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Abstract: In this work, we report on the effect of substituting the active intrinsic i-layer on a con-
ventional pin structure of lead-free perovskite solar cell (PSC) by a homo p-n junction, keeping the
thickness of the active layer constant. It is expected that when the active i-layer is substituted by a
p-n homo junction, one can increase the collection efficiency of the photo-generated electrons and
holes due to the built-in electric field of the homo junction. The impact of the technological and
physical device parameters on the performance parameters of the solar cell have been worked out.
It was found that p-side thickness must be wider than the n-side, while its acceptor concentration
should be slightly lower than the donor concentration of the n-side to achieve maximum efficiency.
In addition, different absorber types, namely, i-absorber, n-absorber and p-absorber, are compared to
the proposed pn-absorber, showing a performance-boosting effect when using the latter. Moreover,
the proposed structure is made without a hole transport layer (HTL) to avoid the organic issues of
the HTL materials. The back metal work function, bulk trap density and ETL material are optimized
for best performance of the HTL-free structure, giving Jsc = 26.48, Voc = 0.948 V, FF = 77.20 and
PCE = 19.37% for AM1.5 solar spectra. Such results highlight the prospective of the proposed struc-
ture and emphasize the importance of using HTL-free solar cells without deteriorating the efficiency.
The solar cell is investigated by using SCAPS simulator.

Keywords: lead-free; perovskite solar cell; homo p-n junction; HTL-free cells; SCAPS simulator

1. Introduction

Among the various new energy technologies, solar power is one of the most favorable
technologies [1,2]. In this regard, solar cells which can directly convert the sunlight to
electricity are growing rapidly in their use [3,4]. Currently, silicon-based solar cells, utilized
in industrial applications, have attained a power conversion efficiency (PCE) of more than
20% [5,6]. Nevertheless, such silicon solar cells require a thicker absorber layer due to the
low absorption coefficient of Silicon and so they involve higher manufacturing costs [7,8].
In previous decades, different types of photovoltaic devices were established [9–15]. Per-
ovskite solar cells (PSCs) have experienced speedy development during the last decade
because of several advantages, including low density, flexibility and low-cost produc-
tion [16–20]. Despite the fast growth of the reported PCE of lead-based PSCs from an initial

Energies 2021, 14, 5741. https://doi.org/10.3390/en14185741 https://www.mdpi.com/journal/energies
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value of 3.8% [21] to values higher than 25% [22], their usage is limited as they are not
eco-friendly and cause serious environmental concern.

To avoid the instability and toxicity issues of lead, two principal approaches have
been presented in the literature. The first technique is accomplished by mixing other
metals with lead, where the metals used in the mixture have lower toxicity. One of the
most widely used mixtures is tin-lead alloyed perovskite (CH3NH3SnxPb1−x) [23]. The
second methodology is performed by entirely substituting lead with similar metals. As
a candidate of the toxic lead, the innocuous Tin is regarded as the most appropriate
metal because both metals are in the same group in the periodic table [24]. In this regard,
CH3NH3SnI3 is considered a promising competitor to replace lead-based PSCs [25]. This
material demonstrates a direct band gap of 1.3 eV, which is considered a proper range for
the solar cell absorber material [26]. Recently, several groups have effectively fabricated
and simulated CH3NH3SnI3-based PSCs, which yielded competitive PCEs [27–29]. Further
progress in the solar cell efficiency is constrained by the charge carrier recombination,
mainly in the absorber layer when utilizing heterojunction-based structures. Recent works
have shown that reducing the charge carrier recombination in the absorber layer and at
the interfaces between the absorber layer and adjacent layers allows a PCE to get closer to
theoretical values [30,31].

In general, a perovskite material could be either a p-type or an n-type via managing
the process condition and the ratio of composition stoichiometry [32–35]. Therefore, it
is possible to produce a p–n homojunction PSC because of this self-doping property.
Homojunction could decrease the defects/traps that operate as recombination centers [36].
Compared to heterojunction PSC, a homojunction cell has an extra built-in electric field
that can boost the transport of photoexcited electrons and holes which, in turn, can reduce
the recombination losses. Therefore, the homojunction device is extremely attractive for
further enhancement of PSCs [36]. Recent research works are concerned with investigating
the lead-based homojunction PSCs [35–40]. However, the lead-free homojunction PSCs
have not been investigated yet. To our best knowledge, this is the first study to inspect the
device characteristics of hybrid hetero-homojunction lead-free PSCs. The design guidelines
provided in this work regarding the lead-free homojunction PSCs are completely different
from those encountered in the lead-based homojunction cells. This is mainly due to the
difference in absorber material properties, especially the energy band gap, as will be seen
hereafter.

Moreover, the most widely used hole transport layer (HTL) material in PSCs is based
on organics [41–43], which results in instability issues and an overall expensive cost of
PSCs. To conquer these concerns, lots of research has focused on the HTL-free PSCs to
simplify the cell architecture and reduce the overall production cost [44,45]. However,
the lack of the HTL is accompanied by a poorer hole extraction. This weak extraction
behavior might limit the cell performance. Therefore, new strategies have to be carried
out to unravel this major issue. As a result, designing efficient p–n homojunctions in the
HTL-free PSCs could be a useful and favorable approach to further improve the solar cell
performance and to decrease the production cost as well.

Numerical simulation is a basic technique by which the feasibility of a novel de-
vice can be tested. In addition, the impact of physical and technological parameters on
device performance could be easily investigated. In this work, we propose a hybrid hetero-
homojunction-based, lead-free PSCs utilizing an n-type CH3NH3SnI3/p-type CH3NH3SnI3
bilayer as an absorber layer by deploying SCAPS for the numerical analysis. This configura-
tion allows for omitting the HTL layers, making an HTL-free device structure. A thorough
investigation of the device working principles along with their underlying physics is per-
formed. Firstly, the simulation model is justified by means of comparing the theoretical
performance of a conventional pin lead-free PSC with experimental results. Then, the
effect of both absorber (n-type and p-type) thickness and doping concentration is inspected
in order to get an optimum value for the PCE. Moreover, the HTL-free configuration
is investigated, and the work function of the back contact and defect density of the ab-
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sorber are studied to determine their influence on the device performance. Based on
the presented results, we provide some recommendations and guidance to the design of
hetero-homojunction lead-free PSCs, either with or without HTL.

2. Device Structure and Simulation Parameters

2.1. SCAPS Highlight

Numerical simulation was performed in the work by utilizing the SCAPS-1D pro-
gram [46]. SCAPS (solar cell capacitance simulator) is a one-dimensional simulation
program dedicated for various types of solar cells. The program is widely utilized to
simulate the device parameters of PSCs and other solar cell structures. Most of the simula-
tion results are consistent with measurements and offer vital indications and predictions
for experimental work. Based on SCAPS simulations, one can get cell parameters like
dark and illuminated current density vs voltage (J–V) characteristics, quantum efficiency
(QE) and energy bands. This can be done by solving the electron (Equation (1)) and hole
(Equation (2)) continuity equation coupled with Poisson’s equation (Equation (3)), together
with the constitutive equations (Equations (4) and (5)),

dJn

dx
= G(x)−Un (1)

dJp

dx
= G(x)−Up (2)

d
dx

(
εrεo

dψ

dx

)
= − q

ε

(
p− n + N+

D − N−A + pt − nt
)

(3)

Jn = −nμn

q
dEFn

dx
(4)

Jp = +
pμp

q
dEFp

dx
(5)

where G denotes the generation rate (cm−3·s−1) and x is the distance along the device. The
electron and hole recombination rates (cm−3·s−1) are denoted by Un and Up, respectively.
εr is the dielectric constant, q is electron charge and ψ is the electrostatic potential. N+

D and
N−A are donor and acceptor doping concentration. p(x), n, pt and nt represent the free hole,
free electrons, trapped electron, and trapped hole concentrations, respectively. The electron
and hole mobilities are denoted by μn and μp while the Fermi level of the electrons and
holes are denoted by EFn and EFp, respectively.

After applying the appropriate boundary conditions at the contacts and the interfaces,
Equations (1)–(5) are transported to a system of coupled differential equations in (ψ, n, p)
or (ψ, EFn, EFp). SCAPS numerically computes a steady state and a small signal solution of
this resulting system. The first step in every calculation is to discretize the structure by a
coarse meshing in the middle of a layer. Meanwhile, a finer meshing near the interfaces
and contacts are utilized. Further, the mesh can be optimized during the calculations.
The system of equations is solved numerically, using a Gummel iteration scheme with
Newton-Raphson sub-steps [46].

2.2. Device Model and Parameters

The conventional undoped absorber and proposed hybrid lead-free PCS structures are
illustrated in Figure 1a,b, respectively. In Figure 1b, the p-CH3NH3SnI3 and n-CH3NH3SnI3
are perovskite layers having two different doping types, namely the p-type and n-type
regions. In these devices, TCO and Au are front and back electrodes, TiO2 is used as the
electron transporting layer (ETL), and Spiro-OMeTAD is utilized as a hole transporting
layer (HTL). Further, Figure 1c presents the energy level diagram of the conventional pin
structure and how carriers are transported across the layers.
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(a) (b) (c) 

Figure 1. (a) A schematic representation of the conventional pin lead-free PSC, (b) the proposed hybrid hetero-homo junction-
based structure, (c) the energy level diagram of the conventional pin structure showing how carriers are transported across
the layers.

In order to validate the SCAPS simulation model, the conventional pin lead-free PSC
with the structure of TCO/TiO2/CH3NH3SnI3/Spiro-OMeTAD/Au [47], illustrated in
Figure 1a, is simulated. The material parameters for the used layers are given in Table 1,
which are derived from some reported experimental and simulated works [27,47–51]. The
thickness is denoted by t, the band gap energy is termed Eg while the electron affinity is
denoted by χ. The relative dielectric permittivity is εr, and conduction and valence band
effective density of states are Nc and Nv, respectively. μn and μp are the electron and hole
mobility, respectively. The donor concentration, acceptor concentration and trap density
are denoted as ND, NA and Nt, respectively. The front and back electrode work functions
are 4.4 eV (corresponding to TCO) and 5.4 eV (corresponding to Au), respectively. Other
parameters of the front and back metal contacts utilized in SCPAS simulation are presented
in Table S1 in the Supplementary Material.

Table 1. Simulation parameters of materials used in simulation of PSC devices.

Parameters
TCO
[48]

TiO2

[48,50]
CH3NH3SnI3

[47,49,51]
Spiro-

OmeTAD [48]

t (nm) 500 30 350 200
Eg (eV) 3.5 3.2 1.3 3.17
χ (eV) 4 4.26 4.17 2.05

εr 9 9 8.2 3
Nc (cm−3) 2.2 × 1018 2 × 1018 1 × 1018 2.2 × 1018

Nv (cm−3) 1.8 × 1019 1.8 × 1019 1 × 1018 1.8 × 1019

μn (cm2/V.s) 20 20 1.6 2 × 10−4

μp (cm2/V.s) 10 10 1.6 2 × 10−4

ND (cm−3) 2 × 1019 1 × 1016 0 0
NA (cm−3) 0 0 0 2 × 1019

Nt (cm−3) 1 × 1015 1 × 1015 5 × 1017 1 × 1015

In this simulation study, the defects are situated above the valence band by 0.65 eV
(which coincides with the mid gap of the perovskite material under consideration) and put
as neutral Gaussian distribution, having a characteristic energy of 0.1 eV. The trap density
was found to be 5 × 1017 cm−3 for the best fit between experimental results and simulation.
The capture cross-section of the electron (σn) and hole (σp) is 1 × 10−15 cm2. Very thin in-
terface defect layers (IDLs) are inserted at the TiO2/CH3NH3SnI3 and CH3NH3SnI3/Spiro-
OMeTAD interfaces to represent the interface carrier recombination.
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The physical parameters of the IDLs are as follows. The defect energy (Et) is located
at the mid gap of the perovskite and the defect type is set as neutral single defect with
a total density of 1017 cm−3. The capture cross-section of the electron and hole is also
1 × 10−15 cm2, like the bulk traps. A summary of the main defect parameters is presented
in Table 2.

Table 2. Defect density parameters in the absorber and at the interfaces.

ETL/Absorber Absorber/HTM CH3NH3SnI3

Defect type Neutral Neutral Neutral
σn and σp (cm−2) 1 × 10−15 1 × 10−15 2 × 10−14

Energetic distribution Single Single Gaussian
Et—Ev 0.6 0.6 0.65

Characteristic energy (eV) - - 0.1
Total density (cm−3) 1 × 1015 1 × 1015 5 × 1017

Further, Equation (6) is used for the calculations of the absorption coefficients (α) of
TCO, ETL, CH3NH3SnI3 and HTL materials with a pre-factor (Aα), which is selected to be
105 cm−1eV−1/2 [52],

α(E) = Aα

√
hν− Eg (6)

The simulation results are compared vs the reported experimental results [47]. Figure 2
illustrates the illuminated J–V curve of the simulated device vs measurements showing
a good accuracy. The main parameters are listed in Table 3, indicating an absolute error
(Δξ) of less than 8% for all parameters. Therefore, the reliability of our simulation model is
validated, and further inspections can be done based on this simulation model.

 

Figure 2. The illuminated J–V curve of the simulated device vs measurements.

Table 3. Main performance parameters and absolute error between simulation results compared
with measurements.

Jsc
(mA/cm2)

Voc
(V)

FF
(%)

η
(%)

Measurements 16.40 0.696 48.00 5.23
Simulation 17.60 0.670 44.20 5.15

Δξ 7.32% 3.74% 7.92% 1.53%
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3. Results and Discussion

3.1. Design of Hybrid Hetero-Homojucntion Cell

Firstly, we will discuss the main design rule that governs the operation of the p-n
homojunction part of the hybrid hetero-homojunction cell. The doping densities of the
two regions of a p–n junction must fulfill a condition to ensure that the depletion width is
considerably lesser than the absorber layer thickness (t). Therefore, the doping densities
must meet the following condition [53],

NA/D >
2εoεrVbi

qt2 (7)

where Vbi is the built-in voltage. Figure 3 shows the variation of the depletion width
vs donor or acceptor doping density for two different values of Vbi. The horizontal line
indicates the perovskite absorber thickness, which is 350 nm in our design. Therefore, the
threshold (minimum) doping density depends on the value of Vbi and it is in the order
of 1 × 1016 cm−3, given the reported experimental thickness of d = 350 nm and εr = 8.2
for a typical value of Vbi ~ 1 V. Our initial design starts by ND (n-CH3NH3SnI3) = NA
(p-CH3NH3SnI3) = 1 × 1016 cm−3.

Figure 3. The variation of the depletion width vs donor or acceptor doping density.

3.1.1. Influence of n- and p-Region Thickness

Regarding the hybrid hetero-homojunction lead-free PSC shown in Figure 1b, the
whole n-CH3NH3SnI3/p-CH3NH3SnI3 homojunction functions as the perovskite absorber
region. When the cell is illuminated, the photoinduced charge carriers are produced in both
the p-type and n-type layers. The variations of the photovoltaic parameters are examined
with p-type CH3NH3SnI3 layer thickness varying from 0 nm to 350 nm, taking into account
that the sum of the n-type and p-type layers is fixed at 350 nm, which is the original,
experimentally reported, overall thickness of the absorber layer [47].

The Jsc, Voc, FF, and PCE vs. p-layer thickness are given in Figure 4. Referring to the
figure, it can be observed that all performance parameters are gradually increasing with
the increase of p-CH3NH3SnI3 thickness. Beyond a thickness of 300 nm, Jsc saturates at
a value of about 20 mA/cm2. The thickness of p-CH3NH3SnI3 affects Voc as it increases
and then decreases slightly beyond a thickness of 300 nm. FF is increased because the
series resistance declines with the decreasing thickness of the n-CH3NH3SnI3 layer (as the
p-CH3NH3SnI3 layer thickness increases). The combination of the Jsc, Voc and FF results in
the variation trend of PCE shown in the figure. The PCE is first enhanced with increasing
the thickness of p-CH3NH3SnI3 and then slowly decreases beyond a p-type layer thickness
of 300 nm. Accordingly, in the following simulations, we set thicknesses of 300 and 50 nm
as optimized values of the p-CH3NH3SnI3 and n-CH3NH3SnI3 thickness, respectively.

6
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Figure 4. Impact of p-layer thickness on the photovoltaic parameters.

Figure 5 shows the J–V characteristics under illumination (Figure 5a) and the quantum
efficiency (Figure 5b) for three selected cases. The first case is the conventional pin structure
for which the absorber is intrinsic and the other two cases are for xp > xn (taking xp = 300 μm)
and xn > xp (taking xp = 50 μm) to demonstrate the difference between the impact of n-
type and p-type thicknesses on the terminal characteristics compared to the conventional
case. The results are confirmed in Figure 4, as both Voc and Jsc are degraded when the
n-type thickness is higher than the p-type thickness. It was observed that when the p-type
thickness is higher, the performance is enhanced over the conventional pin structure.

Figure 5. Difference between hetero-homo p-n junction (for xn > xp and xp > xn) vs conventional pin
solar cell (a) illuminated J–V under AM1.5 and (b) quantum efficiency.

To give a physical insight about the dependence of the performance parameters on
the thickness of the p- (or n-) layer, we drew the generation and the recombination rates
across the device distance at a voltage of 0.5 V, as illustrated in Figure 6. The generation
rate is the same for the different cases, as is clear from Figure 6a. It can be seen in Figure 6b
that it is better to choose a wider p-layer to suppress the recombination losses. When using
a wider n-layer, the recombination increases in the n-layer. Although it is suppressed in the
p-layer when compared to the case of intrinsic absorber, the overall recombination losses
are higher when the n-layer thickness exceeds the p-layer thickness.
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(a) (b) 

Figure 6. (a) The generation rate and (b) recombination rate across the device distance at a voltage of 0.5 V for three
distinctive cases of absorber.

In addition, the electric field distribution along the device structure (from ETL to
HTL direction) at a voltage of 0.5 V supports the idea of recombination behavior, and this
distribution is shown in Figure 7. The field distribution illustrates that the field direction
of the case when xn > xp is reversed at the absorber/ETL interface, so it is in opposite
direction to the two other cases. This field reversal affects the carrier collection and results
in an increase in recombination rates and thus a reduction in the current. On the other
hand, the field direction of the two other cases is in the proper route at the absorber/ETL
interface in such a way as to enhance the electron collection by pushing the electrons from
the absorber to the ETL. In addition, it is noted that when xp > xn, the field has the highest
peak value amongst the other cases. This electric field behavior explains the reduction
of the recombination rate inside the absorber near the ETL for the case when xp > xn. It
also explains the higher rate near the HTL, as the field for xp > xn is reversed which limits
the carrier collection which, in turn, slightly increases the recombination rate. However,
this reduction in the carrier collection has a minor impact. Further, the electron and hole
concentration distributions, which strongly depend on the electric field behavior, are shown
in Figure S1 (see Supplementary Material).

Figure 7. Electric field distribution across the device distance for the three cases of absorbers. The
field is calculated at a voltage of 0.5 V. The electric field direction is also indicated in the figure
by arrows.
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3.1.2. Influence of Perovskite Doping Concentration

In this subsection, the impact of the doping concentrations of the p-type and n-type
CH3NH3SnI3 films on the performance parameters of the proposed structure is investigated.
Figure 8 demonstrates the changes of performance parameters vs both donor concentration
ND of n-CH3NH3SnI3 and acceptor concentration NA of the p-CH3NH3SnI3 from 1016 to
1018 cm−3, with maintaining other material parameters as they are recorded in Table 1.

Figure 8. Variations of solar cell performance parameters with the donor concentration ND of n-
CH3NH3SnI3 and acceptor concentration NA of the p-CH3NH3SnI3 (a) open circuit voltage, (b) short-
circuit current, (c) fill factor and (d) efficiency.

It can be seen from Figure 8a that for higher values of ND (>1017 cm−3) in n-CH3NH3SnI3,
Voc rises with rising NA in p-CH3NH3SnI3, which can be clarified by drawing the energy
band diagram, as shown in Figure 9a, at the dark condition, in which NA in p-CH3NH3SnI3
varies (1016 and 1018 cm−3) and ND in the n-side is maintained at 3 × 1017 cm−3. We can
observe that by increasing NA, the degree of band bending increases on the n-side, which
causes Vbi to increase, leading to the rise of Voc [54]. The built-in voltage is calculated
from the conduction band (or valence band) energy difference between the n-side and
p-side. Meanwhile, for lower values of ND (<1017 cm−3) in n-CH3NH3SnI3, the open
circuit voltage increases slightly with increasing NA and then decreases, also marginally,
further increasing NA beyond about 1017 cm−3. Therefore, the effect of NA is minor for
lower values of ND. This can also be attributed to the behavior of Vbi, as illustrated in
Figure 9b, which shows the energy band diagram (at dark) for two values of NA (3 × 1016

and 1018 cm−3) at a fixed value of ND = 3 × 1016 cm−3. As can be inferred from the figure,
the variation of Vbi is insignificant, which reflects on the Voc trivial change.
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(a) (b) 

Figure 9. The energy band diagrams of the proposed structure at the dark condition for (a) ND in the n-side is maintained at
3 × 1017 cm−3, (b) fixed value of ND = 3 × 1016 cm−3.

Moreover, in Figure 8b, Jsc declines with the rise in NA in p-CH3NH3SnI3, as the
higher doping concentration results in thinner depletion region width and a broader
neutral region, in which the greater bulk recombination takes place and thus reduces the
collection chance of photoexcited electrons and holes. In addition, ND of n-CH3NH3SnI3
has a minor influence on the Jsc. This is because the n-region has the smallest thickness.
Although light is illuminated from the TCO side, the number of photogenerated carriers
of the n-CH3NH3SnI3 region is considered low when compared to that at the wider
p-CH3NH3SnI3 region.

Regarding the FF in Figure 8c, its variation with doping concentration of n- and
p-CH3NH3SnI3 is the opposite of that of Jsc. The general tendency of rising FF with
increasing NA can be noticed, which is nearly independent of the value of ND. As NA
increases, the resistivity of the layer decreases and hence the series resistance declines,
which improves FF. This phenomenon can be explained based on the dark characteristics
of the cell. As shown in Figure 10a, the dark J–V is drawn for three different values of
p-side acceptor concentration. Using the J–V dark characteristics, the local ideality factor
can be extracted, as seen in Figure 10b. The fill factor is directly correlated to the value of
the local ideality factor at the maximum power point (MPP) [55,56]. As can be inferred
from Figure 10b, the local ideality factor decreases as NA increases, which proves the
enhancement in the fill factor. Further, the corresponding values of the reverse saturation
current and ideality factor of the equivalent single diode model are presented in Table S2
(see Supplementary Material).

Finally, in Figure 8d, the PCE is enhanced with moderate NA values of p-side which
are in the order 4 × 1016 to 6 × 1016 cm−3. Higher ND of n-side values is required to obtain
high efficiencies. Values of ND are in the range of 9 × 1016 to 2 × 1017 cm−3. Therefore, the
n-side is suggested to be slightly at a higher doping level than the p-side doping. Hence,
in the simulation, the optimized doping concentration of the n-side and the p-side is 1017

and 5 × 1016 cm−3, respectively. In this case, the photovoltaic parameters are: Voc = 0.7513,
Jsc = 19.62, FF = 58.72 and PCE = 8.66%. Based on these reported values, the efficiency of
the hybrid cell after a proper choice of the thickness and doping is higher than that of the
conventional pin structure by more than 3.5%.
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Figure 10. Impact of p-side acceptor concentration. (a) The cell dark J–V characteristics, (b) the cell
local ideality factor.

3.1.3. Comparison between Absorber Doping Types

In this subsection, we compare four different devices: namely, the reference intrin-
sic absorber (having a p-type doping concentration of 1 × 1015 cm−3), a single p-layer
(concentration of 1 × 1016 cm−3) a single n-layer (concentration of 1 × 1016 cm−3) and a
pn-absorber, including the n- and p-layers. The impact of the doping concentration on the
efficiency when using a single n-layer and p-layer absorbers is shown in Figure S2 (see
Supplementary Material) in which the optimum efficiency occurs near the selected value
of 1 × 1016 cm−3 for the single p-layer, while the impact of doping on the efficiency of
the single n-layer is very weak. The J–V characteristics under illumination and EQE are
presented in Figure 11a,b, respectively, for a series of devices with the differently tuned
doping. The performance of the p-absorber cell is higher than that of the intrinsic case.
However, the optimized hybrid cell gives a higher performance, indicated by the cell
performance presented in Table 4. The situation is different if the n-absorber perovskite is
used. Due to the strongly reduced carrier collection, a low Jsc of 7.91 mA/cm2 is obtained
and the FF is as low as 32.98%. Moreover, the spectral response of the hybrid and single
p-layer cells are close (see Figure 11b), while the intrinsic absorber cell is lower. The single
n-layer has the lowest EQE, as expected from its low Jsc.

Figure 11. Comparison between different types of absorbers. (a) The cell J–V characteristics under
illumination, (b) quantum efficiency.
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Table 4. Cell performance parameters of the four studied cases of the absorber layer.

Jsc
(mA/cm2)

Voc
(V)

FF
(%)

η
(%)

i absorber 17.60 0.670 44.00 5.15
p absorber 19.91 0.702 55.21 7.72
n absorber 7.91 0.623 32.98 1.63

p-n absorber 19.62 0.751 58.72 8.66

This can be explained by plotting the electric field distribution along the device
distance, as previously discussed in Section 3.1.1. The distribution is shown in Figure S3
(see Supplementary Materials) for two cases, namely the short-circuit condition and at a
voltage of 0.5 V. The results indicate that the field direction of the n-absorber is reversed,
contrary to the other three cases, which results in higher recombination rates due to the
poor electrons and hole extraction. The results also indicate that the pn absorber has the
highest electric field peak compared to the other cases. To conclude this comparison, the
cell containing the perovskite homojunction has a remarkable performance, especially
its Voc (0.751 V) and FF (58.72%), which improved significantly compared to those of
the other structures, even if Jsc is slightly less than the single p-layer case. The overall
efficiency indicates the superiority of the hybrid homojunction lead-free cell design which
gives 8.66%.

3.2. Design of HTL-Free Hybrid Hetero-Homojunction Cell

In this section, the HTL-free configuration is investigated. A carbon-electrode can
be utilized which is considered a good candidate when compared with traditional metal
electrodes. The reason is because carbon is air-stable and inert to ion migration [40,57,58].
Figure 12 shows the illuminated J–V (Figure 12a) and quantum efficiency (Figure 12b)
of the HTL-free structure, which is shown in the inset of the figure. For such an initial
HTL-free configuration, the photovoltaic parameters are Voc = 0.7513 V, Jsc = 19.63 mA/cm2,
FF = 58.77% and PCE = 8.67%.

Figure 12. HTL-free structure characteristics: (a) the illuminated J–V, (b) the quantum efficiency.

The optimization of the performance of our proposed HTL-free p-n homojunction
absorber lead-free PSC is carried out in the coming subsections. Firstly, the effect of p-
absorber doping variation is illustrated. Secondly, the work function of the different back
contact materials is studied to find out its influence on the device performance. Then, the
effect of the absorber defect density is investigated. Finally, the impact of different ETL
materials is examined and the best ETL material, which gives the optimum performance
for the designed HTL-free configuration, is determined.
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3.2.1. Influence of Doping

In this subsection, the effect of p-doping variation on the HTL-free configuration is
performed for two values of n-doping, namely 1 × 1017 and 1 × 1018 cm−3. Figure 13a
shows the influence of such doping variation on the photovoltaic parameters. It is obvious
that the optimum p-side doping is a little above 5 × 1016 cm−3 (exactly at 6.3 × 1016 cm−3),
giving an n-type doping of 1 × 1017 cm−3. In this case, the optimum PCE is 8.69% which
indicates a slight enhancement, 0.02%, compared to the starting PCE (8.67%). The variation
of the photovoltaic parameters with the p-doping concentration can be explained from
the perception of the recombination rate, as shown in Figure 13b, which illustrates the
recombination rate across the device distance at the short-circuit condition. As can be seen,
the recombination rate increases considerably when NA is 1 × 1018 cm−3. In addition,
for NA = 6.3 × 1016 cm−3, the recombination rate is decreased near the ETL interface and
deep inside the absorber, which implies a higher short-circuit current. Although the rate is
higher when moving towards the back contact, this high rate is not effective because the
generation rate is minimized since that region is relatively far away from the light source.

 
(a) (b) 

Figure 13. (a) Impact of p-layer doping variation on the HTL-free configuration photovoltaic parameters for two values of
n-layer doping, and (b) recombination rates for three different values of p-layer doping.

3.2.2. Influence of Back Metal Work Function

In this subsection, different metal contacts with distinct work function values are
examined. From Figure 14a, it is clear that optimum performance occurs by using the
carbon-based contact at 5.4 eV, which also satisfies the flat band condition. For work
function values lower than 5.1 eV, the performance is deteriorated. Therefore, it is recom-
mended to use carbon as a back contact metal in the HTL-free architecture. The explanation
of the improvement of the open circuit voltage, and hence the efficiency, when increasing
the work function could be attributed to the built-in potential enhancement. This can be
deduced from the energy band diagram plotted in Figure 14b, in which three different
values of work functions are plotted, showing that the highest Vbi is obtained when using
carbon contact.
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(a) (b) 

Figure 14. Impact of different metal contacts with distinct work function values on the HTL-free configuration photovoltaic
parameters. (a) Photovoltaic parameters, and (b) energy band diagram drawn at the short-circuit condition for three
different metal electrodes (work function values are also indicated).

3.2.3. Influence of Absorber Defect Trap Density and Energy

The photo-excited charge carriers are primarily produced within the absorber re-
gion. The existence of defects inside the absorber has a crucial impact, as they result in a
nonradiative recombination process which limits the overall solar cell performance. The
defect density inside the absorber perovskite films has to be alleviated to reduce carrier
recombination losses [59]. Here, we study the impact of reducing the defect density inside
the two sides of the absorber. Figure 15 depicts the photovoltaic parameters of the device
with various defect density (Nt) in both n-CH3NH3SnI3 and p-CH3NH3SnI3 (Nt is set equal
in the two layers). It is obvious that decreasing defect density beyond 1015 cm−3 results in
a considerable rise in the Voc. The Voc is expressed by [4,5]

Voc = n VT ln
(

1 +
JSC
Jo

)
(8)

where n is the diode ideality factor and VT is the thermal voltage. The reverse saturation
current density, Jo, is determined by the recombination processes. Hence, Voc measures
the recombination losses in the solar cell structure. As the bulk defect in absorber layers
functions as nonradiative recombination centers, rising Nt results in increasing the proba-
bility of recombination, which causes a decline in Voc. Besides, one can see from Figure 15
that there is almost no impact on Jsc when Nt is less than 1015 cm−3; however, Jsc drops
substantially with the further rising of Nt. This can be clarified by the dependence of the
hole (electron) diffusion length Lp (Ln) on Nt, which is presented by,

Ln/p =

√
μn/pkT

q
1

σn/pvthNt
(9)

Equation (9) describes that the rise of Nt causes a smaller Lp (Ln). For low Nt values,
Lp (Ln) is greater than the thickness of the absorber; therefore, Nt has a minor effect on
Jsc. However, if Nt surpasses 1015 cm−3, Lp (Ln) is smaller than the absorber thickness and
Jsc reduces with further rise of Nt. Furthermore, when Nt < 1015 cm−3, the PCE remains
almost unaffected. However, the efficiency decreases markedly when Nt > 1015 cm−3.
Consequently, controlling the Nt below 1015 cm−3 is essential for accomplishing higher
efficiencies. At Nt equals 1015 cm−3, an optimized conversion efficiency of 16.57% (at
Voc = 0.896 V, Jsc = 25.86 mA/cm2, FF = 71.53%) can be obtained for the proposed HTL-free
cell. The enhancement of the parameters according to reducing the trap density could be
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explained in many aspects, one of which is the recombination rate, as shown in Figure S4
(see Supplementary Material).

 

Figure 15. The HTL-free configuration photovoltaic parameters with various defect density (Nt) in
both n-CH3NH3SnI3 and p-CH3NH3SnI3.

Moreover, the influence of the trap energy position with respect to the valence band
edge energy Ev was investigated. Figure 16 demonstrates this impact for two different
values of Nt. The trap position is varied from 0.1 to 1.2 eV. Regarding the higher value
of Nt (5 × 1017 cm−3), the trap energy position has a crucial effect. Generally, the defects
with low formation energy produce shallow levels. These levels are close to Ec or Ev and
result in long diffusion lengths. This is clear from the figure as the long diffusion length
results in a high Voc and, in turn, an enhancement in the overall performance is achieved.
On the other hand, when the formation energy is high, the trap energy position is near
the mid-gap. These levels are called deep levels and the resulting diffusion length is short,
which deteriorates the performance. Regarding the lower value of Nt (1015 cm−3), the
situation is different. The impact of the trap energy is minor and thus the cell becomes
extremely immune to the defect energy position. These results imply the crucial impact of
the bulk trap density. Careful manufacturing processes are needed in order to decrease the
trap density to boost the cell performance for either deep or shallow levels.

Figure 16. Impact of bulk trap energy position relative to Ev on the photovoltaic parameters of the
hetero/homojunction HTL-free solar cell.
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3.2.4. ETL Variation

Using TiO2 as ETL is very popular in normal PSCs. However, other candidates are
required to be inspected to see more suitable alternatives to TiO2. In this subsection, we
investigate the influence of changing the conduction band offset (CBO) by varying ETL
affinity. The CBO is calculated as,

CBO = ΔEc = χabsorber − χETL (10)

The simulated ETL affinity is changed in the range of 3.9 eV to 4.26 eV, which gives
a CBO in the range of −0.09 to 0.27 eV. Figure 17 shows the variation of the performance
parameters vs CBO. As shown in the figure, Voc increases gradually with the increasing of
CBO and reaches 0.758 V when CBO is 0.17 eV (which is corresponding to ZnO as ETL). Jsc
changes slightly and reaches 20.09 mA/cm2 for the same CBO (0.17 eV). The fill factor (FF)
increases up to 61.50% and then slightly decreases. The efficiency behavior is the same as
the Voc trend. It has an optimum value of 9.35% which occurs when utilizing ZnO as ETL.

Figure 17. Effect of electron affinity of ETL on PCE.

Figure 18 displays the energy band diagrams of the HTL-free PSC for three cases;
namely, when the ETL material is TiO2 (Figure 18a), ZnO (Figure 18b) and PCBM (Figure 18c).
In the first case, the CBO is negative (−0.09 eV), while it is positive for the second case (hav-
ing 0.17 eV) and the third case (having 0.27 eV). Regarding the first case, a cliff is formed at
the ETL/absorber interface which does not hinder the flow of photogenerated electrons
toward the front electrode. However, the activation energy for carrier recombination (Ea)
becomes lower than the energy gap of the absorber (Eg), where Ea is given by Ea = Eg −
|CBO|. For this case, the main recombination mechanism of the solar cell is the interface
recombination of Ea < Eg [60,61], and the recombination probability of the electrons at the
ETL/absorber interface rises significantly. Therefore, Ea directly links with the open circuit
voltage and Voc is, consequently, reduced for negative values of CBO.

On the other hand, when the CBO is positive, a spike is formed at the ETL/absorber
interface, as shown in Figure 18b,c. This spike behaves like a barrier against the flow of
photogenerated electrons. When CBO is positive, Ea is equal to Eg. When the spike is low
enough (Figure 18b), the barrier is not strong and the flow of electrons towards the contact
is substantial. However, when the barrier spike is too high (>0.2 eV), as in the third case,
the normal flow of photogenerated electrons to PCBM is affected drastically. As a result, the
equivalent series resistance of the cell is increased, resulting in FF deterioration. As a result,
the best choice for the ETL material is ZnO, which gives Voc = 0.757 V, Jsc = 20.09 mA/cm2,
FF = 61.50%, and PCE = 9.35%. The main parameters of the ETL materials mentioned here
are listed in Table S3 (see Supplementary Material).
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Figure 18. The energy band diagrams of the hybrid hetero-homojunction HTL-free PSC for three
cases: (a) CBO = −0.09 eV, (b) CBO = 0.17 eV and (c) CBO = 0.27 eV.

3.3. Comparison of Various Designed Structures

The illuminated J–V characteristics and quantum efficiency of optimized HTL-free
and other cases of homojunction-based lead-free PSCs are compared in detail in Figure 19.
The studied cases are related to the initial hetero-homojunction, while the other four cases
are associated with the HTL-free configuration. The first case is the initial homo design,
having optimized p-layer thickness and doping. The second case is the HTL-free structure
with an optimized doping. The third case is taken for ZnO as an ETL, and the bulk defect
density is 5 × 1017 cm−3, while the fourth case is dedicated for TiO2 as an ETL, and the
defect density is 1 × 1015 cm−3. The last case is the final optimized HTL-free structure
whose ETL material is ZnO and its defect density is 1 × 1015 cm−3.

Figure 19. A comparison between (a) the illuminated J–V characteristics and (b) quantum efficiency
of optimized HTL-free and other cases of homo-junction-based lead-free PSCs.

Referring to Figure 19, it is clear that our proposed HTL-free cell after optimization
has superior photovoltaic properties than the other four candidates. The homojunction-
based carbon PSC shows an apparent improvement in Voc owing to the improved Vbi
inside the perovskite layer caused by homojunction, thus boosting the quantum efficiency
(Figure 19b). Table 5 gives the main parameters to compare between the different cases.
These results demonstrate that the HTL-free hybrid cell is a better choice compared to the
conventional homojunction PSCs.
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Table 5. Comparison between five different cases of hybrid hetero-homojunction-based PSCs.

Structure ETL HTL
Nt

(cm−3)
Jsc

(mA/cm2)
Voc
(V)

FF
(%)

η
(%)

Case 1 TiO2 Spiro-OMeTAD 5 × 1017 19.62 0.751 58.71 8.66
Case 2 TiO2 None 5 × 1017 19.35 0.756 59.41 8.69
Case 3 ZnO None 5 × 1017 20.23 0.764 62.69 9.69
Case 4 TiO2 None 1 × 1015 25.86 0.896 71.53 16.57
Case 5 ZnO None 1 × 1015 26.48 0.948 77.20 19.37

Finally, we investigate the effect of interface traps, which arise due to the structural
mismatch between two dissimilar materials, on the performance of the initial hetero-
homojunction (case 1) and the final optimized HTL-free cell (case 5). Figure 20 demonstrates
the influence of the interfacial defects of ETL/absorber layer on the device efficiency. Both
interface defect density (in the range 108–1018 cm−2) and defect energy level position
(in the range 0.1–1.2 eV relative to Ev of the perovskite) are investigated simultaneously.
As displayed, the interface quality of the ETL/absorber layer has a substantial role on
the cell performance, especially for the optimized HTL-free cell. The dependency of the
efficiency on the interface defect density is more noticeable than the energy level. For
both studied cases, the efficiency almost does not change for a given value of interface
defect density. Reducing the interface trap density from 1 × 1018 to 1 × 108 cm−2 results
in a rise in the efficiency of about 1% and 2.5% for case 1 and case 5, respectively. This
shows that the optimized HTL-free cell is more sensitive to the variations of the trap
density than the conventional hetero-homojunction case. Working on methods to reduce
the interface trap density, by passivation for instance, draws another promising route to
improve the efficiency.

 
(a) (b) 

Figure 20. Effect of interfacial trap parameters on the efficiency of (a) initial hetero/homojunction solar cell and (b) final
optimized HTL-free structure.

It should be mentioned here that the realization of the homojunction pn design is fea-
sible and has been demonstrated experimentally. Many techniques have been investigated
to attain doped perovskite films [35]. For instance, by control the stoichiometry of the
PbI2/MAI precursor ratio, a p-type MAPbI3 with rich MAI can be obtained while an n-type
MAPbI3 with rich PbI2 can be generated [36]. Besides, the defect-assisted self-doping could
offer an opportunity for the deposition of p- or n-type compounds [33]. More intensive
research is needed to explore the likelihood of obtaining p- and n-type lead-free perovskite
materials in order to fabricate efficient p-n junctions to benefit from enhanced charge
separation and limited recombination rates.
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4. Conclusions

Although many investigations have been done on the lead-free CH3NH3SnI3 solar
cells, they suffer from low photovoltaic performance. In this paper, a SCAPS device
simulation of a hybrid hetero-homojunction CH3NH3SnI3 was performed. The influence of
varying the main solar cell parameters on the cell performance was thoroughly investigated.
The initial cell was based on an experimental work with a record efficiency of 5.24%. The
thickness and doping of both n- and p-side of the cell was investigated to find out the
optimum thickness and doping of each layer. It was discovered that the thickness of the
p-side should be much more than that of the n-side, taking a fixed overall thickness of the
absorber. The optimized doping concentration of the n-side and the p-side was found to
be 1017 and 5 × 1016 cm−3, respectively. The photovoltaic parameters for the optimized
thickness and doping were: Voc = 0.7513, Jsc = 19.62, FF = 58.72% and η = 8.66%.

Further, the structure was HTL-free to overcome the organic issues usually encoun-
tered with the HTL materials. The HTL-free cell is optimized in terms of doping, work
function of the back contact and bulk trap density to obtain the maximum efficiency. More-
over, the impact of different ETL materials was explored. It was observed that positive
CBO up to 0.17 eV is adequate to obtain low recombination rates and, consequently, larger
open circuit voltage. On the other hand, a negative CBO or a high positive CBO was not
beneficial. Optimized photovoltaic parameters could be obtained for the proposed hybrid
hetero-homojunction HTL-free cell using a bulk trap density of 1 × 1015 cm−3 and utilizing
ZnO as an ETL, giving Voc = 0.948 V, Jsc = 26.48 mA/cm2, FF = 77.20 and an efficiency of
19.37%.

The presented study highlights some design rules regarding the hybrid hetero-
homojunction lead-free PSCs. For the selected initial cell, whose energy gap was 1.3 eV, the
p-layer should be higher than the n-layer thickness. The doping levels could be selected in
order to boost the cell performance. Moreover, the appropriate choice of the ETL material
for the HTL-free configuration is crucial. Further, optimization of the different technological
parameters of the HTL-free cell could lead to a low-cost, high-efficiency lead-free PSC.
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Abstract: The heating, ventilation, and air conditioning (HVAC) system serving the test room
of the SENS i-Lab of the Department of Architecture and Industrial Design of the University of
Campania Luigi Vanvitelli (Aversa, south of Italy) has been experimentally investigated through a
series of tests performed during both summer and winter under both normal and faulty scenarios.
In particular, five distinct typical faults have been artificially implemented in the HVAC system
and analyzed during transient and steady-state operation. An optimal artificial neural network-
based system model has been created in the MATLAB platform and verified by contrasting the
experimental data with the predictions of twenty-two different neural network architectures. The
selected artificial neural network architecture has been coupled with a dynamic simulation model
developed by using the TRaNsient SYStems (TRNSYS) software platform with the main aims of
(i) making available an experimental dataset characterized by labeled normal and faulty data covering
a wide range of operating and climatic conditions; (ii) providing an accurate simulation tool able to
generate operation data for assisting further research in fault detection and diagnosis of HVAC units;
and (iii) evaluating the impact of selected faults on occupant indoor thermo-hygrometric comfort,
temporal trends of key operating system parameters, and electric energy consumptions.

Keywords: HVAC system; air-handling unit; experimental performance; artificial neural network;
simulation model; faults’ impact assessment

1. Introduction

The building sector contributes to approximately 40% of overall energy demand in
industrialized countries, with Heating, Ventilation, and Air Conditioning (HVAC) systems
accounting for a large part of this energy consumption [1,2]. Several scientific publications
have discussed the application of efficient/innovative technologies [3] and/or optimal
control strategies [4] with the aim of reducing the energy demand and related greenhouse
gas emissions of HVAC units. However, HVAC systems could be exposed to various
abnormal faults during operation as a consequence of a failure of components, lack of
correct maintenance, or wrong installation. Each component of HVAC systems can be
eventually altered by a fault, where a fault is an anomalous state of the system, i.e., an
undesired divergence of at least one of the properties of the HVAC unit with respect
to healthy/standard conditions [5]. The faults can involve sensors, devices, equipment,
and controllers [5]. A study conducted on more than 55,000 Air Handling Units (AHUs)
showed that up to 90% runs with one or multiple faults [6]. Lin et al. [7] underlined that an
effective detection of faults in HVAC units could save from 15% to 30% of overall energy
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required by buildings. In addition, Au-Yong et al. [8] highlighted a relevant impact of poor
maintenance of HVAC systems on indoor thermo-hygrometric comfort, identifying several
maintenance factors significantly correlated with occupants’ satisfaction. This means that
adopting a proper maintenance strategy is fundamental. Companies generally adopt a
reactive maintenance or a preventive maintenance. Repairs are carried out only in the case
of failures when a reactive maintenance is adopted; this approach could be expensive and
may cause safety issues. In the case of a preventive maintenance, systems are examined
and maintained at given periods (whatever their state is); however, this approach requires
identifying a proper maintenance schedule in order to not waste component life that is still
profitable as well as avoid safety problems.

1.1. Automated Fault Detection and Diagnosis Methods for HVAC Systems

Critical points of reactive and preventive maintenance approaches underline how
“predicting” the faults of HVAC units could be essential. This task could be performed
by means of the so-called Automated Fault Detection and Diagnosis (AFDD), which is
an automated process of detecting faults and diagnosing the type of problem and/or its
location [5,7,9]. It could be adopted to take advantage of potentialities associated to building
energy management systems in quasi-real-time by comparing expected behavior with
actual performance over a predefined period. AFDD technologies can provide numerous
benefits, such as improved operational efficiency, energy savings, reductions of utility costs,
as well as reduced equipment downtime [5,7,9]. Although currently underutilized, AFDD
products represent one of the most active research areas as well as a very fast-growing
market section in the sector of building analytics technologies [10]. The methodologies
adopted for carrying out AFDD analyses can be categorized as (i) data-driven-based,
(ii) quantitative model-based, and (iii) qualitative model-based [5]. The first category needs
pre-labeled operational data acquired from the system under investigation in order to
the develop AFDD models; data-driven AFDD approaches achieved promising results
thanks to their applicability even in the case of simulation models are challenging to be
developed [5,10]. The quantitative model-based approach relates to the methods involving
simulation models physically describing the system at different levels of detail. Finally, the
qualitative models are based on the knowledge of the system deriving from area expertise.

Nowadays, buildings are equipped with numerous sensors used for their energy
management. In addition, innovative devices are allowed to connect occupancy sensors,
power meters, and appliances that collect data in order to derive information with the
aim of taking data-driven actions. In this context, the integration of artificial intelligence
technologies (that highlighted fast advancements in last years), including both unsuper-
vised and supervised algorithms [5,11], is particularly encouraging due to the fact that
they could allow to improve self-diagnosis capabilities and optimize energy management
systems. In particular, an Artificial Neural Network (ANN) represents a kind of artificial
intelligence that simulates the operation of the human brain; it can learn from training data
and replicate the trends of data time series, approximating nonlinear relationships between
inputs and outputs of advanced energy systems without involving explicit mathematical
representations [11]. The data-driven approach integrating artificial intelligence [5,12,13],
with respect to the other methods, allows (i) achieving higher accuracy of fault detection
and diagnosis; (ii) learning patterns from field data without involving physical models as
well as needing an a priori knowledge of connections among faults and associated symp-
toms; and (iii) performing AFDD analyses considering a restricted number of variables
and, therefore, limiting the number of sensors. In more detail, supervised approaches
use the domain knowledge with the aim of developing a prediction tool, while the un-
supervised methods get out concealed knowledge without a predefined goal [5,12,13].
Supervised models are mainly based on the implementation of residual analyses to per-
form an AFDD process [5,14,15], where a residual is the difference between the predicted
and the experimental values of a specific parameter.
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Several studies focusing on supervised techniques for AFDD of HVAC systems are re-
ported in the scientific literature. Piscitelli et al. [5] suggested an innovative AFDD method
based on both unsupervised and supervised data-driven approaches by considering the
operational data of an AHU recorded during steady-state and transient periods. Dehestani
et al. [16] suggested a methodology based on a multi-class support vector machine with
the aim of identifying faults related to air dampers and fans of AHUs. A Bayesian network
was considered in [17,18] for diagnosing faults associated to air dampers, return fan failure,
and cooling coil valve; the network exploited as inputs the residuals derived from a set of
statistical models and checking rules. Mulumba et al. [19] suggested a method to predict
the occurrence of faults related to return air fan, air dampers, and cooling coil valve by
means of a support vector machine combined with an autoregressive model. Yan et al. [20]
presented a mixing of two supervised methods to detect blockage of coil valves and air
dampers, return air fan failure, and duct leakage; a classification tree has been developed
using as inputs both field data and residuals derived from a regression model, while the
labels of different faults have been assumed as outputs; the method described in [20] can
be helpful in performing AFDD analyses without considering transient operation of HVAC
systems. McHugh et al. [21] compared several classification models for AFDD and the
classification tree model was identified as the best option for chilled water or steam leakage.

1.2. Novelty and Structure of the Paper

The literature review performed in the previous subsection demonstrates how the
scientific community is engaged in the research area of artificial intelligence techniques-
based AFDD for HVAC units. According to the authors of [1,7,22], even if AFDD is an
effective approach to guarantee an efficient operation of HVAC systems and associated
technology is growing, it is still in the initial stage of utilization. This means that additional
investigations are still mandatory in order to address several research gaps.

First, the architecture of sensors in HVAC units is usually not designed with AFDD in
mind, and therefore some important variables are generally not measured causing a lack of
labeled data. Moreover, measurements under faulty conditions are even more challenging
to be obtained due to the uncommon faults’ occurrence as well as the inconvenience of
implementing faults into complex and expensive devices with the purpose of collecting
data [23]. In addition, relatively few studies give detailed information on how faults are
empirically introduced into an existing HVAC system [5,24]; almost all the works only
take into account one HVAC operating mode under different weather scenarios [5,24]. Lin
et al. [7] highlighted that there is a need of standard datasets for assessing the accuracy
of AFDD methods and future AFDD studies should focus on the expansion of databases
as well as their provision for public use. Granderson et al. [25] also underlined that it
is unusual to find datasets characterized by labeled data clearly indicating whether they
represent faulty, healthy, or simply unusual operating states. Finally, Casillas et al. [26]
indicated that one of the most important challenges of researches focusing on AFDD meth-
ods is represented by the insufficiency of shared databases to benchmark the performance
of algorithms with the aim of assessing improvements and prioritizing future investments
in these methods. With reference to this point, it should be highlighted that most of AFDD
studies are based on the ASHRAE RP-1312 data set [24] (dated 2011) consisting of measure-
ments recorded every minute from an experimental set-up comprising two AHUs; recently,
Piscitelli et al. [5], Yun et al. [27], as well as Fan et al. [28] proposed novel methodologies
for performing AFDD analyses of AHUs based on the ASHRAE RP-1312 data set [24].
Therefore, as also suggested by Hu et al. [23], additional researches are required in order to
obtain more experimental data under both normal and faulty operation considering the
occurrence of a number of different faults upon varying the boundary conditions.

One more research gap associated with the application of AFDD analyses is related
to the fact that not many studies quantitatively examine how various faults and fault
severities impact energy consumption, user comfort, maintenance cost, and equipment
life cycle [6]. This point represents a demanding task taking into account that (i) several
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faults could have comparable symptoms and (ii) faults of AHUs could interact each other
and, therefore, it could be challenging to isolate multiple faults of AHUs [1,24]. According
to the authors of [7], additional works better characterizing faults’ impact based on field
measurements could prove valuable in addressing future developments and implementa-
tion attempts of AFDD techniques. Piscitelli et al. [5] also indicated that the majority of
AFDD applications are used for detecting and/or diagnosing faults of HVAC units during
steady-state operation, and therefore they could not be effectively used with reference to
transient periods because they are not fully able to automatically determine the system
operation mode and prevent false alarms. In this context, accurate simulation models
of HVAC units can provide significant benefits for performing AFDD analyses taking
into account that they could help in quantifying faults’ impact on both energy demand
and occupant comfort and, therefore, supporting corrective actions which can facilitate
more reliable commissioning decisions, more efficient system operation, improved indoor
conditions, and prolonged equipment service life [29]. However, according to the authors
of [30,31], most existing simulation models of HVAC systems assume normal/healthy con-
ditions without any operational faults and do not capture the significant impact of faults
on energy consumption and indoor comfort conditions. In addition, Zhang and Hong [31]
highlighted that modeling activities of HVAC systems operating under faulty conditions
are still insufficient mostly due to the fact that several fault-related researches focus on
single subcomponent operation rather than whole system performance and, consequently,
they cannot predict the comprehensive faults’ impact.

One additional knowledge gap to be underlined relates to the fact that models of
HVAC units developed for AFDD purposes should be fully validated via extensive com-
parisons with experimental data under both faulty and normal conditions as well as
different boundary scenarios. However, comparative analyses against field measurements
are usually not performed for validation purposes mainly because, as mentioned above, ac-
curate experimental datasets, covering a wide range of operating conditions and including
faulty data, are not generally available. For example, Zhang and Hong [31] introduced a
methodology for modeling operational faults of HVAC units by using a comprehensive
whole-building performance simulation program; impacts of faults with reference to a
small-size office building have been investigated in [31], but a validation process against
experimental data has not been carried out; similarly, Basarkar et al. [30] assessed the
effects of four typical faults on the HVAC unit serving a commercial reference building by
means of a simulation program; the results of comparisons between predictions and field
measures have not been reported in the paper in order to check the models’ accuracy.

In this paper, the operation of the HVAC system assisting the integrated test room of
the SENS i-Lab of the Department of Architecture and Industrial Design of the University
of Campania Luigi Vanvitelli (located in Aversa, south of Italy) has been experimentally
characterized on the basis of a series of tests performed during both summer and winter
under both normal and faulty operating conditions (transient and non-transient). In
particular, five different typical faults (affecting the supply/return air fans, the valve
supplying the heating coil, the valve supplying the cooling coil, and the valve supplying
the steam humidifier) have been artificially implemented in the HVAC system and analyzed
during transient and steady-state operation. An optimal artificial neural network-based
system model has been identified and verified by contrasting the experimental data with the
predictions of twenty-two different neural network architectures developed in the MATLAB
environment [32]; the selected artificial neural network has been coupled with a dynamic
simulation model developed using the TRaNsient SYStems (TRNSYS) software platform
(version 17) [33]. The effect of selected faults on occupant indoor comfort, temporal trends
of key operating system parameters, as well as electric energy consumptions has been
assessed.

This paper addresses several research gaps highlighted by the literature review fo-
cusing on AFDD applications to HVAC systems. In fact, the dataset described in this
article includes fault free and faulty operational data of a typical HVAC unit, coupled with
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ground-truth information and the indication of absence or presence of faults. In addition,
this dataset covers a wide range of operating scenarios (both transient and steady-state) and
weather conditions while encompassing five typical fault types. Moreover, a whole-system
simulation model using both MATLAB and TRSNSYS environments has been created and
extensively validated by contrasting predicted data with measurements; then, it has been
used to discover a number of patterns related to the faulty system operation and assess the
impacts of selected typical faults. Both the labeled measured data as well as the developed
simulation models will be made available on a public data repository allowing access,
consultation, and utilization to readers and organizations for institutional and research
purposes.

The paper consists of six main sections. In Section 2, the experimental setup is detailed.
Section 3 describes the investigated faults as well as the experimental results of both fault
free and faulty tests. A detailed outline of the simulation model is reported in Section 4.
An assessment of faults’ impact is performed and discussed in Section 5. Finally, the
conclusions and future research steps are indicated in Section 6.

2. Description of the Experimental Setup

The SENS i-Lab is a multi-sensorial laboratory of the Department of Architecture
and Industrial Design of the University of Campania Luigi Vanvitelli (Aversa, south-
ern Italy, longitude: 14◦12′26′′ E, latitude: 40◦58′21′′ N). The SENS i-Lab consists of a
human-centered, multi-physical, and multi-purpose test room served by an HVAC system,
including a single duct dual-fan constant air volume (CAV) air handling unit, controlling
indoor air temperature, indoor air relative humidity, indoor air velocity, and indoor air
quality. The test room has a floor area of 16.0 m2 (its height is 3.6 m) and four vertical walls
(without windows and one door); both the ceiling and floor are horizontal. It is installed
inside the Department, so that its indoor conditions are not directly affected by external
climatic conditions. Table A1 in Appendix A describes the material, thickness, thermal
conductivity, conductive thermal resistance of each layer composing the walls, the ceiling,
and the floor of the integrated test room.

A CAV AHU is commonly used in buildings; it is more common in existing old
buildings or small new buildings, while in new medium/large buildings variable air
volume (VAV) AHUs are the common choice of installation. In the case of CAV AHUs,
volumetric flow rate of supply air is constant, while its supply temperature and relative
humidity are varying. With respect to VAV AHUs, CAV AHUs are easier, cheaper, and
quicker to install, but they are less efficient and with higher lifetime running costs. The
AHU of the SENS i-Lab consists of these main functional subcomponents: return air fan
(RAF); supply air fan (SAF); pre-heating coil (PreHC); post-heating coil (PostHC); cooling
coil (CC); steam humidifier (HUM); static cross-flow heat recovery system (HRS); vapor
compression air-to-water single-stage electric refrigerating system (RS) connected with
the cooling coil; vapor-compression air-to-water single-stage electric heat pump (HP)
connected with the pre-heating coil and the post-heating coil; valves (VPreHC, VPostHC,
VCC, VHUM) controlling the flow rate of heat carrier fluid entering, respectively, the pre-
heating coil, the post-heating coil, the cooling coil and the steam humidifier; return air
damper (DRA); outside air damper (DOA); exhaust air damper (DEA); damper of the
HRS (DHRS); return air filter (RAFil); outside air filter (OAFil); supply air filter (SAFil).
Two 0.08 × 0.18 cm2 air grilles are mounted on the south-oriented wall at floor level and
two 0.08 × 0.18 cm2 air grilles are mounted on the north-oriented wall at floor level with
the aim of extracting air from indoor space to be moved into the AHU; a 0.60 × 0.60 cm2

swirl diffuser acting as supply air grille is mounted on the ceiling of the test room. Figure 1
reports the scheme of the AHU together with its main components.

27



Energies 2021, 14, 5362

 

Figure 1. Air handling unit scheme.

