuracy obtained when data were preprocessed by
splitting them into trend and fluctuation was slightly better for the first two forecasted data
than those without preprocessing, although they are clearly worse for the remaining ones.
Data preprocessed with EMD provide clearly worse predictions than the option without
preprocessing for short-term forecasting, although similar results were obtained for the
long-term ones. When compared with the trend-fluctuations decomposition, it provides
significantly worse results for short-term predictions, while providing better results for
long-term ones.

Table 5. Predictions with LSTM for the reduced data set (2009–2016); 60% of them were used for
training and 40% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.18 2.14 0.16 1.91 0.48 5.61
2 0.23 2.77 0.22 2.72 0.48 5.64
3 0.26 3.29 0.27 3.32 0.50 5.95
4 0.30 3.74 0.31 3.88 0.50 5.90
5 0.33 4.18 0.35 4.39 0.48 5.81
6 0.36 4.57 0.39 4.92 0.51 6.13
7 0.39 4.90 0.43 5.41 0.52 6.39
8 0.41 5.27 0.46 5.89 0.50 6.16
9 0.44 5.59 0.50 6.34 0.49 6.14

10 0.46 5.88 0.53 6.75 0.52 6.42
11 0.49 6.14 0.56 7.14 0.60 7.51
12 0.51 6.40 0.59 7.54 0.51 6.42
13 0.53 6.66 0.62 7.91 0.61 7.69
14 0.56 6.91 0.65 8.32 0.55 6.98
15 0.58 7.17 0.68 8.71 0.56 7.08
16 0.60 7.42 0.70 9.08 0.62 7.81
17 0.62 7.66 0.73 9.46 0.57 7.30
18 0.63 7.89 0.75 9.80 0.61 7.75
19 0.65 8.10 0.78 10.12 0.59 7.51
20 0.67 8.32 0.80 10.36 0.68 8.82

Mean 0.46 5.75 0.52 6.70 0.54 6.75

Std 0.14 1.80 0.19 2.51 0.06 0.87
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Table 6. Predictions with LSTM for the whole data set (2009–2020). 80% of them were used for
training and 20% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.95 2.94 0.76 2.43 4.36 17.32
2 1.13 3.57 0.98 3.16 4.40 17.38
3 1.30 4.11 1.17 3.76 4.39 17.28
4 1.45 4.56 1.32 4.24 4.41 17.30
5 1.60 5.01 1.49 4.75 4.32 16.83
6 1.72 5.42 1.62 5.15 4.49 17.47
7 1.82 5.80 1.72 5.48 4.41 17.04
8 1.91 6.12 1.80 5.74 4.42 17.00
9 2.00 6.47 1.88 5.90 4.41 16.84

10 2.09 6.83 1.95 6.08 4.38 16.63
11 2.18 7.13 2.03 6.28 4.47 16.89
12 2.25 7.33 2.11 6.53 4.54 17.11
13 2.34 7.65 2.18 6.77 4.41 16.49
14 2.44 7.96 2.27 7.01 4.47 16.63
15 2.51 8.18 2.35 7.26 4.48 16.59
16 2.57 8.29 2.43 7.50 4.19 15.22
17 2.65 8.50 2.51 7.76 4.21 15.16
18 2.72 8.73 2.59 8.04 4.39 15.78
19 2.78 8.97 2.64 8.28 4.30 15.30
20 2.85 9.18 2.71 8.51 4.47 15.87

Mean 2.06 6.64 1.93 6.03 4.40 16.61

Std 0.55 1.83 0.55 1.68 0.09 0.73

Performances when the whole dataset was used are shown in Table 6. Now the best
accuracy was obtained with the trend-fluctuations preprocessing, although it was only
slightly better than that obtained without preprocessing. It provides an accuracy only
slightly worse than that obtained without preprocessing when the reduced dataset was
used (the best option for that case), and clearly better for the last forecasted data when the
same preprocessing process was applied to the reduced dataset. Nevertheless, the results
obtained when the data were preprocessed with EMD are surprisingly poor, and what
is more, long-term predictions are slightly better than short-term ones. They are much
worse than those obtained with the reduced dataset. So, it may be stated that LSTM when
EMD preprocessing was used has not been able to deal with the steep changes that appear
at the end of the whole time series, while the structures without preprocessing and with
trend-fluctuations decomposition were able to provide predictions that are only slightly
worse that those obtained with the reduced dataset. This fact shows the robustness of
LSTM with those two preprocessing models, as their performance suffers only a slightly
worsen when a more complex time series is forecasted.

3.5. Prediction with XGBoost

The results obtained with XGBoost are shown in Tables 7 and 8. The first one presents
the results obtained with the reduced dataset with a 60–40% division for training and
validation and the second those with the whole one and an 80–20% division. The best
performance obtained with the reduced dataset (Table 7) may be assumed as that provided
by the model without preprocessing. Nevertheless, this statement demands a detailed
explanation. The mean error of the twenty predictions is 8.54% for this model although that
obtained with the EMD decomposition is 8.27%. However, the errors provided by this last
model are almost constant for all predictions (as their very low standard deviation shows),
while those obtained with the model without preprocessing are lower for the short-term
predictions and higher for the long-term ones (higher standard deviation). This represents
a more logical behavior of the forecasting tool, which provides a balanced evolution, since
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predictions get worse as the time horizon increases. But if the user considers-long-term
predictions as more valuable than short-term ones, the best model should be that with
EMD decomposition.

Table 7. Predictions with XGBoost for the reduced data set (2009–2016). 60% of them were used for
training and 40% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 0.18 2.26 2.06 2.58 0.59 7.91
2 0.25 3.21 2.77 3.56 0.61 8.09
3 0.30 3.81 3.32 4.32 0.62 8.19
4 0.36 4.60 3.77 4.92 0.63 8.27
5 0.41 5.21 4.30 5.65 0.64 8.32
6 0.46 5.98 4.79 6.30 0.65 8.30
7 0.52 6.75 5.25 6.95 0.65 8.31
8 0.58 7.49 5.76 7.65 0.66 8.36
9 0.62 7.99 6.16 8.23 0.65 8.34

10 0.68 8.82 6.68 8.94 0.66 8.26
11 0.74 9.52 7.29 9.75 0.66 8.33
12 0.78 10.15 7.76 10.37 0.66 8.22
13 0.82 10.66 8.19 10.99 0.66 8.23
14 0.84 10.96 8.54 11.53 0.66 8.12
15 0.88 11.41 8.98 12.14 0.66 8.19
16 0.91 11.82 9.38 12.65 0.66 8.27
17 0.94 12.21 9.82 13.27 0.66 8.26
18 0.96 12.50 10.07 13.61 0.66 8.30
19 0.97 12.57 10.32 13.92 0.67 8.43
20 0.99 12.78 10.57 14.28 0.68 8.62

Mean 0.66 8.54 6.79 9.08 0.65 8.27

Std 0.26 3.35 2.63 3.62 0.02 0.14

Table 8. Predictions with XGBoost for the whole data set (2009–2020). 80% of them were used for
training and 20% for validation. Data have been scaled with standardization for “Without Prep.” and
“Trend-Fluc.” and with Min-Max for EMD.

Days
Ahead

Without Prep. Trend-Fluc. EMD
RMSE MAPE RMSE MAPE RMSE MAPE

1 3.40 9.72 2.60 8.66 30.49 123.22
2 3.39 10.14 2.75 9.29 30.48 123.14
3 3.73 11.50 2.84 9.67 30.52 123.20
4 3.40 10.78 2.93 10.07 30.50 123.05
5 3.55 11.51 3.06 10.47 30.41 122.65
6 3.66 11.98 3.06 10.56 30.40 122.50
7 3.44 11.37 3.14 10.83 30.39 122.35
8 3.63 12.06 3.19 11.04 30.39 122.30
9 3.68 12.38 3.23 11.13 30.39 122.19

10 2.93 9.61 3.29 11.33 30.37 121.96
11 2.88 9.33 3.36 11.61 30.36 121.84
12 2.84 9.07 3.39 11.69 30.31 121.49
13 3.00 9.60 3.49 12.02 30.34 121.53
14 3.28 10.63 3.63 12.58 30.33 121.44
15 3.32 10.64 3.73 12.85 30.34 121.39
16 3.62 11.71 3.78 12.91 30.31 121.10
17 3.69 11.87 3.85 13.04 30.30 120.95
18 3.97 12.89 3.93 13.23 30.31 120.90
19 3.95 12.77 4.03 13.48 30.27 120.66
20 4.25 14.00 4.08 13.74 30.30 120.70

Mean 3.48 11.18 3.37 11.51 30.38 121.93

Std 0.37 1.31 0.43 1.43 0.07 0.84

The predictions obtained with the whole dataset (Table 8) are clearly worse that
those obtained with the reduced one. The best performances were obtained with both the
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trend-fluctuation decomposition and without it, and it is surprising that the performance
obtained with the EMD decomposition is especially bad. The errors are almost constant but
with a so high value that it must be discarded as a forecasting model. When comparing the
results obtained by the two datasets (only for no preprocessing and the trend-fluctuation
decomposition) it may be seen that predictions get worse for the short-term remaining
similar for the long-term. This means that XGBoost have problems to deal with a more
complex dataset, at least in the short-term.

4. Discussion

When comparing the performance of the models simulated, it is clear that both MLP
and LSTM outperform XGBoost in all cases. Only short-term predictions errors when no
preprocessing and trend-fluctuations were used with the reduced dataset were similar to
those of MLP or LSTM. For the whole dataset, errors are so high, especially in the case
of EMD, that it may be stated that XGBoost is not a useful tool for forecasting this time
series. This is not surprising if one bears in mind that XGBoots was designed to carry out
classification tasks, so that it is not well suited for time series prediction. As it is proved in
this work, XGBoost is not able to provide better results than other machine learning tools
usually used in time series forecasting, such as the neural models used here.

Both MLP and LSTM were able to provide good predictions with the simplified dataset.
In fact, very similar results were obtained when forecasting without preprocessing and
when the trend-fluctuations were used: mean errors of 5.66% for MLP and 5.75% for LSTM
without preprocessing and 6.39 and 6.70% for the trend-fluctuation preprocessing were
obtained. This data also show that the accuracy of both models gets worse for the trend-
fluctuations decomposition. Nevertheless, the performance of MLP is clearly improved
when EMD is applied to the dataset (mean errors of 3.44 and 3.54%) while that of LSTM
remains unchanged (mean error of 6.75%). As pointed out before, two structures have been
tested with the MLP-EMD model because, although they provided almost equal mean
errors, the time evolution of the prediction accuracies clearly differ: the structure with
3 inputs provides lower errors for short-term predictions, while that with 60 ones is better
for long-term. From these results, it may be stated that the performance of MLP is clearly
improved when EMD is applied, so that this structure provides the best performance of all
the models tested with this dataset.

When the whole dataset is used, both MLP and LSTM provide similar results when no
preprocessing was used (mean error of 6.25% for MLP and 6.64% for LSTM) and with the
trend-fluctuations preprocessing (6.08 and 6.03%, respectively). However, their behavior
clearly differs when preprocessed with EMD: while the mean error provided by MLP
clearly decreases, providing a mean error of 4.44%, that obtained with LSTM undergoes a
strong increase to 16.61%.

When comparing the results provided by MLP and LSTM with the two datasets, it
may be seen that they are very similar, with a slight increase when no preprocessing was
used (they pass from 5.66 and 5.75% for MLP and LSTM, respectively, with the reduced
dataset to 6.25 and 6.64% with the whole one) and a slight decrease when trend-fluctuation
was applied (6.39 and 6.70% to 6.08 and 6.03%).

These facts prove the robustness of MLP and LSTM when forecasting time series, as
they are able to provide accurate prediction with both simpler and more complex time
series providing that the training dataset is properly selected (the whole dataset was split
into an 80–20% decomposition for the training-validation division instead of the 60–40%
used for the reduced one).

Both MLP and LSTM are able to provide equally accurate predictions when they
carry out forecasting directly, without preprocessing, achieving very similar errors. This
common behavior changes when preprocessing is included. They both provide similar
mean results when trend-fluctuations are included, although MLP behaves better for
long-term predictions while LSTM does for short-term ones; but, for the reduced dataset,
when EMD is included, MLP is able to improve its performance by decreasing its mean

281



Energies 2021, 14, 7845

error to 3.44 and 3.54%, whereas LSTM is only able to provide a mean error almost equal
to that obtained with trend-fluctuations (although now with worse errors for short-time
predictions). This behavior is more striking for the whole data set, since while MLP clearly
improves accuracy when EMD was applied (its mean error falls to 4.44%) LSTM undergoes
a strong increase to 16.16% and, what is more striking, with all values very close to that
mean.

Therefore, it may be stated that both MLP and LSTM are able to provide accurate and
robust prediction when no preprocessing is included in the forecasting model, but when
it is included MLP clearly improves its performance when EMD is used, whereas LSTM
provides much worse results, in fact the worst ones achieved with the three options tested.

On the other hand, it may be very interesting to analyze the evolution of predictions re-
garding their time horizon in order to identify how they behave, and their accuracies evolve.
To do that, the one-day-ahead and the twenty-days-ahead predictions obtained in the vali-
dation set of the whole dataset provided by MLP-EMD are presented in Figures 5 and 6. It
may be seen in Figure 5 that one-day-ahead predictions are able to follow fluctuations of
CO2 price, providing a reliable estimation of its daily evolution. Nevertheless, predictions
with a time horizon of 20 days, as seen in Figure 6, are not able to follow daily fluctuations
but, instead, they represent a sort of mean value of fluctuating prices, in other words, they
provide a sort of trend of the time evolution of CO2 prices. So, it could be stated that the
model provides a prediction of the trend of the price evolution for the long-term instead of
an estimation of actual prices on that time horizon. This behavior may be very useful for
traders interested in the long-term evolution of prices because those predictions describe a
sort of trend of how they will evolve.

Figure 5. One-day-ahead prediction for the whole data set.

Figure 6. Twenty days ahead prediction for the whole data set.

This twofold behavior of the predicted data may be very useful, because it provides
valuable information to agents involved in purchasing and selling EUAs. They can serve
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as a reference for managers of companies included in the EU ETS, as they can manage their
allowances portfolio with reliable information to help them make decisions about their
costs in the short-term. In addition, long-term forecasts may be very useful for managers
of polluting companies, as they provide fairly tight predictions of the price evolution trend.
The proposed model gives reliable trend information, with a time horizon that is more
suitable for making decisions on decarbonization in production processes.

5. Conclusions

Forecasting daily spot prices of CO2 has become a key issue in recent years due to
its upward trend that is affecting the final price of electricity. Several tools may be used
to carry out this task, although Neural Networks seem to be the most reliable option,
since they have proved to be one of the most accurate tools for time series forecasting.
Nevertheless, not all models are able to provide accurate and reliable predictions and the
best option for each particular time series should be identified by testing several ones.
In this work, two popular neural models (MLP and LSTM) have been used to forecast
the time series of daily spot prices of CO2. Another popular artificial intelligence tool
(XGBoost) has been also used for the sake of comparison. It provided poor performance
compared with those obtained with the neural models. Several works have proved that
the prediction accuracy of the forecasting models may be significantly improved when a
suitable data preprocessing is applied prior to carry out the forecasting process. Thus, in
this work, two techniques have been tested, trend-fluctuation decomposition and EMD,
to provide data preprocessing. The best results were obtained with a hybrid MLP-EMD
model, which provided a significant decrease in the forecasting errors. However, several of
the combinations tested were not able to overcome the corresponding single forecasting
tool, providing, in some cases, significantly higher errors. The robustness of the proposed
models has been tested by using two datasets: a simplified one with a soft evolution and
an enlarged one that included updated data with a rising trend with steep variations. The
combination of MLP-EMD was able to provide accurate and reliable predictions with them
both. Only a small increase of forecasting errors with the enlarged dataset was obtained,
a fact that proves the model to be a robust forecasting tool. It is worth noting that MLP
clearly outperforms LSTM as a forecasting tool despite the fact that this last seems, at first
glance, to be better fitted for time series forecasting because of its recurrent behavior and
inner “memory”. In fact, MLP has proved to be a more accurate and robust forecasting
tool. In addition, it has been able to take advantage of preprocessing techniques to improve
accuracy while LSTM was not.

Therefore, an accurate and robust forecasting tool has been proposed to predict the
time evolution of the daily spot price of CO2. Predictions for 20 working days (four weeks)
are provided at once with good accuracy, as means error of 2.91 % for the nearest prediction
(1 day ahead) and 5.65% for the furthest one (20 days ahead) were provided. Thus, it may
be a very useful tool for enterprises selling and purchasing emission allowances as well as
for electric energy trading companies, as the forecasting model presented in this work is
able to provide reliable predictions of the time evolution of daily spot prices of CO2, what
may help them to make decisions concerning their selling or purchasing activities.

On other hand, obtaining reliable allowance price predictions is important to market
participants (such as affected companies, traders or brokers) who need accuracy price
predictions to better manage their portfolios. Moreover, it is also crucial for the design
of environmental policies, since CO2 emission allowance prices provide information on
the marginal abatement costs in the industry. Thus, based on the evolution of prices, the
effectiveness of the environmental policies can be evaluated and the emission cap adjusted.
Therefore, a more accurate carbon price forecasting is essential to establish a stronger and
more efficient emission market.

Based on the results presented in this work, we aim at carrying out further research to
test the efficiency of preprocessing strategies different from those used here. Refinements
of EMD such as Ensemble Empirical Mode Decomposition (EEMD) or Variational Mode
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Decomposition (VMD) could be applied and their performances compared with those
obtained in this work. In addition, a study of different strategies to split data into training
and validation sets based on cross-validation should also be carried out to try to define a
model independent of the training-validation division dependence of accuracy pointed out
in this work.
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Abstract: The quality of electricity is a very important indicator. The durability and reliable op-
eration of all connected devices depend on the quality of the network voltage. Rapid changes in
loads, changes in network connections and the presence of uncontrolled energy sources require the
development of new voltage regulation systems. This requires voltage regulation systems capable
of responding quickly to sudden voltage changes. In substations with control transformers, it is
possible thanks to the use of semiconductor tap changers. Moreover, voltage regulation and reactive
power compensation systems should be built as one system. This is due to the close dependence
of voltage and reactive power in the network node. Therefore, it was proposed to use artificial
intelligence methods to build a new voltage regulation and reactive power compensation system
using all measurement voltages of network nodes. In the first stage of the research, active and
reactive powers, as well as the voltage of the reference node, were selected for 6420 periods of the
mains voltage. The simulation results were compared for the classic voltage regulation system with
semiconductor tap changers and the evolution algorithm based on voltage measurements from the
entire MV network. A significant improvement in the quality of voltage regulation with the use of an
evolutionary algorithm was demonstrated. Then, a second set of input data with increased values
of reactive power was generated. The results of the evolutionary algorithm after the application of
the classic, independent reactive power compensation system and two-criteria optimization were
compared. It has been shown that only the two-criteria optimization algorithm keeps both |tgϕ|
within the acceptable range and the quality of voltage regulation is the best. The article compares
different working algorithms for semiconductor tap changers.

Keywords: power system; voltage control; control tap-changer; evolution algorithm; multi-
criteria optimization

1. Introduction

The currently operated voltage regulation systems in HV/MV stations use only the
transformer voltage on the MV side. The analysis of voltage regulation systems using
electromechanical tap-changers of the transformer is presented in [1,2]. The design of a
traditional tap-changer is shown in Figure 1a. The view of the power transformer with the
on-load tap-changer is shown in Figure 1b.

Measurements of electrical quantities in MV networks (smart grids) are more often
available. There are works on the use of semiconductor tap changers for voltage regulation
in HV, MV and LV networks [3–12]. The differences between the electromechanical and
semiconductor control algorithms are presented, among others, in [13,14]. There are
applications of power semiconductors in high-voltage and high-power circuits, e.g., [15].
There is a need to develop optimally integrated voltage regulation and reactive power
compensation [16–20]. It is indispensable to use artificial intelligence methods to design
voltage regulation and reactive power compensation systems [21,22].
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(a) (b) 

Figure 1. Electromechanical tap-changer for power transformer from ABB [www.abb.com, accesed on 1
April 2020] (a), view of power transformer from ABB [www.abb.com, accesed on 1 April 2020] (b).

Due to the increase in the number of operating non-linear loads in the power grid,
problems with the quality of electricity appear. For this reason, a new power electronic
device was proposed to be installed in the substation [23,24]. The paper presents a novel
strategy of predictive control for shunt active power filter (APF). The proposed control
includes feedback from the supply current and combines the advantages of control in
an open and closed loop—the transient response speed after changing the load current
and a very high compensation efficiency. The high quality of the compensation current
also results from the use of predictive algorithms in the control, as well as from the fact
of connecting the converter to the network via the LCL circuit. The article presents the
results of simulation tests of the proposed control algorithm. In [24] is presented an active
filter connected in parallel to the power supply and electric energy receivers. It is made
up of two sections of the coil sections L1 and L2, with a capacitor section connected in
parallel between them. The other end of the filter is connected to six power transistors and
a capacitor. The article demonstrates the effective filtration of harmonics up to the 50th.
This type of device can be used in power stations to which industrial plants generating
disturbances are connected, e.g., steel mills. These are examples of the use of automation
and power electronics in power networks. Another example of the use of power electronics
in the power industry is presented in [25].

1.1. Solid-State on-Load Tap Changer Technology

On-load tap changers have been used for a long time in HV substations. Currently,
electromechanical tap changers are used. They have considerable disadvantages, including
the formation of an electric arc on the contacts, limited switching frequency and limited
total switching frequency, e.g., up to several times a day. Currently, there are more and
more receivers and generators in the power grid with high dynamics of power changes. As
a result, there is a need to build a voltage regulation system with high switching dynamics.
The use of semiconductor tap changers enables quick voltage regulation. AC connectors
should be used here. IGBT power transistors are currently the most popular in power
electronics.

Currently, SiC-based power semiconductors made in the form of IGBT transistors have
the highest switching frequencies. At the same time, the permissible operating temperature
of SiC semiconductor elements is higher than the others. Thus, such elements can be
used in the power industry. The regulating winding in HV/MV transformers is on the
higher voltage side. The windings of these transformers on the 110 kV side, i.e., HV, are
star-connected. One end of the regulating winding is connected to the neutral conductor,
the other end to the working winding. The phase voltage of the entire winding is 63.5 kV.
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Assuming that the control system regulation range should be from −20% to +20%, the
required reverse voltage for semiconductor modules is 12.7 kV.

For publicly available high-voltage single semiconductor elements, it is at most 6.5 kV,
e.g., 5SNA0400J650100 from ABB (collector current Ic = 400 A, turn-on delay time maximum
is 700 ns, turn-off delay time maximum is 1700 ns); however, this semiconductor module
is very expensive. It is possible to build modules for higher voltages, ensuring that the
elements in series change the switching state practically simultaneously. In addition, during
the construction of the module, a reserve of voltage resistance is additionally provided.

In [4] is presented a prototype of a tap changer controlled by a microcontroller. The
prototype has five tap changers realized by means of pairs of thyristors. This applies
to the low voltage 230/115 VAC system. For the correct commutation, the detection of
current through zero was used (in regulating winding). This was realized by Zero Current
Detection Card. The system was tested with a slight change in load or a slight change
in input voltage but is working properly. The article does not present the implemented
algorithm in the microcontroller or the use of voltage measurement on the primary side of
the transformer

Any variation in the output voltage of the distribution transformer will be sensed by
the microcontroller and compared with the reference value as per the program. This will
produce the appropriate command to trigger the appropriate pair of anti-parallel thyristors
for change in the suitable tapping of the transformer. The system stability is improved
because of the quick response. Because of static devices, the maintenance cost is reduced
due to the elimination of frequent sparking. The output voltage can be regulated in the
range of ±5 V of nominal voltage [4].

In article [11] is presented the construction of a transformer semiconductor tap-changer
regulator. Figure 2 shows the structure of the proposed voltage regulator controlling
the semiconductor tap changers. The first block introduces a deadband that prevents
oscillations when a voltage error changed the value on the border of two adjacent taps. The
electronic tap changer operates fast and real-time measurement of the RMS value of the
regulation bus is expected. One of the best substitutions for the RMS value of the voltage
is the instantaneous RMS value of the voltage. Compensating block is used instead of a
delay block, which is a special type of compensator. In [26], it has been shown that the use
of an integrator in the compensating block of an electronic tap-changer seems interesting
from a quality point of view. The integrator produces typically the delay proportional
to DB, and it also has memory. The integrator gain influences the stability and also the
speed of the system. The tap changer control is not a continuous control. For this reason,
a quantization block is required. A discrete value of the tap number will be assigned to
the continuous value of the voltage error. Due to the fact that the tap switching should
take place when a current close to zero flows through the winding. Then, there are no
overvoltages and disturbances. The S&H block remembers the selected tap number and,
after receiving the permission to switch from the zero-crossing current detection block,
performs the tap change-over. The loop-up table for the selected tap number displays the
states of semiconductor switches similar to Table 1.

1.2. Volt Var Control

In many stations, reactive power compensation is required. Independent voltage
regulation and reactive power compensation may cause deterioration of the operation of at
least one of them. For example, when the voltage in the substation is close to the upper
acceptable limit, i.e., 1.1 Un, and the reactive power compensation system additionally
switches on capacitors, it may lead to the exceeding of this limit. This is due to the
dependence of the node voltage and reactive power. For this reason, it is necessary to build
integrated systems of voltage regulation and reactive power compensation called Volt Var
Control or Volt/Var Management System. This is especially important when distributed
generation or energy storage occurs in the distribution network.
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Figure 2. Schematic of the proposed electronic tap-changer [11].

Table 1. Switches states depending on the OLTC position.

OLTC
Position

Percentage
Change in
Voltage on

the MV Side

Ratio
in p.u.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14

1 −20.00% 0.80 1 1 1 1 1 1

2 −19.00% 0.81 1 1 1 1 1 1

3 −18.00% 0.82 1 1 1 1 1 1

4 −17.00% 0.83 1 1 1 1 1 1

5 −16.00% 0.84 1 1 1 1 1 1

6 −15.00% 0.85 1 1 1 1 1 1

7 −14.00% 0.86 1 1 1 1 1 1

8 −13.00% 0.87 1 1 1 1 1 1

9 −12.00% 0.88 1 1 1 1 1 1

10 −11.00% 0.89 1 1 1 1 1 1

11 −10.00% 0.90 1 1 1 1 1 1

12 −9.00% 0.91 1 1 1 1 1 1

13 −8.00% 0.92 1 1 1 1 1 1

14 −7.00% 0.93 1 1 1 1 1 1

15 −6.00% 0.94 1 1 1 1 1 1

16 −5.00% 0.95 1 1 1 1 1 1

17 −4.00% 0.96 1 1 1 1 1 1

18 −3.00% 0.97 1 1 1 1 1 1

19 −2.00% 0.98 1 1 1 1 1 1

20 −1.00% 0.99 1 1 1 1 1 1

21 0.00% 1.00 1 1

22 1.00% 1.01 1 1 1 1 1 1

23 2.00% 1.02 1 1 1 1 1 1

24 3.00% 1.03 1 1 1 1 1 1

25 4.00% 1.04 1 1 1 1 1 1

26 5.00% 1.05 1 1 1 1 1 1 1

27 6.00% 1.06 1 1 1 1 1 1
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Table 1. Cont.

OLTC
Position

Percentage
Change in
Voltage on

the MV Side

Ratio
in p.u.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14

28 7.00% 1.07 1 1 1 1 1 1

29 8.00% 1.08 1 1 1 1 1 1

30 9.00% 1.09 1 1 1 1 1 1

31 10.00% 1.10 1 1 1 1 1 1

32 11.00% 1.11 1 1 1 1 1 1

33 12.00% 1.12 1 1 1 1 1 1

34 13.00% 1.13 1 1 1 1 1 1

35 14.00% 1.14 1 1 1 1 1 1

36 15.00% 1.15 1 1 1 1 1 1

37 16.00% 1.16 1 1 1 1 1 1

38 17.00% 1.17 1 1 1 1 1 1

39 18.00% 1.18 1 1 1 1 1 1

40 19.00% 1.19 1 1 1 1 1 1

41 20.00% 1.20 1 1 1 1 1 1

2. Materials and Methods

2.1. Assumptions and Description

Input data, such as the voltage of the balancing (refencing) node and the active and
reactive power of the load nodes, were randomized with certain assumptions. Then, the
tested algorithm set the tap number and possibly turned on the appropriate number of
batteries for reactive power compensation. In the calculation of the power flow, the voltages
in all network nodes were determined. The input data sets were 6420 in size. On this basis,
histograms were created, which allows to graphically present the range of changes and the
frequency of occurrence of a given value of the voltage error, the coefficient tgϕ.

The tested network consists of a referencing node number one in the depths of the
network, with the network impedance calculated on the basis of the short-circuit power on
the HV busbars of the 110/15 kV substation (equivalent to the rest of the power system—
Thevenin’s theorem). The structure of the network is presented in Figure 1 below. Nodes 4
to 15 are receiving nodes for which the value of active and reactive power is randomized,
as in the actual network operation (the load powers of individual stations 15/0.4 change
over time). The drawing of relative power values in individual load nodes was performed
according to the following dependence (1) P,Q in p.u.:

15∧
i=4

Pi = random(0.3 : 1)

where random − random number of uniform distribution
(1)

The apparent power of a station in relative units is equal to 1: Si = 1 p.u. Due to the
apparent power of the station, the maximum reactive power is (2):

15∧
i=4

Qi_max =
√

1 − P2
i (2)

Moreover, assuming that the maximum reactive power cannot exceed 60% of the value
of the randomly selected active power in the node, we finally obtain the maximum reactive
power (3):

15∧
i=4

Qmax_i = min(Qi_max; 0.6 ∗ Pi) (3)
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The reactive power at the node i is (4):

15∧
i=4

Qi = random(0.3 : Qmax_i) (4)

Moreover, the voltage at node 1 is also variable in time and randomized (uniform
distribution) in the range from 0.7 to 1.3 Un. The structure of the studied network is
presented in Figure 3. Availability of online voltage measurements at all MV nodes and
nodal powers was assumed. In order to perform the simulation, the Newton–Raphon
method was used for 6420 samples (input data). The input data are the power consumed
in the load nodes (P, Q) and the voltage of the referencing node no 1. The output data are
voltages at 15 kV nodes and power flows.

Figure 3. Structure of the tested power network.

The control winding was designed to be switched with semiconductor switches in
such a way as to ensure smooth voltage regulation with a minimum number of taps and
switches—Figure 4. Table 1 presents the switch states configuration depending on the
required ratio.

In order to optimize the voltage regulation, the node voltage evaluation function was
determined according to the Formula (5):

ei = |1 − Ui|

f (Ui) =

⎧⎪⎨⎪⎩
0, where ei ≤ 0.05

(ei − 0.05 + 1)6 − 1, where ei > 0.05 and ei ≤ 0.1
(ei − 0.1 + 1)9 − 1 + 0.340095640625 where ei > 0.1

(5)

where Ui—The voltage module in the relative units of the node i, where i = 3.15.
The diagram of the node voltage evaluation function is shown in Figure 5. This

function is continuous so that optimization is convergent. It is an internal function of the
penalty for the voltage acceptable limit ±10% Un. The penalty function becomes non-zero
after exceeding the absolute value of the error above 5% (see Figure 5). With an increase in
the absolute value of the voltage error, the derivative of this function also increases. This
provides a choice of optimization solutions with small voltage deviations in the nodes than
solutions with large voltage deviation in at least one node.
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Figure 4. Structure of regulating winding for one phase.

For the entire network, the evaluate function is the sum of all MV node ratings:

Jm =
15

∑
i=4

f (Ui,m

(
z; Ure f ,m; Prec,m; Qrec,m

)
) (6)

where: i—number node in 15 kV network, m—number sample of input data set, zm—
optimal number state regulation (see Table 1), Uref,m—voltage of referencing node for m
sample—input data, Prec,m, Qrec,m—vector active/reactive power for all receiving node in
m sample—input data, Ui,m—the voltage at the node i for the input data set m—result of
power flow analysis, f (Ui)—evaluation function for voltage node (5).

Optimization formula is (7):

6420∧
m=1

min(
15

∑
i=4

f
(

Ui,m

(
zm; Ure f ,m; Prec,m; Qrec,m

))
(7)

The evaluation of the operation of the control system was determined as (8):

J =
6420

∑
m=1

(
15

∑
i=4

f (Ui,m

(
zm; Ure f ,m; Prec,m; Qrec,m

))
(8)

This is the sum of the whole network scores for all input data samples.

2.2. Simulation Research Using Power Flow Calculations in Power Network

The simulations were carried out in several variants. In the first one without voltage
regulation and reactive power compensation, the relative transformer ratio was equal to 1.
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Figure 5. Evaluation function for voltage node.

The second variant is the classic regulation with semiconductor tap changers without
reactive power compensation. The third variant is the use of evolutionary algorithms to
determine the optimal tap using the voltage values in all load nodes. Results were presents
in Section 3.1.

The fourth variant is the inclusion of the classic algorithm for connecting capacitor
banks for the variant without voltage regulation. The fifth and sixth variant is also the
launch of the classic algorithm for reactive power compensation for variants of the classic
voltage regulation and optimization of the tap number using evolutionary algorithms.

The calculations were made in Matlab. MatPower was used to calculate voltages and
power flow in the power grid.

The evolutionary algorithm is widely used to solve various optimization tasks or
control systems in many fields of science, such as in [27–29] or other methods of artifi-
cial intelligence [30,31]. The eventual algorithm was started with the following Matlab
commands ga.

It is an integer optimization with a limitation of the optimization variable value
ranging from 1 to 41. The population size was set to 20 individuals. The maximum number
of generations is 500.

2.3. Simulation Research Using Power Flow Calculations in Power Network with High Reactive
Power Consumption

For high-reactive power data, the formula was applied regardless of the actual active
power and the allowable apparent power. The remaining parameters of the simulation
were left as in the previous one.

In that variant the reactive power at the node i is (9). Compared to Formula 4, the
lower limit has been increased to 0.7 value of active power Pi and the upper limit to 0.8
p.u.:

15∧
i=4

Qi = random(0.7·Pi : 0.8) (9)

During the generation of new data, it was taken into account that not all the results
obtained (reactive power in load nodes) will allow for the execution of power and voltage
flow calculations. For this reason, after drawing the reactive power in load nodes, the input
data was verified by means of power flow calculations. The remaining parameters, such as
the referencing node voltages and active powers in nodes 4 to 15, remained the same as in
the previous set of input data, i.e., 6420 periods.
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Then, for the data thus obtained, an evolutionary algorithm was run in order to
implement optimal voltage regulation. Moreover, the required value of reactive power
for compensation and the number of capacitor banks with a capacity of 30 kVAr were
determined. The next step was to update the power grid model, taking into account
capacitor banks. For the obtained results, the calculations of voltages and power flow were
made again for the determined degree of regulation control and connected batteries for
reactive power compensation. Results were presented in Section 3.2.

2.4. Simulation Research Using Power Flow Calculations in Pareto Multi-Criteria Optimizing

Simultaneous and integrated voltage regulation and reactive power compensation
are necessary to ensure correct operation of the substation. The problem of multi-criteria
optimization arises. On the one hand, the system should ensure correct voltage values
in the entire power network and at the same time compensate the reactive power to
the required value—use of multi-criteria optimization—Pareto—simultaneous voltage
and reactive power regulation. From the set of non-dominated solutions, a solution was
selected that meets the voltage quality requirements with as much as possible reactive
power compensation for each set of input data.

The first optimization criterion is minimizing the entire network, the evaluate function
is the sum of all MV node ratings (6). The second criterion is the reactive power compensa-
tion assessment. According to the legal requirements, the reactive power should not exceed
the value determined by the relationship (10):∣∣∣∣tgφ =

Q
P

∣∣∣∣ ≤ 0.4 (10)

The reactive power compensation evaluation function should have a value of 0 when
the reactive power does not exceed the value of 40% of active power. The evaluation
function used is as follows (11):

tgφT,m =

⎧⎨⎩
QT,m
PT,m

, where QT,m ≥ 0 and PT,m > 0

0, other case

Q2compens =

{
0, where tgφT,m ≤ 0.4

QT,m − 0.4·PT,m;

JQ,m = fcompensation(PT,m;QT,m; Qbat) =

⎧⎨⎩0, where Q2compens ≤ 0
Q2compens

Qbat
, other case

(11)

where: PT,m, QT,m—active and reactive power flowing through the transformer for m num-
ber sample of input data set, Qbat—reactive power of capacitor bank, Q2compens—required
reactive power value to be compensated.

The graph of the Evaluation Function for the reactive power compensation is shown
in Figure 6.

The problem of two-criteria optimization can be written as follows:

F(PPZ, numQ) = min
[

JQ,m
Jm

]
PPZε1 . . . 41, integer number

numQε0 . . . Qmax, integer number

(12)

where JQ,m—reactive power compensation evaluation function for m number sample of
input data set, Jm—voltage evaluate function for the entire network (Formula (6)) for m
number sample of input data set, PPZ—tap-changer position (see Table 1), numQ—number
of connected capacitor banks, Qmax—maximum number of capacitor banks required in the
entire simulation.
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Figure 6. Evaluation function for reactive power compensation.

PPZ and numQ are integer optimization variables.
The multi-criteria optimization settings were implemented using the Matlab command

gamutilobj, with population size of 200 and ParetoFraction factor of 0.7, with limitations.

 

Figure 7. Algorithm for selecting one solution from the Pareto front.
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Multi-criteria optimization consists in determining the Pareto front for each input data.
After determining the Pareto front, one solution should be chosen. The solution selection
algorithm is shown in Figure 7.

Results were presented in Section 3.3.

3. Results

3.1. Results of Simulation Research Using Power Flow

The histograms of the whole network evaluation function values for all input data are
shown below. The range for the evaluation value in the histograms is five (width column—
X-axis. On the Y-axis, we have a normalized number of results for a given interval of the
evaluation function value. The lower the value of the evaluation function, the smaller the
voltage error.

Figure 8 shows the results when the voltage regulation and reactive power compensa-
tion system are turned off. The ratio transformer is 110/15. 34% of the results fall within
the first range of the evaluation function value. However, there are results with values
above 200. Figure 9 shows the simulation results for the classic tap semiconductor control
algorithm using only the voltage measurement on the HV/MV transformer. You can see a
significant improvement in the quality of the voltage. Most of the simulation results fall
within the first four columns of the histogram. Figure 10 shows the optimization result
performed with the evolutionary algorithm. This algorithm used voltage measurements
at all 15 kV nodes. You can see that almost all the results fall within the first range of the
evaluation function value.

Figure 8. Histogram of evaluation value—without voltage regulation and reactive power compensation.
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Figure 9. Histogram of evaluation value—classic voltage regulation and without reactive
power compensation.

Figure 10. Histogram of evaluation value—voltage regulation optimization by means of an evolu-
tionary algorithm and without reactive power compensation.
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The following figures show the results for the independently operating voltage regula-
tion system and independent reactive power compensation. For the case without voltage
regulation, the reactive power compensation system improved the results. In other cases,
the influence of reactive power compensation is not visible when analyzing all the results
(Figures 11–15).

Figure 11. Histogram of evaluation value—without voltage regulation and with reactive
power compensation.

Figure 12. Histogram of evaluation value—classic voltage regulation and with reactive
power compensation.
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Figure 13. The voltage values for the network node no 4 for three control variants without reactive
power compensation.

Figure 14. The voltage values for the network node no 7 for three control variants without reactive
power compensation.
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Figure 15. The voltage values for the network node no 11 for three control variants without reactive
power compensation.

Histogram of evaluation value—voltage regulation optimization by means of an evo-
lutionary algorithm and with reactive power compensation is identical to the histogram of
evaluation value—voltage regulation optimization by means of an evolutionary algorithm
and without reactive power compensation. This is due to the fact that no reactive power
compensation was needed for the results obtained from the evolutionary algorithm.

The table below shows the maximum number of required capacitor banks for the three
control variants without reactive power compensation (Table 2).

Table 2. The maximum number of required capacitor banks of 30 KVar.

Without Voltage Regulation Classic Voltage Regulation
Voltage Regulation with an

Evolutionary Algorithm

71 5 0

The voltage values for the selected network node for three control variants without
reactive power compensation are presented below.

As you can see (Figure 13) in the variant without voltage regulation, it varies widely
from 0.578 to 1.267, which is beyond the allowable range. With classic regulation, the
voltage variability is smaller, but it exceeds the lower limit. In the case of regulation with
the use of the evolutionary algorithm, the range of voltage changes is in the upper half of
the allowable range and does not exceed it. It also results that in the most distant network
nodes the voltage will decrease, which ensures voltage variability in them within the
permissible range. Moreover, the voltage variation is the smallest.

Node 7 is at the end of one of the MV lines. As shown in Figure 14, the voltage is
often below the lower voltage limit in classic regulation. In the case of regulation using
the evolutionary algorithm, the lower voltage limit is rarely exceeded, after the regulation
possibilities are exhausted. In order to verify this, a table with levels of regulation for
selected time moments is presented.
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As you can see (Table 3), when the lower voltage limit is exceeded, the tap changer
was in the position to increase the voltage the most despite external conditions. With classic
regulation, unfortunately, most of the time the voltage is below the lower limit.

Table 3. The state of OLTC (position tap changer) switch at selected time moments.

6.92 [s] 8.84 [s] 20.26 [s]

41 41 41

The table below shows the minimum, maximum, average and variance voltage
values for the selected nodes (Table 4). The results of the statistical analysis for the
three variants of voltage regulation confirm the conclusions of the presented voltage
diagrams (Figures 11–17). When analyzing the minimum and maximum values for the
three control variants, it is clear that in the case of no regulation, these values are outside the
range of permissible values. In the case of classical regulation, there was an improvement.
It is true that the minimum values exceed the lower limit of the permissible voltage range.
Only the results obtained using the evolutionary algorithm with access to the current
measurement values of the network nodes allowed for a significant improvement in the
quality of voltage regulation. The minimum voltage is slightly below the permissible value,
but it still doubles compared to the other variants. Variance is a measure of the volatility of
a given. In the case of voltage regulation, despite the changes in the voltage supplying the
substation and changes in the power consumed in stations 15/0.4, the system is designed
to maintain the range of voltage changes within the permissible range. Moreover, it was
shown that the voltage variability was about 100 times lower in all analyzed nodes in
relation to the other control variants (evolution algorithm).

Table 4. Minimum, maximum, average and variance voltage values of selected nodes for three control
variants without reactive power compensation.

Type of Voltage
Regulation

Voltage in p.u. Node No 4 Node No 7 Node No 11 Node No 13 Node 15

Without regulation

Minimum 0.564 0.393 0.390 0.469 0.370
Maximum 1.270 1.245 1.246 1.261 1.240
Average 0.976 0.899 0.900 0.942 0.900
Variance 0.029 0.037 0.036 0.032 0.036

Classic regulation

Minimum 0.852 0.723 0.730 0.801 0.734
Maximum 1.042 0.998 1.017 1.025 1.003
Average 0.940 0.864 0.865 0.906 0.864
Variance 0.001 0.002 0.002 0.002 0.002

Regulation by
means of

evolutionary
algorithm

Minimum 0.903 0.847 0.847 0.870 0.824
Maximum 1.070 1.029 1.035 1.056 1.033
Average 1.028 0.960 0.961 0.997 0.961
Variance 2.051 × 10−4 4.84 × 10−4 4.951 × 10−4 2.956 × 10−4 5.011 × 10−4
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Figure 16. The voltage values for the network node no 13 for three control variants without reactive
power compensation.

Figure 17. The voltage values for the network node no 15 for three control variants without reactive
power compensation.
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On this basis, it has been shown that the evolution algorithm using measurement data
from all network nodes provides the best quality of voltage regulation. The presented
results justify the need to use the measurements, e.g., voltages in stations 15/0.4 in order to
significantly improve the quality of voltage regulation. Voltage regulation with the use of
evolutionary algorithms maintains the voltage value in nodes most often in the range from
1 to 1.05 p.u. This prevents the voltage drops at the ends of the lines from dropping too
much due to voltage drops.

There is one problem with building a voltage regulator. This regulator should work
with a time resolution of at least one period of the mains voltage. Moreover, for the
simulated data in the case of voltage regulation for the variant using the evolutionary
algorithm, there was no need for reactive power compensation.

It follows that the evolutionary algorithm cannot be directly used to build the controller
due to the fact that obtaining the results with its use required a long time.

In practice, reactive power compensation is often required in power stations. For
this reason, additional simulation data was generated for which high reactive power
compensation will be required. For this reason, another set of input data was prepared for
the simulation. However, in this case, we have a problem of multi-criteria optimization.
The reactive power at the node and the RMS voltage are strongly related.

3.2. Results of Simulation Research Using Power Flow Calculations in Power Network with High
Reactive Power Consumption

The simulation tests were carried out in two variants. Application of an evolutionary
algorithm to optimize voltage regulation. Then, the required number of connected capacitor
banks was determined, and after such a change, the flow calculations were performed
again. Table 5 shows the minimum, maximum and average number of capacitor banks
required. Therefore, the reactive power compensation system should be designed for at
least 170 capacitor banks. It was assumed that the reactive power compensation system
would be able to switch on capacitor banks every 30 KVar with a maximum number of
Qmax = 200.

Table 5. The minimum and maximum number of required capacitor banks of 30 KVar for voltage
regulation with an evolutionary algorithm in high reactive consumption.

Minimum Capacitor Qmin Maximum Capacitor Qmax Average Capacitor Qavg

0 170 54

Tables 6 and 7 present the results of the reactive power compensation influence on the
voltage quality.

Table 6. Influence of independent reactive power compensation on the quality of voltage regulation.

The Number of the
Second Dataset

Number of Times Reactive
Power Compensation

Was Required

Number of Cases Where the Voltage
Quality Deteriorated Due to

Reactive Power Compensation

6399 6368 4638

Implemented independently of the reactive power compensation voltage regulation,
it decreased the evaluation function in 73% of cases. It follows that the reactive power
compensation should be an element of the integrated voltage and reactive power regulation
system (Table 6).

When the voltage is close to the upper allowable limit, connecting the capacitor banks
additionally causes its increase, which results in deterioration of the quality of voltage
regulation (Table 7).
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Table 7. Influence of independent reactive power compensation on the quality of voltage regulation—
one case.

Node No
Voltage Value before
Compensation in p.u.

Voltage Value after
Compensation in p.u.

3 1.129 1.191
4 1.037 1.107
5 0.990 1.064
6 0.962 1.038
7 0.943 1.021
8 1.074 1.140
9 1.047 1.116

10 1.031 1.101
11 1.015 1.087
12 1.043 1.112
13 1.000 1.073
14 0.974 1.050
15 0.955 1.032

3.3. Results of Simulation Research Using Power Flow Calculations in Pareto Multi-Criteria
Optimizing

One of the solutions is presented below (Table 8). Out of 8200 possible solutions,
the two-criteria optimization algorithm chose four (see Figure 18). Then the Pareto-front
solution selection algorithm chose solution no 4.

Table 8. The result of two-criteria optimization with the indicator of the quality of regulation.

No
OLTC

Position
Number

Capacitor
J JQ

e_max—Maximum
Absolute Value of

Voltage Error for the
Entire Network

|tg ϕ|

1 13 4 0.5 85.4 0.1113 0.74

2 14 26 0.5 61.7 0.113 0.64

3 15 48 0.5 38.3 0.1129 0.55

4 21 181 0.5 0 0.113 0.011

Then, the results of three simulations were compared for a dataset with high reactive
power demand. The first one was carried out with the help of an evolutionary algorithm—
single-criterion optimization. The second one, using the results from the first one, uses the
classic algorithm for reactive power compensation. The last one was carried out with the
use of two-criteria optimization (see Tables 9 and 10).
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Figure 18. One of two-criteria optimization results.