Figure A1 of Appendix A shows the floor plan of the test room including the AHU,
together with the refrigerating system (RS), the heat pump (HP), as well as the return and
supply air ducts. Table 1 indicates the characteristics of the functional components of the
HVAC serving the SENS i-Lab. The system fulfills the requirements prescribed by the
Ecodesign Directive 1253/2014 [34] introduced by the European Union in order to support
the diffusion of energy efficient AHUs. The HVAC unit is equipped with a number of
sensors to observe and register the key operating system parameters. The measuring range
as well as the accuracy of the sensors are showed in Table 2.

The AHU is operated according to a specific control logic. In particular, the following
parameters are manually set (and eventually modified during the test) by the end users:
(i) the desired targets of both indoor relative humidity (RHSP,Room) and indoor air temper-
ature (TSP,Room) to be reached and maintained into the test room; (ii) the deadband DBT
for TSP,Room and the deadband DBRH for RHSP,Room; (iii) air flow rate of both the supply
air fan (OLSAF) and the return air fan (OLRAF); (iv) opening percentages of the outside air
damper (OPDOA), the return air damper (OPDRA), and the exhaust air damper (OPDEA);
and (v) activation of the heat recovery system damper (OPDHRS). Flow rate of air moved by
the supply air fan can range between 0 (OLSAF = 0%) and 1080 m3/h (OLSAF = 100%), while
flow rate of air moved by the return air fan is between 0 (OLRAF = 0%) and 1460 m3/h
(OLRAF = 100%); the maximum electric consumption of the SAF and RAF are, respectively,
1.22 kW and 0.48 kW. The parameter OPDHRS can be fixed at 100% (no heat recovery) or
0% (heat recovery takes place). The variation range of the parameters OPDRA, OPDOA, and
OPDEA is 0 ÷ 100% (100% corresponds to the dampers fully open). Once the previous pa-
rameters are manually set by the end-users, opening percentages of the valves (OPV_PreHC,
OPV_PostHC, OPV_CC and OPV_HUM) are automatically managed in the range 0 ÷ 100% by
proportional-integral-derivative (PID) controllers in order to achieve the indoor desired
targets. Opening percentages of the valves are continuously regulated between 0% and
100% as a function of differences between the targets of air temperature and relative hu-
midity into the test room and their current values. In more detail, volumetric flow rate of
fluid streaming inside the coils can be modulated between 0 and 0.860 m3/h, while flow
rate of steam mass of the steam humidifier can be varied from 0 up to 5 kg/h.

28



Energies 2021, 14, 5362

Table 1. Main AHU components’ characteristics.

Supply air fan (SAF)
Maximum number of revolutions per minute (rpm) 3640

Nominal velocity of supply air fan (%) 50

Return air fan (RAF)
Maximum number of revolutions per minute (rpm) 3080

Nominal velocity of return air fan (%) 50

Cross flow heat recovery system
(HRS)

Nominal recovery capacity (kW) 3.1
Nominal efficiency (%) 74.7

Nominal pressure drops on external/exhaust air side (kPa) 0.047/0.048

Return air filter (RAFil) and outside
air filter (OAFil)

Type/Efficiency class Fluted/G4

Supply air filter (SAFil) Type/Efficiency class Rigid pocket/G4

Return air duct (RAD) and supply air
duct (SAD)

Diameter (m) 0.25
Supply/Return length (m) 9.8/16.8

Thermal resistance of insulating material (m2K/W) 0.25

Pre-heating coil (PreHC)
Nominal heating capacity (kW) 4.1

Nominal air/fluid volumetric flow rate (m3/h) 600/0.710
Nominal air/fluid pressure drops (kPa) 0.00321/12.43

Colling coil (CC)
Nominal cooling capacity (kW) 5.0

Nominal air/fluid volumetric flow rate (m3/h) 600/0.860
Nominal air/fluid pressure drops (kPa) 0.0178/13.56

Steam humidifier (HUM) [35]
Nominal steam capacity (kg/h) 5.0

Nominal power (kW) 3.7

Post-heating coil (PostHC)
Nominal heating capacity (kW) 5.0

Nominal air/fluid volumetric flow rate (m3/h) 600/0.860
Nominal air/fluid pressure drops (kPa) 0.0497/20.35

Heat Pump (HP) [36]
Nominal capacity (kW) 14.0

Nominal input power (kW) 4.75
Nominal heat carrier fluid volumetric flow rate (m3/h) 2.41

Refrigerating System (RS) [36]
Nominal capacity (kW) 13.4

Nominal input power (kW) 4.48
Nominal heat carrier fluid volumetric flow rate (m3/h) 2.31

Table 2. Measuring range and the accuracy of the AHU sensors.

Sensor Model Monitored Parameter Measuring Range Accuracy

Siemens QFM2160 [37]
Return air temperature (TRA) 0 ÷ 50 ◦C ±0.8 ◦C

Return air relative humidity (RHRA) 0 ÷ 100% ±3%

Siemens QFM2160 [37]
Supply air temperature (TSA) 0 ÷ 50 ◦C ±0.8 ◦C

Supply air relative humidity (RHSA) 0 ÷ 100% ±3%

Siemens QAM2161.040 [38] Outside air temperature (TOA) −50 ÷ 50 ◦C ±0.75 ◦C

Siemens QAM2161.040 [38] Cooling coil outlet air temperature (TA,out,CC) −50 ÷ 50 ◦C ±0.75 ◦C

TSI 7575, 982 IAQ [39]
Temperature of air around the test room (TBEA) −10 ÷ 60 ◦C ±0.50 ◦C

Relative humidity of air around the test room (RHBEA) 5 ÷ 95% ±3%

Table 3 reports the main criteria for activating and deactivating the main functional
subsystems of the AHU serving the test room. The pre-heating coil is not included in the
table because this subsystem has been kept deactivated during the entire duration of all
experimental tests. The post-heating coil is activated when return air temperature becomes
not larger than the temperature difference (TSP,Room − DBT), while it is deactivated in the
case of TRA assumes a value not lower than the temperature (TSP,Room + DBT). The cooling
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coil is activated when return air temperature becomes not lower than the temperature
(TSP,Room + DBT), while it is deactivated in the case of TRA assumes a value not larger
than the temperature difference (TSP,Room − DBT). The steam humidifier is activated when
return air relative humidity becomes not larger than the air relative humidity difference
(RHSP,Room − DBRH), while it is deactivated in the case of RHRA assumes a value not lower
than the air relative humidity (RHSP,Room + DBRH). The heat pump is activated when
temperature into the hot tank THT is lower than 44 ◦C, while it is deactivated in the case
of THT assumes a value not lower than 46 ◦C. The refrigerating device is activated when
the temperature into the cold tank TCT is larger than 8 ◦C, while it is deactivated in the
case that TCT assumes a value not larger than 6 ◦C. The signals managing the opening
percentages of the valves (OPV_PreHC, OPV_PostHC, OPV_CC, and OPV_HUM) are generated
by PID controllers. As an alternative to the automatic operation based on PID controllers,
the opening percentages of the valves (OPV_PreHC, OPV_PostHC, OPV_CC, and OPV_HUM)
can be also forced by the end-users; therefore, the end user is allowed to force component
operation/parameters based on specific research purposes.

Table 3. Activation criteria of the AHU’s components.

Component of AHU ON OFF

Steam humidifier (HUM) RHRA ≤ (RHSP,Room − DBRH) RHRA ≥
(RHSP,Room + DBRH)

Cooling coil (CC)
TRA ≥ (TSP,Room + DBT)

OR
RHRA ≥ (RHSP,Room + DBRH)

TRA ≤ (TSP,Room − DBT)
AND

RHRA ≤ (RHSP,Room − DBRH)

Post-heating coil (PostHC) TRA ≤ (TSP,Room − DBT) TRA ≥ (TSP,Room + DBT)

Heat Pump (HP) [36] THT < 44 ◦C THT ≥ 46 ◦C

Refrigerating System (RS) [36] TCT > 8 ◦C TCT ≤ 6 ◦C

However, alternatively, the end users can also manually force (at the beginning or
during the test) the opening percentages of the valves for research purposes (instead of
operating according to the automatic control logic).

3. Experimental Tests

A set of 18 fault-free and faulty daily experimental tests has been performed in
order to examine the HVAC system operation during transient and steady-state operation
under both winter and summer conditions. Tables 4 and 5 describe the operating of the
experimental tests under summer and winter conditions, respectively.

Table 4. Operating conditions of the experimental tests under fault free (tests 1–4) and faulty operation (tests 5–9) during
summer.

Test n.
TSP,Room

(◦C)
RHSP,Room

(%)
TOA (◦C)

OLRAF

(%)
OLSAF (%)

OPV_PostHC

(%)
OPV_CC

(%)
OPV_HUM

(%)
Date

(dd/mm/yyyy)

1 26 50 20.6 ÷ 26.7 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 29/06/2020
2 26 50 29.1 ÷ 35.2 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 28/07/2020
3 26 50 25.3 ÷ 32.0 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 23/07/2020
4 26 50 28.6 ÷ 35.3 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 21/07/2020

5 (fault1) 26 50 30.4 ÷ 34.9 50 20 0 ÷ 100 0 ÷ 100 0 ÷ 100 31/07/2020
6 (fault2) 26 50 32.1 ÷ 38.8 20 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 03/08/2020
7 (fault3) 26 50 33.8 ÷ 38.4 50 50 0 0 ÷ 100 0 ÷ 100 16/09/2020
8 (fault4) 26 50 29.4 ÷ 35.8 50 50 0 ÷ 100 0 0 ÷ 100 16/09/2020
9 (fault5) 26 50 28.7 ÷ 38.2 50 50 0 ÷ 100 0 ÷ 100 0 18/09/2020
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Table 5. Operating conditions of the experimental tests under fault free (tests 10–13) and faulty operation (test 14–18) during
winter.

Test n.
TSP,Room

(◦C)
RHSP,Room

(%)
TOA (◦C)

OLRAF

(%)
OLSAF

(%)
OPV_PostHC

(%)
OPV_CC

(%)
OPV_HUM

(%)
Date

(dd/mm/yyyy)

10 20 50 10.3 ÷ 15.0 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 23/12/2020
11 20 50 13.2 ÷ 15.4 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 28/12/2020
12 20 50 12.7 ÷ 18.6 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 29/12/2020
13 20 50 8.0 ÷ 13.5 50 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 05/01/2021

14 (fault1) 20 50 12.3 ÷ 20.0 50 20 0 ÷ 100 0 ÷ 100 0 ÷ 100 12/01/2021
15 (fault2) 20 50 5.6 ÷ 12.2 20 50 0 ÷ 100 0 ÷ 100 0 ÷ 100 14/01/2021
16 (fault3) 20 50 10.5 ÷ 15.9 50 50 0 0 ÷ 100 0 ÷ 100 28/01/2021
17 (fault4) 20 50 7.8 ÷ 16.8 50 50 0 ÷ 100 0 0 ÷ 100 15/02/2021
18 (fault5) 20 50 9.2 ÷ 13.3 50 50 0 ÷ 100 0 ÷ 100 0 12/02/2021

During all the tests, a number of system parameters have been kept constant: DBT = 1 ◦C,
DBRH = 5%, OPDRA = 100%, OPDOA = 20%, OPDEA = 20%, and OPDHRS = 100. In more
detail, 8 tests have been performed under fault free conditions (tests n. 1, 2, 3, 4 in Table 4
carried out during summer and tests n. 10, 11, 12, 13 in Table 5 carried out during winter).
The remaining 10 tests have been carried out while artificially introducing specific faults
(tests n. 5, 6, 7, 8, 9 in Table 4 carried out during summer and tests n. 14, 15, 16, 17, 18 in
Table 5 carried out during winter). The experiments have been performed by measuring
every minute all the parameters indicated in Table 2. In this study, the recording time step
of measured data has been defined according to the experimental approaches adopted
in similar works available in the scientific literature. For example, the ASHRAE RP-1312
data set [24] developed for AFDD purposes consists of experimental data recorded every
minute from a facility comprising two AHUs; recently, Piscitelli et al. [5], Yun et al. [27],
as well as Fan et al. [28] proposed novel methodologies for performing AFDD analyses of
AHUs based on this ASHRAE RP-1312 database [24]; Cheng et al. [40] developed a new
AFDD method for AHUs using experimental data measured every minute. Therefore, a
measurement time step of one minute could be reasonably assumed as acceptable in order
to take into account the response time of HVAC components.

Only during the faulty tests, the operation of specific AHU components has been
forced to assure user-specified positions in order to artificially simulate the following
5 specific typical faults (named fault 1, 2, 3, 4, 5):

• Fault 1 has been implemented during both the tests n. 5 and n. 14, i.e., the velocity of
the supply air fan has been kept at 20% (instead of the nominal value of 50%);

• Fault 2 has been implemented during both the tests n. 6 and n. 15, i.e., the velocity of
the return air fan has been kept at 20% (instead of the nominal value of 50%);

• Fault 3 has been implemented during both the tests n. 7 and 16, i.e., the valve managing
the flow rate entering the post-heating coil has always been kept closed (instead of
allowing its normal operation with an opening percentage in the range 0 ÷ 100%
according to the AHU automatic control logic);

• Fault 4 has been implemented during both the tests n. 8 and n. 17, i.e., the valve
managing the flow rate entering the cooling coil has always been kept closed (instead
of allowing its normal operation with an opening percentage in the range 0 ÷ 100%
according to the AHU automatic control logic);

• Fault 5 has been implemented during both the tests n. 9 and n. 18, i.e., opening
percentage of the valve managing the flow rate entering the steam humidifier has
always been kept closed (instead of allowing its normal operation with an opening
percentage in the range 0 ÷ 100% according to the AHU automatic control logic).

In this study, the above-mentioned faults have been introduced at the beginning of the
faulty tests and maintained during the entire duration of the experiments (what happens
in the case of the faults are shorter has not been investigated).

During the tests n. 1–4 and n. 10–13 (fault free tests), the AHU’s components have
been operated without any artificial faults.
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In both Tables 4 and 5, the parameters characterizing the corresponding faults have
been highlighted in red.

Figures 2a–d and 3a–e highlight the experimental trends of return air temperature
TRA, supply air temperature TSA, outside air temperature TOA, air temperature around the
test room TBEA, return air relative humidity RHRA, supply air relative humidity RHSA, and
air relative humidity around the test room RHBEA recorded during the fault free and faulty
tests, respectively, performed under summer conditions (detailed in Table 4).
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Figure 2. Experimental data measured during the fault free tests under summer conditions: test n. 1 (a), test n. 2 (b),
test n. 3 (c), and test n. 4 (d).
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Figure 3. Experimental data measured during the faulty tests under summer conditions: test n. 5 (a), test n. 6 (b), test n. 7
(c), test n. 8 (d), and test n. 9 (e).

Figure 2a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.1; Figure 2b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the fault free test n.2; Figure 2c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the fault free test n.3;
Figure 2d highlights the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.4.

Figure 3a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA,
RHBEA during the faulty test n.5; Figure 3b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the faulty test n.6; Figure 3c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the faulty test n.7;
Figure 3d highlight the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the faulty test n.8; the values of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA recorded
during the faulty test n.9 are depicted in Figure 3e.

Figures 4a–d and 5a–e report the experimental trends of TRA, TSA, TOA, TBEA, RHRA,
RHSA, RHBEA recorded during the fault free and faulty tests, respectively, performed under
winter conditions (detailed in Table 5).
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Figure 4. Experimental data measured during the fault free tests under winter conditions: test n. 10 (a), test n. 11 (b),
test n. 12 (c), and test n. 13 (d).
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Figure 5. Experimental data measured during the faulty tests under winter conditions: test n. 14 (a), test n. 15 (b),
test n. 16 (c), test n. 17 (d), and test n. 18 (e).

Figure 4a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.10; Figure 4b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the fault free test n.11; Figure 4c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the fault free test n.12;
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Figure 4d highlights the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the fault free test n.13.

Figure 5a reports the experimental trends of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the faulty test n.14; Figure 5b shows the measured parameters TRA, TSA, TOA,
TBEA, RHRA, RHSA, RHBEA during the faulty test n.15; Figure 5c indicates the measured
data associated to TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA during the faulty test n.16;
Figure 5d highlight the temporal variation of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA
during the faulty test n.17; the values of TRA, TSA, TOA, TBEA, RHRA, RHSA, RHBEA recorded
during the faulty test n.18 are depicted in Figure 5e.

Analysis of Experimental Trends

The data acquired during normal and faulty operation tests (and reported in previous
section) highlight that the percentages of time with values of indoor air temperature
within the given deadband (1 ◦C) around the user-defined target (setpoint 26/20 ◦C
for summer/winter season) are equal to 69.8%, 57.0%, 71.3%, 69.1%, 0%, 36.1%, 13.4%,
0%,86.6%, 68.3%, 69.6%, 72.5%, 71.4%, 75.4%, 68.7%, 0.0%, 15.7%, and 64.9% for the
tests 1–18, respectively. Furthermore, the percentages of time with values of air relative
humidity inside the test room within the deadband (5%) around the target (50%) are equal
to 98.4%, 84.9%, 83.5%, 88.3%, 16.2%, 80.6%, 88.1%, 90.6%, 65.4%, 84.7%, 80.7%, 87.3%,
81.2%, 49.4%, 82.3%, 99.6%, 80.5%, and 76.0%, during the tests 1–18, respectively. The
results of calculation highlight a good capability of the HVAC unit under healthy operation
(tests n. 1–4 and 10–13) to accurately control indoor conditions. The previously mentioned
percentages are lower than 100% because (a) the initial values of return air temperature
and return air relative humidity are in some cases far from target values and (b) during
the start-up phases the AHU operates under transient conditions trying to approach the
steady-state conditions to achieve the desired targets.

In more detail, Figure 3a–e (associated to the faulty tests performed during summer)
highlights the different trends/patterns associated to key operating parameters with respect
to the scenarios without faults:

• In Figure 3a (corresponding to the fault 1, i.e., velocity of the supply air fan reduced at
20%), supply air temperature and supply air relative humidity are in a much narrower
range as it would expected in the case of reduced supply air flow; in this case, TSA
drops to about 18.4 ◦C and then it remains below 20.5 ◦C (out of the desired thermal
comfort range) during the remaining part of the test, while RHSA is in the range of
51% to 61% with a larger number of oscillations; in addition, it can be noticed that
both return air temperature TRA and return air relative humidity RHRA vary much
more slowly as a function of time;

• Figure 3b (corresponding to the fault 2, i.e., velocity of the return air fan reduced at
20%) indicates that, as supposed, supply air temperature varies in a smaller range (in
this case between 15.5 ◦C and 21.0 ◦C) when return air flow rate is reduced;

• In Figure 3c (corresponding to the fault 3, i.e., post-heating coil valve kept fully closed),
supply air temperature TSA assumes lower average values, ranging in a narrower
interval (in this case between 14.5 ◦C and 23.0 ◦C) due to the fact that post-heating
coil is not active; as a consequence, return air temperature, after the initial drop from
~28.5 ◦C down to ~24.0 ◦C, remains almost constant during the remaining part of
the test (with a value smaller than its lower deadband and, therefore, out of desired
thermal comfort range); in addition, it should be underlined that average values of
supply air relative humidity are greater;

• In Figure 3d (corresponding to the fault 4, i.e., cooling coil valve kept fully closed),
supply air temperature is characterized by much larger average values (as it would
be expected due to the missing contribution of the cooling coil), with a narrower
variation range (in this case between 30.0 ◦C and 34.0 ◦C); return air temperature is
substantially constant, assuming a value larger than its upper deadband (in this case
equal to ~28.5 ◦C) and, therefore, out of the desired thermal comfort range;
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• In Figure 3e (corresponding to the fault 5, i.e., steam humidifier valve kept fully
closed), return air relative humidity varies in a narrower range (in this case between
43.0% and 55.5%), highlighting a significantly reduced number of oscillations (as it
would be presumed in the case of the humidifier is not active).

Figure 5a–e (associated to the faulty tests performed during winter) allows to underline
the different trends/patterns of key operating parameters with respect to the cases without
faults:

• In Figure 5a (corresponding to the fault 1, i.e., velocity of the supply air fan reduced
at 20%), the supply air temperature and supply air relative humidity are in a wider
range, with a much lower number of oscillations; similar trends can be recognized for
both return air temperature and return air relative humidity;

• Figure 5b (corresponding to the fault 2, i.e., velocity of the return air fan reduced at
20%) indicates that the impact of a reduced return ai flow rate is almost negligible in
terms of supply and return air temperature as well as supply and return air relative
humidity;

• In Figure 5c (corresponding to the fault 3, i.e., post-heating coil valve kept fully
closed), supply air temperature assumes lower average values (as post-heating coil is
not active); in particular, TSA is almost constant (and equal to ~12.0 ◦C in this case).
As a consequence, return air temperature remains almost constant during the test,
assuming a value much smaller than its lower deadband and, therefore, out of the
desired thermal comfort range. In addition, it should be underlined that average
values of supply air relative humidity are greater and included in a narrower range
(without significant oscillations); return air relative humidity is almost constant (and
equal to about 47% in this case);

• In Figure 5d (corresponding to the fault 4, i.e., cooling coil valve kept fully closed),
supply air temperature is characterized by lower average values (as it would be pre-
sumed due to the missing contribution of the cooling coil), with a narrower variation
range (approximately 19.0–24.0 ◦C in this case); return air temperature is substantially
constant, assuming a value out of desired thermal comfort range (slightly larger than
its upper deadband and equal to about 22.0 ◦C in this case);

• In Figure 5e (corresponding to the fault 5, i.e., steam humidifier valve kept fully
closed), return air relative humidity varies in a slightly narrower range (as it would be
expected in the case of the humidifier is not active).

4. Simulation Model

In this paper, an artificial neural network (ANN)-based model has been developed
in the MATLAB environment. The aim was to predict (i) the supply air temperature,
(ii) the supply air relative humidity, (iii) the opening percentage of the valve supplying the
post-heating coil, (iv) the opening percentage of cooling coil valve, and (v) the opening
percentage of the steam humidifier valve. This ANN has been first validated with mea-
sured data and then coupled with a dynamic simulation model developed in TRNSYS
environment in order to simulate (i) the return air temperature; (ii) the return air relative
humidity; as well as (iii) the electric energy consumptions (not measured) of the heat pump,
the refrigerating system, the steam humidifier, the supply air fan, and the return air fan
with the aim of rating the effects of the selected faults on both energy consumption as well
occupant indoor thermo-hygrometric comfort. The artificial neural network-based model
is described in Sections 4.1 and 4.1.1–4.1.3, while the description of the TRNSYS model is
reported in Section 4.2.

4.1. Artificial Neural Network-Based Model

In this section, the ANN-based models developed with the aim of simulating the
performance of the test room-integrated HVAC system under both normal and faulty
scenarios are described.
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4.1.1. Artificial Neural Networks’ Architecture

ANNs usually consist of three parts: one input layer; one or more hidden layers, and
one output layer. All layers include neurons, and each neuron in a given layer is linked
to the neurons of previous as well as successive layers. Each link between two neurons is
characterized by an adaptable synaptic weight and bias. Three main different functional
operations occur in ANNs:

• all the inputs are multiplied by their weights;
• the weighted values are added to the bias in order to form the net inputs;
• the net inputs are passed by means of the transfer function, which generates the

outputs.

ANNs are trained by means of a suitable learning method in order to obtain a specific
target output from a particular input by regulating the weights and biases. The training
process is stopped only when the error between the desired target and the corresponding
network output is lower than a given tolerance value or when the maximum number of
epochs (given number of iterations) is achieved. A transfer function is a mathematical
representation of the relation between inputs and outputs. Transfer functions generally
have a sigmoid shape, but they may also assume the form of piecewise linear functions,
nonlinear functions, or step functions. One of the most commonly adopted transfer
functions for multilayer networks is the hyperbolic tangent sigmoid transfer function
(tansig) [32] generating outputs between −1 and 1.

Performance of artificial neural networks is sensitive to both the number of hidden
layers as well as the number of neurons in their hidden layers [32]. In particular, networks
with more hidden layers require a larger computation time, but their use gives the network
more flexibility and could result in resolving challenging tasks more efficiently [32]. Larger
numbers of neurons allow the network to figure out more difficult issues; however, they
require more computation and they can play a part to “overfitting” (in that case the fitting
curve fluctuates wildly among training points, even if these points are well fitted); on the
other hand, few neurons can reduce the computation time, but they could also lead to
“underfitting”.

The MATLAB (The MathWorks Inc., Natick, Massachusetts, USA) Neural Network
Toolbox [32] has been used in this work in order to develop and analyze 22 artificial neural
network-based simulation models (ANN1-ANN22) of the HVAC system. All the artificial
neural networks have been configured with 10 inputs and 5 outputs, varying the number
of hidden layers and neurons in each hidden layer. One of the most common issues to be
addressed in configuring the architecture of ANNs is connected to the ANNs topology
allowing to achieve the requested accuracy and/or minimize the computation time. Several
studies [41–46] have determined the number of hidden layers and the number of neurons
in the hidden layers by trial and error, employing a grid search technique to find them.
A sensitivity analysis has been performed in this study in order to find out the optimal
number of hidden layers and neurons in each hidden layer according to the information
and approaches reported in the current literature. In particular, several scientific papers
investigated the application of ANNs for HVAC systems’ modeling [41–43], adopting a
number of hidden layers varying from a minimum of 1 [41] up to a maximum of 5 [41–43].
In addition, several formulas are available in the scientific literature [44–46] in order to
provide a starting point for determining the optimal number of neurons in each hidden
layer of ANNs as a function of (i) number of inputs [44–46], (ii) number of outputs [44], (iii)
number of hidden layers [45], and (iv) number of training examples [45,46]; these formulas
suggest a number of neurons per hidden layer in the range of 7 to 83 when applied to the
ANNs investigated in this paper.

4.1.2. Sensitivity Analysis of Artificial Neural Networks

Table 6 describes the architectures of the 22 ANN-based models investigated in this
paper, highlighting both number of hidden layers as well as number of neurons in each
hidden layer.
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Table 6. Architectures of the investigated ANNs.

ANN ID Number of Hidden Layers Number of Neurons in Each Hidden Layer

ANN1 1 10
ANN2 1 20
ANN3 1 30
ANN4 1 40
ANN5 1 50
ANN6 1 60
ANN7 1 70
ANN8 2 10
ANN9 2 20
ANN10 2 30
ANN11 2 40
ANN12 2 50
ANN13 3 10
ANN14 3 20
ANN15 3 30
ANN16 3 40
ANN17 4 10
ANN18 4 20
ANN19 4 30
ANN20 5 10
ANN21 5 20
ANN22 5 30

The following 10 variables have been set as inputs of all ANNs:

1. difference between current return air temperature and related target (ΔT)
2. difference between current return air relative humidity and related target (ΔRH)
3. supply air temperature at previous minute (TSA-1)
4. supply air relative humidity at previous minute (RHSA-1)
5. outside air temperature (TOA)
6. opening percentage of the valve managing the flow entering the post-heating coil at

previous minute (OPV_PostHC-1)
7. opening percentage of the valve managing the flow entering the cooling coil at

previous minute (OPV_CC-1)
8. opening percentage of the valve managing the flow entering the steam humidifier at

previous minute (OPV_HUM-1)
9. supply air fan velocity (OLSAF)
10. return air fan velocity (OLRAF).

The following five parameters have been set as outputs of all ANNs:

1. supply air temperature (TSA)
2. supply air relative humidity (RHSA)
3. opening percentage of the post-heating coil valve (OPV_PostHC)
4. opening percentage of the cooling coil valve (OPV_CC)
5. opening percentage of the steam humidifier valve (OPV_HUM).

Table 7 summarizes the inputs and the outputs used in the artificial neural networks.
Each ANN has 1 input layer with 10 neurons and 1 output layer with 5 neurons.
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Table 7. Inputs and outputs of the ANNs.

Number of Inputs Input ID Number of Outputs Outputs ID

1 ΔT
1 TSA2 ΔRH

3 TSA-1 2 RHSA4 RHSA-1
5 TOA 3 OPV_PostHC6 OPV_PostHC-1
7 OPV_CC-1 4 OPV_CC8 OPV_HUM-1
9 OLSAF 5 OPV_HUM10 OLRAF

The hyperbolic tangent sigmoid transfer function (tansig) has been adopted in the
hidden and output layers of each ANN. Levenberg–Marquart back-propagation training
algorithms (trainlm) have been selected as training function with the aim of updating the
weights and biases.

4.1.3. Training, Testing and Validation of ANNs

The experimental data measured during the tests described in Section 3 have been
used for training, testing, and validating the ANNs. Two different datasets have been
randomly extracted from the entire database (5352 data points in total): the first dataset
(3746 points) has been utilized for training purposes, while the second one (1606 points) has
been considered for testing and validating the networks. The predictions of the ANN-based
models have been compared with the whole experimental dataset (containing all training,
testing, and validation points) to evaluate the reliability of the ANNs by means of the
metrics reported below (the average error ε, the average absolute error |ε|, the mean square
error MSE, the root mean square error RMSE, and the coefficient of determination R2):

εi= gpred,i− gexp,i (1)

ε =
N

∑
i=1

εi/N (2)

|ε| =
N

∑
i=1
|εi|/N (3)

MSE =
1
N

N

∑
i=1

(εi − ε)

2

(4)

RMSE =

√√√√ N

∑
i=1

(εi − ε)2

N
(5)

R2= 1 −

⎡⎢⎣ N

∑
i=1

(
gexp,i − gpred,i

)2

(
gexp,i − gpred,i

)2

⎤⎥⎦ (6)

where N is the total number of experimental points, while gpred,i, gexp,I, and gpred are,
respectively, the predictions at time step i, the measurements at time step i, and the
arithmetic mean of the predicted values. Table 8 reports the calculated values of ε, |ε|, MSE,
RMSE, and R2 associated with the performance of all the ANNs developed in this study,
highlighting in green and red, respectively, the best and worst results.
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Table 8. Errors between predictions of ANN-based models and measurements.
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2

1

A
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N
2
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ε

TSA (◦C) −0.11 −0.03 0.00 −0.01 −0.01 −0.01 −0.01 0.00 −0.01 0.00 0.05 −0.01 −0.09 0.00 0.01 0.00 0.00 0.04 −0.02 0.02 10.71 −0.01

RHSA (%) 0.22 −0.02 0.10 0.08 0.04 −0.06 0.04 −0.03 0.06 −0.02 −0.24 0.06 0.18 0.05 0.00 −0.01 −0.04 0.02 −0.05 −0.02 0.01 0.01

OPV_PostHC (%) 0.00 0.01 0.00 0.01 0.00 0.01 −0.01 −0.01 0.00 0.01 0.00 0.00 0.00 −0.01 −0.01 0.02 0.00 0.01 −0.01 0.00 3.66 −0.01

OPV_CC (%) 0.00 −0.02 0.00 0.06 0.01 0.04 0.01 −0.02 0.01 0.02 −0.02 −0.01 −0.03 0.00 0.02 0.01 −0.03 0.01 −2.48 0.00 0.02 0.01

OPV_HUM (%) 0.01 0.00 −0.03 0.04 −0.01 −0.02 −0.02 0.01 −0.01 −0.02 −0.02 −0.02 0.03 −0.03 0.01 0.01 0.07 0.00 0.03 0.03 −0.02 0.01

|ε
|

TSA (◦C) 0.72 0.36 0.36 0.36 0.31 0.26 0.25 0.62 0.41 0.42 0.44 0.34 0.70 0.47 0.43 0.27 0.72 0.46 0.45 0.69 10.71 0.36

RHSA (%) 2.80 2.00 2.00 1.95 1.80 1.67 1.75 2.32 2.02 1.98 1.99 1.77 2.46 2.13 1.94 1.62 2.26 2.00 1.88 2.57 2.00 1.83

OPV_PostHC (%) 0.08 0.06 0.08 0.19 0.12 0.10 0.12 0.06 0.06 0.20 0.13 0.11 0.07 0.10 0.13 0.06 0.05 0.11 0.07 0.10 3.66 0.05

OPV_CC (%) 0.07 0.07 0.06 0.15 0.08 0.09 0.08 0.07 0.07 0.14 0.09 0.10 0.07 0.08 0.11 0.07 0.09 0.08 2.48 0.09 0.12 0.05

OPV_HUM (%) 0.19 0.13 0.15 0.20 0.15 0.13 0.17 0.13 0.12 0.23 0.15 0.18 0.16 0.17 0.18 0.11 0.16 0.15 0.13 0.16 0.16 0.11

M
S

E

TSA (◦C) 0.81 0.26 0.26 0.28 0.21 0.16 0.14 0.77 0.35 0.38 0.36 0.24 0.94 0.50 0.40 0.16 1.15 0.50 0.44 1.04 6.01 0.27

RHSA (%) 16.59 10.00 9.86 10.14 9.18 8.05 8.60 13.07 10.13 10.48 9.74 8.73 13.77 11.16 10.17 7.69 13.30 10.17 8.93 15.38 9.48 8.31

OPV_PostHC (%) 0.49 0.35 0.43 0.82 0.50 0.38 0.51 0.37 0.32 0.81 0.51 0.51 0.42 0.43 0.49 0.36 0.32 0.52 0.38 0.47 36.62 0.28

OPV_CC (%) 0.41 0.48 0.28 0.75 0.40 0.65 0.39 0.57 0.28 0.57 0.49 0.46 0.59 0.39 0.37 0.41 0.61 0.41 24.83 0.47 0.80 0.33

OPV_HUM (%) 1.10 0.79 0.82 1.12 0.71 0.72 1.17 0.94 0.68 1.03 0.74 0.75 1.12 0.88 0.94 0.77 1.21 0.75 0.72 1.11 0.78 0.68

R
M

S
E

TSA (◦C) 0.89 0.51 0.51 0.53 0.46 0.40 0.38 0.88 0.59 0.61 0.60 0.49 0.97 0.71 0.63 0.40 1.07 0.71 0.66 1.02 7.17 0.52

RHSA 4.07 3.16 3.14 3.18 3.03 2.84 2.93 3.62 3.18 3.24 3.11 2.95 3.71 3.34 3.19 2.77 3.65 3.19 2.99 3.92 3.08 2.88

OPV_PostHC (%) 0.70 0.59 0.66 0.90 0.71 0.62 0.71 0.60 0.57 0.90 0.71 0.72 0.65 0.66 0.70 0.60 0.56 0.72 0.62 0.69 4.82 0.53

OPV_CC (%) 0.64 0.69 0.53 0.86 0.63 0.80 0.63 0.75 0.53 0.75 0.70 0.68 0.76 0.62 0.61 0.64 0.78 0.64 4.32 0.68 0.89 0.57

OPV_HUM (%) 1.05 0.89 0.90 1.06 0.84 0.85 1.08 0.97 0.83 1.01 0.86 0.86 1.06 0.94 0.97 0.88 1.10 0.87 0.85 1.06 0.88 0.83

R
2

TSA (◦C) 0.985 0.995 0.994 0.994 0.996 0.996 0.997 0.980 0.991 0.990 0.991 0.996 0.976 0.987 0.990 0.996 0.967 0.988 0.989 0.978 0.118 0.994

RHSA (%) 0.955 0.975 0.976 0.975 0.978 0.981 0.979 0.957 0.972 0.974 0.977 0.977 0.963 0.967 0.974 0.982 0.964 0.973 0.976 0.956 0.976 0.980

OPV_PostHC (%) 0.979 0.989 0.982 0.981 0.982 0.988 0.990 0.987 0.987 0.985 0.980 0.978 0.982 0.981 0.987 0.982 0.987 0.984 0.978 0.984 0.140 0.993

OPV_CC (%) 0.981 0.986 0.985 0.976 0.975 0.980 0.983 0.979 0.983 0.969 0.984 0.968 0.974 0.977 0.986 0.973 0.962 0.981 0.131 0.971 0.974 0.983

OPV_HUM (%) 0.965 0.975 0.978 0.972 0.982 0.973 0.977 0.970 0.977 0.957 0.977 0.981 0.961 0.965 0.969 0.970 0.975 0.975 0.966 0.969 0.990 0.981

For each line of Table 8 the green shade has been assigned to the cell corresponding
to the best performance (the readers can find more green cells for each line in the cases
of more ANNs achieve the same best performance), while the worst results have been
highlighted by red shades.

The results reported in this table highlight that:

• the overall minimum value of ε (−2.48%) is obtained in the case of the ANN19 for the
parameter OPV_CC; the overall maximum value of ε (10.71 ◦C) is obtained in the case
of the ANN21 for the parameter TSA;

• the overall minimum value of |ε| (0.05%) is achieved by the ANN22 for the param-
eters OPV_PostHC and OPV_CC as well as in the case of the ANN17 for the parameter
OPV_PostHC; the overall worst value of |ε| (10.71 ◦C) is obtained in the case of the
ANN21 for the parameter TSA;

• the overall minimum value of MSE (0.14 ◦C) is obtained in the case of the ANN7 for
the parameter TSA; the overall maximum value of MSE (36.62%) is obtained in the
case of the ANN21 for the parameter OPV_PostHC;

• the overall minimum value of RMSE (0.38 ◦C) is achieved by the ANN7 for the
parameter TSA; the overall worst value of RMSE (7.17 ◦C) is obtained by the ANN21
for the parameter TSA;

• with reference to all the ANNs, average values of coefficient of determination R2 in
predicting supply air temperature, supply air relative humidity, opening percentage of
the post-heating coil valve, opening percentage of the cooling coil valve, and opening
percentage of the humidifier valve are very close to 1 and, respectively, equal to 0.95 ◦C,
0.97%, 0.95%, 0.94%, and 0.97%; the overall worst value of R2 (0.118) is obtained in
the case of the ANN21 for the parameter TSA; the overall best value of R2 (0.997) is
achieved by the ANN7 for the parameter TSA;

• the ANN22 is characterized by 8 green cells in Table 8, i.e., it works better than the
other ANNs with reference to 8 lines of this table; the ANNs 3, 9, and 16 denote
5 green cells, while a lower number of green cells can be recognized for the other
ANNs; the ANN4 has no green cells, while the ANN with the largest number of red
cells (denoting the worst performance) is the ANN21;

• whatever the metric is, the ANN16 is characterized by greater performance in compar-
ison to the ANN22 with reference to the predictions of both supply air temperature
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and supply air relative humidity. The percentage difference between the ANN16 and
the ANN22 in predicting TSA is 27% in terms of |ε|, 40% in terms of MSE, 22% in terms
of RMSE, and 0.21% in terms of R2. The percentage difference between the ANN16
and the ANN22 in predicting RHSA is 11% in terms of |ε|, 7% in terms of MSE, 4% in
terms of RMSE, and 0.21% in terms of R2;

• ANN22 provides better results than ANN16 in predicting the opening percentages of
the post-heating coil valve, the cooling coil valve as well as the humidifier valve. The
maximum percentage difference in terms of |ε| between the ANN22 and the ANN16 in
predicting OPV_PostHC, OPV_CC and OPV_HUM is 26%; the maximum percentage differ-
ence in terms of MSE between the ANN22 and the ANN16 in predicting OPV_PostHC,
OPV_CC, and OPV_HUM is 21%; the maximum percentage difference in terms of RMSE
between the ANN22 and the ANN16 in predicting OPV_PostHC, OPV_CC and OPV_HUM
is 11%; the maximum difference in terms of R2 between the ANN22 and the ANN16
in predicting OPV_PostHC, OPV_CC, and OPV_HUM is 1.13%.

Even if the ANN22 performs better than the ANN16 in predicting the opening percent-
ages of the valves, in this paper the ANN16 has been selected in order to obtain improved
predictions in terms of supply air temperature as well as supply air relative humidity (that
represent the fundamental outputs of AHU operation), while maintaining an adequate
accuracy in forecasting the valves operation. The errors reported in Table 8 demonstrate
how the ANN16 can be effectively used to generate operation data for assisting further
research in fault detection and diagnosis of HVAC units.

Figures 6–9 report the instantaneous errors between the values predicted by the
ANN16 and the measured data in terms of (i) supply air temperature (TSA), (ii) sup-
ply air relative humidity (RHSA), (iii) opening percentage of the post-heating coil valve
(OPV_PostHC), (iv) opening percentage of the cooling coil valve (OPV_CC), and (v) opening
percentage of the humidifier valve (OPV_HUM) as a function of time.
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Figure 6. Comparison between ANN16 predicted values and experimental data under fault free tests during summer:
test n. 1 (a), test n. 2 (b), test n. 3 (c), and test n. 4 (d).
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Figure 7. Comparison between ANN16 predicted values and experimental data under faulty tests during summer:
test n. 5 (a), test n. 6 (b), test n. 7 (c), test n. 8 (d), and test n. 9 (e).
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Figure 8. Cont.
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Figure 8. Comparison between ANN16 predicted values and experimental data under fault free tests during winter:
test n. 10 (a), test n. 11 (b), test n. 12 (c), and test n. 13 (d).
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Figure 9. Comparison between ANN16 predicted values and experimental data under faulty tests during winter:
test n. 14 (a), test n. 15 (b), test n. 16 (c), test n. 17 (d), and test n. 18 (e).

43



Energies 2021, 14, 5362

In more detail, the following parameters are showed in Figures 6–9:

ΔTSA= TSA,pred − TSA,exp (7)

ΔRHSA= RHSA,pred − RHSA,exp (8)

ΔOPV_PostHC= OPV_PostHC,pred − OPV_PostHC,exp (9)

ΔOPV_CC= OPV_CC,pred − OPV_CC,exp (10)

ΔOPV_HUM= OPV_HUM,pred − OPV_HUM,exp (11)

where TSA, pred, RHSA, pred, OPV_PostHC, pred, OPV_CC, pred, and OPV_HUM, pred are, respec-
tively, the values predicted by the ANN16, while TSA, exp, RHSA, exp, OPV_PostHC, exp,
OPV_CC, exp, and OPV_HUM, exp represent the experimental values.

Figures 6–9 highlight that:

• the minimum value of ΔTSA is −3.41 ◦C (test n. 1), while its maximum value is 3.80
◦C (test n. 1);

• the values of ΔRHSA range from −19.20% (test n. 17) up to 17.03% (test n. 17);
• the parameter ΔOPV_PostHC is in the range −10.05% ÷ 10.12%, where the minimum is

achieved during the test n. 4, while the maximum refers to the test n. 2;
• the values of ΔOPV_CC vary from −10.03% (test n. 18) up to 10.09% (test n. 9);
• the values of ΔOPV_HUM range between −9.97% (test n. 4) and 10.11% (test n.17).

In order to better point out the results of comparisons between predicted and ex-
perimental values reported in Figures 6–9, the values of the metrics defined by the
Equations (1)–(6), calculated for the parameters specified by the Equations (7)–(11), have
been summarized in Table 9. For each line of this table, the green shade has been assigned
to the cells corresponding to the best performance, while the worst results have been
highlighted by red shades.

Table 9. Errors between the ANN16-based model predictions and experimental points.

Fault Free Tests
during Summer

Faulty Tests
during Summer

Fault Free Tests
during Winter

Faulty Tests
during Winter

Errors Parameters
Test
n. 1

Test
n. 2

Test
n. 3

Test
n. 4

Test
n. 5

Test
n. 6

Test
n. 7

Test
n. 8

Test
n. 9

Test
n. 10

Test
n. 11

Test
n. 12

Test
n. 13

Test
n. 14

Test
n. 15

Test
n. 16

Test
n. 17

Test
n. 18

ε

ΔTSA (◦C) −0.10 0.09 0.22 0.17 0.06 0.09 −0.04 0.21 0.01 0.11 −0.01 −0.02 0.07 −0.02 −0.11 0.01 0.22 0.16

ΔRHSA (%) −0.18 0.04 0.28 −0.88 −0.87 0.11 0.01 0.33 −0.05 −0.24 −0.43 −0.03 −0.36 −0.08 −0.61 −0.22 −0.02 −0.39

ΔOPV_PostHC (%) 0.06 0.11 0.02 −0.06 0.00 −0.01 −0.07 0.00 −0.11 0.01 0.06 0.00 0.02 −0.03 0.05 −0.10 0.00 0.05

ΔOPV_CC (%) −0.12 0.03 −0.05 −0.01 0.00 0.01 0.03 −0.10 0.06 −0.06 0.02 0.01 0.01 0.02 0.06 0.02 −0.01 −0.31

ΔOPV_HUM (%) 0.12 0.00 −0.04 −0.10 0.00 0.03 0.04 0.12 −0.03 −0.07 −0.03 −0.16 0.11 −0.01 −0.04 0.00 −0.01 −0.16

|ε|

ΔTSA (◦C) 0.55 0.46 0.60 0.56 0.19 0.38 0.53 0.44 0.43 0.47 0.38 0.48 0.43 0.41 0.47 0.30 0.45 0.46

ΔRHSA (%) 1.97 2.19 2.57 2.40 1.21 11.09 2.12 1.47 1.99 2.24 2.04 2.49 2.32 1.18 2.26 0.70 2.84 1.69

ΔOPV_PostHC (%) 0.06 0.11 0.04 0.06 0.00 0.00 0.07 0.00 0.11 0.24 0.23 0.26 0.30 0.09 0.12 0.10 0.00 0.25

ΔOPV_CC (%) 0.12 0.03 0.11 0.07 0.00 0.00 0.13 0.10 0.07 0.18 0.02 0.01 0.01 0.13 0.12 0.02 0.01 0.36

ΔOPV_HUM (%) 0.12 0.00 0.05 0.13 0.00 0.37 0.07 0.21 0.03 0.19 0.20 0.26 0.22 0.02 0.15 0.00 0.45 0.16

MSE

ΔTSA (◦C) 0.71 0.51 0.58 0.51 0.07 0.38 0.52 0.36 0.47 0.36 0.27 0.42 0.32 0.28 0.38 0.14 0.34 0.32

ΔRHSA (%) 8.59 7.44 11.13 10.23 2.48 11.09 10.08 4.85 6.15 10.50 9.12 11.06 12.27 2.73 13.25 1.08 22.41 5.19

ΔOPV_PostHC (%) 0.58 1.15 0.09 0.62 0.00 0.00 0.22 0.00 1.18 0.74 0.73 0.99 0.95 0.40 0.43 0.31 0.00 0.87

ΔOPV_CC (%) 1.16 0.03 0.60 0.13 0.00 0.00 0.47 0.07 0.60 1.33 0.00 0.00 0.00 0.38 0.40 0.00 0.00 3.00

ΔOPV_HUM (%) 1.16 0.00 0.10 0.95 0.00 0.37 0.42 1.12 0.03 0.85 0.79 1.10 1.38 0.05 0.78 0.00 2.63 0.29

RMSE

ΔTSA (◦C) 0.84 0.71 0.73 0.70 0.25 0.61 0.72 0.57 0.67 0.59 0.52 0.65 0.56 0.53 0.61 0.37 0.54 0.54

ΔRHSA (%) 2.93 2.74 3.34 3.09 1.32 3.34 3.19 2.18 2.42 3.24 2.99 3.33 3.49 1.65 3.59 1.02 4.74 2.25

ΔOPV_PostHC (%) 0.76 1.07 0.30 0.79 0.00 0.01 0.46 0.01 1.05 0.86 0.85 1.00 0.98 0.63 0.65 0.55 0.01 0.93

ΔOPV_CC (%) 1.08 0.17 0.78 0.35 0.00 0.01 0.68 0.25 0.75 1.15 0.03 0.02 0.02 0.61 0.63 0.04 0.07 1.71

ΔOPV_HUM (%) 1.07 0.00 0.32 0.97 0.03 0.61 0.65 1.05 0.17 0.92 0.89 1.04 1.17 0.21 0.89 0.01 1.62 0.51

R2

ΔTSA (◦C) 0.98 0.99 0.99 0.99 0.98 0.85 0.96 0.92 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.60 0.85 0.99

ΔRHSA (%) 0.97 0.76 0.97 0.96 0.89 0.92 0.93 0.94 0.96 0.97 0.98 0.97 0.97 1.00 0.97 0.77 0.87 0.98

ΔOPV_PostHC (%) 0.95 0.49 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.96 0.96 0.98 0.89 1.00 1.00 0.96

ΔOPV_CC (%) 0.91 1.00 0.95 0.99 1.00 1.00 0.97 1.00 1.00 0.91 1.00 1.00 1.00 0.98 0.90 1.00 1.00 0.88

ΔOPV_HUM (%) 0.94 1.00 0.99 0.94 1.00 0.98 0.98 0.92 1.00 0.93 0.95 0.92 0.86 1.00 0.94 1.00 0.87 1.00

This table underlines that the ANN16 is able to carefully predict the experimental
data measured during summer and winter under both normal and faulty conditions and
it provides a rigorous representation of the HVAC system’s steady-state and transient
operation taking into account that:
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• with reference to all the tests, the average values of R2 in predicting TSA, RHSA,
OPV_PostHC, OPV_CC and OPV_HUM are, respectively, 0.95 ◦C, 0.93%, 0.95%, 0.97%, and
0.96%;

• with reference to the tests n. 1–4 (performed without faults during summer), the
values of R2 are always larger than 0.9 for all the parameters, except the cases of
ΔRHSA and ΔOPV_PostHC for the test n. 2;

• with reference to the tests n. 5–9 (performed with faults during summer), the coef-
ficient of determination is always greater than 0.9 for all the parameters, except the
cases of ΔRHSA for the test n. 5 (with fault 1) and ΔTSA for the test n. 6 (with fault 2);

• with reference to the tests n. 10–13 (performed without faults during winter), the
values of R2 are always larger than 0.9 for all the parameters, except the case of
ΔOPV_HUM for the test n. 13;

• with reference to the tests n. 14–18 (performed with faults during winter), the coeffi-
cient of determination is always greater than 0.9 for all the parameters, except (i) the
cases of both ΔTSA and ΔRHSA for both the tests n. 16 (fault 3) and n. 17 (fault 4),
(ii) the cases of both ΔOPV_PostHC and ΔOPV_CC for the test n. 15 (fault 2), (iii) the case
of ΔOPV_CC for the test n. 18 (fault 5) as well as (iv) the case of ΔOPHUM for the test n.
17 (fault 4);

• whatever the test is, the values of |ε| for the parameter ΔTSA are always lower than
0.8 ◦C (that is the accuracy of the sensor used for measuring TSA), with a minimum of
0.19 ◦C (test n. 5) up to a maximum of 0.60 ◦C (test. n. 3);

• the values of |ε| for the parameter ΔRHSA range between a minimum of 0.7% up
to a maximum of 11.1% and, therefore, they are always smaller than 3% (that is the
accuracy of the sensor used for measuring RHSA), except the only case of the test n. 6
(performed with fault 2 during summer);

• the maximum values of MSE and RMSE with reference to the parameter ΔTSA are,
respectively, not larger than 0.71 ◦C and 0.84 ◦C (obtained for the test n. 1 performed
without faults during summer);

• the maximum values of MSE and RMSE with reference to the parameter ΔRHSA are,
respectively, not larger than 22.4% and 4.74% (achieved for the test n. 17 performed
with fault 4 during winter);

• the maximum value of MSE with reference to the parameters ΔOPV_PostHC, ΔOPV_CC
and ΔOPV_HUM is 3.0%, obtained in the case of the test n. 18 performed with fault 5
during winter;

• the maximum value of RMSE with reference to the parameters ΔOPV_PostHC, ΔOPV_CC
and ΔOPV_HUM is 1.7%, achieved in the case of the test n. 18 performed with fault 5
during winter.

4.2. TRNSYS Model

In the dynamic simulation software TRNSYS (version 17) [33], the whole system is first
broken up into specific models (named “Types”) of each single system component, where
each “Type” is represented by a FORTRAN code. The users can assemble the TRNSYS
Types by connecting component outputs with component inputs and then specifying the
corresponding components’ performance parameters. Finally, the software solves the
corresponding equations in order to characterize the component/system operation every
time step.

In this study, a detailed model in TRNSYS environment has been developed to simu-
late, using a time step of 1 min (according to the time step of experimental data utilized
in this work for training, testing, and validating the ANN-based model), (i) the return
air temperature (TRA); (ii) the return air relative humidity (RHRA); as well as the electric
energy consumptions (not measured) of (iii) the heat pump (HP), (iv) the refrigerating
system (RS), (v) the humidifier (HUM), (vi) the supply air fan (SAF), and (vii) the return
air fan (RAF). With reference to the several performance parameters to be specified in the
TRNSYS Types used into the simulation model, it can be noticed that, in this study, some
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of the parameters have been directly identified or calculated based on catalog data; the
remaining parameters have been defined based on field measurements.

Table 10 lists the main modeled components and the corresponding TRNSYS Types
used in the simulation model.

Table 10. Main simulated components and corresponding types of TRNSYS software.

Simulated Component TRNSYS Type/Model

Test room 56
Heat pump/Refrigerating system 941

Hot and cold tanks 534
Humidifier 641

HP/RS pump 654
Diverting/mixing valves 647/649

On/Off differential controllers 2
Moist air properties 33e
Integrated test room 56

Figure 10 depicts a screenshot of the TRNSYS model, highlighting the main circuits
with different colors. In particular, the circuit of cold fluid supplied by the refrigerating
system to the cooling coil is depicted in blue; the circuit of hot fluid supplied by the heat
pump to the post-heating coil is indicated in red; finally, the inputs and outputs of the
ANN-based model are highlighted in light blue. The other connections of TRNSYS Types
are pointed out by dashed black lines.

Figure 10. Screenshot of the TRNSYS model.
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The TRNSYS model has been coupled with the artificial neural network ANN16
(described in the previous section) via the TRNSYS Type 155.

The ANN16 uses as inputs the 10 variables indicated in the previous section and
provides as outputs the 5 parameters specified in the same section.

The Type 155 links ANN16 with both the Type 56 as well as the Type 661. In particular,
the Type 155 provides two of the outputs of the ANN16, i.e., the supply air temperature
and relative humidity, as inputs to the Type 56. In addition, the Type 155 provides as
inputs to the Type 661 all the outputs of the ANN16, i.e., the supply air temperature, the
supply air relative humidity, as well as the opening percentages of the valves supplying
the humidifier, the pre-heating coil, and the cooling coil. The Type 661 models a “sticky”
controller with its outputs assumed equal to the inputs at the earlier time step; the outputs
of the Type 661 are then provided as inputs to the Type 155.

A dynamic model of the “building” corresponding to the integrated test room has
been developed by means of the Type 56. This model allows calculation of the return air
temperature and relative humidity (then assigned as inputs to the Type 661) according to
the geometry, thermo-physical properties of walls’ layers, air infiltration rate, as well as
internal loads/gains. In particular, the geometry and walls’ layers have been characterized
according to the content of the previous section, while air infiltration rate as well as internal
loads/gains are kept equal to zero according to the experimental conditions.

The Type 941 has been considered for simulating the operation of both the refrigerating
unit (RS) and the heat pump (HP) of the experimental setup. This Type allows to obtain as
outputs (a) the absorbed power and (b) the exiting fluid temperature in the case of (i) the
outside air temperature, (ii) the entering fluid temperature, (iii) the fluid flow rate, as well
as (iv) the performance maps of the devices are provided as inputs. In this study, the
outside temperature has been assumed to be equal to the measured values (the Type 9a
has been used for reading data from an external file and making them available to the
TRNSYS Types 941), the fluid mass flow rate is set to 2310 kg/h for the refrigerating system
and 2410 kg/h for the heat pump according to the manufacturer datasheet [36], and the
performance maps suggested by the manufacturer [36] and reported in Figure A2a,b of
Appendix A have been provided. In particular, Figure A2a,b, respectively, indicates the
coefficient of performance COP of the heap pump (useful thermal power output divided
by required electric power input) and the energy efficiency ratio EER of the refrigerating
system (useful cooling power output divided by required electric power input) depending
on supply fluid temperature and outside air temperature.

Both the heat pump and the refrigerating system are coupled with a 75 L tank that is
devoted to storing the hot and cold fluids, respectively. The operations of both hot and cold
tanks have been simulated with the Type 534. This Type models a cylindrical vertical tank;
it divides the tanks into 10 isothermal temperature layers in order to carefully consider
thermal stratification (where the layer n. 1 is positioned on the uppermost portion of the
tank and the layer n. 10 is positioned on the lowest part of the tank).

With reference to the modeling of the fans, a specifically devoted data set was gathered
from a calibration activity performed by adjusting and maintaining the supply and return
fans at various speeds from 10% to 100%. Figure A3 in Appendix A shows the air volumetric
flow rate QV measured at SENS i-Lab and the power consumption Pel suggested by the
manufacturer as a function of the fan’ velocity OL. In particular, Figure A3a refers to the
supply air fan, while Figure A3b is related to the return air fan.

The following equations, interpolating the values reported in Figure A3a,b, have been
derived to calculate both the air volumetric flow rate QV as well as the power consumption
Pel of both supply and return air fans as a function of fans’ velocity:

QV
SAF = −0.00001·OLSAF

3 + 0.0634·OLSAF
2 + 5.1789·OLSAF + 8.7704 (12)

Pel
SAF = 0.0003·OLSAF

3 + 0.1068·OLSAF
2 + 0.7383·OLSAF + 4.9372 (13)

QV
RAF = 14.491· OLRAF + 12.352 (14)
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Pel
RAF = 0.001·OLRAF

3 - 0.078·OLRAF
2 + 3.120·OLRAF − 2.102 (15)

Equations (12)–(15) have been included in the TRNSYS project via the Type 9a (external
file data reader) for calculating the fans’ power consumption according to the fans’ velocity.

The operation of the adiabatic steam humidifier has been modeled via the Type 641;
this model permits the humidifier not to respond instantaneously to the control signal,
but to get the steady-state values of both power consumption and gain rate exponentially.
In the TRNSYS project, the control signal associated to the opening percentage of the
humidifier valve is provided as input to the Type 641 by the ANN16 through the Type 155.
Based on catalog data, the humidifier power consumption has been considered equal to
the nominal value of 3.7 kW, while the humidifier is activated taking into account that it
has been experimentally verified that water flow rate supplied by the humidifier increases
from the minimum to the maximum value (5 kg/h) almost instantaneously.

The Type 654 has been used for modeling the single-speed pumps maintaining a
constant fluid flow exiting/entering the heat pump and the refrigerating system.

The Type 647 has been used to model the diverting valves that split a liquid inlet
flow into two fractional outlet flows, while the Type 649 is adopted to simulate the mixing
valves that combine two individual liquid streams into a single outlet.

The moist air properties have been evaluated by means of the Type 33e; this Type
takes as inputs the air relative humidity and the air dry bulb temperature and generate the
other corresponding air properties as outputs.

In this paper, the Type 2 has been adopted for simulating on/off differential controllers.
These devises generate a value in the range between 0 and 1 that is used to deactivate
or activate the refrigerating system or the heat pump. In particular, this Type activates
the component generating a signal equal to 1 when the observed parameter becomes
lower than the user-defined setpoint by a certain value (upper deadband), while it is
switched off in the case of the observed parameter approaches the user-defined setpoint
within a given limit (lower deadband). The successive value generated by the differential
controller is also affected by the value assumed by the control signal used as input at
the earlier time step. In this work, the differential controller is operated by connecting
the input and output signals in order to give a hysteresis effect. In greater detail, the
temperature at node 2 of the tank storing the cold fluid has been assumed as the observed
temperature for activating/deactivating the refrigeration unit; with reference to the hot
tank, the temperature at node 8 has been adopted as the watched temperature for operating
the heat pump. A target temperature of 45 ◦C was assumed for activating the heap
pump, with a turn-on temperature difference of 1 ◦C and a turn-off temperature difference
of−1 ◦C. A target temperature of 7 ◦C was defined for activating the refrigeration unit, with
a turn-on temperature difference of 1 ◦C and a turn-off temperature difference of −1 ◦C.
The hot/cold heat carrier fluid is moved by the pumps into the post-heating/cooling coil
according to the opening percentage of the corresponding valves defined by the related
outputs of the ANN16 via the Type 155. The temperature of the hot heat carrier fluid is
assumed to be reduced by 5 ◦C when flowing into the post-heating coil (before entering
the hot tank), while the temperature of the cold heat carrier fluid is assumed as increased
by 5 ◦C when flowing into the cooling coil (before entering the cold tank).

5. Assessment of Faults’ Impact

In this section, the experimental performances of the HVAC system operating under
faulty conditions (summer tests n. 5–9 of Table 4 and winter tests n. 14–18 of Table 5) have
been compared with those predicted by the artificial neural network ANN16 (described in
Section 4a), coupled with the TRNSYS model (described in Section 4b), in the cases of the
HVAC system is operating under the same boundary conditions without faults. In more
detail, the following inputs have been provided to the ANN16 in order to simulate the
HVAC performance without faults: (i) return air temperature calculated by the TRNSYS
Type 56 as well as target of indoor air temperature equal to 26 ◦C; (ii) return air relative
humidity calculated by the TRNSYS Type 56 as well as target of indoor air relative humidity
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equal to 50%; (iii) supply air temperature calculated by the ANN16 itself at previous time
step; (iv) supply air relative humidity calculated by the ANN16 itself at previous time
step; (v) experimental value of outside air temperature; (vi) opening percentage of the
valve supplying the post-heating coil calculated by the ANN16 itself at previous time step;
(vii) opening percentage of the valve supplying the cooling coil calculated by the ANN16
itself at previous time step; (viii) opening percentage of the valve supplying the humidifier
calculated by the ANN16 itself at previous time step; (ix) velocity of supply air fan equal to
the nominal value of 50%; and (x) velocity of return air fan equal to the nominal value of
50%.This means that:

• The experimental tests n. 5 and n. 14 (with the fault 1, i.e., with the velocity of the
supply air fan kept at 20%) have been compared with the simulation cases where the
velocity of supply air fan has been kept at the nominal value of 50%;

• The experimental tests n. 6 and n. 15 (with the fault 2, i.e., the velocity of the return
air fan kept at 20%) have been compared with the simulation cases where the velocity
of return air fan has been kept at the nominal value of 50%;

• The experimental tests n. 7 and n. 16 (with the fault 3, i.e., the post-heating coil valve
kept always closed) have been compared with the simulation cases where the values
of OPV_PostHC can vary according to the automatic control logic in the range of 0 to
100;

• The experimental tests n. 8 and n. 17 (with the fault 4, i.e., the cooling coil valve kept
always closed) have been compared with the simulation cases where the values of
OPV_CC can vary according to the automatic control logic in the range of 0 to 100;

• The experimental tests n. 9 and n. 18 (with the fault 5, i.e., the opening percentage
of the steam humidifier valve kept always closed) have been compared with the
simulation cases where the values of OPV_HUM can vary according to the automatic
control logic in the range of 0 to 100.

Figures 11 and 12 highlight the values of return air temperature (TRA) and return
air relative humidity (RHRA) over time, for the cases without faults (predicted values
represented by solid lines) and the cases when only one of the 5 above-mentioned faults
is occurred (experimental values indicated by dashed lines) with the aim of helping the
contrast between normal and faulty scenarios. In particular, Figure 11 refers to the summer
tests, while Figure 12 corresponds to the winter tests.
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Figure 11. Cont.
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Figure 11. Comparison between experimental faulty operation (dashed lines) and predicted normal operation tests (solid
lines) during summer in terms of TRA and RHRA: test n. 5 (a), test n. 6 (b), test n. 7 (c), test n. 8 (d), and test n. 9 (e).
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Figure 12. Comparison between experimental faulty operation (dashed lines) and predicted fault free operation tests during
winter in terms of TRA and RHRA: test n. 14 (a), test n. 15 (b), test n. 16 (c), test n. 17 (d), and test n. 18 (e).

These comparisons have been performed in order to assess the impact of each fault
on (i) the capability to achieve the desired indoor conditions, (ii) the arithmetic mean and
standard deviation of return air temperature and relative humidity, as well as (iii) the
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electric energy consumptions. In particular, the effects of faults on occupant thermo-
hygrometric comfort are reported in Section 5.1.; the faults’ impact associated with the
trends of return air temperature and relative humidity is described in Section 5.2.; the
influence of each fault on electric energy consumptions is indicated in Section 5.3. The
discussion about all the results is performed in last Section 5.4.

5.1. Results: Faults’ Impact on Thermo-Hygrometric Comfort

Table 11 compares the thermal/hygrometric comfort times (i.e., the percentage of
time during with values of indoor air temperature/relative humidity within the given
deadbands) of the simulation tests without faults with respect to those associated to the
corresponding experimental tests when only one of the five faults (described in the previous
Section 3) is occurring.

Table 11. Thermal-hygrometric time with/without faults.

ID Test
Thermal Comfort Time

(%)
Hygrometric Comfort

Time (%)

Summer tests

Test 5

With fault 1 (experimental) 0.00 16.17

Without fault (predicted) 65.79 86.84

Difference between faulty and healthy operation −65.79 −70.67

Test 6

With fault 2 (experimental) 50.61 81.38

Without fault (predicted) 58.70 88.26

Difference between faulty and healthy operation −8.09 −6.88

Test 7

With fault 3 (experimental) 13.43 88.06

Without fault (predicted) 81.95 88.72

Difference between faulty and healthy operation −68.52 −0.66

Test 8

With fault 4 (experimental) 0.00 90.59

Without fault (predicted) 63.31 94.67

Difference between faulty and healthy operation −63.31 −4.08

Test 9

With fault 5 (experimental) 86.59 65.36

Without fault (predicted) 84.00 81.14

Difference between faulty and healthy operation 2.59 −15.78

Winter tests

Test 14

With fault 1 (experimental) 75.41 49.41

Without fault (predicted) 76.11 87.35

Difference between faulty and healthy operation −0.70 −37.94

Test 15

With fault 2 (experimental) 68.71 82.34

Without fault (predicted) 69.23 86.23

Difference between faulty and healthy operation −0.52 −3.89

Test 16

With fault 3 (experimental) 0.00 99.75

Without fault (predicted) 69.75 86.25

Difference between faulty and healthy operation −69.75 13.50

Test 17

With fault 4 (experimental) 15.73 80.45

Without fault (predicted) 67.79 95.72

Difference between faulty and healthy operation −52.06 −15.27

Test 18

With fault 5 (experimental) 64.85 22.67

Without fault (predicted) 70.48 51.03

Difference between faulty and healthy operation −5.63 −28.36
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5.2. Results: Faults’ Impact on Key Operating Parameters

Experimental data under faulty operation and predicted data under fault-free opera-
tion were compared by calculating the arithmetic mean μ and the standard deviation σ of
(1) return air temperature (TRA) and (2) return air relative humidity (RHRA). The arithmetic
mean μ and standard deviation σ have been calculated by means of the following formulas:

μ =
N

∑
i=1

di

N
(16)

σ =

√√√√√ N
∑

i=1
(di−μ)2

N
(17)

where N is the whole number of points, while di is the value at time step i of the above-
mentioned parameters. Table 12 compares the arithmetic mean μ and standard deviation σ

during tests 5–9 (summer tests) and 14–18 (winter tests).

Table 12. Differences between predicted fault free data and experimental faulty data in terms of TRA and RHRA.

ID Test
TRA (◦C) RHRA (%)

μ σ μ σ

Summer tests

Test 5

With fault 1 (experimental) 28.55 0.22 56.17 1.54

Without fault (predicted) 26.20 1.28 48.58 3.36

%D 8.98% −82.73% 15.64% −54.25%

Test 6

With fault 2 (experimental) 27.72 1.78 49.32 3.59

Without fault (predicted) 27.16 1.79 49.97 3.30

%D 2.07% −0.17% −1.30% 8.75%

Test 7

With fault 3 (experimental) 24.72 1.20 48.88 3.56

Without fault (predicted) 26.12 0.84 48.42 3.22

%D −5.34% 42.68% 0.96% 10.46%

Test 8

With fault 4 (experimental) 28.50 0.14 47.77 3.06

Without fault (predicted) 26.57 1.28 50.13 2.92

%D 7.24% −89.05% −4.69% 4.93%

Test 9

With fault 5 (experimental) 25.88 0.74 47.50 3.31

Without fault (predicted) 25.95 0.77 51.15 3.71

%D −0.27% −3.48% −7.14% −10.79%

Winter tests

Test 14

With fault 1 (experimental) 19.77 0.80 45.18 1.48

Without fault (predicted) 20.14 0.84 49.61 3.38

%D −1.85% −4.26% −8.93% −56.06%

Test 15

With fault 2 (experimental) 20.18 0.86 50.12 4.01

Without fault (predicted) 20.21 0.88 49.70 3.42

%D −0.13% −1.35% 0.85% 17.23%

Test 16

With fault 3 (experimental) 15.71 0.69 47.22 0.91

Without fault (predicted) 20.21 0.87 49.67 3.41

%D −22.25% −20.88% −4.94% −73.38%

Test 17

With fault 4 (experimental) 21.55 0.59 49.99 3.95

Without fault (predicted) 20.38 1.06 50.48 2.76

%D 5.77% −44.25% −0.98% 43.17%

Test 18

With fault 5 (experimental) 20.30 0.97 47.05 2.41

Without fault (predicted) 20.25 0.89 49.56 3.46

%D 0.25% 9.53% −5.07% −30.29%
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Table 12 also shows the percentage difference (%D) between the values of arithmetic
mean and the standard deviation under faulty (predicted values) and fault free opera-
tion (experimental values) for each of the above-mentioned parameters. The percentage
difference %D has been calculated by means of the following formula:

%D =
(Xfault,i−Xw/o_fault,i)

Xw/o_fault,i
× 100 (18)

where X is the arithmetic mean μ or the standard deviation σ of TRA or RHRA.
Table 13 summarizes the comments described above; for each of five typical faults

considered and for each of four parameters, a performance index has been assigned with
the following signs: “+” indicates that the fault causes substantial positive changes (greater
than 20%) of %D; “-” indicates that the fault causes substantial negative changes (greater
than −20%) of %D; “0” indicates that the fault causes not substantial changes (between
−20% and 20%) of %D.

Table 13. Summary of symptoms associated to the 5 typical faults on TRA and RHRA.

ID Fault
TRA RHRA

μ σ μ σ

Summer tests

Fault 1
(related to velocity of the supply air fan) 0 - 0 -

Fault 2
(related to velocity of the return air fan) 0 0 0 0

Fault 3
(related to the post-heating coil valve) 0 + 0 0

Fault 4
(related to the cooling coil valve) 0 - 0 0

Fault 5
(related to the humidifier valve) 0 0 0 0

Winter tests

Fault 1
(related to velocity of the supply air fan) 0 0 0 -

Fault 2
(related to velocity of the return air fan) 0 0 0 0

Fault 3
(related to the post-heating coil valve) - - 0 -

Fault 4
(related to the cooling coil valve) 0 - 0 +

Fault 5
(related to the humidifier valve) 0 0 0 -

5.3. Results: Faults’ Impact on Electric Energy Consumption

Table 14 shows the electric energy consumptions of: the heat pump (EEHP), the
refrigerating system (EERS), the humidifier (EEHUM), the supply air fan (EESAF), the return
air fan (EERAF), and the total electric energy consumption (EETOT), with and without faults;
in particular, the values associated to the faulty tests have been derived as outputs of the
TRNSYS model by using the measured data as inputs, while the values associated to the
fault free tests have been predicted by the coupling of the ANN16 and the TRNSYS model.
Moreover, Table 14 reports the energy percentage difference (EPD) that has been valuated
as follows:

EPD =
EEw/o_fault,i−EEfault,i

EEw/o_fault,i
× 100 (19)
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where EEw/o_fault,i and EEfault,i are, respectively, the electric energy consumption of AHU
component for the case without faults and with one of the above-mentioned faults.

Table 14. Electric energy consumption with and without faults.

ID Test

Electric Energy Consumption

EEHP

(kWh)
EERS

(kWh)
EEHUM

(kWh)
EESAF

(kWh)
EERAF

(kWh)
EETOT

(kWh)

Summer
tests

Test 5

With fault 1 (experimental) 0.28 19.37 0.00 0.17 0.43 20.25

Without fault (predicted) 9.43 18.99 4.75 1.29 0.43 34.89

EPD +97% −2% +100% +87% 0% +42%

Test 6

With fault 2 (experimental) 0.29 16.68 9.00 1.04 0.12 27.13

Without fault (predicted) 5.45 13.88 7.09 1.04 0.35 27.81

EPD +95% −20% −27% 0% +66% +2%

Test 7

With fault 3 (experimental) 0.22 7.19 2.65 0.56 0.19 10.81

Without fault (predicted) 4.35 6.91 2.34 0.56 0.19 14.35

EPD +95% −4% −13% 0% 0% +25%

Test 8

With fault 4 (experimental) 0.22 0.99 1.48 0.72 0.24 3.65

Without fault (predicted) 4.94 10.13 2.96 0.72 0.24 18.99

EPD +96% +90% +50% 0% 0% +81%

Test 9

With fault 5 (experimental) 2.65 8.76 0.00 0.74 0.25 12.40

Without fault (predicted) 3.90 10.94 3.88 0.74 0.25 19.71

EPD +32% +20% +100% 0% 0% +37%

Winter tests

Test 14

With fault 1 (experimental) 13.13 8.49 11.04 0.17 0.61 33.44

Without fault (predicted) 16.30 13.56 16.16 1.81 0.61 48.44

EPD +19% +37% +32% +91% 0% +31%

Test 15

With fault 2 (experimental) 28.95 20.23 17.70 2.21 0.25 69.34

Without fault (predicted) 20.90 21.01 19.36 2.21 0.74 64.22

EPD −39% +4% +9% 0% +66% −8%

Test 16

With fault 3 (experimental) 0.61 16.27 0.00 1.70 0.57 19.15

Without fault (predicted) 16.37 12.26 14.00 1.70 0.57 44.90

EPD +96% −33% +100% 0% 0% +57%

Test 17

With fault 4 (experimental) 0.61 0.37 7.65 1.89 0.63 11.15

Without fault (predicted) 14.85 18.06 9.31 1.89 0.63 44.74

EPD +96% +98% +18% 0% 0% +75%

Test 18

With fault 5 (experimental) 9.05 11.24 0.00 1.78 0.60 22.67

Without fault (predicted) 16.20 17.10 15.35 1.78 0.60 51.03

EPD +44% +34% +100% 0% 0% +56%

5.4. Discussion

With respect to the case without faults, Tables 11 and 14 indicate the effects of the
occurrence of fault 1 (velocity of supply air fan kept reduced at 20% instead of the nominal
value of 50%):

• During summer (test n. 5) it strongly reduces both the thermal comfort time (66%) and
the hygrometric comfort time (71%), while significantly lowering the overall electric
energy consumption (42%) thanks to reduced consumption of the heat pump (97%),
the steam humidifier (100%), and the supply air fan (87%);

• During winter (test n. 14) it decreases the hygrometric comfort time (38%), without
significant variation of the hygrometric comfort time (1%), while considerably lower-
ing the total electric energy consumption (31%) thanks to reduced consumption of the
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refrigerating system (37%), the heat pump (19%), the steam humidifier (32%), and the
supply air fan (91%).

With respect to the case without fault, Tables 11 and 14 demonstrate the effects of the
occurrence of fault 2 (velocity of return air fan kept reduced at 20% instead of the nominal
value of 50%):

• During summer (test n. 6) slightly decreases both the thermal comfort time (8%) and
the hygrometric comfort time (7%), while slightly reducing the overall electric energy
consumption (2%) because of the lower consumption of both the heat pump (95%)
and return air fan (66%);

• During winter (test n. 15) slightly decreases the hygrometric comfort time (4%),
without relevant variation of the hygrometric comfort time (1%), while increasing the
overall electric energy consumption (8%) due to greater consumption of heat pump
(39%).

With respect to the case without fault, Tables 11 and 14 show how the occurrence of
the fault 3 (the opening percentage of the valve regulating the flow to the post-hating coil
kept closed instead of allowing its normal operation in the range of 0 to 100 according to
the automatic control logic):

• During summer (test n. 7) strongly reduces the thermal comfort time (69%), without
significant variation of the hygrometric comfort time (1%), while lowering the overall
electric energy consumption (25%) because of the reduced consumption of the heat
pump (95%);

• During winter (test n. 16) strongly reduces the thermal comfort time (70%) and slightly
decreases the hygrometric comfort time (14%), while significantly lowering the overall
electric energy consumption (57%) because of the reduced consumption of both the
heat pump (96%), and the steam humidifier (100%).

With respect to the case without fault, Tables 11 and 14 highlight how the occurrence
of the fault 4 (the opening percentage of the valve regulating the flow to the cooling coil
kept closed instead of allowing its normal operation in the range of 0 to 100 according to
the automatic control logic):

• During summer (test 8) significantly decreases the thermal comfort time (63%) and
slightly reduces the hygrometric comfort time (4%), while greatly lowering the overall
electric energy demand (81%) because of the reduced consumption of the heat pump
(96%), the refrigerating system (90%), and the steam humidifier (50%);

• During winter (test n. 17) significantly decreases the thermal comfort time (52%) and
slightly reduces the hygrometric comfort time (15%), while considerably lowering the
overall electric energy demand (75%) because of the reduced consumption of the heat
pump (96%), the refrigerating system (98%), and the steam humidifier (18%).

With respect to the case without fault, Tables 11 and 14 indicate how the occurrence of
the fault 5 (the opening percentage of the valve regulating the flow to the steam humidifier
kept closed instead of allowing its normal operation in the range of 0 to 100 according to
the automatic control logic):

• During summer (test n. 9) reduces the thermal comfort time by a slight amount
(3%) and decreases the hygrometric comfort time (16%), while decreasing the overall
electric energy demand (37%) because of the lower consumption of the heat pump
(32%), the refrigerating system (20%), and the humidifier (100%);

• During winter (test n. 18) reduces the thermal comfort time by a slight amount (6%)
and significantly decreases the hygrometric comfort time (28%), while decreasing the
overall electric energy demand (56%) because of the lower consumption of the heat
pump (44%), the refrigerating system (34%), and the humidifier (100%).

Table 13 underlines that:

• The fault 1 significantly affects the values of σ for both TRA and RHRA under summer
conditions as well as the values of σ for RHRA only under winter conditions;
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• The effects of the fault 2 are negligible with reference to the values of both σ and μ for
both TRA and RHRA under both summer and winter conditions;

• The fault 3 greatly affects the values of σ for TRA under summer conditions, the values
of both σ and μ for TRA under winter conditions, as well as the values of σ for RHRA
under winter conditions;

• The impact of the fault 4 is significant with reference to the values of σ for TRA under
summer conditions as well as the values of σ for both TRA and RHRA under winter
conditions;

• The fault 5 significantly affects only the values of σ associated to RHRA under winter
conditions.

6. Conclusions

In this study, a database consisting of experimental measurements of key operating
parameters during transient and steady-state operation of a typical HVAC system under
both normal and faulty conditions has been obtained with reference to a wide range of
summer and winter scenarios. In particular, five different typical faults (affecting the
supply air fan, the return air fan, the post-heating coil valve, the cooling coil valve, and the
humidifier valve) have been artificially implemented in the HVAC system and analyzed.

An artificial neural network-based model of the HVAC system has also been developed
in the MATLAB environment [32] and contrasted with measured data, highlighting that
it is able to provide a rigorous characterization of the HVAC system’s steady-state and
transient performance under both normal and faulty scenarios. In more detail, the model
is characterized by average values of coefficient of determination R2 in predicting supply
air temperature, supply air relative humidity, opening percentage of the post-heating
coil valve, opening percentage of the cooling coil valve, and opening percentage of the
humidifier valve very close to the maximum values and, respectively, equal to 0.95 ◦C,
0.93%, 0.95%, 0.97%, and 0.96%.

The ANN-based model has also been coupled with a dynamic simulation model
developed in TRNSYS environment [33] and then the experimental operation of the HVAC
unit without faults has been compared with the predicted performance of the same system
while operating with one of the five above-mentioned faults under the same boundary
conditions. The results of this analysis highlighted that:

• Fault 3 is associated with the valve supplying the post-heating coil (always kept
closed) is the one significantly affecting indoor thermal comfort, with a reduction of
about 68% (during summer) and 70% (during winter) with respect to the fault free
conditions;

• Fault 1 is associated with the supply air fan (kept at a reduced velocity of 20% instead
of the nominal value of 50%) is the one considerably influencing indoor hygrometric
comfort, with a reduction of about 71% (during summer) and 38% (during winter) in
comparison to the fault free tests;

• Fault 4 is associated with the valve supplying the cooling coil (always kept closed) is
the one causing important variation in terms of overall electric energy consumption
(81% during summer and 75% during winter) with reference to the fault free scenarios.

In addition, the following results in terms of standard deviation σ and arithmetic
mean μ of return air temperature (TRA) and relative humidity (RHRA) have been obtained:

• The fault 1 significantly affects the values of σ for both TRA and RHRA under summer
conditions as well as the values of σ for RHRA only under winter conditions;

• The fault 3 greatly affects the values of σ for TRA under summer conditions, the values
of both σ and μ for TRA under winter conditions, as well as the values of σ for RHRA
under winter conditions;

• The impact of the fault 4 is significant with reference to the values of σ for TRA under
summer conditions as well as the values of σ for both TRA and RHRA under winter
conditions;
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• The fault 5 significantly affects only the values of σ associated to RHRA under winter
conditions.

Both the labeled measured data as well as the developed simulation models (to-
gether with their learning/validation datasets) will be uploaded in a public data repository
and utilization will be permitted to readers for institutional and research purposes. This
will allow AFDD developers, AFDD users, and research organizations to (i) explore the
symptoms associated to the selected faults on the performance of a typical HVAC system,
(ii) exploit the experimentally validated simulation model in order to generate opera-
tional data for assisting further research for AFDD of HVAC units, (iii) compare accuracy
among AFDD methods, and (iv) identify research gaps to be addressed and future AFDD
developments.

The presented experimental database will be extended over time with the aim of
investigating a broader range of boundary conditions as well as different fault types. In
particular, in the future the authors would like to perform additional tests with the aim
of analyzing the effects associated to new faults regarding sensors (e.g., positive and
negative offsets in measuring return air relative humidity and temperature), devices (e.g.,
blockage of air dampers and coil/humidifier valves at different levels), equipment (e.g.,
complete failure of fans), or controllers (e.g., frozen control signal for coils, dampers, or
fans). A measurement time step equal to 1 s will be used during future experiments in
order to more carefully take into account the response time of some HVAC components.
In addition, the authors will extend the present analysis (where the faults have been
introduced at the beginning of the faulty tests and maintained during the entire duration
of the experiments) by also considering (i) faults arising suddenly during HVAC operation
and remaining at a constant level after occurrence as well as (ii) shorter faulty scenarios
where a component is ‘sticky’ and takes more time to be moved/operated with respect to
normal operation. Finally, the authors in the future would like to (i) compare experimental
fault free operation against experimental faulty performance of the HVAC system working
under same boundary conditions, (ii) refine and improve the simulation model, and
(iii) develop and test an innovative method for performing AFDD analyses based on
supervised data-driven methods customized on experimental results.
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Nomenclature
AFDD Automatic fault detection and diagnosis
AHU Air handling unit
ANN Artificial neural network
CAV Constant air volume
CC Cooling coil
COP Coefficient of performance (-)
CT Cold tank
DBRH Deadband of RHSP,Room (%)
DBT Deadband of TSP,Room (◦C)
DEA Exhaust air damper
DHRS Damper of heat recovery system
di Value at time step i
DOA Outside air damper
DRA Return air damper
EEfault,i Electric energy consumption of AHU component with fault (kWh)
EEHP Electric energy consumption of the HP (kWh)
EEHUM Electric energy consumption of the HUM (kWh)
EER Energy efficiency ratio (kWh)
EERAF Electric energy consumption of the RAF (kWh)
EERS Electric energy consumption of the RS (kWh)
EESAF Electric energy consumption of the SAF (kWh)
EETOT Overall electric energy consumption (kWh)
EEw/o_fault,i Electric energy consumption of AHU component without faults (kWh)
EPD Energy percentage difference (%)
gpred,i Predicted value at time step i
gexp,i Measured value at time step i
gpred Arithmetic mean of predicted values
HP Heat pump
HRS Static cross-flow heat recovery system
HT Hot tank
HUM Humidifier
HVAC Heating, ventilation and air-conditioning
MSE Mean square error
N Number of points
OAD Outside air duct
OAFil Outside air filter
OLRAF Velocity of RAF (%)
OLSAF Velocity of SAF (%)
OPDEA Opening percentage of DEA (%)
OPDHRS Opening percentage of DHRS (%)
OPDOA Opening percentage of DOA (%)
OPDRA Opening percentage of DRA (%)
OPV_CC Opening percentage of valve regulating the flow entering CC (%)
OPV_CC−1 Opening percentage of valve regulating the flow entering CC at previous

minute (%)
OPV_CC,pred Predicted opening percentage of valve regulating the flow entering CC (%)
OPV_CC,exp Experimental opening percentage of valve regulating the flow entering CC

(%)
OPV_HUM Opening percentage of valve regulating the flow entering HUM (%)
OPV_HUM-1 Opening percentage of valve regulating the flow entering HUM at previous

minute (%)
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OPV_HUM,pred Predicted opening percentage of valve regulating the flow entering
HUM (%)

OPV_HUM,exp Experimental opening percentage of valve regulating the flow enter-
ing HUM (%)

OPV_PostHC Opening percentage of valve regulating the flow entering PostHC (%)
OPV_PostHC-1 Opening percentage of valve regulating the flow entering the PostHC

at previous minute (%)
OPV_PostHC,pred Predicted opening percentage of valve regulating the flow entering

PostHC (%)
OPV_PostHC,exp Experimental opening percentage of valve regulating the flow enter-

ing PostHC (%)
OPV_PreHC Opening percentage of valve regulating the flow entering PreHC (%)
Pel

RAF Power consumption of RAF (W)
Pel

SAF Power consumption of SAF (W)
PID Proportional-integral-derivative
PostHC Post-heating coil
PreHC Pre-heating coil
QV

RAF Air volumetric flow rate of RAF (m3/h)
QV

SAF Air volumetric flow rate of SAF (m3/h)
R2 Coefficient of determination (-)
RAD Return air duct
RAF Return air fan
RAFil Return air filter
RHBEA Air relative humidity outside the room (%)
RHRA Return air relative humidity (%)
RHRA,exp,fault Measured return air relative humidity under faulty conditions (%)
RHRA,pred,w/o_fault Predicted return air relative humidity without faults (%)
RHSA Supply air relative humidity (%)
RHSA-1 Supply air relative humidity at previous minute (%)
RHSP,Room Target of indoor air relative humidity (%)
RMSE Root mean square error
RS Refrigerating unit
SAD Supply air duct
SAF Supply air fan
SAFil Supply air filter
TA,out,CC Air temperature at CC outlet (◦C)
TBEA Air temperature outside the room (◦C)
TOA External air temperature (◦C)
TRA Return air temperature (◦C)
TRA,exp,fault Measured return air temperature under faulty conditions (◦C)
TRA,pred,w/o_fault Predicted return air temperature without faults (◦C)
TSA Supply air temperature (◦C)
TSA-1 Supply air temperature at previous minute (◦C)
TSP,Room Target of indoor air temperature (◦C)
VAV Variable air volume
VCC 3-way valve of CC
VHUM Valve of HUM
VPostHC 3-way valve of PostHC
VPreHC 3-way valve of PreHC
Xfault,i Arithmetic mean or standard deviation with fault
Xw/o_fault,i Arithmetic mean or standard deviation without faults
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%D Percentage difference (%)
ΔRH Difference between current return air relative humidity and related

target (%)
ΔT Difference between current return air temperature and related target

(◦C)
ΔOPV_CC Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of OPV_CC (%)
ΔOPV_HUM Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of OPV_HUM (%)
ΔOPV_PostHC Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of OPV_PostHC (%)
ΔRHSA Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of RHSA (%)
ΔTSA Instantaneous errors between the values predicted by the ANN16 and

the measured data in terms of TSA (◦C)
εi Instantaneous error
|εi| Instantaneous absolute error
ε Average error
|ε| Average absolute error
μ Arithmetic mean
σ Standard deviation

Appendix A

Table A1. Properties of walls of the test room.

Material
(from Outside to

Inside)

Thickness
(m)

Thermal
Conductivity

(W/mK)

Thermal Resistance
(m2K/W)

Heat Transfer
Area (m2)

Ceiling

Plasterboard 0.0125 0.250 0.050

2.023 16.00Rock wool 0.0800 0.042 1.905

Polyurethane panel 0.0150 0.220 0.068

Floor

Subfloor 0.1000 1.350 0.074

3.107 16.00

Tiles 0.0500 2.100 0.024

Polystyrene panel 0.0800 0.035 2.286

Galvanized steel slab 0.0020 52.000 0.000

Tiles 0.0100 1.050 0.010

West and East
oriented

vertical walls

Plasterboard 0.0125 0.250 0.050

2.005 14.40Rock wool 0.0800 0.042 1.905

Radiant panel 0.0150 0.300 0.050

South and
North oriented
vertical walls

Plasterboard 0.0125 0.250 0.050

1.998 14.40Rock wool 0.0800 0.042 1.905

Fiber-cement panel 0.0150 0.350 0.043

Door Soft wood 0.0500 0.140 0.357 0.357 1.68
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Figure A1. Floor plan of the test room including the AHU.

 
 

Figure A2. (a) COP of the HP and (b) EER of the RS upon varying outside air temperature and supply fluid temperature.
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Figure A3. Experimental air volumetric flow rate and power consumption suggested by the manufacturer as a function of
fan velocity for the supply air fan (a) and the return air fan (b).
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Abstract: This paper presents a statistical model for predicting the time-averaged total power
consumption of an indoor swimming facility. The model can be a powerful tool for continuous
supervision of the facility’s energy performance that can quickly disclose possible operational
disruptions/irregularities and thus minimize annual energy use. Multiple linear regression analysis
is used to analyze data collected in a swimming facility in Norway. The resolution of the original
training dataset was in 1 min time steps and during the investigation was transposed both by
time-averaging the data, and by treating part of the dataset exclusively. The statistically significant
independent variables were found to be the outdoor dry-bulb temperature and the relative pool
usage factor. The model accurately predicted the power consumption in the validation process,
and also succeeded in disclosing all the critical operational disruptions in the validation dataset
correctly. The model can therefore be applied as a dynamic energy benchmark for fault detection in
swimming facilities. The final energy prediction model is relatively simple and can be deployed either
in a spreadsheet or in the building automation reporting system, thus the method can contribute
instantly to keep the operation of any swimming facility within the optimal individual energy
performance range.

Keywords: swimming facilities; energy prediction; fault detection; multiple linear regression analysis

1. Introduction

1.1. Background

The EU has defined a target for reducing GHG emissions by at least 40% by 2030
compared to 1990 levels [1]. Their long-term goal is defined as “no GHG emissions” by
2050 [2]. Increased energy efficiency in buildings is defined as an important tool for both
the short term and long term [3]. One of the “key actions” in the Action Plan related to the
2030 framework is a “renovation wave” of the existing building stock [2].

Within the “renovation wave”, the European Commission recommends paying par-
ticular attention to energy-reducing refurbishment in types of buildings that support
education and public health, such as schools and hospitals [2]. In swimming facilities,
which support education and public health, the potential for energy reduction is consider-
able [4] and the literature associates these facilities with high specific energy use [5] and a
large dispersion in energy use. The specific energy use ranges from 400 kWh/(m2·a) to
almost 1600 kWh/(m2·a) [6–9]. This can be partially explained by the variations in age,
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technology and the different maintenance routines [7], but the numbers also represent
a large energy saving potential [7]. Regarding the building stock of swimming facilities
in Norway [6], the overall excessive energy use is estimated to be 28%. This provides a
considerable incentive for improvement initiatives.

1.2. Motivation

Since the energy consumption of any building is highly dependent on the operational
phase [10], particular attention has to be given to providing optimal operation [11]. Here,
both behavioral and operational management are important [12]. It is crucial to emphasize
the importance of well-trained and qualified operating personnel [13], especially in build-
ings with extensive technical installations like swimming facilities [13]. However, this is
not always the case [14], and even with skilled operating staff, it is a considerable task to
run a facility that has satisfactory performance. In the case of non-skilled operating staff,
the performance of the facility is vulnerable if there is improper operation and possible ex-
cessive energy use and low indoor environmental quality. The complexity of the operation
increases if there are more and more technical components [15]. In addition, during the
operation phase, such factors will degrade the building and the technical systems, and the
performance of the building will be lower than when it was commissioned [16]. This
may lead to a poor indoor environment and increase the energy use. For buildings with
extensive technical systems, such as swimming facilities, multiple operational interrup-
tions may conceal other malfunctions and make it difficult for the operating staff to find
them. The result is a building with low overall performance compared to the design level.
This means that there is a need for strict holistic control and a supervision system for the
performance of the building.

Ruparathna et al. [17] proposed a rating system for public buildings based on a level
of service (LOS) index. This index is a qualitative measure that is traditionally used to
compare the quality of motor vehicle traffic services. When applied to public buildings, the
LOS index indicates the level of operational performance provided to building users, society
and the environment, based on the assessment of the defined performance indicators in the
building. For the operating staff, this kind of rating system can be applied as a useful tool
if it is used as a continuous reporting system for the performance of the building. With the
implementation of adequate performance indicators, this kind of system will contribute to
keeping the technical installations “on track” as a lifetime commissioning system and a
tool for fault diagnosis.

For swimming facilities, the number of performance indicators may be considerable
and some are impossible to track directly in real time, for example, the level of some air-
borne disinfection by-products. Ruparathna et al. [17] implemented a set of 22 performance
indicators in their case study, including measures like user satisfaction, indoor environ-
mental quality, water quality and energy use, among others. Saleem et al. [18] investigated
the choice of performance indicators for aquatic centers in Canada, and proposed a set of
63 indices, including water quality, indoor environmental quality, energy efficiency and
user satisfaction.

Energy efficiency is an important aspect in these rating systems and is considered the
most important criterion in sustainability rating systems as well as the least achieved [19].
This underlines the importance of a strict system for monitoring the energy performance
along with the main functions of the building. Due to the large internal energy flow in
swimming facilities, this is even more important because of the increased probability of
operational faults and increased energy use.

1.3. Theoretical Background

Continuous assessment of building energy performance is a process of analyzing
residuals. Here, the residual is the difference between the monitored energy use and the
prediction of the expected energy use of a dynamic benchmarking system. Contrary to
“snapshot” rating systems, such as energy labeling of buildings [20] or documentation for
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fulfilling the passive house standard [21,22], a dynamic benchmarking system depicts the
continuous energy performance of the facility.

The prediction of the expected energy use is a complex task which depends on a large
set of variables and parameters. The task should preferably be solved in a way which could
easily be implemented in existing facilities and control systems. It should also be easy to
adapt and be transparent for the operating staff. The importance of easy implementation
is related to the increasing climate threat which can also be found in the short-term goal
defined as the EU 2030 GHG reduction goal [1].

As they are different from other building types, swimming facilities are characterized
by complex energy systems required to maintain appropriate conditions in the swimming
hall and pool(s) and provide suitable water quality. Swimming halls are facilities with
complex and energy-intensive technical systems [23], with several interacting subsystems.
Figure 1 illustrates the extent of the technical systems and how they are connected inter-
nally and to external variables. These systems provide functions like fresh air supply, air
heating, dehumidification, water heating and water treatment. The thermal and electric
power/energy consumption levels of the different systems are logged in the building
automation system.

Figure 1. An overview of the extent of the technical systems in a typical swimming pool facility.

The task of predicting the energy use in swimming facilities is complex due to con-
stantly fluctuating variables such as evaporation of water from the pool and surrounding
surfaces, the required amount of makeup water and the filter flushing intervals. Energy
prediction has been treated in several studies where methods regarding outdoor and indoor
swimming facilities have been presented.

1.4. Energy Prediction Methods

The energy prediction methods include physical/engineering methods as well as
statistical and artificial intelligence methods [24]. Lu et al. [25] addressed the design and
analysis stage and proposed a physical model for a sports facility. Despite the challenge
related to the required numbers of parameters, the model performed with a coefficient
of correlation (R2) of 0.934. Westerlund et al. [26] showed that the engineering approach
for estimating annual energy use gave satisfactory results in swimming facilities as well.
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The results from this study, with a prosaic and simple technical structure, illustrates the
importance of heat recovery, where evaporation dominates the energy demand. The same
observation was also revealed in the study by Lovell et al. [27] where an engineering
model for the prediction of thermal performance for an outdoor Olympic swimming pool
in Australia was developed. The model was based on the heat balance and performed
with an accuracy of 67% of the predicted heating capacities. This was within a range
of ±100 kW, which proved to be the most accurate model compared to other equivalent
models. The study confirmed that evaporation dominated the energy demand of an
outdoor swimming facility. The same physical and empirical equations are also applied in
building performance simulation tools such as TRNSYS [28], ESP-R [29] and IDA ICE [30],
among others. Mančić et al. [31] determined the energy losses for a pool hall and pool,
and later the optimal configuration of a polygeneration system [32], by modeling the system
via physical and empirical equations in TRNSYS. Moreover, Duverge and Rajagopalan [33]
investigated the energy and water performance of an aquatic center in Australia. They
modeled the facility with the BPS tool EnergyPlus and recommended both solar heating
and the use of vacuum filters in their study.

Yuce et al. [34] presented an artificial neural network approach for predicting the energy
consumption and thermal comfort in an indoor swimming facility. The prediction was an
application for an optimization-based control system for swimming facilities. Kampel et al. [35]
proposed a statistical model for predicting the annual energy use of swimming facilities.
It was developed through a multiple linear regression (MLR) analysis, and its purpose
was to establish a tool for calculating energy performance indicators for the benchmarking
of swimming facilities. In addition, the MLR method was also applied in the study by
Duverge et al. [36]. One of the outcomes was that the usable floor area and the number of
visitors were among the most influential variables for annual energy use.

While the simulation tools based on physical models and artificial neural networks,
with different topologies and learning algorithms, can provide useful insights and effi-
ciently predict target values, both frameworks are computationally costly and need case
base adaptation. In the context of the practical use and implementation of energy prediction
features among existing buildings, MLR has the potential to be in the middle ground with
respect to computational cost and the opportunity to adapt it to the different target cases.
MLR represents an easy-to-follow statistical method [37] which can explain a dependent
variable, using multiple independent variables, but does not require in-depth knowledge
of physical processes or training algorithms. It is easy to develop and implement [38]
and is widely used in the prediction of energy use. For example, Safa et al. [39] presented
a method to predict energy use in office buildings for the purpose of energy auditing.
The study showed the capacity of simple models where the final regression model was
based on outdoor temperature and occupancy with a monthly resolution. The model
performed well with acceptable error, when assessing each of the four buildings in the
study individually. Catalina et al. [40] developed a regression model for predicting the
monthly space heating demand for residential buildings while another approach developed
a generic equation of three variables for predicting the heating demand in apartments
blocks [41]. The MLR method has also been applied with success in energy forecasting for
swimming pool buildings [38,39].

The objective of this paper is to investigate and propose a method for energy prediction
in swimming facilities, based on the MLR method. This approach has considerable potential
for reducing the annual energy demand of both existing and new buildings by making the
operating staff conscious of the performance of the building in relation to the design level.
Buildings are only sustainable if they are operated and maintained properly [15].

2. Method

This study investigates the impact of several independent variables on the energy use
of a swimming facility. The analysis has been carried out by applying the multiple linear
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regression method with the purpose of developing a reliable energy prediction model.
Figure 2 illustrates the workflow of the study, where the main topics are identified.

Figure 2. Block diagram representing the workflow of the study.

2.1. The Building

The investigated building is a multi¬purpose sports center located at Jøa, an island in
the municipality of Namsos in Norway. It is located at 64.6 N, 11.2 E, 65 m above mean
average sea level. It is defined as part of the Marine West Coast climate zone according to
the climate zone definition of Köppen and Geiger [42]. The sport center was commissioned
in autumn 2016 and contains several facilities besides the swimming pool facility, such as
a sports hall, a shooting range, a library, a café, a gym and an outdoor ice rink. Figure 3
shows a photograph of the north-oriented façade for the swimming hall. The swimming
hall has a usable area of 266 m² (13.7 m × 9.43 m), including the 8.5 m × 12.5 m swimming
pool. Key quantities are presented in Appendix B. This paper investigates only the part of
the building with the swimming facilities.
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Figure 3. The northern façade of the building.

2.2. The Technical Systems

The swimming facility at Jøa is a state-of-the-art swimming facility which complies
with the Norwegian passive house standard [22]. It includes a ventilation heat recovery
system equipped with a heat pump, as recommended in the literature [5,43], and conven-
tional water treatment, which research has found to be the most effective water treatment
train [44].

2.3. The Dataset

The dataset ranges from November 2017 to June 2019 and is separated into two parts.
The training dataset and the validation dataset are, respectively, from November 2017 to
June 2018 and September 2018 to June 2019. The size of the datasets was decided based
on three main factors: (1) The training dataset should not be too large, due to the purpose
of the study; it should be a quick and easy to implement a dynamic energy benchmark
for swimming facilities. (2) The validation dataset should be large enough to cover all the
seasons and several operation disruptions. (3) It should be preferably based on continuous
operation data, without including lockdowns for maintenance.

2.4. The Variables

The objective of the study is to predict the energy use (dependent variable) as a result
of several independent variables. The selected independent variables used in this study
are listed in Table 1.

The dependent variable was defined by applying the energy conservation Equation (1)
at the boundary defining the swimming facility as presented in Figure 1.

dEnet

dt
= Ėnet = Ėea + Ėta + Ėep + Ėtp (1)

where Ėnet is the net delivered energy to the facility, Ėea is the delivered electricity to the
air handling unit, Ėta is the delivered thermal energy to the air handling unit, Ėep is the
delivered electricity to the pool circuit and Ėtp is the delivered thermal energy to the pool
circuit. The units for the variables are given in Table 1.

The independent variables were defined as the meteorological data, ambient air tem-
perature and relative humidity and the usage data. This choice was due to the availability
in the respective building and to the known correlation between energy use and outdoor
climate [45] and user interference [7,36,45]. In addition, this group of indicators is repre-
sented as logged values in conventional building automation systems (BASs). Due to the
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highly insulated building envelope and the orientation of the façades, the assumption of
negligible effects of wind pressure and solar radiation was applied.

The dataset was created by:

1. Extracting historic data from the BAS.
2. Collecting weather data from the national database of the Norwegian Meteorological

Institute [46].
3. Digitalizing handwritten occupancy data due to lack of electronic occupancy registration.
4. Calculating new variables based on indirectly monitored data. This is reported for

the respective variables in Table 1.

Due to implications within the BAS, extracting data prior November 2017 was not
possible. In addition, only a limited part of the variables was logged in June 2018. Table 1
summarizes the variables in the dataset, the units and the origin of the data.

Table 1. The selected variables that have been used in the analysis.

N Variable Unit Type Source Comment

Ėea
Electric energy kWh

h

D
ep

en
de

nt

BAS
Fans, compressor,

consumption, AHU pumps and control system

Thermal energy Supplied thermal energyĖta consumption, AHU
kWh

h BAS for air heating

Ėep
Electric energy consumption, kWh

h BAS
Related to pumps,

pool circuit disinfection, etc.

Thermal energy consumption, Supplied thermal energyĖtp pool circuit
kWh

h BAS for pool heating

Ėtot
Total thermal and electric kWh

h Calculated
Summarized

energy consumption load pt. 1–4

Outdoor dry-bulb

In
de

pe
nd

en
t

Measurement fromTout temperature °C BAS the site

Moisture content g
g Calculated

Meteorological
outdoor air data

Enthalpy Combining meteorological
difference data and indoor air

indoor/outdoor measurements and by applying
kJ
kg Calculated

the ideal gas law

tpu

Pool usage factor
-

Calculated by
(proportion of time BAS/ utilizing water level data
the pool was in use) Calculated in the equalization tank

Manually digitalized andNumber of adults bathing adults Handwritten implemented in the dataset

Number of children bathing children Handwritten
Manually digitalized and

implemented in the dataset

Water supply flow Calculated by utilizing
rate to the BAS water level data,Qw

pool circuit

l
s

/Calculated flushing reservoir

2.4.1. Cleaning the Dataset

The resolution of the original training dataset was 1 min time steps for all the variables.
The dataset was cleaned and preprocessed by detecting and analyzing outliers manually,
caused by broken sensors, miscoded values, operation disruption (e.g., unintended oper-
ation due to mechanical flaws, software errors or mistakes by the operator), etc. Outlier
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detection can also be carried out statistically, for example, by using approaches such as
standard deviation or the interquartile range [47]. Both techniques identify outliers by
comparing each value/measurement to its population. Due to the purpose of this study,
outliers are of special interest (fault detection). For the training dataset, operation disrup-
tions were identified and excluded prior to regression analysis, while operation disruption
was a part of the validation process.

The process of identifying and categorizing operation disruptions was carried out
by an in-depth investigation of the historic data, stored in the BAS and in the dedicated
control systems of the air handling unit and heat recovery system.

2.5. Statistical Methodology

The choice of the multiple linear regression method was based on its strength as a
statistical data handling tool and its simplicity in development, implementation and opera-
tion. The latter is crucial if the building owners and the industry are to be able to minimize
the energy use, related to undesired operation, over a short period of time. Regarding
practical issues, the developers (the engineers) recognize the method in their university
education and the operation management can easily evaluate the energy performance in a
spreadsheet [41], or it can be easily implemented in any report system, due to its simple
algebraic equation.

The dataset was imported and analyzed with IBM SPSS statistical software [48].

2.5.1. Multiple Linear Regression

The MLR method was used to predict the dependent variable y, here the total power
consumption, averaged over a certain period. This period was taken to be sufficiently long
so that the method only focused on physical effects as processes in the steady state for
each time step. The regression equation was trained by the ordinary least square method
where the sum of the root square error was minimized. The corresponding regression
coefficients, β0 and βi, were determined. These comprised the slope coefficient for the
independent variables.

yi = β0 + β1x1 + β2x2 + . . . + ε (2)

where yi is the dependent variable, β0 is the intersection with the y-axis when x is zero, βi is
the regression slope coefficient in the linear equation, xi is the predictor—the independent
variable—and ε is the error term.

2.5.2. Assumptions

In the development of the model, several assumptions were adopted. The data
source was time series data, and, initially, its autoregressive properties or the order of the
autoregressive process were not known. These were identified by applying the partial
autocorrelation function (PACF), which specifies the number of past lags influencing
the dependent variable (i.e., the order of the autoregressive process). The application of
the PACF in time series analysis is analogous to deciding the number of independent
variables to be included in a multiple linear regression analysis [49]. The dataset was
initially investigated for autoregressive properties and reduced by averaging the data and
centered in time to eliminate any autoregressive properties in the dependent variable. Each
observation in the training dataset was then treated as independent.

2.5.3. Evaluation of the Prediction Model

The “goodness of fit” was evaluated by the coefficient of determination R2 and the
adjusted R2, which considers the number of explanatory variables and the possibilities of
overfitting. R2 is defined by the relationship between the explained sum of squares and
the total sum of squares.

The multiple linear regression equation was validated by analyzing the variance with
the F-test. The test operator, F, which is defined by the ratio between the explained sum of
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squares and the residual sum of squares, was applied to the F-distribution. A significance
level of 5% was chosen as the required level.

The coefficients in the equation, the impacts of the independent variables, were
evaluated by applying the T-statistic, with the t-test, which is similar to the F-test, but which
describes the probability of nonlinear correlation by applying the test operator to the T-
distribution. The test operator is defined by the relation between the coefficient and its
standard error.

The fundamental assumptions for using linear regression were investigated, such as
a lack of multicollinearity, no heteroskedasticity, normally distributed residuals and no
autocorrelation among the residuals [50], which were fulfilled for each case in the presented
analysis. The multicollinearity among the variables was investigated by manually applying
the independent variables in a correlation matrix. Potential heteroskedasticity was evalu-
ated visually. The autocorrelation among the residuals was tested with the Durbin–Watson
statistic, which assumes a maximum lag of one. The lag of the residuals was investigated
by determining the autoregressive process by applying the PACF.

2.5.4. Validation

The prediction model was tested and validated by comparing the prediction and
measurement for the whole validation dataset. The criteria for a passed validation process
were defined as (1) all the measurements identified as normal operation should be predicted
within the prediction interval defined in the training process and (2) all of the operation
disruptions should be clearly identified by the validation process.

3. Results and Discussion

3.1. Description—The Training Dataset

The dataset used for training the regression analysis comprises approximately
350,000 observations. Figure 4 shows the collected data for the dependent variable and
the total electric and thermal power consumption, plotted together with the outdoor dry-
bulb temperature. The average power consumption for the whole dataset is approximately
16 kW and energy supply for the period is 93,000 kWh. The daily average energy use
ranges from approximately 190 kWh to nearly 900 kWh, with a corresponding daily average
power consumption ranging from approximately 7.9 kW to 37 kW. The registered average
diurnal dry-bulb temperature ranges from −11 ◦C to 20 ◦C. During this period, nearly
2000 swimmers used the facility, equally divided between adults and youngsters/children.

Figure 4 reveals a seasonal trend, a minor dependency between the energy use and
the outdoor temperature, with some spikes in energy use distributed over the period.
By visual inspection, it seems that the outdoor temperature variable can explain some of
the variations in energy use, but additional variables influenced the variation in daily total
energy usage.

3.1.1. The Energy Performance of the Facility

Regarding the energy performance, the swimming facility at Jøa was identified as
having an energy performance indicator (EPI) of 44.8 kWh/visitor, calculated over the
period of the investigated dataset presented in Figure 4. In comparison, Norwegian
swimming facilities are associated with an average EPI for a typical year of approximately
26 kWh/visitor,and a median EPI of approximately 22 kWh/visitor, where the dispersion
is reported to range from 10 to 80 kWh/visitor [51]. The EPI has been recommended
by Kampel [7] who found that visitors are the single variable that explains most of the
variation in the energy performance of swimming facilities [35]. The poor EPI-value of
the swimming facility at Jøa can be explained by the low user intensity, on average only
235 visitor/month, compared to Kampel’s dataset representing a median annual user
intensity of 94,261 visitors (average of 7855 visitors per month). Additionally, the outdoor
climate can explain this performance indicator since the data are not climate corrected.
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Figure 4. Energy usage for operation of the swimming facility vs. the outdoor temperature, both
daily averaged.

3.1.2. Energy Distribution

The delivered energy to the swimming facility is almost evenly divided between
electricity and thermal energy. Figure 5 depicts the energy distribution of the building
section with the swimming pool. The low thermal energy consumption for the air handling
unit (AHU) in comparison with the thermal load of the pool circuit has two major causes.
The low overall user intensity for the period of collected data implies that the system
operates in air recycling mode (night mode) without fresh air supply for a long period of
time, which reduces the air dehumidification and heating demands considerably. Another
reason is the operation of the heat recovery system which recovers the latent heat in the
exhaust air and supplies heat to the facility, where the order of priority is air heating
and pool heating. The building automation system neither collects data regarding the
performance of the subsystems nor the thermal efficiency of the heat recovery system.

3.1.3. Time Step Analysis

When treating time series data of energy use in buildings with linear regression,
the inertia of the building must be considered due to this impact on the autoregressive
process of the variables. This is because the energy use (the dependent variable) is logged
with a short time step (1 min). For the swimming pool at Jøa, this impact is partly illustrated
using a duration curve depicted in Figure 6, where the data are sorted by decreasing power
consumption. The range of outdoor temperatures associated with each step of power
demand is wide and can be partly explained by inertia of the building. A short time step
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resolution will not give any significant correlation, since the process depicted is not steady
state. The impact of the time lag can be minimized by averaging the dataset, and thereby
reducing the time step resolution (see Section 2.5.2).

Figure 5. Energy distribution for the swimming facility incl. the energy use for domestic hot
water heating.

Figure 6. Scatter plot—sorted power consumption presented as a duration curve along with the
corresponding outdoor temperature.

Figure 7 illustrates the consequences of averaging the dataset and reducing the time
step resolution. The figure presents the dataset with time steps ranging from 1 min to
4 weeks. Both the power consumption and outdoor temperature are presented as time-
averaged values centered in time. Firstly, the figure gives an indication of two possible
different states in the operation of the facility, represented as a pattern of a divided dataset
(clouds of datapoints), for time-step resolution from 1 min up to 60 min. The same
can be observed in Figure 6, which represents a pattern of two different duration curves
overlapping. Secondly, without considering the significance of the simple linear regressions,
a considerable increase in the coefficient of determination, the R2, is observed when
averaging the dataset. This implies that the time step should be maximized in order to
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obtain the best fitting model if prediction is the main purpose. Concerning the purpose
of this study, the time step should correspond to the swimming facility operating staff’s
requirement to identify and handle possible operational disturbances during a reasonable
period of time.

Figure 7. Averaged total power consumption plotted against averaged diurnal outdoor dry-bulb
temperature when the dataset is averaged from 1 min to 4 weeks.

3.2. Statistical Analysis—Developing the Model

Since the training dataset consists of operation data from the first period after the
building was commissioned, several irregularities may occur. By detecting and excluding
observations associated with irregular operation events, the training dataset is optimized
to only represent flawless operation. A predictive model trained by this dataset should be
able to provide accurate predictions.

By investigating historical operating data from both the BAS and the internal control
system of the air handling unit, a major change in operation was found. The consequence
of this is illustrated in Figure 8, which depicts the thermal load for the pool heating system,
where a change in operation is identified in late March 2018. The reason for the considerable
change was issues related to the control of the integrated dehumidification system and
the pool temperature, possibly a problem with a mixing valve. However, since this flaw
in the operation has implications for both the pool temperature and the heat recovery
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system, the whole period from 25 October 2017–22 March 2018 must be excluded from the
training dataset.

Figure 8. Thermal load for the pool circuit, plotted against the timeline, in averaged 1-day time
step resolution.

3.2.1. New Training Dataset

By excluding the period associated with operational irregularities, prior to 22 March
2018, the prediction model was developed. The new training dataset, ranging from 22
March to 24 June 2018, consisted of three-day averaged values, for a total of 29 datapoints.
The analysis of the autoregressive properties of the dataset showed no autocorrelation
when averaging data for 72 h, or 3 days.

The results of the regression analysis are expressed in Equation (3). The key out-
put from the regression analysis is given in Table 2. Regarding possible problems with
overfitting, 15 datapoints per predictor are recommended [52] to obtain reliable fitted
regression, which means a maximum of two predictors for a dataset of this size. The two
independent variables which are found to explain most of the variance are the outdoor
dry-bulb temperature (Tout) and the pool usage factor (tpu) (see description of variables in
Table 1). This combination has a statistical effect on the energy use, with almost similar
impact, and both were identified by a significance level p < 5%. The chosen combination
of variables is in accordance with the physics, where the outdoor temperature represents
the thermal losses through the envelope and ventilation, and the pool usage represents
the water usage and the operation mode of the facility. The number of swimmers was not
found to have a statistical effect on the overall power consumption, despite the impact of
evaporation on the energy use. This may be explained by the phenomenon of evaporation,
which is observed as a step function where a few bathers have a significant impact, but a
further increase only gives a small additional contribution to evaporation [53]. However,
the combination of weather conditions and usage/occupancy is also found to have a
statistically significant effect on energy use in office buildings [38], despite the difference
between these building categories.

Ėtot = 14, 715− 227.8Tout + 24, 790tpu (3)

where Ėtot is the predicted power consumption [Watt], Tout is the outdoor temperature [°C]
and tpu is the pool usage factor.
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Table 2. Key outputs from the regression analysis.

Unstandardized Coefficients

B Error
Standardized
Coefficients

T Significance

Constant 14,715 2410.7 16.387
Outdoor temperature −227.8 27.2 −0.591 −8.38 0.000

Pool usage 24,790 2607.5 0.671 9.507 0.000

The ability of the model to explain the variance is given by R2 = 87%. The ability of
the prediction model to reproduce the power consumption is illustrated in Figure 9, where
the predicted power consumption is plotted along with the training data, the actual power
consumption and the corresponding prediction interval. The prediction interval of 95%
is the interval where there is 95% confidence of there being an observation within it. It
depends on factors like sample size, number of predictors and the significance level. For the
range of independent variables given in the training dataset, the mean prediction interval
is identified to be ±1.86 kW. Figure 10 shows the linear relationship between the training
dataset and the data produced by the prediction model where the Pearson correlation
coefficient is 0.93.