Table 9. The minimum and maximum value of the voltage error for different voltage regulation
versions from the entire simulation.

Type of Voltage Regulation
Minimal Voltage
Deviation in p.u.

Maximal Voltage
Deviation in p.u.

Voltage regulation with an evolutionary algorithm −0.15 0.41

Voltage regulation with an evolutionary algorithm
and independent compensation of reactive power −0.21 0.22

With the use of two-criteria optimization and the
Pareto-front solution selection algorithm −0.14 0.12

Table 10. The minimum and maximum value of the |tgϕ| for different voltage regulation versions
from the entire simulation.

Type of Voltage Regulation Minimal |tgϕ| Maximal |tgϕ|

Voltage regulation with an evolutionary algorithm 0.32 0.92

Voltage regulation with an evolutionary algorithm
and independent compensation of reactive power 0 0.52

With the use of two-criteria optimization and the
Pareto-front solution selection algorithm 0 0.4

In the case of voltage regulation with the use of evolutionary algorithms without
reactive power compensation, there are large positive voltage errors. The maximum tgϕ
factor significantly exceeds the permissible value. In the case of voltage regulation using
evolutionary algorithms with independent reactive power compensation, the tgϕ range has
improved, but it also exceeds the allowable value. The voltage deviations range from ±20%
of Un. Only the reaction with multi-criteria optimization keeps the tgϕ in the correct range.
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The range of voltage deviations slightly exceeds the permissible value by a maximum of
4% Un.

The first three figures show the frequency distribution of the voltage error. Figure 19
shows the voltage error for the evolution algorithm. The next Figure 20 shows the voltage
error for the evolution algorithm with independent reactive power compensation. Figure 21
shows the voltage deviation for two-criteria optimization and the algorithm for selecting the
Pareto front solution. For multi-criteria optimization, the obtained values were the smallest
range of voltage errors and the highest frequency of errors close to zero. The charts above
show that multi-criteria optimization works best. The next three figures refer to the absolute
value of the tgϕ coefficient. Figure 22 shows the results of optimization of the evolution
algorithm. The next Figure 23 shows tgϕ and the evolution algorithm with independent
reactive power compensation. Figure 24 shows the tgϕ for two-criteria optimization and
the algorithm for selecting a Pareto front solution. Only for the multi-criteria algorithm, the
results of the tgϕ coefficient were obtained within the acceptable range.

Figure 19. Histogram voltage error—evolutionary algorithm.
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Figure 20. Histogram voltage error—evolutionary algorithm with reactive power compensation.

Figure 21. Histogram voltage error—use of two-criteria optimization and the Pareto-front solution
selection algorithm.
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Figure 22. Histogram tgϕ—evolutionary algorithm.

Figure 23. Histogram tgϕ—evolutionary algorithm with reactive power compensation.

309



Energies 2022, 15, 4773

Figure 24. Histogram tgϕ—use of two-criteria optimization and the Pareto-front solution
selection algorithm.

4. Discussion and Conclusions

The use of voltage measurements from all MV/LV substations and the use of evolu-
tionary algorithms significantly improve the quality of voltage regulation. Despite voltage
changes in the reference node and power changes in load nodes, the voltage variance is sev-
eral dozen smaller than in the case of classical regulation. The voltage range in nodes with
the use of evolutionary algorithms has higher values than in the case of classical regulation.
This is justified as there are greater voltage drops in distant nodes when there are no local
energy sources. When analyzing the minimum and maximum values for the three control
variants, it is clear that in the case of no regulation, these values are outside the range of
permissible values. In the case of classical regulation, there was an improvement. It is true
that the minimum values exceed the lower limit of the permissible voltage range. Only the
results obtained using the evolutionary algorithm with access to the current measurement
values of the network nodes allowed for a significant improvement in the quality of voltage
regulation.

Independently conducted voltage regulation and reactive power compensation often
cause deterioration of one of them. This is due to the fact that if the voltage on the MV side
is close to the upper allowable limit and reactive power compensation is required, then
the voltage value increases above the limit. For a data set with a higher reactive power,
there were as many as 73% of such cases. Typically, reactive power compensation systems
switch off all capacitor banks after exceeding the upper voltage limit. However, this causes
a deterioration of the work quality of the reactive power compensation system. Exceeding
tgϕ above 0.4 causes the necessity to pay additional charges, increase active power losses,
and increase voltage drops. For this reason, it is required to build an integrated voltage
regulation and reactive power compensation system. It follows that we have a multi-criteria
optimization problem.

Classic voltage regulation systems in the power grid use only the transformer voltage
on the lower voltage side. Due to the voltage drops at the ends of the lines, the voltage
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value may exceed the lower allowable limit. For this reason, current compensation was
implemented in voltage regulators. However, there are many lines fed from the same
transformer. These lines are loaded differently. These lines can also have different sections.
Therefore, it is difficult to choose an impedance value for current compensation. In practice,
current compensation is turned off and the voltage setpoint is set to a value between 1 and
1.1 p.u. In the case of a voltage regulation system that uses voltage measurements from all
powered stations, the problem of current compensation does not exist. For this reason, it is
recommended to build an integrated voltage regulation and reactive power compensation
system using voltage measurements from all substations supplied from this transformer.

The use of multi-criteria optimization together with the Pareto-front solution selection
algorithm allows to obtain the correct settings of the semiconductor on-load tap-changer
and the correct number connected of capacitor banks.

The obtained results enable the construction of a voltage regulator and reactive power
compensation in the form of a neural network, a fuzzy regulator, or a neuro-fuzzy regulator.
The obtained results will be used to train the neural network. The exported Matlab results
will be used in the Anaconda/Phyton environment to create a neural network. The resulting
network will be implemented on an STM32 microcontroller using Cube.AI.
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Abstract: Commercial grid-connected rooftop solar PV systems are widely applied worldwide as
part of affordable and clean energy initiatives and viable long-term solutions for energy security.
This is particularly true in a crowded city where space is a constraint and at the same time, there
are unutilized rooftops. With the recently announced Net Energy Metering (NEM) 3.0, commercial
buildings in Malaysia can apply up to 75% capacity of the maximum demand (MD), which can be
connected to the grid. Apart from reducing electricity bills, the owner can offset energy for 10 years.
This paper presents a design analysis with the details of the sizing of a rooftop PV system. The PVsyst
software tool is used to estimate the energy produced by a 380 kWp system, and this study provides
a financial analysis to evaluate the profitability of the system with a particular interest in commercial
buildings under the NEM 3.0 policy, which has resulted in 8.4 years return of investment (ROI).
PVsyst is a software used to size the PV system and provides technical, financial, and environmental
analysis. This in-depth analysis could provide a useful case study for asset owners in deciding the
way forward for sustainable energy production, cost saving, and combating the energy security issue,
since Malaysia is blessed with an abundance of sunshine throughout the year.

Keywords: rooftop solar PV; net energy metering (NEM); maximum demand; PV software

1. Introduction

1.1. Motivation

Energy plays a key role in the advancement and development of human activity and a
brighter future. However, the current energy supply is not enough to cover the demand in
the coming years, and it causes damage to the environment [1]. Solar energy is an abundant
green source that can replace fossil fuel. Since the sun is available everywhere, solar energy
is widely used by most countries, including developing countries. It is used in Malaysia
under various government policies. These policies are implemented to encourage the use
of green energy and support small and large projects [2,3]. Most implemented PV system
are residential or large-scale PV system in Malaysia. Under NEM, residential fill in most of
the quota.

Hybrid PV systems are not a popular practice in Malaysia. Due to the lack of analysis
proving the variability of implementing a system that can satisfy the electrical needs of
the consumer and at the same time reduce the cost of electricity, the consumer pays yearly.
NEM 3.0 approved a rooftop PV system implementation that is connected to the utility
grid for commercial buildings. The consumer that falls under this category only is able to
implement 75% of the maximum demand according to the size of the PV power plant. This
gives the motivation to test this policy profitability financially and assess its technical and
environmental impact.

Appl. Sci. 2021, 11, 10118. https://doi.org/10.3390/app112110118 https://www.mdpi.com/journal/applsci313
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1.2. Brief on Solar PV Policies in Malaysia

Malaysia began to implement polices to encourage renewable energy storage in 2011
with Feed-in Tariff [4–11]. In 2016, the scheme changed to NEM, which was modified
in 2019. These polices are implemented with the aim of meeting the target for installing
renewable energy in Malaysia. In achieving the aspirational goal of having 20% renewable
energy in the country’s national installed capacity mix by 2025, the major renewable
resource that will contribute to the RE mix is solar energy [12–14].

Three types of NEM have been implemented in recent years [14] i.e., NEM 2016
(NEM 1.0), NEM 2019 (NEM 2.0), and recently, NEM 2021 (NEM 3.0) [15–17]. In NEM 2016,
Equation (1) is the total cost of the electricity bill generated monthly for the customer and is
computed by deducting the price of the power generated by PV, which is MYR 0.31, from
the price of the power consumed by the customer from the grid. The power generated by PV
and the price of generated energy are computed using Equations (2) and (3), respectively.

Bill price = price of consumed energy − price of generated energy (1)

Price of generated energy = power generated by PV × displaced cos t by the grid (2)

Price of consumed energy = power consumed by the customer × price tariff (3)

However, in 2019, the NEM strategy changed, since not many customers installed PV
systems based on the poor financial return from this policy. The policy now offsets the
customer cost for every 1 kWh produced by the PV system with 1 kWh consumed from the
grid. Equations (4) and (5) shows the monthly electricity bill computed after deducting the
power generated by the customer from the power consumed:

Total power = power consumed from grid − power generated by PV (4)

Electricity bill = total power × price tariff. (5)

Based on other case studies, this policy has a better financial return than NEM 2016 [10].
For commercial and industrial systems, the maximum capacity of the PV system installed
is 1 MW or 75% of maximum demand (MD) of their existing installation, or 60% of the fuse
rating of the transformer [12,13].

For domestic or residential consumers, the maximum capacity of the PV systems
installed is less than or equal to 12 kW for a single phase or 72 kW for a three-phase sys-
tem [11]. NEM 3.0 consists of three programs, each of which are assigned to a specific mar-
ket sector. The first program is NEM Rakyat, which covers the residential segment [18,19].
A 100 MW capacity is allocated to this program, effective from 1 February 2021 [20]. The
program applies the one-to-one NEM 3.0 policy for 10 years [21]. The allowed maximum
PV installation capacity for the domestic consumer is 4 and 10 kW for single-phase and
three-phase NEM consumers, respectively. The second program, called NEM GoMEn,
covers government ministries and entities and has 100 MW allocated for solar power
implementation. The program also applies a one-to-one offset for 10 years [22]. The maxi-
mum allowed PV installation capacity is 1000 kW per single account with a maximum of
75% from the MD, i.e., the average of the recorded MD of the past year or the declared
MD for consumers with less than a one-year record. This is applicable for medium-voltage
consumers and for low-voltage consumers not exceeding 60% of the fuse rating (for direct
meters) or 60% of the current transformer (CT) rating of the metering current transformers,
as shown in Table 1 [23].

Solar PV systems have many types based on different categories such as grid depen-
dency. Some of the PV systems connect to the grid and use it as a battery storage alternative,
and some systems are totally independent from the grid and use battery storage to store
energy for nighttime use [16]. There are also hybrid systems using the grid as storage for
excess PV energy or in case PV does not meet their demand, especially at night; at the
same time, they use battery storage for a different reason [24,25]. This study focuses on
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the grid-connected PV system [26]. Most of the available studies focus on the technical ad-
vancement on the designed under the old used policies for small or large-scale PV systems
in Malaysia. This paper provides detailed financial analysis for a rooftop commercial-sized
PV system under the recent policy announced in 2021. The paper analysis proves the
profitability of such projects under the recent policy and clarifies the limitation of a system
implemented under NEM3.0.

Table 1. PV policies in Malaysia applied to commercial buildings.

Policy Year Definition Notes Ref.

FiT 2011–2016

The concept of FiTs is that the
yield of the user-generated

photovoltaic system is sold to the
utility grid at a price set by the
utility network. Two meters are

installed; one is used to count the
electricity consumed by the user,
and the second meter measures

the kWh produced by the PV
system and sent to the grid.

It was the first policy
implemented in Malaysia. [6–8]

NEM 1.0 2016–2019

NEM enables customers to
produce and use solar energy to

satisfy demand. The extra PV
electricity will be exported to the

grid. This surplus power is
subsequently offset by a rate of
MYR 0.31/kWh from the next

electricity bill.

The energy produced by the
PV system is consumed by the
owner and the excess energy is
exported to the grid. There is

not money offset—only a
reduction in the next

electricity bill.

[15,20,27,28]

NEM 2.0 2019–2021

This policy allows a consumer
who produces photovoltaic energy
to export the excess energy to the

grid, and each kWh is
compensated by another kWh
from the next electricity bill.

Each one kWh exported to the
grid will be offset from the

next electricity bill by
deducting the value of one

kWh starting with the highest
tariff. In the previous NEM,

the energy exported to the grid
would only be paid at a
displaced cost of MYR

0.31/kWh.

[16,21,29]

NEM 3.0 2021–2023

Similar concept to NEM 2.0, apart
from that it permits indirect
connection to commercial

buildings. The allowed installed
capacity is 75% of MD for

commercial buildings.

A hybrid system/indirect
connection is allowed [30]

1.3. Grid-Connected PV System

The primary component of grid-connected PV systems is the power conditioning unit
(PCU). The PCU converts the DC power produced by the PV array into AC power as per
the voltage and power quality requirements of the utility grid. A bidirectional interface is
made between the PV system, AC output circuits, and the electric utility network; typically,
an onsite distribution panel or service entrance [30–32] allows the AC power produced by
the PV system to either supply onsite electrical loads or to back feed the grid when the PV
system output is greater than the onsite load demand. This safety feature is required in all
grid-connected solar PV [33].

One of the important components of an on-grid system is net metering. Standard
service meters are odometer-type counting wheels that record power consumption at a
service point by means of a rotating disc, which is connected to the counting mechanism.
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The rotating discs operate by an electro physical principle called the eddy current. Digital
electric meters make use of digital electronic technology that registers power measurement
by solid-state current and voltage sensing devices that convert analog measured values
into binary values that are displayed on the meter using liquid crystal display (LCD)
readouts [20]. Inverters are the main difference between a grid-connected system and a
standalone system. The inverters must have the line frequency synchronization capability
to deliver the excess power to the grid. Net meters have the capability to record consumed
or generated power in an exclusive summation format. The recorded power registration is
the net amount of power consumed—the total power used minus the amount of power
that is produced by the solar power cogeneration system [34,35]. Net meters are supplied
and installed by utility companies that provide grid-connection service systems [36]. Net
metered solar PV power plants are subject to specific contractual agreements and are
subsidized by state and municipal governmental agencies.

The usage profile (i.e., operation hours—24 h or not) of electricity is divided from
Monday to Sunday into on-peak hours from 08:00 a.m. to 10:00 p.m. and off-peak hours
from 10:00 p.m. to 08:00 a.m. Each period has a different tariff rate that is clarified in the
next Table 2. In order to understand the PV system’s financial benefit and policy rules,
we must first identify the tariff that the user’s electricity falls under. After that, the policy
suited to the user is selected.

Table 2. Site Information.

Type Information

Location Bangi, Selangor (Klang Valley)

Slope azimuth 180

Roof type Clay and concrete tiles

1.4. Contribution and Paper Organization

New polices have been implemented over the last few years in Malaysia. This is to
encourage the use of renewable energy and increase its share in the energy mix. The latest
implemented policy is NEM 3.0, which allows 75% of an MD rooftop PV system to be
connected to the utility grid. Due to the fact that this policy is newly implemented for
this category of system size, not much analysis is available that gives detailed technical
and financial information. This paper provides a case study that guides the user to size
the system under the recent NEM 3.0 policy and achieve final profit saving. Section 2
discusses the methodology involved to achieve the final design. Section 3 defines the
load consumption and system configuration. Section 4 explains the load profile of the
selected case study with the adopted method in sizing the PV system. Finally in Section 5,
the PVsyst tool provides a technical and financial analysis with some discussions, and a
conclusion provided at the end of the paper.

2. Methodology

Traditionally, the PV system size is obtained through the electricity profile of the
consumer where the final design cost of the kWh produced using the PV system must be
less than the price of the grid tariff. The PV system size must be adjusted by calculating the
sun peak hours in the specific location and the average electricity used daily for a year of
consumption, plus the available roof space to install the PV system; thus, the PV system
size is computed. However, based on the recent NEM 3.0 policy in Malaysia, only 75% of
MD is allowed to be installed and connected to the grid [37,38].

The components of the PV system are selected through the power rating decided by
the manufacturers for the appliances, in conjunction with a careful estimation of how long
each appliance will need power [39]. However, this can apply for small PV installation. In
a large PV plant, the electricity demand based on the previous year of the electricity profile
is thoroughly studied.
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The PVsyst tool is commercially available software that is used to simulate solar PV
projects. This study used a PV system for modeling purposes. The PVsyst software library
contains detailed data about the most common photovoltaic modules, inverters, and all
that is needed for a photovoltaic system project. Furthermore, it records losses due to
the partial shadowing effects, mismatches between connected PV modules, wiring losses,
inverter losses, and the effect of the ambient temperature variations on its electrical output
power calculation. This functionality makes it a precise tool to estimate the amount of
electrical energy produced by a designed system [40,41].

3. System Configuration

The grid-connected PV system configuration is simple compared with the off-grid PV
system, which requires battery storage. It contains PV solar plants, an inverter, a meter,
wiring, and a mounting system, as shown in Figure 1. The solar PV plant converts the
photons in the sunlight into electricity that runs as DC [26,27]. The electricity enters the
inverter, and then, it is transformed into AC to suit the appliances of the building [28]. The
extra electricity is exported to the utility grid where it is measured by a meter. The meter
also measures the electricity imported from the utility grid.

Figure 1. Grid-connected PV system configuration.

The site selected in this case study is denoted as building A, which is described in
Table 2. The building is located in the Bangi area in Selangor, Malaysia and has a lot of
empty spaces on the roof without any shading from nearby buildings or trees. The roof was
sturdy and made of clay and concrete tiles, which make it possible to install a PV system
that the roof will bear its weight.

4. Load Profile

In order to implement the NEM on the commercial building, load profile information
was collected and analyzed. The collected data determined the size of the solar PV system.
At present, the customer is using 100% electricity from the utility grid. From Table 3, it
can be seen that the total yearly energy consumption was 3,194,184 kWh with an average
monthly cost of MYR 125,787. It can be noticed that JAN and MAR are much lower than
the other peak hours in other months due to system measurement dysfunction. These
two months were excluded when computing the average peak hour.

Table 3. Customer electricity profile for the year 2019.

Month Demand, kWh MD, kW MD, MYR Cost, MYR

JAN 141,265 95 4285 47,957
FEB 127,680 552 24,895 43,727

MAR 346,075 95 4285 129,553
APRIL 100,093 502 22,640 100,094
MAY 357,702 494 22,279 108,422
JUN 283,652 499 22,505 113,256
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Table 3. Cont.

Month Demand, kWh MD, kW MD, MYR Cost, MYR

JULY 344,294 514 23,181 133,032
AUG 342,547 503 22,685 342,158
SEP 299,892 502 22,640 118,990
OCT 331,863 491 22,144 128,770
NOV 335,701 498 22,460 130,132
DEC 283,513 496 22,370 113,350

TOTAL 3,194,184 - - 1,509,441
Average 274,523 505 * 19,697 125,787

* exclude of Jan and March.

5. System Sizing

The system size was designed based on the customer’s electrical profile during the
year 2019. The peak sun hours of 2019 were 4.4 h on average based on Table 1. The total
yearly electrical consumption was 3,194,184 kWh. The building falls under the ‘C Tariff’
with an electricity price during peak hours of MYR 0.365/kWh, an off-peak price of MYR
0.224/kWh, and an MD of MYR 45/kW.

In order to calculate the system size, we obtained the MD point of every month of in
2019 and calculated the average point, which was 505 kW.

Size of PV system = MD × 75% = 505 kW × 75% = 378.75 kW ∼= 380 kW (6)

The allowed PV system size to connect to the utility grid is 380 kW, which is 16% of
the total electricity demand. The annual global solar irradiation of the location of the
Building A was measured using the PVsyst program, producing a value of 4.4144 kWh/m2.
The average ambient temperature was 27.4 ◦C. Table 4 shows the monthly global solar
irradiation and the output of a one kW PV system at that location.

Table 4. Monthly global solar irradiation and the output of a 1 kW PV system.

Month
AC System

Output (kWh)
Solar Radiation
(kWh/m2/day)

Irradiance
(W/m2)

DC Array
Output (kWh)

1 103.19 4.44 137.60 107.85
2 95.95 4.55 127.47 100.29
3 104.86 4.52 140.15 109.62
4 94.78 4.19 125.55 99.10
5 89.40 3.80 117.80 93.58
6 85.31 3.77 113.08 89.36
7 89.52 3.80 117.91 93.78
8 94.33 4.01 124.28 98.72
9 95.52 4.21 126.16 99.85
10 98.78 4.21 130.44 103.25
11 95.13 4.20 125.87 99.45
12 95.95 4.05 125.55 100.34

Total 1142.72 49.74 1511.86 1195.19

After sizing the system according to 75% MD, the PV system production could only
cover 380 kW of electricity demand. While this is seen lower compared to the 2671.2 kW
PV plant where electricity demand was met 100%, this still could reduce the electricity bill
and cost saving, particularly since the MD for electricity is recorded during the peak hours.

6. PV System Analysis Using PVsyst Tools

PVsyst is a design tool that provides optimization tools for sizing grid-connected,
standalone, and pumping PV systems based on the location on the map. The tool also
depends on the consumer electricity profile and the demands of electricity. It also provides
a financial visibility for the designed project with environmental impact measured in
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tonnes. The program contains the latest used technology in the market, which can be
selected during the sizing process. It can also calculate the loss in the system [23]. On the
other hand, there are many other online program tools that help calculate the system size
based on the location and demand of the user such as HOMER and PVWATT. However,
PVsyst is chosen in this work for its flexibility when choosing the modules used as well
as more specification details as opposed to PVWATT. The annual energy yield for the
proposed PV power plant was defined as the amount of energy fed into the grid after
due consideration of all kinds of generation and distribution losses. The solar PV-based
power plant comprises the optical energy input (which is essentially dependent on the
geographical/seasonal/climatic and operating parameters with time) and the electrical
output (which depends on the technical specifications of the electrical appliances in use).
Industry standard software PVsyst V6.8.1 was used for the Energy Generation Assessment.

The system consisted of 810 units of 470 Wp PV modules that connected in 81 strings
with 10 modules in each string connected in series. The total nominal power of the plant
was 380 kWp, as shown in Table 5.

Table 5. PV module details.

Parameters Values

PV module size 470 Wp
Number of modules 810 units

Nominal (STC) 380 kWp
Modules 81 strings × 10 in series

Pmpp 707 V
Umpp 501 A

Module area 1751 m2

The inverter used for this system design was a 100 kWac power inverter. Three
inverters were used for the whole system. The inverters’ operating system was 630–1000 V
and the DC to AC power conversion ratio was 1.27, as shown in Table 6.

Table 6. Installed inverter details.

Parameters Values

Unit Nom Power 100 kWac
Number of inverters 3 units

Total power 380 kWac
Operating voltage 630–1000 V

Pnom ratio (DC:AC) 1.27

The proposed 380 kW solar PV plant is expected to generate about 510 MWh of energy
in the first year of operation at a net Capacity Utilization Factor (CUF) of 18% at the
metering point, as per Table 7. Thereafter, an annual degradation factor of 2.5% for the first
year and 0.7% thereafter in production has been considered for mono crystalline modules
for financial calculations.

The CUF—Capacity Utilization Factor compares 380 kW solar power plants with
other 380 kW power plants that run 24 × 7 for 365 days in terms of how much energy is
generated. If the 380 kW solar power plant generates 100 s of Wh for 365 days running on
24 × 7 and we have some 50 s of Wh at the end of our solar plant, its capacity utilization
would be 50%. The average ratio is 0.803. The PV system’s nominal power output is
380 kW. Due to various factors such as site location and system losses, the power capacity
of the system was reduced, as shown in Figure 2. The energy yield was calculated based
on the south-facing array surface. The expected plant production for different probability
scenarios (the probability of meeting a generation value) is also presented in Figure 2.
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Table 7. Balance and main results.

GlobHor
kWh/m2

DiffHor
kWh/m2

T_Amb
◦C

Globlnc
kWh/m2

GlobEff
kWh/m2

EArray
MWh

E_Grid
MWh

E_Grid
MWh

JAN 133.6 79.58 27.21 140.4 137.0 44.38 43.10 0.806
FEB 131.6 81.85 27.84 135.4 132.0 42.72 41.55 0.806

MAR 153.8 88.56 28.27 153.6 149.9 48.24 46.89 0.802
APR 142.7 73.33 27.86 138.6 135.0 43.44 42.15 0.799
MAY 144.8 77.78 28.71 136.7 132.5 42.88 41.59 0.799
JUN 133.0 70.24 28.20 124.4 120.7 39.19 37.98 0.802
JUL 134.4 81.91 28.20 126.7 122.7 39.98 38.77 0.804

AUG 136.7 82.95 28.09 131.4 127.7 41.52 40.27 0.805
SEP 133.6 69,76 27.38 132.1 128.8 41.45 40.20 0.799
OCT 140.5 86.62 27.67 143.0 139.6 45.20 43.88 0.806
NOV 124.6 69.35 26.85 130.2 127.4 41.12 39.87 0.804
DEC 121.3 67.82 27.27 128.1 125.0 40.37 39.13 0.802

YEAR 1630.5 929.75 27.80 1620.5 1578.1 510.49 495.39 0.803

Figure 2. Normalized production (per installed kWp).

The yield factor was defined to be a factor consolidating all the system losses that
occurred across this power plant. The major losses that occurred during the operation of
the solar PV power plant were temperature loss, module mismatch loss, and DC to AC
conversion losses. Figure 3 presents the loss diagram over the whole year. The diagram
represents the energy flows in the system and the losses from every parts. Figure 3 shows
that the largest losses came from temperature with 7.77%, while the inverter loss was 1.47%,
which is expected from the manufacturing datils of the components.
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Figure 3. Loss diagram of energy for a year of expected production flowing through the PV system
energy using PVsyt.

7. Financial Analysis

The objective of financial analysis is to assess the financial viability of the project from
the perspective of a project developer so as to arrive at a suitable investment decision.
As shown in Table 8, all of the costing is in Malaysian Ringgit (MYR). The system cost
included the cost of the PV modules, inverters, mounting materials, other components
(cables, mounting system, charge controller and utility meter, etc.), the balance of the
system, and interconnection [29].

Table 8. Cost details of the PV system components.

Item Quantity Units Cost, MYR Total, MYR

PV modules 810 932 755,121
Inverter 3 80,332 240,996

Other components 1 289,195 289,195
Installation 810 238 192,797

Operating cost 5141 5141
Total 1,478,109

Based on Table 8, the total installation cost is MYR 1,478,108.8; the operating cost is
MYR 5141.25/year produced energy, and the cost of the produced energy (LCOE) is MYR
0.130/kWh. After a detailed analysis, it was concluded that the project is financially viable
and that it will have a project lifetime of 25 years (starting year 2022), financing cost at
MYR 1,478,108.8, and a payback period of 8.4 years. The net present value (NPV) is MYR
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2,459,445.1, and the return on investment (ROI) would be 166.4%, as shown in Figure 4.
Due to the degradation of the PV system, the profit starts to decrease in the last years of
the project lifetime.

M
YR

 

Figure 4. Yearly net profit in MYR during the lifetime of a 380 kW PV system.

From Figure 5, it can be observed that from the ninth year, the project will be in the
positive y-axis, beginning to generate profit from the initial investment. Cash flow was
calculated based on (1) the tariff rate for each unit (kWh) by the solar plant against (2)
the fixed cost of the investment and (3) the operational cost annually. By calculating the
difference as = (1) − (2 + 3), we derived the amount shown in the graph. All the costs were
equalized for a lifespan of 25 years. For the first 8.4 years, the investment cost is greater
than the profit amount; then, the breakeven point is reached, and positive values result in
annual profits from the PV system.

Figure 5. Cumulative cashflow in MYR during the lifetime of 380 kW PV system.
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8. Environmental Impact

The implementation of solar power has been greatly encouraged due to its influence
on reducing carbon emissions. Thus, it is important to measure the environmental benefit of
using solar energy instead of fossil fuel. Figure 6 shows the amount of CO2 emission saved
during the lifetime of the project. The calculations depend majorly on the value of the life
cycle emissions (LCA), which represent CO2 emissions associated with a given component
or quantity of energy. This includes the total life cycle of a component or the amount of
energy, including production, operation, maintenance, disposal, etc. The rationale behind
the carbon footprint tool is that the electricity generated by the photovoltaic system will
replace the same amount of electricity in the existing grid. If the carbon footprint of the
electricity generation on the grid is more than the PV system per kWh, carbon dioxide
emissions will be reduced. From Figure 6, CO2 emission is negative until the last 10 years
of the project; then, it becomes positive due to the fact that the PV system installed satisfies
only 16% of the consumer demand. The rest of the demand is met by the grid of utilities
using traditional fossil fuel energy that causes CO2 emissions in the air.

Figure 6. CO2 emission reduction vs. time.

9. Discussion

The average annual solar radiation at the proposed site on the horizontal surface
is about 1598 kWh/m2 (as per NASA-SSE satellite data) [42], which is adequate for the
installation of the solar PV ground-mounted utility scale system. Annual expected genera-
tion for the entire solar PV project is 510 MWh/year, where the evaluation is based on a
probabilistic approach for the interpretation of the simulation results over several years.

The 380 kW grid-connected PV system consists of 810 PV solar modules grouped into
20 × 81 strings with each string containing 10 modules in series. The output of the strings
is pooled in the array junction box through 4 mm2 photovoltaic DC cables. The output
from the junction box is fed to the three grid-tied inverters. The grid-connected inverter is
used as a power conditioning unit. DC and AC distribution cabinets contain protective
components for the safety of the system.

Based on the results obtained in PVsyst tools, one day of energy production by the PV
system plant was measured and compared with the total electricity demand in one day, as
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shown in Figure 2. From the figure, it can be seen that only 16% of the electricity demand
is covered. This is due to the restricted rule of NEM that only allows 75% of the MD of
electricity to be connected to the utility grid.

Although the PV system plant would only cover 16% of the total electricity demand,
the reduction in the electricity bill would be significant since the solar PV plant produces
energy during the on-peak hours. The electricity rates are MYR 0.365/kWh and MYR
0.224/kWh during on-peak and off-peak hours, respectively. Moreover, the MD point
during the day can also be covered by the PV plant or can be reduced significantly. Since
this plant is small compared with the electricity demand of the building, it will not export
electricity except for on the weekends. It is expected that the electricity will be used on a
daily basis, as shown in Figure 7.

Figure 7. One-day energy consumption and PV production.

10. Conclusions

A techno-economic analysis of commercial-size grid-connected rooftop solar PV sys-
tems has been presented in this paper, taking into account the recently announced NEM
3.0 scheme in 2021. The availability of the solar irradiance at that location is relatively high
i.e., 4.4144 kWh/m2 day throughout the year. The size of the PV plant was calculated based
on the consumer electricity profile of one year. The average MD of 505 kW was considered
for sizing 75% of the system. Due to the fact that the power output of the PV system is
510 MWh/year, the PV system size would only cover 16% of the yearly electricity demand.
After sizing the PV system, it was modeled and simulated using the PVsyst program. The
system performance showed promising results of 510.49 MWh produced yearly from the
plant. A financial analysis was carried out with an estimation of the system price based
on percentage and rates from the original country of the building location. Based on the
analysis, the project’s ROI is in 8.4 years, and the LCOE is at MYR 0.130/kWh, which is less
than both tariffs from the utility during on-peak and off-peak hours. The net present value
(NPV) is MYR 2,459,445.1, and ROI is positive and equal to 166.4%. The system would
have a positive environmental impact with a reduction in the emission of CO2 at least until
the end of the tenure agreement. The results from this project analysis show good promise
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and benefits not just for energy and cost savings but also in terms of utilizing the dead
spaces on the rooftop of buildings.
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Abstract: In this paper, the leader-following consensus problem of first-order nonlinear multi-agent
systems (FONMASs) with external disturbances is studied. Firstly, a novel distributed fixed-time
sliding mode manifold is designed and a new static event-triggered protocol over general directed
graph is proposed which can well suppress the external disturbances and make the FONMASs
achieve leader-following consensus in fixed-time. Based on fixed-time stability theory and inequality
technique, the conditions to be satisfied by the control parameters are obtained and the Zeno behavior
can be avoided. In addition, we improve the proposed protocol and propose a new event-triggering
strategy for the FONMASs with multiple leaders. The systems can reach the sliding mode surface and
achieve containment control in fixed-time if the control parameters are designed carefully. Finally,
several numerical simulations are given to show the effectiveness of the proposed protocols.

Keywords: multi-agent systems; sliding mode control; leader-following consensus; fixed-time

1. Introduction

In the past several years, more and more researchers are interested in cooperative
control of multi-agent systems (MASs) because of its robustness, flexible deployment
and high efficiency. Cooperative control is widely used in various research fields to
solve engineering and non-engineering problems, such as formation of robots [1], sensor
networks [2], attitude alignment [3] and so on. Among multitudinous cooperative control
objectives, consensus is a basic problem in MASs. Its purpose is to design a controller which
can ensure that all members agree on an interest signal according to local information.
Therefore, the information exchange between agents on the shared network is regulated by
the consensus algorithm or protocol.

Based on observation of nature, the emergence of leaders in animal groups led to
the development of the leader-following problem in collective behavior of MASs. In the
distributed consensus problem, the existing results of MASs can be roughly divided into
three categories according to the number of leaders: leaderless consensus [4–6], leader-
following consensus [7–9] and containment control of multiple leaders [10,11]. In [4], the
leaderless consensus of discrete-time MASs was studied by considering the connectivity of
the network. In [5], the leaderless consensus of model-independent MASs was considered.
In [6], the leaderless consensus of fractional-order MASs was investigated. In the case of
single leader, the leader-following bipartite consensus problem was investigated for linear
MASs in [7]. The leader-following consensus for MASs with Lipshitz-type node dynamics
was considered in [8]. Furthermore, by using distributed impulsive control method, the
authors studied the leader-following consensus of nonlinear MASs in [9]. In the case of
multiple leaders, the reduplicative learning control problem for nonlinear heterogeneous
MASs was investigated in [10]. In [11], a completely distributed control protocol was
proposed to study the time-varying group formation tracking problem for linear MASs
with multiple leaders.
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In the consensus analysis of MASs, the convergence rate is an important index to eval-
uate the effectiveness of the proposed protocol. Most of existing results mainly concerned
with the asymptotic convergence of the system. Due to the rapid development of finite-time
theory, some researchers developed the finite-time consensus protocols [12–14]. In [12],
the authors investigated the practical finite-time consensus of second-order heterogeneous
switched nonlinear MASs. In [13], the authors investigated the distributed finite-time track-
ing control problem for second-order MASs, and proposed a novel observer-based control
algorithm. In [14], the finite-time control law for continuous FONMAS was proposed,
which ensures that the obstacles in the way can be passed by all agents, and the relative
position between two agents reaches a constant value in finite-time. In proposed finite-time
protocols, the estimation of convergence time depends on the initial values of MASs. To
overcome this shortcoming, the researchers developed the fixed-time consensus protocols.
In [15], the fixed-time leader-following flocking for second-order MASs was studied. For
fixed-time consensus of heterogeneous MASs, the protocol based on neighbors’ states was
proposed in [16], and the state observation control protocol was designed in [17].

Compared with the traditional continuous control, the sampling control can effectively
reduce the communication update frequency, so as to reduce the control cost. Therefore,
the sampled-data control method was applied to study the issue of resilient reliable dissipa-
tivity performance index for systems including actuator faults and probabilistic time-delay
signals in [18]. However, the traditional sampled-data control method is time-dependent,
which requires the controller to be updated regularly even if the control goal is achieved.
This method also leads to some unnecessary waste of computational and communication
resources. The event-triggered protocol is used as an efficient method to further reduce
communication and computing load. Therefore, the event-triggered controller was de-
signed to study the consensus of first-order MASs in [19]. The consensus of linear MASs
was studied via observer-based event-triggered control and two novel schemes were pro-
posed in [20]. The containment control of second-order nonlinear MASs was considered
based on event-triggered method in [21]. The consensus problem for a kind of stochastic
MASs was studied and an adaptive output feedback approach based on event-triggered
was proposed in [22]. To our knowledge, there is little research on the fixed-time consensus
of MASs under event-triggered control protocol.

Most of the work mentioned above considers the ideal environment, but agents may
face various disturbances signals or noise in communication. As pointed out in [23],
disturbances signals or noise can destroy some good properties of a system. Therefore,
the consensus of MASs under imperfect environment is worth considering. In [24], the
consensus problem for linear MASs with the heterogeneous disturbances generated by the
Brown motion was investigated. In [25], the authors investigated the distributed finite-
time optimization issue for second-order MASs with matched interferences. By using
disturbance rejection strategy, the event-triggered output consensus for MASs with time-
varying disturbances was considered in [26]. Furthermore, the fixed-time event-triggered
consensus for high-order and second-order MASs with uncertain disturbances was studied
in [27,28], respectively.

Since the sliding mode technology can achieve a fast convergence rate to suppress
disturbances, sliding mode control (SMC) method is widely used in the control of MASs
with disturbances. In [29], a sliding mode estimator was given to accomplish distributed
consensus for MASs. The sliding mode controllers were proposed for second-order MASs
with mismatched uncertainties in [30]. The adaptive SMC protocols were designed to
study the consensus of MASs with unknown disturbances in [31]. In order to improve the
convergence rate, the finite-time SMC protocol was proposed in [32]. Furthermore, by using
integral terminal SMC, the fixed-time consensus tracking issue for second-order MASs
was investigated under the influence of interference signals in [33]. In these works [29–33],
all control protocols were continuously updated. In order to reduce the control costs,
considering the external interference, the event-triggered integral SMC was proposed to
study the time-varying formation control of high-order MASs in [34]. Moreover, the event-
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triggered finite-time consensus for multirobot systems with disturbances was considered
via integral SMC strategy in [35]. The finite-time consensus for nonholonomic MASs with
disturbances was studied by using event-triggered integral SMC method in [36]. However,
in the existing research, the fixed-time event-triggered integral SMC method for single
leader and multiple leaders of MASs with disturbances are rarely considered.

Inspired by the above considerations, this paper studies the fixed-time consensus
problem for FONMASs with single leader and multiple leaders by using integral SMC and
the theory of fixed-time stability. Firstly, to study the fixed-time leader-following consensus
of FONMASs with external disturbances, a new event-triggered integral SMC protocol
is devised for each agent. We show that both the systems can get to the sliding mode
surface and all agents will achieve consensus in fixed-time under the proposed protocol.
Moreover, the FONMAS with multiple leaders and external disturbances is considered.
By generalizing our proposed event-triggered integral SMC protocol, it is proved that the
containment control can also be achieved and the disturbance can be effectively suppressed
in fixed-time. Compared with the existing works, the main contributions of the paper are
at least the following three points:

1. In existing works [27,28], the disturbance rejection method was applied to study the
fixed-time consensus of MASs with external disturbances. However, the integral
SMC method combination with event-triggered control mechanism are introduced
to design the distributed protocol in this paper, which can effectively suppress the
disturbances and achieve consensus in fixed-time.

2. In [35,36], the finite-time event-triggered integral SMC protocols were proposed, in
which the estimation of settling time was associated with the initial conditions. To
overcome this disadvantage, the fixed-time event-triggered integral SMC protocols
are proposed in this paper. According to the stability theory of fixed-time, we can
prove that the consensus can be reached in fixed-time and the upper bound estimation
of settling time is regardless of the initial conditions of MASs.

3. The containment control for FONMASs with multiple leaders is also considered,
in which a generalized event-triggered integral SMC protocol is designed and the
controller is updated only at some discrete instants. The sliding surface and the con-
tainment control can be reached in fixed-time. The Zeno phenomenon can be avoided.

The remainder of this paper is organized as follows. Section 2 introduces some
preliminaries including graph theory, definitions, lemmas and problem formulation. In
Section 3, the consensus protocols based on SMC technique are proposed, and some
theorems are proved. In Section 4, the effectiveness of the proposed control protocols is
verified by numerical simulations. Some conclusions are given in Section 5.

Notations. In this paper, Rn denotes the n-dimensional Euclidean space. In de-
notes n dimensional unit matrix. For q = [q1, q2, · · · , qN ]

T , ‖q‖1, ‖q‖ and ‖q‖∞ represent
the 1-norm, 2-norm and ∞-norm of q, respectively. sgn(q) = [sgn(q1), · · · , sgn(qN)]

T ,
sigα(q) = [|q1|αsgn(q1), · · · , |qN |αsgn(qN)]

T where α > 0 is a constant, sgn(·) represents
the sign function. For a matrix A ∈ RN×N , let AT represent its transpose, λmax(A) and
λmin(A) represent the maximum eigenvalue and minimum eigenvalue of A, respectively.
The symbol ⊗ denotes the Kronecker product of matrices. diag(·) represents the diago-
nal matrix.

2. Preliminaries

2.1. Algebraic Graph Theory

A graph that consists of N nodes is represented by G = (V , E ,A) where V =
{v1, · · · , vN} is the set of nodes, E denotes the edges set, in which (i, j) ∈ E if there exists
an edge between vi and vj. The weighted adjacency matrix is denoted as A = [aij] ∈ RN×N ,
where aij > 0 if (j, i) ∈ E , and aij = 0, otherwise. The set of neighbors of agent i is denoted
by Ni = {j ∈ V : (j, i) ∈ E}. The graph G is called directed and strongly connected if
there exists a directed path between each pair of nodes. The graph G contains a directed
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spanning tree if there exists at least one root. The Laplacian matrix L = [lij]N×N is defined
by lij = −aij for i �= j, and lii = ∑N

j �=i aij.

2.2. Definitions and Lemmas

Consider the following differential equation

ẋ(t) = f (x(t)), x(0) = x0, (1)

where x(t) ∈ Rn, and f : Rn �→ Rn is a nonlinear function with f (0) = 0. The following
definitions and lemmas are given.

Definition 1 ([37]). For any solution x(t, t0, x0) of system (1), if there exists a positive number
T(x0) such that x(t, t0, x0) = 0 for all t ≥ t0 + T(x0), then the solution x = 0 is said to be
globally uniformly finite-time stable. T(x0) is called the settling time. Moreover, x = 0 is said to be
globally fixed-time stable if T(x0) is independent of the initial value x0.

Lemma 1 ([38]). For system (1), if there is a regular, positive definite and radially unbounded
function W(x) : Rn → R such that any solution of (1) satisfies the inequality

Ẇ(x(t)) ≤ −(τWp(x(t)) + φWq(x(t)))�, x(t) ∈ Rn \ 0,

where τ, φ, p, � > 0, q ≥ 0, p� > 1, q� < 1, then solution x = 0 of system (1) is fixed-time stable,
and the settling time T(x0) is estimated by

T(x0) ≤
1

φ� (
φ

τ
)

1−q�
p−q (

1
1 − q�

+
1

p� − 1
).

2.3. Problem Formulation

Consider a FONMAS consisting of N followers and a virtual leader indexed by
i = 1, 2, · · · , N and 0, respectively. The dynamics is described by

ẋi(t) = f (xi(t)) + ui(t) + wi(t), i = 1, 2, · · · , N,

ẋ0(t) = f (x0(t)) + u0(t), (2)

where xi(t) ∈ Rn, ui(t) ∈ Rn and wi(t) ∈ Rn are the state, the bounded control input and
the external disturbance of the ith agent, respectively. f (xi(t)) is a nonlinear function, which
represents the inherent dynamics. In addition, we assume that the external disturbance is
bounded, which satisfies ‖wi(t)‖∞ ≤ D < ∞, for D > 0. x0(t) ∈ Rn and u0(t) ∈ Rn are
the state and the bounded control input of the leader, respectively. f (x0(t)) is a nonlinear
function, which also represents the inherent dynamics.

The communication topology among followers is expressed as directed graph Ĝ, and
the corresponding Laplacian matrix is described by the weighted matrix L̂. We use bi to
represent the communication weight between the leader and the ith agent, in which bi > 0
if the ith agent can receive information from the leader, bi = 0 otherwise. In addition, we
denote B = diag(b0, · · · , bN).

Definition 2. For the FONMAS (2), the fixed-time leader-following consensus is achieved for any
initial conditions, if the following equations hold

lim
t→T

‖xi(t)− x0(t)‖ = 0, ‖xi(t)− x0(t)‖ ≡ 0, t ≥ T , i = 1, 2, · · · , N,

where T > 0 is called the settling time.
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Assumption 1. For the nonlinear function f (·), there exists a positive constant l1 > 0 such that

‖ f (z1(t))− f (z2(t))‖ ≤ l1‖z1(t)− z2(t)‖, (3)

where z1(t), z2(t) ∈ Rn.

Assumption 2. The communication between the leader and all followers is represented by graph G
which contains a directed spanning tree with the leader as the root. In addition, the communication
topology Ĝ is directed.

3. Main Results

3.1. Fixed-Time Consensus with Single Leader

In this section, in order to achieve consensus between leader and followers, the integral
SMC protocol will be designed for FONMAS described by (2). Before moving on, we define
the following error variables

x̃i(t) = xi(t)− x0(t),

ũi(t) = ui(t)− u0(t), i = 1, 2, · · · , N. (4)

Since the disturbances exist in the follower agent dynamics, the integral SMC tech-
nique is applied. Then, we define the following integral type sliding mode variable

σi(t) = x̃i(t)−
∫ t

0
(χ

η
i (s) + sgn(χi(s)))ds, i = 1, 2, · · · , N, (5)

where σi(t) = [σi1(t), σi2(t), · · · , σin(t)]T , χi(t) = −[∑j∈Ni
aij(x̃i(t) − x̃j(t)) + bi(x̃i(t))],

and sgn(χi(t)) = [sgn(χi1(t)), sgn(χi2(t)), · · · , sgn(χin(t))]T . η is the ratio of two positive
odd numbers and η > 1. When the sliding mode surface is reached, σi(t) = 0 and σ̇i(t) = 0.
Hence, it has

˙̃xi(t) = χ
η
i (t) + sgn(χi(t)), i = 1, 2, · · · , N. (6)

In order to reduce the control cost and increase the rate of convergence, the event-
triggered consensus protocol is designed as follows

ũi(t) = χ
η
i (t

i
k) + sgn(χi(ti

k))− Ksgn(σi(ti
k))− K3sigβ+1(σi(ti

k))

− K4‖x̃i(ti
k)‖sgn(σi(ti

k)), t ∈ [ti
k, ti

k+1), (7)

where β > 0, K = K1 + K2, K1, K2, K3, K4 are constants to be determined. ti
k is the triggering

instant. Then, the novel measurement error is designed as

ei(t) = χ
η
i (t

i
k) + sgn(χi(ti

k))− Ksgn(σi(ti
k))− K3sigβ+1(σi(ti

k))

− K4‖x̃i(ti
k)‖sgn(σi(ti

k))−
(

χ
η
i (t) + sgn(χi(t))− Ksgn(σi(t))

− K3sigβ+1(σi(t))− K4‖x̃i(t)‖sgn(σi(t))
)

. (8)

In this paper, a distributed event-triggered sampling control is proposed. The trigger
instant of each agent only depends on its trigger function. Based on the zero order hold,
the control input is a constant in each trigger interval. In order to make FONMAS (2)
achieve leader-following consensus under the proposed protocol (7), the following theorem
is given.
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Theorem 1. Suppose that Assumptions 1 and 2 hold for the FONMAS (2). Under the protocol (7),
the leader-following consensus can be achieved in fixed-time, if the following conditions are satisfied

K1 ≥ D, K2 > max
1≤i≤N

{ξi}, K3 > 0, K4 ≥ l1, (9)

where ξi > 0 for i = 1, 2, · · · , N. The triggering condition is defined as

ti
k+1 = inf

{
t > ti

k | ‖ei(t)‖ − ξi ≥ 0
}

, i = 1, 2, · · · , N. (10)

Proof. Firstly, we prove that the sliding mode surface σi(t) = σ̇i(t) = 0 for i = 1, 2, · · · , N
can be achieved in fixed-time. Consider the Lyapunov function as

Vi(t) =
1
2

σT
i (t)σi(t), i = 1, 2, · · · , N. (11)

Take the time derivative of Vi(t) for t ∈ [ti
k, ti

k+1), we have

V̇i(t) = σT
i (t)σ̇i(t)

= σT
i (t)( ˙̃xi(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)(ẋi(t)− ẋ0(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)( f (xi(t)) + ui(t) + wi(t)− f (x0(t))− u0(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)( f (xi(t))− f (x0(t)) + ũi(t) + wi(t)− χ

η
i (t)− sgn(χi(t)))

= σT
i (t)( f (xi(t))− f (x0(t)) + ei(t) + wi(t)− Ksgn(σi(t))

− K3sigβ+1(σi(t))− K4‖x̃i(t)‖sgn(σi(t))). (12)

Based on Assumption 1, it has

σT
i (t)( f (xi(t))− f (x0(t))) ≤ ‖σi(t)‖l1‖xi(t)− x0(t)‖ ≤ l1‖σi(t)‖‖x̃i(t)‖,

σT
i (t)(wi(t)− K1sgn(σi(t))) ≤ D‖σi(t)‖1 − K1‖σi(t)‖1.