Regarding the fundamental assumptions in linear regression, the residuals from the
training process, given in Figures 11 and 12, are approximately normally distributed. There
are no signs of heteroskedasticity and the residuals are represented with a mean value of
approximately 0. The autoregressive process is not found to be on an order higher than 1,
but the Durbin–Watson coefficient is approximately 1.4, which possibly indicates some
autocorrelation. However, the possible autocorrelation, or the lack of autocorrelation, is
not found to be statistically significant. The regression equation is considered to be reliable
within the given goodness of fit.

Figure 9. The predicted power consumption plotted against the training data and with the corre-
sponding prediction interval.
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Figure 10. The predicted power consumption plotted against the measured power consumption.
The Pearson correlation coefficient is given as the R-coefficient.

Figure 11. The distribution of the residuals.
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Figure 12. Residuals plotted by power consumption.

3.3. Validation and Application

The validation of the prediction model is illustrated in Figure 13 as a comparison
between the predicted and actual data from the validation dataset. The predicted power
consumption, including the prediction interval, is the gray shaded area and the measured
power consumption is the black line. The numbered red areas are the identified periods
with operational disruption, and they include 14 datapoints out of a total of 85 in the
validation dataset. The given operation disruptions have been identified as (A) uncon-
trolled water refill, (B,C) issues with the control system of the water temperature, (D) issues
with controlling the indoor environment and water refill system, leading to a consecutive
lockdown of the facility and (E) issues related to the control of the air handling unit and
the air flow supply. The prediction model identifies all of the disruptions as illustrated.
When the facility operates without flaws and faults, the facility performs within the opera-
tional baseline provided by the prediction model. Each of the operational disruptions are
identified as major deviations from the baseline.

When excluding the data associated with operational disruptions, 14 datapoints in
total (approximately 16% of the dataset), the predicted operation fits the actual performance
well. Figure 14 illustrates the correlation between the predicted and measured power con-
sumption exclusive of the operation disruptions. The Pearson correlation coefficient is 0.85.
However, there are periods where the models seem to consistently over- or underpredict
the performance model, and this may have to do with the lack of explanatory variables in
the model. However, this deviation is within the prediction interval, which corresponds
with no detection of operational disruption for the relevant period. Figures 15 and 16
present the range of the independent variables used in the prediction model. Even though
the range of the training dataset was initially significantly reduced to only three months of
data (29 datapoints), the dispersion of the variables within this dataset corresponds with
the validation dataset.
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Figure 13. Visual validation of the prediction model from September 2018 to June 2019. The prediction
model includes the prediction interval in gray, measured power consumption in black and periods
associated with operational disruptions in red (see Appendix A for higher resolution).

In the perspective of applying the presented method to industry, the combination of a
short-term training dataset and the few predictors makes this method especially useful.
This means that a facility can develop a model over a short period of time, with a minimum
of sensors. However, the transferability with regard to the choice of independent variables
must be further investigated in order to obtain a universal method for industry.

Figure 14. The predicted power consumption plotted against the measured power consumption for
the validation dataset. The Pearson correlation coefficient is given as the R-coefficient.

81



Energies 2021, 14, 4825

Figure 15. The dispersion of the independent variables in the prediction model, for each dataset used
in the analysis.

Figure 16. The dispersion of the independent variables in the prediction model, for each dataset used
in the analysis.
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4. Discussion and Opportunities for Deployment of the Created Model

Due to the importance of focusing on the operating phase when minimizing the
environmental impact [10,54], and because operational irregularities are common in build-
ings [55], an implemented operational tool may have great potential for industry. For swim-
ming facilities, this is especially important since inappropriate operation may also cause
problems such as degradation of equipment and the occurrence of the sick building syn-
drome [56]. When applying the presented method to industry, the combination of a
short-term training dataset and a few predictors makes this method especially useful. It
means that a facility can develop a personalized model in short period of time with a
minimum of sensors. In addition, the final energy prediction model is simple and can be de-
ployed either in a spreadsheet or in the building automation reporting system. This method
can therefore contribute instantly to keep the operation of a swimming facility within the
optimal and expected individual energy performance range, which is fundamental for
achieving the energy target for any building [57]. The MLR method, which is applied in
this study, has formerly been recognized for predicting energy use in buildings [39] and has
also been applied to determine the parameters of thermal equations for outdoor swimming
pools [58]. With respect to the specific case of Jøa, the operational staff have to download
the energy usage, the outdoor temperature and the pool usage. The deviation between the
prediction and the measured energy use will give the operational staff an alarm if there is a
potential flaw in the operation and enable them to detect the fault within a short period of
time. However, the transferability with respect to the choice of independent variables must
be further investigated in order to obtain a universal method for industry. Additionally,
guidelines with respect to the implementation of the model should be provided.

5. Conclusions

This paper presents a model for predicting energy consumption in swimming facilities.
The energy prediction model aims to become a dynamic energy benchmark for fault detec-
tion in swimming facilities. The investigation has been carried out by using multiple linear
regression analysis (MLR) for a specific swimming facility located in Norway. The MLR
method has formerly been recognized in predicting energy use in buildings but has also
been applied to determine the parameters of thermal equations for outdoor swimming
pools. The main findings of this study are:

• The study has shown that it is possible to develop an accurate energy prediction
model for swimming facilities with a minimum of variables and datapoints.

• The results from the analysis of the training dataset underlined the importance of
investigating the training data prior to training of the model. The original dataset was
based on raw data from 7 months of operation after the building was commissioned
and approved by the building owner. The modified and preferred dataset was reduced
after an in-depth investigation that revealed comprehensive operational disruptions.
The final training dataset consisted of only 29 datapoints of 3-day averaged data
ranging over a period of 3 months, March to June 2018.

• The statistically significant independent variables were found to be the outdoor dry-
bulb temperature and the pool usage factor, which predicted the average power
consumption accurately in the validation process. In the validation period from
September 2018 to June 2019, the equation correctly identified all the critical opera-
tional disruptions.

• The model has been shown to be a suitable tool for helping operating staff in continu-
ous evaluation of the energy performance of a facility and quickly disclosing possible
operational disruptions. By identifying possible operational irregularities at an early
stage, excessive energy use in operation can be avoided. Operational irregularities
occur in a high percentage of new buildings. The importance of focusing on the
operating phase and the overall energy consumption is crucial when minimizing
the environmental impact. In addition, the knowledge of the energy performance of
buildings is fundamental in achieving the energy targets. For swimming facilities,
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inappropriate operation of technical installations may also cause problems such as
degradation of equipment and the occurrence of sick building syndrome.

• This study only investigated one specific facility and future work should address the
robustness of the model and transferability to other swimming facilities.

This study illustrates the strength of multiple regression analysis when applied as
a dynamic and continuous energy benchmark. By applying simple input variables, an
estimate of the expected power consumption, within an acceptable error range, can be
made that reveals potential operational disruptions. The energy prediction model is simple
and can be easily implemented in the automation system of a building. The prediction
model does not require an operator with an engineering background and may serve as
first-line supervision for the use of a dynamic energy benchmark for a facility. By applying
this method in existing swimming facilities, the overall energy use may be greatly reduced
as it provides the building management with improved knowledge about the energy
performance of the building.
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Appendix A

Figure A1. Visual validation of the prediction model from September 2018 to June 2019. The pre-
diction model includes the prediction interval in gray, measured power consumption in black and
periods associated with operational disruptions in red.
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Appendix B

Subject Quantity

Window surface area 30 m2

Water surface 12.5 m × 8.5 m

Useable area 266 m2

Nominal air flow, air handling unit 11,000 m3/h

Nominal thermal power, air condenser 26 kW

Nominal thermal power, pool water condenser 34 kW

Nominal water flow circulation pool circuit 60 m3/h

Rating condition pool circuit 300 visitors/day

Nominal power pool heater 70 kW

References

1. Progress Made in Cutting Emissions. 2020. Available online: https://ec.europa.eu/clima/policies/strategies/progress_en
(accessed on 15 April 2021).

2. The European Green Deal. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa7
5ed71a1.0002.02/DOC_1&format=PDF (accessed on 21 August 2021).

3. Energy Roadmap. 2050. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF
(accessed on 21.August 2021).

4. Ratajczak, K.; Szczechowiak, E. Energy consumption decreasing strategy for indoor swimming pools–Decentralized Ventilation
system with a heat pump. Energy Build. 2020, 206, 109574. [CrossRef]

5. Ratajczak, K.; Szczechowiak, E. The Use of a Heat Pump in a Ventilation Unit as an Economical and Ecological Source of Heat for
the Ventilation System of an Indoor Swimming Pool Facility. Energies 2020, 13, 6695. [CrossRef]

6. Kampel, W.; Aas, B.; Bruland, A. Energy-use in Norwegian swimming halls. Energy Build. 2013, 59, 181–186. [CrossRef]
7. Kampel, W. Energy Efficiency in Swimming Facilities. 2015. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/

11250/2366793 (accessed on 20 November 2020).
8. Røkenes, H. Betraktninger Rundt Svømmehallers Energieffektivitet. Master’s Thesis, Norwegian University of Science and

Technology, Trondheim. 2011.
9. Swim England. The Use of Energy in Swimming Pools. 2016. Available online: https://www.swimming.org/library/documents/

1187/download (accessed on 24 March 2021).
10. Rincón, L.; Castell, A.; Pérez, G.; Solé, C.; Boer, D.; Cabeza, L.F. Evaluation of the environmental impact of experimental buildings

with different constructive systems using Material Flow Analysis and Life Cycle Assessment. Appl. Energy 2013, 109, 544–552.
[CrossRef]

11. Catrini, P.; Curto, D.; Franzitta, V.; Cardona, F. Improving energy efficiency of commercial buildings by Combined Heat Cooling
and Power plants. Sustain. Cities Soc. 2020, 60, 102157. [CrossRef]

12. GlobalABC/IEA/UNEP (Global Alliance for Buildings and Construction, International Energy Agency, and the United Nations
Environment Programme). GlobalABC Roadmap for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient
Buildings and Construction Sector; IEA: Paris, France, 2020.

13. ASHRAE. Applications Handbook. American Society of Heating, Refrigerating and Air-Conditioning Engineers; ASHRAE: Atlanta, GA,
USA, 2015.

14. Smedegård, O.; Aas, B.; Stene, J.; Georges, L.; Carlucci, S. A Systematic and Data-Driven Literature Review on the Energy and
Environmental Performance of Swimming Facilities. Unpublished work, 2021.

15. Djuric, N. Real-Time Supervision of Building HVAC System Performance. 2008. Available online: https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/231184 (accessed on 24 November 2020).

16. Nord, N.; Novakovic, V.; Frydenlund, F. Kontinuerlig Funksjonskontroll for Effektiv Drift av Bygninger; SINTEF: Oslo, Norway, 2012.
17. Ruparathna, R.; Hewage, K.; Sadiq, R. Developing a level of service (LOS) index for operational management of public buildings.

Sustain. Cities Soc. 2017, 34, 159–173. [CrossRef]
18. Saleem, S.; Haider, H.; Hu, G.; Hewage, K.; Sadiq, R. Performance indicators for aquatic centres in Canada: Identification and

selection using fuzzy based methods. Sci. Total Environ. 2021, 751, 141619. [CrossRef]
19. Berardi, U. Sustainability assessment in the construction sector: Rating systems and rated buildings. Sustain. Dev. 2012,

20, 411–424. [CrossRef]

85



Energies 2021, 14, 4825

20. The Norwegian Ministry of Petroleum and Energy. Energy Labelling Regulations for Buildings. 2010. Available online:
https://lovdata.no/dokument/SF/forskrift/2009-12-18-1665 (accessed on 25 November 2020).

21. NS 3700. Criteria for Passive Houses and Low Energy Houses: Residential Buildings (Original: Kriterier for Passivhus
og Lavenergihus: Boligbyginger). 2013. Available online: https://www.standard.no/no/nettbutikk/produktkatalogen/
Produktpresentasjon/?ProductID=636902 (accessed on 15 November 2020).

22. NS 3701. Criteria for Passive Houses and Low Energy Buildings-Non-Residential Buildings. 2012. Available online: https://www.
standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=587802 (accessed on 15 November 2020).

23. Duverge, J.J.; Rajagopalan, P.; Fuller, R. Defining aquatic centres for energy and water benchmarking purposes. Sustain. Cities Soc.
2017, 31, 51–61. [CrossRef]

24. Zhao, H.X.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012,
16, 3586–3592. [CrossRef]

25. Lu, T.; Lü, X.; Viljanen, M. A new method for modeling energy performance in buildings. Energy Procedia 2015, 75, 1825–1831.
[CrossRef]

26. Westerlund, L.; Dahl, J.; Johansson, L. A theoretical investigation of the heat demand for public baths. Energy 1996, 21, 731–737.
[CrossRef]

27. Lovell, D.; Rickerby, T.; Vandereydt, B.; Do, L.; Wang, X.; Srinivasan, K.; Chua, H. Thermal performance prediction of outdoor
swimming pools. Build. Environ. 2019, 160, 106167. [CrossRef]

28. Klein, S.; Beckman, W.; Mitchell, J.; Duffie, J.; Duffie, N.; Freeman, T.; Braun, J.; Evans, B. TRNSYS 18. A TRaNsient SYstem
Simulation Program; Standard Component Library 515 Overview; Solar Energy Laboratory, University of Wisconsin-Madison:
Madison, WI, USA, 2017; Volume 3, p. 516.

29. Energy Systems Research Unit (ESRU). The ESP-r System for Building Energy Simulation: User Guide Version 10 Series. Available
online: www.esru.strath.ac.uk/Documents/ESP-r_userguide.pdf (accessed on 15 April 2021).

30. EQUA Simulation AB. Building Performance—Simulation Software EQUA 2020. Available online: www.equa.se (accessed on 15
April 2021).
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Abstract: Large industrial plants, power plants, and combined heat and power plants are popularly
believed to be the main sources of point emissions, affecting both local and global air quality. This is
because these installations emit significant amounts of pollutants at high altitudes every year. In this
study, we investigate the impact of two solid fuel (hard coal)-fired CHP plants located within the
urban agglomeration on the air quality of the city of Lodz in Poland (Europe). We used an OPA03
computer software to model the spatial distribution of pollutants. The results show that the annual
average concentrations of pollutants were highest at an altitude of 25 m above ground level and
decreased at lower measurement heights. The concentrations did not exceed permissible levels,
reaching only 4% of national and international regulatory limits. We also made field measurements
during the winter heating period, using an unmanned aerial vehicle (UAV) equipped with sensors
to map the distributions of dust and gas pollutants in the areas with the highest concentrations of
emissions from the two heat and power plants. Overall, the field measurements confirmed that it is
not high-altitude emissions that have the greatest impact on local air quality.

Keywords: air quality monitoring; SO2; NO2; NOX; PM10; PM2.5; outdoor air quality; air flow
aerodynamics; air quality modeling

1. Introduction

Air pollution is caused by the emission of gaseous, liquid, and solid substances in
amounts that cause environmental damage, adversely affecting flora and fauna, water,
soil, and human health [1]. The main air pollutants include nitrogen compounds (NO,
NO2), carbon compounds (CO, CO2), sulfur dioxide (SO2), heavy metals (mercury, nickel,
lead, arsenic, cadmium), hydrocarbons, and their derivatives, as well as particulate matter
pollutants PM10, PM2.5, and PM1.0. Particulate matter pollutants have a negative impact on
human health, both directly, by penetrating the body causing allergies and lung diseases,
and indirectly, by acting as a carrier for heavy metals, microorganisms, and bacteria [2–4].
Therefore, it is important both to monitor the concentrations of pollutants in the air and
to effectively control the amounts of pollutants emitted. Unfortunately, the regulations
of the European Union set permissible dust concentrations only for the PM10 and PM2.5
fractions [5]. The permissible level of PM10 is 50 μg/m3 for the daily average and 40 μg/m3

for the annual average. For PM2.5, the maximum limit is 25 μg/m3 (annual average).
According to WHO recommendations from 2005 [6], the average annual concentration
of PM10 should not exceed 20 μg/m3, with a daily average of 50 μg/m3, whereas for
PM2.5, the annual average concentration should not exceed 10 μg/m3 with a daily average
of 25 μg/m3. No limits have been set for the PM1.0 fraction, although it is increasingly
considered the most dangerous type of PM.

Particulate matter is not the only dangerous type of air pollution, however. Gaseous
pollutants such as SO2, which is highly toxic with a suffocating odor, also pose a problem.
Sulfur dioxide has a high specific gravity and relative density, which causes it to slowly
spread through the atmosphere. It arises mainly as a result of burning solid and liquid
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fuels contaminated with sulfur (e.g., hard coal, crude oil) in combustion engines, power
plants, and combined heat and power plants [7,8]. The amount of SO2 introduced into the
environment largely depends on the quality of the fuel used. Sulfur compounds contribute
to acidification of the environment, which leads to the formation of acid rain, lower soil
fertility, inhibition of plant growth, and plant death [9]. Sulphur dioxide pollution is
“seasonal”, in the sense that higher concentrations are observed during the winter/heating
seasons, while in summer/vegetation seasons, there are lower concentrations of SO2.
According to a European Union Directive 2008/50/EC [5], the permissible average daily
concentration of SO2 is 125 μg/m3, and the permissible average hourly concentration is
350 μg/m3. These levels are the acceptable values for the protection of human health. The
WHO [6] sets a much lower limit of 20 μg/m3 for the daily average. Unfortunately, the
WHO guidelines do not provide a limit value for the annual average of SO2.

Nitrogen compounds NOx (NO, NO2) are another significant threat. These com-
pounds are formed during the combustion of fuels at high temperatures, which leads to
the oxidation of nitrogen contained in the fuels and in the atmosphere. The main sources
of NO2 are road transport (so-called “linear emissions”) [10–12] and energy and heating
systems (“point emissions”) [13]. The most dangerous nitrogen compounds are odorless
and colorless nitrogen oxides and brown-colored suffocating NO2. Nitrogen oxides could
contribute to photochemical smog and high ozone levels. However, more and more sci-
entific works indicate to the contrary that nitrogen oxides can lead to ozone depletion
in the air [14]. Nitrogen dioxide emissions are mainly caused by heavy traffic (linear
emissions), as well as by heating systems and the energy sector (point emissions) [12]. The
environmental damage caused by NOx includes eutrophication, which is associated with
the degradation of terrestrial and aquatic ecosystems [15]. Nitrous oxides also contribute
to the formation of tropospheric ozone [16] and acidification of the environment [17]. Ac-
cording to European standards, the daily average NO2 limit is 130 μg/m3 (these levels are
the limit values for the protection of human health) [5]. According to WHO guidelines [6],
the permissible average annual NO2 concentration is 40 μg/m3, and the hourly average is
200 μg/m3.

The basic method for determining the state of air quality is to measure pollutant
concentrations. Stationary ground stations monitor pollutant concentrations in manual
daily and automatic continuous systems [18–20]. However, the small number of such
stations and the distance between them mean that the data they collect can only be used
to evaluate the state of air quality on a global or national scale. It is not possible to
assess the impact of individual emitters on the state of local air quality [21,22]. Local
analyses are influenced by a number of important factors, such as wind direction and
strength, meteorological conditions, topography, and roughness of the terrain [23–25].
To take into account all of these variables in the analysis, it would be necessary to have
a complex network of numerous measuring stations located around the area. This is a
very time-consuming and costly solution, so computer programs are used to simulate
the concentrations and spread of pollutants based on detailed emitter data. Examples
of such software include Aero 2010, Emitor, OPA03 [26], AERMOD [27], ENVI-met, and
Austal 2000 [28].

Local analysis should also take into account the division of pollutant emissions into
so-called “low” and “high” emissions. Low emissions are from pollution sources up to
a height of about 40 m from ground level, i.e., from “line emitters” such as communica-
tion routes [29], “point emitters” such as the flue gas systems used in small industrial
plants and individual households, and “surface emitters” such as densely built-up and
inhabited residential quarters with individual heating systems [30]. “High emissions” are
mainly produced by large industrial plants, power plants, and combined heat and power
plants [31–33].

Here, we analyze an area of the city of Lodz (in the center of Poland, in Central
Europe). The main sources of “high” and “point” emissions in Lodz are two coal-fired
CHP plants. Despite technological progress and the introduction of substitutes in the form
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of biomass, hard coal is still the main raw material used to generate energy, with several
hundred megagrams being burned each year. As a result, facilities such as combined heat
and power plants are popularly considered to be the main emitters of air pollutants. In
this study, we set out to determine whether the CHP plants are in fact the largest emitter of
pollutants and the extent of their impact on the local environment.

2. Analyzed Objects

We analyzed emissions from the two main combined heat and power plants in the
city of Lodz (Figure 1). Lodz is the third largest city in Poland (Central Europe) in terms
of the number of inhabitants (area: 293.2 km2; population density: 2292.2 people/km2;
population: 672,185). In the north-west part of the city, there is a combined heat and power
plant designated with the number EC-3 (Figure 2A). This combustion installation includes
five coal-fired steam boilers, including one capable of co-firing 20% biomass with hard
coal, one steam boiler fired with light fuel oil, and three water boilers fired with heavy oil.
The total thermal power is 804 MW, and the electric power is 205.85 MW. To the north and
west of EC-3 there are industrial areas, and to the east and south there are single-family
and multi-family residential areas. The gross development index in the area ranges from
0.5 to 1.0.

 

Figure 1. Location of the EC-3 and EC-4 CHP plants in the city of Lodz in Poland, Europe (photo background source:
Google Earth Pro).
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Figure 2. Location and immediate surroundings of the heat and power plant EC-3 (A) and EC-4 (B) (photo background
source: Google Earth Pro).

The second facility is the EC-4 CHP plant in the east of the city (Figure 2B). The EC-4
fuel combustion installation includes two coal-fired steam boilers, one biomass-fired steam
boiler, one light fuel oil-fired steam boiler, and three coal-fired water boilers. The total
thermal power of EC-4 is 820 MW, and its electric power output is 198 MW. In the immediate
vicinity of EC-4 is an industrial and storage district. However, to the north and north-west
nearby, there are single-family housing and collective housing areas. Towards the south,
there are industrial areas, and towards the east and north-east, there are recreational and
leisure areas with high greenery in the form of trees. The gross development index in this
area ranges from 0.5 to 1.0. Significant sources of pollution in close proximity to both heat
and power plants include busy roads leading to housing estates and out of the city. These
line sources contribute to increasing the level of pollution in the area.

3. Methodology

The year 2019 was selected for analysis because it was the most recent before the
COVID-19 pandemic, and so, there were no possible changes in pollutant emissions
resulting from health restrictions. Detailed, real input data were provided for scientific
purposes by Veolia Energia Łódź. OPA03 (Eko-Soft) [34] computer software was used to
calculate the concentration of pollutants in the atmospheric air and their spatial dispersion.
The program also includes the MAPS module, which is used for graphical interpretation of
the results. The OPA03 system can analyze up to 900 point, surface, line, and equivalent
emitters. The software enables calculation of boundary dust and gaseous emissions, with
the diameter and height of the emitters as variables. The calculations were based on
the legal regulation in force in Poland and the European Union [5,35], assuming “limit
values” for selected substances in the air, “conditions” for which the reference values are
determined (such as pressure and temperature), “periods” for which average reference
values are provided, “conditions” for which reference values are considered acceptable,
and reference values or “methods of modeling” levels of substances in the air. As part
of the analysis, two dust pollutants PM10 and PM2.5 and two gaseous pollutants sulfur
dioxide (SO2) and nitrogen dioxide (NO2) were selected. Due to the legal acts in force in
Poland based on the regulations of the European Union [5,35], the background of pollutants
for emitters higher than 100 m is not determined. In the analyzed cases, the background
pollution was not taken into account, due to the fact that all chimneys/emitters are higher
than 100 m (for the EC-3 CHP plant the height of the chimney is 120 m, and for the EC-4
CHP plant, the chimneys are 200 m and 250 m high). Pollution from the H120 stack was
analyzed for the EC-3. However, for the EC-4 CHP plant, the basic configuration is the
H250 chimney and the H200 chimney, to which five boilers are connected.
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Data from the “wind rose” for the year 2019 (Figure 3) were entered into the program.
In the city of Lodz in 2019, the prevailing winds were from the west (13%), north-west
(14%), and south-west (11%), while northerly and southerly winds (about 4%) were much
less frequent, and easterly winds were the least frequent (2%). The year 2019 can be
considered typical in terms of these meteorological parameters.

≥

Figure 3. Wind rose for the city of Lodz in 2019 (own study based on data from source: [36]).

To obtain more accurate calculation data, 2019 was divided into three sub-periods: the
“summer” period (from April 1 to September 30) and two “winter/heating” periods. In the
“1st winter/heating period” (from 1 January to 31 March), the average air temperatures
were lower (Table 1) than those in the “2nd winter/heating period” (from 1 October to
31 December). This is a typical phenomenon in the region of Central Europe. As a result,
there is greater demand for thermal energy in the period from January to March, which
translates into higher pollutant emissions.

Table 1. Average monthly temperatures in 2019 for Lodz (own study based on data from source: [36]).

Month January February March April May June

Temperature [◦C] −1.7 2.6 5.7 10.1 12.4 22.2

Month July August September October November December

Temperature [◦C] 18.7 20.2 14.0 10.4 6.2 3.2

Three heights of pollution dispersion were selected for analysis: 1.5, 14, and 25 m. The
height of 1.5 m is the minimum measurement height recommended in national regulations
based on European Union directives [5,17,35]. The height of 14 m is the height at which
anemometers (devices used to measure the speed of movement of gases and liquids) are
located. The height of 25 m is the average height of skyscrapers in Lodz.

Field measurements were also made, using an unmanned aerial vehicle (UAV) equipped
with mobile measuring equipment [37,38]. The measuring equipment included a laser-
scattered (LS) sensor to measure PM10, PM2.5, and PM1.0 (10,000 particles per second) and
electrochemical (EC)-type sensors to measure H2S (3 ppb–1 ppm), O2 (0.20–100%), and
SO2 (0.5–2000 ppm). Measurements were made at the heights of 1.5, 14, 25, 30, and 50 m,
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in those places where the numerical analysis had predicted the highest concentrations of
emissions from the two power stations. The field measurements were compared to the
results of the numerical analysis.

4. Results and Discussion

The total emissions of pollutants in 2019 were calculated based on measurement
data provided by the network heat supplier, Veolia Energia Łódź (Table 2). Despite the
comparable power of the two heat and power plants, “EC-4” emitted higher total emissions
of pollutants than “EC-3”. This was probably caused by the higher fuel consumption of the
EC-4 CHP plant, due to the greater demand for power in this area of the city of Lodz.

Table 2. Emission of pollutants from EC-3 and EC-4 in 2019 (own calculations based on data from
Veolia Energia Łódź).

EC-3 CHP Plant

Emitor:
Emission [kg]

PM10 PM2.5 SO2 NO2

H120-K1, K2,
K3, K6, K9 11,080.37 4748.73 578,788.3 583,515.8

EC-4 CHP Plant

H250-K7 10,645.88 4562.52 228,952.5 300,471.9

H200-K2 4783.52 2050.08 135,430.6 151,654.8

H200-K3 3286.64 1408.56 72,609.9 171,419.2

H200-K4, K5 1267.21 543.09 46,013.7 29,063.1

H200-K6 808.78 346.62 26,176.0 14,290.0

Based on the data in Table 2 and the operating time of individual boilers, the maximum
hourly emissions of pollutants (Table 3) from the EC-3 and EC-4 CHP plants in 2019
and the average hourly emissions (Table 4) for selected sub-periods were also calculated.
The highest average hourly emissions (kg/h) and maximum hourly emissions occurred
in the “1st winter and heating period”. Most likely, this was associated with the low
atmospheric temperatures (Table 1) and the need to generate more thermal power for
residential properties. In the coldest periods, all CHP boilers work to cover the demand
for heating. The atmospheric temperatures in the “2nd winter/heating period” were on
average 3.9 ◦C higher, and there was, therefore, a lower demand for thermal energy.

Table 3. Maximum hourly emissions of pollutants for EC-3 and EC-4 CHP plants in 2019 (own
calculations based on data from Veolia Energia Łódź).

EC-3 CHP Plant

Emitor Maximum Hourly Emission [kg/h]

H120
PM10 PM2.5 SO2 NO2

2.667 1.143 128.81 144.20

EC-4 CHP Plant

PM10 PM2.5 SO2 NO2

H250-K7 4.760 2.040 103.40 79.30

H200-K2 3.430 1.470 189.90 48.96

H200-K3 0.896 0.384 24.12 34.49

H200-K4, K5 6.286 2.694 122.83 86.70

H200-K6 8.085 3.465 285.95 145.7
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Table 4. Average hourly emissions of pollutants for the EC-3 and EC-4 CHP plants, divided into
sub-periods (own calculations based on data from Veolia Energia Łódź).

EC-3 CHP Plant

Emitor: Period:
Average Hour Emission [kg/h]

PM10 PM2.5 SO2 NO2

H120-K1, K2,
K3, K6, K9

Summer period 0.91 0.39 34.65 34.80

I Winter-heating period 2.317 0.993 113.38 124.37

II Winter-heating period 1.316 0.564 96.46 87.61

EC-4 CHP Plant

H250-K7

Summer period 2.31 0.99 45.63 63.50

I Winter-heating period 2.611 1.119 50.16 62.37

II Winter-heating period 1.806 0.774 48.14 65.41

H200-K2

Summer period 0.896 0.384 21.27 30.49

I Winter-heating period 1.302 0.558 26.78 36.6

II Winter-heating period 0.945 0.405 55.96 37.11

H200-K3

Summer period 0.434 0.186 9.59 21.17

I Winter-heating period 0.42 0.18 11.44 28.87

II Winter-heating period 0.553 0.237 10.33 24.88

H200-K4, K5

Summer period 0.931 0.399 38.37 23.31

I Winter-heating period 2.324 0.996 73.62 45.56

II Winter-heating period 1.323 0.567 54.85 36.18

H200-K6

Summer period 1.204 0.516 69.36 57.6

I Winter-heating period 3.206 1.374 87.05 45.3

II Winter-heating period 1.491 0.639 91.09 54.41

The lowest average hourly emissions (kg/h) occurred in the “summer period”, when,
due to the higher atmospheric temperatures, the combined heat and power plants needed
to generate only enough energy to provide domestic hot water to premises connected
to the heating network and to cover demand for electricity and, therefore, burned less
fuel. On the other hand, the highest average hourly emissions (kg/h) occurred in the “I
winter-heating period“, when, due to the lower atmospheric temperatures (Table 1), the
combined heat and power plants needed to generate the greatest amount of energy. The
permissible emissions of pollutants were not exceeded in any of the sub-periods, thanks
to the high quality standards for exhaust gasses maintained by environmental protection
devices, such as electrostatic precipitators and flue gas desulphurization installations.

In the next stage of the analysis, we simulated the environmental impact of the CHP
plants. The value of the load of imitated pollutants was converted into the concentration of
the pollutants in the air. The average annual and maximum hourly concentrations were
taken into account for three heights: 1.5 m, 14 m, and 25 m. We also analyzed the spatial
dispersion of the selected pollutants in the vicinity of the two CHP plants.

As can be seen from Figures 4 and 5, the EC-4 CHP plant was associated with the
highest calculated average annual concentrations of pollutants in the air. This is consistent
with the higher emission (kg) of pollutants from EC-4 compared to EC-3. Calculations made
using OPA03 software for the EC-4 CHP plant show that the highest calculated annual
average concentrations for PM10 was still very low, amounting to only about 0.04% of the
reference value of 40 μg/m3 stipulated in Directive 2008/50/EC [5]. Similar conclusions
apply to the annual average concentrations of PM2.5, which were also about 0.03% of the
reference value of 25 μg/m3. Much higher concentrations were calculated for gaseous
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pollutants than for dust pollutants. The average annual concentration of SO2 was 4.24% of
the reference value of 20 μg/m3 [6]. The highest average annual concentration of nitrogen
compounds, including both NO2 and NO converted to NO2, amounted to 1.73% of the
reference value (40 μg/m3). Detailed calculations made using OPA03 software for EC-3
show that the highest of the annual concentrations for PM10 and PM2.5 were only 0.02 and
0.01% of the permissible values, respectively. As in the case of EC-4, lower concentrations
than the permissible values were recorded for gaseous pollutants in EC-3. The average
annual concentration of SO2 reached 2.46% of the limit value and, for NO2, amounted to
1.17% of the limit value. Generally, the concentrations of pollutants increased at higher
altitudes (1.5 m, 14 m, and 25 m). The highest concentrations were recorded primarily at
the height of 25 m.

 

μ

Figure 4. The highest annual average concentration of particulate matter pollutants at the height of 1.5, 14, and 25 m for the
EC-3 and EC-4 CHP plants based on the results from OPA03.

Overall, the average annual concentrations of the analyzed pollutants amounted to a
maximum of 4% of the relevant permissible values. This is probably due to the flue gas
cleaning systems used in both CHP plants, which reduce the emission of pollutants into the
atmosphere. Another important parameter in the analysis of the impact of the CHP plant
on air quality is the maximum 1 h concentration (Figure 6). In general, the changes in the
concentrations of gaseous pollutants that occurred at increasing heights were negligible.
In the case of the EC-4 plant, the maximum 1 h concentration of SO2 was approximately
114.5 μg/m3, which is approximately 33% of the reference value of 350 μg/m3. For NO2,
the concentration was about 89.5 μg/m3, i.e., about 45% of the reference value of 200 μg/m3.
In the case of the EC-3 plant, the values for SO2 were around 31 μg/m3, which is about
9% of the reference value (350 μg/m3). For NO2, the hourly concentration was about
31.5 μg/m3, which is about 16% of the reference value (200 μg/m3).
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μ

Figure 5. The highest annual average concentration of gaseous pollutants at the height of 1.5, 14, and 25 m for the EC-3 and
EC-4 CHP plants based on the results from OPA03.

 

μ

Figure 6. The highest hourly concentration of gaseous pollutants at the height of 1.5 m, 14 m, and 25 m for the EC-3 and
EC-4 CHP plants based on the results from OPA03.

To analyze more fully the impact of the heat and power plant on the surroundings,
we made dispersion maps. The black points on the maps show the location of the EC-3 and
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EC-4 CHP plants and the administrative borders of the city of Lodz. Figure 7 shows the
dispersions of SO2 from the EC-4 plant at heights of 1.5 m, 14 m, and 25 m.

 

Figure 7. Distribution of annual average SO2 concentrations of 1.5 m, 14 m, and 25 m surrounded by EC-4 in 2019 based on
the results from OPA03.

The values range from 0.2 μg/m3 to 0.8 μg/m3, which is between 1% and 4% of
the reference value. The area with SO2 concentrations of 0.8 μg/m3 doubled as the mea-
surement height increased from 1.5 m to 25 m (Figure 7). The SO2 pollution from EC-4
spread in accordance with the wind rose shown in Figure 3. The pollution spread mainly
towards the north, north-east, and east, i.e., following the prevalent winds for Lodz in 2019.
Concentrations of SO2 above 0.2 μg/m3 covered about 35% of the area of the city of Lodz.

Figure 8 shows the dispersions of SO2 pollutants from EC-3 at heights of 1.5, 14, and
25 m. The average annual concentrations range from 0.2 to 0.5 μg/m3. The area with
a concentration of SO2 equal to or greater than 0.5 μg/m3 doubled as the measurement
height increased from 1.5 m to 14 m. However, at a height of 25 m, it tripled relative to the
concentration at 1.5 m. The dispersion of pollutants again coincided with the established
wind rose. The impact of pollutants from EC-3 was negligible, amounting to a maximum
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of 3.4% of the reference value. Hao et al. report similar results [33]. Concentrations of SO2
from EC-3 above 0.2 μg/m3 (Figure 8) covered about 13% of the area of the city of Lodz.

 

Figure 8. Distribution of annual average SO2 concentrations at the height of 1.5, 14, and 25 m surrounded by EC-3 in 2019
based on the results from OPA03.

Figure 9 shows an example of the dispersion of NO2 pollutants from the EC-4 heat and
power plant at heights of 1.5, 14, and 25 m. As can be seen, the highest annual average NO2
concentration is 0.6 μg/m3. The area with a concentration of 0.6 μg/m, which constitutes
1.5% of the reference value, is 40 μg/m3. Ghermandi et al. also showed that the limit values
were not exceeded during their computer analysis of NO2 emissions from a CHP plant in
San Marino [39]. The dispersion of NO2 pollutants also coincided with the wind rose for
Lodz for 2019.

Figure 10 shows the spatial dispersion of PM10 from EC-4. The distribution of pollu-
tants at 1.5 m is shown on the left, and the distribution at 25 m is shown on the right. The
concentrations of pollutants are in the range of 0.003–0.015 μg/m3, which is 0.007–0.03% of
the reference value. The highest values of 0.015 μg/m3 occurred only at a height of 25 m.
Of all the pollutants, PM10 had the largest area of influence.
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Figure 9. Distribution of annual average NO2 concentrations at the height of 1.5 m, 14 m, and 25 m surrounded by EC-4 in
2019 based on the results from OPA03.

Summarizing the results of analysis using the OPA03-Maps program, the average
annual concentrations range from thousandths of a percent to several percent of the permis-
sible values. This can be attributed to the use of dedusting devices, flue gas denitrification,
and desulphurization installations, as well as various types of filters with high dedusting
efficiency. Both CHP plants, thus, have a negligible impact on air quality. The highest
concentrations of pollutants occurred at a height of 25 m. Due to the movement of air
masses, the concentrations of pollutants from the heat and power plants fall significantly as
the measuring height reduces. This is very important because, as shown by the pollution
dispersion maps, the main areas to which the pollutants are transported by the predomi-
nant wind directions are mainly collective and individual residence areas, as well as green
areas used by residents for relaxation and recreation.

Field measurements were made with the use of UAV to verify the impact of the CHP
plants on air quality. The field measurements were taken during the heating season in
the areas with the highest concentrations of pollutants from the heat and power plants,
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according to the analysis in OPA03. In the case of EC-4, these were two intersections of the
main streets in the city, indicated in Figure 11.

 

Figure 10. Distribution of annual average concentrations of PM10 at the height of 1.5 m and 25 m surrounded by EC-4 in
2019 based on the results from OPA03.

As shown in Figure 11, in location no. 1, located closer to EC-4, the concentration
of PM10 varied in the range 27.57–84.76 μg/m3. In location no. 2, the concentration of
PM10 varied in the range 44.05–80.37 μg/m3. According to the analysis in OPA03, the
highest average annual concentration of PM10 particulate pollutants emitted from EC-4
was 0.016 μg/m3. The concentrations recorded in the field measurements were 5000 times
higher. This proves the negligible impact of the EC-4 heat and power plant on air quality.
It can be assumed that the high measured concentrations of PM10 were caused by “low
emissions” from transport and individual heating systems, which in Poland, do not have
to meet high standards for exhaust gas treatment, such as those set for municipal heat and
power plants. The concentration of SO2 measured for location no. 1 varied in the range
0.06–0.40 ppm (Figure 12), i.e., about 170–1130 μg/m3. In location no. 2, the concentration
of SO2 varied in the range 0.15–0.40 ppm (420–1130 μg/m3). According to the analysis in
OPA03, the maximum hourly concentration SO2 emitted from EC-4 was 115 μg/m3. This
means that the SO2 concentrations measured in location no. 2 were almost 10 times higher
than the emissions from the combined heat and power plant. As in the case of particulate
pollutants, this can be explained by “low emissions” providing the dominant share of the
total concentration of sulfur dioxide.
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Figure 11. Spatial distribution of PM10 concentration for a selected location in the vicinity of EC-4.

Another area we analyzed was at a distance of approx. 1.5 km from the EC-3 heat and
power plant (Figures 13 and 14). The concentration of PM10 varied spatially in a narrow
range, from 13.52 to 38.25 μg/m3 (Figure 13). The real concentrations were, thus, more
than 5000 times higher than the emissions from EC-3 determined on the basis of OPA03
modeling (the highest annual average concentration was 0.007 μg/m3).

On the other hand, field measurements of the SO2 concentration (Figure 14) showed
variations in the range 0.01–0.14 ppm (about 30–390 μg/m3). The real concentrations were
more than 12 times higher than the maximum hourly value of about 32 μg/m3 calculated
in OPA03. As in the case of EC-4, the EC-3 CHP plant was, therefore, found to emit only
a small proportion of the actual concentration of pollutants. This proves that the main
sources of the analyzed pollutants were not the CHP plants, but probably “low” and
“linear” emissions from transport and individual heating.
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Figure 12. Spatial distribution of SO2 concentration for a selected location in the vicinity of EC-4.

 

Figure 13. Spatial distribution of PM10 concentration for a selected location in the vicinity of EC-3.
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Figure 14. Spatial distribution of SO2 concentration for a selected location in the vicinity of EC-3.

5. Conclusions

Based on our analysis of the dispersion of atmospheric air pollutants in 2019, the
concentrations of pollutants from the EC-3 and EC-4 municipal heat and power plants do
not exceed the permissible values and do not independently present a threat to human
health. Organizational units of Veolia Energia Łódź, which manage facilities including
the EC-3 and EC-4 CHP plants, comply with the applicable regulations and implement
plans to limit emissions into the air, using desulphurization installations and flue gas
cleaning devices. However, field measurements showed that total emissions including
other sources, i.e., “linear emissions” in the form of transportation and “low emissions”
from home furnaces, do pose a real threat to environmental health and safety, because the
concentrations of pollutants exceed permissible levels in the air. In order to improve air
quality, it is necessary to act to reduce the amount of pollution emitted from all sources.
In particular, it is possible to mention a reduction in the number of vehicles used for
public transport or replacing them with electric vehicles and the replacement of individual
coal-fired boilers with gas or electric heat sources.

Our numerical analysis in OPA03 software showed that at lower measuring heights,
the concentrations of pollutants from EC-3 and EC-4 decreased, and the area with the
highest average annual concentrations approximately doubled. However, the field mea-
surements showed that the highest concentrations of the pollutants were recorded close to
the ground surface and decreased at higher altitudes. This demonstrates the direct impact
of “low emissions” on air quality. Pollutants emitted, for example, from vehicles and indi-
vidual heating systems, accumulate at the ground surface and, then, through air movement,
are lifted to higher parts of the atmosphere. There, there is a gradual dilution/reduction in
their concentration by mixing with air. Dispersion maps generated based on the analysis
in OPA03 and field measurements confirmed that the spread of pollutants was mostly
influenced by wind speed and direction. Another very important factor influencing the
condition of atmospheric air is the season. As shown in Table 4, higher emissions of
pollutants occur during the winter-heating period. In the “winter/heating period”, in
addition to sources of air pollution that are active throughout the year, it is necessary to
take into account those that are used seasonally, e.g., individual heating systems. In colder
weather, there is more demand for heat energy, and therefore, higher levels of pollutants are
produced both by CHP plants (“high emissions”) and home furnaces (“low emissions”).
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The combined use of field measurements and computer simulations constitutes a new
approach to analyzing air quality, making it possible to select areas for field analysis and to
verify the impact of emitters on air quality. This method can be implemented anywhere in
the world, in relation to various emitters of air pollutants.
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Abstract: In this paper, we used a self-developed anisotropic cubic core holder to test anisotropic rela-
tive permeability by the unsteady-states method, and introduced the anisotropic relative permeability
to the traditional numerical simulator. The oil–water two-phase governing equation considering the
anisotropic relative permeability is established, and the difference discretization is carried out. We
formed a new oil–water two-phase numerical simulation method. It is clear that in a heterogeneous
rock with millimeter to centimeter scale laminae, relative permeability is an anisotropic tensor. When
the displacement direction is parallel to the bedding, the residual oil saturation is high and the
displacement efficiency is low. The greater the angle between the displacement direction and the
bedding strike, the lower the residual oil saturation is, the higher the displacement efficiency is,
and the relative permeability curve tends towards a rightward shift. The new simulator showed
that the anisotropic relative permeability not only affects the breakthrough time and sweep range
of water flooding, but also has a significant influence on the overall water cut. The new simulator
is validated with the actual oilfield model. It could describe the law of oil–water seepage in an
anisotropic reservoir, depict the law of remaining oil distribution of a typical fluvial reservoir, and
provide technical support for reasonable injection-production directions.

Keywords: relative permeability; anisotropic; reservoir numerical simulation; heterogeneity; fluvial
sandstone reservoir

1. Introduction

Old oilfields in eastern China have generally entered a dual-high development stage
with high water cut and high recovery degree. The hydrodynamic adjustment of “liquid
flow steering” has achieved good results in improving recovery. Fluid flow steering changes
the flow direction of fluid and makes fluid flow paths more intricate. Fluid seepage laws
thus become complicated. At present, relative permeability is isotropic in traditional
numerical simulations, which cannot accurately calculate residual oil distribution and
cannot describe the deep mechanisms of liquid flow steering.

Relative permeability (the ratio of effective permeability to absolute permeability) is
a basic parameter to study the seepage law of multiphase fluid. There are many factors
affecting relative permeability, among which the heterogeneous pore structure is of vital
importance. It is found that relative permeability will change significantly due to micro-
scopic local pore structure, fluid interaction, and rock–fluid interaction [1–5]. Therefore, the
relative permeability must be different when the pore structure of the reservoir is different.

In the past several years, a number of works have been reported on the directional
characteristics of pore structures. In fluvial sediments, due to long-term erosion and erosion
by water flow, the particles that make up the rock skeleton of the reservoir are often in
irregular ellipsoid shapes. In the process of deposition, the skeleton particles are arranged
directionally with the transport medium, and the direction of the long axis is consistent
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with the direction of the flow, while the direction of the short axis is perpendicular to
the direction of the flow. The compaction in the diagenetic process also strengthens
this directional arrangement, which makes the pore structure directional. Effected by
the sedimentary environment and the inherent properties of the reservoir, including the
original sedimentary bedding, vertical rhythm, and so on, the pore structure will be
obviously different in the plane and vertical, and the fluid flow will have a dominant
migration direction [5–11]. Recent theoretical and experimental studies have revealed that
permeability is anisotropic [12–16]. Since it is the pore throats that govern the percolation
threshold for porous media, permeability anisotropy is the behavior of the anisotropy of
pore structure. In other words, the pore structure anisotropy has been widely observed.

Since Corey and Rathjens found that the relative permeability of bedded rocks is
directional in 1956, research on anisotropic relative permeability has mainly focused on the
following three aspects. Firstly, identification of core scales in the laboratory. It has been
shown that relative permeability is related to the particle size of the rock composition of
bedding structures (namely pore throat structure) and micro fractures. When driven along
the direction of penetrating bedding, the change of rock properties leads to the change
of capillary resistance so that the movement of fluid in this direction is blocked, and the
oil in the core will be blocked, indicating that the relative permeability is directional. The
displacement direction is different, the shape of phase permeability curve is different, the
vertical displacement remaining oil is less, and the displacement efficiency is higher [17–24].
Secondly, discovery in numerical simulation. Some numerical simulation studies used
pore network models to point out that the relative permeability parallel to the bedding
direction is larger than that perpendicular to the bedding direction, and the residual
saturation and relative permeability are sensitive to anisotropic correlation. The higher the
absolute permeability value is, the greater the relative permeability value is, and the relative
permeability is related to pore connectivity and pore inclination angles. The dendritic
nature of gas-cluster topology, especially in the presence of other forces, such as gravity or
strong viscous pressure gradients, clearly suggests that significant anisotropy may exist in
relative permeability due to the balance of forces in the dissolved gas drive process [25–31].
Thirdly, microscopic visual seepage physical simulation. It is indicated that the change
of injection-production angle will break the pressure balance of the original seepage field,
promote the stripping and seepage of all kinds of remaining oil, and make the remaining oil
migrate again, thus changing the microscopic remaining oil type and distribution law. The
essence of this change is that the percolation law of the oil and water phases has changed
due to different pore structures in different displacement directions [32,33]. Numerical
models and physical experiments all prove that like porosity and permeability, relative
permeability is a direction-dependent tensor, not a scalar.

Although the anisotropic characteristics of relative permeability were recognized
earlier, the related studies focused on its embodiment in microscopic displacement experi-
ments, or the demonstration of the characteristics by numerical simulation. In particular,
few studies, to our knowledge, have considered two facts. Firstly, the test of anisotropic
relative permeability. At present, most studies tested the anisotropic relative permeability
curve by drilling cores in different directions. The testing device and the displacement di-
rection is one-dimensional. However, the three-dimensional flow of fluid in the core is not
equal to the simple superposition of three one-dimensional flows. The traditional relative
permeability curve testing device cannot increase or change the displacement direction
and cannot directly test the anisotropic relative permeability curve. It is quite difficult
to test the relative permeability in three directions through one sample, However, the
different test results of the same sample are the most comparable; Secondly, the application
of anisotropic relative permeability in reservoir numerical simulation is very weak. There
is a long way to go to test and apply the anisotropic relative permeability.

In this paper, firstly, the typical fluvial sandstone of the Shihezi fomation outcrop
in Jiyang depression of Bohai Bay basin are used to measure the anisotropic relative
permeability via a self-developed anisotropic cubic core holder; Secondly, we established a
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new simulator considering anisotropic relative permeability and compared the calculation
results between the new simulator and traditional simulator. Finally, we apply the new
simulator to the reservoir numerical simulation of Cheng 4 block in Shengli Oilfield
(the reservoir is a typical fluvial sedimentary environment). The production data show
that the numerical simulation method considering anisotropic relative permeability can
describe the remaining oil distribution more accurately, especially in the situation that the
reservoir has entered the development period of ultra-high water cut. In order to precisely
apply anisotropic relative permeability to typical fluvial reservoir simulation or fractured
reservoir, there is an urgent need for working on the upscaling of anisotropic relative
permeability.

2. Experiments

2.1. Sample Preparation and Experimental Apparatus

In this study, fluvial facies sandstone outcrop from Guantao formation was used in
this study. We can clearly see that the sample has developed plate-like cross-beds, which
are at an angle of 30 degrees with the ground (Figure 1). We define the bedding direction as
the x direction, the y direction orthogonal to x, and the z direction perpendicular to the xy
plane. The water permeability in the three directions of x, y, and z is 37.87 mD, 20.83 mD
and 18.94 mD, respectively, and the porosity is 15.98%. The testing oil is a mixture of crude
oil and diesel with a viscosity of 10 mPa·s at 20 ◦C. The salinity and viscosity of the testing
water are 4000 mg/L and 1.0 mPa·s, respectively. The testing fluids are based on the actual
reservoir oil and water properties in the Shengli Oilfield.

 
  

(a) (b) (c) 

   

(d) (e) (f) 

Figure 1. Cores used in our experiment (a–e) are the 4 side and top photos of the cubic core, (f) is the
full-view photo of the cubic core.

The experimental apparatus consists of five different parts: injection control system,
temperature and pressure control system, core holding system, outlet back pressure control
system, and data acquisition system. The schematic representation of the experimental
apparatus is shown in Figure 2.

( 1©—anisotropic cubic core holder; 2©—pressure sensor; 3©—six-way value; 4©- oil–
water separator; 5©—Monitoring camera system; 6©—value; 7©—output liquid collector;

8©—backpressure regulator (BPR); 9©—confining pressure system; —water flooding

system; —oil flooding system; —filter; —control system).
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Figure 2. Schematic representation of the experimental apparatus of the anisotropic relative perme-
ability measurement.

2.2. Experimental Process

(1) Use wire cutting technology to cut outcrop rock samples into 50 mm× 50 mm× 50 mm
cube core;

(2) Wash the oil, water, salt, soil, and other impurities attached to the cubic core, dry, and
weigh the cubic core;

(3) Put the cubic core into a rubber sleeve;
(4) Measure the porosity of the cubic core and test its permeability from three directions

of x, y, and z;
(5) Saturate the cubic core with formation water in three directions;
(6) Measure the absolute permeability of water in three directions;
(7) Displace the water in the cubic core with oil along three directions until the irreducible

water saturation (record the flow data and time at the outlet; open the outlet plunger
and close the inlet; the outlet water cut <0.1%, Additionally, when the number of PV
injected is greater than 10 PV, stop the oil saturation process.)

(8) Measure the effective permeability of the oil phase under irreducible water saturation
in three directions;

(9) Displace the oil in the sample with water along the x direction, inject at a constant
speed, 10 PV (record the flow data and time at the outlet; when the water cut at the
outlet is >99.9%, and the injected PV number is greater than 10 PV, stop the water
flooding process);

(10) Measure the effective permeability of water under residual oil saturation;
(11) Repeat step 7.
(12) Change the inlet and outlet of the core holder to change the displacement direction;
(13) Repeat steps 9–11 until the relative permeability tests in the three directions of x, y,

and z are completed;
(14) Wash, dry, and weigh the sample.
(15) Calculate the relative permeability.

3. Methodology

3.1. Characterization of Anisotropic Relative Permeability

The test process is continuous. After measuring the x direction, the oil is saturated in
the x direction, and then the direction is changed to do the water flooding process, so as to
ensure that the core porous medium and the oil and water conditions are the same in each
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test. The main goal of this research is to observe the difference in residual oil saturation
after water flooding in different directions. Therefore, minor changes in the irreducible
water saturation are ignored.

During the experimental process and numerical simulation research process, we
realized that the relative permeability of the XY, XZ, and YZ directions are also important
to this experiment. Different inlet and outlet combinations could help to test the relative
permeability of the XY, XZ, and YZ directions. For example, if we use the X direction as the
injection end, we can use the Y direction or the Z direction as the production end. However,
the existing JBN calculation method cannot be used to solve the relative permeability curve
of such a combined inject-product method. The automatic history matching method or
other methods need to be proposed to solve the relative permeability curve.

In this experiment, the JBN method was used to solve the relative permeability curve.
The JBN method is based on the Buckley–Leverett one-dimensional two-phase water
flooding front advancement theory, ignoring capillary pressure and gravity, assuming
that the two-phase immiscible fluid is incompressible and the oil–water saturation in
any cross section of the rock sample is uniform. In the process of water flooding, only
when the displacement front breaks through the end, can the relative permeability of the
oil and water phase be calculated. For the entire core, the displacement process has a
breakthrough time, but for the end face, the flow is pure oil phase before the breakthrough.
The saturation in the end face has not changed. After the breakthrough, the process of the
end face water saturation from the irreducible water saturation to the maximum water
saturation is complete. JBN projects the seepage law of the entire core to the end face. It
studies the law of water saturation and oil–water seepage at the end face. The relative
permeability calculated by JBN represents the end face, not the entire core.

There is a marked difference between the relative permeability curves derived from
the x direction, y direction, and vertical displacements. Different residual oil saturations
were obtained for three directions displacements, the residual oil saturation in X direction
is 0.56, the residual oil saturation in Y direction is 0.61, the residual oil saturation in Z
direction is 0.82. The displacement was more efficient in the vertical than other directions.
The greater the angle between the displacement direction and the bedding strike, the lower
the residual oil saturation is, the higher the displacement efficiency is, and the relative
permeability curve tends towards a rightward shift. The displacement efficiency in the
three directions of x, y, and z are 0.664, 0.721, and 0.84, respectively.

3.2. Numerical Simulation with Anisotropic Relative Permeability

According to the experimental results, JBN (calculation of relative permeability from
displacement experiments proposed by Johnson, E.F., Bossler, D.P. and Naumann, V.O.)
method was used to obtain the relative permeability curves in three directions. The
anisotropic relative permeability is applied to the traditional numerical simulator and the
traditional numerical simulator is modified.

In this paper, based on the oil–water two-phase black oil model, the isotropic relative
permeability in the water phase governing equation and the oil phase governing equation
is replaced by the anisotropic relative permeability, and the new oil phase and water phase
motion equations are solved by the finite difference method. There are many numerical
simulation methods, such as the finite difference method, finite element method, etc.
Different solving methods have great influence on the results of fracture–matrix seepage,
different mesh sizes, and poor mesh quality. The stochastic perturbation-based finite
element approach proposed by Kaminski, M. can even treat uncertainty in inflow or wall
boundary conditions, in parameters of the equations, in profile shape, etc. [34]. The model
in this paper is relatively simple, so we chose the traditional finite difference method to
solve the problem. The assumptions of the numerical simulation model established in this
paper are as follows:

(1) There are only two phases, oil and water, in the model.
(2) There is no mass exchange between oil and water.
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(3) The fluid flow seepage follows Darcy’s law.
(4) Rocks and fluids are slightly compressible.

The oil governing equations used in this study are presented in Appendix A, where
the derivation process is discussed.

The fully implicit method is selected to ensure accuracy during the calculation. The
heterogeneity of the reservoir is usually strong, and the fluid properties are also complex
and diverse. In addition, the time span of historical production data is large, and as a result,
the stability and robustness of implicit pressure, explicit saturation (IMPES) implementation
are not enough to meet the requirements of reservoir numerical simulation [35]. The
fully implicit method is very stable and can solve the problems of non-convergence and
computational instability in a heterogeneous model.

4. Numerical Simulation Calculating Results and Discussion

In this study, according to the experimental results, we set up two kinds of numerical
simulation models: homogeneous permeability model and heterogeneous permeability
model. The numerical simulation calculating results obtained from the new simulator
considering anisotropic relative permeability is compared with that from a traditional
numerical simulator (isotropic relative permeability). The basic parameters of the numerical
simulation model are as shown in Table 1, and the relative permeability curve used in the
numerical simulation model is shown in Figure 3.

Table 1. Simulation model parameters.

Grid node 40 × 40 × 1 Dx (m) 10

Dy (m) 10 Dz (m) 10

Top deep (m) 1000 Initial water saturation (f) 0.15

Porosity (f) 0.2 Permeability (10−3 μm2) 50

Water viscosity
(mPa·s) 1 Oil viscosity (mPa·s) 10

Exploit scheme Water flooding Well pattern One injection well and
one production well

 

Figure 3. Relative permeability of three directions.

4.1. Effect of Anisotropic Relative Permeability on Pressure Distribution

In order to observe the effect of anisotropic relative permeability on pressure dis-
tribution, we made four cases, which are a homogeneous model with isotropic relative
permeability (Case A), a homogeneous model with anisotropic relative permeability (Case
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B), a heterogeneous model with isotropic relative permeability (Case C), and a heteroge-
neous model with anisotropic relative permeability (Case D). The pressure distribution
results in these four cases are different, and they are very much affected by the hetero-
geneity of the relative permeability curves, which is different from Gomez-Hernandez’s
understanding. He proceeded with a derivation of the algorithm used to condition a
realization of relative permeability to pressure and saturation data, and he observed that
pressures are not very much affected by the heterogeneity of the relative permeability
curves [36].