Based on conditions (9), we can get

V̇i(t) ≤ ‖ei(t)‖‖σi(t)‖ − K3‖σi(t)‖β+2 − K2‖σi(t)‖. (13)

According to triggering condition (10), we have

V̇i(t) ≤ −(K2 − ξi)‖σi(t)‖ − K3‖σi(t)‖β+2

= −(K2 − ξi)(2Vi(t))
1
2 − K3(2Vi(t))

β+2
2 . (14)

The closed-loop system will get to the sliding mode surface in fixed-time, which can
be obtained according to Lemma 1. The settling time can be computed as

Ti ≤
1√

2(K2 − ξi)

(
K2 − ξi

K32
β+1

2

) 1
β+1

(2 +
2
β
). (15)

Define T = max1≤i≤N{Ti}. Then, it is proved that the sliding mode surface σi(t) = 0
can be reached for any t > T.

Secondly, we will prove that the leader-following consensus can be achieved in fixed-
time. For convenience, χi(t) for i = 1, 2, · · · , N can be rewritten in the following compact
form χ(t) = −((L̂ + B)⊗ In)x̃(t) and ‖sgn(χ(t))‖ ≤

√
Nn.

Let L̂ + B = H. Based on Assumption 2, the matrix H is invertible and all eigenvalues
have positive real parts. Therefore, there exists a positive symmetric matrix P such that
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Q = PH + HT P > 0. Define the Lyapunov function as Ṽ(t) = χT(t)(P ⊗ In)χ(t), then
taking the time derivative of Ṽ(t) for t > T yields

˙̃V(t) = −2χT(t)(P ⊗ In)(H ⊗ In)(χ
η(t) + sgn(χ(t)))

= −χT(t)(Q ⊗ In)χ
η(t)− χT(t)(Q ⊗ In)sgn(χ(t))

≤ −λmin(Q)‖χ‖η+1 − λmin(Q)‖χ‖

≤ −λmin(Q)

λmax(P)
Ṽ

η+1
2 (t)− λmin(Q)

λmax(P)
Ṽ

1
2 (t). (16)

By Lemma 1, we can conclude that the closed-loop system will achieve consensus in
fixed-time. The settling time can be computed as

T̃ ≤ T +
λmax(P)
λmin(Q)

(2 +
2

η − 1
). (17)

Remark 1. In this paper, the general directed network topology is considered, so the matrix H is
asymmetric. We need to select the positive definite matrix P to make it symmetric. In particular,
if the network topology Ĝ is undirected, the matrix P corresponds to the identity matrix, and the
construction of Lyapunov function Ṽ(t) can be simplified. This reduces the computational burden.

Remark 2. In [12–14], the finite-time consensus problem of MASs was studied. Compared with
these literatures, we propose a fixed-time consensus protocol. Based on (17), we can find that the
estimation of settling time is independent of initial values. In [15,16], the fixed-time consensus
of MASs under ideal environment was studied. However, this paper considers a more complex
environment in which agents of MASs are affected by external disturbances. We propose a new
fixed-time consensus protocol based on integral sliding mode technique, which can suppress the
disturbances better and improve the closed-loop performance of the system.

Remark 3. There are generally three methods to deal with disturbances, namely internal made
method, disturbances observation and sliding mode control. In [27,28], the disturbance rejection
method was applied to eliminate the influence of disturbances in the protocols. However, in this
paper, we adopt the integral sliding mode technique combined with event-triggered to suppress
disturbances. Our research enriches the design method of control protocol and theoretical results.
In [35,36], although the consensus of FONMASs with external disturbances was discussed by using
integral sliding mode technique, only finite-time convergence was analyzed, and the estimation of
settling time related to the initial conditions of system. To overcome this disadvantage, this paper
proposes a new fixed-time event-triggered integral SMC protocol, in which the sliding mode surface
can be reached and the consensus can be achieved in fixed-time.

Theorem 2. Consider the FONMAS (2) with the event-triggered control protocol (7). If the
triggering condition is defined by (10) and the conditions of Theorem 1 hold, then the Zeno behavior
can be eliminated.

Proof. The proof is divided into two parts, before and after reaching the sliding mode surface.
On the one hand, we show the Zeno behavior does not exist before the systems achieve

the sliding mode surface. Through the analysis of Theorem 1, the sliding mode surface will
be reached when t > T. Therefore, we need to eliminate the Zeno behavior in the closed
interval t ∈ [0, T]. Since χi(t) is a continuous function, it must exist a maximum value.
Define τi = max0≤t≤T{‖χ

η
i (t)‖} and φi = max0≤t≤T{‖diag(χη−1

i (t))‖}.

333



Entropy 2021, 23, 1412

Take the time derivative of ‖ei(t)‖, it has

d
dt
‖ei(t)‖ ≤

∥∥∥∥ d
dt

[
χ

η
i (t) + sgn(χi(t))− Ksgn(σi(t))− K3sigβ+1(σi(t))

− K4‖x̃i(t)‖sgn(σi(t))
]∥∥∥∥

≤‖ d
dt

χ
η
i (t)‖+ ‖ d

dt
K3sigβ+1(σi(t))‖+

∥∥∥∥ d
dt
(K4‖x̃i(t)‖sgn(σi(t)))

∥∥∥∥
≤η‖diag(χη−1

i (t))‖‖χ̇i(t)‖+ K3(β + 1)‖diag(σβ
i (t))‖‖σ̇i(t)‖+ K4

√
n‖ ˙̃xi(t)‖

≤
[

ηφi
√

NnHii + K3(β + 1)‖diag(σβ
i (0))‖+ K4

√
n
]
‖ ˙̃xi(t)‖+ K3(β + 1)τi

× ‖diag(σβ
i (0))‖+ K3(β + 1)

√
n‖diag(σβ

i (0))‖
≤Ril1‖x̃i(t)‖+ RiD + Ri‖ũi(t)‖+ K3(β + 1)τi‖diag(σβ

i (0))‖
+ K3(β + 1)

√
n‖diag(σβ

i (0))‖
≤Ril1 x̄i + RiD + Riūi + K3(β + 1)τi‖diag(σβ

i (0))‖
+ K3(β + 1)

√
n‖diag(σβ

i (0))‖, (18)

where Ri = ηφi
√

NnHii + K3(β + 1)‖diag(σβ
i (0))‖ + K4

√
n, Hii is the element of i-th

row and column of matrix H, x̄i = max0≤t≤T{‖x̃i(t)‖} and ūi = max0≤t≤T{‖ũi(t)‖}.
Combination with ei(ti

k) = 0, it yields

‖ei(t)‖ ≤
[

Ril1 x̄i + RiD + Riūi + K3(β + 1)τi‖diag(σβ
i (0))‖

+ K3(β + 1)
√

n‖diag(σβ
i (0))‖

]
(t − ti

k). (19)

Using the triggering condition (10), the next trigger instant satisfies ‖ei(ti
k+1)‖ = ξi. There-

fore,

ξi ≤
[

Ril1 x̄i + RiD + Riūi + K3(β + 1)τi‖diag(σβ
i (0))‖

+ K3(β + 1)
√

n‖diag(σβ
i (0))‖

]
(ti

k+1 − ti
k). (20)

Denote Q1i = Ril1 x̄i +RiD+Riūi +K3(β+ 1)τi‖diag(σβ
i (0))‖+K3(β+ 1)

√
n‖diag(σβ

i (0))‖,
and ΔTi

k = ti
k+1 − ti

k, we can get ΔTi
k ≥

ξi
Q1i

> 0.
On the other hand, when the sliding mode surface is reached, σi(t) = 0. Similar to the

above proof, we can obtain

d
dt
‖ei(t)‖ ≤

∥∥∥∥ d
dt

[
χ

η
i (t) + sgn(χi(t))− Ksgn(σi(t))− K3sigβ+1(σi(t))

− K4‖x̃i(t)‖sgn(σi(t))
]∥∥∥∥

≤η‖diag(χη−1
i (t))‖‖χ̇i(t)‖

≤ηφi
√

NnHii(
1

λmin(P)
)

η
2 Ṽ(0)

η
2 + ηφi NnHii. (21)
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Combination with ei(ti
k) = 0, one has

‖ei(t)‖ ≤
[

ηφi
√

NnHii(
1

λmin(P)
)

η
2 Ṽ(0)

η
2 + ηφi NnHii

]
(t − ti

k). (22)

Using the triggering condition (10), on can obtain

ΔTi
k ≥

ξi
Q2i

> 0, (23)

where Q2i = ηφi
√

NnHii(
1

λmin(P) )
η
2 Ṽ(0)

η
2 + ηφi NnHii, and ΔTi

k = ti
k+1 − ti

k. Based on the
above analysis, the Zeno behavior can be avoided in control process.

Remark 4. Since the trigger mechanism exists in the whole control process, the proof of Theorem 2
divided into two parts, i.e., before and after the system reaches the sliding mode surface. In this paper,
a static distributed event-triggered strategy is developed. In order to reduce the number of triggers
more effectively, we will consider the dynamic event-triggered control strategy in our future work.

3.2. Fixed-Time Containment Control with Multiple Leaders

In this section, we consider the MASs with multiple leaders. The main aim is to make
MASs realize containment control in fixed-time by designing appropriate control protocol.
That means all follower agents’ states converge to the convex combination of leaders’ states
in fixed-time. In particular, if the MASs has only one leader, the containment control will
degenerate into leader-following consensus.

For the sake of generality, we hypothesize that the FONMAS consisting of N followers
and M leaders indexed by indexed by i = 1, · · · , N and j = N + 1, · · · , N + M, respectively.
The dynamics of the FONMAS is described by

ẋi(t) = f (xi(t)) + ui(t) + wi(t), i = 1, · · · , N,

ẋj(t) = f (xj(t)) + uj(t) + wj(t), j = N + 1, · · · , N + M, (24)

where xi(t) ∈ Rn, ui(t) ∈ Rn and wi(t) ∈ Rn are the state, the bounded control input and
the external disturbance of the ith agent, respectively. f (xi(t)) is a nonlinear function which
represents the inherent dynamics. xj(t) ∈ Rn, uj(t) ∈ Rn and wj(t) ∈ Rn are the state, the
bounded control input and the internal disturbance of the jth leader, respectively. f (xj(t)) is
a nonlinear function, which also represents the inherent dynamics. In addition, we assume
that the disturbances are bounded, which satisfy ‖wi(t)‖∞ ≤ B < ∞, ‖wj(t)‖∞ ≤ F < ∞
for B > 0 and F > 0.

Assumption 3. Suppose that the communication among the leaders and followers is represented
by graph G. For each follower, there exists at least one leader that has a directed path to it.

Assumption 4. Given scalars ρ1, ρ2, · · · , ρM, satisfying ∑M
j=1 ρj = 1 and ρj ≥ 0. There exists a

constant l2 > 0 such that for xi(t), xj(t) ∈ Rn,

‖ f (xi(t))−
M

∑
j=1

ρj f (xj(t))‖ ≤ l2‖xi(t)−
M

∑
j=1

ρjxj(t)‖.

Under Assumption 3, the Laplcain matrix of graph G is denoted by L, which can be

decomposed into L =

[
L1 L2
0 0

]
, where L1 is a nonsingular matrix, L2 ∈ RN×M has at least

one positive entry and −L−1
1 L21M×1 = 1N×1.
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Before moving on, we define the following error variables

X̃(t) = (L1 ⊗ In)X1(t) + (L2 ⊗ In)X2(t),

Ũ(t) = (L1 ⊗ In)U1(t) + (L2 ⊗ In)U2(t),

W̃(t) = (L1 ⊗ In)W1(t) + (L2 ⊗ In)W2(t), (25)

where

X̃(t) = [X̃T
1 (t), X̃T

2 (t), · · · , X̃T
N(t)]

T , Ũ(t) = [ŨT
1 (t), ŨT

2 (t), · · · , ŨT
N(t)]

T , W̃(t) = [W̃T
1 (t), · · · , W̃T

N(t)]
T ,

X1(t) = [xT
1 (t), · · · , xT

N(t)]
T , X2(t) = [xT

N+1(t), · · · , xT
N+M(t)]T ,

U1(t) = [uT
1 (t), uT

2 (t), · · · , uT
N(t)]

T , U2(t) = [uT
N+1(t), uT

N+2(t), · · · , uT
N+M(t)]T ,

W1(t) = [wT
1 (t), wT

2 (t), · · · , wT
N(t)]

T , W2(t) = [wT
N+1(t), wT

N+2(t), · · · , wT
N+M(t)]T .

Combination with Assumption 3 and the property of Laplacian matrix L, we can
easily obtain that the containment control is achieve in fixed-time if and only if there exists
a T > 0 such that limt→T ‖X̃(t)‖ = 0 and ‖X̃(t)‖ ≡ 0 for t > T .

Considering the disturbances in the system, the consensus protocol can employ sliding
mode approach. The integral type sliding variable is defined as follows

σi(t) = X̃i(t)−
∫ t

0
(χ̃

η
i (s) + sgn(χ̃i(s)))ds, (26)

where χ̃i(t) = −X̃i(t), η is the ratio of two positive odd numbers and η > 1. The sliding
mode manifold (26) is given by following comport form

σ(t) = X̃(t)−
∫ t

0
(χ̃η(s) + sgn(χ̃(s)))ds. (27)

When the sliding mode surface is reached, σ(t) = 0 and σ̇(t) = 0. Hence, it has

˙̃X(t) = χ̃η(t) + sgn(χ̃(t)). (28)

In order to reduce the control cost and increase the rate of convergence, the event-
triggered sample-data control protocol is presented as

Ũi(t) =χ̃
η
i (tk) + sgn(χ̃i(tk))− Ksgn(σi(tk))− K3sigβ+1(σi(tk))

− K4‖X̃(tk)‖sgn(σi(tk)), t ∈ [tk, tk+1), (29)

where β > 0, K = K1 + K2, K1, K2, K3, K4 are constants to be determined. tk is the triggering
instant.

Similarly, the controller (29) can be rewritten in the following comport form

Ũ(t) =χ̃η(tk) + sgn(χ̃(tk))− Ksgn(σ(tk))− K3sigβ+1(σ(tk))

− K4‖X̃(tk)‖sgn(σ(tk)), t ∈ [tk, tk+1). (30)

Then, the novel measurement error for the system (24) is designed as

e(t) = χ̃η(tk) + sgn(χ̃(tk))− Ksgn(σ(tk))− K3sigβ+1(σ(tk))

− K4‖X̃(tk)‖sgn(σ(tk))−
(

χ̃η(t) + sgn(χ̃(t))− Ksgn(σ(t))

− K3sigβ+1(σ(t))− K4‖X̃(t)‖sgn(σ(t))
)

. (31)
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Theorem 3. Suppose that Assumptions 3 and 4 hold for the FONMAS (24). Under the protocol
(30), the containment control can be achieved in fixed-time, if the following inequalities are satisfied:

K1 ≥ ‖L1‖B + ‖L2‖F, K2 > ξ, K3 > 0, K4 ≥ l2‖L1‖‖L−1
1 ‖. (32)

The triggering condition is defined as

tk+1 = inf{t > tk | ‖e(t)‖ − ξ ≥ 0}, (33)

where ξ > 0.

Proof. Consider the Lyapunov function as

V(t) =
1
2

σT(t)σ(t). (34)

For t ∈ [tk, tk+1), the derivative of V(t) is

V̇(t) =σT(t)σ̇(t)

=σT(t)( ˙̃X(t)− χ̃η(t)− sgn(χ̃(t)))

=σT(t)((L1 ⊗ In)F1 + (L2 ⊗ In)F2 + Ũ(t) + W̃(t)− χ̃η(t)− sgn(χ̃(t)))

=σT(t)((L1 ⊗ In)F1 + (L2 ⊗ In)F2 + e(t) + W̃(t)− Ksgn(σ(t))

− K3sigβ+1(σ(t))− K4‖X̃(t)‖sgn(σ(t))). (35)

Define F1 = [ f T(x1(t)), · · · , f T(xN(t))]T , F2 = [ f T(xN+1(t)), · · · , f T(xN+M(t))]T . Let
−L−1

1 L2 � (ρT
1 , ρT

2 , · · · , ρT
N)

T , where ρi = (ρi1, · · · , ρiM). From Assumption 4,

‖F1 + (L−1
1 L2 ⊗ In)F2‖

=

∥∥∥∥[( f (x1(t))−
M

∑
j=1

ρ1j f (xj(t)))T , · · · , ( f (xN(t))−
M

∑
j=1

ρNj f (xj(t)))T ]T
∥∥∥∥

=

∥∥∥∥(‖( f (x1(t))−
M

∑
j=1

ρ1j f (xj(t)))‖, · · · , ‖( f (xN(t))−
M

∑
j=1

ρNj f (xj(t)))‖
)∥∥∥∥

≤
∥∥∥∥(l2‖x1(t)−

M

∑
j=1

ρ1jxj(t)‖, · · · , l2‖xN(t)−
M

∑
j=1

ρNjxj(t))‖
∥∥∥∥

= l2‖(L−1
1 ⊗ In)X̃(t)‖ ≤ l2‖L−1

1 ‖‖X̃(t)‖,

σT(t)(W̃(t)− K1sgn(σ(t))) ≤ (‖L1‖B + ‖L2‖F)‖σ(t)‖1 − K1‖σ(t)‖1.

Based on (32), we can get

V̇(t) ≤ ‖e(t)‖‖σ(t)‖ − K3‖σ(t)‖β+2 − K2‖σ(t)‖. (36)

According to (33), we have

V̇(t) ≤ −(K2 − ξ)‖σ(t)‖ − K3‖σ(t)‖β+2

= −(K2 − ξ)(2V(t))
1
2 − K3(2V(t))

β+2
2 . (37)
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According to Lemma 1, the closed-loop system (24) will get to the sliding mode surface
in fixed-time. The settling time can be estimated by

T̄ ≤ 1√
2(K2 − ξ)

(
K2 − ξ

K32
β+1

2

) 1
β+1

(2 +
2
β
). (38)

Then, it is proved that σ(t) = 0 is reached for t > T̄.
Then, we will prove that the containment control can be achieved in fixed-time. Define

the Lyapunov function as V̂(t) = χ̃T(t)χ̃(t). Taking the time derivative of V̂(t) for t > T̄
yields

˙̂V(t) = −χ̃T(t)(χ̃η(t) + sgn(χ̃(t)))

= −‖χ̃(t)‖η+1 − ‖χ̃(t)‖1

≤ −V̂
η+1

2 (t)− V̂
1
2 (t). (39)

By Lemma 1, we can conclude that the closed-loop system will achieve containment
control in fixed-time. The settling time can be computed as

T̂ ≤T̄ + (2 +
2

η − 1
). (40)

The proof is finished.

Remark 5. In [27], the fixed-time consensus problem of MASs with nonlinear dynamics and
indeterminate disturbances was considered based on event-triggered method. Compared with [27],
we introduce the integral sliding mode technique to deal with disturbances, and consider the
containment control problem in the case of multiple leaders. In addition, the event-triggered strategy
applied in this paper can greatly save computation and communication resources.

Theorem 4. Consider the FONMAS (24) with the event-triggered control protocol (30). If the
triggering condition is defined by (33) and all conditions of Theorem 3 are satisfied, then the Zeno
behavior can be avoided.

Proof. Similar to the proof of Theorem 2, the proof is divided into two parts.
First, we show that the Zeno behavior does not exist before the systems reach the

sliding mode surface. Through the analysis of Theorem 3, we know that sliding mode
surface will be reached when t > T̄. Therefore, we need to eliminate the Zeno behavior
in the closed interval [0, T̄]. Since χ(t) is a continuous function, it must exist a maximum
value. Define ε = max0≤t≤T̄{‖χ̃η(t)‖} and γ = max0≤t≤T̄{‖diag(χ̃η−1(t))‖}.

Take the time derivative of ‖e(t)‖, we have

d
dt
‖e(t)‖ ≤

∥∥∥∥ d
dt

[
χ̃η(t) + sgn(χ̃(t))− Ksgn(σ(t))− K3sigβ+1(σ(t))

− K4‖X̃(t)‖sgn(σ(t))
]∥∥∥∥

≤ψl2‖L1‖‖L−1
1 ‖X̄ + ψ(‖L1‖B + ‖L2‖F) + ψŪ + K3(β + 1)ε

× ‖diag(σβ(0))‖+ K3(β + 1)
√

Nn‖diag(σβ(0))‖, (41)
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where ψ = ηγ + K3(β + 1)‖diag(σβ(0))‖ + K4
√

Nn, X̄ = max0≤t≤T̄{‖X̃(t)‖} and Ū =

max0≤t≤T̄{‖Ũ(t)‖}. Based on e(tk) = 0, it has

‖e(t)‖ ≤
[

ψl2‖L1‖‖L−1
1 ‖X̄ + ψ(‖L1‖B + ‖L2‖F) + ψŪ + K3(β + 1)ε‖diag(σβ(0))‖

+ K3(β + 1)
√

Nn‖diag(σβ(0))‖
]
(t − tk). (42)

Applying the triggering mechanism (33), it has ‖e(tk+1)‖ = ξ. Therefore,

ξ ≤
[

ψl2‖L1‖‖L−1
1 ‖X̄ + ψ(‖L1‖B + ‖L2‖F) + ψŪ + K3(β + 1)ε

× ‖diag(σβ(0))‖+ K3(β + 1)
√

Nn‖diag(σβ(0))‖
]
(tk+1 − tk). (43)

Denote π1 = ψl2‖L1‖‖L−1
1 ‖X̄+ψ(‖L1‖B+ ‖L2‖F)+ψŪ +K3(β+ 1)ε‖diag(σβ(0))‖+

K3(β + 1)
√

Nn‖diag(σβ(0))‖, and ΔTk = (tk+1 − tk), we can get ΔTk ≥ ξ
π1

> 0.
Next, we prove that the Zeno behavior can be avoided when the sliding mode surface

is reached. Similar to the above proof, we can obtain

d
dt
‖e(t)‖ ≤

∥∥∥∥ d
dt

[
χ̃η(t) + sgn(χ̃(t))− Ksgn(σ(t))− K3sigβ+1(σ(t))

− K4‖X̃(t)‖sgn(σ(t))
]∥∥∥∥

≤ηγV̂(0)
η
2 + ηγ

√
Nn. (44)

Combination with e(tk) = 0, it yields

‖e(t)‖ ≤
[

ηγV̂(0)
η
2 + ηγ

√
Nn
]
(t − tk). (45)

When the event next event is triggered, it has ‖e(t)‖ = ξ. Therefore,

ξ ≤
[

ηγV̂(0)
η
2 + ηγ

√
Nn
]
(tk+1 − tk). (46)

Let π2 = ηγV̂(0)
η
2 + ηγ

√
Nn and ΔTk = tk+1 − tk, we can get ΔTk ≥ ξ

π2
> 0. Based

on above analysis, the lower bound of event-triggered interval is positive, then Zeno
phenomenon is eliminated in the whole control process.

4. Numerical Example

In this section, two numerical examples are presented to demonstrate the effectiveness
of the control protocols.

Example 1. Consider the FONMAS (2) with one leader and four followers. Figure 1a shows the
directed communication topology between the leader and all followers. Obviously, Assumption 2 is
satisfied. The nonlinear function is defined as follows

f (xi(t)) =
( −xi1(t) + 2g(xi1(t))− 1.2g(xi2(t))

−xi2(t) + 1.2g(xi1(t)) + 2g(xi2(t))

)
, i = 0, 1, · · · , 4.

where g(xij(t)) = 0.5(|xij(t) + 1| − |xij(t) − 1|) + 0.01sgn(xij(t)), i = 0, 1, · · · , 4, j = 1, 2.
Then, Assumption 1 holds. The external disturbances are defined as w11(t) = w12(t) = 0.05 sin(t)+
0.1 cos(t), w21(t) = w22(t) = 0.05 sin(t) + 0.1 cos(t), w31(t) = w32(t) = 0.05 sin(t), and
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w41(t) = w42(t) = 0.1 cos(t). It follows that ‖wi(t)‖∞ ≤ 0.2, i = 1, 2, 3, 4. The control input of
leader is u01(t) = u02(t) = 0.1 sin(t) + 0.1 cos(t). We choose the controller parameters K1 = 0.2,
K2 = 1.7, K3 = 1.5, K4 = 2, η = 7

5 , β = 1.5, ξi = 0.2 for i = 1, 2, 3, 4 and implement the
proposed control protocol (7). Through the analysis, all conditions (9) of Theorem 1 are satisfied.

(a) (b)

Figure 1. The network topology. (a) Topology with 1 leader. (b) Topology with 2 leaders.

The simulation results are presented in Figures 2–4. Specifically, Figure 2 depicts
the states of all followers and the leader. It can be seen that all followers can track the
leader’s state in fixed-time under the proposed sliding mode control protocol (7) and the
setting time is T̃ ≤ 13.86. Based on analysis of Theorem 1, the sliding mode variable σ(t)
converges to zero in fixed-time, and the setting time is T ≤ 2, which is verified in Figure 3.
The event-triggered instants under the triggering mechanism (10) are shown in Figure 4. It
is shown that the event-triggered instants of each agent are different. Therefore, the results
of Theorem 1 are feasible and the proposed sliding mode control protocol (7) can effectively
suppress the external disturbances and realize leader-following consensus in fixed-time.
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Figure 2. The states of xi(t), i = 0, 1, · · · , 4. (a) The states of −xi1(t) + 2z(xi1(t)) − 1.2z(xi2(t));
(b) The states of −xi2(t) + 1.2z(xi1(t)) + 2z(xi2(t)).

Example 2. Consider the FONMAS (24) with two leaders and four followers. The directed
communication topology between two leaders and all followers are given in Figure 1b. The nonlinear
function is defined as follows

f (xi(t)) =
( −xi1(t) + 2z(xi1(t))− 1.2z(xi2(t))

−xi2(t) + 1.2z(xi1(t)) + 2z(xi2(t))

)
, i = 1, 2, · · · , 6.

where z(xij(t)) = 0.5(|xij(t) + 1| − |xij(t)− 1|) + 0.01sgn(xij(t)), i = 1, 2, · · · , 6, j = 1, 2. The
external disturbances are defined as w11(t) = w12(t) = 0.05 sin(t) + 0.1 cos(t), w21(t) =
w22(t) = 0.05 sin(t) + 0.1 cos(t), w31(t) = w32(t) = 0.05 sin(t), w41(t) = w42(t) =
0.1 cos(t), w51(t) = w52(t) = 0.03 sin(t) + 0.2 cos(t), and w61(t) = w62(t) = 0.06 sin(t).
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It has ‖wi(t)‖∞ ≤ 0.2, i = 1, 2, 3, 4, ‖wj(t)‖∞ ≤ 0.2, j = 5, 6. The control input are uj1(t) =
uj2(t) = 0.1 sin(t) + 0.1 cos(t), j = 5, 6. We choose the controller parameters K1 = 1.7, K2 = 2,
K3 = 1.5, K4 = 24.5, η = 7

5 , β = 1.2, ξ = 1 and implement the proposed control protocol (30).
Through simple calculation, we can verify that all conditions of Theorem 3 are satisfied.
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The simulation results are presented in Figures 5–7. Specifically, Figure 5 shows the
states of four followers and two leaders. It can be seen that all followers’ states gradually
achieve consensus and fall into the convex hull of the leaders’ states in fixed-time and
the setting time is T̂ ≤ 11.3. Figure 6 shows the evolution of sliding mode variable σ(t).
The sliding mode surface can be reached in fixed-time, and the settling time is T̄ ≤ 4.3.
The triggering interval under the event-triggered mechanism (33) is presented in Figure 7.
In order to show the event-triggered intervals more clearly, we only give the simulation
result for a short period of time, from which we can see that the Zeno phenomenon can
be excluded. Different from the distributed event triggering condition (10), we employ a
centralized trigger function, which also can ensure the reachability of the consensus. In
particular, if the FONMAS (24) with one leader, the containment control can be reduced
into leader-following tracking problem.
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Figure 5. The states of xi(t), i = 1, 2, · · · , 6. (a) The states of −xi1(t) + 2z(xi1(t)) − 1.2z(xi2(t));
(b) The states of −xi2(t) + 1.2z(xi1(t)) + 2z(xi2(t)).
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5. Conclusions

In this paper, considering external disturbances, the leader-following consensus and
containment control of FONMASs are studied. Two kinds of event-triggered integral
SMC protocols are designed, which can well suppress the external disturbances and make
the FONMASs achieve consensus in fixed-time. Based on fixed-time stability theory and
inequality technique, some criteria are obtained and the Zeno behavior can be avoided.
The effectiveness of the proposed protocols are verified by several numerical simulations.
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In the future work, the consensus of higher-order MASs with dynamic event-triggered
communication mechanism will be considered.

Author Contributions: Conceptualization, X.L. and Z.Y.; methodology, X.L. and Z.Y.; software, X.L.;
validation, X.L., Z.Y. and H.J.; formal analysis, X.L.; investigation, X.L.; resources, Z.Y.; data curation,
Z.Y.; writing—original draft preparation, X.L.; writing—review and editing, Z.Y.; visualization, Z.Y.;
supervision, H.J.; project administration, Z.Y.; funding acquisition, Z.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(62003289), in part by the China Postdoctoral Science Foundation (2021M690400), in part by the
Doctoral Foundation of Xinjiang University (BS180207), in part by the Tianshan Youth Program
(2018Q068), and in part by the Tianshan Innovation Team Program (2020D14017).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MASs Multi-agent systems
FONMASs First-order nonlinear multi-agent systems
SMC Sliding mode control

References

1. Wang, Z.; Wang, L.; Zhang, H.; Chen, Q.; Liu, J. Distributed regular polygon formation control and obstacle avoidance for
non-holonomic wheeled mobile robots with directed communication topology. IET Control. Theory Appl. 2020, 14, 1113–1122.
[CrossRef]

2. Halakarnimath, B.; Sutagundar, A. Multi-agent-based acoustic sensor node deployment in underwater acoustic wireless sensor
networks. J. Inf. Technol. Res. 2020, 13, 136–155. [CrossRef]

3. Rezaee, H.; Abdollahi, F. Robust attitude alignment in multispacecraft systems with stochastic links failure. Automatica 2020,
118, 109033. [CrossRef]

4. Angeli, D.; Bliman, P. Stability of leaderless discrete-time multi-agent systems. Math. Control Signals Syst. 2006, 18, 293–322.
[CrossRef]

5. Ren, W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. Int. J. Control 2009, 82, 2137–2149.
[CrossRef]

6. Bai, J.; Wen, G.; Rahmani, A. Leaderless consensus for the fractional-order nonlinear multi-agent systems under directed
interaction topology. Int. J. Syst. Sci. 2018, 49, 954–963. [CrossRef]

7. Wen, G.; Wang, H.; Yu, X.; Yu, W. Bipartite tracking consensus of linear multi-agent systems with a dynamic leader. IEEE Trans.
Circuits Syst. II Express Briefs 2017, 65, 1204–1208. [CrossRef]

8. Wen, G.; Duan, Z.; Li, Z.; Chen, G. Consensus tracking of nonlinear multi-agent systems with switching directed topologies. In
Proceedings of the International Conference on Control Automation, Guangzhou, China, 5–7 December 2012; pp. 889–894.

9. He, W.; Chen, G.; Han, Q.; Qian, F. Network-based leader-following consensus of nonlinear multi-agent systems via distributed
impulsive control. Inf. Sci. 2017, 380, 145–158.

10. Fu, Q. Iterative learning control for nonlinear heterogeneous multi-agent systems with multiple leaders. Trans. Inst. Meas. Control.
2020, 43, 854–861.

11. Hu, J.; Bhowmick, P.; Lanzon, A. Distributed adaptive time-varying group formation tracking for multiagent systems with
multiple leaders on directed graphs. IEEE Trans. Control Netw. Syst. 2020, 7, 140–150.

12. Zou, W.; Shi, P.; Xiang, Z.; Shi, Y. Finite-time consensus of second-order switched nonlinear multi-agent systems. IEEE Trans.
Neural Netw. Learn. Syst. 2020, 31, 1757–1762. [CrossRef]

13. Zhao, Y.; Duan, Z.; Wen, G.; Zhang, Y. Distributed finite-time tracking control for multi-agent systems: An observer-based
approach. Syst. Control Lett. 2013, 62, 22–28. [CrossRef]

14. Li, W.; Sun, S.; Xia, C. Finite-time stability of multi-agent system in disturbed environment. Nonlinear Dyn. 2012, 67, 2009–2016.
15. Xu, Z.; Liu, H.; Liu, Y. Fixed-time leader-following flocking for nonlinear second-order multi-agent systems. IEEE Access 2020,

8, 86262–86271. [CrossRef]

343



Entropy 2021, 23, 1412

16. Zou, W.; Qian, K.; Xiang, Z. Fixed-time consensus for a class of heterogeneous nonlinear multiagent systems. IEEE Trans. Circuits
Syst. II Express Briefs 2020, 67, 1279–1283. [CrossRef]

17. Sun, F.; Liu, P.; Li, H.; Zhu, W. Fixed-time consensus of heterogeneous multi-agent systems based on distributed observer. Int. J.
Syst. Sci. 2021, 52, 1780–1789. [CrossRef]

18. Manivannan, R.; Samidurai, R.; Cao, J.; Perc, M. Design of resilient reliable dissipativity control for systems with actuator
faults and probabilistic time-delay signals via sampled-data approach. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 4243–4255.
[CrossRef]

19. Dimarogonas, D.; Frazzoli, E.; Johansson, K. Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom.
Control 2012, 57, 1291–1297. [CrossRef]

20. Zhang, H.; Feng, G.; Yan, H.; Chen, Q. Observer-based output feedback event-triggered control for consensus of multi-agent
systems. IEEE Trans. Ind. Electron. 2014, 61, 4885–4894. [CrossRef]

21. Zou, W.; Xiang, Z. Event-triggered containment control of second-order nonlinear multi-agent systems. J. Frankl. Inst. 2019,
356, 10421–10438. [CrossRef]

22. Yang, Z.; Zheng, S.; Liang, B.; Xie, Y. Event-triggered finite-time consensus for stochastic multi-agent systems. Trans. Inst. Meas.
Control 2020, 43, 1–10. [CrossRef]

23. Liu, L.; Perc, M.; Cao, J. Aperiodically intermittent stochastic stabilization via discrete time or delay feedback control. Sci. China
Inf. Sci. 2019, 62, 072201. [CrossRef]

24. Wei, Q.; Wang, X.; Zhong, X.; Wu, N. Consensus control of leader-following multi-agent systems in directed topology with
heterogeneous disturbances. IEEE/CAA J. Autom. Sin. 2021, 8, 423–431. [CrossRef]

25. Wang, X.; Wang, G. Distributed finite-time optimisation algorithm for second-order multi-agent systems subject to mismatched
disturbances. IET Control. Theory Appl. 2020, 14, 2977–2988. [CrossRef]

26. Sun, J.; Yang, J.; Li, S.; Wang, X.; Li, G. Event-triggered output consensus disturbance rejection algorithm for multi-agent systems
with time-varying disturbances. J. Frankl. Inst. 2020, 357, 12870–12885. [CrossRef]

27. Liu, J.; Yu, Y.; Sun, J.; Sun, C. Distributed event-triggered fixed-time consensus for leader-follower multiagent systems with
nonlinear dynamics and uncertain disturbances. Int. J. Robust Nonlinear Control 2018, 28, 3543–3559. [CrossRef]

28. Zhou, D.; Zhang, A.; Yang, P. Fixed-time event-triggered consensus of second-order multi-agent systems with fully continuous
communication free. IET Control Theory Appl. 2020, 14, 2385–2394. [CrossRef]

29. Bai, J.; Wen, G.; Rahmani, A.; Yu, Y. Consensus for the fractional-order double-integrator multi-agent systems based on the sliding
mode estimator. IET Control Theory Appl. 2018, 12, 621–628. [CrossRef]

30. Wang, Q.; Sun, C.; Chat, X.; Yao, Y. Disturbance observer-based sliding mode control for multi-agent systems with mismatched
uncertainties. Assem. Autom. 2018, 38, 606–614. [CrossRef]

31. Yu, Z.; Yu, S.; Jiang, H.; Hu, C. Distributed consensus for multi-agent systems via adaptive sliding mode control. Int. J. Robust
Nonlinear Control 2021, 31, 7125–7151. [CrossRef]

32. Park, D.; Moon, J.; Han, S. Finite-time sliding mode controller design for formation control of multi-agent mobile robots. J. Korea
Robot. Soc. 2017, 12, 339–349. [CrossRef]

33. Wang, C.; Wen, G.; Peng, Z.; Zhang, X. Integral sliding-mode fixed-time consensus tracking for second-order non-linear and time
delay multi-agent systems. J. Frankl. Inst. 2019, 35, 3692–3710. [CrossRef]

34. Wang, J.; Xu, Y.; Xu, Y.; Yang, D. Time-varying formation for high-order multi-agent systems with external disturbances by
event-triggered integral sliding mode control. Appl. Math. Comput. 2019, 359, 333–343. [CrossRef]

35. Nair, R.; Behera, L.; Kumar, S. Event-triggered finite-time integral sliding mode controller for consensus-based formation of
multirobot systems with disturbances. IEEE Trans. Control Syst. Technol. 2017, 27, 39–47. [CrossRef]

36. Wang, J.; Zhang, Y.; Li, X.; Zhao, Y. Finite-time consensus for nonholonomic multi-agent systems with disturbances via event-
triggered integral sliding mode controller. J. Frankl. Inst. 2020, 357, 7779–7795. [CrossRef]

37. Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2012,
57, 2106–2110. [CrossRef]

38. Yu, Z.; Yu, S.; Jiang, H.; Mei, X. Distributed fixed-time optimization for multiagent systems over a directed network. Nonlinear
Dyn. 2021, 103, 775–789. [CrossRef]

344



sustainability

Article

Research on Precipitation Forecast Based on LSTM–CP
Combined Model

Yan Guo 1,2, Wei Tang 1,2, Guanghua Hou 1, Fei Pan 1, Yubo Wang 1 and Wei Wang 3,*

Citation: Guo, Y.; Tang, W.; Hou, G.;

Pan, F.; Wang, Y.; Wang, W. Research

on Precipitation Forecast Based on

LSTM–CP Combined Model.

Sustainability 2021, 13, 11596. https://

doi.org/10.3390/su132111596

Academic Editors: Luis

Hernández-Callejo,

Sergio Nesmachnow and

Sara Gallardo Saavedra

Received: 26 September 2021

Accepted: 12 October 2021

Published: 20 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Information Engineering, Sichuan Agricultural University, Ya’an 625000, China;
14403@sicau.edu.cn (Y.G.); sau_tangwei@126.com (W.T.); 201803671@stu.sicau.edu.cn (G.H.);
fei.pan@sicau.edu.cn (F.P.); 201902255@stu.sicau.edu.cn (Y.W.)

2 Key Laboratory of Agricultural Information Engineering of Sichuan Province,
Sichuan Agricultural University, Ya’an 625000, China

3 College of Management, Sichuan Agricultural University, Ya’an 625000, China
* Correspondence: wangwei@sicau.edu.cn

Abstract: The tremendous progress made in the field of deep learning allows us to accurately predict
precipitation and avoid major and long-term disruptions to the entire socio-economic system caused
by floods. This paper presents an LSTM–CP combined model formed by the Long Short-Term
Memory (LSTM) network and Chebyshev polynomial (CP) as applied to the precipitation forecast
of Yibin City. Firstly, the data are fed into the LSTM network to extract the time-series features.
Then, the sequence features obtained are input into the BP (Back Propagation) neural network with
CP as the excitation function. Finally, the prediction results are obtained. By theoretical analysis
and experimental comparison, the LSTM–CP combined model proposed in this paper has fewer
parameters, shorter running time, and relatively smaller prediction error than the LSTM network.
Meanwhile, compared with the SVR model, ARIMA model, and MLP model, the prediction accuracy
of the LSTM–CP combination model is significantly improved, which can aid relevant departments
in making disaster response measures in advance to reduce disaster losses and promote sustainable
development by providing them data support.

Keywords: precipitation forecast; long short-term memory network; Chebyshev polynomial; BP
neural network

1. Introduction

Disasters caused by natural hazards can often lead to significant and long-lasting
disruptions of the whole socioeconomic system. One catastrophic event, such as a flood,
can destroy multi-infrastructure systems, lead to cascading failures and substantial socioe-
conomic damages, and hinder development. A large amount of precipitation will directly
lead to floods and waterlogging disasters and make crops impossible to harvest, as well as
easily cause secondary disasters [1], such as collapses, landslides, mudslides, and water-
logging. The causes of precipitation are highly complex [2–4] due to the comprehensive
influence of monsoons, topography, urban distribution, temperature, and evaporation,
leading to more difficulties in predicting precipitation. In addition, rainfall also has some
fixed characteristics, and its influencing factors, such as terrain, urban distribution, and
temperature, will not change greatly in a short time. Precipitation also shows a high degree
of regularity.

With the continuous progress of technology, artificial intelligence (AI) has become
an important driving force in various fields, including sustainable development. Deep
learning can improve the ability to deal with complex problems and help us increase
our understanding of variables and sources that affect rainfall. At present, there is a
myriad of existing studies on precipitation prediction, among which forecasts based on
regression analysis and forecasts based on time series are two classic forecasting approaches.
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Forecasts based on regression analysis mainly include autoregressive models, moving
average models, autoregressive moving average models, and differential autoregressive
moving average models [5]. Prediction methods based on time series can be mainly
divided into grey systems [6], Markov models [7], and set pair analysis [8]. These methods
are simple and widely used, but the accuracy of precipitation prediction is low, which
cannot accurately describe the trend of precipitation development and change. With the
rapid improvement of computer computing power and the development of big data [9],
deep learning technology has become more and more widely used in recent years [10].
For one thing, deep learning is highly suitable for processing multi-dimensional and
complex data, with no requirement for the physical modeling [11] of data; for another,
deep learning has multiple levels, where low-level features are combined to form more
abstract high-level features, and nonlinear network structure can achieve complex function
approximation, showing powerful dataset representation capabilities. Therefore, using
deep learning technology to predict precipitation has become a very practical value and
challenging problem.

Among numerous deep learning technologies, BP and LSTM are two widely used
deep learning neural networks [12,13]. The neural network has been put to work in many
ways, including fitting, classification, and pattern recognition, since the BP algorithm was
proposed [14]. For example, Ferreira et al. [15] evaluated the potential of deep learning and
traditional machine learning models to predict daily reference evapotranspiration (seven
days). The results show that the performance of the deep learning model is slightly better
than that of the machine learning model. Granata et al. [16] established three models based
on a recurrent neural network to predict short-term future actual evapotranspiration. The
results show that the model based on deep learning can predict the actual evapotranspira-
tion very accurately, but the performance of the model will be significantly affected by the
local climate conditions. There is a myriad of improvements in BP neural networks made by
researchers, one of which is to change the excitation function of the BP neural network. For
example, Zhang et al. [17] took the sine function as the excitation function of the BP neural
network. CP is a set of orthogonal polynomials that is often used for function approxima-
tion. Previous studies have shown that orthogonal polynomials perform better in fitting
functions, and in comparison to ordinary polynomials [18–20], orthogonal polynomials
have better fitting stability and fitting ability. CP already has a wide range of applications
in neural networks. Zhang et al. [21,22] proposed a variety of neural network structures for
classification, achieved by applying CP in a feedforward neural network and combing with
the direct weight determination method, as well as the cross-validation method. Based on
Zhang’s research, Jin et al. [23,24] further improved the research as applied to wine region
classification and breast cancer classification, respectively, and achieved good classification
results. Unlike the BP neural network, the recurrent neural network (RNN) is a network
dedicated to processing sequence data. The original RNN has poor processing capacity
for sequence data due to its limited memory capacity, such that many improvements have
been made on RNN by researchers. LSTM [25] is the most widely used network among
many variants of RNN, with its ability to effectively alleviate the disadvantages of RNN,
such as gradient disappearance and weak memory ability, making RNN widely applied in
various fields. For example, Kratzert et al. [26] explored the potential of using a long-term
and short-term memory network (LSTM) to simulate meteorological observation runoff,
and verified by practice that its prediction accuracy is comparable to that of the perfect
baseline hydrological model. Xiang et al. [27] used the prediction model based on LSTM
and seq2seq structure to predict hourly rainfall runoff. The results show that the prediction
accuracy of the LSTM-seq2seq model is higher than that of other models such as ordinary
LSTM. This method is used to improve the accuracy of short-term flood prediction.

At present, researchers have applied the above two kinds of neural networks to the
prediction of precipitation. The prediction approach of the neural network can effectively
extract the random characteristics of a nonlinear sequence, which achieves a high predic-
tion precision and has good research and application value. For example, according to the
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meteorological data of Jingdezhen from 2008 to 2018, J. Kang et al. used the long-term and
short-term memory neural network (LSTM) model to predict precipitation. The experimen-
tal results show that the LSTM model can be well applied to precipitation prediction [28]. Y.
Zhou [29] used an improved BP neural network model to predict typhoon precipitation and
typhoon precipitation events. By analyzing the difference in candidate predictors between
normal years and years with a large prediction error, this method proposed a new predictor
for the BP model in each iteration, and the precipitation prediction accuracy was better than
that of the original BP neural network. In addition to predicting precipitation through deep
learning methods, precipitation can also be predicted through satellite cloud images and
radar detection. For example, Zahraei et al. [30] introduced a pixel algorithm for short-term
quantitative precipitation forecasting (SQPF) using radar rainfall data, and proposed a
pixel-based nowcasting (PBN) algorithm, which uses a hierarchical grid tracking algorithm.
The image captures the high-resolution advection of storms in space and time. The results
show that the proposed algorithm can effectively track and predict severe storm events
in the next few hours. Bowler et al. [31] proposed a new Gandalf system precipitation
prediction scheme based on advection. The method does not need to divide the radar
analysis into continuous rain areas (CRA) and uses smoothing constraints to diagnose the
block advection velocity in rainfall analysis by using the idea of optical flow. This scheme
is compared with the old Gandolf advection scheme based on CRA, and the new scheme
performs better in cases related to severe floods and in a continuous validation period of
3 months. Pham et al. [32] compared several advanced artificial intelligence (AI) models for
predicting daily precipitation, and the results showed that support vector machine is the
best method for predicting precipitation, and it was also found to be the most robust and
effective prediction model. Banadkooki et al. [33] applied the flow pattern optimization
algorithm (FRA) to the optimization of the multilayer perceptron neural network (MLP)
and support vector regression (SVR), and established the precipitation prediction model.
The results show that the performance of the proposed MLP-FRA model is better than
all other models and has a stronger rainfall prediction ability. Wang et al. [34] combined
satellite and radar observation data, and through proper orthogonal decomposition and
assimilation of the data, the effect of precipitation forecasting was improved.

There have been many studies on precipitation prediction from the perspective of
relevant studies at home and abroad, and an excellent application of LSTM in the prediction
of sequence data has been achieved. However, the LSTM network structure is more
complicated, and the number of network unit parameters is relatively large. A slight
increase in the network depth will lead to a rapid increase in the number of parameters.
The huge amount of parameters increases the difficulty of calculation. For medium and
large datasets, higher performance equipment is required to perform calculations [35]. In
addition, although the LSTM network overcomes the problem of gradient disappearance
to a certain extent, the memory function of the LSTM network still depends on the long
sequence. When the sequence is too long, the problem of gradient disappearance may
still occur, which greatly affects the performance of LSTM [36], and the gradient vanishing
problem has not been completely solved. At the same time, the LSTM network training
model is more complicated and the training time is longer [37].

Given the above situation, this paper proposes to combine the Long Short-Term
Memory (LSTM) [38] network and the Chebyshev polynomial (CP) [39], aiming to form an
LSTM–CP combined model for rainfall prediction. From a theoretical point of view, this
model combines CP and LSTM networks for the first time. Firstly, the LSTM network is
used to extract the time-series features in the original data. Then, the BP (Back Propagation)
neural network [40] with CP as the activation function is used to process the time-series
features. This approach can effectively reduce the number of parameters, with the premise
of ensuring accuracy, and has stronger characterization capabilities for sequence data,
which provides a new idea for researchers in the field of neural networks. In the prediction
of rainfall using a machine learning algorithm, the ARIMA model has low accuracy in
predicting non-stationary or fluctuating time series [41]. The number of parameters in
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the SVR model is usually very large [42]. The MLP network needs a large number of
patterns and iterations to realize effective learning so it needs more execution time [43].
Compared with these classical machine learning algorithms, the LSTM–CP combined
model proposed in this paper has higher accuracy, fewer parameters, and faster operation
speed in the prediction of precipitation. The prediction results of the model in monthly
units are relatively accurate, basically reflecting the changing trend of precipitation. It is
helpful to provide a data reference for areas prone to floods and drought disasters, as well
as help relevant departments to prepare in advance, reducing local economic losses. The
model is capable of shortening the running time more effectively when dealing with large
and medium-sized datasets as it can effectively reduce the use of parameters, making the
process of sequence data more efficient.

This article is structured as follows: Introduction, where the importance and necessity
of accurate precipitation forecasts are addressed and the existing precipitation forecasting
methods and the existing problems are listed. The method section gives a detailed intro-
duction to the related models and theoretical methods used, and compares and analyzes
the parameters of different models. In the experimental evaluation section, the prediction
models of LSTM, LSTM–BP, and LSTM–CP are constructed, respectively, and the param-
eter setting process of the LSTM–CP combined model is elaborated. The experimental
results show that, compared with the ordinary LSTM neural network model, the LSTM–
CP combined model proposed in this paper has fewer parameters, shorter running time,
and relatively smaller prediction error than the LSTM network. At the same time, this
paper also compares the LSTM–CP combined model with the traditional rainfall prediction
SVR model, ARIMA model, and MLP model, finding that the prediction accuracy of the
LSTM–CP combined model is significantly improved. Finally, the discussion of results and
conclusions is presented, showing the ability to predict precipitation through the LSTM–CP
combination model.

2. Materials and Methods

2.1. LSTM–CP Combined Model Framework

The LSTM network has inherent advantages in processing sequential data on account of
its powerful memory [44–46]. In this paper, the LSTM network is used as the basic network of
sequence data prediction, with the BP neural network combined to use its excellent function
fitting ability. We can obtain an LSTM–CP combination model by using CP to improve BP
neural networks. CP and LSTM networks are combined for the first time in this model, where
the LSTM network is first used to extract the time-series features in the original data. Then,
the BP (Back Propagation) neural network of CP as the activation function is used to process
the time-series features, with the specific process shown in Figure 1.

Figure 1. Combined model framework.
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2.2. Feature Extraction Based on LSTM Network

Because the LSTM network has a strong memory capacity, it has a natural advantage
in processing sequence data. This article employs the LSTM network as the basic network
for sequence data prediction. In practical applications, RNN has been able to process
some simple correlation information while its memory capacity is not strong. When the
sequence is too long, error back propagation will cause larger gradient dispersion and
gradient explosion problems, which can be effectively alleviated by introducing a “gate”
mechanism [47,48] and memory unit [25,49] in the LSTM network.

2.2.1. Basic Idea

Only two factors, the current round of input xt and the last round of output ht−1,
affect the traditional RNN network unit. Since there is only one tanh excitation unit in the
network, the network output is:

ht = tanh(Wt[ht−1, xt] + bt) (1)

Therefore, RNN is sensitive to short-term input, making it difficult to solve the long
sequence problem, as shown in Figure 2.

Figure 2. RNN network structure.

The LSTM network introduces a unit state and “gate” mechanism, which enhances the
network’s ability to remember long-term information, as shown in Figure 3. The current
cell state Ct consists of the previous cell state Ct−1, the previous cell output ht−1, as well as
the current input xt. The forget gate and input gate process the output ht−1 of the previous
round and the input xt of the current unit, and then combine with the current unit state Ct
to form the output ht of the current round through the output gate.

Figure 3. LSTM network structure.
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It can be seen from Figure 3 that the unit state C, which runs through the whole
LSTM network, constantly transfers information from the previous layer to the next layer,
realizing the long-term memory retention function. In the LSTM network, there are three
gate switches: input gate, forgetting gate, and output gate, through which the LSTM
network can determine whether the current output depends on the early output, recent
output, or current input.

2.2.2. Forgetting Gate

The first problem that the LSTM network solves is to determine the information that
can pass through the current neuron, which is determined by the forgetting gate in LSTM.
In the forgetting gate, the output ht−1 at the previous moment is dot multiplied with the
input xt at the current moment, and then the output ft at this moment inside the neuron is
obtained through the Sigmoid function [50], which is:

ft = σ
(

Wf [ht−1, xt] + b f

)
(2)

where Wf represents the weight matrix and b f represents the bias term.

2.2.3. Input Gate and Unit Status

After confirming the reserved information, LSTM needs to determine how much of
the current input needs to be stored in the cell state, with this function implemented by the
input gate in LSTM. In the input gate, the current input xt together with the previous round
of output ht−1 are point multiplied and then passed through the function of Sigmoid, with
the purpose to determine which inputs are updated; the current input xt and the previous
round of output ht−1 are subjected to a dot product operation and then passed through the
tanh function, aiming to form alternative update information.

it = σ(Wi[ht−1, xt] + bi). (3)

Ct = tanh(WC[ht−1, xt] + bC). (4)

where Wi and WC are the weight matrix, respectively, and bi and bC are the bias items,
respectively. The current cell state Ct is starting to be updated after obtaining the results of
the forgetting gate and the input gate. The output ft of the current time in the neuron is
point multiplied with the result Ct−1 of the previous round of the memory unit, while at
the same time the two internal update information points it and C̃t perform the dot product
operation, and finally the new unit state is obtained by adding them together.

Ct = ft ∗ Ct−1 + it ∗ Ct. (5)

2.2.4. Output Gate

For LSTM, it is necessary to determine how to output the current information when
the unit state is determined, and with this function determined by the output gate, the unit
output is jointly determined by xt, ht−1, and Ct. ot is obtained through the function of the
Sigmoid function after xt and st−1 are dot multiplied with Ct, which passes through the
tanh function dot multiplied by ot, and finally output st is obtained:

ot = σ(Wo[st−1, xt] + bo). (6)

st = ot ∗ tanh(Ct). (7)

where Wo is the weight matrix and bo is the offset term.
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2.3. Convert Sequence Features into Target Output
2.3.1. CP Combined with BP Neural Network

The Chebyshev polynomial is an important special function named after the famous
Russian mathematician Tschebyscheff. It originates from the cosine function of multiple an-
gles and the expansion of the cosine function. It is divided into the first kind of Chebyshev
polynomial and the second kind of Chebyshev polynomial. Chebyshev polynomials used
in this paper belong to the first category. Chebyshev polynomials play a very important
role in approximate calculation in mathematics, physics, and technical science, such as the
injection continuous function approximation problem, impedance transformation problem,
and so on. The roots of the first kind of Chebyshev polynomials (called Chebyshev nodes)
can be used for polynomial interpolation. The corresponding interpolation polynomials
can minimize the Runge phenomenon and provide the best uniform approximation of
polynomials in continuous functions. In practical application, it is often necessary to solve
a known complex function f (x), and in order to simplify the calculation, it is usually
necessary to find a function Qn(x) to minimize the error between the two in a certain
metric sense. In the Chebyshev best uniform approximation theory, the function Qn(x)
is a Chebyshev polynomial and it satisfies that the difference between and in an interval
[a, b] is the smallest of all polynomials Qn(x) and f (x) in the interval, as shown in the
following formula:

max
a≤x≤b

|Qn(x)− f (x)| = min

∣∣∣∣∣max

∣∣∣∣∣Q(x)
a≤x≤b

− f (x)

∣∣∣∣∣
∣∣∣∣∣ (8)

The function approximation theory of Chebyshev polynomials shows that such poly-
nomials Qn(x) exist and are unique: let Dx = max

a≤x≤b
|Qn(x)− f (x)|, Dx has at least n + 2

interleaving points [x1 · · · xn+2](a ≤ x1 < · · · < xn+2 ≤ b) on [a, b], so that D(xi) = ±Dn,
among them, i ∈ [1 , n + 2], Qn(x) is the best uniform approximation of f (x).

Chebyshev polynomials are a series of orthogonal polynomials [51], which can approx-
imate any continuous function. Neural networks based on CP have excellent capabilities in
fitting as well as generalization. The Chebyshev polynomial is defined in a recursive man-
ner, where CP can be expressed by the following recursive expression when the variable
has a value range between −1 and 1, for an n-th order CP:

T0(x) = 1, (9)

T1(x) = x, (10)

Tn+1(x) = 2xTn(x)− Tn−1(x). (11)

According to the theory of orthogonal polynomial approximation, a set of Chebyshev
polynomials can approach any objective function, when the variables belong to −1 to 1
and the number of polynomials R is large enough. As follows:

f (x) ≈
R

∑
r=0

wrTr(x). (12)

where R is the number of Chebyshev polynomials used to fit f (x), Tr(x) represents the r-th
polynomial, and wr represents the weight of the r-th polynomial.

It can be seen from Equation (12) that the objective function f (x) is obtained by the
weighted sum of R CPs. To express this more intuitively, this paper adopts the method of
lexicographical sorting to express Chebyshev polynomials, and sorts them according to the
order of each polynomial. Given two different basis functions ϕq(x) = μi1(x1) . . . μiN (xN)
and ϕq̂(x) = μj1(x1) . . . μjN (xN) in the condition of q �= q̂. Let Q = [i1, i2, . . . , iN ], |Q| =
[i1 + i2 + . . . iN ], Q̂ =

[
î1, î2, . . . , îN

]
, and

∣∣Q̂∣∣ = [î1 + î2 + . . . îN
]
, q > q̂ is established when

any of the following conditions are met:
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Condition 1: |Q| >
∣∣Q̂∣∣;

Condition 2: |Q| =
∣∣Q̂∣∣, and the first non-0 element of Q − Q̂ =

[
i1 − î1, i2 − î2, . . . iN − îN

]
is positive.

The BP neural network usually consists of a myriad of layers, including one input
layer, several hidden layers, and one output layer. It has already been proved that the BP
neural network, with a single hidden layer, can approach any continuous function in the
closed interval with arbitrary precision [52]. The BP neural network of a single hidden
layer is combined with the LSTM network in this paper, and the topology diagram of the
common single hidden layer BP neural network is shown in Figure 4.

Figure 4. The topology of BP neural network.

In this network, where the input is x1 . . . xN , the actual output is o1 . . . ok and the target
output is y1 . . . yk, each neuron in the input layer is fully connected with each neuron in the
hidden layer, and each neuron in the hidden layer is fully connected with each neuron in
the output layer. The weight between the i-th neuron in the input layer and the j-th neuron
in the hidden layer is represented by wij, and the bias term is aj. The weight between the
j-th neuron in the hidden layer and the k-th neuron in the output layer is represented by
vjk, and the bias term is represented by aj. The learning process of the BP neural network
includes two steps, where the first step is the forward spread of information and the second
step is the error back propagation. In the stage of the forward spread of information,
information is transmitted forward, and the data are transferred from the input layer to
the output layer through a weighted sum, with each neuron in the hidden layer and the
output layer that can be, respectively, expressed as:

f
(
zj
)
= f

(
I

∑
i=1

wijxi − aj

)
, (13)

ok = f

(
J

∑
j=1

vjk f
(
zj
)
− βk

)
. (14)

For the error back propagation stage, by computing the error and gradually correcting
the weight and bias value through the gradient descent approach, the error and weight
adjustment can be expressed as:

E =
1
2

K

∑
k=1

(ok − yk), (15)

vjk = vjk − η
∂E

∂ f
(
zj
) , (16)
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vij = vij − η
∂E

∂ f
(
zj
) × ∂ f

(
zj
)

∂xi
. (17)

The “learning” process of the BP neural network is to gradually correct the weight
and bias value according to the input data until the accuracy is satisfied or the maximum
number of iterations is reached.

Hecht-Nielsen [52] has proved that a feedforward neural network with three layers can
approximate any nonlinear continuous function in a closed interval with arbitrary precision.
However, BP neural networks have some inherent shortcomings, such as slow convergence,
ease of falling into a local minimum, and ease of falling into a saddle point, etc. The
excitation function adopted by the traditional BP neural network is usually sigmoid, tanh,
and ReLU, while this paper employs a set of linear independent orthogonal polynomials,
which are Chebyshev polynomials instead of Sigmoid function, as the excitation function,
as shown in Figure 5.

Figure 5. BP neural network based on CP.

A large amount of literature [17–19] has verified that using Chebyshev polynomials as
the excitation function can effectively optimize the BP neural network. In the experiment of
this paper, in contrast to networks and LSTM networks that use Sigmoid as the excitation
function, the error of the network using CP as the excitation function declines faster and
more steadily, and the prediction accuracy is also higher at the same time.

2.3.2. LSTM Combined with BP Neural Network

RNN is a typical feedback neural network whose network structure takes the time
dimension into account, which can achieve excellent performance in processing data with
timing laws. The structure of a single-layer RNN is shown in Figure 2, where each unit will
receive the output of the previous unit and the input of this unit, and then the output can
be given. Because the longer RNN is accompanied by the problems of gradient explosion
and gradient disappearance, it has a limited memory capacity, which makes it unable to
deal with long sequence data. In the actual operation of the LSTM network, the data need
feeding into a linear layer to change the data dimension after passing through the LSTM
network. This linear layer will transform the output of the LSTM network into a target
output. Adopting the BP neural network to replace the linear layer of the LSTM network is
considered in this paper, as shown in Figure 6.
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(a) (b) 

Figure 6. Network operation process. (a) LSTM operation process. (b) LSTM–BP operation process.

Firstly, the LSTM network is employed to process the original data, with the purpose
to extract the time-series features of the data, and then the characteristic data are fed into
the BP neural network with CP as the excitation function. In this way, the prediction ability
of LSTM for sequence data and the function fitting ability of the BP neural network are
used at the same time. This can effectively overcome the shortcomings of the BP neural
network, such as slow convergence and ease of falling into a local minimum and local
saddle point, through changing the excitation function of the BP neural network to CP.

2.4. Parameter Analysis/Complexity Analysis

The parameters of the LSTM–CP combined model consist of two parts: one is the
parameters of the LSTM network and the other is the parameters of the BP neural network.
Jin et al. [24] have proved that, for a fully connected feedforward neural network, the
computational complexity of CP as an excitation function is lower than that of a Sigmoid.
Therefore, this paper only focuses on the parameters of LSTM that combined with the BP
neural network with CP as the excitation function.
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The LSTM network has a total of three “gates” and a unit state, where each of the
three gates generates some parameters. In contrast, the unit state does not generate any
new parameters, and some parameters are also generated in the BP neural network. The
number of parameters of different networks will be analyzed next according to the network
operation flow chart in Figure 6.

For the forget gate, ht−1 is the output at the previous moment and the length is m; xt
is the input at the current moment and the length is n; Wf represents the weight matrix and
the matrix size is [m + n, m]; and b f represents the offset term and the length is m. For the
input gate, ht−1 is the output at the previous moment and the length is m; xt is the input at
the current moment and the length is n; Wi and WC are the weight matrices, whose matrix
sizes are both [m + n, m]; and bi and bC are, respectively, offset terms and the length is m.
For the output gate, ht−1 is the output at the previous moment and the length is m; xt is the
input at the current moment and the length is n; Wo is the weight matrix and the matrix
size is [m + n, m]; and bo is the bias term and the length is m. For the memory unit, it only
performs a dot multiplication operation between the current output ft in the neuron and
the last round of memory unit result Ct−1, and the two internal update information points
it and C̃t perform the dot multiplication operation, with no new parameters generated.
Therefore, the parameters of the forget gate, input gate, and output gate are, respectively:

s1 = (m + n) ∗ m + m, (18)

s2 = 2 ∗ ((m + n) ∗ m + m), (19)

s3 = (m + n) ∗ m + m. (20)

When the number of LSTM network layers is Q, the total parameter quantity of the
LSTM network is determined by the number of network layers, as well as the number of
parameters of the three “gates”, and the total parameter quantity of the LSTM network is:

s = Q1 ∗ 4 ∗ ((m + n) ∗ m + m). (21)

In each round of parameter training, the parameters of the LSTM network and BP
neural network will be updated at the same time, and the input of the BP neural network
is determined by the LSTM network output. According to the above analysis, for the BP
neural network, the input is ht and the length is m. Let the number of neurons in the BP
network be R, the output be ht, and the length be m. The LSTM–BP combined model in this
paper adopts the BP neural network to replace the linear layer of the LSTM network, with
CP as the excitation function of the BP neural network, and each neuron is fully connected
to the output, as shown in Figure 5. Then, the number of parameters of the BP neural
network is:

s4 = m ∗ R + m ∗ R = 2mR. (22)

The number of parameters in the LSTM–CP combination model is:

S = s + s4 = Q2 ∗ 4 ∗ ((m + n) ∗ m + m) + 2mR. (23)

In summary, the parameters of each network are listed in Table 1.
This paper studies the precipitation data of 784 months in Yibin City from 1951 to

2017. The precipitation data of 1971 are ignored due to the missing data from January to
June in 1971. In each round, 90% of the data are selected for training, and then the length
is n = 703. The experiment of Section 3.1 shows that in LSTM the length of ht is m = 16
and the number of LSTM network layers is Q1 = 2, and in LSTM–CP the number of LSTM
network layers is Q2 = 1, the length of ht is m = 32, and the number of BP neural network
neurons is R = 6. The various parts and overall parameters of the network used in this
article are shown in Table 2.
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Table 1. Network parameter quantity function.

Structure Parameter Quantity

forgetting gate s1 = (m + n) ∗ m + m
input gate s2 = 2 ∗ ((m + n) ∗ m + m)

output gate s3 = (m + n) ∗ m + m
memory unit 0

LSTM s = Q1 ∗ 4 ∗ ((m + n) ∗ m + m)
CP s4 = 2mR

LSTM–CP S = Q2 ∗ 4 ∗ ((m + n) ∗ m + m) + 2mR

Table 2. Network parameters.

Structure Parameter

forgetting gate s1 = 11, 520
input gate s2 = 23, 040

output gate s3 = 11, 520
LSTM s = 92, 160

CP s4 = 384
LSTM–CP S = 46, 464

The derivative of the function f (x) at x0 represents the slope of y = f (x) at x0, that
is, the rate of change of f (x) at x0. The larger the derivative, the faster the change, that is,
the faster the function grows. Because a variety of function variables that represent the
parameter quantity occur in this article, drawing seems to be more difficult, such that the
derivative is used for comparing multiple functions, as shown in Table 3.

Table 3. Parameter quantity derivative.

Structure Parametric Function Derivative

LSTM S1′(Q) = 4 ∗ ((m + n) ∗ m + m)
LSTM–CP S2′(R) = 2m

As can be seen from Table 3, when m and n are constant, the parameters of the LSTM
network increase in a square form as the number of LSTM network layers Q increases,
while the number of parameters in the BP neural network increases linearly when the
number of neurons in the BP neural network (R) increases. Therefore, the LSTM–CP
combination model can effectively reduce the number of parameters with the use of the
approach presented in this paper.

3. Results

Yibin City is located in the southeastern part of Sichuan Province, China, with an area
of 13,300 square kilometers. The city is located between 103◦36′–105◦20′ east longitude and
27◦50′–29◦16′ north latitude. Yibin is 298.7 km away from Chengdu, the capital of Sichuan
Province in the north, and 583.5 km away from Kunming, the capital of Yunnan Province
in the south, and the brief geographical location is shown in Figure 7. It is an important
city from Sichuan to the middle and lower reaches of the Yangtze River and coastal areas.
The terrain of Yibin City is dominated by hills and middle–low mountains, accounting for
91.9% of the city’s total area. It belongs to a subtropical humid monsoon climate, and the
annual average temperature is about 17.9 ◦C, the average temperature in January is 7.8 ◦C,
and the average temperature in July is 26.8 ◦C. The water system of Yibin City is very
complex and intertwined. The rivers in Yibin City are mainly the Yangtze River, the river
network is dense, and the total water resources and hydropower resources are relatively
abundant. The annual average precipitation is 1050–1618 mm, which is a typical humid
area. The rainy season is concentrated in the summer and autumn. The precipitation in
these two seasons accounts for 81.7% of the annual precipitation. The main flood season is

356



Sustainability 2021, 13, 11596

mainly July, August, and September. The precipitation in these three months accounts for
about 51% of the annual precipitation.

Figure 7. General location of Yibin City.

To eliminate the adverse effects of single sample data, improve the operation speed
and accuracy as much as possible, and facilitate the operation of the model, it is necessary
to first normalize the precipitation data [50] of Yibin City and map the original data to the
interval [0, 1]:

xnorm
i = (xi − xmin)/(xmax − xmin). (24)

Mapping the input LSTM data to [0, 1] can aid in speeding up the convergence of the
model. The use of CP for function fitting requires that the value of the data is supposed
to be located in the interval [−1, 1], and the output data of LSTM will pass through the
output gate, that is, through Equations (6) and (7), such that the output value of LSTM
must be in the range of interval [−1, 1], meeting the requirements of the value range of the
data fitted by the CP function.

In this paper, the common mean square error [53,54] is selected as the loss function of
the training model, which is also adopted to calculate the validation set error of the model,
and its formula is:

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2

. (25)

The Adam optimizer [55] has a fast convergence speed and can adjust the learning
rate adaptively according to the data distribution, which is why the Adam optimizer is
selected to optimize the error function in this paper. Additionally, Dropout [56] is added to
the network to reduce the influence of over fitting [57,58].

The experimental environment adopted in this paper is as follows: the training
platform is Windows 10 Home 64-bit operating system, the computer memory is 4G,
the processor model is Intel(R) Core(TM) I5-6300HQ CPU @ 2.30ghz, and the graphics
card model is NVIDIA GeFosrce GTX 960M 2G. With Anaconda as the development
environment and Python3.7 as the programming language, the PyTorch 1.2.0 [59] deep
learning framework is used as the development framework, and the Nvidia CUDA 10.0
computing platform is used for accelerated computing.

3.1. LSTM Parameter Setting

When LSTM is used to predict precipitation, network parameters of LSTM should be
determined first. First, the learning rate [60,61] is fixed to 0.01 to determine the remaining
parameters, and then the parameters including the number of LSTM network layers and
the size of the hidden layer in the LSTM network will be changed. For LSTM networks

357



Sustainability 2021, 13, 11596

with different parameters, take the first NUM minimum errors, and the average prediction
error is shown in Figure 8.

  

(a) (b) 

  

(c) (d) 

Figure 8. LSTM error curves of different layers and hidden_size. (a) Average error when Num is 10. (b) Average error when
Num is 25. (c) Average error when Num is 50. (d) Average error when Num is 100.

It is not difficult to see from the error curve in Figure 8 that when layer = 2 and hid-
den_size = 16 of LSTM, loss reaches the minimum. Therefore, layer = 2 and hidden_size = 16
are taken in this paper. Then, test the learning rate, take layer = 2, hidden_size = 16, and
take the learning rate 0.1, 0.05, and 0.01, respectively, for the experiment. As can be seen
from Figure 9, the loss will eventually stabilize at 0.01 when the learning rate is 0.1, but the
error will decrease slowly; when the learning rate is 0.05, the loss will eventually stabilize
around 0.01, but it is not stable; when the learning rate is 0.01, loss quickly drops to 0.01
and remains stable all the time. In summary, this article sets the number of layers of the
LSTM network to 2, the hidden features to 16, and the learning rate to 0.01.
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(c) 

Figure 9. LSTM error curve for different learning rates. (a) LSTM error curve when the learning rate is 0.1. (b) LSTM error
curve when the learning rate is 0.05. (c) LSTM error curve when the learning rate is 0.01.
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3.2. LSTM–CP Parameter Setting

At the end of the LSTM network, there will be a linear layer, which can convert the
time-series characteristic data extracted by the LSTM network into the target output [62,63].
The combination of CP and LSTM networks is supposed to use BP neural networks instead
of this linear layer. With the Sigmoid function used as the common excitation function of
the BP neural network, the Sigmoid function and CP function are, respectively, used as ex-
citation functions to carry out comparative experiments in this paper. Figures 8 and 9 show
that when layer = 2 and hidden_size = 16, the LSTM network performs the best. When
layer = 1 and hidden_size = 32, the network is simpler but the model performance is rela-
tively better. Therefore, this paper sets the basic LSTM network layer = 1, hidden_size = 32,
learning_rate = 0.01 in the LSTM–CP combination model.

The next step is to determine the number of neurons in the BP neural network. Zhang
Y proposed a two-stage approach to determine the number of neurons. In the first stage,
the number of neurons is increased to a large extent to determine the approximate value
range of neurons. In the second stage, the number of neurons is increased one by one to
determine the exact value of the number of neurons. This method can effectively determine
the number of neurons in the BP neural network. In order to obtain the approximate
value range of neurons quickly and determine the number of neurons accurately, the initial
number of neurons is set to 5 in the first stage of this paper, with a step size of 5 to increase
neurons. First, Sigmoid is tested as the excitation function, and the prediction error of
the minimum NUM among the error values of different neurons is taken as the average
error curve.

It can be seen from Figure 10 that the error fluctuates as the number of neurons changes.
When the number of neurons is about 70, the error is small, which means that the loss of
the network is relatively small and stable when the number of neurons is about 70, and the
optimal number of neurons is about 70. Therefore, the number of neurons is set from 66 to
74 for the experiment. As can be seen from Figure 11, when the number of neurons is 67, the
prediction error is the smallest, that is, when the Sigmoid function is used as the excitation
function of the BP neural network, the optimal number of neurons is 67.

Then, it is necessary to determine how many neurons should be used as the excitation
function of the BP neural network, and the minimum NUM prediction errors among the
error values of different numbers of neurons are still taken as the average error curve. The
first-order CP transforms all the input into 1, while the second-order CP is actually a linear
function. Since the first-order and second-order CP do not have nonlinear characteristics,
they are not suitable for excitation functions of neural networks, so the CP order is at least
3 in this paper. A good fitting effect can be obtained at a lower order due to CP’s strong
fitting ability, which makes it unnecessary to use the two-stage method to determine the
order of CP, and the order can be increased from 3 to 3. Figure 12 shows the experimental
results of CP with different orders as the excitation function. It is not difficult to see that the
error is low when the CP order is 6. Therefore, this paper sets the CP order of LSTM–CP to
6, that is, the number of neurons in the hidden layer of the BP neural network is 6.
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(a) (b) 

  
(c) (d) 

Figure 10. LSTM–BP (Sigmoid): the first-stage error curve. (a) Average error curve when Num is 10. (b) Average error
curve when Num is 25. (c) Average error curve when Num is 50. (d) Average error curve when Num is 100.

  
(a) (b) 

Figure 11. Cont.
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(c) (d) 

Figure 11. LSTM–BP (Sigmoid): the second-stage error curve. (a) Average error curve when Num is 10. (b) Average error
curve when Num is 25. (c) Average error curve when Num is 50. (d) Average error curve when Num is 100.

  

(a) (b) 

  

(c) (d) 

Figure 12. LSTM–CP: Error curve. (a) Average error curve when Num is 10. (b) Average error curve when Num is 25.
(c) Average error curve when Num is 50. (d) Average error curve when Num is 100.
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3.3. Comparative Analysis

The optimal parameters of different networks are given in Section 3.1, while this
section will make a detailed comparative analysis of the performance of each model.
Figure 13 shows the error curves of different models, and Figure 14 shows the prediction
results of different models. It can be easily seen from the error in Figure 13 that the LSTM
network has a stable error of around 0.01 after 100 rounds of training, LSTM–CP has a
stable error of around 0.01 after 100 rounds of training, and LSTM–BP (Sigmoid) also has a
stable error of around 0.01 after 100 rounds of training. The reason for this is that the LSTM
network has a strong ability to process sequence data and can quickly extract sequence
features. We ran each model separately and obtained the prediction results of different
models, as shown in Figure 14. It is not difficult to see from Figure 14 that the prediction
results obtained by all networks are very close to the original data.

(a) (b) (c)

Figure 13. Training and prediction error curves of different networks. (a) LSTM. (b) LSTM–CP. (c) LSTM–BP (Sigmoid).

According to Figures 13 and 14, each model has better performance. Listing the
detailed data of each model in Table 4, it is not difficult to see that the training error,
prediction error, and training time of LSTM–CP are less than those of an ordinary LSTM
network. In particular, if the excitation function of the BP neural network is operated on
the CPU, the running time of CP will be shorter than that of Sigmoid. Therefore, using
CP as the excitation function can obtain the lowest training error, the prediction error is
smaller, and the running speed is better than the LSTM network.

Table 4. Comparison of model effects.

Model Training Error Prediction Error Running Speed

LSTM 0.0078 0.0091 4.95
LSTM–BP (Sigmoid) 0.0079 0.0090 3.19

LSTM–CP 0.0076 0.0090 4.62
Note: The running speed is s/100 times.

Next, by using the ARMA linear model, SVR model, and MLP model to predict the
precipitation at the same time, we calculated the evaluation indexes of each model, and
compared the results with the LSTM–CP model proposed in this paper, as shown in Table 5.
It is not difficult to see that, compared with other models, the values of MAE (mean absolute
error), MSE (mean square error), and MAPE (mean percentage error) of the LSTM–CP
network model are smaller than other models, which indicates that the LSTM–CP network
model proposed in this paper has higher consistency and accuracy in rainfall prediction.
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(a) 

(b) 

(c) 

Figure 14. Forecast results. (a) LSTM. (b) LSTM–CP. (c) LSTM–BP (Sigmoid).

Table 5. Comparison results of prediction models.

Model MAE MSE MAPE

ARMIA 0.0836 0.0120 55.051
SVR 0.0925 0.0172 65.731
MLP 0.1101 0.0191 75.210

LSTM–CP 0.0601 0.0090 53.121
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4. Discussion

Due to the complex and diverse causes of precipitation and the interaction of various
factors [64], it is very difficult to establish a mathematical model [65] of precipitation.
Deep learning can automatically extract the low-level features of data and form abstract
high-level features, without the need for the physical modeling of data, and it can easily
deal with complex data structures because of its strong nonlinear ability [66]. The LSTM
network is often employed to process time-series data. Its strong memory ability makes it
have natural advantages in processing time-series data.

As can be seen from (a) in Figure 14, the precipitation value predicted by the LSTM
neural network model is basically consistent with the real value of precipitation data,
and LSTM can accurately extract the time-series features hidden in precipitation data.
However, the LSTM network has some problems such as complex structure and gradient
disappearance. Therefore, this paper proposes the LSTM–CP combination model by
combining LSTM and CP, which makes full use of LSTM’s ability to predict series data
and CP’s powerful function fitting ability in order to ensure the accuracy of the model,
reduce the parameters of the network, and reduce the complexity of the precipitation
prediction model.

Table 2 shows that using the LSTM–CP combination model can effectively reduce the
number of network parameters. The amount of LSTM network model parameters is 92160,
while the amount of LSTM–CP combination model parameters is only 46464, which greatly
reduces the complexity of the model and is suitable for processing large and medium-sized
datasets. At the same time, Table 4 shows that compared with the single LSTM model
and the traditional precipitation prediction model, the LSTM–CP combined model has a
smaller training error and test error, higher prediction accuracy, and is more suitable for
precipitation prediction research. Because the model can reduce the use of parameters to a
higher degree, it can more effectively reduce the running time when dealing with large
and medium datasets, and make the processing of sequence data more efficient.

Rainfall is affected by the fluctuations of sea and land locations, topography, latitude,
and human factors, but in this study, we ignored these changes. In future research, LSTM–
CP can be applied to the scene with complex and huge data, such as text, music, and
other sequence data processing. In this case, the number of network layers and hidden
layers is larger when LSTM is used alone, and the combination of LSTM and CP can
make the parameters have a larger space to decline, and it is not easy to overfit. In
addition, the derivative function can be determined in advance according to the order of
CP without using the deep learning framework for automatic derivation, which improves
the computational efficiency.

5. Conclusions

Natural disasters often lead to major and long-term damage to the entire socio-
economic system, such as floods, which may damage multiple infrastructure systems,
lead to cascading failures and major socio-economic losses, and hinder development.
Therefore, reducing the risk of precipitation disaster is closely related to sustainable devel-
opment. With the progress of technology in recent years, artificial intelligence has become
the main driver in various fields including sustainable development. Deep learning im-
proves the ability to deal with complexity and increases our understanding of the variables
and sources that affect rainfall. This paper proposed the LSTM–CP model to predict the
precipitation of Yibin City. Firstly, the BP neural network is combined with LSTM to form a
combined model where the LSTM network is used to extract the sequence features of the
precipitation data. Then, the BP neural network is used to process the sequence features to
obtain the target output. Because the traditional BP neural network has the disadvantages
of easily falling into local minimums and saddle points, this article considers using CP as
the excitation function to replace the Sigmoid function in the BP neural network, with the
powerful function fitting ability of CP to process sequence features.
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Through experimental tests and comparative analysis, the LSTM–CP combination
model proposed in this paper has fewer parameters, a shorter running time, and smaller
prediction error than the LSTM network. At the same time, compared with the SVR model,
ARIMA model, and MLP model, the prediction accuracy of the LSTM–CP combined
model is significantly improved, which improves the accuracy of rainfall prediction and
makes the model more applicable. It can reflect the change trend of precipitation and
help provide a data reference in areas prone to floods and drought disasters to help
relevant departments prepare in advance, reduce local economic losses, and better achieve
sustainable development. Furthermore, the rainfall prediction model can be incorporated
into the regional early warning system to help better plan and manage water resources and
reduce the risk of flooding. Finally, the application of artificial intelligence to precipitation
prediction provides new ideas and methods for the current precipitation prediction research,
and opens up a broader space for realizing the goal of sustainable development.
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Abstract: Many defenses have recently been proposed at venues like NIPS, ICML, ICLR and CVPR.
These defenses are mainly focused on mitigating white-box attacks. They do not properly examine
black-box attacks. In this paper, we expand upon the analyses of these defenses to include adaptive
black-box adversaries. Our evaluation is done on nine defenses including Barrage of Random Trans-
forms, ComDefend, Ensemble Diversity, Feature Distillation, The Odds are Odd, Error Correcting
Codes, Distribution Classifier Defense, K-Winner Take All and Buffer Zones. Our investigation is
done using two black-box adversarial models and six widely studied adversarial attacks for CIFAR-10
and Fashion-MNIST datasets. Our analyses show most recent defenses (7 out of 9) provide only
marginal improvements in security (<25%), as compared to undefended networks. For every defense,
we also show the relationship between the amount of data the adversary has at their disposal, and
the effectiveness of adaptive black-box attacks. Overall, our results paint a clear picture: defenses
need both thorough white-box and black-box analyses to be considered secure. We provide this large
scale study and analyses to motivate the field to move towards the development of more robust
black-box defenses.

Keywords: adversarial machine learning; black-box attacks; security

1. Introduction

Convolutional Neural Networks (CNNs) are widely used for image classification [1,2]
and object detection. Despite their widespread use, CNNs have been shown to be vul-
nerable to adversarial examples [3]. Adversarial examples are clean images which have
malicious noise added to them. This noise is small enough so that humans can visually
recognize the images, but CNNs misclassify them.

Adversarial examples can be created through white-box or black-box attacks, depend-
ing on the assumed adversarial model. White-box attacks create adversarial examples by
directly using information about the trained parameters in a classifier (e.g., the weights
of a CNN). Black-box attacks on the other hand, assume an adversarial model where the
trained parameters of the classifier are secret or unknown. In black-box attacks, the ad-
versary generates adversarial examples by exploiting other information such as querying
the classifier [4–6], or using the original dataset the classifier was trained on [7–10]. We
can also further categorize black-box attacks based on whether the attack tries to tailor the
adversarial example to specifically overcome the defense (adaptive black-box attacks), or
if the attack is fixed regardless of the defense (non-adaptive black-box attacks). In terms
of attacks, we focus on adaptive black-box adversaries. A natural question is why do we
choose this scope?

(1) White-box robustness does not automatically mean black-box robustness. In secu-
rity communities such as cryptology, black-box attacks are considered strictly weaker than
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white-box attacks. This means that if a defense is shown to be secure against a white-box
adversary, it would also be secure against a black-box adversary. In the field of adversarial
machine learning, this principle does NOT always hold true. Why does this happen? In
adversarial machine learning, white-box attacks use gradient information directly to create
adversarial examples. It is possible to obfuscate this gradient, an effect known as gradient
masking [9] and thus make white-box attacks fail. Black-box attacks do not directly use
gradient information. As a result, black-box attacks may still be able to work on defenses
that have gradient masking. This means adversarial machine learning defenses need to be
analyzed under both white-box AND black-box attacks.

(2) White-box adversaries are well studied in most defense papers [11–18] as opposed
to black-box adversaries. Less attention has been given to black-box attacks, despite the
need to test defenses on both types of attacks (as mentioned in our first point). This paper
offers a unique perspective by testing defenses under adaptive black-box attacks. By
combining the white-box analyses already developed in the literature with the black-box
analyses we present here, we give a full security picture.

Having explained our focus for the type of attacks, we next explain why we chose the
following 9 defenses to investigate:

(1) Each defense is unique in the following aspect: No two defenses use the exact same
set of underlying methods to try and achieve security. We illustrate this point in Table 1.
Further in Section 3 we go into specifics about why each individual defense is chosen. As
a whole, this diverse group of defenses allows us to evaluate many different competing
approaches to security.

(2) Most of the defenses we analyze have been published at NIPS, ICML, ICLR
or CVPR. This indicates the machine learning community and reviewers found these
approaches worthy of examination and further study.

Major Contributions, Related Literature and Paper Organization

Having briefly introduced the notion of adversarial machine learning attacks and
explained the scope of our work, we discuss several other important introductory points.
First, we list our major contributions. Second, we discuss literature that is related but
distinct from our work. Finally, we give an overview of the organization of the rest of
our paper. Major contributions:

1. Comprehensive black-box defense analysis—Our experiments are comprehensive and
rigorous in the following ways: we work with 9 recent defenses and a total of 12 dif-
ferent attacks. Every defense is trained on the same dataset and with the same base
CNN architecture whenever possible. Every defense is attacked under the same ad-
versarial model. This allows us to directly compare defense results. It is important to
note some papers use different adversarial models which makes comparisons across
papers invalid [19].

2. Adaptive adversarial strength study—In this paper we are the first (to the best of our
knowledge) to show the relationship between each of the 9 defenses and the strength
of an adaptive black-box adversary. Specifically, for every defense we are able to show
how its security is effected by varying the amount of training data available to an
adaptive black-box adversary (i.e., 100%, 75%, 50%, 25% and 1%).

3. Open source code and detailed implementations—One of our main goals of this paper
is to help the community develop stronger black-box adversarial defenses. To this
end, we publicly provide code for our experiments: https://github.com/MetaMain/
BewareAdvML (accessed on 20 May 2021). In addition, in Appendix A we give
detailed instructions for how we implemented each defense and what experiments
we ran to fine tune the hyperparameters of the defense.

Related Literature: There are a few works that are related but distinctly different
from our paper. We briefly discuss them here. As we previously mentioned, the field of
adversarial machine learning has mainly been focused on white-box attacks on defenses.
Works that consider white-box attacks and/or multiple defenses include [20–24].
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In [20] the authors test white-box and black-box attacks on defenses proposed in 2017,
or earlier. It is important to note, all the defenses in our paper are from 2018 or later. There
is no overlap between our work and the work in [20] in terms of defenses studied. In
addition, in [20], while they do consider a black-box attack, it is not adaptive because they
do not give the attacker access to the defense training data.

In [21], an ensemble is studied by trying to combine multiple weak defenses to form
a strong defense. Their work shows that such a combination does not produce a strong
defense under a white-box adversary. None of the defenses covered in our paper are used
in [21]. Also [21] does not consider a black-box adversary like our work.

In [23], the authors also do a large study on adversarial machine learning attacks and
defenses. It is important to note that they do not consider adaptive black-box attacks, as
we define them (see Section 2). They do test defenses on CIFAR-10 like us, but in this case
only one defense (ADP [11]) overlaps with our study. To reiterate, the main threat we are
concerned with is adaptive black-box attacks which is not covered in [23].

One of the closest studies to us is [22]. In [22] the authors also study adaptive attacks.
However, unlike our analyses which use black-box attacks, they assume a white-box
adversary. Our paper is a natural progression from [22] in the following sense: If the
defenses studied in [22] are broken under an adaptive white-box adversary, could these
defenses still be effective under under a weaker adversarial model? In this case, the model
in question would be one that disallows white-box access to the defense, i.e., a black-box
adversary. Whether these defenses are secure against adaptive black-box adversaries is an
open question, and one of the main questions our paper seeks to answer.

Lastly, adaptive black-box adversaries have also been studied before in [24]. However,
they do not consider variable strength adaptive black-box adversaries as we do. We also
cover many defenses that are not included in their paper (Error Correcting Codes, Feature
Distillation, Distribution Classifier, K-Winner Take All and ComDefend). Finally, the metric
we use to compare defenses is fundamentally different from the metric proposed in [24].
They compare results using a metric that balances clean accuracy and security. In this paper,
we study the performance of a defense relative to no defense (i.e., a vanilla classifier).

Paper Organization: Our paper is organized as follows: in Section 2, we describe
the goal of the adversary mathematically, the capabilities given in different adversarial
models and the categories of black-box attacks. In Section 3, we break down the defenses
used in this paper in terms of their underlying defense mechanisms. We also explain why
each individual defense was selected for analysis in this paper. In Section 4, we discuss
the principal experimental results and compare the performances of the defenses. In
Section 5, we analyze and discuss each defense individually. We also show the relationship
between the security of each defense and the strength (amount of training data) available
to an adaptive black-box adversary. We offer concluding remarks in Section 6. Lastly, full
experimental details and defense implementation instructions are given in the Appendix A.
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Table 1. Defenses analyzed in this paper and the corresponding defense mechanisms they employ. For definitions of the
each defense mechanism see Section 3.

Defense
Mechanism

Ensemble
Diversity

(ADP) [11]

Error
Correcting

Codes
(ECOC) [12]

Buffer
Zones

(BUZz) [24]

Com
Defend [13]

Barrage
(BaRT) [14]

Distribution
Classifier

(DistC) [16]

Feature
Distillation

(FD) [18]

Odds
Are

Odd [17]

K-Winner
(k-WTA) [15]

Mutiple
Models � � �

Fixed Input
Transformation

� � �

Random Input
Transformation

� � � �

Adversarial
Detection

� �

Network
Retraining

� � � � �

Architecture
Change

� � �

2. Attacks

2.1. Attack Setup

The general setup for an attack in adversarial machine learning can be defined in the
following way [25]: The adversary is given a trained classifier F which outputs a class label
l for a given input x such that F(x) = l. In this paper, the classifiers we consider are deep
Convolutional Neural Networks (CNN), and the inputs (x) are images. The goal of the
adversary is to create an adversarial example from the original input x by adding a small
noise η. The adversarial example that is created is a perturbed version of the original input:
x′ = x + η. There are two criteria for the attack to be considered successful:

1. The adversarial example x′ must make the classifier produce a certain class label:
F(x′) = c. Here the certain class label c depends on whether the adversary is attempt-
ing a targeted, or untargeted type of attack. In a targeted attack c is a specific wrong
class label (e.g., a picture of cat MUST be recognized as a dog by the classifier). On
the other hand, if the attack is untargeted, the only criteria for c is that it must not be
the same as the original class label: c �= l (e.g., as long as a picture of a cat is labeled
by the classifier as anything except a cat, the attack is successful).

2. The noise η used to create the adversarial image x′ must be barely recognizable by
humans. This constraint is enforced by limiting the size of perturbation η such that
the difference between the original input x and the perturbed input x′ is less than
a certain distance d. This distance d is typically measured [19] using the lp norm:
‖x′ − x‖p ≤ d

In summary, an attack is considered successful if the classifier produces an output
label desired by the adversary F(x′) = c and the difference between the original input x
and the adversarial sample x′ is small enough, ‖x′ − x‖p ≤ d.

2.2. Adversarial Capabilities

In this subsection, we go over what information the adversary can use to create
adversarial examples. Specifically, the adversarial model defines what information is
available to the attacker to assist them in crafting the perturbation η. In Table 2 we give
an overview of the attacks and the adversarial capabilities need to run the attack. Such
abilities can be broadly grouped into the following categories:

1. Having knowledge of the trained parameters and architecture of the classifier. For
example, when dealing with CNNs (as is the focus of this paper) knowing the ar-
chitecture means knowing precisely which type of CNN is used. Example CNN
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architectures include VGG-16, ResNet56 etc. Knowing the trained parameters for a
CNN means the values of the weights and biases of the network (as well as any other
trainable parameters) are visible to the attacker [19].

2. Query access to the classifier. If the architecture and trained parameters are kept
private, then the next best adversarial capability is having query access to the target
model as a black-box. The main concept here is that the adversary can adaptively
query the classifier [26] with different inputs to help create the adversarial pertur-
bation η. Query access can come in two forms. In the stronger version, when the
classifier is queried, the entire probability score vector is returned (i.e., the softmax
output from a CNN). Naturally this gives the adversary more information to work
with because the confidence in each label is given. In the weaker version, when the
classifier is queried, only the final class label is returned (the index of the score vector
with the highest value).