The results show that the pressure distribution uniformity between the injection well
and the production well and the tangent of the pressure isoline along the diagonal is
perpendicular to the diagonal line in Case A. In Case B, which considers the anisotropic
relative permeability, the pressure propagation mode has changed, and the pressure distri-
bution near the injection well and the production well has shifted in the x direction, and
the relative permeability in the x direction is higher than that in the y direction. As far as
this model is concerned, it seems that the pressure distribution in case A has been twisted
counterclockwise. The pressure propagation of Case C is similar to that of Case B, but there
is still a difference. The pressure propagation of Case D is also similar to that of Case B and
Case C. However, the torsion of pressure distribution is more severe in Case D (Figure 4).

  
Case A Case B 

  
Case C Case D 

Figure 4. The pressure distribution of the four cases at the 50th time step.

The effective permeability, that is, the product of absolute permeability and relative
permeability, determines the flow capacity of one phase in two-phase flow. It is found
that both anisotropic absolute permeability and anisotropic relative permeability have an
important influence on pressure distribution, and they are not equivalent and cannot be

113



Energies 2021, 14, 4731

replaced each other, especially since the relative permeability is affected by fluid saturation
and at the same time the change of relative permeability is not uniform. Obviously, the
pressure propagation shifts to the direction of high relative permeability after considering
the anisotropic relative permeability.

4.2. Effect of Anisotropic Relative Permeability on Remaining Oil Saturation

In this section, we further study the effect of anisotropic relative permeability on
the remaining oil saturation. It is indicated that the water flooding is uniform and the
remaining oil is symmetrically distributed along the injection-production wells diagonal
line in Case A. The remaining oil of Case A is mainly located near the two sides of the
production well and is most enriched at both ends of the diagonal line perpendicular to the
injection–production line. The water flooding process obviously shifts to the x direction in
Case B, with less remaining oil in the x direction and more remaining oil in the y direction,
which is consistent with the experimental results. The result of Case C is not similar to that
of Case B. Though the permeability in the x direction is large, there is more remaining oil
in the x direction. Case D is the superposition of Case B and Case C, and the process of
water flooding obviously shifts in the x direction (Figure 5).

 
Case A Case B 

 
Case C Case D 

Figure 5. The remaining oil saturation distribution of the four cases at the 50th time step.

The area swept by injection water obviously shifts to the x direction in Case B because
the relative permeability in the x direction is greater than that in the y direction. With regard

114



Energies 2021, 14, 4731

to the phenomenon of Case C, we need to review the pressure distribution characteristics
of Case C. Since the pressure at both the injection well and the production well propagates
preferentially in the x direction, the injected water flows in the x direction first, and the
production well also gives priority to producing oil in the x direction. Therefore, the
process of water flooding does not seem to shift blindly to the x direction, but there is an
equilibrium point on the injection–production line.

Before the equilibrium point, there is more remaining oil in the y direction, and after
the equilibrium point, there is less remaining oil in the y direction. Here, we notice that
case B and Case C have similar pressure propagation patterns, and the reason why there is
such a big difference in remaining oil saturation is the relative permeability is affected by
saturation. The relative permeability in the x direction is larger in Case B, the injected water
is rapidly transferred near the production well, and the rapid increase in water saturation
makes the flow capacity of water exceed that of oil. As a result, although the relative
permeability in the x direction is larger, the movement ability of water in the y direction is
higher than that of the oil in the x direction. Therefore, the remaining oil saturation of Case
B occurs. However, the evolution of remaining oil saturation of Case C is different from
that of Case B because it uses isotropic relative permeability and the absolute permeability
is not affected by saturation. From the above analysis, it is not difficult to infer that the
influence and mechanism of anisotropic relative permeability and absolute permeability
on oil–water two-phase flow are different.

4.3. Effect of Anisotropic Relative Permeability on Water Cut

It is shown that Case A is the first to produce water, followed by Case C, Case B, and
Case D, respectively. The reason for the difference can be made clear by comparing the
corresponding remaining oil saturation. The flooding process of Case A is uniform, and
it is the first to produce water. Most of the remaining oil distributes on both sides of the
injection–production line near the production well. The sweep range of Case C is larger
than that of Case A, so the time the model begins to produce water is later than in Case
A. The flooding degree along the x direction in Case B is higher than Case C, as a result,
Case B produces water later than Case C. Case D is affected by both anisotropic relative
permeability and absolute permeability, and the degree of water flooding in x direction is
the highest so it is the last to see water. However, although the time at which it sees the
water is late, once there is a breakthrough, the later the breakthrough, the faster the water
cut rises, and the higher the final water cut is (Figure 6).

Figure 6. The changing process of water cut of the four cases.

It can be seen from the water cut curves that when the water cut exceed 0.75, the
difference between the water cut curves of the four cases is very small, and there is
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little difference in saturation. However, when the water cut is less than 0.75, there are
obvious differences in breakthrough time and the rising speed of water cut. Because of the
homogeneity or heterogeneity of the model itself and the relative permeability isotropy or
anisotropy, the movement direction and velocity of the displacement fronts of reservoir
are sensitive from the beginning of displacement, as described in Section 4.2. Due to the
simplicity of the model and well pattern, after breakthrough, the injected water continues
to spread to the unused remaining oil area, and the remaining oil is gradually produced.
When the water cut reaches a certain value, the difference in saturation and water cut of
the four cases gradually decreases.

4.4. Sensitivity of the Measured Anisotropic Relative Permeability Data on the Simulation Model

We tested the relative permeability in three directions, and we call the relative perme-
ability curve in the x direction obtained by the experiment No. 1, the relative permeability
curve in the y direction No. 2, and the relative permeability curve in the z direction No. 3.
No. 1 and No. 2 relative permeability (the smallest difference), No. 1 and No. 3 relative
permeability (the biggest difference), and No. 2 and No. 3 relative permeability (large
difference) are applied in the homogeneous model x, y, and z direction, respectively (for
the convenience of the description later, we named these three cases low difference, high
difference, mid difference). Then, we studied the effect of the difference in anisotropic on
the results of the numerical simulation.

The water cut of low difference shows the injected water breakthrough first (waterless
oil recovery period is the shortest) with a breakthrough time of 6.3× 104 days, the water cut
rises fastest, the final water cut is the highest, and the daily oil production drops the earliest.
The breakthrough time of high difference is later than that of low difference, which is
6.9 × 104 days. The final water cut of high difference case is the lowest. The breakthrough
time of mid difference is the latest, which is 7.5 × 104 days. After the breakthrough, the
water cut rises rapidly, and at 8.8 × 104 days, the water cut exceeds that of high difference,
and the water cut is 68.24%. Accordingly, the daily oil production of high difference
decreased earlier than that of mid difference, but the daily oil production of high difference
exceeded both at 8.8 × 104 days (Figure 7).

Figure 7. Water cut and daily oil production of different anisotropic relative permeability.

According to the characteristics of the relative permeability curve, the difference of
the relative permeability curve between low difference x and y is the smallest, and the
difference of residual oil saturation is only 5%. Therefore, the injected water advances
uniformly in the x and y direction and breaks through fastest. The difference between the
relative permeability curve of high difference x and y is the biggest, and the difference
in residual oil saturation is 26%. The displacement efficiency of injected water in the
y direction is higher, so the path of injected water to the production well shifts in the
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y direction, and the path becomes farther, so the breakthrough time is later than low
difference. The relative permeability curves of mid difference x and y are quite different,
and the difference of residual oil saturation is 21%, but the displacement efficiency in both
directions is high, so the injected water breakthrough is the latest. It is precisely because
of the high displacement efficiency of mid difference in both directions, once the injected
water breaks through, the remaining oil is the least, and the water cut increases rapidly.
After the injected water of high difference breakthrough, there is more remaining oil in the
x direction, with the continuous increase in injected pv, this part of the remaining oil is
gradually drained, resulting in a smaller increase in water cut than the other two cases.

4.5. Actual Model

In this section, we further verify the accuracy of the application of anisotropic relative
permeability by comparing the actual production data of the C4N well area in Shengli
Oilfield. This well area is a typical fluvial facies sedimentary environment, which belongs
to a medium–high permeability reservoir.

In order to apply the anisotropic relative permeability to the actual model more accu-
rately, we carried out a paleomagnetic orientation on the experimental samples (Figure 8).
We separated the stable magnetization direction through the high precision magnetometer
system in the laboratory and determined the geographic north pole direction of the core.
In the paleomagnetic test, the x direction is used as the marking direction. The paleogeo-
graphic magnetic declination angle and magnetic inclination angle of the Y direction of the
sample are 63.1◦ and −0.9◦, respectively. Two precision parameters K and T95 (the higher
the K value, the higher the precision, the smaller the T95, the more reliable the result) are
usually used to measure the reliability spectrum degree of the Fisher distribution or the
average observation direction of the pole [37–40]. The K value of this paleomagnetic test is
18.7 and T95 is 9.4, which has high reliability (Table 2).

 

Figure 8. Photo of palaeomagnetic core sample.

Table 2. The results of characteristic remnant magnetization measurements.

Sample Number
Magnetic

Declination (◦)
Magnetic

Inclination (◦)
T95 R K

1 58.1 4.4 8.94 3.03 5.78

2 82.1 −6 5.53 4.24 9.52

Average results of Fisher
statistical vector 63.1 −0.9 9.4 1.82 18.7

After that, we established a three-dimensional geological model according to the
characteristics of the C4N well area, and the grid system was generated with the north by
west 63.1 degrees as the X axis. The C4N well area is in the middle and high water cut
stage, when deploying infill wells, and the remaining oil drilling potential will refer to the
calculation results of reservoir numerical simulation. We often encounter the deployment
of wells in places with high remaining oil saturation, and the drilling and production effect
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is not necessarily good. In fact, this is due to the inaccurate characterization of remaining
oil distribution.

Figures 9 and 10 show the current distribution of remaining oil saturation calculated by
traditional relative permeability and anisotropic relative permeability in the Cheng 4 South
well area, respectively, as of 1 November 2019. There is a significant difference in remaining
oil saturation between the two numerical simulation results. The numerical simulation
results considering anisotropic relative permeability show that the sweep range of water is
larger and the displacement efficiency in the Y direction (perpendicular to the river flow
direction) is higher. There is also a great difference in the average remaining oil saturation
obtained by the two algorithms. For example, the average remaining oil saturation of well
C13-21 obtained by the numerical simulation algorithm considering anisotropic relative
permeability is significantly higher than that of the traditional algorithm. This also explains
why well C13-21 has a longer stable production period than other production wells, and
the current water cut can still be maintained at 53.7% (Figure 11).

 

Figure 9. The remaining oil saturation distribution calculated by a traditional simulator.

 
Figure 10. The remaining oil saturation distribution calculated by the new simulator.

Here, we count the first production of producers since 2017. The statistical results
are shown in Table 3. Column 5 in Table 3 shows the average production for the first
three months. Column 4 in Table 2 shows the average water cut for the first three months.
By comparing the results, it can be seen that the numerical simulation algorithm consid-
ering anisotropic relative permeability is close to reality. Particularly in the C14-31 and
C18-42 wells, when the water cut of these two wells exceeded 98%, though measures
of partition were taken, the production effect was still poor and the water cut remained
high. The reason is that the traditional numerical simulation results show that there is still
some remaining oil in these two wells, but the numerical simulation results considering
anisotropic relative permeability show that the contribution of remaining oil considered
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by the former is actually very small and has been swept in the process of water flooding
(Figures 12 and 13).

 
Figure 11. The average remaining oil saturation distribution (the left one is calculated by a traditional simulator, the right
one is calculated by the new simulator).

Table 3. The first production of deployed production wells since 2017.

Well Name
Production

Date
Permeability

Water Cut
(%)

Average
Production in the

First Three
Months (m3/day)

Average
Remaining Oil
Saturation of
Traditional
Simulator

Average
Remaining Oil
Saturation of

New Simulator

C18-3 May 2017 378 53 17.56 0.50 0.49
C19-4 June 2017 523 64.5 13.74 0.59 0.60
C12-1 September 2017 505 48.6 20.53 0.47 0.52

C18-42 April 2018 296 70.4 9.72 0.51 0.37
C16-5 August 2018 448 12.3 22.00 0.57 0.61

C14-31 November 2018 627 63.1 14.70 0.54 0.44
C12.42 April 2019 464 56.7 16.50 0.50 0.47
C13-2 July 2019 838 66.2 13.30 0.44 0.39

 

Figure 12. Cross section of remaining oil saturation of well C14-31 (the upper left one and the lower
left one are the remaining oil profiles calculated by the numerical simulation method considering
anisotropic relative permeability, and the upper right one and lower right one are the results of a
traditional simulation).
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Figure 13. Cross section of remaining oil saturation of well C18-42 (the upper left one and the lower
left one are the remaining oil profiles calculated by the numerical simulation method considering
anisotropic relative permeability, and the upper right one and lower right one are the results of a
traditional simulation).

The coincidence rate between the remaining oil saturation calculated by the traditional
relative permeability and the initial production of the oil well is 62.5%, and the coincidence
rate between the remaining oil saturation calculated by the anisotropic relative permeability
and the initial production of the oil well is 87.5%, which is 25% higher (Table 3). Obviously,
the remaining oil saturation calculated by anisotropic relative permeability shows better
agreement with the actual situation and can describe the oil–water movement law more
accurately.

We compared the change in water cut in the Cheng 4 South well area during the pro-
duction process. Compared with the water cut calculated by the traditional numerical sim-
ulation method, the historical water cut shows a better agreement with that obtained by the
numerical simulation algorithm considering anisotropic relative permeability (Figure 14).

Figure 14. Water cut change with traditional relative permeability and anisotropic relative perme-
ability in the production process of the Cheng 4 South well area.
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5. Conclusions

In this paper, the anisotropic relative permeability of typical fluvial sandstone is
studied using a self-developed anisotropic cubic core holder by unsteady-states relative
permeability experiments. A new numerical simulator considering anisotropic relative
permeability is established. The effect of anisotropic relative permeability in the flooding
process is analyzed by the new simulator. An actual fluvial facies reservoir of Shengli
Oilfield in China is selected as an example to validate the new simulator.

(1) In a heterogeneous rock with millimeter to centimeter scale laminae, relative perme-
ability has directional characteristics. The greater the angle between the displacement
direction and the bedding strike, the lower the residual oil saturation is, the higher
the displacement efficiency is, and the relative permeability curve tends towards a
rightward shift.

(2) Under the condition of anisotropic relative permeability, the pressure propagates
more easily in the direction of higher relative permeability, and the fluid saturation
changes more in the corresponding direction. The water free oil production period is
longer than the calculation results of traditional numerical simulation.

(3) The new simulator shows excellent agreement with the actual oil field data. The
coincidence rate between the remaining oil saturation calculated by the new simulator
and the initial production of the oil well is 87.5%, which is 25% higher than that of a
traditional simulator.

(4) Our work should provide important insights into the importance of anisotropic
relative permeability and the application of numerical simulations in actual oil field
production predictions.
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Nomenclature

μw water vicosity
vw injection velocity
ρo oil density
ρw water density
fw water cut
λw water mobility
λo oil mobility
A cross-sectional area
qt total volume flow of oil phase and water phase
kro oil relative permeability
krw water relative permeability
γo oil unit weight
γw water unit weight
K absolute permeability tensor
μo oil viscosity
Po oil phase pressure
Pw water phase pressure
D depth
ϕ porosity
Δxi x-direction grid length
Δyi y-direction grid length
Δzi z-direction grid length
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So oil phase saturation
Sw water phase saturation
Vijk volume of the bulk
Krlanisotropic anisotropic relative permeability tensor

Appendix A. The Oil Governing Equations

Oil phase:

∇ ·
[ kkroanisotropicρo

μo
(∇po − γo∇D)

]
− qo =

∂

∂t
(ρoφSo) (A1)

Water phase:

∇ ·
[ kkrwanisotropicρw

μw
(∇pw − γw∇D)

]
− qw =

∂

∂t
(ρwφSw) (A2)

where: γo = ρog; γw = ρwg, Kroanisotropic is the oil phase relative permeability, K is the
absolute permeability tensor, μo, po, and γo are the viscosity, pressure, and specific gravity
of the oil phase, respectively, Krwanisotropic is the water phase relative permeability, μw, pw,
and γw are the viscosity, pressure, and specific gravity of the water phase, respectively, D
is the depth, and φ is the porosity.

The results of the experiments in this paper showed that the relative permeability of
oil and water is affected by the anisotropy of pore structure. In this paper, the krlanisotropic in
the above formula is written into three relative permeability expressions that vary with
different directions when dealing with the anisotropic relative permeability, namely krox,
kroy, and kroz. After the replacement here, the traditional isotropic relative permeability is
replaced by the anisotropic relative permeability.

Taking the oil phase as an example, the governing equation is expanded initially into
a rectangular coordinate component as follows.

∂
∂x [

ρo ·k
μo
· krox(

∂po
∂x − γo

∂D
∂x )] +

∂
∂y [

ρo ·k
μo
· kroy(

∂po
∂y − γo

∂D
∂y )]

+ ∂
∂z [

ρo ·k
μo
· kroz(

∂po
∂z − γo

∂D
∂z )] + qo =

∂(φρoSo)
∂t

(A3)

For (i,j,k,n + 1) point, the subscript in the following expression is in an abbreviated
form:

ρo ·k·krox
Δxi ·μo

[(
pn+1

i+1 −pn+1
i

Δx
i+ 1

2

− γoi+ 1
2

Di+1−Di
Δx

i+ 1
2

) + (
pn+1

i−1 −pn+1
i

Δx
i− 1

2

− γoi− 1
2

Di−1−Di
Δx

i− 1
2

)]

+
ρo ·k·kroy
Δyj ·μo

[(
pn+1

j+1 −pn+1
j

Δy
j+ 1

2

− γoj+ 1
2

Dj+1−Dj
Δy

j+ 1
2

) + (
pn+1

j−1 −pn+1
j

Δx
j− 1

2

− γoj− 1
2

Dj−1−Dj
Δx

j− 1
2

)]

+ ρo ·k·kroz
Δzk ·μo

[(
pn+1

k+1−pn+1
k

Δz
k+ 1

2

− γok+ 1
2

Dk+1−Dk
Δz

k+ 1
2

) + (
pn+1

k−1−pn+1
k

Δz
k− 1

2

− γok− 1
2

Dk−1−Dk
Δz

k− 1
2

)]

+qn+1
o = 1

Δt [(φρoSo)
n+1 − (φρoSo)

n]

(A4)

Multiply both sides by Vijk = ΔxiΔyjΔzk and define the following conductivity:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

TXoianisotropic+ 1
2
=

Vijk
Δxi

ρo ·k
μo ·krox

Δx
i+ 1

2

=
ΔyjΔzk
Δx

i+ 1
2

ρo ·k
μo
· krox, TXoianisotropic− 1

2
=

Vijk
Δxi

ρo ·k
μo ·krox

Δx
i− 1

2

=
ΔyjΔzk
Δx

i− 1
2

ρo ·k
μo
· krox

TYojanisotropic+ 1
2
=

Vijk
Δyj

ρo ·k
μo ·kroy

Δy
j+ 1

2

= ΔxiΔzk
Δy

j+ 1
2

ρo ·k
μo
· kroy, TYojanisotropic− 1

2
=

Vijk
Δyj

ρo ·k
μo ·kroy

Δy
j− 1

2

= ΔxiΔzk
Δy

j− 1
2

ρo ·k
μo
· kroy

TZokanisotropic+ 1
2
=

Vijk
Δzk

ρo ·k
μo ·kroz

Δz
k+ 1

2

=
ΔxiΔyj
Δz

k+ 1
2

ρo ·k
μo
· kroz, TZokanisotropic− 1

2
=

Vijk
Δzk

ρo ·k
μo ·kroz

Δz
i− 1

2

=
ΔxiΔyj
Δz

i− 1
2

ρo ·k
μo
· kroz

(A5)

The second-order difference operator is defined as follows:
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⎧⎪⎨⎪⎩
ΔxTXoanisotropicΔxP = TXoianisotropic+ 1

2
(pi+1 − pi) + TXoianisotropic− 1

2
(pi−1 − pi)

ΔyTYoanisotropicΔyP = TYojanisotropic+ 1
2
(pj+1 − pj) + TYojanisotropic− 1

2
(pj−1 − pj)

ΔzTZoanisotropicΔzP = TZokanisotropic+ 1
2
(pk+1 − pk) + TZokanisotropic− 1

2
(pk−1 − pk)

(A6)

The oil phase governing equation is discretized as a sample in this section, which is
shown as follows:

ΔxTXoanisotropicΔxPn+1 + ΔyTYoanisotropicΔyPn+1 + ΔzTZoanisotropicΔzPn+1 − ΔxTXoanisotropicγogΔxD

−ΔyTYoanisotropicγogΔyD− ΔzTZoanisotropicγogΔzD + qn+1
o Vijk =

Vijk
Δt [(φρoSo)

n+1 − (φρoSo)
n]

(A7)

Then, the formula above can be further simplified as follows:

ΔToanisotropic ΔPn+1 − ΔToanisotropic
ΔD + qn+1

o Vijk =
Vijk

Δt
[(φρoSo)

n+1 − (φρoSo)
n] (A8)

The governing equation of the water phase is expressed with the same format. So far,
the anisotropic relative permeability is introduced into the traditional numerical simulation
method by dealing with the relative permeability in the traditional oil and water phase
governing equation.
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Abstract: The rising adoption of renewable energy sources means we must turn our eyes to limitations
in traditional energy systems. Intermittency, if left unaddressed, may lead to several power-quality
and energy-efficiency issues. The objective of this work is to develop a working tool to support
photovoltaic energy forecast models for real-time operation applications. The current paradigm of
intra-hour solar-power forecasting is to use image-based approaches to predict the state of cloud
composition for short time horizons. Since the objective of intra-minute forecasting is to address
high-frequency intermittency, data must provide information on and surrounding these events. For
that purpose, acquisition by exception was chosen as the guiding principle. The system performs
power measurements at 1 Hz frequency, and whenever it detects variations over a certain threshold,
it saves the data 10 s before and 4 s after the detection point. A multilayer perceptron neural network
was used to determine its relevance to the forecasting problem. With a thorough selection of attributes
and network structures, the results show very low error with R2 greater than 0.93 for both input
variables tested with a time horizon of 60 s. In conclusion, the data provided by the acquisition
system yielded relevant information for forecasts up to 60 s ahead.

Keywords: solar energy; neural networks; sky-camera; forecasting; renewable energy; energy quality;
multilayer perceptron; computer vision; short-term forecasting; metrology

1. Introduction

In the past few decades, the world has experienced considerable growth in envi-
ronmental awareness, especially regarding climate changes. This rise, allied with an
ever-increasing population and limitations to fossil fuels, stimulates the development of
Renewable Energy Systems (RES). To reduce greenhouse gas emissions, energy matrices
must be composed of more low-carbon sources as opposed to the current fossil-reliant
paradigm. Solar photovoltaic (PV) and wind are the future of energy systems if the world
is to meet the goals set by the Paris Agreement [1,2].

In addition to the climate-specific Paris Agreement, the 2030 Agenda for Sustainable
Development [3] proposes 17 general sustainable development goals with 169 associated
global targets. Of these goals, the access to affordable and reliable renewable energy sources
is directly aligned with three goals: 7—to ensure access to affordable, reliable, sustain-
able and modern energy for all; 9—to build resilient infrastructure, promote inclusive
and sustainable industrialization and foster innovation; and 12—to ensure sustainable
consumption and production patterns.

However, each of the mentioned energy sources has its own limitations, such as
geographical location and unreliability, mostly regarding weather. In the case of solar
energy, particularly PV energy conversion to produce electricity, it possesses high variability
from various sources (e.g., weather, Earth’s rotation and translation movements).

Solar energy’s inherent intermittency creates several economical, technical and po-
litical barriers against larger penetration [4–6]. Most of the variability components are
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deterministic in nature, meaning that they can be easily forecasted and addressed, provided
that it is technically possible to do so.

One of the most detrimental variability components is the presence of clouds, which
filter the solar radiation and decrease the amount of energy available for photovoltaic
conversion. Particularly on days with partial cloudiness and fast-moving clouds, the
insolation variation in one solar plant output can reach well over 50% in one minute [7,8].
These fast variations in such a short time may cause technical problems in plant and grid
operation, such as voltage variations and current harmonics [5,6,9–11]. To address these
variations, it is necessary to forecast them. In the work reported in Reference [8], the need
for power system operators to be able to address generation and load profiles over short
time-scales was stressed due to the stochastic variations caused by fast cloud transients.
Numerous methods for short-term insolation or power forecasting exist; however, for plant
and grid operation, conventional statistic forecasting methods based on time series are not
well suited [12]. The most widely used physical methods for short-term predictions are
sky-image based [13].

Tropical countries, in general, boast higher solar photovoltaic potential in comparison
with temperate regions, and, in contrast, these countries also possess lower development
indexes. That leads to increased difficulty in acquiring specific equipment for conducting
research in solar modeling and forecasting, even more so if such equipment is necessary
for implementing mitigation strategies. Figure 1 shows the discrepancy in solar resource
availability and, in contrast, its utilization. The red scale represents daily average global
tilted irradiance (GTI) [14], and the yellow sun symbols represent the installed capacity
normalized by a country’s area. In some areas, such as Europe and Central America, only
the most important solar generators were kept on the map for clearer data representation.

 

0–0.00006 W/km2 

0.00006–0.00029 W/km2 

0.00029–0.00179 W/km2 

0.00179–0.01052 W/km2 
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Figure 1. Daily GTI and installed capacity per country [15,16].

The first discrepancy between solar potential and utilization is clearly between African
and European countries. Despite having two to three times more average daily global tilted
irradiance, most African countries have a couple orders of magnitude less PV installed
capacity. Another interesting comparison can be made between Mexico and the United
States, because, despite being in the same continent, both have very different development
levels, and that is more correlated to the installed capacity than solar resource availability.
A similar comparison can be made between Brazil and Uruguay, Morocco and South
Africa, and Spain and the United Kingdom. This makes clear the necessity for lower cost
equipment, because, by reducing cost barriers, these countries can look to solar energy
infrastructure to support their industrial development. Addressing these discrepancies has
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been recognized as an important step in achieving the sustainable development goals set
for 2030 [3,17].

Aside from the solar resource availability, forecasting is essential to energy generation
and distribution. As mentioned in Reference [8], system operators need better information
about the stochastic behavior of cloud-induced variability, to increase reliability. Several
time horizons and resolutions are necessary to meet the demands of each specific aspect in
PV energy management. The focus of this work is on very short-term forecasting to bolster
PV plant operation capabilities, reliability, grid integration and grid operation in a scenario
of high penetration.

In Reference [12], different irradiance forecasting methods are explored with the
objective of proposing a small-scale insular grid forecasting system. Small isolated grids
have less system inertia, therefore are more susceptible to the negative effects of RES,
especially those caused by PV systems. Each different model available has its advantages
and disadvantages and, for a holistic forecasting system, different models should be used
in parallel.

Persistence and image-based models fit well, for short-term forecasts, in terms of hori-
zon, frequency and spatial resolution. Other statistical models, as named in Reference [12],
also encompass various regression models and learning algorithms, such as artificial neural
networks (ANN).

In recent years there has been a rise in research work on sky-image based PV or
insolation forecasting [18,19]. Sky-image models keep improving the reliability of very
short-term forecasting, as shown in Reference [13]. This tendency points towards the
superiority of using sky-images over what Diagne et al. [12] refer to as statistical models. In
the study conducted by Kow et al. [20] it becomes apparent just how powerful sky-image
based forecasting can be, achieving a detection rate of over 90% of power fluctuation events
and mitigation of almost 80% of power fluctuation events with minimal energy loss.

While being a powerful tool, forecasting alone cannot solve the issues caused by
high-frequency variability. However, coupled with other systems, such as energy storage
systems and power electronics, especially in progressively smarter grids, forecasting can
be a valuable aid in increasing PV penetration [9–11,21–24]. The results presented by
Kow et al. [20] depict the beneficial effect that short-term forecasting can have on the
operation of PV plants.

As some authors have shown, even lower-cost equipment can yield trustworthy
results when comprehensively developed and tested [25]. This serves as encouragement
for research institutions in developing and less-developed countries to work on their own
equipment to provide their scientific and industrial needs.

Looking at the case for Brazil, which meets the criteria for solar resource abundance
and developing economy, increasing accessibility to research equipment aligns with the
country’s goals set for the UN sustainable development goals prioritized for its 2030
agenda. Oliveira et al. [26] point out that Brazilian relay targets, highly influential as well
as dependent within the agenda, can be directly impacted by increased affordability in
solar power research. Goals such as resource efficiency, upgraded infrastructure, education
and institutional capacity on climate change, and renewable energy depend on other goals,
but also impact several others.

Reduction of costs associated with determinant goals such as research and develop-
ment, innovation and economic growth have a high potential of impacting the relay goals
previously mentioned [26]. More specifically, the affordability of newer renewable energy
technology and their development align with the following targets: 7.1—“ensure universal
access to affordable, reliable and modern energy services”; 7.2—“increase substantially
the share of renewable energy in the global energy mix”; 7.3—“double the global rate of
improvement in energy efficiency”; 7.b—“expand infrastructure and upgrade technology
for supplying modern and sustainable energy services for all in developing countries,
in particular least developed countries, small islands developing States and landlocked
developing countries [ . . . ]”; 9.1—“develop quality, reliable, sustainable and resilient
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infrastructure, including regional and transborder infrastructure, to support economic de-
velopment and human well-being, with a focus on affordable and equitable access for all”;
9.2—“promote inclusive and sustainable industrialization [ . . . ]”; 9.5—enhance scientific
research, upgrade the technological capabilities of industrial sectors in all countries in
particular developing countries [ . . . ]”; 12.2—“achieve the sustainable management and
efficient use of natural resources”; and 12.a—“support developing countries to strengthen
their scientific and technological capacity to move towards more sustainable patterns of
consumption and production”.

With these possible impacts in mind, the objective of this work is to present and
validate a low-cost system for monitoring and modeling short-term variability developed
during a Master’s course [27].

2. Short-Term Forecasting

As stated in the previous section, accurate very short-term forecasting is the first step
in adding reliability to PV plant operation. The first step in forecasting is to build a model
that describes the behavior of the studied phenomenon. To that end, many different models
can describe or learn the behavior of PV conversion, some more accurately than others.
Table 1 presents the terminology regarding forecasting horizons and their applications,
based on the concepts used in References [12,28].

Table 1. Forecast horizon categories, granularity and applications.

Category Time Horizon Resolution Applicability

Very short-term Up to 15 min ahead Up to 1 min
Plant operation
Ramping events
Power quality control

Short-term 15 min to 1 h ahead 1 to 5 min
Load following
Grid operation
planning

Medium-term 1 h to 6 h Hourly
Load following
Grid operation
planning

Long-term One day ahead Hourly

Unit commitment
Transmission
scheduling
Day ahead markets

Within the statistical category mentioned in Reference [12], persistence models are the
best fit for the spatial and temporal requirements of very short-term forecasting for a single
PV plant. However, it is a naïve predictor, serving as a baseline for more complex models.
It assumes the predicted value X̂t+1 to be best described by its value at a previous time
Xt. In this case, the modeling and prediction are one and the same; it does not take into
consideration the several variables that affect the behavior of real-world PV panels, and
that is why it is considered a trivial predictor.

Still, within linear models, the regression models addressed by Diagne et al. [12]
use historical data either from irradiance or clear-sky index to make predictions. While
better than the previous, naïve predictors in terms of fidelity to the real world, it is still
unable to provide forecasts in the required time horizon and resolution. These models,
however, fare well from 15 min to hourly forecasts [29]. In the 5 min resolution, results
were mixed among the models tested by Reikard [29], but the autoregressive integrated
moving average (ARIMA) model started to be outperformed, especially by neural networks.
The author also pointed that the ARIMA model exhibited large errors at intermittent
intervals, corresponding to the fast cloud transients that deeply impact PV reliability. These
intermittent large errors are the events successfully predicted in the work by Kow et al. [20].
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Switching over to the non-linear models addressed by Diagne et al. [12], neural-
network models attempt to simulate the computational and learning process of the human
brain [30]. The complexity, nonlinearity and parallel computational power excel in pat-
tern recognition and perception. The networks are composed of simple processing units
commonly referred to as neurons. The network can acquire “knowledge” through a learn-
ing process that acts in the interconnection of the neurons, just as synapses would in a
biological brain [30].

Neural networks, in their many architectures and sizes, are able to learn from data, in
both supervised and non-supervised processes, and apply this knowledge to new data [30].
They are well suited to model complex problems, especially when involving complex
relationships between the variables [30], such as forecasting energy conversion dependent
on cloud passage, location, time and meteorological variables [31,32].

As mentioned previously, neural networks start faring better against other forecast
methods at higher temporal resolution [29]; however, by looking at other studies into the
subject, there appears to be a time-resolution limitation in these machine-learning methods
for short-term forecasts. Even in the most recent state of the art works with intra-hour
forecasting, using time series prediction of irradiance or other atmospheric parameters, the
minimum resolution is still 5 min [33,34], which still falls short of the necessary frequency
to properly characterize the local solar variability [35]. Still, within the 5 min time horizon,
sky images can be used to boost forecasting accuracy when coupled with machine learning
models and historic irradiance or power data [36].

The conclusion that can be drawn from the consistent number of time-series models
limited to the 5-min time horizon is that the fault is in the type of data used to charac-
terize the relationships involved in the high variability of solar irradiance. As explained
before, these models aim to predict the future state of a certain aspect of solar variabil-
ity. The approaches using cloud tracking in sky images, as proposed by Chow et al. [37]
and Kow et al. [20], add components of physical and geometrical modeling of cloud sys-
tems. Since the main actor in short-term variability is related to passing clouds, relevant
information on their dynamic provides a more comprehensive characterization [38].

The trend in researching sky-based approaches to very short-term solar forecasting
began with the work by Chow et al. [37], despite not being the first to approach the
subject [38]. The goal behind it is to use physical information from cloud systems, extracted
from sky images captured by hemispheric cameras.

Initially, researchers used already existing sky imagers developed for meteorolog-
ical purposes other than estimating solar quantities [38]. In more recent years, other
lower-cost alternatives have been developed for the specific purpose of estimating solar
quantities [25,38]. These newer, specific systems are fully programmable and expandable,
leaving room for development and expansion, as well as being suitable for use with a
plethora of different forecasting models [25,39].

Amongst the already mentioned advantages, specifically designed systems have
proven to yield superior results to other non-specific sky imaging systems [25,40,41]. Most
likely this superior performance is due to the higher data-acquisition frequency which
provides better insight into local short-term solar variability [35]. Another significant
difference is that these specific devices do not have a shadow band to occlude the solar disk
and part of the circumsolar region. This fact positively impacts the amount of information
available for intra-minute forecasts.

Throughout the research process that laid the theoretical foundations of this work, sev-
eral key works stood out and greatly influenced the work developed here. Table 2 contains
these important works in chronological order with their objectives, whether it is forecasting
or modeling, and the materials and methods used in the pursuit of these objectives.
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Table 2. Important works that shaped this research.

Work Objective Materials and Methods

Chow et al. (2011) [37] Forecast of GHI from 30 s to
5 min ahead

Sky images obtained from a Total Sky Imager
(TSI) every 30 s;
Clear Sky Library (CSL) + Sunshine Parameter +
Red-Blue Ratio (RBR) cloud classification;
Cloud tracking through cross-correlationGHI
deterministically calculated.

Gohari et al. (2013) [41] Forecast of Clear Sky Index up
to 15 min ahead in 30 s intervals

Comparison between TSI and
UCSD-developed USI;
Sky images every 30 s + irradiance
measurements every second;
Geometric cloud tracking;
Solar ray tracing.

Chu et al. (2013) [42] Forecast of 1-min-average DNI
5 min and 10 min ahead

TSI images every 20 s + DNI every 30 s;
CLS + RBR adaptive threshold
cloud classification;
Cloudiness indices from gridded image + time
lagged DNI as inputs for NN.

Marquez and Coimbra (2013) [43] Forecast of 1-min-average DNI
3 min to 15 min ahead

TSI images every minute + 30 s averaged DNI;
Cloud tracking, using Particle Image Velocimetry
software;
Hybrid threshold algorithm for cloud
pixel classification;
Grid of cloudiness indices used to
deterministically calculate DNI.

Quesada-Ruiz et al. (2014) [44] Forecast of 1-min-average DNI
from 3 to 20 min ahead

TSI images every 20 s + 1 min averaged DNI;
Hybrid threshold algorithm for cloud pixel
classification;
Cloud tracking, using grid cloud fraction change;
DNI estimation, using grid cloud fraction.

West et al. (2014) [45]
Forecast of DNI from 0 to
20 min ahead in 10 s resolution
and updated every 10 s

Sky images from internet protocol (IP) camera +
DNI every 10 s;
Cloud pixel detection, using NN;
Cloud tracking through pixel-wise optical flow;
Image regions averaged and total cloudiness as
feature to be forecasted and derived into DNI.

Chu et al. (2015a) [46] Forecast of 10 min ahead GHI
and DNI

Images from 2 IP sky cameras every 60 s +
irradiance every 30 s;
Adaptive threshold cloud detection;
Gridded cloudiness + time lagged irradiance as
inputs for NN.

Alonso-Montesinos and Battles (2015) [47] Modeling of GHI, DNI and DIF
TSI images every 60 s + GHI + DNI every 60 s;
Correlations of digital image channels to
model irradiance.

Alonso-Montesinos et al. (2015) [48]
Forecast of GHI, DNI and DIF
from 1 to 180 min, at
15 min resolution

TSI images every 60 s;
Cloud tracking, using cloud motion
vectors (CMV);
Pixel-wise cloud detection;Pixel-wise irradiance,
using correlation of digital channel information.

Cazorla et al. (2015) [49] Methodology for cloud
detection

SONA sky imager + GHI + DIF;
Multi-exposure (High Dynamic Range—HDR)
images every 5 min;
Adaptive RBR threshold method for
cloud detection.
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Table 2. Cont.

Work Objective Materials and Methods

Chu et al. (2015) [50]
Forecasting of prediction
interval for 1-min-average DNI
5, 10, 15 and 20 min ahead

USI images provide parameters for
hybrid model;
Hybrid estimation/forecast model based on
bootstrapped-ANN selected by SVM classifier,
using mean RBR, RBR standard deviation and
entropy + time-lagged DNI and DIF
measurements as inputs;
SVM for sky classification and model selection
(high vs. low cloud-derived variability).

Chu et al. (2015b) [51] Forecast of PV power 5, 10 and
15 min ahead

2 TSI providing images every 30 s;
3 methods as inputs for ANN reforecasting
(deterministic based on cloud tracking, ARMA
and kNN);
Preliminary forecast by one of the 3 methods
followed by reforecast, using ANN to enhance
performance;
Genetic algorithm to select ANN inputs; among
several time-lagged power measurements and
preliminary power forecasts for each of
the horizons.

Lipperheide et al. (2015) [52]
Forecast of power ramp events
20 s to 180 s ahead
with 20 s resolution

1 Hz power data from PV panels used in
4 different methods;
Persistence and ramp persistence forecast based
on detection from PV panels within plant;
Cloud speed persistence forecast based on cloud
motion vectors detected by PV panel power
fluctuation;Second-order autoregressive forecast
model based on the modified covariance method.

Pedro and Coimbra (2015) [53] Forecast of GHI and DNI from 5
to 30 min ahead

5-min-averaged irradiance data;
IP camera images every 60 s;
Digital image channel individual information
and relationships’ properties, such as mean,
standard deviation and entropy;
kNN forecast model with images vs. without
images vs. persistence.

Xu et al. (2015) [54] Forecast of GHI from 1 to 15
min ahead

TSI images every 20 s;
Complex cloud detection and tracking;
Pixel-wise classification using RGB values, RBR
and Laplacian of Gaussian (LoG);
Cloud-type classification through texture metrics
and kNN classifier;
Comparison of persistence, linear regression and
Support Vector Regression (SVR) with image
inputs and NWP variables.

Cervantes et al. (2016) [39] Forecast of 5 min ahead DNI
negative ramp events

Low-cost sky-imager;
Cloud detection through RBR;
Cloud tracking with optical flow;
Shadow mapping, using Cloud Base Height
(CBH) data.

Mejia et al. (2016) [55] Cloud optical depth modeling

2 USI providing images every 30 s;
Estimation of irradiance from calibrated
pixel values;
Usage of deterministic models to obtain optical
depth from digital image channels, solar
position, pixel position and clear-sky library.
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Table 2. Cont.

Work Objective Materials and Methods

Rana et al. (2016) [56]
Forecast of PV power from 5 to
60 min ahead, with
5 min resolution

5 min power average + meteorological data;
Univariate (solely power measurements) vs.
multivariate models NN ensemble vs. SVR
vs. persistence.

Sanfilippo et al. (2016) [57]
Forecast of 1-min-average
clearness index from 1 to
15 min ahead

GHI, DNI and DHI measurements every 60 s;
Modeling of solar zenith-independent
clearness index;
SVR, persistence and autoregressive models of
different orders used for forecasting.

Schmidt et al. (2016) [19]

Forecasts of GHI from 15 s to
25 min GHI forecasts in grid
form for the surrounding area,
updated every 15 s with
15 s resolution

Sky images every 15 s from custom imager +
GHI every 1 s from 99 pyranometers + CBH
measurements averaged over 10 min;
Area of study of 10 km × 12 km;
RBR with clear-sky images for cloud
pixel classification;
SVC cloud type classification from several
features;CMV cloud tracking.

Soubdhan et al. (2016) [58] Forecast of PV power and GHI
1, 5, 10, 30 and 60 min ahead

PV power data every 1 s + percentage cloud
cover + ambient temperature + GHI every 1 s;
Persistence and smart persistence baselines;
Forecasting by Kalman filter with initialized
parameters, using expectation-maximization
(EM) algorithm vs. autoregressive
(AR) estimation;
Comparison between with and without
exogenous inputs.

Ai et al. (2017) [59] Forecast of 30-s-average GHI 1,
2, 3 min ahead

Sky images every 30 s from IP camera;
SVM-determined clear-sky model;
Adaptive threshold cloud detection;
Optical flow cloud tracking;
GHI deterministically determined, using cloud
fraction and clear-sky model.

Blanc et al. (2017) [60]
Forecast of 1-min-average DNI
map 15 min ahead with up to 10
m × 10 m spatial resolution

Stereoscopic IP sky cameras providing images
every 30 s;
CBH estimation from stereography;
Cloud-layer CMV for each class of altitude;
Estimation of projection-pixel-wise DNI, using
beam clear-sky indexes computed per class of
cloud combined with physical and
geometrical information.

Cheng (2017) [61]
Detection of irradiance ramp
down events 5, 10, 15 and
20 min ahead

Sky images every 60 s from Santa Barbara;
Instrument Group + 1 min averaged GHI;
Cloud detection and tracking through feature
point clusters.

Elsinga and Van Sark (2017) [62]
Forecasts of 1 min average GHI
from 1 to 30 min ahead for
multiple sites

202 rooftop PV systems acting as a sensor
grid;PV power data averaged every 1 min from
inverter data every 2 s and then converted
into GHI;
Hourly interpolated ambient temperature
deterministically calculated;
GHI converted into clearness index
Peer-to-Peer (P2P) forecasting method, using
correlations between the rooftop PV systems to
determine time lag between correlated sites.
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Table 2. Cont.

Work Objective Materials and Methods

Ni et al. (2017) [63] Forecast of power interval
5 min ahead

Ensemble of single-layer feed-forward NN
(weights assigned, using a least-squares method
in 1 step);
Data from 3 kW micro-grid with 3 PV systems +
photosynthetically active radiation + ambient
temperature + relative humidity + wind speed +
wind direction + GHI and precipitation (all
averaged over 5 min).

Richardson et al. (2017) [25] Forecast of GHI 10 and
15 min ahead

Images from a PiCamera;
Cloud detection, using RBR;
Optical flow cloud tracking;
Ray tracing for GHI forecast, using a fixed ramp
rate and clear sky GHI.

Kow et al. (2018) [20] Forecast of PV power 30 s ahead
coupled with mitigation system

GHI every 1 s + ambient temperature every 1 s
and PV system modeled power;
Self-organizing incremental neural network
(M-SOINN) with active learning for
forecasting power;
Non-supervised method capable of forecasting
power output of PV system 30 s ahead.

Kuhn et al. (2018) [64] Forecast of 1-min-average GHI
from 0 to 15 min ahead

Cloud segmentation, detection and
georeferencing, using 4 sky cameras
(WobaS-4cam) and 4-dimensional CSL;
Irradiance maps validated with ground
irradiance sensors and shadow camera;
GHI and DNI obtained from geo-located shadow
map and radiometer measurements at previous
time steps.

Bouzgou and Gueymard (2019) [65] Forecast of GHI from 5 min to
3 h ahead

Mutual information feature selection from time
series of recent GHI;
Extreme learning machine (ELM) for
investigating the relationship between the
historical variables and the future value, and also
for determining the best combination
of variables.

Kumler et al. (2019) [33] Forecast of GHI 5, 15, 30 and
60 min ahead

Cloud albedo and fraction modeling based
on GHI;
Cloud optical thickness
deterministically calculated;
Forecast based on 5 min exponential weighed
moving average of cloud fraction, used to
determine albedo and GHI.

As seen in Reference [35], data resolutions of 30 s or less are essential for representing
local solar variability. Moreover, most of the works presented in Table 2 do not meet
this time resolution constraint, and those that do, possess higher cost systems often with
multiple cameras and other sensors. As stated in Section 1, this limits the conduction
of higher-resolution studies in less-developed countries, due to this fact, the goals of
this work were to try and achieve high-resolution data acquisition and modeling, using
low-cost equipment.

3. Materials and Methods

This section presents the hardware and methodology used for data collection, as well
as the methods used for data analysis.
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3.1. Data-Acquisition System

Image-based cloud tracking has become very popular for high-frequency photovoltaic
modeling and short-term forecasting [13,37,45,54,66,67]. Cameras have massive variations
of price depending on purpose, sensitivity, sturdiness, resolution and other various char-
acteristics. The three main constraints for the camera used in this work were 180-degrees
field of view to acquire total-sky images, enough resolution to provide all the information
required for modeling the sky and the ability to be controlled by a low-cost embedded
system. The system uses an ELP-USBFHD01M-L180 camera, which has a CMOS OV2710
sensor able to provide images with 1920 pixels by 1080 pixels resolution and is controlled
directly via USB cable.

A 20 cm by 15 cm, 6 W solar panel was added to the data-acquisition system to
provide a solar quantity to develop the image-based model. Power calculations were
derived from voltage and current measurements provided by an Adafruit INA219 DC
sensor. Another source of data was the panel temperature, provided by a Maxim Integrated
DS18B20 temperature sensor attached to the back of the panel. Tying the system together, a
Raspberry Pi 3B+ controls the camera and both sensors, synchronizing the data acquisition.
Single board computers are ideal for this application due to their price, high tolerance to
temperature variations and enough computing power for data acquisition in this scale.

In total, this equipment costs under US$ 100.00, if compared with more traditional sky
imagers, such as the Yankee TSI 880, which costs thousands of US dollars, or even some
of the lower-cost equipment developed by some research institutions, using IP cameras
that can reach hundreds of US dollars [25]. A sky imager expected to be used as part of
control strategies for PV plant operation must be low in cost to be commercially attractive
for investors.

A 3-dimensional rendering of the equipment is shown in Figure 2.

Figure 2. Three-dimensional model of the data-acquisition system.

The image acquisition software was developed using Python 3 with OpenCV 4 in
conjunction the “pi_ina219” [68] and “w1thermsensor” [69] libraries for accessing the
power and temperature sensors with Python.

To be able to generate power, the PV panel must be in a closed circuit with a load
component. The initial goal was to use a ceramic resistor; however, during the testing
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process, when higher currents were applied to the resistor, it started to overheat, so a
dichroic light bulb was used instead.

The thermometer was placed under the PV panel enclosed by the fins from an alu-
minum heat exchanger pad with the flat part attached to the bottom of the panel. It was
then covered by thick dense foam to act as a heat insulator between the thermometer and
the environment. Both thermometer and heat exchange pad were assumed to possess
higher heat-transfer coefficients than the panel and both have significantly less mass, mean-
ing that they have lower thermal inertia. This causes the thermometer to quickly follow
changes in panel temperature, which is a key variable in PV conversion efficiency [70].

As for the INA 219 sensor, it measures both circuit voltage and determines current by
measuring voltage across a 0.1 Ω shunt resistor. It is capable of measuring voltages up to
26 V and currents up to 3.2 A at a maximum ADC resolution of 12 bit. Both sensors have
well developed Python libraries for use with the Raspberry Pi, which will be presented in
the next section, along with all the software components used by the DAS.

Both sensors are supplied by 3.3 V DC provided by the Raspberry Pi’s 3V3 pin. The
INA 219 communicates, via I2C protocol, with the Pi through the SDA and SCL pins, located
on the GPIO2 and GPIO3 pins respectively. Voltage and current are measured between
the V+ connector and ground. The current enters the INA 219 through the V+ connector,
passes through the internal measurement circuit and exits through the V- connector, then
through the dichroic light bulb.

The DS18B20 uses the 1-Wire communication protocol through GPIO4 pin. It requires
a pull-up resistor of 10 kΩ to stabilize the signal when not communicating with the Pi.
Figure 3 presents the measurement circuit schematics for temperature, voltage and current
measurements. The green lines indicate connected terminals, and the camera was not
included in this schematic because it uses a simple USB connection.

Figure 3. Measurement circuit schematic.

3.2. Acquisition Strategy

Due to the extremely high frequency of variations caused by cloud transients on PV
power systems, the acquisition frequency must be high enough to provide information
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on such variations [7,8,35]. An acquisition frequency of 1 Hz was chosen since it has been
shown to provide important information on very short-term solar variability [35]. This
approach is important to provide information surrounding fast ramp events; however,
it generates so much data not pertaining to such events that it may hinder their study,
especially when such a high volume of images must be analyzed.

To focus on the ramp events, the approach used is called acquisition by exception [71].
It consists of monitoring one or more variables of interest and only saving data when
an event of interest is detected. In this case, whenever the power measurement would
vary beyond a certain threshold, the system would save data pertaining to this event. In
practice, the acquisition software continuously acquired data during the daytime at 1 Hz
and temporarily stored this information using a queue structure (first in, first out). This
queue had a maximum of 10 elements at a given time, and for every iteration where no
variation event was detected, the oldest entry was deleted, making room for a new set
of measurements. Each element was measured 1 s apart and was comprised of one sky
image, one voltage and one current measurement as well as the calculated power from the
PV panel.

In order to detect a variation event a moving average of the previous 3 power values—
at t−3s, t−2s and t−1s—are calculated and compared with the most recent value, t0. If there
is a variation greater than a certain threshold, either up or down, the program enters the
data-saving routine. It keeps acquiring data for 4 more seconds—t+1s . . . t+4s—and then
it saves these 15 s worth of data, as well as one temperature measurement representative
of this period. This structure of 15 s of measurements is henceforth referred to as an
“event”. After recording an event, the system goes back into listening mode to detect other
variation events.

The reason behind using only one temperature measurement is that, if the system
were to include temperature measurements every time step, each iteration would take
longer than 1 s, making it impossible to reach the desired 1 Hz acquisition frequency.
Upon testing, this did not impact the quality of the data generated, due to the thermal
inertia from the panel. Significant changes in panel temperature came at much lower
frequencies than 1 Hz. The variation threshold was determined through experimentation
and manual analysis of the quantities of interest. Using this strategy, it was possible to
acquire data surrounding such ramp events, with images and power measurements taken
10 s before and 4 s after, totaling 15 s of data points per event. In the case of temperature,
only one measurement was taken per detected event due to the sampling time from the
sensor. Figure 4 presents a flowchart of the decision process and data flow from the
data-acquisition system (DAS) software.

3.3. Measured Data

In the end of the data-collection phase, 500 event structures were recorded. Each event
instance has 15 s worth of data saved into files: 15 JPG files containing the captured images
and one text file containing the rest of the measured data. The text file is structured so
every second of the event is one line (separated by a newline character “\n”), and the
measured quantities are separated by commas. Table 3 shows an example of the numeric
data measured during one event.
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Figure 4. Flowchart of decision process and data flow within DAS software.

The first column contains the time stamps from each measurement point in the event.
Each component is separated by an underscore, following the “hh_mm_ss_YYYY_MM_DD”
format. The last component is a Boolean value, indicating whether daylight savings time is
in effect. This is in local time and is used to determine the solar position angles.

Next are temperature measurements taken once per event, if, as with this example,
there is more than one value in one event, it is because events were detected close to one
another and some of the time stamps intersect. The negative values were used to represent
“no data”, and those were replaced by linear interpolations for the data-modeling phase.
The last three values are the measured voltage, current and power, respectively. One such
file was generated per detected event. As for the captured images, Figure 5 shows two
examples of raw images, one from the beginning of the event and the second from the end.
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Table 3. Example of numeric data pertaining to one event structure.

Time Stamp Temperature (◦C) Voltage (V) Current (A) Power (W)

12_27_34_2019_03_17_0 48.0 0.241 0.614 0.148

12_27_33_2019_03_17_0 −1000 0.246 0.626 0.154

12_27_32_2019_03_17_0 −1000 0.251 0.632 0.158

12_27_31_2019_03_17_0 −1000 0.247 0.633 0.156

12_27_30_2019_03_17_0 −1000 0.246 0.629 0.155

12_27_29_2019_03_17_0 −1000 0.242 0.621 0.150

12_27_28_2019_03_17_0 −1000 0.236 0.609 0.144

12_27_27_2019_03_17_0 −1000 0.232 0.601 0.139

12_27_26_2019_03_17_0 −1000 0.227 0.595 0.135

12_27_25_2019_03_17_0 −1000 0.226 0.589 0.133

12_27_24_2019_03_17_0 48.0 0.222 0.584 0.130

12_27_23_2019_03_17_0 −1000 0.222 0.581 0.129

12_27_22_2019_03_17_0 −1000 0.217 0.576 0.125

12_27_21_2019_03_17_0 −1000 0.216 0.569 0.123

12_27_20_2019_03_17_0 −1000 0.212 0.561 0.119

  
(a) (b) 

Figure 5. Raw image examples from the beginning of an event (a) and from the end (b).

3.4. Visual Analysis

The first step in analyzing the obtained data was by performing image subtraction to
visually assess how much change occurred between different time points. This approach
showed no information close to the solar disk because of image saturation, and a neutral
density filter was used to try and reduce the saturation problem. This did reduce the satu-
rated area, but there was still no visible information regarding the ramp events. Figure 6
shows the result of the image subtraction with the saturated region highlighted.

In the case of image subtraction, since both images had a similar saturated region, the
result after subtraction are black regions in the image. On Figure 6 the rightmost image has
a smaller saturated region due to the use of the neutral density filter. Since a visual analysis
was not sufficient to determine whether the data obtained were useable for modeling
purposes, the next step was to perform a linear correlation analysis from image features
and power data.
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Figure 6. Image subtraction examples with the solar region highlighted. (a) Before installing the neutral density filter and
(b) after installation.

3.5. Correlation Analysis

This goal in this step was not only to determine if there was a linear correlation
between image features and the power ramp events, but to determine at which time
intervals they were higher. Because of the detection-per-ramp event, the data are not
contiguous in their entirety; however, during several periods, the variations occurred close
enough for the data to overlap and create an almost continuous set of data points.

To unbiasedly determine which time interval would be more adequate for modeling
the ramp events, several different values were analyzed. The power variation between
points was calculated for each possible pair of data points that fits in the different intervals.
Due to the disconnection between the data points, as the intervals grew larger, less points
fit in a certain interval, so the maximum interval used was 90 s. The corresponding
variable for the correlation analysis is obtained directly from the image. It was obtained by
subtracting the corresponding images from each two data points used for calculating the
power difference. After subtraction of each digital channel (RGB), the energy (image energy
is calculated by summating the individual pixel values in an image or ROI) was calculated
for a circular Region of Interest (ROI) around the sun. Different ROI radii (distance in pixels)
were used to take into consideration cloud movement (speed) in a given interval (time).

Aside from the power difference and subtracted image energy, the instant power
measurements and temperature measurement were also analyzed. In total, 84 combinations
of time intervals Δt = {1; 2; 5; 8; 10; 15; 20; 30; 45; 60; 75; 90} and ROI radii r = {25; 50; 75;
100; 150; 200; 250} were analyzed in this step. To be able to present the results in a concise
form, each combination of interval and radius was assigned an index that will be used to
identify them throughout this work. Table 4 contains the keys to identify the combinations
from their respective indexes.
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Table 4. Indexes used to identify the combinations of Δt and ROI radius.

ROI Radius (pixels)
Δt (s)

1 2 5 8 10 15 20 30 45 60 75 90

25 1 8 15 22 29 36 43 50 57 64 71 78

50 2 9 16 23 30 37 44 51 58 65 72 79

75 3 10 17 24 31 38 45 52 59 66 73 80

100 4 11 18 25 32 39 46 53 60 67 74 81

150 5 12 19 26 33 40 47 54 61 68 75 82

200 6 13 20 27 34 41 48 55 62 69 76 83

250 7 14 21 28 35 42 49 56 63 70 77 84

Correlation coefficients were calculated for each combination of the target variables
(power at t0, P0; and power difference between t0 and t0−Δt: ΔP) and the aforementioned
variables (power at t0−Δt, P−1; temperature at t0, T0; and ROI energy differences between
t0 and t0−Δt). Correlation coefficients are used to measure linear proportionality between
data pairs, which will show if a linear regression model would suffice for this problem.

3.6. Neural Network Modeling

To validate the obtained data, first a baseline regression performance was defined by
performing multivariate linear regression to model P0 and ΔP as a function of P−1, T0 and
the image attribute of the blue channel, previously introduced. Only one color channel
was used to prevent a collinearity issue from adversely affecting the model regression. To
evaluate the regression performance, the coefficient of determination (R2) was employed,
as it measures how well the model represents the data used for regression.

All attempted linear regressions presented low R2, despite showing low error, most
likely due to the extremely low variation rates in the data presented. This aligns with the
information obtained from the correlation analysis, where for shorter time intervals, P0
and P−1 showed high correlation coefficients. This fact does not suffice to produce a good
regression model. The other variables were statistically insignificant to the model, despite
being relevant in theory. This pointed to the possible suitability of a nonlinear model, and
for that step a regression neural network was chosen.