3. Having access to (part of the) training or testing data. In general, for any adversarial
machine learning attack, at least one example must be used to start the attack. Hence,
every attack requires some input data. However, how much input data the adversary
has access to depends on the type of attack (or parameters in the attack). Knowing
part or all of the training data used to build the classifier can be especially useful
when the architecture and trained parameters of the classifier are not available. This
is because the adversary can try to replicate the classifier in the defense, by training
their own classifier with the given training data [8].

2.3. Types of Attacks

The types of attacks in machine learning can be grouped based on the capabilities
the adversary needs to conduct the attack. We described these different capabilities in
Section 2.2. In this section, we describe the attacks and what capabilities the adversary
must have to run them.

White-box attacks: Examples of white-box attacks include the Fast Gradient Sign Method
(FGSM) [3], Projected Gradient Descent (PGD) [27] and Carlini & Wagner (C&W) [28] to
name a few. They require having knowledge of the trained parameters and architecture of the
classifier, as well as query access. In white-box attacks like FGSM and PGD, having access
to the classifier’s trained parameters allows the adversary to use a form of backpropagation.
By calculating the gradient with respect to the input, the adversarial perturbation η can be
estimated directly. In some defenses, where directly backpropagating on the classifier may not
be applicable or yield poor results, it is possible to create attacks tailored to the defense that
are more effective. These are referred to as adaptive attacks [22]. In general, white-box attacks
and defenses against them have been heavily focused on in the literature. In this paper,
our focus is on black-box attacks. Hence, we only give a brief summary of the white-box
attacks as mentioned above.

Black-Box Attacks: The biggest difference between white-box and black-box attacks is
that black-box attacks lack access to the trained parameters and architecture of the defense.
As a result, they need to either have training data to build a synthetic model, or use a large
number of queries to create an adversarial example. Based on these distinctions, we can
categorize black-box attacks as follows:

1. Query only black-box attacks [26]. The attacker has query access to the classifier. In
these attacks, the adversary does not build any synthetic model to generate adversarial
examples or make use of training data. Query only black-box attacks can further
be divided into two categories: score based black-box attacks and decision based
black-box attacks.

• Score based black-box attacks. These are also referred to as zeroth order opti-
mization based black-box attacks [5]. In this attack, the adversary adaptively
queries the classifier with variations of an input x and receives the output from
the softmax layer of the classifier f (x). Using x, f (x) the adversary attempts to
approximate the gradient of the classifier ∇ f and create an adversarial example.
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SimBA is an example of one of the more recently proposed score based black-box
attacks [29].

• Decision based black-box attacks. The main concept in decision based attacks is
to find the boundary between classes using only the hard label from the classifier.
In these types of attacks, the adversary does not have access to the output
from the softmax layer (they do not know the probability vector). Adversarial
examples in these attacks are created by estimating the gradient of the classifier
by querying using a binary search methodology. Some recent decision based
black-box attacks include HopSkipJump [6] and RayS [30].

2. Model black-box attacks. In model black-box attacks, the adversary has access to part
or all of the training data used to train the classifier in the defense. The main idea
here is that the adversary can build their own classifier using the training data, which
is called the synthetic model. Once the synthetic model is trained, the adversary can
run any number of white-box attacks (e.g., FGSM [3], BIM [31], MIM [32], PGD [27],
C&W [28] and EAD [33]) on the synthetic model to create adversarial examples. The
attacker then submits these adversarial examples to the defense. Ideally, adversarial
examples that succeed in fooling the synthetic model will also fool the classifier in
the defense. Model black-box attacks can further be categorized based on how the
training data in the attack is used:

• Adaptive model black-box attacks [4]. In this type of attack, the adversary
attempts to adapt to the defense by training the synthetic model in a specialized
way. Normally, a model is trained with dataset X and corresponding class labels
Y. In an adaptive black-box attack, the original labels Y are discarded. The
training data X is re-labeled by querying the classifier in the defense to obtain
class labels Ŷ. The synthetic model is then trained on (X, Ŷ) before being used
to generate adversarial examples. The main concept here is that by training the
synthetic model with (X, Ŷ), it will more closely match or adapt to the classifier
in the defense. If the two classifiers closely match, then there will (hopefully) be
a higher percentage of adversarial examples generated from the synthetic model
that fool the classifier in the defense. To run adaptive black-box attacks, access to
at least part of the training data and query access to the defense is required. If
only a small percentage of the training data is known (e.g., not enough training
data to train a CNN), the adversary can also generate synthetic data and label it
using query access to the defense [4].

• Pure black-box attacks [7–10]. In this type of attack, the adversary also trains a
synthetic model. However, the adversary does not have query access to make
the attack adaptive. As a result, the synthetic model is trained on the original
dataset and original labels (X, Y). In essence this attack is defense agnostic (the
training of the synthetic model does not change for different defenses).

Table 2. Adversarial machine learning attacks and the adversarial capabilities required to execute the attack. For a full
description of these capabilities, see Section 2.2.

Adversarial Capabilities

Training/Testing Data Hard Label Query Access Score Based Query Access Trained Parameters

White-Box � � �
Score Based Black-Box � �
Decision Based Black-Box �
Adaptive Black-Box � �
Pure Black-Box �
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2.4. Our Black-Box Attack Scope

We focus on black-box attacks, specifically the adaptive black-box and pure black-box
attacks. Why do we refine our scope in this way? First of all we don’t focus on white-box
attacks as mentioned in Section 1 as this is well documented in the current literature.
In addition, simply showing white-box security is not enough in adversarial machine
learning. Due to gradient masking [9], there is a need to demonstrate both white-box
and black-box robustness. When considering black-box attacks, as we explained in the
previous subsection, there are query only black-box attacks and model black-box attacks.
Score based query black-box attacks can be neutralized by a form of gradient masking [19].
Furthermore, it has been noted that a decision based query black-box attack represents a
more practical adversarial model [34]. However, even with these more practical attacks
there are disadvantages. It has been claimed that decision based black-box attacks may
perform poorly on randomized models [19,23]. It has also been shown that even adding
a small Gaussian noise to the input may be enough to deter query black-box attacks [35].
Due to their poor performance in the presence of even small randomization, we do not
consider query black-box attacks.

Focusing on black-box adversaries and discounting query black-box attacks, leaves
model black-box attacks. In our analyses, we first use the pure black-box attack because
this attack has no adaptation and no knowledge of the defense. In essence it is the least
capable adversary. It may seem counter-intuitive to start with a weak adversarial model.
However, by using a relatively weak attack we can see the security of the defense under
idealized circumstances. This represents a kind of best-case defense scenario.

The second type of attack we focus on is the adaptive black-box attack. This is the
strongest model black-box type of attack in terms of the powers given to the adversary.
In our study on this attack, we also vary its strength by giving the adversary different
amounts of the original training data (1%, 25%, 50%, 75% and 100%). For the defense, this
represents a stronger adversary, one that has query access, training data and an adaptive
way to try and tailor the attack to break the defense. In short, we chose to focus on the pure
and adaptive black-box attacks. We do this because they do not suffer from the limitations
of the query black-box attacks, and they can be used as an efficient and nearly universally
applicable security test.

3. Defense Summaries, Metrics and Datasets

In this paper we investigate 9 recent defenses, Barrage of Random Transforms (BaRT) [14],
End-to-End Image Compression Models (ComDefend) [13], The Odds are Odd (Odds) [17],
Feature Distillation (FD) [18], Buffer Zones (BUZz) [24], Ensemble Diversity (ADP) [11],
Distribution Classifier (DistC) [16], Error Correcting Output Codes (ECOC) [12] and K-Winner-
Take-All (k-WTA) [15].

In Table 1. , we decompose these defenses into the underlying methods they use to try
to achieve security. This is by no means the only way these defenses can be categorized
and the definitions here are not absolute. We merely provide this hierarchy to provide a
basic overview and show common defense themes. The defense themes are categorized
as follows:

1. Multiple models—The defense uses multiple classifiers’ for prediction. The classifiers
outputs may be combined through averaging (i.e., ADP), majority voting (BUZz) or
other methods (ECOC).

2. Fixed input transformation—A non-randomized transformation is applied to the
input before classification. Examples of this include, image denoising using an
autoencoder (Comdefend), JPEG compression (FD) or resizing and adding (BUZz).

3. Random input transformation—A random transformation is applied to the input
before classification. For example both BaRT and DistC randomly select from multiple
different image transformations to apply at run time.

375



Entropy 2021, 23, 1359

4. Adversarial detection—The defense outputs a null label if the sample is considered
to be adversarially manipulated. Both BUZz and Odds employ adversarial detec-
tion mechanisms.

5. Network retraining—The network is retrained to accommodate the implemented de-
fense. For example BaRT and BUZz require network retraining to achieve acceptable
clean accuracy. This is due to the significant transformations both defenses apply to
the input. On the other hand, different architectures mandate the need for network
retraining like in the case of ECOC, DistC and k-WTA. Note network retraining is
different from adversarial training. In the case of adversarial training, it is a funda-
mentally different technique in the sense that it can be combined with almost every
defense we study. Our interest however is not to make each defense as strong as
possible. Our aim is to understand how much each defense improves security on its
own. Adding in techniques beyond what the original defense focuses on is essentially
adding in confounding variables. It then becomes even more difficult to determine
from where security may arise. As a result, we limit the scope of our defenses to only
consider retraining when required and do not consider adversarial training.

6. Architecture change—A change in the architecture which is made solely for the
purposes of security. For example k-WTA uses different activation functions in the
convolutional layers of a CNN. ECOC uses a different activation function on the
output of the network.

3.1. Barrage of Random Transforms

Barrage of Random Transforms (BaRT) [14] is a defense based on applying image
transformations before classification. The defense works by randomly selecting a set of
transformations and a random order in which the image transformations are applied. In
addition, the parameters for each transformation are also randomly selected at run time
to further enhance the entropy of the defense. Broadly speaking, there are 10 different
image transformation groups: JPEG compression, image swirling, noise injection, Fourier
transform perturbations, zooming, color space changes, histogram equalization, grayscale
transformations and denoising operations.

Prior security studies: In terms of white-box analyses, the original BaRT paper tests
PGD and FGSM. They also test a combined white-box attack designed to deal with ran-
domization. This combinational white-box attack is composed of expectation over transfor-
mation [36] and backward pass differentiable approximation [9]. No analysis of the BaRT
defense with black-box adversaries is done.

Why we selected it: In [19], they claim gradient free attacks (i.e., black-box attacks)
most commonly fail due to randomization. Therefore BaRT is a natural candidate to test
for black-box security. Also in the original paper, BaRT is only tested with ImageNet. We
wanted to see if this defense could be expanded to work on other datasets.

3.2. End-to-End Image Compression Models

ComDefend [13] is a defense where image compression/reconstruction is done using
convolutional autoencoders before classification. ComDefend consists of two modules: a
compression convolutional neural network (ComCNN) and a reconstruction convolutional
neural network (RecCNN). The compression network transforms the input image into a
compact representation by compressing the original 24 bit pixels into compact 12 bit repre-
sentations. Gaussian noise is then added to the compact representation. Decompression is
then done using the reconstruction network and the final output is fed to the classifier. In
this defense, retraining of the classifier on reconstructed input data is not required.

Prior security studies: White-box attacks such as FGSM, BIM and C&W are run on
ComDefend. They also vary their threat model between using the l∞ norm and l2 norm to
create white-box adversarial examples that have different constraints. No black-box attacks
are ever presented for the defense.
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Why we selected it: Other autoencoder defenses have fared poorly [37]. It is worth
studying new autoencoder defenses to see if they work, or if they face the same vulnerabil-
ities as older defense designs. Since ComDefend [13] does not study black-box adversaries,
our analysis also provides new insight on this defense.

3.3. The Odds Are Odd

The Odds are Odd [17] is a defense based on a statistical test. This test is motivated by
the following observation: the behaviors of benign and adversarial examples are different
at the logits layer (i.e., the input to the softmax layer). The test works as follows: for a
given input image, multiple copies are created and a random noise is added to each copy.
This creates multiple random noisy images. The defense calculates the logits values of each
noisy image and uses them as the input for the statistical test.

Prior security studies: In the original Odds paper, the statistical test is done in con-
junction with adversarial examples generated using PGD (a white-box attack). Further
white-box attacks on the Odds were done in [22]. The authors in [22] use PGD and a cus-
tom objective function to show the flaws in the statistical test under white-box adversarial
model. To the best of our knowledge, no work has been done on the black-box security of
the Odds defense.

Why we selected it: In [22], they mention that Odds is based on the common mis-
conception that building a test for certain adversarial examples will then work for all
adversarial examples. However, in the black-box setting this still brings up an interesting
question: if the attacker is unaware of the type of test, can they still adaptively query the
defense and come up with adversarial examples that circumvent the test?

3.4. Feature Distillation

Feature Distillation (FD) implements a unique JPEG compression and decom-
pression technique to defend against adversarial examples. Standard JPEG compres-
sion/decompression preserves low frequency components. However, it is claimed
in [18] that CNNs learn features which are based on high frequency components.
Therefore, the authors propose a compression technique where a smaller quantization
step is used for CNN accuracy-sensitive frequencies and a larger quantization step is
used for the remaining frequencies. The goal of this technique is two-fold. First, by
maintaining high frequency components, the defense aims to preserve clean accuracy.
Second, by reducing the other frequencies, the defense tries to eliminate the noise
that make samples adversarial. Note this defense does have some parameters which
need to be selected through experimentation. For the sake of brevity, we provide the
experiments for selecting these parameters in the Appendix A.

Prior security studies: In the original FD paper, the authors test their defense against
standard white-box attacks like FGSM, BIM and C&W. They also analyze their defense
against the backward pass differentiable approximation [9] white-box attack. In terms of
black-box adversaries, they do test a very simple black-box attack. In this attack, samples
are generated by first training a substitute model. However, this black-box adversary
cannot query the defense to label its training data, making it extremely limited. Under our
attack definitions, this is not an adaptive black-box attack.

Why we selected it: A common defense theme is the utilization of multiple image
transformations like in the case of BaRT, BUZz and DistC. However, this requires a cost in
the form of network retraining and/or clean accuracy. If a defense could use only one type
of transformation (as done in FD), it may be possible to significantly reduce those costs. To
the best of our knowledge, so far no single image transformation has accomplished this,
which makes the investigation of FD interesting.

3.5. Buffer Zones

Buffer Zones (BUZz) employs a combination of techniques to try and achieve security.
The defense is based on unanimous majority voting using multiple classifiers. Each

377



Entropy 2021, 23, 1359

classifier applies a different fixed secret transformation to its input. If the classifiers are
unable to agree on a class label, the defense marks the input as adversarial. The authors
also note that a large drop in clean accuracy is incurred due to the number of defense
techniques employed.

Prior security studies: BUZz is the only defense on our list that experiments with a
similar black-box adversary (one that has access to the training data and can query the
defense). However, as we explain below, their study has room to further be expanded upon.

Why we selected it: We selected this defense to study because it specifically claims to
deal with the exact adversarial model (adaptive black-box) that we work with. However, in
their paper they only use a single strength adversary (i.e., one that uses the entire training
dataset). We test across multiple strength adversaries (see Section 5) to see how well their
defense holds up.

3.6. Improving Adversarial Robustness via Promoting Ensemble Diversity

Constructing ensembles of enhanced networks is one defense strategy to improve
the adversarial robustness of classifiers. However, in an ensemble model, the lack of
interaction among individual members may cause them to return similar predictions. This
defense proposes a new notion of ensemble diversity by promoting the diversity among
the predictions returned by members of an ensemble model using an adaptive diversity
promoting (ADP) regularizer, which works with a logarithm of ensemble diversity term
and an ensemble entropy term [11]. The ADP regularizer helps non-maximal predictions
of each ensemble member to be mutually orthogonal, while the maximal prediction is
still consistent with the correct label. This defense employs a different training procedure
where the ADP regularizer is used as the penalty term and the ensemble network is
trained interactively.

Prior security studies: ADP has widely been studied in the context of white-box
security in [11,22,23]. In the original paper in which ADP was proposed, they tested the
defense against white-box attacks like FGSM, BIM, PGD, C&W and EAD. In [22], they use
different attack parameters (more iterations) in order to show the defense was not as robust
as previously thought. These results are further supported by white-box attacks done on
ADP and reported in [23].They use FGSM, BIM and MIM (as well as others white-box
attacks) in [23] to further analyze the robustness of ADP. They also test some black-box
attacks on ADP in [23], but these attacks are transfer based and boundary based. They do
not test our adaptive type of black-box attack in [23].

Why we selected it: It has been shown that adversarial samples can have high trans-
ferability [4]. Model black-box attacks have a basic underlying assumption: adversarial
samples that fool the synthetic model will also fool the defense. ADP trains networks to
specifically enhance diversity which could mitigate the transferability phenomena. If the
adversarial transferability between networks is indeed really mitigated, then black-box
attacks should not be effective.

3.7. Enhancing Transformation-Based Defenses against Adversarial Attacks with a
Distribution Classifier

The basic idea of this defense is that if the input is adversarial, basing the predicted
class on the softmax output may yield a wrong result. Instead in this defense the input is
randomly transformed multiple times, to create many different inputs. Each transformed
input yields a softmax output from the classifier. Prediction is then done on the distribution
of the softmax outputs [16]. To classify the softmax distributions, a separate distributional
classifier is trained.

Prior security studies: In [16], white-box attacks on the defense were done using
methods like FGSM, IFGSM and C&W. Query only black-box attacks were also studied,
but by our definition, no adaptive black-box attacks were ever considered for this defense.

Why we selected it: In [16], the defense is tested with query only black-box attacks
as we previously mentioned. However, it does not test any model black-box attacks. This
defense is built on [38] which was initially a promising randomization defense that was
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broken in [9]. Whether the combination of a new classification scheme and randomization
can achieve model black-box security is an open question.

3.8. Error Correcting Output Codes

The Error Correcting Output Codes (ECOC) [12] defense uses the idea of coding
theory and changes the output representation in a network to codewords. There are three
main ideas of the defense. First, is the use of a special sigmoid decoding activation function
instead of the softmax function. This function allocates the non-trivial volume in logit
space to uncertainty. This makes the attack surface smaller to the attacker who tries to craft
adversarial examples. Second, a larger Hamming distance between the codewords is used
to increase the distance between two high-probability regions for a class in logit space. This
forces the adversary to use larger perturbations in order to succeed. Lastly, the correlation
between outputs is reduced by training an ensemble model.

Prior security studies: In [12], the authors test ECOC against white-box attacks like
PGD and C&W. A further white-box analysis of ECOC is done in [22], where PGD with
a custom loss function is used. Through this modified PGD, the authors in [22] are able
to significantly reduce the robustness of the ECOC defense in the white-box setting. No
black-box analyses of ECOC are ever considered in [22] or [12].

Why we selected it: Much like ADP, this method relies on an ensemble of models.
However unlike ADP, this defense is based on coding theory and the original paper does
not consider a black-box adversary. The authors in [22] were only able to come up with
an effective attack on ECOC in the white-box setting. Therefore, exploring the black-box
security of this defense is of interest.

3.9. k-Winner-Take-All

In k-Winner-Take-All (k-WTA) [15] a special activation function is used that is C0

discontinuous. This activation function mitigates white-box attacks through gradient
masking. The authors claim this architecture change is nearly free in terms of the drop in
clean accuracy.

Prior security studies: In the original k-WTA paper [15] the authors test their defense
against white-box attacks like PGD, MIM and C&W. They also test against a weak transfer
based black-box attack that is not adaptive. They do not consider a black-box adversary that
has access to the entire training dataset and query access like we assume in our adversarial
model. Further white-box attacks against k-WTA were done in [22]. The authors in [22]
used PGD with more iterations (400) and also considered a special averaging technique to
better estimate the gradient of the network.

Why we selected it: The authors of the defense claim that k-WTA performs better
under model black-box attacks than networks that use ReLU activation functions. If this
claim is true, this would be the first defense in which gradient masking could mitigate both
white-box and black-box attacks. In [22], they already showed the vulnerability of this
defense to white-box attacks. Additionally, in [22] they hypothesize a black-box adversary
that queries the network may work well against this defense, but do not follow up with
any experiments. Therefore, this indicates k-WTA still lacks proper black-box security
experiments and analyses.

3.10. Defense Metric

In this paper, our goal is to demonstrate what kind of gain in security can be achieved
by using each defense against a black-box adversary. Our aim is not to claim any defense
is broken. To measure the improvement in security, we use a simple metric: Defense
accuracy improvement.

Defense accuracy improvement is the percent increase in correctly recognized adver-
sarial examples gained when implementing the defense as compared to having no defense.
The formula for defense accuracy improvement for the ith defense is defined as:

Ai = Di − V (1)
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We compute the defense accuracy improvement Ai by first conducting a specific
black-box attack on a vanilla network (no defense). This gives us a vanilla defense accuracy
score V. The vanilla defense accuracy is the percent of adversarial examples the vanilla
network correctly identifies. We run the same attack on a given defense. For the ith defense,
we will obtain a defense accuracy score of Di. By subtracting V from Di we essentially
measure how much security the defense provides as compared to not having any defense
on the classifier.

For example if V ≈ 99%, then the defense accuracy improvement Ai can be 0, but at
the very least should not be negative. If V ≈ 85%, then a defense accuracy improvement of
10% may be considered good. If V ≈ 40%, then we want at least a 25% defense accuracy
improvement, for the defense to be considered effective (i.e. the attack fails more than
half of the time when the defense is implemented). While sometimes an improvement is
not possible (e.g. when V ≈ 99%) there are many cases where attacks works well on the
undefended network and hence there are places where large improvements can be made.
Note to make these comparisons as precise as possible, almost every defense is built with
the same CNN architecture. Exceptions to this occur in some cases, which we fully explain
in the Appendix A.

3.11. Datasets

In this paper, we test the defenses using two distinct datasets, CIFAR-10 [39] and
Fashion-MNIST [40]. CIFAR-10 is a dataset comprised of 50,000 training images and
10,000 testing images. Each image is 32 × 32 × 3 (a 32 × 32 color image) and belongs
to 1 of 10 classes. The 10 classes in CIFAR-10 are airplane, car, bird, cat, deer, dog, frog,
horse, ship and truck. Fashion-MNIST is a 10 class dataset with 60,000 training images
and 10,000 test images. Each image in Fashion-MNIST is 28 × 28 (grayscale image). The
classes in Fashion-MNIST correspond to t-shirt, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag and ankle boot.

Why we selected them: We chose the CIFAR-10 defense because many of the existing
defenses had already been configured with this dataset. Those defenses already configured
for CIFAR-10 include ComDefend, Odds, BUZz, ADP, ECOC, the distribution classifier
defense and k-WTA. We also chose CIFAR-10 because it is a fundamentally challenging
dataset. CNN configurations like ResNet do not often achieve above 94% accuracy on
this dataset [41]. In a similar vein, defenses often incur a large drop in clean accuracy on
CIFAR-10 (which we will see later in our experiments with BUZz and BaRT for example).
This is because the amount of pixels that can be manipulated without hurting classification
accuracy is limited. For CIFAR-10, each image only has in total 1024 pixels. This is
relatively small when compared to a dataset like ImageNet [42], where images are usually
224 × 224 × 3 for a total of 50,176 pixels (49 times more pixels than CIFAR-10 images). In
short, we chose CIFAR-10 as it is a challenging dataset for adversarial machine learning
and many of the defenses we test were already configured with this dataset in mind.

For Fashion-MNIST, we primarily chose it for two main reasons. First, we wanted to
avoid a trivial dataset on which all defenses might perform well. For example, CNNs can
already achieve a clean accuracy of 99.7% on a dataset like MNIST [40]. Testing on such
types of datasets would not work towards the main aim of our paper, which is to distinguish
defenses that perform significantly better in terms of security and clean accuracy. The
second reason we chose Fashion-MNIST is for its differences from CIFAR-10. Specifically,
Fashion-MNIST is a non-color dataset and contains very different types of images than
CIFAR-10. In addition, many of the defenses we tested were not originally designed for
Fashion-MNIST. This brings up an interesting question, can previously proposed defenses
be readily adapted to work with different datasets. To summarize, we chose Fashion-
MNIST for its difficult to learn and its differences from CIFAR-10.
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4. Principal Experimental Results

In this section, we conduct experiments to test the black-box security of the 9 defenses.
We measure the results using the metric defense accuracy improvement (see Section 3.10).
For each defense, we test it under a pure black-box adversary, and five different strength
adaptive black-box adversaries. The strength of the adaptive black-box adversary is
determined by how much of the original training dataset they are given access to (either
100%, 75%, 50%, 25% or 1%). For every adversary, once the synthetic model is trained, we
use 6 different methods (FGSM [3], BIM [31], MIM [32], PGD [27], C&W [28] and EAD [33])
to generate adversarial examples. We test both targeted and untargeted styles of attack. In
these experiments we use the l∞ norm with maximum perturbation ε = 0.05 for CIFAR-10
and ε = 0.1 for Fashion-MNIST. Further attack details can be found in our Appendix A.

Before going into a thorough analysis of our results, we briefly introduce the figures
and tables that show our experimental results. Figures 1 and 2 illustrate the defense
accuracy improvement of all the defenses under a 100% strength adaptive black-box
adversary (Figure 1) and a pure black-box adversary (Figure 2) for the CIFAR-10 dataset.
Likewise, for Fashion-MNIST, Figure 3 shows the defense accuracy improvement under
a 100% strength adaptive black-box adversary and Figure 4 shows the defense accuracy
improvement under a pure black-box adversary. For each of these figures, we report the
vanilla accuracy numbers in a chart below the graph. Figure 5 through Figure 6 show the
relationship between the defense accuracy and the strength of the adversary (how much
training data the adversary has access to). Figure 5 through Figure 6 show this relationship
for each defense, on both CIFAR-10 and Fashion-MNIST. The corresponding values for the
figures are given in Table A4 through Table A15.
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Figure 1. CIFAR-10 adaptive black-box attack on each defense. Here the U/T refers to whether the attack is untar-
geted/targeted. Negative values means the defense performs worse than the no defense (vanilla) case. The Acc value refers
to the drop in clean accuracy incurred by implementing the defense. The chart below the graph gives the vanilla defense
accuracy numbers.
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Figure 2. CIFAR-10 pure black-box attack on each defense. Here the U/T refers to whether the attack is untargeted/targeted.
Negative values means the defense performs worse than the no defense (vanilla) case. The Acc value refers to the drop
in clean accuracy incurred by implementing the defense. The chart below the graph gives the vanilla defense accuracy
numbers. For all the experimental numbers see Table A4.

Considering the range of our experiments (9 defenses, 6 adversarial models, 6 methods
to generate adversarial samples and 2 datasets), it is infeasible to report all the results and
experimental details in just one section. Instead, we organize our experimental analysis
as follows. In this section, we present the most pertinent results in Figures 1 and 3 and
give the principal takeaways. For readers interested in a specific defense or attack results,
in Section 5 we give a comprehensive break down of the results for each defense, dataset
and attack. For anyone wishing to recreate our experimental results, we give complete
implementation details for every attack and defense in the Appendix A.

Principal Results

1. Marginal or negligible improvements over no defense: Figure 1 shows the de-
fense results for CIFAR-10 with a 100% strength adaptive black-box adversary. In this
figure, we can clearly see 7 out of 9 defenses give marginal (less than 25%) increases in
defense accuracy for any attack. BUZz and the Odds defense are the only ones to break this
trend for CIFAR-10. For example, BUZz-8 gives a 66.7% defense accuracy improvement
for the untargeted MIM attack. Odds gives a 31.9% defense accuracy improvement for the
untargeted MIM attack. Likewise, for Fashion-MNIST again, 7 out of 9 defenses give only
marginal improvements (see Figure 3). BUZz and BaRT are the exceptions for this dataset.

2. Security is not free (yet): Thus far, no defense we experimented with that offers
significant (greater than 25% increase) improvements comes for free. For example, consider
the defenses that give significant defense accuracy improvements. BUZz-8 drops the clean
accuracy by 17% for CIFAR-10. BaRT-6 drops the clean accuracy by 15% for Fashion-MNIST.
As defenses improve, we expect to see this trade-off between clean accuracy and security
become more favorable. However, our experiments show we have not reached this point
with the current defenses.

3. Common defense mechanisms: It is difficult to decisively prove any one defense
mechanism guarantees security. However, among the defenses that provide more than
marginal improvements (Odds, BUZz and BaRT), we do see common defense trends. Both
Odds and BUZz use adversarial detection. This indirectly deprives the adaptive black-box
adversary of training data. When an input sample is marked as adversarial, the black-box
attacker cannot use it to train the synthetic model. This is because the synthetic model has
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no adversarial class label. It is worth noting that in the Appendix A, we also argue why a
synthetic model should not be trained to output an adversarial class label.

Along similar lines, both BaRT and BUZz offer significant defense accuracy improve-
ments for Fashion-MNIST. Both employ image transformations so jarring that the classifier
must be retrained on transformed data. The experiments show that increasing the number
of the transformations only increases security up to a certain point though. For example,
BaRT-8 does not perform better than BaRT defenses that use less image transformations
(see BaRT-6 and BaRT-4 in Figure 3).

4. Adaptive and pure black-box follow similar trends. In Figures 2 and 4 we show
results for the pure black-box attack for CIFAR-10 and Fashion-MNIST. Just like for the
adaptive black-box attack, we see similar trends in terms of which defenses provide the
highest security gains. For CIFAR-10, the defenses that give at least 25% greater defense
accuracy than the vanilla defense include BUZz and Odds. For Fashion-MNIST, the only
defense that gives this significant improvement is BUZz.

5. Future defense analyses should be broad: From our first point in this subsection,
it is clear that a majority of these defenses give marginal improvements or less. This brings
up an important question, what impact does our security study have for future defenses?
The main lesson is future defense designers need to test against a broad spectrum of attacks.
From the literature, we see the majority of the 9 defenses already considered white-box
attacks like PGD or FGSM and some weak black-box attacks. However, in the face of
adaptive attacks, these defenses perform poorly. Future defense analyses at the very least
need white-box attacks and adaptive black-box attacks. By providing our paper’s results
and code we hope to help future defense designers perform these analyses and advance
the field of adversarial machine learning.
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Figure 3. Fashion-MNIST adaptive black-box attack on each defense. Here the U/T refers to whether the attack is
untargeted/targeted. Negative values means the defense performs worse than the no defense (vanilla) case. The Acc value
refers to the drop in clean accuracy incurred by implementing the defense. The chart below the graph gives the vanilla
defense accuracy numbers.
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Figure 4. Fashion-MNIST pure black-box attack on each defense. Here the U/T refers to whether the attack is untar-
geted/targeted. Negative values means the defense performs worse than the no defense (vanilla) case. The Acc value refers
to the drop in clean accuracy incurred by implementing the defense. The chart below the graph gives the vanilla defense
accuracy numbers. For all the experimental numbers see Table A10.

5. Individualized Experimental Defense Results

In the previous section, we discussed the overarching themes represented in the
adaptive black-box attack experimental results. In this section, we take a more fine grained
approach and consider each defense individually.

Both the 100% adaptive black-box and pure black-box attack have access to the entire
original training dataset. The difference between them lies in the fact that the adaptive
black-box attack can generate synthetic data, and label the training data by querying the
defense. Since both attacks are similar in terms of how much data they start with, a question
arises. How effective is the attack if the attacker doesn’t have access to the full training
dataset? In the following subsections, we seek to answer that question by considering each
defense under a variable strength adversary in the adaptive black-box setting. Specifically
we test out adversaries that can query the defense but only have 75%, 50%, 25% or 1% of
the original training dataset.

To simplify things with the variable strength adaptive black-box adversary, we only
consider the untargeted MIM attack for generating adversarial examples. We use the MIM
attack because it is the best performing attack on the vanilla (no defense) network for
both datasets. Therefore, this attack represents the place where the most improvement in
security can be made. For the sake of completeness, we do report all the defense accuracies
for all six types of attacks for the variable strength adaptive black-box adversaries in the
tables at the end of this section.

After discussing defense results, we also present brief experiment and discussion on
why the adaptive black-box attack is actually considered adaptive. We do this by comparing
the attack success rate of the adaptive attack to the non-adaptive pure black-box attack
while simultaneously fixing the underlying method to generate adversarial examples,
fixing the dataset and fixing the amount of training data available to the attacker.

5.1. Barrage of Random Transforms Analysis

The adaptive black-box attack with variable strength for BaRT defenses is shown in
Figure 5. There are several interesting observations that can be made about this defense.
First, for CIFAR-10, the maximum transformation defense (BaRT-10) actually performs
worse than the vanilla defense in most cases. BaRT-1, BaRT-4 and BaRT-7 perform approxi-
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mately the same as the vanilla defense. These statements hold except for the 100% strength
adaptive black-box adversary. Here, all BaRT defenses show a 12% or greater improvement
over the vanilla defense.

Where as the performance of BaRT is rather varied for CIFAR-10, for Fashion-MNIST
this is not the case. All BaRT defenses show improvement for the MIM attack for adversaries
with 25% strength or greater.

When examining the results of BaRT on CIFAR-10 and Fashion-MNIST, we see a
clear discrepancy in performance. One possible explanation is as follows: the image
transformations in a defense must be selected in a way that does not greatly impact the
original clean accuracy of the classifier. In the case of BaRT-10 (the maximum number of
transformations) for CIFAR-10, it performs much worse than the vanilla case. However,
BaRT-8 for Fashion-MNIST (again the maximum number of transformations) performs
much better than the vanilla case. If we look at the clean accuracy of BaRT-10, it is
approximately 48% on CIFAR-10. This is a drop of more than 40% as compared to the
vanilla clean accuracy. For BaRT-8, the clean accuracy is approximately 72% on Fashion-
MNIST which is a drop of about 21%. Here we do not use precise numbers when describing
the clean accuracy because as a randomized defense, the clean accuracy may drop or rise a
few percentage points every time the test set is evaluated.

From the above stated results, we can make the following conclusion: A defense that
employs random image transformations cannot be applied naively to every dataset. The
set of image transformations must be selected per dataset in such a manner that the clean
accuracy is not drastically impacted. In this sense, while random image transformations
may be a promising defense direction, it seems they may need to be designed on a per
dataset basis.
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Figure 5. Defense accuracy of barrage of random transforms defense on various strength adaptive black-box adversaries for
CIFAR-10 and Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from
the untargeted MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original
training dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9.
For full experimental numbers for Fashion-MNIST, see Table A11 through Table A15.
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Figure 6. Defense accuracy of the k-Winners-Take-All defense on various strength adaptive black-box adversaries for
CIFAR-10 and Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from
the untargeted MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original
training dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9.
For full experimental numbers for Fashion-MNIST, see Table A11 through Table A15.

5.2. End-to-End Image Compression Models Analysis

The adaptive black-box attack with variable strength for ComDefend is shown in
Figure 7. For CIFAR-10, we see the defense performs very close to the vanilla network (and
sometimes slightly worse). On the other hand, for Fashion-MNIST, the defense does offer
a modest average defense accuracy improvement of 8.84% across all adaptive black-box
adversarial models.

In terms of understanding the performance of ComDefend, it is important to note
the following: In general it has been shown that more complex architectures (e.g., deeper
networks) can better resist transfer based adversarial attacks [10]. In essence an autoen-
coder/decoder setup can be viewed as additional layers in the CNN and hence a more
complex model. Although this concept was shown for ImageNet [10], it may be a phenom-
ena that occurs in other datasets as well.

This more complex model can partially explain why ComDefend slightly outperforms
the vanilla defense in most cases. In short, a slightly more complex model is slightly
more difficult to learn and attack. Of course this begs the question, if a more complex
model yields more security, why does the model complexity even have come from an
autoencoder/decoder? Why not use ResNet164 or ResNet1001?

These are all valid questions which are possible directions of future studies. While
ComDefend itself does not yield significant (greater than 25%) improvements in security,
it does bring up an interesting question: Under a black-box adversarial model, to what
extent can increasing model complexity also increase defense accuracy? We leave this as an
open question for possible future work.
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Figure 7. Defense accuracy of ComDefend on various strength adaptive black-box adversaries for CIFAR-10 and Fashion-
MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from the untargeted MIM
adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original training dataset the
adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9. For full experimental
numbers for Fashion-MNIST, see Table A11 through Table A15.

5.3. The Odds Are Odd Analysis

In Figure 8, the adaptive black-box attack with different strengths is shown for the
Odds defense. For CIFAR-10 the Odds has an average improvement of 19.3% across all
adversarial models. However, for Fashion-MNIST the average improvement over the
vanilla model is only 2.32%. As previously stated, this defense relies on the underlying
assumption that creating a test for one set of adversarial examples will then generalize to
all adversarial examples.

When the test used in the Odds does provide security improvements (as in the case
for CIFAR-10), it does highlight one important point. If the defense can mark some samples
as adversarial, it is possible to deprive the adaptive black-box adversary of data to train the
synthetic model. This in turn weakens the overall effectiveness of the adaptive black-box
attack. We stress however that this occurs only when the test is accurate and does not
greatly hurt the clean prediction accuracy of the classifier.
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Figure 8. Defense accuracy of the odds defense on various strength adaptive black-box adversaries for CIFAR-10 and
Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from the untargeted
MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original training
dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9. For full
experimental numbers for Fashion-MNIST, see Table A11 through Table A15.
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5.4. Feature Distillation Analysis

Figure 9 shows the adaptive black-box with a variable strength adversary for the
feature distillation defense. In general feature distillation performs worse than the vanilla
network for all Fashion-MNIST adversaries. It performs worse or roughly the same for all
CIFAR-10 adversaries, except for the 100% case where it shows a marginal improvement
of 13.8%.

In the original feature distillation paper the authors claim that they test a black-box
attack. However, our understanding of their black-box attack experiment is that the
synthetic model used in their experiment was not trained in an adaptive way. To be specific,
the adversary they use does not have query access to the defense. Hence, this may explain
why when an adaptive adversary is considered, the feature distillation defense performs
roughly the same as the vanilla network.

As we stated in the main paper, it seems unlikely a single image transformation would
be capable of providing significant defense accuracy improvements. Thus far, the experi-
ments on feature distillation support that claim for the JPEG compression/decompression
transformation. The study of this image transformation and the defense are still very
useful. The idea of JPEG compression/decompression when combined with other image
transformations may still provide a viable defense, similar to what is done in BaRT.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1% 25% 50% 75% 100%

De
fe

ns
e 

Ac
cu

ra
cy

Attack Strength

FD Vanilla

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

1% 25% 50% 75% 100%

De
fe

ns
e 

Ac
cu

ra
cy

Attack Strength

FD VanillaCIFAR-10 Fashion-MNIST

Figure 9. Defense accuracy of feature distillation on various strength adaptive black-box adversaries for CIFAR-10 and
Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from the untargeted
MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original training
dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9. For full
experimental numbers for Fashion-MNIST, see Table A11 through Table A15.

5.5. Buffer Zones Analysis

The results for the buffer zone defense in regards to the adaptive black-box variable
strength adversary are given in Figure 10. For all adversaries, and all datasets we see an
improvement over the vanilla model. This improvement is quite small for the 1% adversary
for the CIFAR-10 dataset at only a 10.3% increase in defense accuracy for BUZz-2. However,
the increases are quite large for stronger adversaries. For example, the difference between
the BUZz-8 and vanilla model for the Fashion-MNIST full strength adversary is 80.9%.

As we stated earlier, BUZz is one of the defenses that does provide more than marginal
improvements in defense accuracy. This improvement comes at a cost in clean accuracy
however. To illustrate: BUZz-8 has a drop of 17.13% and 15.77% in clean testing accuracy
for CIFAR-10 and Fashion-MNIST respectively. An ideal defense is one in which the
clean accuracy is not greatly impacted. In this regard, BUZz still leaves much room for
improvement. The overall idea presented in BUZz of combining adversarial detection and
image transformations does give some indications of where future black-box security may
lie, if these methods can be modified to better preserve clean accuracy.
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Figure 10. Defense accuracy of the buffer zones defense on various strength adaptive black-box adversaries for CIFAR-10
and Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from the
untargeted MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original
training dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9.
For full experimental numbers for Fashion-MNIST, see Table A11 through Table A15.

5.6. Improving Adversarial Robustness via Promoting Ensemble Diversity Analysis

The ADP defense and its performance under various strength adaptive black-box
adversaries is shown in Figure 11. For CIFAR-10, the defense does slightly worse than the
vanilla model. For Fashion-MNIST, the defense does almost the same as the vanilla model.

It has also been shown before in [24] that using multiple vanilla networks does not
yield significant security improvements against a black-box adversary. The adaptive black-
box attacks presented here support these claims when it comes to the ADP defense. At this
time we do not have an adequate explanation as to why the ADP defense performs worse
on CIFAR-10 given its clean accuracy is actually slightly higher than the vanilla model.
We would expect slightly higher clean accuracy would result in slightly higher defense
accuracy but this is not the case. Overall though, we do not see significant improvements
in defense accuracy when implementing ADP against adaptive black-box adversaries of
varying strengths for CIFAR-10 and Fashion-MNIST.
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Figure 11. Defense accuracy of the ensemble diversity defense on various strength adaptive black-box adversaries for
CIFAR-10 and Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from
the untargeted MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original
training dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9.
For full experimental numbers for Fashion-MNIST, see Table A11 through Table A15.
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5.7. Enhancing Transformation-Based Defenses against Adversarial Attacks with a Distribution
Classifier Analysis

The distribution classifier defense [16] results for adaptive black-box adversaries of
varying strength are shown in Figure 12. This defense does not perform significantly
better than the vanilla model for either CIFAR-10 or Fashion-MNIST. This defense employs
randomized image transformations, just like BaRT. However, unlike BaRT, there is no clear
improvement in defense accuracy. We can attribute this to two main reasons. First, the
number of transformations in BaRT are significantly larger (i.e., 10 different image transfor-
mation groups in CIFAR-10, 8 different image transformation groups in Fashion-MNIST).
In the distribution classifier defense, only resizing and zero padding transformations are
used. Second, BaRT requires retraining the entire classifier to accommodate the transfor-
mations. This means all parts of the network from the convolutional layers, to the feed
forward classifier are modified (retrained). The distribution classifier defense only retrains
the final classifier after the soft-max output. This means the feature extraction layers (con-
volutional layers) between the vanilla model and the distributional classifier are virtually
unchanged. If two networks have the same convolutional layers with the same weights, it
is not surprising that the experiments show that they have similar defense accuracies.
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Figure 12. Defense accuracy of the distribution classifier defense on various strength adaptive black-box adversaries for
CIFAR-10 and Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated from
the untargeted MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of the original
training dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5 through Table A9.
For full experimental numbers for Fashion-MNIST, see Table A11 through Table A15.
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Figure 13. Defense accuracy of the error correcting output code defense on various strength adaptive black-box adversaries
for CIFAR-10 and Fashion-MNIST. The defense accuracy in these graphs is measured on the adversarial samples generated
from the untargeted MIM adaptive black-box attack. The % strength of the adversary corresponds to what percent of
the original training dataset the adversary has access to. For full experimental numbers for CIFAR-10, see Table A5
through Table A9. For full experimental numbers for Fashion-MNIST, see Table A11 through Table A15.
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5.8. Error Correcting Output Codes Analysis

In Figure 13, we show the ECOC defense for the adaptive black-box adversaries with
varied strength. For CIFAR-10, ECOC performs worse than the vanilla defense in all cases
except for the 1% strength adversary. For Fashion-MNIST, the ECOC defense performs
only slightly better than the vanilla model. ECOC performs 6.82% greater in terms of
defense accuracy on average when considering all the different strength adaptive black-box
adversaries for Fashion-MNIST. In general, we don’t see significant improvements (greater
than 25% increases) in defense accuracy when implementing ECOC.

5.9. k-Winner-Take-All Analysis

The results for the adaptive black-box variable strength adversary for the k-WTA
defense are given in Figure 6. We can see that the k-WTA defense performs approximately
the same or slightly worse than the vanilla model in almost all cases.

The slightly worse performance on CIFAR-10 can be attributed to the fact that the clean
accuracy of the k-WTA ResNet56 is slightly lower than the clean accuracy of the vanilla
model. We go into detailed explanations about the lower accuracy in the Appendix A.
In short, the k-WTA defense is implemented in PyTorch while the vanilla ResNet56 is
implemented in Keras. The slightly lower accuracy is due to implementation differences
between Keras and PyTorch. It is not necessarily a direct product of the defense.

Regardless of the slight clean accuracy discrepancies, we see that this defense does
not offer any significant improvements over the vanilla defense. From a black-box attacker
perspective, this makes sense. Replacing an activation function in the network while still
making it have almost identical performance on clean images should not yield security.
The only exception to this would be if the architecture change fundamentally alters the
way the image is processed in the CNN. In the case of k-WTA, the experiments support the
hypothesis that this is not the case.

5.10. On the Adaptability of the Adaptive Black-Box Attack

The adaptive black-box is aptly named because it adapts to the defense it is attacking.
It does this by training the synthetic model on the output labels from the defense, as
opposed to using the original training data labels. While this claim is intuitive in this
subsection we give experimental proof to support our claim.

To show the advantage of the adaptive black-box attack, we compare it to the pure
black-box attack (which is non-adaptive). The pure black-box attack is not considered
adaptive because the adversarial examples generated in the pure black-box attack are
defense agnostic. Specifically, this means the same set of adversarial examples are used,
regardless of which defense is being attacked.

To compare attack results, we setup the following simple experiment: we use the
Fashion-MNIST dataset, assuming an untargeted attack with respect to the l∞ norm and
maximum perturbation ε = 0.1. We give both attacks access to 100% of the training data
and we use the MIM method for generating adversarial examples once the synthetic model
in each attack has been trained. For both the pure and adaptive black-box attack, we use
the same synthetic model (see the Appendix A for further model details).

Having fixed the dataset, attack generation method, synthetic model and the amount
of data available to the attacker, we report the attack success rate on vanilla classifiers and
all 9 defenses in Figure 14. For each defense, we use 1000 clean examples and measure
the percent of adversarial examples created from the clean examples that are misclassified.
For almost every case, we can see that the adaptive black-box attack does better than the
pure black-box attack, demonstrating the notion of adaptability. For example, the adaptive
black-box attack has a 20% or greater improvement in attack success rate over the pure
black-box attack on k-WTA, FD, DistC, ADP, Odds, ComDefend and ECOC. It should be
worth noting the improvement is smaller but still there for all the BaRT defenses and every
BUZZ defense except for BUZz-8. We conjecture this may be due to the fact the adaptive
black-box attack does not train on null label data, something that the BUZz-8 defense
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outputs. Hence the lack of training data when attacking the BUZz-8 defense may cause the
attack to be weaker. We discuss this notion of adaptive attacks on null label defenses in
greater detail in the Appendix A.

Overall, our results in this subsection give strong experimental evidence to support
the adaptability claim for the adaptive black-box attack. It can clearly be seen that in almost
every case, the adaptive attack is able to make use of querying the defense to produce
a higher attack success rate. When compared to a static black-box attack like the pure
black-box attack, the adaptive black-box attack does better against the majority of the
defenses analyzed in this work.

k-WTA FD DistC ADP Vanilla Odds ComDef ECOC BaRT-1 BaRT-8 BaRT-4 BaRT-6 BUZz-2 BUZz-8
Adaptive 0.937 0.932 0.9 0.896 0.889 0.865 0.815 0.815 0.661 0.635 0.616 0.583 0.269 0.08
Pure 0.637 0.638 0.623 0.679 0.649 0.634 0.589 0.564 0.512 0.541 0.5 0.531 0.202 0.097
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Figure 14. Adaptive black-box attack (100% strength) vs pure black-box attack on the vanilla classifier and all 9 defenses
for Fashion-MNIST. It can clearly be seen that in almost every case, the adaptive black-box attack outperforms the pure
black-box attack.

6. Conclusions

In this paper, we investigated and rigorously experimented with adaptive black-box
attacks on recent defenses. Our paper’s results span nine defenses, two adversarial models,
six different attacks, and two datasets. From our vast set of experiments, we derive several
principal results to advance the field of adversarial machine learning. We show that most
defenses (7 out of 9 for each dataset) offer less than a 25% improvement in defense accuracy
for an adaptive black-box adversary. We demonstrate that currently no defense gives
significant black-box robustness without sustaining a drop in clean accuracy. While the
defenses we cover generally provide marginal or less than marginal robustness, there are
several common defense trends among the stronger defenses we analyzed. The common
effective defense trends include using detection methods to mark suspicious samples as
adversarial and using image transformations so large in magnitude that retraining of the
classifier is required. Lastly, our experiments highlight the need for proper black-box
attack testing. Simply building white-box defenses and only testing against white-box
attacks can result in highly misleading claims about robustness. Overall, we complete
the security picture for currently proposed defense with our experiments and give future
defense designers insight and direction with our analyses.
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Appendix A

Appendix A.1. Black-Box Settings

We describe the detailed setup of our black box attacks in this paper. We strictly follow
the setup of the black box attacks as described in [24]. This setup is carefully chosen by the
authors to allow them to properly analyze the security of many defenses under the notion
of pure black box attacks and adaptive black box attacks. For the sake of completeness, we
re-introduce the setup used in [24].

Algorithm 1 describes the oracle based black-box attack from [4]. The oracle O
represents black-box query access to the target model f and only returns the final class
label F( f (x)) for a query x (and not the score vector f (x)). Initially, the adversary is given
(a part of) the training data set X , i.e., he knows D = {(x, F( f (x))) : x ∈ X0} for some
X0 ⊆ X .

Algorithm 1 Construction of synthetic network g in Papernot’s oracle based black-box attack [24]

1: Input:
2: O represents black-box access to F( f (·)) for target model f with output function F;
3: X0 ⊆ X , where X is the training data set of target model f ;
4: substitute architecture S
5: training method M;
6: constant λ;
7: number N of synthetic training epochs
8: Output:
9: synthetic model s defined by parameters θs

10: (s also has output function F which selects the max confidence score;
11: s fits architecture S)
12:
13: Algorithm:
14: for N iterations do
15: D ← {(x,O(x)) : x ∈ Xt}
16: θs = M(S,D)
17: Xt+1 ← {x + λ · sgn(Jθs(x)[O(x)]) : x ∈ Xt} ∪ Xt
18: end for
19: Output θs

Let S and θs be an a-priori synthetic architecture and the parameter of the synthetic
network, respectively. θs is trained using Algorithm 1, i.e., the image-label pairs in D are
used to train θs using a training method M (e.g., Adam [43]). The data augmentation
method (i.e., Jacobian) is used to increase the samples in training dataset Xt as described in
line 17. Algorithm 1 runs N iterations before outputting the final trained parameters θs.

Table A1. Training parameters used in the experiments [24].

Training Parameter Value

Optimization Method ADAM
Learning Rate 0.0001

Batch Size 64
Epochs 100

Data Augmentation None
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Table A2. Adaptive black-box attack parameters [24].

|X0| N λ

CIFAR-10 50,000 4 0.1

Fashion-MNIST 60,000 4 0.1

Table A3. Architectures of synthetic neural network s from [24,28].

Layer Type Fashion-MNIST and CIFAR-10

Convolution + ReLU 3 × 3 × 64
Convolution + ReLU 3 × 3 × 64

Max Pooling 2 × 2
Convolution + ReLU 3 × 3 × 128
Convolution + ReLU 3 × 3 × 128

Max Pooling 2 × 2
Fully Connected + ReLU 256
Fully Connected + ReLU 256

Softmax 10

Tables A1–A3 from [24] describe the setup of our experiments in this paper. Table A1
presents the setup of the optimization algorithm used for training in Algorithm 1. The
architecture of the synthetic model is described in Table A3 and the main parameters for
Algorithm 1 for CIFAR-10 and Fashion-MNIST are presented in Table A2.

Appendix A.2. The Adapative Black-Box Attack on Null Class Label Defenses

For the adaptive black-box attack, there is a special case to consider when applying
this attack to defenses that have the option of outputting a null class label. We study two
of these defenses, Odds and BUZz. Here we define the null class label l as a label the
defense gives to an input x′ when it considers the input to be manipulated by the adversary.
This means for a 10 class problem like CIFAR-10, the defense actually has the option of
outputting 11 class labels (with class label 11 being the adversarial label). In the context of
the adaptive black-box attack, two changes occur. The first change is outside the control of
the attacker, and is in regards to the definition of a successful attack. On a defense, that
does not output a null class label, the attacker has to satisfy the following output condition:
O(x′) = y′. We further specify y′ = yt for a targeted attack or y′ �= y for an untargeted
attack. Also, we define O as the oracle in the defense, x′ as the adversarial example, y as
the original class label and yt as the target class label. The above formulation only holds
when the defense does not employ any detection method (such as adversarial labeling).
When adversarial labeling is employed the conditions change slightly. Now a successful
attack must be misclassified by the defense and not be the null class label. Formally, we
can write this as: O(x′) = y′ ∧ O(x′) �= l. While this first change is straightforward, there
is another major change in the attack which we describe next.

The second main change in the adaptive black-box attack on null class label defenses
comes from training the synthetic model. In the main paper, we mention that training the
synthetic model is done with data labeled from the defense O(x) = y. However, we do not
use data which has a null class label l, i.e. O(x) = l. We ignore this type of data because
this would require modifying the untargeted attack in an unnecessary way. The untargeted
attack tries to find the malicious (wrong) label. If the synthetic network is outputting
null labels, it is possible for the untargeted attack to produce an adversarial sample that
will have a null label. In essence, the attack would fail under those circumstances. To
prevent this, the objective function of every untargeted attack would need to be modified,
such that the untargeted attack produces the malicious label and it is not the null label.
To avoid needlessly complicating the attack, we simply do not use null labeled data. It
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is an open question of whether using null labeled data to train the synthetic network
and the specialized untargeted attack we describe, would actually yield any meaningful
performance gains.

Appendix A.3. Vanilla Model Implementation

CIFAR-10: We train a ResNet56 [44] for 200 epochs with ADAM. We accomplish this
using Keras :https://github.com/keras-team/keras (accessed on 1 May 2020) and the
ResNet56 version 2 implementation: https://keras.io/examples/cifar10_resnet/ (accessed
on 1 May 2020). In terms of the dataset, we use 50,000 samples for training and 10,000 sam-
ples for testing. All images are normalized in the range [0,1] with a shift of −0.5 so that
they are in the range [−0.5, 0.5]. We also use the built in data augmentation technique
provided by Keras during training. With this setup our vanilla network achieves a testing
accuracy of 92.78%.

Fashion-MNIST: We train a VGG16 network [2] for 100 epochs using ADAM. We use
60,000 samples for training and 10,000 samples for testing. All images are normalized in the
range [0,1] with a shift of −0.5 so that they are in the range [−0.5, 0.5]. For this dataset we do
not use any augmentation techniques. However, our VGG16 network has a built in resizing
layer that transforms the images from 28 × 28 to 32 × 32. We found this process slightly
boosts the clean accuracy of the network. On testing data we achieve an accuracy of 93.56%.

Appendix A.4. Barrage of Random Transforms Implementation

The authors of BaRT [14] do not provide source code for their defense. We contacted
the authors and followed their recommendations as closely as possible to re-implement
their defense. However, some implementation changes had to be made. For the sake of the
reproducibility of our results, we enumerate the changes made here.

Image transformations: In the appendix for BaRT, they provide code snippets which
are configured to work with scikit image package version 14.0.0. However, due to com-
patibility issues, the closest version we could implement with our other existing packages
was scikit image 14.4.0. Due to the different scikit version, two parts of the defense had to
be modified. The original denoising wavelet transformation code in the BaRT appendix
had invalid syntax for version 14.4.0, so we had to modify it and run it with different less
random parameters.

The second defense change we made was due to error handling. In extremely rarely
cases, certain sequences of image transformations return images with NAN values. When
contacting the authors they acknowledged that their code failed when using newer versions
of sci-kit. As a result, in sci-kit 14.4.0 when we encounter this error, we randomly pick a
new sequence of random transformations for the image. We experimentally verified that
this has a negligible impact on the entropy of the defense. For example, in CIFAR-10 for the
5 transformation defense, we encounter this error 47 times when running all 50,000 training
samples. That means roughly only 0.094% of the possible transformations sequences cannot
be used in sci-kit 14.4.0.

It is worth noting one other change we made to the Fashion-MNIST version of this
defense. The original BaRT defense was only implemented for ImageNet, a three color
channel (RGB) dataset. Fashion-MNIST is a single color channel (grayscale) dataset. As a
results two transformation groups are not usable for the Fashion-MNIST BaRT defense (the
color space change group and grayscale transformation group).

Training BaRT: In [14] the authors start with a ResNet model pre-trained on ImageNet
and further train it on transformed data for 50 epochs using ADAM. The transformed
data is created by transforming samples in the training set. Each sample is transformed
T times, where T is randomly chosen from distribution U(0, 5). Since the authors did not
experiment with CIFAR-10 and Fashion-MNIST, we tried two approaches to maximize
the accuracy of the BaRT defense. First, we followed the author’s approach and started
with a ResNet56 pre-trained for 200 epochs on CIFAR-10 with data-augmentation. We then
further trained this model on transformed data for 50 epochs using ADAM. For CIFAR-10, we
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were able to achieve an accuracy of 98.87% on the training dataset and a testing accuracy of
62.65%. Likewise, we tried the same approach for training the defense on the Fashion-MNIST
dataset. We started with a VGG16 model that had already been trained with the standard
Fashion-MNIST dataset for 100 epochs using ADAM. We then generated the transformed data
and trained it for an additional 50 epochs using ADAM. We were able to achieve a 98.84%
training accuracy and a 77.80% testing accuracy. Due to the relatively low testing accuracy on
the two datasets, we tried a second way to train the defense.

In our second approach we tried training the defense on the randomized data using
untrained models. For CIFAR-10 we trained ResNet56 from scratch with the transformed
data and data augmentation provided by Keras for 200 epochs. We found the second
approach yielded a higher testing accuracy of 70.53%. Likewise for Fashion-MNIST, we
trained a VGG16 network from scratch on the transformed data and obtained a testing
accuracy of 80.41%. Due to the better performance on both datasets, we built the defense
using models trained using the second approach.

Appendix A.5. Improving Adversarial Robustness via Promoting Ensemble
Diversity Implementation

The original source code for the ADP defense [11] on MNIST and CIFAR-10 datasets
was provided on the author’s Github page: https://github.com/P2333/Adaptive-Diversity-
Promoting (accessed on 1 May 2020). We used the same ADP training code the authors
provided, but trained on our own architecture. For CIFAR-10, we used the ResNet56 model
mentioned in subsection Appendix A.3 and for Fashion-MNIST, we used the VGG16 model
mentioned in Appendix A.3. We used K = 3 networks for ensemble model. We followed
the original paper for the selection of the hyperparameters, which are α = 2 and β = 0.5
for the adaptive diversity promoting (ADP) regularizer. In order to train the model for
CIFAR-10, we trained using the 50,000 training images for 200 epochs with a batch size
of 64. We trained the network using ADAM optimizer with Keras data augmentation.
For Fashion-MNIST, we trained the model for 100 epochs with a batch size of 64 on the
60,000 training images. For this dataset, we again used ADAM as the optimizer but did not
use any data augmentation.

We constructed a wrapper for the ADP defense where the inputs are predicted by the
ensemble model and the accuracy is evaluated. For CIFAR-10, we used 10,000 clean test
images and obtained an accuracy of 94.3%. We observed no drop in clean accuracy with the
ensemble model, but rather observed a slight increase from 92.78% which is the original
accuracy of the vanilla model. For Fashion-MNIST, we tested the model with 10,000 clean
test images and obtained an accuracy of 94.86%. Again for this dataset we observed no
drop in accuracy after training with the ADP method.

Appendix A.6. Error Correcting Output Codes Implementation

The training and testing code for ECOC defense [12] on CIFAR-10 and MNIST datasets
was provided on the Github page of the authors: https://github.com/Gunjan108/robust-
ecoc/ (accessed on 1 May 2020). We employed their “TanhEns32” method which uses
32 output codes and the hyperbolic tangent function as sigmoid function with an ensemble
model. We choose this model because it yields better accuracy with clean and adversarial
images for both CIFAR-10 and MNIST than the other ECOC models they tested, as reported
in the original paper.

For CIFAR-10, we used the original training code provided by the authors. Unlike the
other defenses, we did not use a ResNet network for this defense because the models used
in their ensemble predict individual bits of the error code. As a result these models are
much less complex than ResNet56 (fewer trainable parameters). Due to the lower model
complexity of each individual model in the ensemble, we used the default CNN structure
the authors provided instead of our own. We did this to avoid over parameterization of
the ensemble. We used 4 individual networks for the ensemble model and trained the
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network with 50,000 clean images for 400 epochs with a batch size of 200. We used data
augmentation (with Keras) and batch normalization during training.

We used the original MNIST training code to train Fashion-MNIST by simply changing
the dataset. Similarly, to avoid over parameterization, we again used the CNNs the authors
used with lower complexity instead of using our VGG16 architecture. We trained the
ensemble model with 4 networks for 150 epochs and with a batch size of 200. We did not
use data augmentation for this dataset.

For our implementation, we constructed our own wrapper class where the input
images are predicted and evaluated using the TanhEns32 model. We tested the defense
with 10,000 clean testing images for both CIFAR-10 and Fashion-MNIST, and obtained
89.08% and 92.13% accuracy, respectively.

Appendix A.7. Distribution Classifier Implementation

For the distribution classifier defense [16], we used random resize and pad (RRP) [38]
and a DRN [45] as distribution classifier. The authors did not provide a public code for
their complete working defense. However, the DRN implementation by the same author
was previously released on Github: https://github.com/koukl/drn (accessed on 1 May
2020). We also contacted the authors, followed their recommendations for the training
parameters and used the DRN implementation they sent to us as a blueprint.

In order to implement RRP, we followed the resize ranges the paper suggested, specif-
ically for IFGSM attack. Therefore, we chose the resize range as 19 pixels to 25 pixels for
CIFAR-10 and 22 pixels to 28 pixels for Fashion-MNIST and used these parameters for all
of our experiments.

As for the distribution classifier, the DRN consists of fully connected layers and each
node encodes a distribution. We use one hidden layer of 10 nodes. For the final layer,
there are 10 nodes (representing each class) and there are two bins representing the logit
output for each class. In this type of network the output from the layers are 2D. For the
final classification, we convert from 2D to 1D by taking the output from the hidden layer
and simply discarding the second bin each time. The distribution classifier then performs
the final classification and outputs the class label.

Training: We followed the parameters the paper suggested to prepare training data.
First, we collected 1000 correctly classified training clean images for Fashion-MNIST and
10,000 correctly classified clean images for CIFAR-10. Therefore, with no transformation,
the accuracy of the networks is 100%. For Fashion-MNIST, we used N = 100 transformation
samples and for CIFAR-10, we used N = 50 samples, as suggested in the original paper.
After collecting N samples from the RRP, we fed them into our main classifier network
and collected the softmax probabilities for each class. Finally, for each class, we made an
approximation by computing the marginal distributions using kernel density estimation
with a Gaussian kernel (kernel width = 0.05). We used 100 discretization bins to discretize
the distribution. For each image, we obtain 100 distribution samples per class. For further
details of this distribution, we refer the readers to [16].

We trained the model with the previously collected distribution of 1000 correctly
classified Fashion-MNIST images for 10 epochs as the authors suggested. For CIFAR-10,
we trained the model with the distributions collected from 10,000 correctly classified images
for 50 epochs. For both of the datasets, we used a learning rate of 0.1 and a batch size of
16. The cost function is the cross entropy loss on the logits and the distribution classifier is
optimized using backpropagation with ADAM.

Testing: We first tested the RRP defense alone with 10,000 clean test images for both
CIFAR-10 and Fashion-MNIST to see the drop in clean accuracy. We observed that this defense
resulted in approximately 71% for CIFAR-10 and 82% for Fashion-MNIST. Compared to the
clean accuracies we obtain without the defense (93.56% for Fashion-MNIST and 92.78% for
CIFAR-10), we observe drops in accuracy after random resizing and padding.

We tested the full implementation with RRP and DRN. In order to compare our results
with the paper, we collected 5000 correctly classified clean images for both datasets and
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collected distributions after transforming images using RRP (N = 50 for Fashion-MNIST and
N = 100 for CIFAR-10) like we did for training. We observed a clean test accuracy of 87.48%
for CIFAR-10 and 97.76% Fashion-MNIST, which is consistent with the results reported by
the original paper. Clearly, if we test all of the clean testing data (10,000 images), we obtain
lower accuracy (approximately 83% for CIFAR-10 and 92% for Fashion-MNIST) since there
is also some drop in accuracy caused by the CNN. On the other hand, it can be seen that
there is a smaller drop in clean accuracy as compared to the basic RRP implementation.

Appendix A.8. Feature Distillation Implementation

Background: The human visual system (HVS) is more sensitive to high frequency
parts of the image and less sensitive to the low frequency parts. The standard JPEG
compression is based on this understanding, so the standard JPEG quantization table
compresses less sensitive frequency parts of the image (i.e. low frequency components)
more than other parts. In order to defend against images, a higher compression rate is
needed. However, since the CNNs work differently than the HVS, the testing accuracy and
defense accuracy both suffer if a higher compression rate is used across all frequencies. In
the Feature Distillation defense, as mentioned in Section 3, a crafted quantization technique
is used as a solution to this problem. A large quantization step (QS) can reduce adversarial
perturbations but also cause more classification errors. Therefore, the proper selection
of QS is needed. In the crafted quantization technique, the frequency components are
separated as Accuracy Sensitive (AS) band and Malicious Defense (MD) band. A higher
quantization step (QS1) is applied to the MD band to mitigate adversarial perturbations
while a lower quantization step (QS2) is used for AS band to enhance clean accuracy. For
more details of this technique, we refer the readers to [18].

Implementation: The implementation of the defense can be found on the author’s
Github page: https://github.com/zihaoliu123 (accessed on 1 May 2020). However, this
defense has only been implemented and tested for the ImageNet dataset by the authors. In
order to fairly compare our results with the other defenses, we implemented and tested
this defense for CIFAR-10 and Fashion-MNIST datasets.

This defenses uses two different methods: A one-pass process and a two-pass process.
The one-pass process uses the proposed quantization/dequantization only in the decompres-
sion of the image. The two-pass process, on the other hand, uses the proposed quantiza-
tion/dequantization in compression followed by one-pass process. In our experiments, we
use the two-pass method as it has better defense accuracy than the one-pass process [18].

In the original paper, experiments were performed in order to find a proper selection
of (QS1) and (QS2) for the AS and MD bands. At the end of these experiments, they set
(QS1 = 30) and (QS2 = 20). However, these experiments were performed on ImageNet
images where the images are much larger than CIFAR-10 and Fashion-MNIST images.
Therefore, we performed experiments in order to properly select QS1 and QS2 for the
Fashion-MNIST and CIFAR-10 datasets. For each dataset we start with the vanilla classifier
(see Appendix A.3). For each vanilla CNN we first do a one-pass and then generate
500 adversarial samples using untargeted FGSM. For CIFAR-10 we use ε = 0.05 and for
Fashion-MNIST we use ε = 0.15. Here we use FGSM to do the hyperparameter selection
for the defense because this is how the authors designed the original defense for ImageNet.

After generating the adversarial examples for each QS combination, we do a grid
search over the possible hyperparameters QS1 and QS2. Specifically, we test 100 defense
combinations by varying QS1 from 10 to 100 and varying QS2 from 10 to 100. For every
possible combination of QS1 and QS2 we measure the accuracy on the clean test set and on
the adversarial examples. The results of these experiments are shown in Figure A1.

In Figure A1 for the CIFAR-10 dataset, there is an intersection where both the green
dots and red dots overlap. This region represents a defense with both higher clean accuracy
and higher defense accuracy (the idealized case). There are multiple different combinations
of QS1 and QS2 that we could choose that give a decent trade-off. Here we arbitrarily select

398



Entropy 2021, 23, 1359

from among these better combinations QS1 = 70 and QS2 = 40 which gives a clean score
of 71.4% and a defense accuracy of 21.2%.

In Figure A1 for the Fashion-MNIST dataset, there is no region in which both the
clean accuracy and defense accuracy are high. This may show a limitation in the use of
feature distillation as a defense for some datasets, as here no ideal trade-off exists. We pick
QS1 = 70 and QS2 = 40 which gives a clean score of 89.34% and a defense accuracy of 9%.
We picked these values because this combination gave the highest defense accuracy out of
all possible hyperparameter choices.

Appendix A.9. End-to-End Image Compression Models Implementation

The original source code for defenses on Fashion-MNIST and ImageNet were provided
by the authors of ComDefend [13] on their Github page: https://github.com/jiaxiaojunQAQ/
Comdefend (accessed on 1 May 2020). In addition, they included their trained compression
and reconstruction models for Fashion-MNIST and CIFAR-10 separately.

Since this defense is a pre-processing module, it does not require modifications to the
classifier network [13]. Therefore, in order to perform the classification, we used our own
models as described in Section A.3 and we combined them with this pre-processing module.

According to the authors of ComDefend, ComCNN and RecCNN were trained on
50,000 clean (not perturbed) images from the CIFAR-10 dataset for 30 epochs using a
batch size of 50. In order to use their pre-trained models, we had to install the canton
package v0.1.22 for Python. However, we had incompatibility issues with canton and
the other Python packages installed in our system. Therefore, instead of installing this
package directly, we downloaded the source code of the canton library from its Github page
and added it to our defense code separately. We constructed a wrapper for ComDefend,
where the type of dataset (Fashion-MNIST or CIFAR-10) is indicated as input so that the
corresponding classifier can be used (either ResNet56 or VGG16). We tested the defense
with the testin data of CIFAR-10 and Fashion-MNIST and we were able to achieve an
accuracy of 88% and 93% respectively.

Appendix A.10. The Odds Are Odd Implementation

Mathematical background: Here we give a detailed description of the defense based
on the statistical test derived from the logits layer. For given image x, we denote φ(x) as
the logits layer (i.e., the input to the softmax layer) of a classifier, fy = 〈wy, φ(x)〉 where
wy is the weight vector for the class y, y ∈ {1, · · · , K}. The class label is determined by
F(x) = argmaxy fy(x). We define pair-wise log-odds between class y and z as

fy,z(x) = fz(x)− fy(x) = 〈wz − wy, φ(x)〉. (A1)

We denote fy,z(x + η) the noise-perturbed log-odds where the noise η is sampled from
a distribution D. Moreover, we define the following formulas for a pair (y, z):

gy,z := fy,z(x + η)− fy,z(x) (A2)

μy,z := Ex|yEη [gy,z(x, η)]

σy,z := Ex|yEη [(gy,z(x, η)− μy,z)
2]

ḡy,z(x, η) := [gy,z(x, η)− μy,z]/σy,z

For the original training data set, we compute μy,z and σy,z for all (y, z). We apply
the untargeted white-box attack (PGD [27]) to generate the adversarial dataset. After that,
we compute μadv

y,z and σadv
y,z using the adversarial dataset. We denote τy,z as the threshold

to control the false positive rate (FPR) and it is computed based on μadv
y,z and σadv

y,z . The
distribution of clean data and the distribution of adversarial data are represented by (μ, σ)
and (μadv, σadv), respectively. These distributions are supposed to be separated and τ is
used to control the FPR.
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For a given image x, the statistical test is done as follows. First, we calculate the
expected perturbed log-odds ḡy,z(x) = Eη [ḡy,z(x, η)] where y is the predicted class label of
image x given by the vanilla classifier. The test will determine the image x with the label
y = F(x) as adversarial (malicious) if

max
z �=y

{ḡy,z(x)− τy,z} ≥ 0.

Otherwise, the input will be considered benign. In case the test recognizes the image as
malicious one, the “corrected” class label z is defined as

max
z

{ḡy,z(x)− τy,z}.

Implementation details: The original source code for the Odds defense [17] on CIFAR-
10 and ImageNet was provided by the authors: https://github.com/yk/icml19_public
(accessed on 1 May 2020). We use their code as a guideline for our own defense imple-
mentation. We develop the defense for the CIFAR-10 and Fashion-MNIST and datasets.
For each dataset, we apply the untargeted 10-iteration PGD attack on the vanilla classifier
that will be used in the defense. Note this is a white-box attack. The parameters for the
PGD attack are ε = 0.005 for CIFAR-10 and ε = 0.015 for Fashion-MNIST respectively. By
applying the white-box PGD attack we can create the adversarial datasets for the defense.
We choose these attack parameters because they yield adversarial examples with small
noise. In [17], the authors assume that the adversarial examples are created by adding
small noise. Hence, they are not robust against adding the white noises. For a given image,
it is normalized first to be in the range [−0.5, 0.5]. For each pixel, we generate a noise from
N (0, 0.05) and add it to the pixel.

For CIFAR-10, we create 50,000 adversarial examples. For Fashion-MNIST, we create
60,000 adversarial examples. We calculate μ, σ and τ for each data set for FPR = 1%,
10%, 20%, 30%, 40%, 50% and 80% as described in the mathematical background. For each
image, we evaluate it 256 times to compute ḡy,z(x). Table A16 shows the prediction accuracy
of the defense for the clean (non-adversarial) dataset for CIFAR-10 and Fashion-MNIST.
To compute the clean prediction accuracy, we use 1000 samples from the test dataset of
CIFAR-10 and Fashion-MNIST.

(a) CIFAR-10 (b) Fashion-MNIST

Figure A1. Feature distillation experiments to determine the hyperparameters for the defense. The x and y axis of the grid
correspond to the specific hyperparameters for the defense. The Accuracy Sensitive band (denoted as AC in the figure) is
the same as QS1. The Malicious Defense band (denoted as MS in the figure) is the same as QS2. On the z-axis the accuracy
is measured. For every point in this grid two accuracy measurements are taken. The green dot corresponds to the clean
accuracy using the QS values specified by the x-y coordinates. The red dot corresponds to the defense accuracy using the
QS values specified by the x-y coordinates.
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Table A4. CIFAR-10 pure black-box attack. Note the defense numbers in the table are the defense accuracy minus the
vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy of the
vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U Acc

ADP 0.003 0.016 0.004 0.011 0.003 0.003 0.044 0.022 0.001 0.03 0.009 0.013 0.0152

BaRT-1 0.007 0.026 0.027 0.032 −0.005 −0.005 0.151 0.135 0.089 0.153 −0.07 −0.066 −0.0707

BaRT-10 0.001 −0.001 0.045 −0.012 −0.052 −0.053 −0.039 −0.086 −0.019 −0.041 −0.457 −0.456 −0.4409

BaRT-4 0.006 0.035 0.024 0.009 −0.005 −0.021 0.098 0.099 0.061 0.101 −0.186 −0.175 −0.1765

BaRT-7 0.009 0.014 0.037 −0.001 −0.032 −0.036 0.036 0.025 −0.009 0.021 −0.337 −0.353 −0.3164

BUZz-2 0.053 0.057 0.099 0.05 0.011 0.011 0.352 0.306 0.315 0.338 0.047 0.049 −0.0771

BUZz-8 0.083 0.076 0.131 0.07 0.014 0.014 0.504 0.479 0.508 0.473 0.075 0.078 −0.1713

ComDef −0.005 0.022 0.004 0.013 −0.014 −0.015 0.078 0.033 −0.02 0.043 −0.054 −0.059 −0.043

DistC 0.009 0.027 0.014 0.024 −0.008 −0.014 0.022 0.041 0.016 0.051 −0.104 −0.11 −0.0955

ECOC −0.006 0.047 −0.007 0.042 0.004 0.001 0.131 0.103 −0.003 0.099 −0.029 −0.033 −0.0369

FD −0.018 0.001 0.018 0 −0.025 −0.035 −0.017 0.032 0.01 0.014 −0.248 −0.252 −0.2147

k-WTA 0.003 0.02 0.001 0.021 −0.002 −0.003 0.07 0.019 0.001 0.028 −0.07 −0.08 −0.0529

Odds 0.054 0.041 0.071 0.041 0.003 0.002 0.314 0.207 0.233 0.22 0.011 0.011 −0.2137

Vanilla 0.902 0.917 0.853 0.924 0.984 0.984 0.443 0.453 0.384 0.455 0.923 0.919 0.9278

Table A5. CIFAR-10 adaptive black-box attack 1%. Note the defense numbers in the table are the defense accuracy minus
the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy of the
vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP −0.015 −0.001 −0.017 −0.013 −0.055 0.002 −0.062 −0.007 0.008 −0.001 0.002 −0.003 0.0152

BaRT-1 0.011 0.017 0.013 0.013 0.125 0.128 0.103 0.121 0.009 −0.061 0.009 −0.061 −0.0695

BaRT-10 −0.05 −0.044 −0.071 −0.042 −0.287 −0.277 −0.325 −0.28 −0.058 −0.439 −0.053 −0.394 −0.4408

BaRT-4 −0.003 0.001 −0.014 −0.011 −0.019 0.002 −0.06 −0.016 −0.008 −0.213 −0.01 −0.185 −0.1834

BaRT-7 −0.035 −0.023 −0.016 −0.017 −0.151 −0.125 −0.208 −0.149 −0.026 −0.307 −0.024 −0.284 −0.319

BUZz-2 0.002 0.017 0.012 0.015 0.148 0.149 0.103 0.148 0.015 0.005 0.016 0.004 −0.0771

BUZz-8 0.026 0.027 0.024 0.024 0.234 0.228 0.2 0.227 0.017 0.005 0.017 0.006 −0.1713

ComDef 0.014 0.016 0.012 0.016 0.13 0.137 0.109 0.131 0.01 −0.007 0.004 −0.004 −0.0424

DistC −0.003 0.003 0.001 0.01 0.043 0.067 0.007 0.076 0.004 −0.033 0.004 −0.029 −0.0933

ECOC 0.017 0.022 0.014 0.022 0.186 0.192 0.14 0.194 0.008 0.002 0.005 0.001 −0.0369

FD −0.014 0.006 −0.009 0.007 −0.026 0.012 −0.036 0.001 0.003 −0.012 −0.006 −0.01 −0.2147

k-WTA −0.022 −0.004 −0.019 −0.006 −0.023 0.04 −0.018 0.042 0.003 −0.008 −0.01 −0.011 −0.0529

Odds 0.009 0.014 0.005 0.004 0.135 0.124 0.104 0.125 0.014 −0.002 0.013 0.001 −0.214

Vanilla 0.973 0.973 0.976 0.974 0.751 0.766 0.793 0.764 0.983 0.995 0.982 0.994 0.9278
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Table A6. CIFAR-10 adaptive black-box attack 25%. Note the defense numbers in the table are the defense accuracy minus
the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy of the
vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP −0.024 −0.049 −0.087 −0.047 −0.074 −0.12 −0.185 −0.131 −0.012 −0.007 −0.008 −0.006 0.0152

BaRT-1 0.015 0.032 0.018 0.029 0.184 0.099 0.089 0.11 −0.012 −0.057 0.001 −0.04 −0.0724

BaRT-10 −0.025 0.006 −0.012 0.015 −0.142 −0.179 −0.208 −0.182 −0.046 −0.398 −0.053 −0.425 −0.4384

BaRT-4 0.003 0.003 0 0.019 0.004 −0.015 −0.072 −0.047 −0.036 −0.196 −0.026 −0.187 −0.1764

BaRT-7 −0.014 −0.013 −0.022 −0.007 −0.106 −0.125 −0.201 −0.15 −0.055 −0.302 −0.04 −0.316 −0.3089

BUZz-2 0.032 0.053 0.051 0.05 0.274 0.228 0.231 0.232 0.003 0.007 0.003 0.011 −0.0771

BUZz-8 0.069 0.07 0.084 0.078 0.419 0.336 0.374 0.335 0.003 0.009 0.005 0.015 −0.1713

ComDef 0.031 0.041 0.029 0.039 0.137 0.126 0.078 0.111 −0.004 −0.009 −0.005 −0.004 −0.0421

DistC −0.044 −0.007 −0.049 −0.011 −0.022 −0.019 −0.112 −0.02 −0.01 −0.036 −0.011 −0.032 −0.0944

ECOC −0.044 −0.056 −0.119 −0.041 0.004 −0.073 −0.183 −0.091 −0.004 −0.006 −0.011 −0.009 −0.0369

FD −0.045 −0.023 −0.045 −0.014 −0.062 −0.05 −0.146 −0.055 −0.011 −0.035 −0.014 −0.031 −0.2147

k-WTA −0.052 −0.068 −0.112 −0.066 −0.074 −0.174 −0.258 −0.2 −0.008 −0.021 −0.009 −0.019 −0.0529

Odds 0.045 0.047 0.048 0.051 0.237 0.182 0.161 0.16 −0.003 −0.001 −0.003 0 −0.2132

Vanilla 0.924 0.924 0.91 0.921 0.551 0.638 0.597 0.644 0.997 0.991 0.994 0.985 0.9278

Table A7. CIFAR-10 adaptive black-box attack 50%. Note the defense numbers in the table are the defense accuracy minus
the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy of the
vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP −0.036 −0.116 −0.137 −0.107 −0.077 −0.21 −0.199 −0.229 −0.002 0.001 0.006 0.001 0.0152

BaRT-1 0.034 0.011 0.021 0.028 0.148 0.071 0.051 0.071 −0.009 −0.062 −0.013 −0.064 −0.0753

BaRT-10 0.036 0.046 0.086 0.037 −0.044 −0.092 −0.008 −0.104 −0.043 −0.414 −0.034 −0.433 −0.4399

BaRT-4 0.036 0.02 0.055 0.058 0.075 0.043 0.036 0.02 −0.024 −0.173 −0.039 −0.183 −0.1772

BaRT-7 0.03 0.016 0.055 0.048 0.026 −0.034 0 −0.025 −0.045 −0.297 −0.046 −0.306 −0.3181

BUZz-2 0.088 0.08 0.11 0.093 0.367 0.289 0.316 0.293 0.007 0.012 0.01 0.011 −0.0771

BUZz-8 0.124 0.106 0.162 0.12 0.542 0.428 0.521 0.434 0.007 0.013 0.01 0.014 −0.1713

ComDef 0.01 −0.033 −0.039 −0.014 0.03 −0.015 −0.067 −0.036 −0.005 −0.012 −0.002 −0.016 −0.0411

DistC −0.021 −0.036 −0.059 −0.014 −0.041 −0.065 −0.117 −0.059 −0.014 −0.042 −0.012 −0.045 −0.0922

ECOC −0.025 −0.045 −0.11 −0.035 0.02 −0.079 −0.145 −0.09 0.001 −0.004 0.001 −0.019 −0.0369

FD 0.013 0.002 0.008 0.029 0.018 0.021 −0.01 0.015 −0.014 −0.035 −0.014 −0.038 −0.2147

k-WTA −0.002 −0.139 −0.171 −0.131 −0.064 −0.226 −0.241 −0.248 −0.002 −0.022 −0.005 −0.029 −0.0529

Odds 0.073 0.064 0.098 0.074 0.283 0.181 0.185 0.181 −0.002 −0.002 −0.006 −0.005 −0.2133

Vanilla 0.87 0.886 0.826 0.872 0.423 0.529 0.426 0.531 0.993 0.987 0.99 0.986 0.9278
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Table A8. CIFAR-10 adaptive black-box attack 75%. Note the defense numbers in the table are the defense accuracy minus
the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy of the
vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP −0.038 −0.167 −0.201 −0.167 −0.092 −0.231 −0.216 −0.234 −0.009 −0.006 −0.001 0 0.0152

BaRT-1 0.002 0.027 0.007 0.015 0.117 0.072 0.029 0.069 −0.013 −0.067 −0.006 −0.069 −0.0706

BaRT-10 0.018 0.052 0.061 0.03 −0.055 −0.036 −0.001 −0.03 −0.065 −0.428 −0.058 −0.417 −0.4349

BaRT-4 0.014 0.034 0.045 0.038 0.083 0.088 0.065 0.066 −0.035 −0.2 −0.031 −0.197 −0.1829

BaRT-7 0.016 0.057 0.072 0.05 0.048 0.03 0.001 0.014 −0.035 −0.3 −0.036 −0.334 −0.308

BUZz-2 0.074 0.094 0.104 0.086 0.332 0.328 0.344 0.324 0.007 0.011 0.007 0.014 −0.0771

BUZz-8 0.105 0.126 0.159 0.114 0.541 0.484 0.55 0.464 0.007 0.011 0.008 0.015 −0.1713

ComDef −0.013 0.003 −0.034 −0.008 0.014 −0.013 −0.063 −0.007 −0.001 −0.019 −0.001 −0.017 −0.0434

DistC −0.051 −0.042 −0.083 −0.042 −0.078 −0.073 −0.122 −0.077 −0.012 −0.055 −0.016 −0.059 −0.0913

ECOC −0.06 −0.049 −0.143 −0.054 −0.008 −0.086 −0.163 −0.099 0.004 −0.009 0.002 −0.008 −0.0369

FD −0.013 0.055 0.004 0.024 0.006 0.097 0.007 0.048 −0.01 −0.032 −0.007 −0.02 −0.2147

k-WTA −0.036 −0.157 −0.254 −0.162 −0.094 −0.252 −0.243 −0.283 −0.007 −0.031 −0.014 −0.044 −0.0529

Odds 0.05 0.07 0.088 0.05 0.246 0.19 0.196 0.179 −0.002 −0.009 −0.003 −0.014 −0.2133

Vanilla 0.887 0.864 0.822 0.875 0.425 0.478 0.392 0.496 0.993 0.989 0.992 0.984 0.9278

Table A9. CIFAR-10 adaptive black-box attack 100%. Note the defense numbers in the table are the defense accuracy minus
the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy of the
vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP −0.023 −0.163 −0.172 −0.136 −0.002 −0.163 −0.112 −0.148 0.004 0.006 −0.004 −0.002 0.0152

BaRT-1 0.02 0.011 0.022 0.027 0.173 0.166 0.139 0.169 −0.016 −0.069 −0.018 −0.054 −0.0707

BaRT-10 0.044 0.05 0.126 0.073 0.057 0.078 0.123 0.118 −0.063 −0.405 −0.047 −0.404 −0.4409

BaRT-4 0.044 0.053 0.089 0.053 0.148 0.167 0.184 0.203 −0.02 −0.183 −0.017 −0.199 −0.1765

BaRT-7 0.038 0.06 0.1 0.069 0.113 0.147 0.167 0.161 −0.028 −0.282 −0.045 −0.309 −0.3164

BUZz-2 0.103 0.11 0.168 0.123 0.473 0.426 0.493 0.451 0.009 0.014 0.008 0.01 −0.0771

BUZz-8 0.127 0.13 0.203 0.145 0.628 0.568 0.667 0.576 0.009 0.014 0.009 0.013 −0.1713

ComDef −0.008 0.005 −0.01 0.007 0.133 0.097 0.084 0.102 −0.003 −0.019 −0.007 −0.022 −0.043

DistC −0.011 −0.017 −0.041 −0.002 0.005 0.018 −0.01 0.026 0.004 −0.025 0.004 −0.031 −0.0955

ECOC −0.04 −0.056 −0.105 −0.054 0.091 0.012 −0.03 0.033 0.008 0.002 0.003 −0.008 −0.0369

FD 0.007 0.048 0.062 0.074 0.105 0.181 0.138 0.194 0.002 −0.02 −0.004 −0.029 −0.2147

k-WTA −0.019 −0.136 −0.174 −0.129 −0.015 −0.157 −0.124 −0.138 −0.003 −0.029 −0.009 −0.034 −0.0529

Odds 0.075 0.077 0.134 0.082 0.312 0.277 0.319 0.299 0.006 −0.012 0 −0.01 −0.2137

Vanilla 0.866 0.861 0.777 0.848 0.334 0.387 0.259 0.374 0.991 0.986 0.991 0.987 0.9278
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Table A10. Fashion-MNIST pure black-box attack. Note the defense numbers in the table are the defense accuracy minus
the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy of the
vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T CW-T EAD-T FGSM-U IFGSM-U MIM-U PGD-U CW-U EAD-U Acc

ADP 0.01 −0.05 −0.035 −0.018 −0.003 −0.002 −0.031 −0.006 −0.03 −0.024 0.012 0.018 0.013

BaRT-1 0.041 0.055 0.089 0.062 −0.002 0 0.119 0.173 0.137 0.159 −0.021 −0.017 −0.0317

BaRT-4 0.042 0.05 0.079 0.057 −0.019 −0.015 0.118 0.172 0.149 0.15 −0.132 −0.106 −0.1062

BaRT-6 0.049 0.038 0.084 0.052 −0.029 −0.038 0.091 0.139 0.118 0.133 −0.174 −0.18 −0.1539

BaRT-8 0.055 0.018 0.083 0.059 −0.036 −0.047 0.041 0.09 0.108 0.092 −0.239 −0.222 −0.2212

BUZz-2 0.108 0.1 0.161 0.109 0.003 0.006 0.362 0.482 0.447 0.469 0.04 0.051 −0.0819

BUZz-8 0.128 0.109 0.176 0.12 0.005 0.008 0.47 0.566 0.552 0.563 0.069 0.078 −0.1577

ComDef 0.008 0.053 0.048 0.066 −0.003 0.001 −0.005 0.089 0.06 0.09 0.001 0.011 −0.0053

DistC 0.007 0.018 0.027 0.031 −0.004 −0.003 0.005 0.038 0.026 0.027 −0.008 −0.001 −0.0093

ECOC 0.012 0.056 0.079 0.073 0 0.003 0.043 0.113 0.085 0.108 0.001 0.006 −0.0141

FD −0.002 0.006 0.022 0.014 −0.017 −0.019 −0.046 0.057 0.011 0.035 −0.094 −0.098 −0.0823

k-WTA −0.006 0.002 0.013 0.014 −0.001 0 −0.064 0.044 0.012 0.028 0.001 −0.001 −0.0053

Odds 0 0.002 0.004 0.003 0.003 0.001 0.001 0.028 0.015 0.023 0.026 0.021 −0.1809

Vanilla 0.865 0.889 0.817 0.879 0.995 0.992 0.429 0.363 0.351 0.374 0.914 0.905 0.9356

Table A11. Fashion-MNIST adaptive black-box attack 1%. Note the defense numbers in the table are the defense accuracy
minus the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy
of the vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP 0.03 −0.018 −0.009 −0.004 0.051 −0.029 0.008 −0.027 −0.018 0.023 0.005 0.031 0.013

BaRT-1 0.083 0.063 0.05 0.061 0.229 0.137 0.175 0.171 0.041 −0.022 0.009 −0.026 −0.0308

BaRT-4 0.069 0.04 0.034 0.049 0.153 0.056 0.067 0.055 −0.035 −0.182 −0.032 −0.165 −0.0999

BaRT-6 0.046 0.033 −0.006 0.013 0.113 0.008 0.026 0.036 −0.081 −0.274 −0.062 −0.215 −0.1615

BaRT-8 0.046 0.012 −0.028 0.018 0.048 −0.027 −0.03 −0.053 −0.098 −0.326 −0.111 −0.296 −0.2258

BUZz-2 0.155 0.122 0.111 0.117 0.529 0.425 0.436 0.436 0.061 0.079 0.022 0.039 −0.0819

BUZz-8 0.187 0.136 0.123 0.126 0.679 0.488 0.515 0.504 0.064 0.086 0.026 0.05 −0.1577

ComDef 0.032 0.055 0.02 0.025 0.086 0.114 0.123 0.13 0.038 0.042 0.011 0.013 −0.0058

DistC −0.021 −0.033 −0.029 −0.039 −0.024 −0.057 −0.025 −0.029 0.007 0.029 −0.002 0.008 −0.0093

ECOC −0.01 0.03 0.008 0.019 0.061 0.038 0.042 0.051 −0.033 −0.1 −0.026 −0.08 −0.0141

FD −0.073 −0.08 −0.099 −0.06 −0.099 −0.168 −0.15 −0.136 −0.043 −0.1 −0.028 −0.097 −0.0823

k-WTA 0.035 0.036 0.027 0.044 0.072 0.044 0.049 0.068 0.02 0.05 0.016 0.035 −0.0053

Odds 0.031 0.043 0.019 0.038 0.064 0.051 0.065 0.085 0.021 0.033 0.006 0.017 −0.1833

Vanilla 0.807 0.864 0.876 0.873 0.29 0.503 0.475 0.486 0.935 0.91 0.972 0.947 0.9356
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Table A12. Fashion-MNIST adaptive black-box attack 25%. Note the defense numbers in the table are the defense accuracy
minus the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy
of the vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP 0.089 0.025 0.036 0.004 0.035 −0.038 −0.008 −0.038 −0.04 −0.092 −0.013 −0.032 0.013

BaRT-1 0.11 0.238 0.195 0.217 0.191 0.165 0.159 0.145 −0.038 −0.134 −0.019 −0.097 −0.0314

BaRT-4 0.141 0.293 0.268 0.256 0.215 0.246 0.224 0.256 −0.067 −0.216 −0.041 −0.218 −0.1018

BaRT-6 0.113 0.285 0.261 0.273 0.209 0.224 0.208 0.206 −0.065 −0.28 −0.056 −0.217 −0.1627

BaRT-8 0.133 0.29 0.294 0.285 0.198 0.195 0.21 0.197 −0.091 −0.341 −0.055 −0.278 −0.221

BUZz-2 0.224 0.42 0.411 0.415 0.542 0.603 0.572 0.601 0.033 0.067 0.034 0.073 −0.0819

BUZz-8 0.288 0.465 0.452 0.454 0.783 0.818 0.808 0.815 0.034 0.073 0.035 0.083 −0.1577

ComDef 0.003 0.17 0.08 0.159 0.043 0.112 0.089 0.105 0.022 0.016 0.015 −0.004 −0.0048

DistC −0.052 −0.034 −0.062 −0.044 0.013 −0.043 −0.037 −0.054 −0.006 −0.058 −0.001 −0.037 −0.0096

ECOC 0.047 0.188 0.169 0.175 0.014 0.063 0.059 0.06 −0.07 −0.282 −0.067 −0.242 −0.0141

FD −0.086 −0.012 −0.037 −0.025 −0.048 −0.05 −0.066 −0.072 −0.01 −0.063 −0.036 −0.088 −0.0823

k-WTA 0.012 0.017 −0.001 −0.014 −0.043 −0.029 −0.026 −0.031 −0.279 −0.411 −0.437 −0.402 −0.8516

Odds −0.064 0.02 0.017 0.024 −0.007 0.042 0.025 0.025 −0.017 −0.037 −0.022 −0.022 −0.1807

Vanilla 0.696 0.53 0.538 0.539 0.108 0.141 0.135 0.149 0.966 0.927 0.965 0.917 0.9356

Table A13. Fashion-MNIST adaptive black-box attack 50%. Note the defense numbers in the table are the defense accuracy
minus the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy
of the vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP 0.115 −0.015 0.021 −0.024 0.01 −0.022 −0.013 −0.027 −0.019 −0.065 −0.011 −0.044 0.013

BaRT-1 0.143 0.227 0.263 0.24 0.183 0.205 0.197 0.195 −0.047 −0.114 −0.02 −0.1 −0.0312

BaRT-4 0.179 0.325 0.327 0.314 0.241 0.246 0.258 0.224 −0.059 −0.216 −0.024 −0.184 −0.1

BaRT-6 0.175 0.331 0.357 0.336 0.251 0.278 0.256 0.268 −0.045 −0.248 −0.03 −0.243 −0.1563

BaRT-8 0.188 0.324 0.342 0.325 0.201 0.24 0.264 0.235 −0.064 −0.296 −0.046 −0.258 −0.2174

BUZz-2 0.264 0.446 0.473 0.444 0.534 0.627 0.611 0.625 0.017 0.057 0.019 0.06 −0.0819

BUZz-8 0.321 0.482 0.514 0.482 0.766 0.835 0.823 0.826 0.018 0.061 0.02 0.067 −0.1577

ComDef 0.044 0.143 0.123 0.158 0.016 0.083 0.08 0.084 0.003 −0.01 −0.004 −0.015 −0.0067

DistC 0.029 −0.024 −0.009 −0.029 0.038 −0.019 −0.007 −0.035 −0.006 −0.038 −0.012 −0.054 −0.0094

ECOC 0.097 0.23 0.238 0.235 0.013 0.075 0.091 0.072 −0.049 −0.133 −0.05 −0.129 −0.0141

FD −0.019 0 0.009 0 −0.055 −0.019 −0.02 −0.043 −0.02 −0.049 −0.024 −0.069 −0.0823

k-WTA 0.057 −0.006 −0.018 −0.013 −0.037 −0.042 −0.035 −0.058 −0.012 −0.028 −0.032 −0.049 −0.0053

Odds −0.012 0.027 0 0.016 −0.024 0.013 0.005 0.006 −0.005 0.011 −0.011 0.004 −0.1828

Vanilla 0.666 0.516 0.479 0.516 0.132 0.127 0.107 0.132 0.982 0.939 0.98 0.933 0.9356
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Table A14. Fashion-MNIST adaptive black-box attack 75%. Note the defense numbers in the table are the defense accuracy
minus the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy
of the vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP 0.089 0.024 0.103 0.018 −0.033 −0.028 −0.026 −0.016 −0.016 −0.054 −0.006 −0.054 0.013

BaRT-1 0.144 0.299 0.336 0.297 0.151 0.239 0.195 0.254 −0.027 −0.112 −0.002 −0.078 −0.0316

BaRT-4 0.173 0.347 0.41 0.345 0.196 0.304 0.269 0.36 −0.046 −0.17 −0.022 −0.167 −0.107

BaRT-6 0.175 0.372 0.437 0.354 0.202 0.309 0.29 0.327 −0.043 −0.23 −0.027 −0.183 −0.1503

BaRT-8 0.148 0.368 0.422 0.35 0.159 0.303 0.267 0.297 −0.063 −0.309 −0.035 −0.281 −0.2154

BUZz-2 0.232 0.471 0.522 0.478 0.5 0.626 0.594 0.636 0.01 0.05 0.02 0.055 −0.0819

BUZz-8 0.281 0.501 0.563 0.504 0.715 0.838 0.809 0.857 0.01 0.051 0.021 0.061 −0.1577

ComDef 0.029 0.226 0.192 0.221 −0.044 0.127 0.076 0.145 0.002 −0.006 0.009 −0.015 −0.0052

DistC −0.01 −0.049 −0.007 −0.03 −0.004 −0.025 −0.013 −0.002 −0.016 −0.043 −0.013 −0.056 −0.0096

ECOC 0.04 0.218 0.275 0.232 −0.033 0.075 0.075 0.099 −0.063 −0.156 −0.043 −0.151 −0.0141

FD −0.087 0.003 0.026 0.004 −0.099 −0.03 −0.039 −0.01 −0.025 −0.039 −0.013 −0.054 −0.0823

k-WTA 0.009 −0.042 −0.007 −0.036 −0.126 −0.035 −0.056 −0.018 −0.002 −0.011 −0.006 −0.024 −0.0053

Odds −0.043 0.063 0.064 0.049 −0.054 0.049 −0.003 0.068 −0.002 0 0.004 −0.01 −0.1807

Vanilla 0.698 0.494 0.423 0.49 0.195 0.116 0.114 0.096 0.99 0.949 0.979 0.939 0.9356

Table A15. Fashion-MNIST adaptive black-box attack 100%. Note the defense numbers in the table are the defense accuracy
minus the vanilla defense accuracy. This means they are relative accuracies. The very last row is the actual defense accuracy
of the vanilla network.