Artificial neural networks aim to mimic a brain’s neuronal structure by assigning
weights to the individual interconnections between neurons, and thus are capable of solving
complex, non-linear problems [30]. Despite the correlation analysis only looking into linear
correlation between pairs of variables, most likely there are more complex relationships
between these variables, and by increasing size and complexity of a neural network, it
should be able to model these relationships.

A multilayer perceptron (MLP) network was used for the purpose of validating the
acquired data and selected image features. The network used in this work had fully
connected neurons to map underlying relationships between the selected variables. If
a certain connection does not prove to be relevant to the problem, the learning process
will assign low synaptic weights to them. The selected training algorithm was through
feed-forward backpropagation [30].

In it, the function signals resulting of the response of the activation function move
forward through the interconnected neurons biased by the synaptic weights until they
reach the output layer. The result is compared to a previously known value and the
error values are propagated backwards through the network and the synaptic weights are
adjusted to minimize the error values. This process may take several iterations depending
on the complexity of the model and the network [30].

This process has the potential to overfit the model to the presented data, rendering it
unsuitable for interpretingnew data. In order to avoid this, the data provided need to be
of sufficient size and pertinent to the problem, a suitable architecture and size of network
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must be used, the problem must not be complex beyond what the model can handle, and
the training process must be stopped before the model is overfitted to the training data.
This process may take several iterations depending on the complexity of the model and
the network [30].

For the first issue, in the context of this work, the data-acquisition procedure and
feature selection were tailored to the problem at hand, so the representativeness of the
dataset should be sufficient. As for sample size, the system acquired data for as long as
it could, until the camera failed, most likely due to humidity damage to the circuitry or
ultraviolet (UV) damage to the camera sensor.

Regarding the second issue, the MLP network was tested with several sizes and
architectures to produce the highest accuracy and generalization possible. As for the
complexity of the problem, that cannot be changed, but the representativeness of the
variables used should provide the network with enough valuable information. Again, that
is also a result of the tailoring of the data-acquisition procedures to the very short-term
forecast problem.

Finally, regarding overfitting by overtraining, a cross-validation approach [30] was
used to the back-propagation learning. This means that the training sample was split
into two subsets, one to perform the actual learning with error backpropagation and
synaptic weights adjustment, and the other was used to validate the error on a fresh set
of data that the model could not have been overfitted to. By comparing the network
performance on both subsets, it is clear when the model starts to get overfitted. Whilst the
training set would keep reducing errors, the validation set would start to see increasing
errors. This would mean that the model was overfitted to the training set and was losing
generalization capability.

4. Results

This section presents the results for the data-processing steps introduced previously.
To visually aid in the comprehension of the plots, Figure 7 shows how to interpret the
x-axis of figures using the aforementioned index.

Figure 7. Visual guide to aid in the interpretation of the x-axis of the analysis plots with multiple networks.

Starting with the larger ticks, with the showing indexes, these mark the start of a new
Δt value. As for the smaller ticks those correspond to the different ROI radii used within
each group of Δt groupings.

4.1. Correlation Analysis

The first set of correlation analysis results, between P0 and the evaluated variables, is
presented in Figure 8.
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Figure 8. Correlation between P0 and the evaluated variables.

At shorter time intervals, there is a high correlation between P0 and P−1; however, as
Δt increases, the correlation coefficient approaches zero. Temperature and image attributes
present correlation coefficient magnitudes under 0.4, which means that a linear regression
model is unsuitable to represent these data. Next, the correlation coefficients between ΔP
and the same 5 variables in the previous analysis is presented in Figure 9.

 

Figure 9. Correlation between ΔP and the evaluated variables.

The results for ΔP present rather different relationships between the chosen variables.
As Δt increases the correlation coefficient magnitudes mostly increase as opposed to the
results with P0. In the case of the image attributes, it reaches a value of about 0.7 at 75 s
before drastically falling and becoming negative. P−1 does correlate better to ΔP than to
P0; however, it is still too low for a proper linear regression model. What these results
point out is that a linear model is unsuitable for representing this phenomenon through
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these data. The next step is to use a nonlinear model to attempt this representation, and
the chosen model for that was a MLP (multilayer perceptron) artificial neural network.

4.2. Neural Network Architecture

Different networks with different architectures were trained for each combination of
Δt and ROI radius to determine the best architecture for this model. Unlike the default
random split employed by the Matlab neural network training tool, for this application an
interleaved division algorithm was used to ensure that data from every day were available
for training and validation, thus ensuring maximum representativeness. The proportion
of training data was 70% of the set and consequently 30% was used for validation. Other
splits were preliminarily tested; however, this proportion showed less variation among
results when run multiple times. Normalization is an important process for neural network
training, framing all values between 0 and 1, so that the gradients applied to the synaptic
weights’ updates are always decreasing [30].

The Matlab neural network training tool is highly customizable, but some of the
default values for data-fitting problems, such as these, were left unchanged: the specific
type of backpropagation algorithm, Levenberg–Marquardt; the mean-squared-error per-
formance metric; and the hyperbolic tangent sigmoid (tansig) transfer function for the
neurons. This was performed because these default values yielded solid results and were
beyond the machine learning scope of this work.

Training was performed for both target variables, P0 and ΔP, since both had very differ-
ent behaviors and none were successfully represented by linear models. A diagram of the
relationships between the inputs, neurons and modeled variables is presented in Figure 10.

Figure 10. Diagram of inputs, outputs and layers in the tested networks.

First, the P0 coefficient of determination is presented in Figure 11 for the different
architectures and combination of Δt and ROI radius.

The model was trained with all five input variables previously used for the correlation
analysis and linear regression (P−1, T0 and the image attributes from all three channels).
Each line on the plot represents a different network architecture, with either one or two
hidden layers and several layer sizes listed in the legend. Thicker lines represent networks
with two hidden layers.

For the first two Δt values, all plot lines are indistinguishably close and boast good
coefficients of determination, this being consistent with the results from the correlation
analysis and linear regression. After this point, there is a dip in regression performance
consistent with the linear evaluations; it then starts improving again, reaching even higher
R2 than the initial Δt range.
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Figure 11. R2 values for neural network regression models for P0.

Networks with five neurons on the first hidden layer seem to yield the worst results.
Other architectures vary and not one architecture seems significantly better than another.
That said, networks with two hidden layers seem to be very similar to one another in most
cases, as well as seem to vary less in amplitude than networks with a single hidden layer.
The performance starts decreasing again for the last two Δt values, which may be due
to a less relevant relationship between input and output or due to less training samples
availability. This occurs because the data are not contiguous, and therefore, with larger
time intervals, the amount of data points that can be related decreases. These results show
that P0 is more accurately modeled with a nonlinear method, such as neural networks.

The same method, variables and architectures were used for modeling ΔP, and the R2

values for this step are depicted in Figure 12.
This result showed that, for the first four Δt values, neither a linear nor a non-linear

method was capable of properly fitting these data. As of the fifth Δt value, the neural
network model starts presenting good R2, around 0.9. Similar to the previous plot, it is
clear that networks with five neurons in the first hidden layer are inferior to the other tested
architectures for most data points. After the fifth Δt value, the R2 behaves similarly in both
plots, reaching the highest coefficient of determination for Δt = 60 s, closely followed by
Δt = 15 s. For both intervals, there are small peaks around ROI radius = 75 and 200 pixels.

One significant difference in both is the lack of the four drastically lower coefficient of
determination points in the ΔP models, but that may be due to the lack of outlier analysis
prior to model training. Since these regressions were made with all input variables, it
was necessary to see if all variables were relevant to represent the target data. For this
reason, the same training processes were performed for both target variables but varying
the inputs. The chosen architecture was with two hidden layers with 15 and 10 neurons,
respectively, which seemed to have some of the highest R2 values and varied less than
others. The inputs used for each model are displayed in Table 5. Each row represents one
model, and each column represents one of the five variables. The Xs mark when a variable
is used.
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Figure 12. R2 values for neural network regression models for ΔP.

Table 5. Variables used in the second step of NN modeling.

Model
Variables

P−1 T0 R G B
1 X X X X X
2 X X X X O
3 X X X O O
4 X X O O O
5 X O O O O
6 O X X X X
7 X X O X O
8 X X O O X
9 X X O X X

10 X X X O X
11 X O X X X

The results from this training with different input variables for target variable ΔP
are shown in Figure 13. Each line represents one line on the plot, and to save some room
in the legend, the variables P−1 (power at instant 0—Δt) and T0 (temperature at instant
zero), were shortened to P and T, respectively. The red, blue, and green channel attributes
were represented by R, G and B, respectively. In order to reduce some of the randomness
attributed to the initialization of the variables and data division, each network was trained
five times, and the best result was selected.
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Figure 13. R2 values for neural network regression models for ΔP with varying input variables.

The first information to stand out in this plot is the three lower performing models
with either missing power, temperature or image attributes (P, T or [R, G, B]). The best
result was considered to be with all variables, reaching the highest R2 value (>0.98) and
being the best result for several points. This result was achieved for Δt = 60 s and ROI
radius = 250 pixels.

The same methodology was applied to training with P0 as the target, with the same
combinations of variables and the results shown in Figure 14.

 

Figure 14. R2 values for neural network regression models for P0 with varying input variables.

Similar to Figure 13, the three worst variable selections have either power, temperature
or image attribute missing, but in this case, power made a bigger impact. However, as
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Δt increases, the importance of P−1 decreases, not just linearly as previously thought.
Moreover, for P0 the difference between using two or three image attributes is lower than
for ΔP, but with all input variables, the models seem to fare overall slightly better, with
ones using just the red and blue channels closely behind. The highest R2 (≈0.97) is with
just red and blue (P, T, R, B) at Δt = 60 s and ROI radius = 250 pixels.

It is safe to say both variables were successfully modeled by using neural networks,
especially compared with linear models. For both cases, previous power, temperature and
image attributes from image subtraction proved to be important to model the targets.

4.3. Best Neural Network Results

Finally, the selected architecture of two layers with 15 and 10 neurons, respectively,
was trained several times, using all five input variables with data from the Δt = 60 s step
and ROI radius = 250 pixels to provide further insight on their performance and finish the
validation step.

First, the data were tested modeling P0, using all five input variables. The coefficient
of determination obtained was R2 = 0.94 for the validation process. This means that, when
presented with data which were not used to train the network, it still was capable of
estimating the output close to the real measured value.

Figure 15 presents the regression plot from this model, the blue line represents
the model and the points are the pairs of estimated value versus real value for each
input sample.

 

Figure 15. Regression plot for the validation of a NN model of P0 with Δt = 60 s step and ROI
radius = 250 pixels.
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In a perfect model, all points would stand on the line, but this result shows a very close
representation of the relationship between input variables and the target variable. Next,
the same process was applied to modeling ΔP, and the results are presented in Figure 16.

 

Figure 16. Regression plot for the validation of a NN model of ΔP with Δt = 60 s step and
ROI radius = 250 pixels.

In this case, the validation R2 = 0.93 and the regression plot also show how well the
model represents the relationship between input and target variable. It is safe to claim that
neural networks are well suited to model this type of data.

4.4. Discussion

When evaluating the obtained results relative to the literature herein presented, the
first important point to consider is that the higher frequency of acquisition provided by
the current system does offer more, and useful, information for modeling PV generation
at a plant level [8,35]. This better resolution, coupled with the acquisition strategy, serves
to confirm what other works have shown, that higher resolutions are important for PV
forecasting [19,35,51,52,59,60].

The results also show the suitability of neural networks for modeling the relationship
between image data and PV power. Its use in applications such as determining cloud
albedo [33] or optical depth [55] should aid in forecasting efforts. Due to the low cost
of the equipment used and the key information it was able to provide, approaches that
employ multiple imagers [51,55,60] should be more easily employed. The combination
of high-fidelity regression, high-frequency data and low cost permits not only a higher
accessibility for developing countries to endeavor in PV energy research, but also for a
more complex and in-depth look into the PV forecast problem.

5. Conclusions

Validation was performed on the data selected during the correlation analysis by using
a linear model as the baseline and a neural network regression as a nonlinear model. It was
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possible to model power variations with up to 60 s intervals based on the data acquired by
the developed system. Both the characteristics of the data themselves and of the selected
features used for training the neural network were proven relevant to the intra-minute
solar forecast problem.

Given the high-accuracy results, the data frequency and chosen variables were deemed
relevant for intra-minute forecasting. The acquisition by exception proved to yield data
rich in information surrounding solar variability; however, the event structure should be
redefined in order to more accurately translate the reality. Since, through the data analysis,
a 15 to 60 s horizon was deemed ideal given the available data, and that assumption was
validated by the neural network model, an event structure capable of fully encompassing
this horizon is recommended. Based on the information provided by this experimental
research, an event structure with 90 s prior to the point of detection and 30 s after it should
be enough to provide a clearer view on the subject of study.

Through forecasting, renewable energy sources will become more reliable and help
steer the energy paradigm into a less fossil-reliant reality. With the coupling of multi-
horizon forecasting, power electronics and energy storage systems, RES can lead to a new
and clean energy era. To make this happen, more research into forecasting of the solar
resource in different temporal and spatial scales is required, as well as the combination of
forecasting with energy storage. The recommendations to improve upon the foundation
laid by this work are as follows:

• Increase geometrical complexity by using arrays of PV panels, mirroring real-world
solar farms;

• Test the system in different seasons and climates;
• Couple the model with a cloud tracking and forecast algorithm to provide power

forecasts with the system;
• Model the impact of 60 s ahead forecasts for energy-storage management and PV

variability mitigation;
• Test the developed acquisition system with the NN model with entirely new data.
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Abstract: To investigate the evolution process of LNG (Liquefied Natural Gas) liquid pool and gas
cloud diffusion, the Realizable k-ε model and Eluerian model were used to numerically simulate the
liquid phase leakage and diffusion process of LNG storage tanks. The experimental results showed
that some LNG flashed and vaporized rapidly to form a combustible cloud during the continuous
leakage. The diffusion of the explosive cloud was divided into heavy gas accumulation, entrainment
heat transfer, and light gas drift. The vapor cloud gradually separated into two parts from the whole
“fan leaf shape”. One part was a heavy gas cloud; the other part was a light gas cloud that spread
with the wind in the downwind direction. The change of leakage aperture had a greater impact on
the whole spill and dispersion process of the storage tank. The increasing leakage aperture would
lead to 10.3 times increase in liquid pool area, 78.5% increase in downwind dispersion of methane
concentration at 0.5 LFL, 22.6% increase in crosswind dispersion of methane concentration at 0.5 LFL,
and 249% increase in flammable vapor cloud volume. Within the variation range of the leakage
aperture, the trend of the gas cloud diffusion remained consistent, but the time for the liquid pool to
keep stable and the gas cloud to enter the next diffusion stage was delayed. The low-pressure cavity
area within 200 m of the leeward surface of the storage tank would accumulate heavy gas for a long
time, forming a local high concentration area, which should be an area of focus for alert prediction.

Keywords: LNG leakage and diffusion; combustible cloud; phase change; plume flow; leakage
aperture

1. Introduction

LNG is mostly methane with small amounts of ethane, propane, butane and nitrogen,
which is expected to be the second-largest energy source in energy composition in 2030 [1].
However, there may be a leak of liquefied natural gas (LNG) in the presence of an ignition
source that will cause a fire or explosion in a fully or partially hazardous environment [2].

In view of this, several studies have been published on storage tank accidents [3–6].
Scholars in China and overseas have conducted many studies on the prediction of possible
hazards associated with LNG vapor dispersion. Koopman et al. [7] carried out the Burro
series of tests in 1980 to observe the diffusion of LNG vapor clouds under different condi-
tions after LNG leaked to the water surface. It was found that the leakage mode of LNG
has a certain influence on the vapor cloud diffusion. In 1983, the Coyote series of tests [8]
were conducted to study the ignition and flash evaporation processes of LNG, and the
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rapid phase transition, vapor cloud diffusion and pool fire were all observed in this test.
Brown et al. [9] carried out Falcon series of experiments to study the leakage and diffusion
of LNG under obstacles. They accurately evaluated the effectiveness of the fence so as to
mitigate the harm of LNG gas cloud diffusion.

In addition, several mathematical models have been developed to simulate heavy
gas diffusion based on experimental data, such as DEGADIS, SLAB [10], FEM3 [11,12],
etc. First of all, field tests can reproduce the actual situation of LNG leakage and diffu-
sion; in addition, the cycle was too long and the repeatability was poor. Therefore, CFD
simulation was used as a promising alternative to calculate the diffusion distance of LNG.
Giannissi et al. [13] simulated the LNG diffusion under an open and obstructed condition
based on Falcon series experiments. It was proved that the leak source model greatly
affected LNG diffusion, and the best case to simulate the leakage source was to model
the source as having two phases. Vílchez et al. [14] used the DEGADIS model to predict
the explosive distances of vapor clouds after LNG leakage and they defined the diffusion
safety factor (DSF) to estimate these distances. Li et al. [15] evaluated the effect of safety
clearance on the diffusion of cylindrical floating LNG with FLACS software. The results
demonstrated that the safety gap increased the size of the gas cloud far from the cylindrical
FLNG release position but decreased the size of the gas cloud near the release position.

Zhang et al. [16] studied the process of LNG leakage and diffusion in different wind di-
rections. The results showed that the LNG spread farthest along the horizontal downwind
direction. Marsegan et al. [17] carried out a numerical simulation of LNG diffusion under
active and passive barriers and found that the active barrier effectively reduced the diffu-
sion area of LNG by accelerating the entrainment between air and gas. Nguyen et al. [18]
conducted a liquid pool evaporation experiment with different leak rates on the water
surface. They proposed a model to express the function relationship between evaporation
rate, leakage rate and time based on the experimental results and one-dimensional heat
conduction model. Gopalaswami et al. [19] developed a transient three-dimensional multi-
phase model in CFX based on the comprehensive test data and numerical simulation data,
which was found that wind affected the evaporation and diffusion of LNG by carrying
additional heat and unsaturation. Ikealumba et al. [20] studied the effects of atmospheric
and ocean stability on LNG diffusion where they found that the instability caused by the
waves would aggravate the leakage hazard of LNG ships. Luo et al. [21] proposed an
integrated multiphase CFD model to simulate the complete process of LNG leakage on
the water surface, concluding that water storage would shorten the horizontal diffusion
distance of the gas cloud. Dasgotra et al. [22] simulated the diffusion of heavy gas in natural
gas storage facilities. They found that the average diameter of the gas cloud ranged from 0
to 500 m under relatively stable weather conditions. Giannissi et al. [23] investigated the
effect of environmental humidity on the diffusion of LNG, and concluded that in the case
of high environmental humidity, the explosion distance of gas cloud would be reduced.

The above studies mainly focus on the potential hazards which are associated with
LNG leakage and the influence degree of external environmental factors on the dispersion
effect of LNG leakage. However, few considerations have been given to phase change.
Therefore, in this study, the effect of phase change on dispersion during LNG release is
studied to analyze the behavior characteristics of LNG liquid pool expansion and gas
cloud diffusion, and the effect of the leaking aperture on the gas cloud diffusion process is
also studied.

2. Materials and Methods

2.1. Numerical Model

The homogeneous Eulerian multiphase model [24,25] was adopted to model the phase
change process after LNG leaked to the ground. The realizable k-ε model had higher
accuracy in concentration distribution than the standard k-ε model by simulating Thorney’s
heavy gas diffusion (Freon-12) field test [26]. Therefore, the realizable k-ε model was
selected for gas diffusion turbulence.
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At present, the k-ε model is the most widely used turbulence model for the turbulence
simulations of wind fields in large structures such as storage tanks. The standard k-ε model
proposed by Launder and Spalding greatly improves the zero-equation model and one
equation model, so it is widely used in engineering flow field calculation and has been
well verified in practice. However, the applicability of the standard k-ε model for each
component of Reynolds stress is not strong. For example, it is assumed that the turbulent
viscosity coefficient is isotropic, while the turbulence is anisotropic in the case of curved
wall flow, curved streamline flow, or strong swirling flow. Therefore, it is not recommended
to use the standard k-ε model to calculate the wind field of a storage tank with curved wall
flow; otherwise, it will produce a certain degree of distortion in calculation.

The equation of turbulent kinetic energy k and dissipation rate ε of the standard k-ε
model is described as follows.

ρ
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∂

∂xi

[(
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∂xi

]
+ Gk + Gb − ρε−YM (1)

ρ
Dε

Dt
=

∂

∂xi

[(
μ +

μt

σk

)
∂ε

∂xi

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
(2)

In the above equation, Gk represents the turbulent kinetic energy generated due to
the average velocity gradient; Gb refers to the turbulent kinetic energy caused by buoy-
ancy; YM refers to the effect of compressible turbulent pulsating expansion on the total
dissipation rate.

The coefficient of turbulence viscosity is:

μt = ρCμ
k2

ε

In FLUENT, these three parameters C1ε, C2ε, Cμ are the default constant, C1ε = 1.4,
C2ε = 1.92, and Cμ = 0.09. The turbulent Prandt numbers of turbulent kinetic energy k and
dissipation rate ε are respectively 1.0 and 1.3.

The transport equation of turbulent kinetic energy k and dissipation rate ε is described
as follows.

The equation k:
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In the above equation, k is the kinetic energy of turbulence pulsation; ε is the dissipa-
tion rate of the turbulent pulsation kinetic energy; Gk is the turbulent kinetic energy caused
by the average velocity gradient; Gb is the turbulent kinetic energy caused by buoyancy;
YM is the effect of compressible turbulent pulsating expansion on the total dissipation rate.
C2 and C1ε are constant; σk and σε is turbulent Prandt numbers of turbulent kinetic energy
and dissipation rate, respectively.
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In Fluent,

C1ε = 1.44, C2ε = 1.9, C3ε = 0.09, C2 = 1.9, σk = 1.0, σε = 1.2.

2.2. Parameter Setting

A 16× 104 m3 large cylindrical LNG storage tank was chosen for numerical simulation,
and its structural dimension are shown in Figure 1. The outer diameter of the tank was 82 m
and the height was 50 m. The normal operating pressure of the storage tank was 25 kPa, and
the maximum liquid level in the tank was 34.6 m. The origin of the computational domain
was located at the center of the bottom of the tank. The coordinate of the leakage hole center
point was (41, 10, 0), which was located on the leeward side of the tank. The leakage hole
sizes were, respectively, 0.1 m × 0.1 m, 0.13 m × 0.13 m, 0.15 m × 0.15 m, 0.18 m × 0.18 m
and 0.2 m × 0.2 m. Considering the calculation accuracy, the computational domain was
determined to be 1000 m × 250 m × 500 m in the x, y, and z directions, and the tank that
has a blocking rate of 2.78% was placed at a distance of 200 m downwind. The whole
computational domain was discretized by the structured grid, and the specific grid division
is shown in Figure 2a. In order to adapt to the change of flow field and ensure the accuracy
of the solution, the grid around the leakage hole was encrypted by the block method. The
independence of the grid and time step had been verified. The total number of cells in the
calculation domain was finally determined to be 1,865,345, and the simulation time step
was set to 0.1 s.

Figure 1. The settings of the large-scale LNG storage tank. (a) Geometric schematic of the tank;
(b) the boundary settings of the tank.

Figure 2. Mesh division in this study. (a) The meshing of the computational watershed; (b) the
meshing of LNG leakage diffusion experiment.

In order to represent the node coordinates more accurately and ensure the convergence
of calculation, a double-precision solver and implicit method were used in the calculation.
Figure 2b shows the meshing of the LNG leakage diffusion experiment. The calculation
domain was established with a size of 900 m × 500 m × 50 m on the x-axis, y-axis, and
z-axis, respectively. The x–z plane was placed on the ground, and the y-direction was
the vertical height. Furthermore, the wind direction remained unchanged throughout the
calculation domain. The boundary conditions on the left and right sides of the calculation
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domain were the velocity–inlet and the pressure–outlet, respectively. Hexahedral mesh
units were used for mesh generation, while the area around the pond was divided into fine
meshes. A total of 803,287 cells were used for subsequent simulations.

2.3. Model Validation

In this paper, data from the Burro eight-spill test [27], which was conducted in 1980,
was used as the basis of the validation analysis. In the test, LNG was released onto the
water surface of a round pond, with 25 gas concentration monitors placed at different
heights in the downwind. In addition, the water pond had an average diameter of 58 m,
with an average water level about 1.5 m below the surrounding ground level. Based on
the Burro series tests, the reliability of the multiphase model was evaluated by comparing
the numerical results with the experimental results based on the diffusion range and
concentration change of methane.

Figures 3 and 4 show the contour distribution of methane volume fraction after LNG
spill 80 s on the x = 57 m and y = 1 m planes, respectively. In Figures 3a,b and 4a,b,
the distribution areas of methane with different volume fractions on the horizontal and
vertical planes are basically consistent with the experimental data. Figures 3c and 4c
show the comparison of the coverage areas of dispersion clouds with different volume
concentrations. There is a very good quantitative agreement between the simulation
results and the experimental data. Besides, Table 1 shows that the comparison between the
calculated and experimental values of maximum volume fraction of methane at different
distances in downwind direction. It shows that the calculated maximum volume fraction of
methane is lower than that of the experiment; however, in the area away from the leakage
source, the calculated maximum volume fraction of methane is higher than that of the
experiment. The reason is that the coupled heat transfer between the ground and the LNG
vapor cloud is assumed to be constant in the simulation; in fact, the heat produced by
ground heat transfer and solar radiation is variable. The error analysis method of the heavy
gas diffusion model proposed by Emark et al. [28] is used to analyze the deviation between
the simulation result and the test value. The method includes relative deviation (FB),
geometric mean deviation (MG), geometric mean-variance (VG), relative mean square error
(MRSE), relative mean square error (FAC2) and normalized mean square error (NMSE),
which can be used to judge the validity of the numerical model. The deviation between
numerical simulation and experimental values is shown in Table 2. It can be seen that all
the deviations were within the allowable range of the evaluation parameters. Therefore,
the multiphase model is suitable for the study of LNG leakage and diffusion.

 

             (a)                            (b)                          (c) 

Figure 3. Comparison of experimental and simulated values of methane volume concentration at a vertical height of 1 m.
(a) Burro eight-test measured value. (b) Fluent simulation results. (c) Comparison of test and simulation.
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           (a)                            (b)                          (c) 

Figure 4. Comparison between experimental and simulated values of methane volume concentration at 57 m in downwind
direction. (a) Burro-eight test measured value. (b) Fluent simulation results. (c) Comparison of test and simulation.

Table 1. Experimental and simulated values of maximum volume fraction of methane at different
distances in downwind direction.

Downwind Distance/m
Maximum Methane Volume Fraction at 1 m Height/%

Test Measured Value Fluent Simulation Value

140 16.49 15.4
400 4.25 5.32
800 1.93 2.25

Table 2. The error comparison of simulation results.

Deviation Statistics FB MG VG MRSE FAC2 NMSE

Ideal value 0 1 1 0 1 0
Evaluation standard (−0.4, 0.4) (0.67 1.50) <3.3 <2.3 >0.5 <4

Burro 8 −0.18 0.88 1.03 0.04 0.87 0.23

3. Results and Discussions

3.1. The Influence of Wind Field on Leakage and Diffusion of LNG Storage Tank
3.1.1. Numerical Simulation of Wind Field of LNG Storage Tank

The LNG storage tank will obstruct the flow of wind speed and thus affect the diffusion
of LNG. In this study, the average wind speed at the height of 10 m is 4 m/s, and the
wind speed of the inflow profile is implemented in a user-defined function (UDF) which
is embedded in the numerical model as a boundary condition. Figure 5 shows the wind
speed distribution in different planes of the calculation domain. As shown in Figure 5a,
the wind speed at the boundary of the entire wind field is evenly distributed in the vertical
plane of 0 m. The wind speed varied with height, forming gradient wind, which is the
same as the wind field distribution law of the real atmospheric environment.

 
(a) Cross wind direction z-0 m (b) Vertical height y-10 m 

Figure 5. The wind speed in the calculation area.

However, the atmospheric flow near the storage tank is affected by various factors,
resulting in changes in wind speed and direction. When the wind flows from the top and
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both sides of the storage tank, it causes a high wind speed zone with a speed of 7 m/s on
top of the storage tank (shown in the black box, Figure 5 and a low wind speed zone with a
speed of less than 1 m/s on both sides of the storage tank (shown in the red box, Figure 5).
In Figure 5b, in the area away from the storage tank, the wind keeps up to 4 m/s; however,
in the area near the storage tank, the wind speed is reduced because of obstruction. A
detention zone is formed on the windward side of the tank due to the obstruction of the
tank, so the wind speed decreases sharply. When the wind bypasses both sides of the tank,
a certain length of a symmetrical bifurcated flow wake is formed downstream of the tank
(shown in the red circle).

Figure 6 shows the distribution of the wind speed streamline near the storage tank. It
shows that there are obvious vortices on the windward and leeward sides of the tank. In
addition, two symmetrical vortices are formed at 70 m in the x-axis behind the horizontal
of the tank after the atmosphere bypasses the tank (Figure 6a). In the process of the wind
flowing downstream along both sides of the tank, the wind speed decreases continuously
and the wind direction changes, thus producing backflow. When the wind reaches the
central axis of the storage tank, the wind speed is close to zero, and a small cavity zone
is formed on the back of the storage tank (Figure 6b). However, the vortex and low wind
speed areas are very close to the storage tank. When the wind is away from the storage
tank, the streamline returns to normal and the wind movement also stabilizes.

(a) Cross wind direction z-0m (b) Vertical height y-1.5m 

Figure 6. The distribution of wind speed streamlines near the storage tank.

3.1.2. Leakage and Diffusion Process of LNG Storage Tank under Wind Field

The average wind speed was assumed to be 4 m/s, and at the same time LNG was
assumed to leak at a rate of 105.5 kg/s for 400 s. The expansion of LNG after leakage
is shown in Figure 7. It can be seen that the pressure difference between the inside and
outside of the tank causes the LNG to continue to spray from the leakage port to the ground
in a parabolic form. The amount of LNG leakage is large, but the heat of the surrounding
environment is limited, which makes it difficult to provide enough heat for the entire LNG
to vaporize. Therefore, some LNG absorbs heat from the surrounding environment and
then evaporates into a low-temperature gas cloud, and others form a liquid pool on the
ground. During the landing process, some of the atomized LNG droplets absorb heat from
the air and then evaporates into a gas state, resulting in a higher concentration of LNG
leaking from the leakage hole and a lower concentration of LNG in the surface liquid pool
(Figure 7c). Under the action of initial kinetic energy and gravity, the liquid LNG diffuses
around the landing point, which is 7 m away from the storage tank and thus forming a
thin “round” liquid pool (Figure 7b).
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(a) (b) (c) 

Figure 7. The distribution of LNG liquid pool. (a) Three-dimensional view of the liquid pool; (b) expansion of liquid pool at
y = 0 m; (c) LNG injection at z = 0 m.

Figure 8 is a three-dimensional perspective view of gas clouds, which shows different
methane volume fractions at different leakage moments, clearly showing the movement
and diffusion process of low-temperature steam cloud containing leaking LNG. At the
initial stage of leakage, the density of the low-temperature vapor cloud formed by flash
evaporation is greater than that of the surrounding air, resulting in the extremely low gas
cloud with methane volume fractions greater than 1%, 5%, and 15%. This phenomenon
is also due to gravitational settling. As the leakage time increases to 120 s, the gas cloud
with a volume fraction greater than 15% is still close to the ground with a “hole” inside,
while the gas cloud with a volume fraction greater than 1% and 5% rises slightly. When
the leakage time reaches 320 s, the whole gas cloud presents the phenomenon of “leaf-like
bifurcation” on both sides. However, the height of gas clouds with 15% and more than 5%
volume fraction is lower, while the height of gas cloud with volume fraction above 1% is
relatively high, with a large amount of light methane floating over the tank (shown in the
red box). The whole diffusion process fully reflects that LNG accumulates in the form of
heavy gas cloud after leakage, mixes with air to absorb and transfer heat, resulting in the
gradual narrowing of the difference between gas cloud density and air density. Finally,
heavy methane turns into light methane in the periphery of the gas cloud.

Figure 8. Three-dimensional perspectives of gas clouds with different methane volume concentra-
tions at different leakage moments. (a) Three-dimensional image of the vapor cloud with volume
fraction of methane in excess of 15%(upper flammability limit, UFL); (b) Three-dimensional image
of vapor cloud with volume fraction of methane in excess of 5%(lower flammability limit, LFL);
(c) Three-dimensional image of vapor cloud with methane fraction in excess of 1%.
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In order to reveal the spatial distribution characteristics of the LNG vapor cloud near
the storage tank, methane concentration contours are selected from the x-y plane, x-z plane,
and y-z plane for analysis. Considering that the low height of the gas cloud and bifurcated
gas cloud along the z-axis on both sides of the tank, x = 57 m, z = 30 m and y = 0.5 m are
selected as the observation surface. Figure 9 shows that the distribution of methane gas
cloud concentration is in different planes. As shown in Figure 9a, at the plane y = 0.5 m,
the overall shape of the gas cloud is “fan-shaped” (shown in white box), accompanied
by a cavity with a radius of about 17 m on the back. A high concentration of methane is
deposited on both sides of the cloud, while a low concentration of methane is distributed
in the middle of the cloud. As the leakage time increases, the low concentration methane
in the middle is preferentially diluted by air, resulting in a “hole” in the middle of the gas
cloud (shown in white box). As the leak continues for some time, the “hole” area expands
from the middle to the tail, and the gas cloud splits into two parts. One part is a heavy
gas cloud, which is stacked behind the storage tank in the form of “leaf-like bifurcation”
(shown in white box), and the other part is a light gas cloud (shown in a white round frame),
spreading further with the wind. During the whole leakage process, the gas cloud gradually
develops from a complete “fan shape” to a front-end “leaf-shaped” bifurcation. Due to the
disturbance effect of the storage tank on the atmospheric movement, the detention zone
and low wind speed region behind the storage tank restrains the downwind expansion in
the middle of the gas cloud in some sense. When the low-temperature LNG vapor mixes
with the atmosphere, the movement of the vapor cloud also diverges laterally along the
streamline development at the back of the tank, resulting in a large amount of methane
accumulation on both sides and thus forming a leaf-shaped bifurcation.

In Figure 9b, it can be seen that the gas cloud is divided into different concentration
layers along the vertical direction z = 30 m, and the methane volume fraction decreases
with height. Among them, the methane concentration is high near the ground (shown in
white box), and low far away from the ground (shown in white round frame). The reason
is that a large amount of highly concentrated methane accumulates near the storage tank
during the leakage process, which makes it difficult to dilute and dissipate. However, the
heavy methane in the outermost part of the gas cloud continuously absorbs and transfers
heat with air in order to form light methane with low concentration and then to spread
to higher and farther places. In Figure 9c, the gas cloud after leakage is symmetrically
distributed behind the storage tank at 57 m on the x-direction. As the leak progresses, the
width and height of the vapor cloud in this area increase slightly. The vapor cloud appears
as “low in the middle and high at both ends” (shown in a white circle).

According to the results of numerical simulation and relevant heavy gas diffusion
theory [29], the macroscopic diffusion behavior of the LNG vapor cloud could be roughly
divided into three stages according to the continuous leakage of the LNG tank studied in
this paper.

(1) Initial stage of diffusion (heavy gas accumulation): This stage is a period of heavy
gas accumulation and diffusion. As shown in Figure 9, from the beginning of the leakage
to 50 s, the vapor cloud is in the shape of “fan leaf”, and its internal concentration of the
vapor cloud is in an unstable state.

(2) Mid-stage of diffusion (Transitional levitation): This stage is the period of heavy
gas transiting to light gas. From 120 s to 160 s, the development of gas cloud is in a neutral
state, and the whole gas cloud is still in a “fan leaf shape”. The methane concentration
inside the gas cloud increases to a peak.

(3) Post-diffusion stage (Light gas drift): this stage is the light gas into passive diffusion.
After 210 s of leakage, the development of the vapor cloud is in a stable state, in which
case the width of the gas cloud remains unchanged, but the length and height of the vapor
cloud slowly increases. As the “hole” area inside the vapor cloud continues to expand, the
contact area between the gas cloud and the surrounding air increases, which lead to the
rise of temperature and the decrease of methane density at the tail of the gas cloud. Under
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the influence of wind, methane in the outermost part of the cloud is diluted the fastest. As
a result, the cloud still behaves as “low in the middle and high at both ends”.

 
Figure 9. Distribution of methane concentration in different planes. (a) Distribution diagram of
methane concentration at plane y = 0.5 m; (b) Distribution diagram of methane concentration at
plane z = 30 m; (c) Distribution diagram of methane concentration at plane x = 57 m.

3.2. Influence of Leakage Aperture on LNG Vapor Cloud Diffusion

Figure 10 shows the change in the morphology of LNG vapor cloud with time at
0.5 m on the y-axis under five leakage apertures. When the leakage lasts for 60 s, which
belongs to the initial stage of diffusion, the vapor cloud is in the shape of “fan leaf” with
a similar downwind diffusion speed under different leakage aperture. As the leakage
aperture increases, the volume concentration of methane in the gas cloud keeps rising,
and the width of the gas cloud increases slightly. Compared with the situation at 60 s,
the gas cloud has different degrees of holes inside at 180 s, which is at the middle stage
of diffusion. However, the area of the hole in the gas cloud decreases with the leakage
aperture increasing (shown in the white box). When the leak lasts for 320 s, it reaches the
late stage of diffusion, the heavy gas in the vapor cloud is accumulated behind the storage
tank in the form of “leaf-like bifurcation”, while the light gas at the tail of the vapor cloud
is diluted with the wind. With the increase of the leakage aperture, the width of the heavy
gas cloud becomes larger, and the methane volume concentration of the light gas in the
tail increases (shown in white round frame), which makes it more difficult to be diluted.
According to the LNG gas cloud diffusion under different leakage conditions, it could be
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demonstrated that the trend of the LNG vapor diffusion under different leakage apertures
has similar characteristics. The change of the leakage aperture size will affect the coverage
and concentration of the gas cloud, thus delaying the development of the gas cloud to the
next diffusion stage. The motion trajectory of the vapor cloud is still determined by the
wind field behind the tank.

 

Figure 10. Variation of gas cloud concentration distribution at y = 0.5 m plane under different leakage
apertures.

Figure 11 shows the furthest length, maximum width and height of the gas cloud
diffusion with 1/2 LFL concentration under different leakage apertures. The increase of
the leakage aperture will promote the diffusion speed of the vapor cloud in the downwind
direction. As the leakage aperture increases, the maximum explosion range of methane
and the volume of flammable clouds increases rapidly. For example, when the leakage
aperture increases from 0.1 m to 0.2 m, the maximum diffusion distance of methane 0.5 LFL
in Figure 11a increases by 78.5% from 531 m to 948 m, and the volume of flammable vapor
cloud in Figure 11c enlarges from 13,563.44 m3 to 53,642.89 m3, with a growth rate of 295%.
However, there is some difference, as shown in Figure 11b. When the leakage aperture is
0.1 m, the gas cloud with a concentration of 0.5 LFL has the largest width on the z-axis
at 243 m. When the leakage aperture increases from 0.13 m to 0.2 m, the largest width of
methane 0.5 LFL increases by 22.6% from 194.6 m to 238.6 m. This was because that when
the leakage pore size is 0.1 m, due to the small leakage volume, the methane density in the
late stage of diffusion is close to the air and the gas cloud diffuses faster in the horizontal
direction, resulting in the farthest diffusion distance of the gas cloud along the z-axis. As
leakage aperture increases, the leakage and vaporization of LNG increases, and a larger
volume of combustible gas clouds increases too. However, the dilution ability of air is
limited, and the gas cloud rapidly accumulates and diffuses along the downwind distance,
resulting in a larger diffusion distance along the x-axes and z-axes. Therefore, after the
LNG leaks, the leakage source should be cut off or blocked in time to reduce the amount of
LNG leakage.
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Figure 11. Variation of the farthest moving distance and volume of flammable vapor clouds with
leakage time under different leakage apertures. (a) Variation of the farthest diffusion length of 2.5%
methane volume fraction (0.5 LFL) with leakage aperture; (b) Variation of the farthest diffusion width
of 2.5% methane volume fraction (0.5 LFL) with leakage aperture; (c) Changes in the volume of
flammable vapor cloud.

4. Conclusions

With the integrated use of the realizable k-ε turbulence model and the Eluerian model,
numerical simulation of the leakage and diffusion process of the LNG storage tank was
conducted. The conclusions were drawn as follows.

(a) After the storage tank leaked, LNG was sprayed to the ground to form a circular
liquid pool and then continuously exchanged heat with air to evaporate into low-
temperature steam. The diameter of the liquid pool increased first and then remained
unchanged with the leakage time, and the gas cloud diffusion state was divided into
three stages due to the cylindrical turbulence of the tank. In these three stages, the
LNG gas cloud experienced heavy gas accumulation, entrainment heat transfer and
light gas drift, with the shape gradually developing from a complete “fan blade” to a
“leaf bifurcation” of heavy methane at the front end.

(b) The leakage aperture greatly affected the heat transfer between LNG and the sur-
rounding environment. It delayed the development of the liquid pool and gas cloud
to a stable state. The increase of leakage aperture quantitatively affected the dis-
tribution of vapor clouds across LNG dispersion routes. The liquid pool area was
increased by 10.3 times, while the length, width, and volume of the flammable vapor
cloud increased by 78.5%, 22.6%, and 249%, respectively. In addition, within the
variation range of leakage aperture, there would always be a local high concentration
area within 200 m downstream of the storage tank. In the field near the storage
tank, the clouds settled and accumulated towards the ground in the state of gas–
liquid two-phase flow, and the density of the cloud was gradually lower than the
air in the far-field, manifesting as light gas diffusion. This area was characterized by
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high concentration and long duration of methane, which should be the focus area of
alarm prediction.
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Abstract: The European Union has adopted legislation aimed to increase the use of renewable energy
and improve the effectiveness of conventional-form energy use. Additional structure insulation
helps to decrease heat energy loss. Airtightness of the building envelope (building airtightness) is an
additional factor that determines comfortable and energy-saving living environment. The conformity
of heat energy loss with the object’s design energy class is one of the mandatory indicators used in the
obligatory building energy performance certification procedure. Optionally, the objects to be certified
are the entire buildings or separate units (flats). There is an issue of concern whether a flat assessed
as a separate housing unit would meet the requirements of design energy class depending on the
location of the unit in the building. The study is aimed to determine the change in heat loss of end
units in terraced houses (townhouses) as a result of various factors, leading to uneven airtightness of
the building envelope. The non-destructive assessment of building airtightness was implemented
through the combined use of methods, namely Blower Door Test (around 200 measurements) and
Infrared Thermography. The hollow clay unit masonry showed ca. 7–11% less airtightness than the
sand–lime block masonry structure. The end units were up to 20% less airtight compared to the
inside units.

Keywords: airtightness; Blower Door; heat energy loss; thermographic photo research; building
energy performance

1. Introduction

To fulfil the requirements of the European Energy Performance of Buildings Directive
(EPBD) [1,2] related to the reduction of energy consumption by using high-quality materials
and implementing efficient solutions for structural connections and joints, the national
requirements for thermal properties in building envelope were formulated and building
energy efficiency calculation methodology was developed. Many European countries
have developed national methodologies for the assessment of building energy efficiency
according to DIN 18599 [3] in Germany, DOCET in Italy, CALENER in Spain, etc. [4].
The above-mentioned methods vary depending on the type of buildings, climatic zone,
minimal thermal requirements, and certification indexing [4].

The main evaluation criteria used in these methodologies are CO2 emissions and
primary energy or heat energy consumption in buildings. All the methodologies pursue
the main aim to reduce energy consumption in buildings. To this end, not only are
efficient engineering systems that improve the thermal properties of the building required,
but also appropriate technological solutions to assure the high quality of work and good
airtightness of the buildings. A properly insulated building together with efficient heating
and ventilating systems can save up to 50% of heating energy and assure comfortable
conditions in the premises [5,6].
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The airtightness of and energy efficiency of the buildings can be determined by
different methods [7]: theoretical investigation [8,9], empirical research [10,11], modelling
of general building characteristics, or modelling of one component of the building [12]. The
analysis of the related literature revealed that building energy performance calculations
are precise only if building airtightness is defined by measurements. The measurements
help to assess the construction workmanship and define the airtightness level, which is
used to calculate the energy consumption of the building according to the 2010/31/EU
Directive [2]. The most widely used method of airtightness measurement is the blowing
door test method, prescribed by EN ISO 9972 2015 [13,14].

The main index of airtightness used in Lithuania is n50, which indicates the part
of internal air volume having changed in one hour at the set pressure of 50 Pa. The
measurements of this kind are performed in many countries aiming to assess the general
airtightness level of buildings using various criteria like the building type, its height,
geometric forms, envelope structure, the ratio of the envelope, the floor area, etc. [15–18].

There are several main ways of air infiltration. One of the reasons is improper struc-
tural connections in the building due to using low quality insulation materials or not using
them at all. In this case, the outside air penetrates through structural joints. The other
path of air leakage is the building construction material. In this case, the air can infiltrate
through the voids and cracks of construction elements.

The level of building airtightness can be determined and air infiltration paths in the
building envelope can be detected by means of non-destructive tests using an infrared
camera and observing the cold air movement in the external structures [19], or measuring
the air movement speed near the splits with the anemometer sensors and calculating the
approximate area of the split [20], or even measuring the sound of penetrating air.

The research objectives were: (1) experimental assessment of the flat airtightness
distribution in terraced houses made of different materials, (2) theoretical heat energy
loss calculation and finding out the differences in the heat loss values between the flats in
different places in the building plan, (3) assessment of the compliance of flats in different
places in the building with the design energy performance class.

2. Literature Review

T. Kalamees [21] conducted laboratory tests of various structural timber framework
connections and compared the obtained results with airtightness results of real-built houses.
The researchers concluded that it was difficult to ensure the quality of airtightening works
on site in the installation of both structural connections and engineering systems (water
supply, electricity).

The authors of the paper [22] discussed the airtightness estimation procedure appli-
cable in the design phase. The methodology being in its early phase included quantita-
tive characterization of expected leaks, evaluation of building airtightness in-situ using
fan pressurization, component testing for air permeability in laboratory conditions with
the completion of air leakage values obtained from the published database, and correc-
tion/validation of airtightness values. The investigation of several building parts showed
that ventilation ridge was responsible for the highest percentage (61%) of airflow (the air
leakage values were as follows: 11.0 m3/(h·m2) for ventilation ridge, 0.66 m3/(h·m2) for
window frame and connection of steel columns with the floor, and 1.15 m3/(h·m2) for
panel joints).

Another article [23] discusses the air leakage problem, considering the national build-
ing energy-related regulations and the methodology of energy performance calculation.
The authors investigated the construction type, the age, design details, and retrofitting of
the building as airtightness factors and found better quality of newly-built dwellings, good
design, high-quality workmanship, and proper quality control during the construction
period contribute to energy efficiency of buildings the most. The inclusion of the airtight-
ness factor during the energy performance assessment process could improve the energy
consumption by up to 7%.
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Another paper [24] presents and discusses the results of measuring the airtightness of
170 single-family houses and 56 apartments. The construction method, insulation materials,
joint insulation materials, and the ceiling structure were studied in the research as the
factors related to airtightness. Good airtightness of individual houses was reached in all
house groups regardless of the choice of structure, number of stories, ventilation system, or
technology of construction. This fact pointed out the importance of construction quality.

The research paper [25] includes a proposal for the development of a rough predictive
model of the degree of envelope airtightness as a regional tool for energy efficiency as-
sessment and tailored to southern European construction stock. The results were assessed
as widely scattered due to the impact of the random component of manual construction.
The paper presents the results of statistical analysis and describes the protocol used both
for the identification and quantification of air leakage pathways and for construction
quality management.

The authors of the paper [26] conducted a study on the relation between the airtight-
ness of a building envelope, air infiltration, and energy use of a typical modern Finnish
detached house with an IDA-ICE simulation model also considering the stack-induced
infiltration. An adapted model for the rough estimation of the annual air infiltration was
determined from the numerical simulation results. The dependency of both the infiltration
rate and heat energy use is nearly linear on the building’s leakage rate, measured as n50.
This research showed that infiltration induces about 15–30% of the energy used for space
heating, together with the ventilation in the prototypical detached house.

The authors of the work [27] performed the univariate analysis and multiple linear
regression of the Canadian airtightness database to reveal the important trends. Two air-
tightness model classes with 3 variables and 8 variables (building volume, climate, building
age, building height, and insulation levels for basements, walls, roofs, and windows) using
two airtightness metrics (ACH and NL) were developed. The models referred to the round
half airtightness variation of the building. The study set a feasible lower boundary of
perspective models for regression-based airtightness prediction.

Tests were carried out in five flats of the same building in order to characterize the air
permeability and to improve the design of buildings [28]. Although the flats tested were of
the same size, with the same components, and were erected using the same construction
processes, their overall air permeability showed a wide variation. The authors assumed
this was mainly due to the change of the width of the gaps around the roller shutter boxes
and the gaps in the bottom opening joint of the doors. The quality of windows, entrance
doors, and kitchen external doors also had an impact.

The results presented in [29] give some ideas for how to decrease the measurement
uncertainty in the blowing door test and to better detect energy and environmental issues
in the audits of buildings. The chimney and the windows, without sealing and natural ven-
tilation systems, were discovered to be the critical causes in the building’s over-ventilation.
The most critical uncertainty contributions were found to be the operative test conditions
and metrological performances (e.g., internal–external temperature and the wind velocity
difference) of the pressure measuring device.

The research [30] empirically investigated factors that should be considered while
using pressure difference measurement values and airflow rate to derive more accurate
airtightness values for large buildings. The distribution of vertical pressure across the
whole building envelope can differ considerably when the building is pressurized. A
method to measure airtightness was proposed where the pressure difference on each level
of the building is measured and a medium value of pressure difference is defined.

Two problems related to design solutions of building airtightness were revealed in
the work [31]: contemporary airtightness predictive models are too complex to be used for
everyday design practice, and existing airtightness predictive models do not meet the needs
of contractors and designers. More detailed issues in this context could be addressed: the
lack of standardization, including factors classification, parameters definition, their impact
quantification and significance assessment, metric analysis, the influence of supervision
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and workmanship, the classification of the air leakage paths, and research of significant air
penetration areas/points.

The air permeability measurement results of 287 post-2006 new-built UK dwellings
averaged 5.97 m3/(h·m2) at 50 Pa were studied in the paper [32]. Relationships between
the airtightness and management context, building method, and dwelling type as the
influencing factors were investigated. The superior airtightness was achieved in buildings
with the self-build procurement route as a result of more innovative construction practice,
prefabricated concrete panel systems, etc.; the houses built using site-based labour-intensive
methods were the most air leaky. The predictive regression model was developed to
predict the potential impacts of the air leakage-related factors of dwellings and improving
energy efficiency.

Airtightness testing is described in [33] as a highly informative tool of the dwelling
retrofit process. The authors refer to the statement that air infiltration through apertures
in the building envelope can make up to one-third of the total heat loss. Particularly
in this project, it was possible to reduce the measured air permeability (from 15.57 to
4.74 m3/(h·m2) @ 50 Pa) during the dwelling retrofit. This improvement was achieved
through the use of usual draught-proofing means (a decrease in air permeability more than
30%), close attention to installation detail, workmanship, and sealing of the floor/wall
joints at the skirting board connection (air permeability reduction of 3.6 m3/(h·m2) @
50 Pa). Airtightness measures alone contributed to around 9% of the forecasted total
reduction of heat energy demand. The effectiveness of fabric measures was very good (64%
reduction considering the case of the uninsulated house), although the installation of double
glazed units combined with the roof and wall insulation showed minimal improvement of
airtightness (approximately 1.26 m3/(h·m2).

The paper [34] investigates the building’s airtightness in terms of location and expo-
sure of the building. The authors state that energy-efficient buildings situated in windy
areas and at exposed locations could constitute up to 10% of the total heat consumption.
The altitude, strength, and speed of the wind have a significant impact on the building by
determining the amount of airflow through gaps, cracks, and leaks in the envelope. The
possible impact of main parameters of location on the ultimate airtightness of the building
envelope was verified while investigating 150 low-energy houses constructed in 2004–2014.
The altitude’s contribution to airtightness is 0.06%, whereas 99.94% of the airtightness is
influenced by other factors.

A statistical method is presented in the work [14] investigating relevant factors related
to the airtightness of the dwellings: climate zone, year of construction, and typology. The
proposed methodology and its results were compared to the extracted database values.
An open to expanding quota sampling scheme consisting of 411 representative cases was
built to extrapolate the infiltration rates for Spanish buildings using typical constructive
solutions. In the case study, leakage paths were located mainly around shutter boxes,
window joints, and frames. The research of the infiltration impact on the ventilation and
energy performance of the dwellings has been planned on this basis.

The authors of [35] developed a simplified method to evaluate energy savings from
enhanced airtightness. This method was aimed to facilitate the use of energy savings
estimates available to building designers and owners and expand the possibilities of the
existing governmental online calculator. It expanded the ability to examine energy savings
in commercial buildings for all cities in the USA. A simplified approach including energy
savings predicting equations was developed to estimate annual and hourly heating energy
savings. The equations predicting the percental energy savings for retrofitted buildings
only require their expected air leakage rates before the retrofit and after it. Annual energy
savings estimated using the online calculator and the proposed approach differed by 15%
to 24%.

In the study [36], a model equation was obtained that uses statistical analysis based on
empirical models to predict the apartment airtightness of reinforced concrete buildings with
the data from 486 units. Two groups of variables were used in the airtightness prediction
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model equations along with correlation dependence analysis and multiple regression
analysis. The model with the area variables was more accurate in predicting airtightness
out of the two models. This approach has a limitation because the prediction results may
differ depending on the characteristics and the data type collected by various countries.
Nevertheless, the methodology presented in this work contributes to similar studies for
finding influential variables with better applicability in the future.

The paper [37] investigates the problem of the seeming airtightness of partitions con-
structed in buildings. The study deals with the wind effect which is the washing reason of
fibrous and porous materials of the envelopes. The authors explain how the disintegration
of insulation material by forming empty areas determining local discontinuities of material
in the envelope reduces thermal resistance. Appropriate areas were proved by the dynamic
infrared detection method. The results show that thermal resistance of such envelopes is
reduced to 87% with an absence of wind protection. The authors recommend considering
the decomposition of this type while calculating the heat transfer coefficient.

In the study [12], an alternative approach was advanced to evaluate the air infiltration
rate and air leakage area in building envelope parts such as exterior and interior floors and
walls. Physical and acoustical methods were applied in measuring the sound reduction
index to determine the leakage area. Therewith, the airflow rate through air leaks was
determined using pressure difference over the floor or behind the wall and the values of
leakage area. Subsequently, the calculated air infiltration rate also enabled evaluating the
convective moisture rate through leaks and heat losses of the building.

The study [38] examined the airtightness performance of container houses and the
impact of airtightness on their energy efficiency comparing the measurement and calcu-
lation results before and after building treatment. The identified weak places (thermal
bridges, air leakages, and condensation) were mainly as junctions of walls, slabs, roof
panels, and the edges of the openings. Significant improvement of the airtightness (81%)
led to a certain reduction of annual energy demand (9.3%). Airtight joints and thermal
brakes are essential for junction details seeking to avoid thermal problems and improve
the energy performance of the building.

The authors of the work [39] studied the leakage–infiltration ratio by implementing
the tests of more than twenty houses in the UK. The existing rule of thumb of the divide-
by-20 (the error of using ranged from 3% to 175%) was revised and a new rule divide-by-37
as a more representative of the leakage–infiltration ratio was proposed. The mismatch
of the assessment using the existing Standard Assessment Procedure (SAP) was particu-
larly noticeable after adding the modification factors for local wind and sheltering: the
overestimated infiltration rate values reached 500% and more, especially in airtight houses.

In the research [40], the airtightness role in the context of thermal insulation perfor-
mance of traditional double-glazed air-filled windows was analysed. Tests were conducted
in a typical dwelling in the UK by comparing the windows that are fitted with a special
transparent cover improving airtightness and standard windows. The average U-value
of the window sash with air-filled double-glazing was calculated to be 2.67 W/m2·K, as
it was 1.79 W/m2·K for the airtight window sash which resulted in a 33% decrease in
heat losses. Windows are still important in the energy demand of buildings, and effective
solutions such as retrofitting windows with covers can notably contribute to decreasing
the windows-related energy losses in buildings.

Performing Blower Door Tests in large buildings [41] requires airflow rates that
are impractical to achieve using available equipment and because of the necessity to
test only the individual zones of buildings. The Lstiburek method and the Love and
Passmore method were adapted for use in multi-unit high-rise residential buildings. The
results showed that neither of the proposed methods could be finally recommended as a
replacement for the pressure neutralization method in traditional residential buildings. The
first method was unacceptable in the accuracy estimation for exterior boundary leakage
(estimation error exceeded 108%). The second method showed a small error of 0.2% for the
exterior boundary leakage estimation, though the pressure neutralization method was less
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sensitive to measurement noise compared to the alternative Lstiburek method. There is
still a need for new methods that can accurately represent the external boundary airflow
while still being less labour-demanding than the pressure neutralization method.

The paper [42] describes the validation of the new model for prediction of the airtight-
ness of buildings utilising a neural network and using four corrective factors related to
the building envelope. The model was obtained based on measurements in the field at
58 units in Croatia. The model, which requires a reduced amount of data and therefore is
more economical and faster than the field measurements, was validated both in the local
field and outside the native country conditions. The proposed model is supposed to be
appropriate for predicting airtightness values at the early design phase, as well as for the
planning of regular energy refurbishment of dwellings.

Based on the literature analysis and the use of around 300 dwellings’ empirical data
the study [43] analysis the relationships between the airtightness of building and eight
individual variables. Correlation analyses indicated the significant relationship of the
construction method, roof type, year of construction, and construction typology with
building airtightness. Regression analysis showed that only the year of construction and
the total leakage affect the airtightness. ANOVA tests revealed that both variables have a
notable influence on the airtightness, in terms of specific leakage rate. Both variables could
hardly help to assess the specific air leakage in advance because the year of construction
correlates with many other variables and the building leakages can only be assessed when
the construction is over.