FGSM-T IFGSM-T MIM-T PGD-T FGSM-U IFGSM-U MIM-U PGD-U CW-T CW-U EAD-T EAD-U Acc

ADP 0.086 −0.014 0.039 −0.012 −0.093 −0.038 −0.007 −0.029 −0.006 −0.027 −0.005 −0.03 0.013

BaRT-1 0.129 0.278 0.304 0.274 0.125 0.26 0.228 0.258 −0.015 −0.1 −0.015 −0.062 −0.0317

BaRT-4 0.165 0.319 0.383 0.317 0.176 0.276 0.273 0.288 −0.052 −0.182 −0.032 −0.148 −0.1062

BaRT-6 0.175 0.347 0.397 0.346 0.136 0.314 0.306 0.293 −0.058 −0.237 −0.044 −0.213 −0.1539

BaRT-8 0.159 0.344 0.389 0.327 0.166 0.287 0.254 0.274 −0.051 −0.255 −0.033 −0.243 −0.2212

BUZz-2 0.227 0.432 0.489 0.43 0.462 0.657 0.62 0.653 0.006 0.037 0.007 0.057 −0.0819

BUZz-8 0.279 0.469 0.535 0.466 0.672 0.818 0.809 0.835 0.007 0.039 0.009 0.061 −0.1577

ComDef 0.014 0.131 0.103 0.136 −0.029 0.088 0.074 0.093 −0.003 −0.018 −0.006 −0.012 −0.0053

DistC 0.014 −0.015 −0.001 −0.012 −0.047 −0.035 −0.011 −0.029 −0.011 −0.034 −0.021 −0.026 −0.0093

ECOC 0.057 0.193 0.233 0.176 −0.081 0.068 0.074 0.088 −0.026 −0.083 −0.026 −0.076 −0.0141

FD −0.094 −0.038 −0.006 −0.041 −0.158 −0.037 −0.043 −0.037 −0.026 −0.071 −0.032 −0.064 −0.0823

k-WTA 0.047 −0.032 −0.024 −0.013 −0.138 −0.045 −0.048 −0.04 −0.008 −0.018 −0.026 −0.041 −0.0053

Odds −0.036 0.011 0.009 0.017 −0.01 0.03 0.024 0.036 −0.002 −0.017 −0.004 −0.002 −0.1809

Vanilla 0.707 0.529 0.46 0.531 0.234 0.123 0.111 0.118 0.993 0.961 0.991 0.939 0.9356

Table A16. Clean prediction accuracy of the Odds defense on Fashion-MNIST and CIFAR-10 with
different FPRs.

FPR 1% 10% 20% 30% 40% 50% 80%

FashionMNIST 78.6% 79.6% 78.5% 79.5% 78.6% 78.8% 79.1%

CIFAR-10 0.3% 27.8% 43.2% 61.1% 75.2% 86.2% 99.3%

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of
the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.

2. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition . arXiv 2014, arXiv:1409.1556.
Available online: https://arxiv.org/abs/1409.1556 (accessed on 16 September 2021).

406



Entropy 2021, 23, 1359

3. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. Available
online: https://arxiv.org/abs/1412.6572 (accessed on 16 September 2021).

4. Papernot, N.; McDaniel, P.D.; Goodfellow, I.J.; Jha, S.; Celik, Z.B.; Swami, A. Practical Black-Box Attacks against Machine
Learning. ACM Asia CCS 2017, 2017, 506–519.

5. Chen, P.Y.; Zhang, H.; Sharma, Y.; Yi, J.; Hsieh, C.J. Zoo: Zeroth order optimization based black-box attacks to deep neural
networks without training substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
Dallas, TX, USA, 3 November 2017; pp. 15–26.

6. Chen, J.; Jordan, M.I. Boundary Attack++: Query-Efficient Decision-Based Adversarial Attack. arXiv 2014, arXiv:1904.02144v1.
Available online: https://gaokeji.info/abs/1904.02144v1 (accessed on 16 September 2021).

7. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199. Available online: https://arxiv.org/abs/1312.6199 (accessed on 16 September 2021).

8. Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in machine learning: from phenomena to black-box attacks us-
ing adversarial samples. arXiv 2016, arXiv:1605.07277. Available online: https://arxiv.org/abs/1605.07277 (accessed on
16 September 2021).

9. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial
Examples. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018;
pp. 274–283.

10. Liu, Y.; Chen, X.; Liu, C.; Song, D. Delving into Transferable Adversarial Examples and Black-box Attacks. arXiv 2017,
arXiv:1611.02770. Available online: https://arxiv.org/abs/1611.02770 (accessed on 16 September 2021).

11. Pang, T.; Xu, K.; Du, C.; Chen, N.; Zhu, J. Improving Adversarial Robustness via Promoting Ensemble Diversity. Int. Conf.
Mach. Learn. 2019, 97, 4970–4979 .

12. Verma, G.; Swami, A. Error Correcting Output Codes Improve Probability Estimation and Adversarial Robustness of Deep
Neural Networks. In Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver,
BC, Canada, 8–14 December 2019.

13. Jia, X.; Wei, X.; Cao, X.; Foroosh, H. Comdefend: An efficient image compression model to defend adversarial examples. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 6084–6092.

14. Raff, E.; Sylvester, J.; Forsyth, S.; McLean, M. Barrage of random transforms for adversarially robust defense. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6528–6537.

15. Xiao, C.; Zhong, P.; Zheng, C. Enhancing Adversarial Defense by k-Winners-Take-All. In Proceedings of the International
Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

16. Kou, C.; Lee, H.K.; Chang, E.C.; Ng, T.K. Enhancing transformation-based defenses against adversarial attacks with a distribution
classifier. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

17. Roth, K.; Kilcher, Y.; Hofmann, T. The Odds are Odd: A Statistical Test for Detecting Adversarial Examples. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 5498–5507.

18. Liu, Z.; Liu, Q.; Liu, T.; Xu, N.; Lin, X.; Wang, Y.; Wen, W. Feature distillation: Dnn-oriented jpeg compression against adversarial
examples. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 10–15 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 860–868.

19. Carlini, N.; Athalye, A.; Papernot, N.; Brendel, W.; Rauber, J.; Tsipras, D.; Goodfellow, I.; Madry, A.; Kurakin, A. On evaluating
adversarial robustness. arXiv 2019, arXiv:1902.06705. Available online: https://arxiv.org/abs/1902.06705 (accessed on
16 September 2021).

20. Carlini, N.; Wagner, D. Adversarial examples are not easily detected: Bypassing ten detection methods. In Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 3–14.

21. He, W.; Wei, J.; Chen, X.; Carlini, N.; Song, D. Adversarial example defense: Ensembles of weak defenses are not strong. In Pro-
ceedings of the 11th {USENIX} Workshop on Offensive Technologies ({WOOT} 17), Vancouver, BC, Canada, 14–15 August 2017.

22. Tramer, F.; Carlini, N.; Brendel, W.; Madry, A. On adaptive attacks to adversarial example defenses. arXiv 2020, arXiv:2002.08347.
Available online: https://arxiv.org/abs/2002.08347 (accessed on 16 September 2021).

23. Dong, Y.; Fu, Q.A.; Yang, X.; Pang, T.; Su, H.; Xiao, Z.; Zhu, J. Benchmarking Adversarial Robustness on Image Classifica-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020.

24. Mahmood, K.; Nguyen, P.H.; Nguyen, L.M.; Nguyen, T.; van Dijk, M. BUZz: BUffer Zones for defending adversarial exam-
ples in image classification. arXiv 2019, arXiv:1910.02785. Available online: https://arxiv.org/abs/1910.02785 (accessed on
16 September 2021).

25. Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning. IEEE Trans. Neural Netw.
Learn. Syst. 2019, 30, 2805–2824. [CrossRef] [PubMed]

26. Brendel, W.; Rauber, J.; Bethge, M. Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning
Models. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April 30–3
May 2018.

407



Entropy 2021, 23, 1359

27. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv
2021. arXiv:1706.06083. Available online: https://arxiv.org/abs/1706.06083 (accessed on 16 September 2021).

28. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy (sp), San Jose, CA, USA, 22–26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 39–57.

29. Guo, C.; Gardner, J.R.; You, Y.; Wilson, A.G.; Weinberger, K.Q. Simple black-box adversarial attacks. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.

30. Chen, J.; Gu, Q. Rays: A ray searching method for hard-label adversarial attack. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 1739–1747.

31. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial examples in the physical world. arXiv 2017. arXiv:1607.02533.
32. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting adversarial attacks with momentum. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 9185–9193.
33. Chen, P.Y.; Sharma, Y.; Zhang, H.; Yi, J.; Hsieh, C.J. Ead: Elastic-net attacks to deep neural networks via adversarial examples. In

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
34. Chen, J.; Jordan, M.I.; Wainwright, M.J. Hopskipjumpattack: A query-efficient decision-based attack. In Proceedings of the

2020 IEEE Symposium on Security and Privacy (sp), San Francisco, CA, USA, 17–21 May 2020; IEEE: Piscataway, NJ, USA, 2020,
pp. 1277–1294.

35. Byun, J.; Go, H.; Kim, C. Small Input Noise is Enough to Defend Against Query-based Black-box Attacks. arXiv 2021,
arXiv:2101.04829. Available online: https://arxiv.org/abs/2101.04829 (accessed on 16 September 2021)

36. Athalye, A.; Engstrom, L.; Ilyas, A.; Kwok, K. Synthesizing robust adversarial examples. In Proceedings of the International
Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 284–293.

37. Carlini, N.; Wagner, D. MagNet and “Efficient Defenses against Adversarial Attacks” Are Not Robust to Adversarial Examples.
arXiv 2017, arXiv:cs.LG/1711.08478. Available online: https://arxiv.org/abs/1711.08478 (accessed on 16 September 2021).

38. Xie, C.; Wang, J.; Zhang, Z.; Ren, Z.; Yuille, A. Mitigating adversarial effects through randomization. arXiv 2018, arXiv:1711.01991.
Available online: https://arxiv.org/abs/1711.01991 (accessed on 16 September 2021).

39. Krizhevsky, A.; Nair, V.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Available online: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 16 September 2021)

40. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv
2017. arXiv:1708.07747. Available online: https://arxiv.org/abs/1708.07747 (accessed on 16 September 2021).

41. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

42. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

43. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. Available online: https:
//arxiv.org/abs/1412.6980 (accessed on 16 September 2021).

44. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. Lect. Notes Comput. Sci. 2016, 630–645.
[CrossRef]

45. Kou, C.K.L.; Lee, H.K.; Ng, T.K. A compact network learning model for distribution regression. Neural Netw. 2019, 110, 199–212.
[CrossRef] [PubMed]

408



entropy

Article

Feature Selection for Regression Based on Gamma Test Nested
Monte Carlo Tree Search

Ying Li 1, Guohe Li 1,* and Lingun Guo 1,2

Citation: Li, Y.; Li, G.; Guo, L.

Feature Selection for Regression

Based on Gamma Test Nested Monte

Carlo Tree Search. Entropy 2021, 23,

1331. https://doi.org/10.3390/

e23101331

Academic Editors:

Luis Hernández-Callejo,

Sergio Nesmachnow and

Sara Gallardo Saavedra

Received: 31 August 2021

Accepted: 7 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Key Lab of Petroleum Data Mining, Department of Geophysics, China University of Petroleum,
Beijing 102249, China; 2016315014@student.cup.edu.cn (Y.L.); 2019310406@student.cup.edu.cn (L.G.)

2 College of Software, Henan Normal University, Xinxiang 453007, China
* Correspondence: lgh102200@sina.com

Abstract: This paper investigates the nested Monte Carlo tree search (NMCTS) for feature selection
on regression tasks. NMCTS starts out with an empty subset and uses search results of lower
nesting level simulation. Level 0 is based on random moves until the path reaches the leaf node.
In order to accomplish feature selection on the regression task, the Gamma test is introduced to
play the role of the reward function at the end of the simulation. The concept Vratio of the Gamma
test is also combined with the original UCT-tuned1 and the design of stopping conditions in the
selection and simulation phases. The proposed GNMCTS method was tested on seven numeric
datasets and compared with six other feature selection methods. It shows better performance than the
vanilla MCTS framework and maintains the relevant information in the original feature space. The
experimental results demonstrate that GNMCTS is a robust and effective tool for feature selection. It
can accomplish the task well in a reasonable computation budget.

Keywords: feature selection; regression; nested monte carlo tree search (NMCTS); filter; gamma
test; GNMCTS

1. Introduction

Feature selection is a commonly used procedure in data pre-processing. It is further
categorized into the filter, wrapper and embedded methods. The filter method generates
an optimal feature subset according to a certain evaluation function; it is independent of
a succeeded classifier or regressor. Therefore, it can obtain the final result faster. On the
contrary, the wrapper method evaluates feature subset according to classifier or regressor
result. Thus, it can achieve better performance on the classifier or regressor, but it takes
a longer time for the whole process. The embedded method integrates feature selection
and model training together. It utilizes learned hypotheses to accomplish feature selection
during model-optimized training. In order to achieve a more flexible model combination,
the filter method is a good choice.

The Monte Carlo Tree Search (MCTS) method has achieved many states of art perfor-
mances in the game domain, such as Go [1,2], LOA, Bubble Breaker, SameGame, etc. [3].
These games can be viewed as a large-scale Markov decision process. From this perspective,
it can also deal with online planning, route scheduling and combinatorial optimization
problems. The success of AlphaGo has had a profound influence on artificial intelligence
(AI) approaches. Many reinforcement learning methods were adapted in feature selection
problems and achieved satisfactory results. Typically, MCTS for feature selection has devel-
oped many fine frameworks [4–6]. It can be categorized into the filter or wrapper method
depending on the specific framework design. On the one hand, the classifier or regressor
results can be directly returned as a reward. On the other hand, evaluation value calculated
from certain criteria such as information gain, Fisher’s score, etc., can be used as a reward
during iteration. The process can then be considered as a filter method. To be specific, the
tree search combines selective strategy and simulation strategy called rollout to obtain the
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optimal solution. It has a trade-off of exploration versus exploitation, which is also well
known as the e–e dilemma. The UCT technique is the most popular way to control the
growth of the search tree. The UCB-tuned1 was proposed soon after; this technique adapted
well in single-player games, so in this paper, its basic form was also used for feature subset
selection. Typically, this paper mainly focused on the regression task. Gamma test was
introduced to play the role of the evaluation function. Since MCTS is based on selective
sampling and simulation, the result is backpropagated until the episode ends; node values
are only updated until then. Speed of convergence and efficient calculation becomes a key.
The Gamma test [7–10] is a non-parametric tool to measure the non-linear relationship
between inputs and outputs. It has time complexity O(Mlog M), where M is the number of
data points. One run of the Gamma test for thousands of data points usually takes a few
seconds. Therefore, the Gamma test can fit this task well. Usually, MCTS takes random
moves or follows a simple heuristic strategy during simulation. Nested MCTS (NMCTS)
has a stronger performance compared to regular MCTS [11]. NMCTS has beaten MCTS in
the deterministic Markov decision process domains such as SameGame, Clickomania. It is
natural to expect NMCTS could achieve better performance in feature selection compared
to MCTS. NMCTS of higher nesting level uses best search result of lower nesting level
as simulation result. A level 1 search corresponds to regular MCTS. Based on the MCTS
feature selection method, we proposed the Gamma test nested MCTS method for feature
selection in this paper. The main contributions of the study are listed as below:

• The novel method GNMCTS is proposed to solve feature selection on regression tasks,
which is less explored in recent researches;

• GNMCTS uses the Gamma test as a reward function, which is easy to implement and
takes only a few seconds on a dataset with tens or hundreds of feature dimensions;

• GNMCTS searches the feature space more efficiently through nesting; the two hyper-
parameters, nesting level and iteration numbers, are flexible to tune, which can be set
to different values on different nesting levels;

• GNMCTS is tested on seven real-world datasets, and the results are compared with
the other six feature selection methods based on reinforcement learning. The result
shows the superiority of GNMCTS.

The paper is organized as follows: Section 2 briefly reviews the related work. In
Section 3, the background methodology on the basic MCTS framework of feature selection
is briefly introduced. Section 4 focuses on the GNMCTS method. Given the background of
MCTS application in the feature selection domain in Section 4.1, NMCTS was extended to
solve the problem in Section 4.2. A revised reward function based on the Gamma test is
introduced in Section 4.3. Section 5 mainly compared GNMCTS with other feature selection
methods on UCI and WEKA datasets. Conclusions and future work are stated in Section 6.

2. Related Work

Feature selection is widely used during data pre-processing. It aims to reduce the data
dimensions without losing valuable information and accelerate the succeeded tasks while
retaining high accuracy.

The wrapper methods are dependent on the specific classification or regression al-
gorithms. The result of the classifier or regressor acts as an evaluation standard for the
candidate feature subsets. Huang [12] proposed a method called FCSVM-RFE for gene
detection, where representative genes are ranked by SVM-RFE after gene clustering. Ma-
sood [13] proposed to use an incremental search strategy combined with an extreme
learning machine classifier. The research of these wrapper methods focused on alleviating
time complexity. However, the inherent property of an expensive computation budget
is not easy to conquer. Filter methods employ certain measurements such as informa-
tion gain [14] to evaluate subsets. The main focus lay on improving accuracy, but most
researchers pay attention to classification tasks that are not appropriate for regression.
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Hybrid methods take advantage of both categories. These methods have independent
metrics and specific learning algorithms to measure the subsets.

From the perspective of searching strategy, feature selection methods can be catego-
rized into exhaustive, heuristic, meta-search. Exhaustive search is basically impossible
to implement on real-world datasets. This leaves the researchers two directions [15] to
explore search space: guiding the search process under specific heuristics or using greedy
hill-climbing methods. The latter is often simple to implement, such as sequential for-
ward or backward selection (SFS, SBS), the best first search. These methods follow a
monotonic behavior of feature selection. The popular heuristics include genetic algorithm
(GA), ant colony optimization (ACO) and particle swarm optimization (PSO). Nguyen [16]
presented a comprehensive survey on the state-of-the-art works applying swarm intelli-
gence to achieve feature selection in classification, with a focus on the representation and
search mechanisms. Sharma [17] conducted a systematic review methodology for synthesis
and analysis of one hundred and seventy-six articles. The parameters related to these
nature-inspired methods are complex to control and needed to be tuned with great effort.
While feature selection based on reinforcement learning method was recently developed
with the success of AlphaGo. Fan W. [18] proposed an Interactive Reinforced Feature
Selection (IRFS) framework that guides agents by not just self-exploration experience but
also diverse external skilled trainers to accelerate learning for feature exploration. The
hyper-parameters in these methods are relatively easy to control, and fewer parameters
require to be tuned.

The stopping criteria have a direct influence on the size of the candidate feature
subset. It indicates when the search procedure should be stopped. The commonly used
criteria include (1) pre-defined number of iterations, (2) pre-defined number of features,
(3) difference or improvements between successive iteration steps and (4) judgment by
specific evaluation functions. The above criteria do not couple with different methods
flexible enough. Automatic stopping criteria should be customized depending on the
specific learning algorithms.

In summary, to overcome the problems stated above, the proposed method in this
paper focused on the design of the filter feature selection method for the regression task.
In order to evaluate the candidate subsets, the Gamma test was used, and NMCTS in
game theory was introduced with the merits of easily controllable hyperparameters. The
automatic stopping criteria were designed considering the structure characteristic of the
search tree and the property of the Gamma test.

3. Background Methodology

3.1. Basic Procedure of Monte Carlo Tree Search (MCTS) for Feature Selection

Feature selection can be regarded as a sequential decision problem. It has many
common points with a single-player game that has no opponent. To be specific, the action
space and state space are finite and discrete. Given a set of features FAll = {X1, X2, . . . , XM},
MCTS algorithm will finally return the best action set as the best feature subset Fbest. A
brief introduction of MCTS for the feature selection problem is represented in Figure 1. The
algorithm can be summarized into the following four basic steps, which are:

(1) Selection: Let Nroot define the root node where the feature subset is empty (i.e.,
Froot_sub ∈ ∅), starting from Nroot, use some tree policy to gradually descend in-
side the tree until the path reaches a non-terminal state leaf node Ni. Choosing
an action corresponds to adding a selected feature to the candidate feature subset
Fsub = Fsub ∪ {Ni}, Fsub is also used as the state of Ni;

(2) Expansion: Expand Ni until it has no more legal actions that correspond to the case
where the remaining feature set is empty (i.e., FAll\Fsub = ∅) or pre-conditioned
number of expanded children is reached. Then, add expanded children node Nj to
Ni. Initialize Nj with new node state as Fsub = Fsub ∪

{
Nj
}

, record its parent Ni. The
features already appeared in Fsub will no longer be in the legal actions;
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(3) Simulation: This procedure is also called a rollout or a playout. In general, starting
from the leaf node Ni, the successive nodes are chosen step by step by some simulation
policy until it reaches a terminal state or pre-conditioned computation budget;

(4) Backpropagation: The simulation result is backpropagated through the nodes during
the selection phase on the path, and their statistics are updated. The statistics include
the visit number of nodes and their values.

Figure 1. Monte Carlo Tree Search (MCTS).

The tree search strategy includes two policies. The two policies involved in the
selection phase and simulation phase, respectively, are:

(1) Tree policy: It is a strategy to select features. Furthermore, it can be split into two
aspects. One is selected during the tree build-up period, and another is the final selection
of picking up the best feature sequence Fbest. The former has many variations [19]; the most
popular version proposed by Auer et al. is called UCB1, represented by Equation (2), the
policy indicates to execute an action with promising potentials which can maximize value
in Equation(2),

μj =
Q(s, a)
n(s, a)

(1)

UCB1 = μj +

√
Ce· ln n

nj
(2)

where μj defines average gain of the selected feature, s is the current state which represents
Fsub in the feature selection problem, a represents the currently selected action that corre-
sponds to adding a new feature to the current subset. Q(s, a) is an instant reward after
adding the new feature to the current subset. n(s, a) defines the number of visits of the
current node ni, nj defines the number of visits of its children nodes. With the increasing
visited number of uncertainty nodes, the asymmetrical growing search tree gradually
prefer those nodes that gain a higher exploitation score μj. The confidence interval shrinks
with repeated visits.

To a large degree, how much exploration part accounts for evaluation result relies on
the exploration constant Ce. Aiming at the choice of this parameter, Oleksandr I. Marchenko
proposed the MCTS-TSC (tree shape control) method, which used the original depth–width
criteria [20]. For the feature selection problem, there is no fixed shape such as depth
dominant or width dominant for the search tree. It is implicit in constraining the growing
direction of the tree. Considering the complexity of the algorithm and computation budget,
Ce chosen by trails is a better and easier idea, for those who do not care about the cost may
combine the newest technique on pruning.
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For the final feature subset decision, the target is to achieve the highest classification
accuracy or minimum regression error, so the tree should choose nodes with the best score
record that have been seen so far rather than the average score.

Default policy: It is a strategy to implement a rollout. There are two ways to perform
this: either by a uniform random selection policy or by some simple heuristic based on
prior domain knowledge. The enhancements on the rollout policy can be found in Cameron
B. Browne [21].

The pseudocode for MCTS is listed in Algorithm 1 as follows:

Algorithm 1 MCTS(time_limit,iteration_limit,explorationRate)
//explorationRate defines the degree of exploration

root = treeNode(initialState, None)
While (time<time_limit & count<iteration_limit) do

randomPolicy(state):
while not state.isTerminal():

try:
action = random.choice(state.getPossibleActions())

except IndexError:
raise Exception("Non-terminal state has no possible actions: " + str(state))

state = state.takeAction(action)
return state.getReward()

def selectNode(self, node):
while not node.isTerminal:

if node.isFullyExpanded:
node = self.getBestChild(node, self.explorationConstant)

else:
return self.expand(node)

return node
def expand(self, node):

actions = node.state.getPossibleActions(node)
for action in actions:

newNode = treeNode(node.state.takeAction(action), node)
node.children[action] = newNode
if len(actions) == len(node.children):

node.isFullyExpanded = True
return newNode

def backpropogate(self, node, reward):
while node is not None:

node.numVisits += 1
node.totalReward += reward
node = node. Parent

3.2. Gamma Test

The Gamma test is a non-linear modeling and analysis tool to test the relationship
between input and output variables on the numerical dataset. It fits the job of feature
subset selection fast enough; the time complexity of the Gamma test is O(MlogM), where
M is the number of input samples. One single run of the Gamma test takes roughly
only a few seconds on a dataset that consists of thousands of instances with hundred
features. The Gamma test has already been applied in many industrial and natural resource
problems [22–25]. In the section, a brief introduction of the calculation steps and theory
are organized.

The relationship between input Xi and output yi can be represented by a smooth
function in the following form:

yi = f (Xi) + r (3)

where f (X) is the assumed regression model, r is a noise that cannot be explained by f (X).
When there is no noise, r is zero.
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Define XN[i,k] as a list of k nearest neighbors of the ith point Xi in the input space
{X1, X2, X3, . . . , XM } found by KD tree. p is defined as the number of the nearest neighbors
used to calculate statistic Γ. Based on many researches and experiments [26], it is shown
that p = 10 can obtain better results in a reasonable time.

Define yN[i,k] as the list of the target value corresponding to the nearest neighbor
sequence XN[i,k]. It should be noticed that they are not the list of kth nearest neighbors to
the ith point yi. Calculate the Euclidean distance between the nearest neighbors and the
query point in the input and output space,

δM(k) =
1
M

M

∑
i=1

∣∣∣XN[i,k] − Xi

∣∣∣2 (4)

γM(k) =
1

2M

M

∑
i=1

∣∣∣yN[i,k] − yi

∣∣∣2 (5)

By Equation (3), and the continuity of unknown function f (X), the probability of
γM(k) → var(γ) as δM(k) → 0 . However, it is impossible for δM(k) to reach zero infinitely.
Therefore, the limit value γM(k) that infinitely approximates var(γ) cannot be directly
calculated. Finally, by Equation (5),

γM(k) → var(γ) as δM(k) → 0 (6)

the Gamma test assumes that the relationship between the k-neighbor pairs δM(k), γM(k)
are approximately linear, and the slope is a constant A,

γM(k) = AδM(k) + var(γ) + o(δM(k)), as δM(k) → 0 (7)

Based on the above assumptions, the least-squares linear fit is performed on {(δM(k),
γMt(k)), 1 < k ≤ p}. Equation (7) can be written as

γM(k) = AδM(k) + Γ (8)

The intercept Γ is the estimated noise variance. The evidence of linear progression
can be found in the research by Evans [9]. In some cases, Γ value is negative. The first
reason is that number of samples is too small, such as under a hundred points, there are
no sufficient data points to obtain an accurate outcome. Another reason is the regression
model is so smooth that data points can be fully explained. When Γ ≤ 0, it is replaced by
|Γ|. Similarly, the case that Γ > var(y) may occur. When this case is true, some pre-process
on data, such as abnormal point detection, should be performed. Since the Gamma test
can only examine the non-linear relationship between inputs and output, linear regression
should also be considered.

4. GNMCTS for Feature Selection

4.1. Nested Monte Carlo Tree Search Subsection

The nested Monte Carlo tree search (NMCTS) was proposed by Hendrik Baier [11]; it
was an enhancement work on Nested Monte Carlo Search (NMCS) [21]. The method was
tested on many single-player games such as Solitare, SameGame, Bubble Breaker, etc. [27–30].
It was compared with basic NMCS on different nest levels. NMCTS outperformed regular
MCTS on those single-player games, and it can also deal with large Markov decision
processes. Therefore, it should adopt the feature selection problem well. NMCTS is
different from MCTS in the simulation phase. Selection, expansion and backpropagation
phases still remained the same as described in Section 3.1. The NMCTS combined MCTS
on a lower base level, leaving itself called recursively on higher nest levels. The techniques
of MCTS, such as UCB-tuned1, can also be used in NMCTS. While MCTS uses random
feature selection beginning with a given state until reaching a terminal state during rollout,
NMCTS uses a heuristic that for every feature selection starting from the given state, and
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level n search calls level n − 1 search result. Then, select the feature with the highest score
from level n − 1 search. As illustrated in Figure 2, curve lines represent for level 0 search.
It is a normal random simulation. Then, level 1 search calls the result of level 0 search and
selects the action with the best score. Level 2 search calls level 1 search and selects the
feature with the best score.

Figure 2. A level 2 NMCTS illustration.

The best feature sequence is recorded every iteration and compared in case the perfor-
mance is not improved by adding the new feature. After the computation budget runs out,
the best score and sequence are returned. The pseudocode of NMCTS is shown below in
Algorithm 2.

Algorithm 2 NMCTS (startNode, Seq, max_iter, level)
//Seq defines best Fsub the tree has found so far

best_reward = inf.
best_seq = ()
Current_node = startNode
For iteration number in the called level:

While Current_node is not terminal and not fully expanded:
Current_node = selection(Current_node)
Seq = Current_node.feature_subset
If level=1:

While Current_node is not terminal:
Reward, Seq = Random_rollout(Current_node)

Else:
Reward, Seq = NMCTS(Current_Node, Seq, max_iter, level-1)

Back_propogation(Current_Node, reward)
If Reward < best_reward:

best_reward = reward
best_seq = Seq

4.2. Gamma Test as Evaluation Function for Regression Task

Next, a simple example was illustrated to show that the Gamma test could be used in
feature selection.

The butterfly dataset [31,32] consists of two relevant features, three redundant features
and three irrelevant features, which correspond to X1, X2, J3, J4, J5, I6, I7 and I8. In this
trial, we generated 10,000 data points with eight features above. Figure 3 illustrates a 3d
projection of relevant feature values X1 and X2 on the Y-axis. In Figure 4, an irrelevant
feature I6 was added, which was considered as noise. The exhaustive search must traverse
28−1 combinations. As it took only a few seconds, we computed the gamma value for
all the possible combinations, and the minimum gamma value should indicate the best
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relevant feature combination. The combination of the first two features obtained the
minimum gamma value of 0.00043 among all cases, which is close to zero, as shown in
Figure 5. This validated Gamma test estimated the best feature subset correctly.

Figure 3. Butterfly 3d projection with X1, X2 and Y.

Figure 4. Butterfly scatter plot with X1, X2, I6 and Y.

 

Figure 5. Gamma scatter plot for the smooth function.
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4.3. Gamma Test Modified Node Selection Policy

In two-player games, the reward is often denoted with {−1,0,1}, representing loss,
draw or win. The reward interval of a node falls within [−1,1]. The value of Γ has a large
range of variations in different feature subsets. According to Maarten P.D. Schadd [3],
there are two solutions; one is scaling the reward back into the interval [−1,1], and the
other solution is adding a constant to calculate the reward that would fit the application
domain. In the feature selection problem, although the exact maximum Γ value is not
known, according to Equation (7), it can be evaluated by the real variance of the target
data var(y). For feature selection, a modified UCT version is used. The target is to
maximize Equation (9),

μj + Ce·
√

ln n
nj

+

√√√√ΣΓ2 − nj ∗ μ2
j + D

nj
(9)

The left two terms of Equations (9) are the same in Equation (2), the third term contains
the sum of squared rollout reward ΣΓ2 represents a possible deviation of the child node, it
is corrected by the expected results nj ∗ μ2

j . Ce and D are constants discussed above aiming
at exploring rarely visited nodes. In our experiment, D is set with the value of var(y).
Finally, the best feature subset can be found by best policy π∗, which minimizes the Γ value;
this can be written in the form of Equation (10).

π∗ =
argmin

π
Γ (10)

An indicator variable defined:

Vratio =
Γ

var(y)
(11)

Vratio provides a scale-invariant measure; normally, the value is in the range [0, 1]. If
the Vratio value is close to zero, then it means the input variable has a strong non-linear
relationship with the target. If the Vratio value is close to one, then the prediction target
can hardly be explained by input variables; the performance of the regressor is more likely
to be a random walk.

To be noted, the filter feature selection method has to generate a subset with a certain
number of features. Moreover, the final number of selected features has a direct influence on
the result and succeeding computation cost. Romaric [5] proposed to add a stopping feature
in the default policy. A stopping feature is chosen with probability rand(0, 1) > 1 − qd,
where d is the depth of the current node in the simulation and q is a constant, where q < 1.
With the growth of the tree, d becomes larger, the probability of the stopping feature being
selected also becomes bigger. In this paper, the Vratio is considered to replace q, and the
modified stopping condition becomes:

rand(0, 1) > (1 − Vratio)
d (12)

The intuition for the inequality is to achieve a satisfactory regression result with a
small number of features. Since Vratio can show the goodness of fitting by the current
feature subset, the smaller Vratio is, the smaller the probability of selecting the stopping
feature. Then, the tree can further explore the potential path. Otherwise, the larger Vratio
is, the sooner the simulation phase ends. The deeper the search tree grows, the bigger
probability for the stopping feature to be selected. Another stopping condition takes
consideration of the original feature set size of F. For a high dimension feature set, the
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timing for stopping should be delayed in case feature space is not explored enough. The
stopping feature will work if any case in Equation (12) or Equation (13) happens.

rand(0, 1) <
node.depth

size(F)
(13)

5. Experimental Results

This section demonstrates the performance of the NMCTS gamma algorithm on
selecting the best feature combination, and the experiments were conducted on seven
benchmark datasets. All the experiments were implemented in Python with environment
48 Intel(R) Xeon(R) Silver 4214 CPU 2.20 GHz and 125 GB of RAM.

5.1. Datasets

Seven datasets were used for comparison and performance validation. Datasets were
taken from two publicly available repositories [33,34], UCI and WEKA. Specific information
is shown in Table 1. The feature dimensions and the number of instances varied to gain
diversity in characteristics. Both the features and labels are numeric. If datasets contained
some ID information, then that column was deleted. The range of labels was listed in the
fifth column of Table 1. The Parkinsons_Updrs dataset is composed of a range of biomedical
voice measurements from 42 people with early-stage Parkinson’s disease. There are two
prediction targets, motor Updrs and total Updrs. To be convenient for comparison, we
only considered the total Updrs as a target in the experiments. However, one can calculate
the scores, respectively, using the proposed algorithm on multi-output datasets. The
Puma32h dataset was synthetically generated from a realistic simulation of the dynamics
of a Unimation Puma 560 robot arm. The task is to predict the angular acceleration of one
of the robot arm’s links. The Bank32nh was synthetically generated from a simulation
of how bank customers choose their banks. Tasks are based on predicting the fraction of
bank customers who leave the bank because of full queues. Ailerons addresses a control
problem, namely flying an F16 aircraft. The attributes describe the status of the airplane,
while the goal is to predict the control action on the ailerons of the aircraft. Pol describes a
telecommunication problem in a commercial application. Triazines predicts the activity
from the descriptive, structural attributes. Residential building includes construction
cost, sale prices, project variables, and economic variables corresponding to real estate
single-family residential apartments in Tehran, Iran, and the goal is to predict sale prices.

Table 1. Benchmark datasets.

No. Dataset Instances Features Label Range

1 Parkinsons_Updrs 5875 19 [5.0377,39.511]
2 Puma32h 4123 33 [−0.0847,0.0898]
3 Bank32nh 8192 33 [0,0.8197]
4 Ailerons 13,750 41 [−0.0036,0]
5 Pol 15,000 49 [0,100]
6 Triazines 186 61 [0.1,0.9]
7 Residential building 372 109 [50,6800]

5.2. Experimental Settings

We conducted five-fold cross-validation for all the comparison experiments. The
iteration number limit was set to 1000. The corresponding dimension reduction effect and
computation time were compared on six datasets of different sizes. The experiment was
repeated 20 times then took average values as results. For comparison purposes, the best
feature subsets of each feature selection method in Table 2 were tested on the same gradient
boosting regressor from the scikit-learn module. Specific parameters of this regressor were:
The number of estimators was set to 25, max depth was 4, min samples split was 2, the
learning rate was 0.2, the loss was the least square. Before inputting the algorithm, standard
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normalization was performed for all the datasets. Features with 0 variances that show no
contribution to the prediction model were deleted at first.

Table 2. Experimental methods.

Method Description

PSO Particle Swarm Optimization based method [35]
QBSO Q-learning based Bee Swarm optimization method [36,37]

MCTS RreliefF Improved relief feature selection algorithm based on MCTS [38]
MCTS RAVE Feature selection as a One-Player Game [39]

FSTD Feature selections using Temporal Difference [40]
GRNN General Regression Neural Network [41]

5.3. Comparison Methods and Metrics

We compared the NMCTS gamma algorithm with six state-of-the-art feature selection
methods for the regression task listed in Table 2. We mainly focused on feature selection
methods using reinforcement algorithms which included temporal difference learning,
Q-learning and enhanced MCTS methods.

A brief introduction of parameter settings related to methods in Table 2 are listed below:

• The objective function of particle swarm optimization (PSO) consists of customized
evaluation function results and the feature number reduction ratio. For comparison
purposes, the evaluation function’s part in it was substituted by the Gamma test;

• QBSO integrated the Bee Swarm Optimization algorithm with Q learning for solving
feature selection tasks. The original algorithm was designed for classification. In the
regression case, the fitness of BSO was substituted from the accuracy of the KNN
classifier to the mean square error of the KNN regressor. The reward function of Q
Learning only differed in minor sign modification from its original paper;

• For MCTS_RreliefF, as the ReliefF algorithm was used to implement classification on
multiclass outputs feature selection problem, we changed it into RreliefF algorithm;
the other framework in the paper remained the same, including most parameter
settings in [38];

• For MCTS with global rave and local rave (MCTS_RAVE), the reward function of
MCTS was originally AUC. It was also substituted by the Gamma test;

• For the Temporal Difference learning method, the reward function was also changed
into the Gamma test. Learning rate alpha was 0.5, epsilon in the ε-greedy strategy
was 0.5. Epsilon decay rate and alpha decay rate were set to 0.995, and the discount
parameter was 0.3, parameter b in heuristic was 0.6, stop condition parameter was 3;

• GRNN used the Radical basis function as the kernel. The kernel bandwidth was
decided by Silverman’s rule of thumb. Type of the gradient search solver was chosen
L-BFGS-B;

• GNMCTS used level 2 nesting search. The iteration number of nesting was set to
10 for level 2 and 100 for level 1. The UCT exploration constant Ce was 0.3. The
expansion width of each node was 10. The rest parameters were the same with the
MCTS_RAVE method.

The final results were evaluated on seven metrics, including the mean squared error
(MSE), mean absolute error (MAE), R-square (R2), explained variance score (EV), dimension
reduction (DR) effect, confidence interval and computation time. The expressions of these
measurements are as follows:

MSE =
1
m ∑m

i=1(yi − ŷi)
2 (14)

MAE =
1
m ∑m

i=1|yi − ŷi| (15)
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R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi −

_
yi

)2
(16)

EV = 1 − ∑m
i=1(yi − ŷi)

2 − 1
m ∑m

i=1|yi − ŷi|

∑m
i=1(yi −

_
yi

)2
(17)

P(Lm < ŷi i < Um) = γ (18)

The smaller MSE and MAE are, the more accurate predictions are. On the contrary,
the larger R2 and EV are, the more powerful of model predictions are. When the value is
close to 1, it indicates the model can perfectly predict all data correctly. When the value is
close to 0, it indicates the model performance essentially acts as a baseline model. When
the value drops below 0, it indicates the model is worse than the baseline model. This
could be the reason why there is no linear or non-linear relationship between inputs and
outputs. The difference between R2 and EV lies in the mean value of the residual, i.e.,
whether 1

m ∑m
i=1|yi − ŷi| is 0 or not. In Equation (18), γ is a number between 0 and 1, and it

was set 0.95 in this paper. Lm, Um are lower and upper confidence bound of variable yi.
The dimension reduction ability is represented by Equation (19). The numerator and

denominator are the number of selected features and total feature subset, respectively.

DR = 1 − #selected features
total features

(19)

5.4. Results and Comparisons

According to the aforementioned parameter settings, experiments were conducted as
previously described.

As shown in Table 3a,b, GNMCTS obtained minimum MSE and MAE on Bank32nh
and Parkinson’s datasets. On the rest dataset, the results were very close to the best results
obtained by GRNN and PSO. GRNN obtained the four best records on triazines, Puma32h,
Pol, ailerons and residential building. This could explain why the GRNN method was
the wrapper feature selection method. It adjusted neural weights of the hidden layer
according to the MSE of regression. Therefore, it has inherent lower MSE and MAE than
filter methods, but it cannot deal with a high dimension dataset when the feature number
and instance number are large. Additionally, it took a much longer computation time
compared with other methods. GRNN failed when calculating the triazines dataset. These
were the main problems with GRNN. PSO obtained the smallest MAE and MSE on the
triazines dataset but did not perform well in other datasets. GNMCTS was robust and easy
to implement. The GNMCTS method obtained better results than MCTS_Rrelieff, PSO,
QBSO, MCTS_rave and TD_learning within the same time control. Specifically, GNMCTS
outperformed MCTS as expected on four datasets and achieved similar results on Puma32h,
Pol and Residential building datasets. This would improve if more iterations were allowed
on level 1 or 2 nest level. As the iteration limit was 1000 for both GNMCTS and MCTS,
this limited iteration number of GNMCTS on level 1 multiplied by that of level 2 must
equal 1000. This would weaken exploration ability on lower-level search space. With the
increase in iterations, GNMCTS would finally outperform MCTS. The results of GNMCTS
compared with the original dataset without feature selection had slightly improved or
maintained the same.
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Table 3. GNMCTS results compared with other methods on seven datasets.