The paper [44] concerns measurements of airtightness of 16 single-family houses
with natural ventilation built from 1880 to 2007 (the measurement values ranged from
1.1 to 5.8 L/(s·m2) at 50 Pa). The results of the ventilation measurements (from 0.09 to
0.28 L/(s·m2) per heated floor area) did not meet the requirement established in the Danish
Building Regulations (0.3 L/(s·m2)). The typical places of leaks were identified: the
penetrations of electrical installations, exhaust ducts, chimneys, contours of older doors
and windows, attic hatches, and connections with wooden ceilings. The findings are
relevant for the renovation projects of the older small building stock, especially where
mechanical ventilation systems are planned to be installed.

In the article [45], the research of the airtightness level of single-family energy-efficient
houses was measured and compared with the requirements of Polish norms and European
standards. The different wall structures of the buildings did not significantly affect the
level of airtightness (ranged within n50 = 0.17 to 5.33 h−1): the buildings with the worst
and the best tightness had the same brickwork wall construction. As the reason for the
insufficient tightness, the human factor was referred: a lack of experience and inaccu-
rate performance of coatings, not airtight insulating layer, the mistakes made in porous
insulation of transition systems, and the leaks of vapour barrier at connections.

The study [46] focused on the infiltration rate prediction of public buildings in China
by implementing the in-situ tests and simulating the infiltration rates for 1800 cases. The
main factors influencing the air infiltration were described as meteorological parameters,
architectural structure, infiltration path characteristics. The construction period was not
useable individually as a separate factor: zones that were built later (2007) had even worse
airtightness than zones built earlier (1990). The airtightness of public buildings was found to
be much worse than that of traditional dwellings. The centralized HVAC system had more
elements in the building envelope than the split HVAC system, and the outer windows’
airtightness was worse than the wall. For buildings with a mechanical fresh air system,
the airtightness needs to be strengthened in order to reduce the impact of air infiltration.
The conclusion was that the influence of air infiltration on public buildings should be
acknowledged by policymakers in defining more energy-reasoned design standards.

The authors of the research [47] aimed to reveal the impact of local conditions by
evaluating relations of infiltration rate and individual location and heat demand of res-
idential buildings. Depending on the airtightness of buildings the differences in energy
consumption between two different locations from the same climatic zone were evaluated
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in a rather wide range (from 70% to 90%) and could reach even 200% considering sheltered
environmental conditions. The general conclusion of the research was that the building
location and its level of exposure were recommended to be considered in forthcoming
airtightness regulations.

While investigating the airtightness through the light concrete chimney elements, T.O.
Relander [48] found out that better airtightness results can be achieved if the chimney is
installed near the wall or in the wall corner because the external surface of the chimney
through which air can penetrate will be reduced. External surface finishing workmanship
and the materials used also influence the airtightness.

In the study [49], the energy performance of a school building before major renova-
tion planning was modelled using the energy simulation software IDA ICE. The annual
simulation indicated the following renovation measures with the best potential: improved
envelope airtightness, changing to energy-efficient windows, new controls of the HVAC
system, and improved outer wall thermal insulation.

Some articles have weaker relation to our research because the airtightness problem
appears there as one among the other research aspects. The researchers investigate the
association of the building envelope tightness, its improvements, and ventilation with
relative humidity and air distribution in buildings [50,51], discuss the reasonable build-
ing airtightness level to seek for [52], the airtightness and thermal defect detection using
thermographic research and image processing [53], the impact of airtightness of win-
dow and door openings, more stringent requirements for the products [54,55], point out
very contrasting air leakage rates of some structural joints [56], the effect of airtightness
when investigating the relation of the energy performance, and the indoor air quality
performance [57].

The review of the recent studies helped to shed some light on the research hypothesis
and formulate an adequate approach to the problem of airtightness influence on the energy
performance of the particularly widely spread type of buildings. What did we expect,
what did we find in the publications on the one hand, and what was subsequently visually
observed, instrumentally measured, recorded, and computed from the field on the other
hand speaking more generally? After the extensive review of research results, one can
safely assert that the characteristics of the building airtightness or air permeability have a
significant influence on the building’s energy behaviour. At the same time, it was evident
both from the theoretical review and from the field measurements that the nature of these
properties is characterized by a rather wide distribution of the values, despite the same
construction and material of the building. One of the main reasons revealed in most of the
papers and confirmed in the field is the quality of the workmanship. This generalization
led to the idea of limiting the diversity of the workforce on the construction site by choosing
for the investigation the buildings constructed only by the same company. Furthermore,
previous studies have covered a wide range of technical factors with the discussion about
their influence on airtightness (as power supply installation). The analysis of recent studies
in this regard helped to focus on the aspects discussed in the next chapters.

The literature review encouraged the formation of the research methodology, as well
as the logic of its process. It was apparent that the starting point should be the experimental
airtightness measurements of separate flats, as the logical architectural building parts
with the aim to check the hypothesis that the flats in different locations of the building
could have different airtightness values. The literature provided no definite answer to
this question. Airtightness-related heat loss values (expressed in percentage) provided
in the papers were presented in a rather wide range (not exact), or the data came from
buildings of different structures, materials, and typology. Afterwards, it would be possible
to theoretically calculate the heat loss of the flats with their subsequent evaluation of
compliance with the design energy performance class. More details about the research
process are provided in Section 3.2.

The standard methodology of energy performance calculation was also modified
based on the analysis of literature sources in the part of the heat loss differences evaluation
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between the equal floor area flats situated in different parts of the building. It was appropri-
ate to undervalue the formula member for solar radiation, considering the environmental
factors described in Section 3.3 in more detail.

3. Methods

3.1. Buildings under Investigation

Relatively new buildings constructed in the period between 2016 and 2019 were
chosen for the research. At this time, the new requirements demanding not lower than
class A energy performance for newly designed and built buildings were introduced, and
airtightness measurements became mandatory in Lithuania. More than 200 measurements
were implemented in this research in sum (Figure 1).

All the buildings and flats were divided into groups using several factors:

• According to the situation of the flat in the building plan: the flats with the end location
in the building and the flats with the inside location when they are surrounded by the
two adjacent flats.

• According to the floor area of flats: the largest group included the flats with a floor
area of 90–120 m2, the second group of 150 m2 area, and the largest flats exceeded the
floor area of 200 m2.

• According to the structural material of the walls: the buildings of the first group were
constructed of sand–lime blocks, the buildings of the second group had the walls
erected of hollow clay masonry units.

• According to the insulation level of structures: one group of the buildings that were
designed as class A energy performance housing had the 200–220 mm polystyrene
(EPS) insulation layer, the other group of buildings that were declared as the class
A+ energy performance dwelling had the 240–260 mm polystyrene (EPS) insulation,
and the most energy-efficient buildings of the class A++ were insulated with the
280–310 mm polystyrene (EPS) layer.

The main characteristics of the buildings are provided in Table 1.

Table 1. Properties of buildings.

Construction
Type

Location
Average Floor

Areas, m2 Energy Class
Glazed

Areas, m2
Ventilation

Type

Hollow clay
masonry units

Inside
2

facades

90 A, A+, A++ 12.85 Natural
120 A, A+, A++ 17.14 Natural
150 A, A+, A++ 19.64 Natural
200 A, A+, A++ 24.43 Natural

End
3

facades

90 A, A+, A++ 14.35 Natural
120 A, A+, A++ 19.14 Natural
150 A, A+, A++ 21.43 Natural
200 A, A+, A++ 28.57 Natural

Sand–lime
blocks

Inside
2

facades

90 A, A+, A++ 12.85 Natural
120 A, A+, A++ 17.14 Natural
150 A, A+, A++ 19.64 Natural
200 A, A+, A++ 24.43 Natural

End
3

facades

90 A, A+, A++ 14.35 Natural
120 A, A+, A++ 19.14 Natural
150 A, A+, A++ 21.43 Natural
200 A, A+, A++ 28.57 Natural
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All the buildings were equipped with energy-efficient plastic windows having two
insulated glass units (IGU) with selective glass coating. All the windows had appropri-
ate construction inserts positioning window frames in the range of the wall insulation
layer and in that way minimizing the linear thermal bridges of the window jambs. The
roof load-bearing structures were made of hollow prefabricated reinforced concrete slabs
insulated with polystyrene (EPS), the thickness of which was determined by building
design energy class. The floor structures consisted of the most commonly applied layers:
reinforced concrete, insulation, and damp proofing. All the buildings were two-level
houses. Their heights ranged from 6.25 m to 6.35 m, although the internal ceiling height
of the premises remained constant at 2.7 m. Therefore, this geometric peculiarity had no
significant impact in our opinion neither on heat energy loss nor on the airtightness of the
buildings. The buildings chosen for the research had the same engineering system equip-
ment: the heat source was the heat pump with the floor heating system, all the flats had
the same natural ventilation system. These choices allowed to eliminate the occurrence of
possible airtightness defects in different equipment mounting places or installations, such
as intersections of ventilating equipment piping with the walls or different heat sources.
To reduce the influence of construction works quality to airtightness measurements as
much as possible [21–25,31,33], only the buildings constructed by the same construction
enterprise were chosen.

3.2. Measurement Methods

The principal scheme of the whole research process is provided below (Figure 2),
followed by a detailed explanation of the steps.

The airtightness measurements were performed in all flats of the terraced houses
analysed. The airtightness values of the premises were determined according to the
standard measurement method (LST EN 13829). As stated by this method, all windows
of the building were fully closed, the natural ventilation channels were properly glued,
and all internal doors were opened to let the air inside and distribute easily in the flat.
The measurements were implemented using Blower Door Model 4 equipment with the
following technical specifications: measurement precision ±3%, measurement uncertainty
8.3%. The obtained results were statistically processed to get the average values for separate
building groups and define possible dependencies on the flat location in the building.

There are mandatory requirements for the airtightness value of buildings, and the
energy performance class of every newly designed building cannot exceed the predefined
value. In case the building does not meet the airtightness requirements, it should be
classified as belonging to the lower energy performance class. As the required airtightness
cannot be achieved in a smaller part of buildings, the related defects must be recorded
and rectified. For this purpose, the infrared (IR) research was performed using the FLIR
ThermaCAM B640 infrared camera with measurement precision of 2% or 2 ◦C. All research
was performed in the winter period when the temperature difference between the internal
and external air was about 15–20 ◦C.

To examine the leaks of the building envelopes the infrared camera research was done
twice. At the initial stage, there the temperature measurements were obtained on the surface
in the natural conditions without creating an additional pressure difference. Afterward,
in order to identify the main leakage locations a 50 Pa pressure difference between the
outside and inside air in the rooms was created by means of airtightness equipment and
the internal wall surface temperature was measured. There was an alteration of the internal
surface temperatures compared to assess the tightness of the structures and to find out if the
temperature differences are normal. There were two goals to perform the infrared research:
first, to identify the problematic places that do not meet the tightness requirements in
the buildings, and subsequently to implement corrective actions by repairing the defects
and achieving the desired airtightness level, and second, to statistically evaluate the
obtained results in order to determine in what type of buildings the most frequent problems
were met.
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Figure 2. Principal scheme of the research process.

3.3. Building Energy Performance Assessment Methods

The main requirements of building energy performance related to EPBD (European
Energy Performance of Buildings Directive) [1,2] are described in Building Technical
Regulation STR 2.01.02: 2016 [58]. Using the building energy consumption evaluation
methodology with the application of outside temperatures derived from many years of
observations, it is accepted that the duration of the heating season exceeds 220 days, the
average outside temperature of the heating season is 0.6 ◦C, and the inside temperature of
the premises is 20 ◦C. The index of total heat energy loss calculated per 1 m2 heated area of
building throughout the year is one of the assessment criteria used in the said methodology.
In general, it can be expressed by the following equation:

Qsum =
Qenv + Qvent + Qdo + Qin f −Qe −Qi

ηh.s.
+ QE + Qh.w. (1)

where: Qenv is the calculated heat loss through building envelope for 1 m2 of heated floor
area throughout the year, kWh/m2·year;

Qvent is the calculated energy consumption for ventilation, kWh/m2·year;
Qdo is the calculated heat loss due to entrance door opening, kWh/m2·year;
Qin f is the calculated heat loss due to excessive air infiltration through windows and
external doors, kWh/m2·year;
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Qe is the heat gain in the building due to solar radiation, kWh/m2·year;
Qi is the heat gain from internal heat sources, kWh/m2·year;
QE is the annual electricity consumption, kWh/m2·year;
Qh.w. is the annual energy consumption from domestic hot water, kWh/m2 year;
ηh.s. is the efficiency coefficient of building heating system, in part of a unit.

The aim was to evaluate the differences between the heat energy loss of the flats
located in different parts of the same type buildings. Some of the formula components
may be underestimated considering all the flats are operated in equal conditions. These
components include heat loss because of external door opening, natural ventilation, electric
power, and domestic hot water consumption. Since all the flats are designed with almost
identical transparent enclosures, the heat increase resulting from direct solar radiation
through the windows can be assessed as being the same.

Minor exceptions can be found in some rear facades of the end units. Because of
different architectural solutions, some of these facades have one additional window with
an area of around 2 m2. Therefore, during the thorough investigation of the buildings,
some circumstances were found in this particular context of the built environment: most
of the facades in question were not fully exposed to solar radiation for a longer time
because of their shadowing by existing trees and buildings, most of the walls had East and
West orientation, a large part of these windows were equipped with roller shutters, and
a number of the flats did not have the additional window at all. Because of these factors
substantially diminishing the solar heat energy gains, all end units were considered as
solar radiation invariant in this research.

Excluding all these components mentioned above, the difference of the heat energy
loss between the flats of different locations may be represented as:

Qsum(difference)= Qenv (difference) + Qinf (difference) (2)

where:

Qenv =
0.001·tm·24

Ap
·(θ iH−θe,m)·

n

∑
x=1

(A env·Uenv) (3)

and
Qinf= 0.001·tm·24·ρair·cair·vinf,m·(θ iH−θe,m) (4)

where:

tm is the number of days for the appropriate month of the year;
Ap is the heated area of the building, m2;
θiH is the internal temperature of the building during the heating season ◦C;
θe,m is the average air temperature of the appropriate month, ◦C;
Aenv is the area of the building envelope, m2;
Uenv is the U-value of the building envelope, W/m2·K;
ρair is the air density, kg/m3

vinf,m= 0.25·n50·(0.75· ρair
2·50

·(0.9·vwind,m)
2)

n·Vp.n50

Ap
(5)

where:

n50 is the air exchange value of the building, h−1;

vwind,m is the average wind speed of the month, m/s;
Vp.n50 is the volume of heated premises of the building, m3.

4. Results

4.1. Analysis of Building Airtightness

The airtightness of buildings is very much dependent on the quality of construction
works and even the small mistakes can lead to significant differences in airtightness;
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therefore, the evaluation of airtightness results was based on the comparison of statistical
averages of the flats of the same type (Figure 3).

 

Figure 3. Airtightness measurement distribution for the flats of different floor areas.

The recorded results show that the values of airtightness of the flats with the same
floor area can vary in a large range reaching the difference up to two times. The analysis of
airtightness values of the flats of different floor areas revealed that the statistic average of
results gradually decreases with the increase of the floor area of the flat, but the overall
measurement scatter remains almost constant. The comparison of the groups of flats of
90 m2 and 200 m2 floor area showed that the average value of airtightness for the flats with
larger floor area is 25% smaller. The obtained results can be interpreted as the achievement
of better average airtightness measurement result for the flats with a larger floor area
and the same time a larger volume. This fact of the better results for larger flats could be
explained as a minor defect that has a smaller effect on the general result of the airtightness
of the building.

After the study of two material alternatives, such as hollow clay masonry units (also
known as ceramic small blocks) (1) and sand–lime blocks (2) used for the construction
of external walls, it can be stated that regardless of the floor area, airtightness values for
hollow clay masonry walls were higher than the respective values for the more favourable
sand–lime block walls. The processed data of the airtightness measurements of the equal-
area flats located in different places of the buildings are presented in Table 2. The differences
in statistical averages of the measurements reach 7–11%. When interpreting the results,
the following reasons can be pointed out regarding this aspect. First, in the case of the
structure of hollow clay masonry units, where the bricklaying technology requires only
to fill the horizontal seams of the brickwork with the mortar, the air can circulate easier
through many empty vertical seams in the wall. Second, in the case of hollow clay units,
the air can circulate more freely in the structure because of the internal hollows of the
elements. In addition, uncontrollable air can enter the room through the openings made
for the installation of electric outlets through the other hollows that were not carefully
tightened, and thus increase the air leakage in the building.

Additional information about this issue will also be given in the next chapter which
concerns thermographic photo research.

A graphical illustration of the contrast of airtightness distribution data for end and
inside units in the buildings with the walls of sand–lime blocks is shown below (Figure 4).

The general analysis and comparison of the data shows that the average values of
airtightness in end units are 20% higher than the values in inside units of the same type.
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Based on the research results, mathematical dependencies were derived to be used for
the forecasting of airtightness values for the flats with various floor areas (Figure 5).

R-squared (R2) value in both flat location cases is close to 1, which indicates a high
predictive quality of these models.

Table 2. Measurement values of the airtightness of the flats.

Construction
Type

Flat Location
Average Flat Area,

m2

Max of
Airtightness n50

(h−1 at 50 Pa)

Min of
Airtightness n50

(h−1 at 50 Pa)

Average Value
of Airtightness

n50 (h−1 at 50 Pa)

Hollow clay
masonry units

Inside

90 1.25 0.71 0.97
120 1.15 0.62 0.85
150 1.13 0.49 0.79
200 1.05 0.49 0.74

End

90 1.49 0.89 1.10
120 1.35 0.76 1.03
150 1.29 0.70 0.97
200 1.23 0.63 0.93

Sand–lime
blocks

Inside

90 1.23 0.72 0.89
120 1.10 0.64 0.78
150 0.95 0.53 0.70
200 0.94 0.45 0.67

End

90 1.31 0.91 1.04
120 1.34 0.78 0.97
150 1.28 0.68 0.91
200 1.18 0.61 0.85

(a) (b) 

Figure 4. Airtightness of buildings with walls of sand–lime blocks, end units (a), and inside units (b).
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Figure 5. Dependency diagrams of airtightness and floor area for the end (orange) and inside (blue) units in the sand–lime
buildings of energy efficiency class A.

The comparison of statistical airtightness measurement data with the main metrics
n50 (h−1), mainly of small and medium-size low-rise residential buildings along with
the national regulation values from various countries, is provided below (Table 3). The
juxtaposition of earlier and the newest data show an improvement in airtightness quality
in recent years in Lithuania. Another noticeable trend is better airtightness values of North-
ern European countries and Canada, despite various construction periods of buildings.
Airtightness in countries such as the UK and Ireland seems to be worse because of a very
broad period of the building samples. Interesting outstanding results were obtained from a
study of relatively new Passive House buildings in Germany.

Table 3. Comparison of statistical airtightness measurement data between previous studies and the current research.

Authors/Reference Country
Construction

Period

Airtightness
n50 (h−1) Mean Values,
Standard Devia-tion or

Estimated from Snedecor‘s
Rule, Min/Max Values

Limit Airtightness
Metrics and Value

According to
National

Regulation

Notes

Kalamees [59] Estonia 2003–2005 x, σ
4.9 ± 3.5

q50, <6 (single-
family)

Values are based on
results provided in

the reference

Hamlin and
Gusdorf [60] Canada 1921–1997 x, σSn

3.1 ± 1

No mandatory
regulation

requirement

Values are based on
results provided in

the reference

Jokisalo et al. [26] Finland Pre-2007 x, σ
3.7 ± 2.2 q50, <4

Values are based on
results provided in

the reference

Kalamees [59] Norway 1984

x, σ

n50, <1.5
Values are based on
results providedin

the reference

4.0
Min 3.3
Max 5.4

Alfano et al. [29] Italy 1810–2010

x, σ No mandatory
regulation

requirement

Values are based on
the measurement

data

7.26 ± 4.02
Min 3.2

Max 23.3
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Table 3. Cont.

Authors/Reference Country
Construction

Period

Airtightness
n50 (h−1) Mean Values,
Standard Devia-tion or

Estimated from Snedecor‘s
Rule, Min/Max Values

Limit Airtightness
Metrics and Value

According to
National

Regulation

Notes

Sfakianaki et al.
[16] Greece Pre-2007

x, σ No mandatory
regulation

requirement

Values are based on
the measurement

data

6.79 ± 3.15
Min 1.87
Max 11.3

Sinnot and Dyer
[23] Ireland 1944–2008

x, σ

q50, <5
Values are based on

the measurement
data

9.64 ± 2.9
Min 5.39
Max 14.9

Chen et al. [61] China 1980–1990

x, σ
Values are based on

the measurement
data

9.8 ± 8.11
Min 1.59

Max 27.16

Pasos [39] UK 1900–2012

x, σ
q50, <10 Notional

recommended
value: 5 m3/(h·m2)

Values are based on
the measurement

data

8.39 ± 3.22
Min 3.51

Max 14.97

Kalamees [59] Sweden Pre-1978 q50, <0.6
Values are based on
results providedin

the reference

x, σ
3.7 ± 0.24

Hasper [62] Germany 2006–2014

x, σ n50 < 0.6 for
passive houses and

<1.5 as a general
value

Values are based on
passive buildings
measurement data

0.50 ± 0.27
Max 1.1
Min 0.18

Sadauskiene et al.
[63]

Lithuania
Class B

2005–2011

x, σ

n50
Class B < 1.5;
Class A < 1;

Class A+ and
A++ < 0.6

Values are based on
the measurement

data

6.24 ± 2.63
Max—11.3
Min—2.19

Current research Lithuania
Class A

2016–2019

x, σ

Values are based on
the measurements of

current research

0.88 ± 0.18
Min 0.618
Max 1.35

Current research

Lithuania
Class A+

and
A++

2016–2019

x, σ
0.62 ± 0.08
Min 0.818
Max 0.479

Notes: “n50” air change rate at 50 Pa pressure difference, “x” mean, “σ” standard deviation or “σSn” deviation estimated from Snedecor‘s
rule. If any value is not indicated it was not available.

Relatively large standard deviation values of airtightness measurements can be noticed
in some lines of the summary above. One of the implicit main reasons for this could be the
broad construction period of buildings examined in the studies. The other significant factor
is the relatively high airtightness limit value indicated in the regulation or the absence
of any definite requirements in some countries. These factors lead to different levels of
construction work by different companies and greater inequality of airtightness values.

4.2. Thermographic Photo Research

To determine the reasons for the rather low airtightness of the buildings, thermo-
graphic photo research was performed. It revealed the defects related to improper construc-
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tion works and wrong structural solutions. The most frequently met defects are presented
in the diagrams (Figure 6).
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Figure 6. Frequency of defects for hollow clay masonry buildings (a) and sand–lime block masonry buildings (b).

The analysis of research results showed that the most popular defect type in the
buildings can be associated with improper installation of windows and their technical
adjustment. During the assessment process of the buildings of the energy class A, the
defects of that kind were recorded in 90% of the cases and in 75–80% of A+ and A++ energy
class buildings. The most likely reason and explanation of this finding could be the thicker
insulation layer of the envelopes and the opening jambs of higher energy class buildings.
A thick insulation layer creates a lengthy way between the internal and external surfaces of
construction, and thus stronger resistance to the moving airflow.

The joints of external walls with other parts of the building, such as floor or roof
structures, can also be described as important and defect-sensitive and adding to the
airtightness of entire structure. This factor can be related to the flats at different locations
in the building and having different lengths of joints of these types. It also influences the
differences in the airtightness measurement values of differently situated flats.

Evaluation of the junctions and details of electric installation and water pipes showed
significant differences in recorded results. In structures made of hollow clay masonry units,
the risk of defects in the above-mentioned junctions grows up to 30%. In the envelope
structure constructed of hollow clay elements, the external layer of the building products
is destroyed when electric outlets are installed and cables are routed. In this way, the
interlinked hollows of the building envelope through which air can flow easily are reached.
Installation and repair of these elements and their junctions must involve careful insulation,
otherwise defects cannot be avoided (Figure 7).
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Figure 7. Defects of electric installation influencing the airtightness of construction.

4.3. Analysis of the Heat Loss

Total heat loss through the building envelopes of the flats with different floor areas
and various building energy classes calculated per 1 m2 of the heated floor area expressed
in kWh/m2 per year depending on the location of the flat in the building plan are presented
in Table 4.

Table 4. Total heat energy loss kWh per 1 m2 of the floor area per year of the flats of various size and energy classes,
considering where the flat is situated in the building plan.

Average Floor
Areas of the Flats,

m2

Energy
Class

Average Values
of the End Units,

Qsum
(kWh/m2·year)

Average Values
of the Inside Units,

Qsum
(kWh/m2·year)

Difference,
Qsum diferent

(kWh/m2·year)

Difference,
%

90
A 93.21 82.32 10.89 11.7

A+ 83.67 73.99 9.68 11.6
A++ 74.04 65.55 8.49 11.5

120
A 84.27 75.25 9.02 10.7

A+ 75.68 67.59 8.09 10.7
A++ 66.98 59.92 7.06 10.5

150
A 79.94 71.46 8.48 10.6

A+ 71.82 64.18 7.64 10.6
A++ 63.52 56.81 6.71 10.6

200
A 77.77 70.47 7.3 9.4

A+ 69.83 63.29 6.54 9.4
A++ 61.76 55.99 5.77 9.3

The analysis of obtained results revealed that a bigger heated floor area leads to higher
values of the total heat loss, regardless of the building energy performance class. The
explanation could be that the envelope areas increase together with the floor area of the
flats and the heat loss is directly related to the size of the envelope area.

The assessment of the influence of different locations in the building plan of flats
with the same floor area showed that the total heat loss through the building envelopes
calculated per 1 m2 of heated floor area and expressed in kWh/(m2·year) is around 9–12%
higher for the end units compared to the middle units (Figure 8). The distance between
the chart lines for lower energy performance building of class A (blue colour) is bigger
than respective distances for the buildings of higher classes A+ and A++ (red and green
colours). Accordingly, the heat loss increases calculated as differences between the values
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considering air infiltration and despite air infiltration are different: for the class A it
makes approximately 12% and for the classes A+ and A++ it makes about 4%. This fact
is logical evidence that better thermal insulation of the building contributes to higher
airtightness values.
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Figure 8. Heat loss differences reflecting the increase of values for end units in comparison with inside units.

The two above-mentioned tendencies remain, regardless of the material of the flat
wall structure.

Generally, the total heat loss difference considering air infiltration per 1 m2 of heated
floor area (kWh/(m2 per year)) between the end units and inside units can exceed 15%
because of the different airtightness of these flats.

Currently, the compliance with the allowable value of heat loss is assessed by examin-
ing the volume of the entire building in its design stage. The heat loss criterion is difficult
to meet in the process of energy certification when there is a need or opportunity to assess
individual flats or other logical architectural parts.

Figure 9 shows the average design values of heat energy loss for different flats and
their comparison with the corresponding limit values prescribed by the regulation. The
dwellings that exceed these limit values should be assigned to a lower energy performance
class, i.e., moved one class down in the classification.
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The results also show that all inside units of the investigated buildings meet the heat
loss requirement, regardless of their design class. Therefore, the assessment of the end
units shows that some of them would exceed the allowable limit, which would lead to
downshifting their energy class. To avoid these problems, it would be reasonable to plan
improvement measures for end units, which include both additional airtightening and
thermal insulation, already on the design stage.

5. Conclusions

Airtightness as an important factor, together with other complex design solutions,
can reduce heat energy expenses, increase thermal comfort, and ensure a healthy building
environment and its longevity. Airtightness as a property is dependent on human factors,
technical solutions, and materials, therefore it will differ in every single case.

Only the buildings constructed by the same construction company were investigated
in the research. Nevertheless, the difference of airtightness values measured in the flats of
the same category was twice as high. Most researchers underline the aspects related to the
construction work quality. Therefore, the average values of the entire building group, but
not separate measurements, should be used for the assessment of airtightness values of
separate building groups.

The average airtightness value differences collating the smallest and the largest flats
exceeded approximately 25%. This can be explained by the fact that local air leakages
or minor construction defects of larger flats statistically had less influence on the general
airtightness, understood as the air exchange speed in the premises.

Evaluating the buildings constructed of different types of brickwork, it is safe to state
that the building’s airtightness values depend on the material structure of the chosen
brickwork as well as on bricklaying technology and proper installation of engineering
systems. When the construction of hollow clay masonry units is chosen where the bricklay-
ing technology involves the filling of horizontal brickwork seams with mortar, the air can
circulate through many open voids in the wall. The comparison of the hollow clay unit
masonry structure with the solid sand–lime block masonry, the seams of which are filled
with mortar both vertically and horizontally, revealed the airtightness reduction of ceramic
structure around 7–11% on average.

The comparison of the airtightness measurement results for the flats of equal floor
area located at different places of the buildings showed up to 20% higher airtightness
measurement values for end units than in inside units, which is a significant difference.
The reasons for these value differences could be explained by a larger length of structural
joints in the end units. The longer structural joints and additional windows in the walls
of the end units cause the higher probability of the emergence of defects worsening the
general result.

The obtained results show that all the dwellings surveyed did not exceed the allowable
heat loss limits when the total heat loss of the inside units was assessed. As for the end
units, we see that most of them, especially the ones in the buildings belonging to higher
energy classes A+ and A++, exceed the heat loss limits prescribed for these energy classes.
In the further process of real estate development and design of terraced houses, they should
be assessed not as a single object, but as a whole consisting of separate units, where each
unit should meet the heat loss requirements.

Continuing the research, the role of airtightness should be extended to overall building
energy performance assessment by combining and incorporating comprehensive exper-
imental test results, database data, and simulation that could lead to more precise and
reliable results and give the opportunity to verify them.
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6. Venckus, N.; Bliūdžius, R.; Endriukaitytė, A.; Parasonis, J. Research of low energy house design and construction opportunities in
Lithuania. Technol. Econ. Dev. Econ. 2010, 16, 541–554. [CrossRef]

7. Relander, T.-O.; Holøs, S.B.; Thue, J.V. Airtightness estimation—A state of the art review and an en route upper limit evaluation
principle to increase the chances that wood-frame houses with a vapour- and wind-barrier comply with the airtightness
requirements. Energy Build. 2012, 54, 444–452. [CrossRef]

8. Younes, C.; Shdid, C.A. A methodology for 3-D multiphysics CFD simulation of air leakage in building envelopes. Energy Build.
2013, 65, 146–158. [CrossRef]

9. Wang, L.; Chen, Q. Validation of a coupled multizone-CFD program for building airflow and contaminant transport simulations.
HVAC R Res. 2007, 13, 267–281. [CrossRef]

10. Chan, W.R.; Joh, J.; Sherman, M.H. Analysis of air leakage measurements of US houses. Energy Build. 2013, 66, 616–625. [CrossRef]
11. Montoya, M.I.; Pastor, E.; Carrié, F.R.; Guyot, G.; Planas, E. Air leakage in Catalan dwellings: Developing an airtightness model

and leakage airflow predictions. Build. Environ. 2010, 45, 1458–1469. [CrossRef]
12. Hassan, O.A. An alternative method for evaluating the air tightness of building components. Build. Environ. 2013, 67, 82–86.

[CrossRef]
13. International Organization for Standardization (ISO). EN ISO 9972:2015—Thermal Performance of Buildings–Determination of Air

Permeability of Buildings–Fan Pressurization Method; International Organization for Standardization: Geneva, Switzerland, 2015.
14. Feijó-Muñoz, J.; Poza-Casado, I.; González-Lezcano, R.A.; Pardal, C.; Echarri, V.; De Larriva, R.A.; Fernández-Agüera, J.; Dios-

Viéitez, M.J.; Del Campo-Díaz, V.J.; Calderín, M.M.; et al. Methodology for the study of the envelope airtightness of residential
buildings in Spain: A case study. Energies 2018, 11, 704. [CrossRef]

15. Kalamees, T.; Kurnitski, J.; Jokisalo, J.; Eskola, L.; Jokiranta, K.; Vinba, J. Measured and simulated air pressure conditions in
Finnish residential buildings. Build. Serv. Eng. Res. Technol. 2010, 31, 177–190. [CrossRef]

16. Sfakianaki, A.; Pavlou, K.; Santamouris, M.; Livada, I.; Assimakopoulos, M.-N.; Mantas, P.; Christakopoulos, A. Air tightness
measurements of residential houses in Athens, Greece. Build. Environ. 2008, 43, 398–405. [CrossRef]

17. Becker, R. Air leakage of curtain walls—diagnostics and remediation. J. Build. Phys. 2010, 34, 57–75. [CrossRef]
18. Kovanen, K.A.; Laamanen, J.; Kauppinen, T.; Duanmu, L. Air tightness of new residential buildings in Finland. In Proceedings

of the 6th International Symposium on Heating, Ventilating and Air Conditioning, Nanjing, China, 6–9 November 2009; pp.
207–213.

19. Lucchi, E. Non-invasive method for investigating energy and environmental performances in existing buildings. In Proceedings
of the 27th Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 13–15 July 2011; pp. 571–576.

20. Lucchi, E.; Pereira, L.D.; Andreotti, M.; Malaguti, R.; Cennamo, D.; Calzolari, M.; Frighi, V. Development of a compatible, low
cost and high accurate conservation remote sensing technology for the hygrothermal assessment of historic walls. Electronics
2019, 8, 643. [CrossRef]

21. Kalamees, T.; Alev, Ü.; Pärnalaas, M. Air leakage levels in timber frame building envelope joints. Build. Environ. 2017, 116,
121–129. [CrossRef]

22. Pereira, P.F.; Almeida, R.M.S.F.; Ramos, N.M.M.; Sousa, R. Testing for building components contribution to airtightness assessment.
In Proceedings of the 35th AIVC Conference Ventilation and airtightness in transforming the building stock to high performance,
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Abstract: According to the engineering phenomenon of the galloping of ice-coated transmission lines
at certain wind speeds, this paper proposes a novel type of energy harvester based on the galloping
of a flexible structure. It uses the tension generated by the galloping structure to cause periodic
strain on the piezoelectric cantilever beam, which is highly efficient for converting wind energy
into electricity. On this basis, a physical model of fluid–structure interaction is established, and the
Reynolds-averaged Navier–Stokes equation and SST K -ω turbulent model based on ANSYS Fluent
are used to carry out a two-dimensional steady computational fluid dynamics (CFD) numerical
simulation. First, the CFD technology under different grid densities and time steps is verified. CFD
numerical simulation technology is used to simulate the physical model of the energy harvester, and
the effect of wind speed on the lateral displacement and aerodynamic force of the flexible structure
is analyzed. In addition, this paper also carries out a parameterized study on the influence of the
harvester’s behavior, through the wind tunnel test, focusing on the voltage and electric power output
efficiency. The harvester has a maximum output power of 119.7 μW/mm3 at the optimal resistance
value of 200 KΩ at a wind speed of 10 m/s. The research results provide certain guidance for the
design of a high-efficiency harvester with a square aerodynamic shape and a flexible bluff body.

Keywords: galloping; energy harvester; computational fluid dynamics (CFD); numerical simulation

1. Introduction

In recent years, the environmental problems caused by the burning of fossil fuels
such as petroleum and coal have become more and more serious, and fossil energy is
increasingly depleted. It is an important research focus to obtain clean and renewable
energy from the environment [1]. Previous studies have shown that vortices may be
generated alternately from the two side surfaces of a bluff body that is immersed in the
flow, which results in the phenomenon of flow-induced motion (FIM) [2]. Although
FIM may endanger the safety of structures, it can be potentially exploited for collecting
energy from the environment [3]. To this end, various energy harvesters and technologies
have been developed. It is also expected that such environmental energy harvesters can be
utilized in practices to power micro-electromechanical systems (MEMS) and wireless sensor
systems so that a more convenient realization of structural health monitoring, industry
sense and detection, military track, and environmental monitoring [4] can be achieved.

In reference to wind energy harvesting techniques, the majority of related harvesters
were developed using the principles of vortex-induced vibration (VIV), galloping, flutter,
and buffeting, the main forms of wind-induced induced VIV and galloping. For the VIV
energy harvester, the flow rate range of high-efficiency power generation requires that the
vortex shedding frequency of the harvester is consistent with the natural frequency. There-
fore, it is commonly used for fluid energy harvesting. Williamson’s team [5,6] conducted a
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lot of research on cylindrical VIV, identified various branches of the VIV amplitude, and
summarized the vortex shedding mode into S and P modes. Ding et al. [7] conducted
numerical simulation of VIV for different bluff bodies and studied their energy harvesting
efficiency. An et al. [8] analyzed and studied the effect of CFD technology on the plate
length of the VIV energy harvester on the flow velocity, dynamics, and performance of the
wake structure. Zhang et al. [9] used the two-dimensional Reynolds number method to
study the VIV of four staggered cylinders, and conducted a series of numerical simulations
for energy harvesting. Akaydin et al. [10] developed a cylindrical bluff body VIV piezo-
electric energy harvester. When the flow speed is 1.19 m/s, the harvester with a resonance
frequency of 3.14 Hz can output a maximum power of 0.1 mW to an optimized load of
2.46 MΩ. Galloping is a typical self-excited vibration phenomenon caused by aeroelastic
instability. It mostly occurs in rectangular, angular, and flexible structures, and is usually
characterized by low-frequency and high-amplitude oscillations [11]. Due to the greater
vibration and higher output power, this aerodynamic instability may be more suitable for
energy harvesting than VIV [12]. Barrero-Gil et al. [13] were first to theoretically analyze
the potential of using a single-degree-of-freedom (SDOF) system to harvest energy using
lateral gallop. Javed et al. [14] used a distributed parameter pattern to study the influence of
various aerodynamic force expressions on galloping. Zhao et al. [15] studied the influence
of bluff wind exposure area, load resistance, mass of bluff, and piezoelectric sheet length
on the output power of a galloping energy harvester. On the other hand, Hu et al. [16]
examined the influence of aerodynamic configuration on wind harvesting performance,
and found that the VIV of a cylinder could be transformed into galloping if the cylinder
was treated via corner modification techniques. Additionally, Sirohi et al. [17] proposed a
harvester based on triangular section rods attached to the cantilever beam.

The results from previous studies have shown that transmission lines can be covered
with ice on cold days, and their cross section may change to a non-circular shape [18]. Under
certain wind speed and wind attack angles, the incoming flow on both sides of the bluff
body can produce vortices and shed backwards, and generate an alternate aerodynamic
load, which results in the galloping of the transmission line [19]. Previous studies also
showed that the tension of the wire can influence galloping significantly, and greater
tensions tends to favor the occurrence of galloping. Meanwhile, many galloping energy
harvesters were developed by using columns with a square section, as prisms with a square
section have more complex cross-section geometric characteristics compared to cylinders.
Since Den Hartog first studied and explained the galloping phenomenon, numerous
studies have shown that galloping can be widely observed on bluff bodies with a square
section [20,21]. Therefore, the square section is usually preferred for the study of galloping
energy harvesters.

In this study, a square section energy harvester based on the galloping principle of
an iced transmission line was developed. The performance of the harvester was exam-
ined via both experimental tests and CFD simulations. The CFD technique was utilized,
since it provides a powerful tool to explore the characteristics of flow motions, and to
further understand the working mechanism of the harvester. The remainder of the article
is organized as follows: Section 2 introduces the design and modeling of the harvester,
Sections 3 and 4 detail the CFD method, and the experimental method, respectively. The
specific results are presented and discussed in Section 5, and the main findings and conclu-
sions are summarized in Section 6.

2. Design and Modeling of the Energy Harvester

2.1. Configuration

Figure 1 depicts the setup of the developed harvester. It consists of a flexible structure
(i.e., the counterpart of transmission lines with a length of 0.42 m) that aims to receive
wind energy from incoming flows, a supporting frame where the flexible structure is
fixed, and a wind direction regulator that is mainly composed of a spindle and a deflector.
The two ends of the flexible structure are respectively connected with the rigid body of
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the supporting frame, and the free end of a cantilever beam where a piezoelectric film is
adhered. The cantilever beam is made of 0.3 mm× 150 mm stainless steel. The piezoelectric
film, i.e., the PVDF (Polyvinylidene Fluoride) film (IPS-17020, ZHINK TECHNOLOGY)
has dimensions of 30 mm (length) × 12.1 mm (width) × 0.28 μm (depth), and the density is
1.78 × 103 kg/m3. The spindle is fixed with the supporting frame and the deflector rigidly.
Due to the guiding effects of the deflector, incoming wind flows tend to blow in a direction
that is perpendicular to the windward surface of the flexible structure. When the wind
speed exceeds a certain value, the flexible structure can vibrate up and down severely, i.e.,
galloping occurs. The vibrating flexible structure then drives the cantilever and therefore
the PVDF film to sway, which fulfills the conversion of wind energy into electricity.

Figure 1. Schematic diagram of energy harvester.

When the energy harvester faces the incoming wind, the flexible bluff body swings
around the plane and causes the thin wire to generate tension. The tension at one end of
the thin wire directly drives the cantilever beam to produce periodic alternating strain. At
the same time, the piezoelectric film is deformed. A certain charge is generated, which
effectively converts the flow energy of the air into electric energy. The energy harvester has
a simple structure and low manufacturing costs, and is very suitable for the surrounding
windy environment all year round. Compared with various forms of energy harvesters, this
paper’s harvester is not affected by wind direction and is suitable for any wind direction
angle. Since the designed energy harvester has excellent parameters, and the critical wind
speed generated is small, the flexible structure is prone to galloping and improves the
efficiency of energy harvesting.

2.2. CFD Mathematical Model

As shown in Figure 2, the harvester system can be mathematically simplified as a
SDOF system. Taking the middle section of the flexible structure as the simulation research
object, it is assumed that the wind field is incompressible and the effect of structural torsion
and the inverse piezoelectric effect in the system can be reasonably neglected.
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U

Figure 2. 2-dimensinal dynamic model.

Thus, the dynamics of the harvester body over a unit length can be depicted by [22]:

M
..
y + C

.
y + Ky = Fy (1)

where y denotes the lateral displacement of the square column, M is the mass per length,
Fy is the force acting on the square structure in y direction, C is the mechanical damping
coefficient, and K is the stiffness of the vibration model.

The details of the equation can be referred to in Barreiro-Gill et al. [23].
According to the quasi-steady theory [24], wind force can be expressed as function of

wind velocity U, the characteristic length of the square section D (or the side length in this
study) and a dimensionless coefficient, or the lift coefficient CL in this study:

Fy =
1
2

ρU2DCL (2)

The main parameters involved in this model of harvester are listed in Table 1, where ζ
represents the damping ratio, which is defined as ζ = C/2

√
MK. Note that the values of

damping ratio and effective stiffness coefficient can be determined through experiment.

Table 1. Main physical model parameters of the harvester.

Item Symbol Value

Mass(g) M 0.144
Diameter(mm) D 30
Stiffness (N/m) K 30.2
Damping ratio ζ 0.0018

Air density(Kg/m3) ρ 1.225
Motion viscosity (m2·s−1) v 1.41 × 10−6

2.3. Piezoelectric Performance Equation

The energy harvester uses a d31 piezoelectric sheet, i.e., the polarization direction is
perpendicular to the applied stress direction, and the working mode of the piezoelectric
material is the d31 mode with the polarized direction parallel to the surface normal. To
simplify the analysis, a load resistance (RL) was attached to the conductive electrode of the
PVDF piezoelectric ceramic film. The piezoelectric constitutive relationship can be directly
expressed as [25]:

D3 = d31T1 + εT
33E3 (3)

where d31 is the piezoelectric charge constant, D3 is the electric displacement component, T1
is the stress component, E3 is the electric field component, and εT

33 is the dielectric constant.
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3. CFD Simulation Method

3.1. Numerical Methods

The fluid–structure interaction solution method in conjunction with the weak coupling
solution technique were used to numerically calculate the evolutions of wind field over the
computational domain and to obtain the aerodynamic force acting on the harvester. The
two-dimensional Reynolds number average Navier–Stokes (RANS) equation and the k-ω
SST (shear stress transport) turbulent model [26] were used to numerically simulate the
flow around a square cross-section. This turbulence model was chosen because, compared
to other turbulence models, the k-ω model of SST is a hybrid of the k-ω and k-ε models.
It activates the k-ω model near the wall and the k-ε model in free flow. It has better
performance when predicting the boundary layer flow of the reverse pressure gradient.
Therefore, this paper adopts the SST k-ω turbulence model in CFD simulation.

The interaction effects between the wind flows and the harvester structure were
embedded into the CFD to implement the link with the main program. At the same time,
the structure dynamic equation was solved and the structure domain calculated, and then
the motion lift coefficient and displacement of the structure were obtained. At the same
time, the overset grid technology was used to update the grid of the computational domain
in real time.

User-defined functions (UDFs) were compiled (in C Language) and embedded into
the CFD software to realize the simulation of fluid–structure interaction. In this paper,
DEFINE_CG_MOTION was used as the motion function to define the motion mode. The
overset grid model was used to define computational grid movement and data exchange.
The Newmark-β method was used in UDF (refer to the Appendix A for details). This
method is a numerical integration method for solving differential equations. It has been
widely used to solve problems with oscillating systems [27].

Based on the basic assumptions of the central difference method, the explicit difference
method of dynamic equations was adopted. The basic assumption of the Newmark-β
method is that the acceleration changes linearly in each time increment, and the characteris-
tics of the system remain constant during this interval. The equilibrium requirement of the
force system acting on the mass at any time is as follows: the Newmark-β method approx-
imates the speed and displacement of the system at time (t + Δt) through the following
two assumptions:

.
y(t + Δt) =

.
y(t) + (1− γ)Δt

..
y(t) + γΔt

..
y(t + Δt) (4)

y(t + Δt) = y(t) + Δt
.
y(t) + (

1
2
− β)Δt2 ..

y(t) + βΔt2 ..
y(t + Δt) (5)

The two parameters γ and β in the formula can be selected as required, and different
combinations correspond to different processing effects. When γ = 1

2 and β = 1
2 , it is the

central difference method [28]. Therefore, the acceleration and velocity can be obtained.

..
y(t + Δt) =

1
βΔt2 (y(t + Δt)− y(t))− 1

βΔt
.
y(t)− (

1
2β
− 1)

..
y(t) (6)

.
y(t + Δt) =

γ

βΔt
(y(t + Δt)− y(t)) + (1− γ

β
)

.
y(t) + (1− γ

2β
)Δt

..
y(t) (7)

The motion of the system at time t + Δt can be expressed as:

M
..
y(t + Δt) + C

.
y(t + Δt) + Ky(t + Δt) = Fy(t + Δt) (8)

Integrating the above formulas leads to:

K̃y(t + Δt) = F̃y(t + Δt) (9)
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where
K̃ =

1
βΔt2 M +

γ

βΔt
C + K (10)

F̃(t + Δt) = F(t + Δt) + M
[

1
βΔt2 y(t) + 1

βΔt
.
y(t) + ( 1

2β − 1)
..
y(t)

]
+C

[
γ

βΔt y(t) + ( γ
β − 1)

.
y(t) + ( γ

2β − 1)Δt
..
y(t)

] (11)

The numerical simulation flowchart is shown in Figure 3.

Figure 3. Flowchart of transient numerical simulation.

3.2. Computational Fluid Domain and Grid

As shown in Figure 4a, the simulation used a rectangular computational fluid domain.
The calculation domain had a width of 20D and a length of 30D. The middle position of the
square was 10D away from the inlet. The boundary conditions used included the left speed
inlet, the right pressure outlet, and the upper and lower sides’ sliding wall surface. The
center of the square column was the origin of the coordinate system; x and y respectively
represent the along-wind and crosswind directions.

Figure 4. (a) Computational fluid domains; (b) Computational grid.

The model establishment and grid division were all carried out in the commercial
software Ansys ICEM. The grids under different working conditions were all divided
by non-uniform structured grids to ensure the accuracy of calculation and save a lot of
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computing resources. In computational fluid dynamics, the dynamic overset grid method
has efficient dynamic grid processing capability and can guarantee the quality of the grid,
so it has been widely used in unsteady flow simulation. Therefore, this research used
overset grid technology; many concepts related to nested grid computing used today can
be traced back to the breakthrough idea of Joseph Steger [29,30]. The overset grid method
was used in Fluent; when FIM occurred, the constructed grid oscillated with the square
column to ensure that the grid was not updated, which effectively avoided the negative
element grid. The square coordinate grid (called the component grid) matched the square
cylinder, and the background grid adopted a unified Cartesian grid. Details of the overset
grid are shown in Figure 4b.

In order to make the grid height Y+ of the first layer of the wall satisfy the wall
function, the height value was determined according to the required Reynolds number [31].
Enough densification was performed close to the wall, and at least 20 layers of wall surface
grids were set with a rate of change of 1.2. The Y+ of the wall grids were all around 1.

3.3. Solving Method

The turbulence, pressure, momentum, and other fluid control equations used the
second-order upwind spatial discretization algorithm, and the gradient calculation used an
algorithm based on a least squares unit [32]. The discretization was performed using the
second-order upwind difference scheme, and the transient term was discretized using the
second-order backward Euler scheme. The first-order algorithm was used for preliminary
calculation and then the second-order algorithm was used to improve the calculation
accuracy. All simulation conditions adopted the pressure-velocity (SIMPLEC) coupling
method, and the convergence was determined by the size of the residual error of the
governing equation [33]. The continuity equation, momentum equation, k equation, and ω

of all scale residuals below 1 × 10−5 were used. The equation was used as the convergence
criterion, and the corresponding calculation results were observed to be stable, which can
be considered reliable results.

3.4. Validation of Numerical Model

To ensure reliability, and that the model used numerical simulation and obtained a
convergent and accurate solution within a reasonable calculation time, this paper considers
different grid densities and time steps. Tables 2 and 3 list the results of different grid
parameters and time steps, in which CD denotes the mean drag coefficient over the time
domain, CL stands for the root mean square (RMS) of the lift coefficient, and St represents
the Strouhal number.

Table 2. Verification of grid density independence (Re = 2.2 × 104).

Grid Density CD CL St

Coarse (32,414) 2.20 1.44 0.128
Medium (43,954) 2.25 (2.27%) 1.41 (2.08%) 0.127 (0.78%)

Fine (96,153) 2.26 (2.65%) 1.45 (0.90%) 0.127 (0.78%)

Table 3. Validation of time-step independence (Re = 2.2 × 104).

Time Steps CD CL St

0.001 2.25 1.45 0.127
0.0008 2.30 (2.22%) 1.56 (7.59%) 0.129 (1.57%)
0.0006 2.29 (1.78%) 1.66 (14.5%) 0.132 (3.93%)

LES [31] 2.21 (1.78%) 1.71 (17.9%) 0.128 (0.79%)
DNS [32] 2.18 (3.11%) 1.51 (4.14%) 0.132 (3.93%)
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As shown in Table 2, the results under the three different grid densities were similar.
The scheme with medium grid resolution was adopted in this study so that a balance
between computational efficiency and cost could be achieved.

Meanwhile, the transient numerical method was adopted and time-step independent
verification was carried out to evaluate the uncertainty of the value. The independence
of the time steps was verified by using different time step sizes of 0.0006 s~0.001 s/step
for numerical simulation. According to the calculation results for different time steps, a
small time step cannot improve the simulation accuracy but takes a long time. Therefore,
the time step of 0.0008 s per step was selected. The calculated results of the square at
Re = 2.2 × 104 were similar to the results presented by Cao [34] and Trias [35], indicating
that the turbulence model adopted can obtain more reliable results.

4. Experimental Method

The experiment was carried out in a subsonic closed recirculation wind tunnel. The
design range of the flow velocity at the working section of the tunnel was 1–22 m/s, with
the turbulence intensity not exceeding 0.5%. The layout of the experiment is shown in
Figure 5. When exploring the influence of the external resistance RL, the external load
resistance of 10 kΩ–1 MΩ was connected in sequence, and the wind tunnel control speed
changed in a gradient of 3 m/s–10 m/s. The output voltage was collected and stored by
a data acquisition instrument (NI 9234). The highest sampling frequency was 2840 Hz
for acquisition, and the acquisition time exceeded 120 s. The voltage and displacement
were inputted into labview for visual observation and analysis. The displacement of the
transmission-line-like flexible structure was monitored by a laser displacement sensor that
was installed on the side wall of the wind tunnel. The output voltage of the harvester was
recorded when the vibration of the flexible structure became stable.

 
Figure 5. Experimental setup: (a) working section; (b) control platform.

5. Results and Discussion

5.1. Performance Analysis of the Harvester

On obtaining the voltage time-history data through wind tunnel experiments, the root
mean square (RMS) value of voltage VRMS can be calculated:

VRMS =

√
1

T2 − T1

∫ T2

T1

u(t)dt (12)

Accordingly, the mean power P can be obtained as:

P =
1

T2 − T1

∫ T2

T1

u(t)2

RL
dt (13)

in which T2 and T1 are the start and end time during the acquisition period, respectively,
RL is the external load resistance, and u(t) is the instantaneous voltage.

Figure 6 displays the results of the RMS voltage and mean power output by connecting
various load resistances from 10 kΩ to 1 MΩ in the PVDF film in the wind speed range of
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3–10 m/s. It can be seen in Figure 6a that under the same load resistance, the wind speed
continues to increase, and the output RMS voltage has an obvious upward trend. The
minimum RMS voltage recorded under a load resistance of 10 kΩ is 350 mV. In addition,
the output RMS voltage of this resistance model is relatively small. In the wind speed range
of 3–10 m/s, the output RMS voltage steadily increased from 350 mv to 0.14 V. The highest
RMS voltage recorded under the load resistance of 1 MΩ was 2.96 V. It can be found from
Figure 6b that in the wind speed range of 3–10 m/s, the rising trend of output power was
similar to the rising trend of RMS output voltage. When the wind speed was 10 m/s, the
maximum load resistance of 200 kΩ in this experiment was 12.1 μW. The results indicate
that when the load resistance is constant, as the input air speed increases, the voltage and
power between the load resistances increase almost in advance.

RL kRL k

Figure 6. (a) Output voltage and (b) power with different wind speed.

According to the RMS voltage and output power calculated by Formulas (12) and (13),
the power density and voltage density per scanning volume, which are defined as the
power value and RMS voltage value divided by the volume of piezoelectric film, were
calculated. In the analysis that followed, the load resistance first had to be matched to
evaluate the harvesting performance. Figure 7 displays the change of output voltage
density and power density with load resistance under different wind speeds. Figure 7a
shows that the overall output trend of the measured voltage density increases with the
increase of resistance within a certain wind speed range, and the maximum voltage density
is 29.1 V/mm3. Figure 7b shows that within a certain range, the overall output power trend
of the measured power density at all wind speeds increases as the resistance increases.
The optimal value of the load resistance for different wind speeds is between 100 kΩ and
430 kΩ. Outside this load resistance range, the average power generated is significantly
reduced. After intensive testing, it was found that when the load resistance is about
200 kΩ, it provides the highest output average power. Therefore, R0 = RL = 200 kΩ is the
optimal electrical load resistance, and this result will be used for the efficiency of the energy
harvester in the subsequent experimental discussion when the load resistance is 200 KΩ,
and the power density is 119.7 μW/mm3. Previous studies have pointed out that there is
an optimal resistance R0 for the best collection efficiency. Neglecting the effects of damping
and dielectric loss, the optimization resistance can be determined as [36]:

R0 =
1

2π f C
(14)

where C is the harvester capacitance and f is the vibration frequency.
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Figure 7. (a) Output voltage density and (b) power density with different load resistance.

To further explore the working performance of the harvester, it was necessary to
analyze the piezoelectric film dynamics characteristics. Figure 8 displays the time history
of the output voltage with a load resistance of 300 kΩ at a wind speed of 3–7 m/s. As
demonstrated, the voltage signal fluctuates periodically for each case associated with a
fixed wind speed, and the amplitude of the voltage increases distinctly as the wind speed
increases (from 0.14 V to 1.12 V). Apparently, the periodic variation of output voltage is
attributed to the periodic evolution of the strain around the fix end of the cantilever beam.
Because the galloping amplitude increases consistently with the increase of wind speed,
the strain becomes larger for the cases with stronger incoming wind, which further leads
to higher output voltage.

Figure 8. Diagram of Voltage time history (RL = 100 kΩ).

5.2. Dynamic Characteristics Analysis

By calculating the damping coefficient, mass ratio, and Reynolds number selected
in this study, it can be found that the value of Ug/Uv is much less than 1, which means
that the square column FIM has a strong interaction between VIV and galloping [37]. It
can be considered that galloping continuously affects the amplitude and locking area
of VIV, and VIV also changes the form of galloping. In order to better understand FIM
and flow structure, this paper introduces four kinds representative simulation examples
under various Reynolds numbers (Re = 2054/6161/16,430/20,537). This includes four FIM
regions: VIV initial branch, VIV upper branch, VIV-galloping transition, and galloping.
These vortex patterns, at different Reynolds numbers, are analyzed. In addition, the effects
of the amplitude and frequency responses for square columns are discussed as well.

This paper presents the instantaneous vorticity diagram, velocity cloud diagram, and
velocity streamline of the square column at different wind speeds (Reynolds number),
including the vortex shedding at the highest and lowest points of the structure. In those
figures of the vortex pattern, the red vorticity is positive, which means counterclockwise
rotation; the blue vorticity is negative, which means clockwise rotation. There are two
vortex shedding modes: 2S mode (in one cycle, two vortices shed from opposite sides
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of the cylinder) and 2P mode (in each cycle, two pairs of vortices shed from each side of
the cylinder). As the wind speed changes, the vortex shape can change, and the branch
transitions affect each other [27]. In this paper, the vortex shedding mode is studied by
observing the instantaneous vorticity contours around the square column oscillator, where
the vorticity is defined as ω = ∂v/∂x− ∂u/∂y.

When the wind speed is 1 m/s (Re = 2054), the harvester is in the initial branch of
VIV. As shown in Figure 9, the 2S model of the vortex shedding mode in the wake can be
clearly observed; that is, the positive vortex and the negative vortex separate out during
the vibration period. This mode is the classical von Kármán Street. In this range, as Re
increases, the size of the vortex is larger than when Re is low, which is consistent with the
numerical results given by Ding et al. [27].

 

Figure 9. Vortex pattern and Velocity distributions contour (Re = 2054).