(a) MSE:

MCTS_
RreliefF

GRNN_
isotropic

PSO QBSO MCTS_rave
TD_

learning
GNMCTS Original

triazines 0.2283 – 0.0172 0.2246 0.0183 0.0235 0.0182 0.0169
puma32h 6.60 × 10−5 6.50 × 10−5 6.90 × 10−5 9.07 × 10−4 6.60 × 10−5 9.22 × 10−4 6.70 × 10−5 6.90 × 10−5

pol 1330.2471 83.5928 1613.6182 1233.6613 99.4774 722.0634 96.1439 84.5149
bank32nh 0.0108 0.0074 0.0072 0.0133 0.0071 0.0151 0.0071 0.0071
ailerons 7.79 × 10−8 2.81 × 10−8 4.99 × 10−8 9.68 × 10−8 6.80 × 10−5 7.63 × 10−8 3.73 × 10−8 2.78 × 10−8

residential 94,879.2274 51,048.8556 1,107,680 1,098,121 51,887.8991 238,679.153 54,071.2573 54,071.2573
parkisons 18.2702 13.7788 64.3326 64.3017 14.2117 55.4174 13.6362 13.6377

(b) MAE:

Gradient
Boost

MCTS_
Rrelieff

GRNN_
isotropic

PSO QBSO MCTS _rave
TD_

learning
GNMCTS Original

triazines 0.1122 – 0.0928 0.1013 0.0951 0.0123 0.0984 0.0906
puma32h 0.0065 0.0064 0.0066 0.0234 0.0065 0.0235 0.0065 0.0066

pol 29.2173 5.3454 34.6598 27.6021 5.9007 18.0749 5.7809 5.4873
bank32nh 0.0732 0.0564 0.0557 0.0828 0.0556 0.0906 0.0552 0.0554
ailerons 1.99 × 10−4 1.22 × 10−4 1.69 × 10−4 2.40 × 10−4 6.59 × 10−3 2.11 × 10−4 1.44 × 10−4 1.21 × 10−4

residetial 153.4199 109.2683 723.8313 718.452 98.3058 321.5966 117.245 104.9476
parkisons 3.3436 2.8993 6.7796 6.8061 3.0077 6.1205 2.9299 2.9301

(c) R2:

Gradient
Boost

MCTS_
Rrelieff

GRNN_
isotropic

PSO QBSO MCTS_rave
TD_

learning
GNMCTS Original

triazines 0.0692 – 0.3046 0.0481 0.2249 0.0399 0.2479 0.3012
puma32h 0.9261 0.9267 0.9229 −0.0187 0.9256 −0.0353 0.925 0.9227

pol 0.2358 0.9519 0.073 0.2913 0.9428 0.5853 0.9449 0.9514
bank32nh 0.2699 0.4962 0.5136 0.103 0.513 −0.0156 0.5111 0.519
ailerons 0.5309 0.8309 0.6997 0.4171 0.9237 0.5411 0.7755 0.833

residetial 0.9343 0.964 0.2285 0.2354 0.9631 0.8338 0.962 0.9574
parkisons 0.7234 0.7912 0.0259 0.0264 0.7846 0.1608 0.7934 0.7934

(d) EV:

Gradient
Boost

MCTS_
Rrelieff

GRNN_
isotropic

PSO QBSO MCTS_rave
TD_

learning
GNMCTS Original

triazines 0.075 – 0.3192 0.0831 0.2346 0.0507 0.2646 0.3189
puma32h 0.9262 0.9268 0.923 −0.0165 0.9257 −0.0334 0.925 0.9227

pol 0.236 0.952 0.0732 0.2914 0.9428 0.5854 0.9447 0.9514
bank32nh 0.2701 0.4962 0.5137 0.1043 0.514 −0.0148 0.5111 0.5191
ailerons 0.5312 0.831 0.7001 0.4175 0.9238 0.5415 0.7756 0.833

residential 0.9358 0.9648 0.2346 0.2419 0.9638 0.8362 0.9625 0.9581
parkinsons 0.7237 0.7914 0.0266 0.027 0.7848 0.1611 0.7936 0.7936

(e) Confidence bound

Gradient Boost GNMCTS Original

triazines [0.6295,0.6691] [0.6209,0.6968]
puma32h [−0.0010,0.0028] [−0.0010,0.0028]

pol [27.5489,30.3289] [27.5455,30.3560]
bank32nh [0.0794,0.0875] [0.0795,0.0876]
ailerons [−8.8193 × 10−4,−8.6153 × 10−4] [−8.8513 × 10−4,−8.5827 × 10−4]

residential [1114.2649,1660.1809] [1114.0922,1649.7011]
parkinsons [20.9721,21.6521] [20.9665,21.6493]

In Table 3c,d, GNMCTS obtained satisfactory results. Compared with the original
dataset without feature selection, it slightly improved on three datasets and held the line
on triazines, Pol, Bank32nh, Ailerons. R2 and EV of QBSO and TD learning methods on
Puma32h were negative, and the TD learning method also obtained a negative value on
Bank32h. These results indicated the models were worse than the baseline model. The
baseline model took advantage of mean prediction values, so it was like a conserved guess
about the prediction result. This could be due to that the two methods had chosen irrelevant
features. GNMCTS, GRNN and MCTS rave methods especially outperform other methods
on the Pol dataset. In Table 3e, 95% confidence intervals of the mean value of prediction on
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seven datasets are presented. As shown in the table, the confidence interval slightly shrunk
or remained the same after feature selection compared to the original full feature set. The
interval between low and high confidence bound is within a reasonable value.

In order to demonstrate the ability of dimension reduction, the number of selected
features in Table 3 was compared with the original dataset. The DR result of GNM-
CTS is shown in Figure 6. GNMCTS could effectively reduce the feature dimension on
most datasets. The Parkinson updrs original dataset only contains 19 columns, so GN-
MCTS did not need too many iterations to find the optimal solution, but for comparison
purpose, we set the iteration number to 1000 which enforce GNMCTS return a relative
redundant solution.

 

Figure 6. Graphical representation of dimension reduction (DR) achieved by GNMCTS on
all datasets.

The computation times for each method were recorded, as shown in Figure 7. As
GRNN failed to predict triazines, the results of this dataset were not shown. With the same
iteration number, we can see QBSO was the most time-consuming method. The second
most time-consuming method was MCTS_Rrelieff, followed by PSO. The cost of the TD
learning method was closed to MCTS RAVE and GNMCTS but was less time-consuming
than GRNN.

 

Figure 7. Calculation time comparison illustration of different methods.
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We also performed the Friedman test on MAE in Table 3b. The Friedman test was
used further to compare the generalization of learning methods on different datasets. The
p-value was 1.8834 × 10−7, which was close to 0 and far smaller than 0.05. This means the
performances of methods apparently differed from one another.

6. Conclusions

The Monte Carlo Tree Search (MCTS) is a method for searching optimal decisions in a
given deterministic environment. It generates an asymmetrical growing tree because of
the searching strategy. It combines selectivity and randomness in the search process. The
merit of this kind of method is strong learning power without any domain knowledge.
This characteristic makes the reinforcement learning method a perfect inspiring player
and teacher. It can show some unique ways of solving problems where other methods
failed. The proposed method GNMCTS inherits the merits of MCTS and can obtain a better
robust result by nesting. Through experimental analysis, GNMCTS obtained satisfactory
results compared to other feature methods. It can effectively reduce the feature dimension
with a reasonable computation budget. GNMCTS can fit feature selection for regression
tasks for data with various dimensions. The Gamma test could indicate how many data
points it takes to converge, called the M-test; this could accelerate MCTS greatly. Future
work may focus on the revised UCT formulation combined with this M-test and develop
an algorithm-based parallelization of NMCTS.
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Abstract: This paper investigates the problem of adaptive event-triggered synchronization for
uncertain FNNs subject to double deception attacks and time-varying delay. During network
transmission, a practical deception attack phenomenon in FNNs should be considered; that is, we
investigated the situation in which the attack occurs via both communication channels, from S-C and
from C-A simultaneously, rather than considering only one, as in many papers; and the double attacks
are described by high-level Markov processes rather than simple random variables. To further reduce
network load, an advanced AETS with an adaptive threshold coefficient was first used in FNNs to
deal with deception attacks. Moreover, given the engineering background, uncertain parameters and
time-varying delay were also considered, and a feedback control scheme was adopted. Based on the
above, a unique closed-loop synchronization error system was constructed. Sufficient conditions that
guarantee the stability of the closed-loop system are ensured by the Lyapunov-Krasovskii functional
method. Finally, a numerical example is presented to verify the effectiveness of the proposed method.

Keywords: uncertain fractional order neural network; adaptive event-triggered scheme; double
deception attacks; time-varying delay

1. Introduction

Neural networks, which bridge the micro-world of communications with the physical
world for processing information as mathematical models, widely exist in a broad range of
areas, such as intelligent control, secure communication, and pattern recognition [1–4]. Due
to the complexity of the dynamic characteristics of some physical systems, a traditional
integer-order neural network model cannot accurately represent their dynamic behaviors.
Fractional order calculus is not only a generalized form of the traditional integer-order
calculus; it also has some irreplaceable properties of integral order calculus, such as the spe-
cial feature of time memory [4–7]. Based on these features, the fractional order differential
equation has been used to model neural networks [8–12]. Synchronization, among several
phenomena arising from the complex nonlinear dynamics of neural networks, has gained
lots of attention and has been applied in many integer-order neural networks [13–17].
However, there are few studies about the synchronization problem of FNNs, which was
the first motivation of this paper.

The event-triggered scheme (ETS) depends on a predefined event-triggered condition
to determine whether the sampled data should be transmitted to the next control unit rather
than a fixed period; therefore, replacing the time-triggered scheme (TTS) to save network
communication resources and guarantee the system’s performance simultaneously was
suggested in [16,18–23]. Although ETS was adopted in the latest three studies of different
fractional order, real-valued systems [21–23], there was still a common disadvantage: the
threshold coefficients of traditional ETS are all constants and cannot be timely adjusted
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to fit a system’s evolution. However, the adaptive event-triggered scheme (AETS), as a
combination of adaptive control and traditional ETS, can overcome the conservativeness
to make good use of communication resources dynamically. Therefore, designing an
AETS with an adaptive threshold coefficient for FNNs to further improve the utilization of
communication resources was the second motivation of the current work.

On the other hand, a security problem, due to advanced modern communication
technology, has recently emerged as a hot topic in the engineering applications [24,25],
especially in autonomous vehicle platooning [26,27]. Since the control components such as
sensors, controllers, and actuators are connected by the shared communication networks to
achieve remote control, compromise by malicious adversaries is extremely risky [22,28,29].
As a typical representative of malicious attacks, a deception attack can replace the original
data with false data to destroy the system [22,28–31]. To the best of the authors’ knowledge,
the synchronization problem of FNNs regarding deception attacks has been investigated
in the literature [22], although the deception attacks were only allowed to occur in the
controller to actuator (C-A) channel, governed by a Bernoulli variable. However, in com-
munication networks, attacks may occur in the sensor to controller (S-C) channel and C-A
channel simultaneously. Moreover, it is well known that a Bernoulli process is a special
kind of the Markov process. Therefore, inspired by the aforementioned discussion, investi-
gating double deception attacks governed by Markov processes in the synchronization of
FNNs under AETS was the third motivation. Given the actual environmental conditions,
neural networks inevitably suffer from noise and limitations of equipment, so uncertain-
ties in parameters and time-varying delay have also been taken into account. The main
contributions are outlined below.

(1) The synchronization problem of FNNs under network attacks is firstly proposed with
an AETS to further save network bandwidth resources. The AETS has an adaptive
law for adjusting its threshold coefficient such that the controller can timely access
system information to stabilize the error system.

(2) A generalized deception attack for FNNs is investigated; that is, the deception attack
may occur in S-C and C-A channels simultaneously. Moreover, the attack behaviors
are governed by independent Markov processes that are more extensive than the
Bernoulli processes in other studies.

(3) Parameters’ uncertainties and time-varying delay are also investigated in light of the
synchronization problem of FNNs and a double deception attack in the AETS. That is
more practicable to some extent.

The remainder of this paper is organized as follows. In Section 2, some preliminaries
are introduced and the model is formulated. The main results, including theorems, are
shown in Section 3. In Section 4, a simulation which verified the main results is presented.
Finally, the discussion and conclusions are presented in Section 5.

Notation: In this paper, Rn and ‖ · ‖ denote the n-dimensional Euclidean vector space
and the Euclidean norm for vectors, respectively. Rn×n is the set of all n × n real matrices.
T denotes the transposition of the vectors or matrices. I represents the identity matrix with
appropriate dimensions, and He[A] = A + AT . The symbol N represents the sets of all
natural numbers and N0 = N ∪ {0}. The signal “∗” denotes the symmetric block of matrix.
col(. . . ) and diag(. . . ) represent a column vector and a diagonal matrix, respectively.

Remark 1. Network attacks may occur in both S-C and C-A channels during network transmission,
as shown in Figure 1. We only found a few studies investigating relevant network attacks, and they
only used single-channel attacks: the C-A channel [22]; the S-C channel [32–34]. In addition, in
prior studies the behaviors of network attacks were governed by Bernoulli variables, usually. To
the authors’ knowledge, there is no literature simultaneously considering network attacks in S-C
and C-A channels in FNNs. Moreover, in this paper, the double network attacks governed by two
independent Markov processes are more general than Bernoulli processes.
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Figure 1. The framework of the closed-loop synchronization error system.

2. Preliminaries and Model Formulation

In this section, the basic definitions and relations about fractional calculus are intro-
duced; then a closed-loop synchronization error system is constructed.

2.1. Fractional Order Calculations

Definition 1. The fractional integral of order r for an integrable function f (x) : [t0,+∞] → R is
defined as [19]:

t0 Ir
t f (t) =

1
Γ(r)

∫ t

t0

f (β)

(t − β)1−r dβ,

where 0 < r < 1, and Γ(·) is the Gamma function.

Definition 2. The Caputo fractional derivative of order r > 0 for a function f (t) ∈ Cn([t0,+∞), R)
is defined as [22]:

t0 Dr
t f (t) =

1
Γ(n − r)

∫ t

t0

f (n)(β)

(t − β)r−n+1 dβ,

where t ≥ t0 and n is an integer such that 0 < n − 1 < r < n. Moreover, when 0 < r < 1,

t0 Dr
t f (t) =

1
Γ(1 − r)

∫ t

t0

f
′
(β)

(t − β)r dβ.

From the ldefinitions 1 and 2, it is clear that the Caputo fractional derivative satisfies
the following properties:

(1) t0 Dr
t t0 Is

t f (t) =t0 Dr
t t0 D−s

t f (t) =t0 Dr−s
t f (t), where r ≥ s ≥ 0.

(2) t0 Dr
t C = 0, where C is a constant.

(3) t0 Dr
t (v1 f (t) + v2g(t)) = v1t0 Dr

t f (t) + v2t0 Dr
t g(t), where v1 and v2 are any constants.

Lemma 1 ([22]). For a differentiable function vector x(t) ∈ Rn, an equality with the following
form is true:

t0 Dr
t (xT(t)Px(t)) ≤ 2xT(t)Pt0 Dr

t x(t),

where r and P ∈ Rn×n satisfy 0 < r < 1 and P > 0, respectively.
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Lemma 2 ([35]). For a given positive definite matrix R ∈ Rn×n, given scalars a, b satisfying a < b,
the following inequality holds for any continuously differentiable function e(x) in [a, b] → Rn:

(b − a)
∫ b

a
eT(s)Re(s)ds ≥

( ∫ b

a
e(s)ds

)T

R
( ∫ b

a
e(s)ds

)
.

Lemma 3 ([36]). For η(t) ∈ [0, η] and any matrices R, S ∈ Rn×n satisfying
[

R S
∗ R

]
≥ 0, the

following inequality holds:

−η
∫ t

t−η
ėT(s)Rė(s)ds ≤ ξT(t)Θξ(t),

where ξ(t) = col{e(t), e(t − η(t)), e(t − η)} and

Θ =

⎡⎣−R R − S S
∗ −2R + He[S] R − S
∗ ∗ −R

⎤⎦.

Lemma 4 ([32]). For given matrix S =

[
S11 S12
S21 S22

]
, where S12 = ST

21, the following conditions

are equivalent.
(1)S < 0;

(2)S22 < 0, S11 − S21S−1
22 S12 < 0.

2.2. Model Formulation

Consider the following uncertain FNN model as the master system:

t0 Dr
t x(t) = −(A + ΔA(t))x(t) + (B + ΔB(t)) f̂ (x(t))

+ (D + ΔD(t)) f̂ (x(t − η(t))) + I(t),

y(t) = Cx(t),

x(t0) = φ1(t0), t0 ∈ [−η, 0],

(1)

where 0 < r < 1 denotes the order of fractional order derivative. x(t) = (x1(t), x2(t), . . . ,
xn(t))T ∈ Rn is the state vector of the neuron. y(t) is the measurable output vector. η(t)
satisfies 0 ≤ η(t) ≤ η, and η̇(t) ≤ η̄ denotes the time-varying coupling delay. f̂ (x(t)) =
( f̂1(x1(t)), f̂2(x2(t)), . . . , f̂n(xn(t))) and f̂ (x(t − η(t))) = ( f̂1(x1(t − η(t))), f̂2(x(t − η(t))),
. . . , f̂n(x(t − η(t)))) ∈ Rn are the activation functions. I(t) is an external input vec-
tor. A = diag(a1, a2, . . . , an) ∈ Rn×n, are the self-feedback connection weight matrices.
B = (bij)n×n ∈ Rn×n, D = (dij)n×n ∈ Rn×n are the connection weight matrices. Further-
more, ΔA(t), ΔB(t), ΔD(t) are the matrices with time-varying parameters, which are norm
bounded and satisfy

[ΔA(t), ΔB(t), ΔD(t)] = GS(t)[Ea, Eb, Ed],

where G, Ea, Eb, Ed are known constant matrices, S(t) is an unknown time-varying matrix
function satisfying ST(t)S(t) ≤ I. Assume that master system (1) have a unique solution
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with initial value φ1(t0) and that it is continuously differential on t0 ∈ [−η, 0] [37].
Next, consider the corresponding slave system as follows:

t0 Dr
t x̂(t) = −(A + ΔA(t))x̂(t) + (B + ΔB(t)) f̂ (x̂(t))

+ (D + ΔD(t)) f̂ (x̂(t − η(t))) + I(t) + u(t),

ŷ(t) = Cx̂(t),

x̂(t0) = φ2(t0), t0 ∈ [−η, 0],

(2)

where x̂(t) = (x̂1(t), y2(t), . . . , x̂n(t))T is the state vector. Similarly, assume slave system
(2) also has a unique solution with initial value φ2(t0), which is continuously differential
on t0 ∈ [−η, 0], and u(t) is the control input, and the others are same as the master system.

In order to realize the synchronization between systems (1) and (2), define the syn-
chronization error z(t) = C(x̂(t)− x(t)), and the parameter uncertainty of each part is
treated as a whole. The following error system can be obtained:

t0 Dr
t e(t) = −Ae(t) + B f (e(t)) + D f (e(t − η(t))) + Gm(t) + u(t),

m(t) = S(t)(−Eae(t) + Eb f (e(t)) + Ed f (e(t − η(t)))),

z(t) = Ce(t),

e(t0) = φ(t0), t0 ∈ [−η, 0],

(3)

where f (e(t)) = f̂ (x̂(t))− f̂ (x(t)), f (e(t − η(t))) = f̂ (x̂(t − η(t)))− f̂ (x(t − η(t))). The
initial value of error system (3) is φ(t0) = φ2(t0)− φ1(t0), t0 ∈ [−η, 0]. It is well known
that system (3) has a unique solution [38].

Remark 2. The model considered in this paper can be regarded as a generalization of [22]. Such
an attack has only been considered in the C-A channel and governed by a Bernoulli process in
FNNs [22], in which the event-triggered threshold coefficient is a constant and cannot fit a system’s
evolution dynamically. The FNNs studied in this paper not only adopt AETS to further improve the
utilization of communication resources, but parameters’ uncertainties and double deception attacks
are also investigated.

The following assumption will be used later on.

Assumption 1. The neuron activation function f (e(t)) is continuous and bounded, and satisfies
the following conditions:

0 ≤ fi(e1(t))− fi(e2(t))
e1(t)− e2(t)

≤ φi, (4)

for i = 1, 2, . . . , n, where φi are known positive constants.

Let the two adversary network attacks during the communication be characterized by
two independent right-continuous Markov processes rt, qt on the probability space taking
values in the finite state space M = {1, 2, . . . , s} with generator π = (πij)s×s, ρ = (ρij)s×s
given by

Pr{rt+k = j|rt = i} =

{
πijk + o(k) i �= j,

1 + πiik + o(k) i = j.

Pr{qt+k = n|qt = m} =

{
ρmnk + o(k) m �= n,

1 + ρmnk + o(k) m = n.

where k > 0, limk→0
o(k)

k = 0, πij ≥ 0, i �= j, ρmn ≥ 0, m �= n, and for every i, m ∈ M, πii =
−∑j �=i πij, ρmm = −∑n �=m ρmn.

To save on network bandwidth as much as possible, an AETS was adopted in this
study. The sensor with sampling period h was time-driven, and the output error z(t) was
measured by the sensor at the sampling instant lh, l ∈ N0. Let tkh denote the triggered
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instant; then the next triggered instant is denoted by tk+1h. tk + ih, i ∈ N denotes the
current sampling time. Whether or not the sampled data z(tk + ih) should be transmitted
is determined by the adaptive event-triggered condition:

z̃T
k (t)Ωz̃k(t)− d(t)zT(tk + ih)Ωz(tk + ih) ≤ 0, (5)

where z̃k(t) = z(tkh)− z(tk + ih), z(tkh) denotes the latest transmitted data, Ω > 0 is a
weighting matrix to be designed, and the adaptive threshold coefficient d(t) satisfies the
following adaptive law:

ḋ(t) = (
1

d(t)2 − w̄
d(t)

)z̃T
k (t)Ωz̃k(t), (6)

where w̄ ≥ 1 can adjust the monotonicity of d(t) [32], and the next triggered instant can be
denoted as follows:

tk+1h = tkh + min{ih|z̃T
k Ωz̃k > d(t)zT(tk + ih)Ωz(tk + ih), i ∈ N}.

Based on the reality of the network communication, the delay sk is considered at the
instant tkh. Assume that 0 ≤ sk ≤ s̄, where s̄ = max{sk}. The sampling date z(tkh) will
be transmitted at the instant tk + sk. Then the time interval [tkh + sk, tk+1h + sk+1) can be
divided I0 = [tkh + sk, tkh + h + s̄), Ii = [tkh + ih + s̄, tkh + ih + h + s̄), i = 1, 2, . . . , δ − 1,
and δ = tk+1 − tk − 1, Iδ = [tkh + δh + s̄, tk+1 + dk+1). Then z̃k(t) = z(tkh)− z(tkh + ih) is
equivalent to:

z̃k(t) =

⎧⎪⎨⎪⎩
z(tkh)− z(tkh), t ∈ I0,
z(tkh)− z(tkh + ih), t ∈ Ii,
z(tkh)− z(tkh + δh), t ∈ Iδ

(7)

which can be written as

z̃k(t) = z(tkh)− z(t − τ(t)), t ∈ [tkh + sk, tk+1h + sk+1) (8)

in which

τ(t) =

⎧⎪⎨⎪⎩
t − tkh, t ∈ I0,
t − tkh − ih, t ∈ Ii,
t − tkh − δh, t ∈ Iδ.

(9)

According to Equation (9), it is easy to get

0 ≤ τ(t) ≤ h + s̄, t ∈ [tkh + sk, tk+1h + sk+1).

Remark 3. From the adaptive event-triggered condition (5), it is easy to know the minimum
event-triggered interval is a constant, which means that there is no Zeno behavior.

As shown in Figure 1, deception attacks may occur on the S-C communication channel,
and the integrity of normal transmission data will be damaged by malicious attacks. To
depict the stochastic occurrence modeling of deception attacks, Markov processes are
adopted in this paper. Then the control input in time interval [tkh + sk, tk+1h + sk+1), k =
1, 2, . . . , can be denoted as

zs(tkh, rt) = bs(rt)z(tkh) + b̄s(rt)gs(z(tkh)),

= bs(rt)
(

z(t − τ(t)) + z̃k(t)
)
+ b̄s(rt)gs(z(tkh)).

(10)
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where bs(1) = 1, bs(2) = 0, b̄s(rt) = 1 − bs(rt), and gs : Rn → Rn is the energy bounded
deception signal in the S-C communication channel satisfying

‖gs(x(t))‖ ≤ ‖Gsx(t)‖. (11)

where Gs ∈ Rn×n is a known constant matrix satisfying Gs > 0. If rt = 1, the data will be
transmitted normally without any attack. Conversely, rt = 2 means that malicious attack
signals occur in the S-C channel.

The main purpose of this study was to synchronize uncertain FNNs under AETS,
subject to double deception attacks and time-varying delay. Construct the state feed-
back controller:

u(t) = us(tkh, rt),

= Kzs(tkh, rt), t ∈ [tkh + sk, tk+1h + sk+1),
(12)

where the feedback gain matrix K needs to be determined.
In a similar routine to that of the S-C communication channel, when the released data

us(tkh, rt) are transmitted through the C-A communication channel, the channel may be
attacked again. Therefore, the control output signal can be denoted as

u(t) = uc(tkh, rt, qt),

= bc(qt)us(tkh, rt) + b̄c(qt)gc(us(tkh, rt)),

= bc(qt)bs(rt)KCe(t − τ(t)) + bc(qt)bs(rt)Kz̃(t) + bc(qt)b̄s(rt)Kgs(z̄(t))

+ b̄c(qt)gc(us(tkh, rt)), t ∈ [tkh + sk, tk+1h + sk+1),

(13)

where z̄(t) = z̃(t) + z(t − τ(t)), bc(1) = 1, bc(2) = 0, b̄c(qt) = 1 − bc(qt), and gc : Rn → Rn

is the energy bounded deception signal in the C-A communication channel satisfying

‖gc(x(t))‖ ≤ ‖Gcx(t)‖. (14)

where Gc ∈ Rn×n is a known constant matrix satisfying Gc > 0. For simplicity, for every
i, m ∈ M, rt = i, qt = m, bs(rt), bc(qt) are denoted in this paper by bs

i and bc
m, respectively.

Similarly, for a matrix P1(rt, qt), it is denoted by Pim
1 . In addition, for a matrix Pim

1 , there is
the following definition:

P̄im
1 = ∑

j∈M
πijP

jm
1 + ∑

n∈M
ρmnPin

1 . (15)

Then, it is easy to obtain the error system

t0 Dr
t e(t) = −Ae(t) + B f (e(t)) + D f (e(t − η(t))) + Gm(t) + bc

mbs
i Kz̃(t)

+ bc
mbs

i KCe(t − τ(t)) + bc
mb̄s

i Kgs(z̄(t)) + b̄c
mgc(us(tkh, rt)),

m(t) = S(t)(−Eae(t) + Eb f (e(t)) + Ed f (e(t − η(t)))),

z(t) = Ce(t),

e(t0) = φ(t0), t0 ∈ [−max{η, h}, 0].

(16)

The following two definitions will be used in the proof of Theorem 1.

Definition 3 ([39]). Let V(t, e(t), rt = i, qt = m) be the positive Lyapunov–Krasovskii functional
and L(·) be a weak infinitesimal operator. Then

E
{∫ t

0
LV(s, e(s), i, m)ds

}
= EV(t, e(t), i, m)− EV(0, φ(t0), r0, q0),

where E denotes the expectation.
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Definition 4 ([40,41]). The synchronization error system (16) is said to be globally, stochastically,
asymptotically stable in the mean square sense, if for any initial conditions φ(t0) defined on
[−max{η, h}, 0] and r0, q0 ∈ M the following condition is satisfied:

lim
t→∞

E
{∫ t

0
eT(s)e(s)ds | φ(t0), r0, q0

}
< ∞.

So far, a closed-loop synchronization error system (16) has been constructed. In the
following, in order to realize the synchronization between systems (1) and (2), the stability
of error system (16) will be proven.

3. Results

Two theorems are developed in this section. Firstly, the synchronization criterion for
systems (1) and (2) is presented in Theorem 1. Then, on the basis of Theorem 1, the criterion
for feedback controller design is developed by Theorem 2.

Theorem 1. Suppose Assumption 1 holds. The FNNs (1) and (2) are globally, stochastically,
asymptotically synchronized under the feedback control scheme (12) in the mean square sense, for the
given scalars r and control gain matrix K, if there exist positive definite matrices P, Ω, Pim

1 , Pim
3 , N1,

N3, Rim
1 , Rim

2 , Mim
1 , Mim

2 , L1, L2, J1, J2, Q1, Q2; positive definite diagonal matrices Δ1, Δ2; and
matrices Pim

2 , N2, Sim, Tim; and positive scalars ε, λ1, λ2,such that the following LMIs for every
i, m hold: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1,1 Π1,2 Π1,3 Π1,4 Π1,5 Π1,6 Π1,7
∗ Π2,2 Π2,3 0 Π2,5 0 0
∗ ∗ Π3,3 0 0 0 Π3,7
∗ ∗ ∗ Π4,4 0 Π4,6 Π4,7
∗ ∗ ∗ ∗ Π5,5 0 Π5,7
∗ ∗ ∗ ∗ ∗ Π6,6 0
∗ ∗ ∗ ∗ ∗ ∗ Π7,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (17)

R̄im
1 < L1, R̄im

2 < L2, M̄im
1 < J1, M̄im

2 < J1, (18)[
Rim

2 Sim

∗ Rim
2

]
≥ 0,

[
Mim

2 Tim

∗ Mim
2

]
≥ 0, (19)

[
Pim

1 Pim
2

∗ Pim
3

]
> 0,

[
N1 N2
∗ N3

]
> 0, (20)

where

Π1,1 =

[
Ξ1,1 Ξ1,2
∗ Ξ2,2

]
, Π1,2 =

[
Sim Mim

2 − Tim Tim

Rim
2 − Sim 0 0

]
,

Π1,3 =

[
Ξ1,6 −εEaEd + PD

0 0

]
, Π6,6 = −(λ2GT

c Gc)
−1,

Π1,4 =

[
bc

mb̄s
i PK b̄c

mP bc
mbs

i PK
0 0 λ1CTGT

s Gs

]
, Π1,5 =

[
Pim

1 + (Pim
2 )T Pim

2 + Pim
3 0

0 0 0

]
,

Π1,6 =

[
0

bs
i CTKT

]
, Π1,7 = Ψ ⊗

[ −AT

bs
i bc

mCTKT

]
, Π2,3 =

⎡⎣0 0
0 ΦΔ2 − (1 − η̄)N2
0 0

⎤⎦,
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Π2,2 =

⎡⎣−Q1 − Rim
2 0 0

∗ Ξ4,4 Mim
2 − Tim

∗ ∗ −Q2 − Mim
2

⎤⎦, Π2,5 =

⎡⎣ −Pim
1 −Pim

2 0
0 0 0

−(Pim
2 )T −Pim

3 0

⎤⎦,

Π3,3 =

[
Ξ6,6 εEaEd
∗ Ξ7,7

]
, Π3,7 = Ψ ⊗

[
BT

DT

]
, Π4,4 =

⎡⎣−λ1 I 0 0
∗ −λ2 I 0
∗ ∗ Ξ10,10

⎤⎦,

Π4,6 =

⎡⎣b̄s
i KT

0
bs

i KT

⎤⎦, Π4,7 = Ψ ⊗

⎡⎣b̄s
i bc

mKT

b̄c
m

bs
i bc

mKT

⎤⎦, Π5,5 =

⎡⎣P̄im
1 − Rim

1 P̄im
2 0

∗ P̄im
3 − Mim

1 0
∗ ∗ −εI

⎤⎦,

Π5,7 = Ψ ⊗

⎡⎣ 0
0

GT

⎤⎦, Π7,7 =

⎡⎢⎢⎣
−(Rim

2 )−1 0 0 0
∗ −(Mim

2 )−1 0 0
∗ ∗ −2h(L2)

−1 0
∗ ∗ ∗ −2η(J2)

−1

⎤⎥⎥⎦,

Ξ1,1 = −2PA + Q1 + Q2 + N1 + h2Rim
1 + η2Mim

1 +
h3

2
L1 +

η3

2
J1 − Rim

2 − Mim
2 + εE2

a ,

Ξ1,2 = bc
mbs

i PKC + Rim
2 − Sim, Ψ =

[
h η h2 η2],

Ξ2,2 = −2Rim
2 + He[Sim] + CTΩC + λ1CTGT

s GsC + Ω,

Ξ4,4 = −(1 − η̄)N1 − 2Mim
2 + He[Tim], Ξ6,6 = N3 − 2Δ1 + εE2

b ,

Ξ7,7 = −(1 − η̄)N3 − 2Δ2 + εE2
d, Ξ10,10 = λ1GT

s Gs − w̄Ω,

Ξ1,6 = PB + N2 + ΦΔ1 − εEaEb.

Proof. Consider the following fractional order Lyapunov–Krasovskii functional:

V(t, e(t)) =
9

∑
k=1

Vk(t, e(t), rt, qt),

where
V1(t, e(t), rt, qt) = t0Dr−1

t eT(t)Pe(t),

V2(t, e(t), rt, qt) =
1
2

dT(t)d(t),

V3(t, e(t), rt, qt) =

[∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]T[
Pim

1 Pim
2

∗ Pim
3

][∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]
,

V4(t, e(t), rt, qt) =
∫ t

t−h
eT(s)Q1e(s)ds +

∫ t

t−η
eT(s)Q2e(s)ds,

V5(t, e(t), rt, qt) =
∫ t

t−η(t)

[
e(s)

f (e(s))

]T[N1 N2
∗ N3

][
e(s)

f (e(s))

]
ds,

V6(t, e(t), rt, qt) = h
∫ 0

−h

∫ t

t+θ

[
e(s)
ė(s)

]T[Rim
1 0
0 Rim

2

][
e(s)
ė(s)

]
dsdθ,

V7(t, e(t), rt, qt) = η
∫ 0

−η

∫ t

t+θ

[
e(s)
ė(s)

]T[Mim
1 0

0 Mim
2

][
e(s)
ė(s)

]
dsdθ,

V8(t, e(t), rt, qt) = h
∫ 0

−h

∫ 0

θ

∫ t

t+β

[
e(s)
ė(s)

]T[L1 0
0 L2

][
e(s)
ė(t)

]
dsdβdθ,

V9(t, e(t), rt, qt) = η
∫ 0

−η

∫ 0

θ

∫ t

t+β

[
e(s)
ė(s)

]T[J1 0
0 J2

][
e(s)
ė(t)

]
dsdβdθ.

For simplicity, Vi = Vi(t, e(t), rt, qt), i = 1, 2, . . . , 9.
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The weak infinitesimal operator L is defined as follows:

LV(t, e(t), rt, qt) =
∂V(t, e(t), rt, qt)

∂t
+ ėT(t)

∂V(t, e(t), rt, qt)

∂e(t)

∣∣∣∣
rt=i,qt=m

+
2

∑
j=1

πijV(e(t), j, m) +
2

∑
n=1

ρmnV(e(t), i, n).

By calculating the weak infinitesimal derivatives of V(t, e(t), rt, qt) along with the
error system (16), one has

LV1 ≤ 2eT(t)PDγ
t e(t), LV2 = d(t)ḋ(t), (21)

LV3 = 2

[∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]T[
Pim

1 Pim
2

∗ Pim
3

][
e(t)− e(t − h)
e(t)− e(t − η)

]
+

[∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]T

×
[

P̄im
1 P̄im

2
∗ P̄im

3

][∫ t
t−h e(s)ds∫ t
t−η e(s)ds

]
,

(22)

LV4 = eT(t)(Q1 + Q2)e(t)− eT(t − h)Q1e(t − h)− eT(t − η)Q2e(t − η), (23)

LV5 =

[
e(t)

f (e(t))

]T[N1 N2
∗ N3

][
e(t)

f (e(t))

]
− (1 − η̄)

[
e(t − η(t))

f (e(t − η(t)))

]T

×
[

N1 N2
∗ N3

][
e(t − η(t))

f (e(t − η(t)))

]
,

(24)

LV6 = h2
[

e(t)
ė(t)

]T[Rim
1 0
0 Rim

2

][
e(t)
ė(t)

]
− h

∫ t

t−h

[
e(s)
ė(s)

][
Rim

1 0
0 Rim

2

][
e(t)
ė(t)

]
ds

+ h
∫ 0

−h

∫ t

t+θ

[
e(t)
ė(t)

][
R̄im

1 0
0 R̄im

2

][
e(t)
ė(t)

]
dsdθ,

(25)

LV7 = η2
[

e(t)
ė(t)

]T[Mim
1 0

0 Mim
2

][
e(t)
ė(t)

]
− η

∫ t

t−η

[
e(s)
ė(s)

][
Mim

1 0
0 Mim

2

][
e(t)
ė(t)

]
ds

+ η
∫ 0

−η

∫ t

t+θ

[
e(t)
ė(t)

][
M̄im

1 0
0 M̄im

2

][
e(t)
ė(t)

]
dsdθ,

(26)

LV8 =
h3

2

[
e(t)
ė(t)

]T[L1 0
0 L2

][
e(t)
ė(t)

]
− h

∫ 0

−h

∫ t

t+θ

[
e(t)
ė(t)

]T[L1 0
0 L2

][
e(t)
ė(t)

]
dsdθ, (27)

LV9 =
η3

2

[
e(t)
ė(t)

]T[J1 0
0 J2

][
e(t)
ė(t)

]
− η

∫ 0

−η

∫ t

t+θ

[
e(t)
ė(t)

]T[J1 0
0 J2

][
e(t)
ė(t)

]
dsdθ. (28)

By using Lemmas 1 and 2, it follows that

−h
∫ t

t−h
ėT(s)Rim

2 ė(s)ds ≤ ξT
1 (t)Θ1ξ1(t), (29)

−η
∫ t

t−η
ėT(s)Mim

2 ė(s)ds ≤ ξT
2 (t)Θ2ξ2(t), (30)

−h
∫ t

t−h
eT(s)Rim

1 e(s)ds ≤ −
(∫ t

t−h
e(s)ds

)T
Rim

1

∫ t

t−h
e(s)ds, (31)
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−η
∫ t

t−η
eT(s)Mim

1 e(s)ds ≤ −
(∫ t

t−η
e(s)ds

)T
Mim

1

∫ t

t−η
e(s)ds, (32)

where ξ1(t) = col{e(t), e(t − τ(t)), e(t − h)}, ξ2(t) = col{e(t), e(t − η(t)), e(t − η)}, and

Θ1 =

⎡⎣−Rim
2 Rim

2 − Sim Sim

∗ −2Rim
2 + He[Sim] Rim

2 − Sim

∗ ∗ −Rim
2

⎤⎦,

Θ2 =

⎡⎣−Mim
2 Mim

2 − Tim Tim

∗ −2Mim
2 + He[Tim] Mim

2 − Tim

∗ ∗ −Mim
2

⎤⎦.

It can be obtained from m(t) that

εeT(t)E2
a e(t)− 2εeT(t)EaEb f (e(t))− 2εeT(t)EaEd f (e(t − η(t)))

+ε f T(e(t))E2
b f (e(t)) + 2ε f T(e(t))EbEd f (e(t − η(t)))

+ε f T(e(t − η(t)))E2
d f (e(t − η(t)))− εmT(t)m(t) ≥ 0.

(33)

Moreover, from the adaptive event-triggered condition, activation function, (11) and
(14), it follows that

d(t)ḋ(t) ≤ zT(T − τ(t))Ωz(T − τ(t))− w̄z̃T(t)Ωz̃(t), (34)

−2 f T(e(t))Δ1 f (e(t)) + 2eT(t)ΦΔ1 f (e(t)) ≥ 0, (35)

−2 f T(e(t − η(t)))Δ2 f (e(t − η(t))) + 2eT(t − η(t))ΦΔ2 f (e(t − η(t))) ≥ 0, (36)

λ1z̄T(t)GT
s Gsz̄(t)− λ1gT

s (z̄(t))gs(z̄(t)) ≥ 0, (37)

λ2uT
c GT

c Gcuc − λ2gT
c (uc)gc(uc) ≥ 0. (38)

Let

ζ(t) = col
{

e(t), e(t − τ(t)), e(t − h), e(t − η(t)), e(t − η), f (e(t)), f (e(t − η(t))),

gs(z̄), gc(uc), z̃(t),
∫ t

t−h
eT(s)ds,

∫ t

t−η
eT(s)ds, m(t)

}
,

together with (21)–(38). Then, the following can be obtained.

LV(t, e(t), rt, qt) ≤ ζT(t)Ξζ(t).

From the aforementioned part, we know that matrix inequality (17) guarantees Ξ < 0
holds. That further guarantees that LV(t, e(t), rt, qt) < 0 holds for every i, m ∈ M.

Let λ0 = λmin(−Ξ); then λ0 > 0. For any t > 0, we have:

LV(t, e(t), rt, qt) ≤ −λ0ζT(t)ζ(t) ≤ −λ0eT(t)e(t).

By Definition 3, one can obtain:

EV(t, e(t), i, m)− EV(0, φ(t0), r0, q0) ≤ −λ0E
{∫ t

0
eT(t)e(t)ds

}
,
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hence, for t ≥ 0:

E
{∫ t

0
eT(t)e(t)ds

}
≤ 1

λ0
EV(0, φ(t0), r0, q0),

based on Definition 4, which implies that error system (16) is globally, stochastically,
asymptotically stable in the mean square sense. That means systems (1) and (2) get
globally, stochastically, asymptotically synchronized in the mean square sense. The proof
is completed.

Notice that Theorem 1 only gives sufficient conditions for the synchronization of
systems (1) and (2), and fails to solve the design problem of the controller (12). Therefore,
the design method of the control gain K is constructed in Theorem 2.

Theorem 2. Suppose Assumption 1 holds. The FNNs (1) and (2) are globally, stochastically,
asymptotically synchronized in the mean square sense, for the given scalars r, if there exist positive
definite matrices P, Ω, Pim

1 , Pim
3 , N1, N3, Rim

1 , Rim
2 , Mim

1 , Mim
2 , L1, L2, J1, J2, Q1, Q2; positive defi-

nite diagonal matrices Δ1, Δ2; and matrices Pim
2 , N2, Sim, Tim, Y; and positive scalars ε, λ1, λ2,such

that the following LMIs for every i, m hold:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π̃1,1 Π1,2 Π1,3 Π̃1,4 Π1,5 Π̃1,6 Π̃1,7
∗ Π2,2 Π2,3 0 Π2,5 0 0
∗ ∗ Π3,3 0 0 0 Π̃3,7
∗ ∗ ∗ Π4,4 0 Π̃4,6 Π̃4,7
∗ ∗ ∗ ∗ Π5,5 0 Π̃5,7
∗ ∗ ∗ ∗ ∗ Π̃6,6 0
∗ ∗ ∗ ∗ ∗ ∗ Π̃7,7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (39)

R̄im
1 < L1, R̄im

2 < L2, M̄im
1 < J1, M̄im

2 < J1, (40)[
Rim

2 Sim

∗ Rim
2

]
≥ 0,

[
Mim

2 Tim

∗ Mim
2

]
≥ 0, (41)

[
Pim

1 Pim
2

∗ Pim
3

]
> 0,

[
N1 N2
∗ N3

]
> 0, (42)

where

Π̃1,1 =

[
Ξ1,1 Ξ̃1,2
∗ Ξ2,2

]
, Π̃1,4 =

[
bc

mb̄s
i Y b̄c

mP bc
mbs

i Y
0 0 λ1CTGT

s Gs

]
, Π̃1,6 =

[
0

bs
i CTYT

]
,

Π̃1,7 = Ψ ⊗
[ −AT P

bs
i bc

mCTYT

]
, Π̃3,7 = Ψ ⊗

[
BT P
DT P

]
, Π̃4,6 =

⎡⎣b̄s
i YT

0
bs

i YT

⎤⎦,

Π̃4,7 = Ψ ⊗

⎡⎣b̄s
i bc

mYT

b̄c
mP

bs
i bc

mYT

⎤⎦, Π̃5,7 = Ψ ⊗

⎡⎣ 0
0

GT P

⎤⎦, Π̃6,6 = −2α1P + α2
1λ2GT

c Gc,

Π̃7,7 = diag{−2α2P + α2
2Rim

2 ,−2α3P + α2
3Mim

2 ,−4hα4P + 2hα2
4L2,−4hα5P + 2hα2

5 J2},

Ξ̃1,2 = bc
mbs

i YC + Rim
2 − Sim,

and the other parameters are the same as in Theorem 1, among them the feedback gain matrix is
defined with K = P−1Y.

Proof. For any scalar α > 0, the following inequality holds:

(αΩ − P)Ω−1(αΩ − P) ≥ 0.
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Based on the inequality, it can be obtained that:

−PΩ−1P ≤ −2αP + α2Ω.

By defining χ = diag{
13︷ ︸︸ ︷

I, . . . , I, P, P, P, P, P}, multipling (17) by χ on the left side and
the right side, respectively, and replacing the term in Π6,6 with −2α1P + α2

1λ4GT
c Gc, Π̃6,6

can be obtained. In the same way, Π̃7,7 replaces Π7,7. In addition, Y = KP is also replaced.
Then linear matrix inequality (39) can be obtained. That completes the proof.

4. Numerical Simulations

In this section, a simulation is presented to demonstrate the effectiveness of the
proposed approach. Consider the FNNs which are described by Equation (1) and (2) with
the following parameters:

A =

[
1 0
0 1

]
, B =

[
1.8 −0.1
−2 0.4

]
, D =

[−1.7 −0.6
0.5 −2.5

]
,

Ea =

[
0.01 0

0 0.01

]
, Eb =

[
0.01 0

0 0.01

]
, Ed =

[
0.01 0

0 0.01

]
,

G =

[
0.01 0

0 0.02

]
, C =

[
1 0
0 1

]
.

The nonlinear function was selected as f̂ (x) =tanh(x), so it can be calculated that Φ =

I. Due to the time-varying delay η(t) = 0.1et

1+et , η = 0.1, η̄ = 0.025 can be obtained, respec-
tively. The functions of deception signals are were chosen to be gs(x) =tanh(x), gc(x) =
tanh(x); therefore, one can get Gs = I, Gc = I. In this numerical example, we set the sam-
pling period to h = 0.05, γ = 0.98, the initial value of the adaptive event-triggered parame-
ter d0 to 0.8, the external input vector I(t) to 0, ε1 = 0.1, ε2 = 0.1, ε3 = 0.1, ε4 = 0.1, ε5 = 0.1.
Additionally, the generators of Markov process rt, qt were

πij =

[−0.4 0.4
0.5 −0.5

]
, ρij =

[−0.4 0.4
0.65 −0.65

]
.

Based on the proposed method, by solving the LMIs in Theorem 2, one can obtain the
desired controller gain and the adaptive event-triggered weighting matrix as follows:

K =

[−0.0178 0.0026
−0.0021 −0.0270

]
, Ω =

[
0.0007 0.0007
0.0007 0.0011

]
. (43)

We chose the initial values φ1(t0) = (0.5;−0.1), φ2(t0) = (0.1; 0.2). Figure 2 shows
the state trajectories of synchronization errors without control input. As can be seen from
Figure 2, if there is no control input, the error system itself is unstable, which means that
the systems cannot be synchronized. Using the feedback controller (12), the simulation
results were obtained, as shown in Figures 3–7. Figure 3 shows the state trajectories of
synchronization errors with control input, and one can see that synchronization errors
finally converged to zero under the designed control protocol, which shows that the systems
can achieve synchronization. Figures 4 and 5 depict the states of double deception attacks,
whose states caused the oscillations of the synchronization error and the control input.
Figure 6 depicts the trajectories of control input, from which one can see that the control
input gradually tended to 0; that is, when the system achieves synchronization, external
control is no longer required. Figure 7 shows the evolution of adaptive threshold coefficient
d(t) in AETS. From the adaptive law (6), the adaptive threshold coefficient can be timely
adjusted according to the synchronization error. Therefore, when the error system is stable,
that is, when synchronization is achieved, the parameter will no longer be adjusted and
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will tend toward a constant. From the above simulation results, it can easily be seen that
the proposed synchronization problem in this paper was effectively solved.
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Figure 2. Synchronization error ei(t)(i = 1, 2) without control input.
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Figure 3. Synchronization error ei(t)(i = 1, 2) with control input ui(t)(i = 1, 2).
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Figure 4. The state of the deception signal in the S-C channel.
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Figure 5. The state of the deception signal in the C-A channel.
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Figure 6. The trajectories of control input ui(t)(i = 1, 2).
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Figure 7. The trajectory of event-triggered parameter d(t).

5. Discussion and Conclusions

The adaptive event-triggered synchronization problem of uncertain FNNs with double
deception attacks and time-varying delay has been investigated in this paper. Noteworthy
is that, regarding fractional order systems receiving deception attacks using traditional
event-triggered methods given in the literature [22], we believe that the literature has not
been comprehensive enough. Not only the traditional ETS technology, but also the attack
phenomena were governed by Bernoulli processes, and attacks only occurred in the C-A
channel. Thus, in this study, the AETS was adopted to determine the signals the needed
to be transmitted. The deception attacks in communication channels from the sensor
to controller and from controller to actuator are governed by two independent Markov
processes. Considering the AETS, double deception attacks, and parameter uncertainties, a
time-varying closed-loop fractional order synchronization error system was constructed.
Sufficient conditions were formulated to guarantee the considered system is stochastically
stable by employing the Lyapunov–Krasovskii functional method. Finally, a numerical
example was presented to verify its effectiveness and the feasibility of the proposed
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method. Thereby, we showed that our approach is more meaningful and comprehensive.
It should be mentioned that besides deception attacks, denial of service (DoS) attacks is
another interesting issue for FNNs and deserves further exploration. In addition, solving
the problem of multiple communication channels for FNNs will be part of our future
research efforts.
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