As the wind speed increases to 3 m/s (Re = 6161), the number of vortices shed in
each oscillation cycle increases. In each oscillation period, 6 vortices shed from the square
column and shed in the 2P + 2S mode of two pairs of vortices and one single vortex, as
shown in Figure 10. This vortex pattern is known as Quasi-2P, which means two pairs of
vortices shedding per cycle.

 

Figure 10. Vortex pattern and velocity distributions contour (Re = 6161).
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When the wind speed reaches 8 m/s (Re = 16,430), the vortex pattern in the
VIV-galloping transition zone is formed. As shown in Figure 11, ten vortices shed from the
square column in an oscillation cycle. According to previous research by Ding [38], a similar
near-wake vortex structure was captured as 4P + 2S. There are still many controversies
about the identification method of multiple vortices shedding from square columns. At the
highest and lowest points of vibration, a single vortex appears first. In the next downward
or upward process, a total of two pairs of vortices appear.

 

Figure 11. Vortex pattern and Velocity distributions contour (Re = 16,430).

When the wind speed is 10 m/s (Re = 20,537), the FIM of the square column is in
the fully developed galloping state zone. As shown in Figure 12, there is a fundamental
difference between galloping vibration and VIV. When entering the galloping state, a total
of 14 vortices will shed in the manner of 6P + 2S in each oscillation period, two of which
are separate vortices. According to the results of previous studies [39], it can be found that
the vortex of the square column is at high Reynolds number. The type is np + 2S, where n
represents the number of p and increases with the increase of Reynolds number or flow
rate. The 2S vortex appears at the highest point and the lowest point of the displacement
and falls off respectively.

 

Figure 12. Vortex pattern and Velocity distributions contour (Re = 16,430).
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Within a certain wind speed range (as shown in Figures 13–16), the lift coefficient
decreases with the increase of wind speed. When the wind speed is relatively small, the lift
coefficient becomes a regular oscillation under low Reynolds number [40]. In the initial
stage of VIV, comparing the lift coefficient and the displacement graph, the lift coefficient
and the displacement performance are highly consistent. The displacement curve and lift
coefficient curve are transformed by FFT to obtain the frequency spectrum. In Figure 15b,
it can be seen that both the displacement spectrum and lift spectrum have multiple peak
frequencies and that they maintain good consistency and their main frequency is close to
the natural frequency. When galloping occurs, the dominant frequency of the displacement
spectrum decreases, and the lift spectrum frequency is more obviously controlled by the
vortex deflation frequency. In Figure 16b, when the square column enters the state of
full galloping, it can be found that the proportion of low frequency in the displacement
spectrum increases. The increase in its proportion is also an important signal for the full
development of galloping. When galloping occurs, the frequency response of the square
column is obviously different; its vibration is hardly controlled by the vortex breakaway
frequency and the main frequency is always lower than the natural frequency, which also
leads to the occurrence of large vibrations.

Figure 13. (a) Amplitude and lift coefficient versus time; (b) Frequency spectrum (Re = 2054).

Figure 14. (a) Amplitude and lift coefficient versus time; (b) Frequency spectrum (Re = 6160).
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Figure 15. (a) Amplitude and lift coefficient versus time; (b) Frequency spectrum (Re = 16,430).

Figure 16. (a) Amplitude and lift coefficient versus time; (b) Frequency spectrum (Re = 20,538).

Through the numerical simulation results, as the wind speed increases (the Reynolds
number also increases), although the lift coefficient decreases, the lift applied to the
two sides of the bluff body continues to increase. The maximum displacement of the
system also increases, which causes an increase in the instantaneous stress of the piezoelec-
tric thin film. Combined with the results of the output power of the energy harvester, it
can be found that when the Reynolds number is low, the bluff body’s vibration amplitude
and frequency are low, so the harvesting efficiency is at a low level. However, when the
incoming wind speed increases and begins to enter the galloping state, the coupling effect
of VIV and galloping can accelerate the onset of galloping and increase the displacement
response of the bluff body at low and medium wind speeds. After entering full galloping,
the amplitude of the entire system will increase significantly, and the output power will
be increased. In addition, compared with VIV, the vibration of the square column in the
galloping process is unstable, and its amplitude will increase with the increase of the
incoming flow velocity. This means that the kinetic energy of the fluid captured by the
square column FIM harvesting system will continue to increase with the increase of the
incoming wind, and there is no limit [41]. Therefore, it can be seen that the square cylinder
has obvious advantages in the application of FIM energy conversion, especially under high
Reynolds number. The form of wind-induced vibration is closely related to the damping,
elastic stiffness, and mass of energy harvester, which is used as the power source of energy
collection. The harvesting efficiency of the flexible structure can be further improved only
through analysis of its dynamic characteristics and reasonable design.
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6. Conclusions

In this study, a novel type of piezoelectric energy harvester was developed based
on the principle of wind-induced galloping. The dynamic model of the fluid–structure
interaction system was established, and CFD techniques in conjunction with the Newmark-
β method were adopted to obtain corresponding numerical solutions. Wind tunnel tests
were also conducted to detail the working performance of the harvester. The main findings
and conclusions are summarized below:

1. The flexible structure experienced four FIM stages. The wind speed increased to
8 m/s in the transition zone between vortex-induced resonance and galloping. When
the wind speed reached 10 m/s, it started to gallop completely, and the harvester
system experienced low-frequency and high-amplitude vibration.

2. Within the studied wind speed range of 3–10 m/s, it was found that as the wind
speed increased, the vortex-induced shedding frequency of the flexible structure first
increased and then decreased, but the associated displacement increased consistently.

3. When the resistance was constant, the output voltage and power of the harvester
increased with the increase of wind speed. When the wind speed was constant, the
output voltage increased consistently with increasing resistance. By contrast, the
output electric power first increased and then decreased with the resistance, and there
was optimal resistance at around 100 kΩ. The maximum output power of the energy
harvester was 119.7 μW/mm3.
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Appendix A

#include “udf.h”
#include “stdio.h”
#include “time.h”
#include “stdlib.h”
#include “math.h”
static real speed[ND_ND];
static real weiyi_before[ND_ND],sudu_before[ND_ND],jiasudu_before[ND_ND];
static real speed_nz;
static real weiyi_before_nz,sudu_before_nz,jiasudu_before_nz;
static real number_1 = 0;
static real number_2 = 0;
DEFINE_CG_MOTION(first,dt,vel,omega,time,dtime)
{

real m[ND_ND],k[ND_ND],zunibi[ND_ND],zunixishu[ND_ND],freq_rad[ND_ND];
real beta,gama;
real k_equ[ND_ND],inertia_equ[ND_ND],damping_equ[ND_ND],force

_equ[ND_ND];
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real code_1,code_2,code_3,code_4,code_5,code_6,code_7;
real weiyi[ND_ND],sudu[ND_ND],jiasudu[ND_ND];
real m_nz,k_nz,zunibi_nz,zunixishu_nz,freq_rad_nz;
real beta_nz,gama_nz;
real k_equ_nz,inertia_equ_nz,damping_equ_nz,force_equ_nz;
real code_1nz,code_2nz,code_3nz,code_4nz,code_5nz,code_6nz,code_7nz;
real weiyi_nz,sudu_nz,jiasudu_nz;
real hezai,force,moment,li[ND_ND],liju[ND_ND];
real cog[ND_ND];
int x, y, z;
#if !RP_NODE
FILE *fp_1;
#endif
#if !RP_HOST
Domain *d;
Thread *t;
face_t f;
cell_t c;
real NV_VEC (A);
d = Get_Domain(1);
t = DT_THREAD(dt);
for(x=0; x<ND_ND; x++)

{
cog[x] = DT_CG(dt)[x];

}
Compute_Force_And_Moment(d, t, cog, li, liju, FALSE);
hezai = li[0];
force = li[1];
moment = liju[2];
#endif
node_to_host_real_4(hezai,force,moment,cog[1]);
if (number_1 == 0)

{
weiyi_before[1] = 0;
sudu_before[1] = 0;
jiasudu_before[1] = 0;
weiyi_before[0] = 0;
sudu_before[0] = 0;
jiasudu_before[0] = 0;
weiyi_before_nz = 0;
sudu_before_nz = 0;
jiasudu_before_nz = 0;
number_1 = number_1 + 1;

}
m[1] = 1; /**the mass of vertical movement, Kg**/
k[1] =1; /**the stiffness of vertical movement, N/m**/
zunixishu[1] =1;
gama = 0.5;
beta = 0.25;
code_1 = gama/(beta*dtime);
code_2 = 1/(beta*dtime*dtime);
code_3 = (1-gama)*dtime;
code_4 = gama/beta;
code_5 = gama*dtime*(0.5-beta)/beta;
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code_6 = 1/(beta*dtime);
code_7 = (0.5-beta)/beta;
k_equ[1] = k[1] + code_1*zunixishu[1] + code_2*m[1];
inertia_equ[1] = m[1] * (code_2*weiyi_before[1] + code_6*sudu_before[1] +

code_7*jiasudu_before[1]);
damping_equ[1] = zunixishu[1] * (-1*sudu_before[1] - code_3*jiasudu_before[1] +

code_1*weiyi_before[1] + code_4*sudu_before[1] + code_5*jiasudu_before[1]);
force_equ[1] = force + inertia_equ[1] + damping_equ[1];
weiyi[1] = force_equ[1]/k_equ[1];
sudu[1] = sudu_before[1] + code_3*jiasudu_before[1] + code_1*(weiyi[1]-weiyi_

before[1]) - code_4*sudu_before[1] - code_5*jiasudu_before[1];
jiasudu[1] = (force - zunixishu[1]*sudu[1] - k[1]*weiyi[1])/m[1];
weiyi_before[1] = weiyi[1];
sudu_before[1] = sudu[1];
jiasudu_before[1] = jiasudu[1];
speed[1] = sudu[1];

#if !RP_NODE
fp_1 = fopen(“Fluent_couple.dat”,”a+”);
fprintf(fp_1, “%.16lf %.16lf %.16lf %.16lf %.16lf %.16lf %.16lf \n”, time, hezai, force,

moment, weiyi[1], sudu[1], jiasudu[1]);
/**1_shijian, 2_zuli, 3_shengli, 4_liju, 5_niuzhuanjiao(hudu), 6_jiaosudu, 7_jiaojia-

sudu, 8_shuxiangweiyi(m), 9_shuxiangsudu, 10_shuxiangjiasudu, 11_zhongxinshuxiang-
weizhi**/

fclose(fp_1);
#endif
host_to_node_real_3(sudu[0],sudu[1],sudu_nz);
#if !RP_HOST
NV_S(vel, =, 0.0);
NV_S(omega, =, 0.0);
if (!Data_Valid_P())

return;
vel[1] = sudu[1];
#endif

}
DEFINE_CG_MOTION(second,dt,vel,omega,time,dtime)
{

host_to_node_real_3(speed[0],speed[1], speed_nz);
#if !RP_HOST

vel[1] = speed[1];
#endif
}
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Abstract: This paper presents basic principles of built-environment physics’ modelling, and it
reviews common computational tools and capabilities in a scope of practical design approaches for
retrofitting purposes. Well-established simulation models and methods, with applications found
mainly in the international scientific literature, are described by means of strengths and weaknesses
as regards related tools’ availability, easiness to use, and reliability towards the determination of
the optimal blends of retrofit measures for building energy upgrading and Urban Heat Island
(UHI) mitigation. The various characteristics of computational approaches are listed and collated
by means of comparison among the principal modelling methods as well as among the respective
computational tools that may be used for simulation and decision-making purposes. Insights of
coupling between building energy and urban microclimate models are also presented. The main
goal was to provide a comprehensive overview of available simulation methods that can be used
at the early design stages for planning retrofitting strategies and guiding engineers and technical
professionals through the simulation tools’ options oriented to the considered case study.

Keywords: building energy performance; urban heat island; building physics; simulation tools

1. Introduction

The building sector in Europe is considered as the largest consumer of energy, using up
to 40% of the final energy consumption [1,2]. As reported in the EU directive 2018/844/EU,
almost 50% of the Union’s final energy consumption is used for heating and cooling, 80% of
which is allocated to buildings. This indicates that the achievement of the Union’s targets
regarding energy efficiency and resilience to climate change depends on the increase of
renovation rates of its building stock, in fact, by giving priority to energy efficiency as
well as by considering deployment of renewables [3]. According to its (EU) 2019/786
recommendation on building renovation [4], the Commission invites Member States to
establish long-term renovation strategies focused on the national building stock, including
both public and private buildings, towards highly energy efficient and decarbonized
building stock by 2050, also prescribing measures for the cost-effective transformation
of existing buildings into nearly zero-energy buildings (the so-called NZEBs). In this
framework, it is acknowledged that the design approaches followed in order to achieve the
highest possible energy-saving potential require advanced calculation techniques at the
design stage, with the highest possible accuracy of predictions. In the context of evaluating
building energy performance, many parameters are required, such as the thermo-physical
properties of the envelope, indoor–outdoor physical interactions, energy end uses, building
systems’ operating schedules, etc. Considering all these influencing factors, building energy
upgrading is indeed not an easy task. Especially now with more strict regulations and
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policies, building energy renovation plans require precise estimations of energy indicators,
as specific thresholds of these indicators should be satisfied, and at the same time least-cost
renovation measures should be identified.

On the other hand, a crucial factor that affects the energy performance of building
complexes is the external microclimate, i.e., the microclimatic conditions in the vicinity of
buildings determines cooling and heating loads, thus the energy demand and the decision
of most appropriate energy-efficiency measures. Especially in densely built environments,
the external microclimatic conditions should not be disregarded in the design stage as,
indeed, the Urban Heat Island (UHI) effect is ever more intense and impacts many aspects
of quality of life in cities, e.g., building energy efficiency, thermal comfort, and indoor and
outdoor air quality. Over the last 30 years, heat waves in Europe in combination with the
Urban Heat Island (UHI) phenomenon have dramatically deteriorated quality of life in
densely built-up Cities, by means of mortality rates due to heat strokes, and of hygiene
conditions as well as of the energy demand for cooling purposes. UHI is well documented
in terms of its intensity. Indicatively, in Europe, the mean value of recorded maximum UHI
intensities ranged between 0.3 ◦C and 6.8 ◦C (yielding an average of 2.6 ◦C), with absolute
peaks close to 12 ◦C [5,6]. Such conditions of unusually high temperatures for long periods
favor high energy consumption in buildings. For example, it has been documented that the
increase in urban temperature may lead to an average increase of cooling loads from 20%
to 45% in the Mediterranean climate [7]. This means that a holistic confrontation over the
improvement of building energy performance should not disregard the impact of UHI on
energy consumption. Apart from benefiting building energy performance, UHI mitigation
projects ensure more comfortable and healthy open spaces for pedestrians.

To deal with the requirements of the latest EU directives as well as of the design
challenges, EU Member States have developed their own national methodologies and
computational tools (e.g., based on the CEN Standards), aiming to assess building energy
performance in the pre-renovation (or pre-construction) and the post-renovation (or post-
construction) situations in order to determine renovation measures. However, the available
national tools are much more biased to single-building energy simulation, while, con-
cerning the effect of local microclimate, it is often omitted from the numerical-simulation
toolboxes used for purposes of compliance with building energy regulations. In current
policies and regulatory frameworks, only the general bioclimatic-design principles are
adopted regarding urban planning, without addressing the quantification of microclimatic
indicators; hence, still no computational tools and/or concrete calculation methodologies
are recommended to estimate microclimate and environmental indicators in the study
phase specifically for design-for-compliance purposes.

On the other hand, considering the issues raised above, it becomes obvious that in
order to comply with the latest energy efficiency policies and much stricter regulations, as
well as to obtain sustainably built and urban environments, accurate methods and compu-
tational tools to estimate the impact of retrofit options based on the aspects of building and
urban physics are required. The use of such methods is considered crucial even in the early
study phase, especially for major renovation projects, for the following reasons:

• They assess the pre-renovation situation revealing the energy consumption level of
buildings and microclimate conditions of open spaces. This capability contributes to
the recognition of vulnerable areas, energy savings potential and, generally, actual
needs of the renovation cases under consideration. The provision of such estimations
contributes to determining and prioritizing the interventions.

• They can be used to assess the impact of various interventions in a desk-study (fast and
with least cost) manner, i.e., computational tools may be executed for various design
configurations and calculate the corresponding values of performance indicators
(energy indicators for buildings and microclimate indicators for open spaces).

• In a more advanced level aiming at improving estimations’ accuracy, many computa-
tional tools allow the possibility to conduct coupled simulations in order to account
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for the impact of the UHI effect, i.e., of the local microclimate rather than relying on
the wider climate zone, on building energy consumption.

• Hourly based calculations prescribed in dynamic simulation tools, provided that oc-
cupancy and systems’ operation schedules are accessible, allow for energy-behaviour
assessments.

• In combination with optimization schemes and algorithms, they support decision
making towards the determination of cost-effective renovation measures that ensure
minimum requirements of performance indicators, either energy or microclimate ones.

The present paper provides an overview of commercial or freely available compu-
tational tools that can be used to assess building energy performance and UHI effect in
open spaces. The major categories of physical models are presented, i.e., multi-zonal (also
known as nodal models) for building energy performance assessments and field models
for UHI assessments. The capabilities of the most popular computational tools of each
category are presented together with case studies found in the scientific literature. Further-
more, nodal/field models coupling possibilities to assess UHI effect on building energy
consumption are discussed.

2. Physical Models

2.1. Building Thermal-Performance Modelling

Physical models are used to simulate the thermal performance of various build-
ings with their own special demands and uses, e.g., dwellings, offices, schools, etc.
These models involve interpreting of space heating [8], natural ventilation [9], air con-
ditioning systems [10], solar-thermal systems [11], Photovoltaic panels [12], occupants’
behaviour [13,14], etc. The physical modelling techniques are based mainly on the solving
of heat transfer equations.

To solve such physical problems, numerous simulation software packages are avail-
able, many of them also associated by benchmarking activities performed by many authors
and researchers. Theoretically, each building software is able to include thermal physical
phenomena encountered in buildings. Most computational tools provide the choice to
users to select the physical mechanisms and the associated equations required. There are
two major building thermal models’ categories most commonly used [15] (mainly in the
framework of research activities and projects):

• Field models, such as Computational Fluid Dynamics (CFD) models, and
• Multi-zonal or nodal models.

The present paper focuses on the application of the multi-zonal method in case of
building energy simulation and provides an extensive presentation of the principles of this
method and available computational tools to assess building energy performance. As far
as field models are concerned, this paper focuses on their uses for simulating the urban
microclimate. Therefore, the overview of field modelling principles and computational
tools is restricted herein mainly to open spaces (Section 2.2), while only a short presentation
of their uses for indoor airflows and building thermal simulation is provided.

2.1.1. Field Models for Indoor Airflow Assessments

The most complete field modelling approach in building thermal simulation is (so far)
the CFD method. This is a “microscopic” approach of heat transfer modelling providing
a detailed resolution of the airflow pattern. It is based on the discretization of a building
zone into control volumes in the form of structured or unstructured mesh [16]. The CFD
approach is essentially based on the solution of the so-called Navier–Stokes equations.
A large number of CFD software exists such as Ansys Fluent, Ansys CFX, COMSOL
Multi-physics, MIT-CFD, Phoenics, etc., most of them possessing additional capabilities to
simulating indoor airflows and building thermal behaviour. They are general-purpose CFD
platforms and can be applied to every system involving fluid flow phenomena. The CFD
method is mainly employed for its ability to solve for mass, momentum, heat, chemical
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species, and turbulence parameters’ conservation equations. While available software
present similar characteristics in terms of the conservation equations solved or on the
mathematical formulation of boundary conditions (for example, Dirichlet or Neuman
formulations), some of them differ on the equations’ discretization method or on the solver
used for processing the algebraic system of discretized differential conservation equations.
There are three fundamental methods for discretization purposes: The Finite Difference
(FDM), the Finite Volume (FVM), and the Finite Element Method (FEM). These methods
present different precision and numerical efforts, but they are all based on the discretization
of Navier–Stokes equations. On the other hand, the treatment of boundary conditions
in these methods is still a key issue in fluid flow numerical simulations depending on
the engineering application studied. Indeed, in non-isothermal fluid flows, where design
parameters or physical properties have fluctuations, boundary conditions require special
treatment. This has led to enhancements of numerical methods, for example, on the basis
of fluctuation-based equations, the so-called Stochastic Finite Element Method (SFEM),
which was introduced and exercised in benchmark fluid-flow case studies by Kamiński
and Carey [17].

The CFD analysis produces a detailed description of the airflow field within indoor
environments including velocity vector distribution (magnitude and direction), tempera-
ture distribution, chemical species dispersion, etc. The prediction of the aforementioned
properties of the flow field is very useful even in the early design stages as it reveals areas
with unpleasant droughts and thermal discomfort (refer, for example, to ref. [18]) and areas
of pollutants’ confinement, for different design alternatives. Hence, it helps the building
design practitioner to review and decide the best among the design alternatives. The main
disadvantage of the CFD method, however, still is the high computational time required
to solve accurately for the conservation equations in full 3D geometries adopting fine
meshes respecting the grid-independent solution principle [19] as far as possible. However,
given that the airflow in at least 75% of the building volume is almost stagnant (velocity
magnitude below 0.5 m/s) [15], it is not always necessary to apply the CFD approach
for the entire building but only to certain parts, e.g., within spaces affected by installed
Heating Ventilating and Air-Conditioning (HVAC) systems or within naturally ventilated
spaces. This allows reducing computational time significantly. For this reason, the CFD is
frequently coupled with less time-consuming multi-zonal techniques or other statistical
ones. Tan and Glicksman [20] compared the full CFD simulation results with those obtained
by the coupling between CFD and a multi-zonal tool for captivating natural ventilation
through large openings or an atrium. It was demonstrated that the latter required 10 times
less duration of computations until full convergence in relation to the full CFD method,
exhibiting similar accuracy. Kato [21] provided an extended review of coupled CFD and
zonal or network techniques and applications in building heat-transfer simulations and
reported the required theoretical conditions for reliable coupled simulations, balancing
fidelity in predictions and reasonable computational times and resources.

2.1.2. The Multi-Zonal (Nodal) Approach

The multi-zonal approach assumes that each building zone is a homogeneous vol-
ume with uniform state variables. Thus, each zone is approximated as a node with a
unique flow property, e.g., temperature, pressure, pollutant concentration, etc. Generally,
a computational node stands for a room, a wall, or the exterior of the building, to which
specific loads, such as internal occupancy, equipment gains, heat sources, etc., are allocated.
The heat transfer equations are solved for each node and it can be considered as a one-
dimensional approach. In international literature, one can find two main methods used for
the multi-zonal approach [15]:

• Solution of the state variables transfer equations, and
• Finite difference method.
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Most available software is designed based on the former technique. The latter method
is applied for nodal approaches through the representation of heat transfer from elec-
trical analogy, which was introduced by Rumaniovski et al. [22]. The usefulness of this
method lies in the fact that it drastically simplifies the mathematical representation of the
physical problem through the linearization of conservation equations, leading to reduced
computational time.

The major advantage of this method is that it describes the behaviour of a building
with many zones on a large time scale within modest computational resources. It is
a particularly well-adopted technique for energy-consumption estimations and of the
dynamic changes of space-averaged temperature into a room. In addition, it is useful
to estimate air-change rates and the distribution of airflow properties among different
rooms. Ventilation efficiency or pollutant transport in buildings can also be studied by this
method [23].

Due to the zero-spatial-gradient assumption regarding the airflow state variables
within a node, the multi-zonal method presents the following limitations:

• The study of thermal comfort and air quality in thermal zones is difficult, as the
spatial heterogeneity of physical parameters (air velocity, turbulence intensity, relative
humidity, temperature, etc.) involved in the conservation equations (heat transfer,
mass, momentum, chemical species) is roughly approximated.

• The impact of heating and cooling loads on their close environment is not adequately
addressed (for example, a radiator causing buoyant plumes or an air blower causing
air drafts).

• It presents significant deviations in airflow predictions, especially in large spaces (e.g.,
atriums, athletic halls, auditoriums, etc.) where significant non-uniformities of indoor
airflow are expected.

• Although it remains a good option to depict the distribution of pollutant concentra-
tion between building zones, it prevents the assessment of local effects by a heat or
pollutant source within each building zone separately.

According to Kato (2018) [21], one effective way to “heal” the aforementioned lim-
itations is through CFD nodal-coupled simulations. CFD and network-model coupled
simulation is particularly useful when ventilation effectiveness of a large indoor space
is required to be included in the energy simulation for long-term use. In this case, the
nodal model serves as the boundary conditions’ generator for the CFD model, which then
undertakes the solution of the airflow field within the building zone at each user-defined
time step.

One additional limitation acknowledged in the common multi-zonal approach is
that the effects of air infiltration through openings, cracks, etc. are not adequately ad-
dressed. Indeed, most computational tools for building energy simulation incorporate
mainly empirical correlations and default infiltration rates depending on different leakage
properties of the building envelope. On the other hand, it is true that air infiltration is a
case-sensitive issue, which requires appropriate modelling treatment to account for wind-
and/or buoyancy-driven air movement through openings and cracks. It is also true that in-
tervention measures referring to air tightness and consequent infiltration may lead to high
amounts of energy savings related to heating/cooling. For instance, simulations of a large
number of building types document that reducing air leakage can save 5–40% of heating
and cooling energy [24]. An extensive investigation involving real-scale measurements of
air leakage in 129 single and multi-family houses in Spain revealed mean air-change rates
of 6.1 h−1 for single-family dwellings and 7.1 h−1 for multi-family housing, which advo-
cate relatively high contributions to the energy consumption of the tested buildings [25].
Considering the fact that air infiltration greatly affects buildings’ energy consumption
as well as the accuracy of simulation predictions in terms of heating and cooling loads,
thus the predicted energy consumption, it deserves a great deal of attention in simulation
environments. Han et al. [26] explored different modelling strategies of infiltration rates
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for an office building and compared their performance in terms of predictions’ accuracy.
They proposed a coupled approach associated with time-dependent infiltration rates by
integrating multi-zone airflow modeling and CFD results into energy simulations. It was
demonstrated that the suggested simulation method provides improvement of the accuracy
of energy simulations with up to 11% reduction of the root mean square error and of the
normalized mean bias error. Prescribing air-tightness interventions, among other envelope
interventions, in higher education buildings in Egypt, total energy savings of up to 33%
were documented using the multi-zonal simulation approach [27].

2.1.3. Collation of Simulation Methods

The previous paragraphs described the two major methods to deal with building
physics’ modelling. The CFD method provides a detailed view of the physical mecha-
nisms occurring in building systems. It is particularly adopted to solve for the convective
phenomenon that takes place in large building spaces. In such spaces, the convective phe-
nomenon, which causes airflow parameters’ non-uniformity, is well analyzed, providing
an accurate prediction of the Convective Heat Transfer Coefficient (CHTC) and, thus, of
heat transfer. On the contrary, the multi-zonal approach underestimates CHTC and other
variables’ heterogeneity in these specific cases. However, it should be pointed out that it
is difficult to conduct entire building simulations using CFD due to the associated high
computational time and resources. Alternatively, coupled CFD with a multi-zonal model
can be used.

On the other hand, the multi-zonal method is really well adopted to treat global
building physics’ resolution, assuming a uniform airflow field in each thermal zone. The
main objective of this method is to simplify the algebraic system by linearizing a large part
of the governing conservation equations (when it is physically accepted). As a result, the
technical complexity is substantially reduced and so is the required time of computations.
The multi-zonal method is more appropriate when more “macroscopic” effects are of
interest, such as building energy consumption, rather than when the airflow pattern is
the main goal. It should be mentioned, however, that the airflow properties’ variations
significantly affect indoor–outdoor interactions and, in this way, the envelope thermal
behaviour as well as air infiltration rates. This causes variations in systems’ operation
schedules, which, in turn, influence building energy consumption. In this sense, the
computational tool or method used to conduct a building energy study requires experience
to understand which tool is more appropriate or to know when coupled multizonal/field
modelling approaches are required for more accurate and reliable studies. A summary of
the capabilities of the methods discussed above is reported in Table 1.

Table 1. Collation of major building physics’ simulation methods.

Method Technical Approach Application Field Advantages Drawbacks

Multi-zonal

A building is
discretized into

thermal zones, often
being rooms. The
state variables are

considered uniform
in each zone.

Estimation of
building energy

consumption; indoor
air temperature;
thermal loads;

Dynamic change of
energy consumption.

Whole building
energy simulation
over user-defined

time periods;
reasonable

computational time
within modest
computational

resources.

Difficulty to study large
volume systems; Unable

to study local effects
caused by heat or

pollutant sources; Rough
approximation of air

infiltration rates.

CFD
A building zone is
further discretized

into control volumes.

Contaminant
dispersion; Indoor

air quality; local
thermal comfort;
HVAC systems.

Detailed description
of the airflow field
within large spaces

in buildings.

High computational
time and resources;

modelling complexity;
requires advanced

knowledge of building
physics.

It should be clarified that the techniques described above need input parameters,
such as the meteorological data, thermo-physical properties of the building envelope,
occupancy parameters, systems’ operating schedules, etc. Obviously, all these parame-
ters are interpreted with a degree of uncertainty. In addition to these uncertainties, there
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are certain assumptions adopted in order to reduce the complexity of building physical
mechanisms. The combination of uncertainties in interpreting collected data (physical
properties, materials, and occupancy-related) with the adoption of assumptions often leads
to discrepancies between the simulated results and reality. The major challenge scientists
and engineers currently face is to reduce uncertainties without compromising simulations’
time, practicability, and accuracy. One major source of uncertainty in building energy
analysis is the end users’ behaviour, considering the fact that, ultimately, the building
consumes energy in accordance with the habits of occupants over building systems. Hence,
it is important to realize that, in view of realistic building energy simulation, the setup of
systems’ operation schedules should reflect occupants’ behaviour as accurately as possible.
Motivated by the discrepancy between the measured and the calculated heat consumption
of residential buildings, Hansen et al. [28] investigated heat-related habits of occupants,
utilizing extensive questionnaire surveys, and correlated practices of adjusting thermostats,
clothing conditions, perceived thermal comfort, building envelope, and systems’ installa-
tions. Their study demonstrated that material arrangements substantially affect occupant
expectations and practices, associated with increased indoor temperatures and energy
demand. The behavioral effect is evident even in more stable buildings, such as office
buildings, as presented by Liu et al. [29]. They conducted a field study in office buildings
in the UK and concluded that the adaptive behaviors of occupants showed substantial
seasonal and daily variations. It was shown that non-physical parameters such as habit
affect the adaptive responses of occupants, sometimes yielding to absurd behavior, which
could lead to increased use of energy. The key delivery of the study was the illustration
of how occupants would adapt and interact with their built environment, which can be
adopted in building retrofitting strategies or in energy management systems for comfort-
able built environments. The aforementioned studies, but also many others (for example
those reported in ref. [30]), suggest that any simulation method, either multi-zonal, CFD,
or other, should account for building systems’ operation schedules reflecting realistic end
users’ behaviors. This means that accessibility to building systems’ operation schedules is
a prerequisite of the computational tool used for energy simulations.

As far as computational time is concerned, several solutions consisting of reducing
system size exist in the scientific literature (refer, for example, to refs. [31,32]. Another
idea is to reduce the detail of building geometry by merging rooms or merging walls.
Such simplifications should speed up significantly the solution process. Generally, an
important limitation of the physical formulation is the need for a detailed description of
the physical behaviour. Therefore, it implies detailed knowledge of the physical processes,
especially of the ones occurring in the interior and the exterior of the building geometry.
Within the scope of this paper is to help designers in understanding better the available
methods to assess building energy performance and in identifying the most appropriate
computational tools in order to balance accuracy and practicability in terms of easiness
to use and of calculation time. In the next subsection the most popular and widely used
building energy (mainly multi-zonal) simulation tools are described, highlighting their
strengths and weaknesses.

2.1.4. Building Energy Simulation Tools

There is indeed a vast amount of available computational tools for building energy
simulation purposes. IBPSA-USA has developed and manages the so-called Building
Energy Software Tools (BEST) directory [33], which enlists more than 200 building software
tools for evaluating building energy performance. The energy tools listed in the direc-
tory range from simple databases and spreadsheets to whole building energy simulation
programs. In agreement with other review studies [15,34], the current paper focuses on
the most popular tools used mainly for whole building energy performance assessments
regarding at least commercial and residential buildings. In the following subsections, a
short overview of each tool’s capabilities is reported, supported by a summary of their
characteristics presented in Table 2.
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Table 2. Strengths, weaknesses, and special features of computational building energy simulation tools.

Tool Strengths Weaknesses

Special Features

Most Common
Applications

AvailabilityHandling of
Climate

Conditions

Handling of
Building
Systems’

Operating
Schedules and

Occupancy

Building
Systems

Autodesk
Green

Building
Studio (GBS)

>Provision of hourly
whole building

energy, emissions,
and water analysis

>Reduces setup and
processing time,

providing
possibilities for

extensive tests of
design alternatives

>Facilitates analysis
for LEED compliance

>The level of
detail of the

resulting DOE-2
and EnergyPlus
models implies
quite advanced
knowledge to

understand the
outcomes

>Input available
data of specific
climate zones
>User-defined

climate data time
series

>User-defined
schedules

>Common
building systems

for heating,
cooling,

Domestic Hot
Water (DHW),
etc. are easily

compiled
>Provision of

renewable
energy potential
(solar and wind)

>Whole building
thermal

performance
>Building

Information
Modelling (BIM)

> BIM-LCA
coupled

simulations
>LEED

compliance
assessments

Subscription
web-based

service

BEAVER

>Hourly-based whole
building energy

performance
>Calculation of

building construction
and systems’ types to

retain desired
environmental

conditions
>Modelling of a wide
range of building end

uses
>ASHRAE-based

building load
calculation and

on-site generation
>Numerous options

of air handling
systems including

provisions for
modifications
>Fast set-up

compared to most
other similar

programs

>Some system
types are not
included, e.g.,
chillers and
condensers

> limited range
of window types

available for
selection

>Does not
provide

environment to
analyze building
impact on grid

>Poor
approximation

of natural
ventilation and

daylighting
>Limited

database of
climatic

conditions

>Input available
data of specific
climate zones
>User-defined

climate data time
series (measured

or simulated)
can be fed

>User-defined
schedules may

be prepared and
fed to the

simulation
engine

>Detailed
representation of

heating and
cooling systems
>Various extra
components or

operating
strategies can be
added including
Heat Recovery,

Preheating Coils,
Exhaust Fan,
Temperature

reset on heating
and cooling

coils, etc.

>Whole building
energy

performance
>Used mainly
for residential

buildings energy
assessments

Commercial

Bsim

>High flexibility in
the assessment of

indoor environment
and energy

performance and in
designing HVAC

systems
>Simultaneous

simulation of heat
and moisture transfer

through building
walls >Multi-zone air

flow simulations
>Graphical user

interface >Reliable
representation of
building systems
>User-friendly
optimization

platform
>hybrid system

simulation
>Flexible

compatibility of
results’ files with
other Windows

programs

>Cannot
simulate all
renewable-

energy sources
>Limited

ready-to-use
climate data

(only for certain
regions and
Countries)

>It integrates a
built-in function
for converting
text-based time

series to the
binary format
>User-defined

climate data time
series may be
prepared and

inserted

>Default library
of systems’
schedules

>User-defined
schedules may

be prepared and
inserted

>Automatic
control strategies

for each
ventilation plant

>heating,
cooling, and
ventilation

systems

>Phase Change
Materials

>Building energy
performance

>Building
hygrothermal
performance

Commercial
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Table 2. Cont.

Tool Strengths Weaknesses

Special Features

Most Common
Applications

AvailabilityHandling of
Climate

Conditions

Handling of
Building
Systems’

Operating
Schedules and

Occupancy

Building
Systems

ENER-WIN

>Hourly whole
building energy

analysis
>HVAC loads’

calculations
>Energy

consumption and
demand

> Life cycle cost
analysis

>Graphic sketch
interface

> Libraries for
windows, wall

materials, profiles,
costs, lights,

world-wide weather
data

>Thermal comfort,
greenhouse gas
emission, and
life-cycle cost
calculations

>It uses
simplified
algorithms
>Only nine

HVAC systems
available

>Not
recommended

for HVAC design
analysis
>Cannot

simulate RES
technologies

>Hourly weather
data generator

based on data for
1500 cities
worldwide

>Limited
interpretation of
building systems’

schedules’
impact on

electrical energy
use

>Equipment
mainly handled
as thermal loads

>Large
commercial
buildings

>Economic
analysis of

building energy
systems and

emission
calculation

Commercial

EnergyPlus

>It includes
innovative simulation
capabilities including
time steps of less than

an hour
>Simulation modules
are integrated with a
heat balance-based

zone simulation
>It facilitates third

party interface
development for

co-simulation
purposes >Inclusion
of multizone airflow,
electricity simulation
including fuel cells

and other distributed
energy systems

> Designbuilder:
User-friendly

graphics interface,
CFD module,

Optimization module

>Relatively high
level of

complexity
>No

grid-integration
analysis
>Energy

simulation and
computer skills

are required
>Building

physics’
knowledge is a

prerequisite
>DesignBuilder:

Offers a
user-friendly
interface and

well-structured
input wizards,
which simplify

simulation setup

>Extensive
library of

weather of
specific locations

>User-defined
climate data time

series
>DesignBuilder:

the CFD suite
allows for

estimating local
microclimate

effects

>User-defined
systems’

schedules
>DesignBuilder:

Vast menu of
default

occupancy
schedules are

available
according to the

building use

>The majority of
systems (HVAC,

Air handling
units and control,

DHW, etc.) of
various building

types can be
employed

>DesignBuilder:
Provides vast

lists of building
systems,

construction
materials, and

properties

>Whole building
energy analysis

for various
building types

>DesignBuilder:
Widely used for

extensive
parametric

analysis and
optimization of

alternative
energy-

upgrading
measures
>Proof-of-

concept
purposes for new

technologies

>EnergyPlus:
Free

>DesignBuilder:
Commercial

eQUEST

>User friendly
building energy

analysis tool
>It provides

interactive graphics,
parametric analysis,
and rapid execution
>Flexible application
to the entire design
process, from the
conceptual design
stage to the final

design
>It offers detailed

analysis throughout
the construction

documents,
commissioning, and

post-occupancy
phases

>Supports only
IP units (no SI

units)
>Ground-

coupling and
infiltra-

tion/natural
ventilation
models are

simplified and
limited

>Does not
include RES
technologies
>Does not

calculate thermal
comfort indices
> Weather files

>Library of
pre-defined

weather data
limited for US

regions
>User-defined

climate data time
series may be
prepared and

inserted

>User-defined
systems’

schedules

>It contains a
relatively large

database of
HVAC systems

>Whole building
energy analysis

for various
building types

>It is particularly
useful to assess

occupants’
behaviour in

tertiary
buildings

>Suitable for
EPC projects

(when calibrated
in comparison

with actual
energy

consumption
data)

Free
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Table 2. Cont.

Tool Strengths Weaknesses

Special Features

Most Common
Applications

AvailabilityHandling of
Climate

Conditions

Handling of
Building
Systems’

Operating
Schedules and

Occupancy

Building
Systems

ESP-r

>Provision of
in-depth appraisal of

the factors that
influence the energy
and environmental

performance of
buildings

>Flexible and
powerful enough to

simulate many
innovative or
cutting-edge
technologies

including daylight
exploitation, natural

ventilation, combined
heat and electricity

generation and
photovoltaic facades,
CFD, multi-gridding,
and control system

>It is a
general-purpose
tool and requires
user efforts to set
up modelling for

certain cases;
thus it implies

advanced
expertise

>It is focused
mainly on

building thermal
performance

>No automatic
optimization is

provided
>No economic

analysis is
provided

>User-defined
climate data time

series

>Limited
interference with
thermal-related

building systems
>User-defined
schedules may

be imported

>Handled
mainly as heat

sources
>Supports

simulations for
RES technologies

(mainly PVs)

>Whole building
energy

simulation
>Used mainly to
estimate energy

demand
>Often used to

study behaviour
relevant to
daylighting
>Study of

combined heat
and power

applications

Free

IDA-ICE

>Annual dynamic
multi-zone
simulation

application for indoor
climate assessments

and energy
performance

>Early-Stage Building
Optimization

>Complete energy
and design studies
>Accessibility to

incorporate
user-defined models

>Time-
consuming

calculations due
to the

employment of
the airflow

network
modelling

method, which
often requires a
large number of

zones

>Library of
climate data

>User-defined
climate data time

series

>User-defined
systems’

schedules
>Adjustable

windows’
modelling is also

included

>HVAC systems
may be analyzed

>DHW
>Renewable

energy systems

>Whole building
energy

simulation
>It is widely

used to assess
the efficiency of
heating systems

>PCM
applications

Commercial

IESVE

>Provision of
in-depth suite of

building performance
analysis modules

>Useful to identify
best passive options

and renewable
energy measures
>HVAC system

modelling >Natural
ventilation modelling

>Daylight and
shading analysis
>CFD analysis

>Energy and
building physics’

expertise are
required
>Linux

environment is
not supported

>Library of
climate data

included
>User-defined

climate data time
series may be

imported

>Menu of
default HVAC

schedules
>User-defined

HVAC schedules

>pre-defined
HVAC

component
libraries and

Manufacturer
properties

>Whole building
energy

simulation
>Often used for

assessing
renovation

projects
>Investigation of

future-proof
energy-

upgrading
measures

Commercial

SUNREL

>Appropriate for
passive solar

buildings
>Predicts occupant
behavior >Includes

algorithms for
Trombe walls,

glazings, controllable
window shading,

active-charge/
passive-discharge

thermal storage, and
natural ventilation

>Limited HVAC
modelling
>Does not

calculate thermal
comfort

indicators
>Does not

provide RES
simulations

>Does not model
building-to-grid

integration

>Available
hourly weather

data
>User-defined
hourly weather

data may be
imported

>User-defined
schedules mainly

for envelope
parameters, such

as windows
>Occupancy

schedules

>In its early
versions, HVAC

performance was
not supported

>Building
thermal

performance
>Shading
analysis

>Insulation
performance

analysis
>Energy load

modelling
>Mainly used for

single- and
multi-family

buildings

Free
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Table 2. Cont.

Tool Strengths Weaknesses

Special Features

Most Common
Applications

AvailabilityHandling of
Climate

Conditions

Handling of
Building
Systems’

Operating
Schedules and

Occupancy

Building
Systems

TAS

>Prediction of energy
consumption, CO2

emissions, operating
costs, and occupant
comfort >Building
thermal simulation
>Plant and systems’
operation modelling

>Offers
comprehensive

capabilities for all
types of energy

modelling
>User-defined special

building physics’
models, such as
evaporation and

evapotranspiration
>Can simulate large

and complex
buildings

>Energy and
building physics’

expertise are
required

>Computer skills
are required

>User-specified
detailed weather

data
>Default

weather files

>User-defined
systems and

occupancy sched-
ules>Default

schedules
based on

building type

>HVAC systems
with HVAC

manufacturers’
databases

>DHW systems
>Daylighting
>Renewable

energy systems

>Whole building
energy analysis
>Often used to

test planted roofs
and walls

>Able to test
CHP

applications in
buildings

Commercial

TRNSYS

>Whole building
energy analysis

>HVAC analysis and
customization,

multi-zone airflow
analyses, electrical
power simulation,

solar design, building
thermal performance,

control schemes
>It interfaces with

various other
simulation software
such as FLUENT for

airflow impact on
energy consumption,

GenOpt and
MATLAB for

optimum building
control

>Energy and
building physics’

expertise are
required
>Fluent

computer skills
are required in

case of
co-simulations

>Grid
interconnection
analysis is not

included
>Direct

economic
analysis is not

included

>User-specified
detailed weather

data
>Extensive

Default weather
files

>Interconnects
with CFD tools
to account for

local
microclimate

effects

>User-defined
systems and

occupancy sched-
ules>Default

schedules
available based

on building type

>HVAC systems
with

manufacturers’
databases

>DHW systems
>Daylighting
>Renewable

energy systems’
databases

>Whole building
energy analysis
>Often used to

test PCM
performance

>Coupling with
CFD tools

>Building energy
management

systems (model-
predictive

control cases)
>HVAC and

power systems’
analysis

>Solar systems
design

Commercial

The tools of interest herein are:

• Autodesk Green Building Studio
• BEAVER
• BSim
• ENER-WIN
• Energy plus
• eQUEST
• ESP-r
• IDA Indoor Climate and Energy (IDA-ICE)
• IES Virtual Environment (IESVE)
• SUNREL
• TAS
• TRNSYS

Autodesk Green Building Studio

The Autodesk Green Building Studio is a web-based service that envisages whole
building energy, water resources, and CO2 emission analyses of buildings. The analysis is
conducted via the Internet in a personalised web environment. This streamlines the entire
setup process and facilitates immediate feedback on design alternatives. Based on the
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building’s basic characteristics, such as size, type, and climate zone, the web-based service
defines default values for construction materials and equipment by adopting regional
building regulations. Using simple drop-down menus, the user can test different settings of
the design, orientation, thermal transmittance, window glazing, or various HVAC systems.
The service includes hourly weather data, as well as historical rain data as inputs. It
calculates carbon emissions and presents the output in a web browser, for instance, the
energy consumption and cost indicators as well as the potential for carbon neutrality. The
output also tabulates the consumption of water resources and energy costs, providing an
ENERGY-STAR score. Other useful indicators are also calculated such as solar and wind
energy potential, LEED daylighting credit, and natural ventilation potential.

Najjar et al. (2017) [35] used the software in the case of a typical multi-storey office
building located in Brazil in the framework of Building Information Modelling (BIM)—Life
Cycle Analysis (LCA) simulation concept. In their modelling approach they incorporated
Green Building Studio (GBS) to assess building energy performance for different construc-
tion materials. In a design control volume extending from the extraction of raw materials
through construction and operation to disposal and recycling, they demonstrated that
most of the negative environmental impacts are occurring during the manufacturing and
operation phases. The methodology proposed can successfully determine which building
elements have major importance in the LCA at the early design stage, thus providing an
adequate decision-making tool for minimizing buildings’ environmental impacts through-
out the building lifespan. Using Revit, Abanda and Byers [36] developed a house model
that was exported into Green Building Studio (GBS) for further calculations. The energy-
efficiency potential was explored by means of a parametric analysis for building orientation.
GBS is particularly efficient to conduct extensive parametric analyses regarding building
energy performance. Indeed, it has been successfully used to study the energy impacts
of extensive combinations of envelope and internal configurations, e.g., Window-to-wall
ratios, wall and roof construction materials, and HVAC, and of external conditions such
as climatic ones, and orientation and building exposure levels (by means of building
complexes) [37].

BEAVER

BEAVER [38,39] is a Windows environment for the APEC ESPII Building Energy
calculation Program. It provides easy input of data, model set-up, and results’ preview.
The program computes building energy consumption over a defined period, taking into
account climate zone and location, construction materials, and systems’ types required
to satisfy the desired environmental conditions. It allows parametric analysis regarding
building configurations and air conditioning systems. Data input is inserted via windows
wizards, which include drop-down menus and entry fields on consecutive screens going
through the general Project information to individual space data and building systems,
capacities, operating schedules, etc. It includes default air handling systems, primary plant,
and control schemes enabling the compilation of a wide range of building services. The
Air Handling system type is quite easily prepared through a graphic-based manner of
the units’ assembly. Various extra components and operation schedules may be imposed
referring, for instance, to Heat Recovery, Preheat Coils, Exhaust Fan, Temperature reset on
heating and cooling coils, etc.

An extensive application study of BEAVER for assessing building energy performance
was presented by ACADS-BSG Pty Ltd. and Elms Consulting Engineers [40]. The software
was used to review and provide comments on suitability of the climate zones proposed in
terms of the theoretical energy use. It facilitated proposing a representative location within
each zone that can be adopted to reflect the thermal resistance of the predefined buildings
and define the least number of other locations required to define the thermal-response
extremes within each zone. The substrates used for the review of zones were various types
of office buildings with and without infiltration conditions. The software was successfully
used for the revision of climate zones used as inputs to assess building energy performance.
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BSim

BSim [41] envisages user-friendly simulation of energy and hygrothermal simulations
of buildings. The software consisted of the following modules: SimView (user interface
and graphic model editor), tsbi5 (simultaneous thermal and moisture building simulation
tool), XSun (dynamic solar and shadow simulation and visualisation), SimLight (daylight
calculation tool), SimDXF (CAD import facility), and SimPV (building-integrated PV
system calculation). Furthermore, there are export facilities to external tools: Be06 (Danish
compliance checker), Radiance (advanced light simulations), and boundary conditions
for CFD simulations and visualisation in tools using DirectX input files. BSim has been
used extensively over the past 20 years in Denmark, presenting increased interest abroad,
as it provides both energy and moisture analysis [42]. BSim applies the quasi-steady
approach in building modelling, and it is often used for phase change materials’ modelling
using the heat capacity method. The BSim software has been successfully applied for
the determination of the effect of the basic heat gains on building energy consumption
by Sikula et al. [43] and it was demonstrated that the highest heat gain comes from solar
radiation. Model validation procedures showed a deviation of only 8% between the
simulated annual energy consumption and the measured one. Applications of the BSim,
among other tools, may be also found in a report under the International Energy Agency
(IEA) Programme for energy conservation in buildings and Community systems [44]. The
software was used mainly to simulate energy performance of typical residences located
in different locations (climatic zones) in the pre-renovation situation in order to assess
the impact of different climatic conditions on building energy consumption. The high
fidelity of BSim simulations is documented by the fact that it has been also used as a
generator of reference building energy performance indicators over which other novel
energy calculation methods are tested, for example, in the case of a smart glazing facade
under different control contexts (night shutter, solar shading, and natural ventilation) [45].
Sorensen et al. [46] used the software to develop an integrated building energy design of a
Danish office building, incorporating a Monte Carlo Simulation method, and produced
a pool of engineering solutions with enough design freedom for architects. The study
explores global design with Monte Carlo Simulations, in order to form feasible solutions
for architects and facilitates the collaboration linkages between architects and engineers.

ENER-WIN

The ENER-WIN [47] simulates hourly based energy consumption, including annual
and monthly averages, peak demand, peak heating and cooling loads, solar-fraction
through glazing, daylighting contribution, and life-cycle cost analysis. Design parame-
ters are separately tabulated for each zone, also providing duct sizes and electrical power
requirements. The software comprises several modules, i.e., an interface module, a weather-
data retrieval module, and a sketching and an energy simulation module. ENER-WIN
requires the following inputs: the building type, location and geometry, external ground
parameters, operation patterns and loads (e.g., occupancy, lighting, equipment, and domes-
tic hot water), and heating and cooling inputs (ventilation rate and schedules, thermostat
settings and heating/cooling equipment types, systems’ efficiency and set points).

Using ENERWIN in order to evaluate the reasons for high electrical use in 30 resi-
dences in Kuwait allowed for researchers to conclude that annual energy use in residential
buildings was directly related to occupants’ behavior and that data relating to the type
of occupant should be taken into account as accurately as possible [48]. ENER-WIN was
applied by Soebarto and Williamson [49] for the development of a multi-criteria decision-
making approach based on the “Reference Building” concept. Using the databases of
building materials, climate conditions, and systems incorporated in the ENER-WIN tool,
they integrated an approach of creating a reference building that satisfies ASHRAE Stan-
dard 90.1 [50] requirements. The energy performance of the actual building was evaluated
based on the deviations between the actual and reference building and it was concluded
that the approach was useful for testing different design strategies. It should be clarified
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that the referred ASHRAE Standard has been replaced by the latest version 90.1-2019, i.e.,
the study cited previously is limited only to the older version of the Standard. As indi-
cated by the software vendor [47], the latest Enerwin 2020 version incorporates ASHRAE
Standards 90.1-2019.

EnergyPlus

EnergyPlus [51] is a modular-based code that is built upon the well-known models
BLAST and DOE-2 [52]. It is a simulation engine that manipulates input and output
in text-command formats. A heat-balance engine undertakes the calculation of loads
at a user-specified time step, which is then passed to the building systems’ simulation
module at each time step. The systems’ simulation module computes heating and cooling
system and electrical system responses. This integrated solution ensures precise space
temperature prediction, which is crucial for system design, occupant comfort, and air
quality calculations. Integrated simulation provides possibilities to evaluate plausible
system controls, moisture transfer through construction elements, radiant heating and
cooling systems, and interzone airflow.

Tsikaloudaki et al. (2012) [53] used EnergyPlus to evaluate the cooling performance
of a wide variety of geometrical, thermo-physical, and optical properties of windows.
The maximum cooling loads were documented when windows’ solar transmittance is
high and thermal transmittance is low. It was demonstrated that in Mediterranean cli-
mates the combined high efficiency of transparent elements and controlled ventilation in
office buildings reduce heat losses and ultimately result in higher cooling energy loads.
Goia et al. [54] used EnergyPlus to develop a methodology for determining the optimal
glazing percentage in a façade unit for low-energy office buildings. The investigation
involved three alternative building design versions with different HVACs’ efficiency. It
was shown that, regardless of the orientation and building façade area, the optimal con-
figuration corresponds to a transparent-area percentage ranging between 35% and 45% of
the total façade area. Due to its fully accessible suites, it has been widely used for coupled
Building Energy/Computational Fluid Dynamics (BES-CFD) simulations for the quantita-
tive analysis of building energy performance, taking into account the external microclimate
conditions, thus accounting better for local environmental effects in the vicinity of the
buildings [55–57]. Due to its modular nature, it requires advanced knowledge of building
physics as well as high computer skills, especially in case of complex physical systems such
as those focusing particularly on indoor–outdoor interactions.

The DesignBuilder software [58] confronts the aforementioned barrier as it essentially
represents a user-friendly version (in fact, with elegant graphical interface), including
additional modules such as that of CFD computations for both indoor and outdoor air-
flow simulations. DesignBuilder software stands for a general purpose simulation engine
allowing for energy analysis and automatic optimization for various building systems
(HVAC, lighting, DHW), RES technologies, and construction materials, calculating addi-
tional key performance indicators such as thermal comfort (PMV, PPD), carbon and GHG
emissions, and financial analysis. Thus, it serves for holistic decision-making strategies.
In the framework of the IMPULSE project (Interreg MED 2014–2021), it has been used
to prioritize retrofitting measures towards the gradual energy-upgrading plan for public
buildings (in accordance with the EU directive 2012/27/EU) in the Municipality of Her-
aklion, Greece [59]. Among many applications for both practical and research purposes,
it has been used to demonstrate proof of concept regarding energy-upgrading measures,
for example, for reflective (cool) materials’ applications [60,61]. Specifically, for PCM ap-
plications it has become evident that EnergyPlus contains numerical models much more
accurate than those of other popular BES tools, such as TRNSYS [62]. The tool has been
also used with success to prescribe retrofitting strategies, focused on the building envelope,
for higher education buildings in Egypt [27], concluding with useful suggestions for design
codes ensuring balance between thermal comfort and energy efficiency.
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eQUEST

eQUEST [63] is a user-friendly building energy simulation tool consisting of a building
creation wizard, an energy systems’ wizard, and a graphical interface module. It incorpo-
rates an enhanced DOE-2 simulation program, which performs an hourly based energy
simulation based on properties of opaque and glazing construction elements, occupancy
patterns, loads, and ventilation. The simulation module also accounts for the performance
of conditioning systems, such as fans and chillers, boilers, and other energy-consuming
devices. The eQUEST foresees utilities for parametric analysis of alternative designs and
viewing of immediate, collated results. It foresees energy-cost estimating, daylighting,
and lighting system control as well as quickly imposing energy-efficiency measures (by
selecting preferred measures from a list).

Azar and Menasa [13] used eQUEST to conduct a sensitivity analysis on the occupancy
behavioral parameters of typical office buildings of different sizes and in different climate
zones. Sensitivity levels varied with building size and weather conditions, and the highest
sensitivity was observed when altering the “heating temperature set-point” parameter
in small-size buildings located in dry climatic conditions. Recently, the software was
used to review the effects of thermal and optical properties of electrochromic windows
(ECWs) on the energy performance of a typical office building configuration in Korea [64].
Kim et al. [65] demonstrated the flexibility in incorporating user-defined solar models as
input conditions into the software towards the estimation of typical office building energy
performance. In view of the important need for the lowest possible deviation between
simulated and actual energy consumption when it comes to Energy Performance Contracts
(EPC), the eQUEST has been already used to calibrate energy simulation results using
actual electricity bills and further applied to investigate EPC reliability for an actual office
building in Taiwan [66]. The software allows detailed techno-economic assessment of
novel technologies in buildings, as demonstrated by Seyednezhad and Najafi [67]. They
investigated various operating conditions for a Thermoelectric-based cooling and heating
system on an office-type building in Melbourne, FL, USA, and determined the cost, as well
as potential savings, for each tested operating condition. Wang et al. [68] used the software
to develop a strategic approach on the energy efficient analysis of the water-heating-system
retrofit by applying a heat pump system in a university dormitory located in a central part
of Taiwan.

ESP-r

ESP-r [69] is a general purpose, multi-domain-building thermal, interzone airflow, in-
trazone air movement, HVAC systems, and electrical power flow-simulation environment.
It supports CFD models for analyzing air quality and comfort calculations. By addressing
all design and systems’ aspects simultaneously, ESP-r permits the investigation of complex
relationships among building form, envelope, airflow, systems, and control. It employs a
finite volume conservation approach in which a problem is transformed into a system of
algebraic transfer equations of dependent variables (energy, mass, momentum, etc.), which
are then integrated at successive time steps with respect to climate, occupant, and control
system conditions. It comprises a central Project Manager providing navigation through
support databases, a simulator, performance assessment tools, and a variety of third party
applications for CAD, visualization, and report generation.

Hoseggen et al. [70] applied ESP-r to conclude whether a double-skin façade should
be applied to the east façade of an office building in Trodheim, Norway, towards the
reduction of heating demand. The paper also demonstrates how a double-skin façade
with controllable windows and hatches for natural ventilation can be implemented in
the simulation program. Bourgeois et al. [71] studied the occupancy behavioral patterns
on building energy consumption using ESP-r. They demonstrated the implementation
and integration of a sub-hourly occupancy-based control model that enabled advanced
behavioral models. It was shown that building occupants seeking daylighting can lower the
primary energy consumption by more than 40% compared to occupants relying on constant
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artificial lighting. The software (among others) has been employed to develop guidelines
for seasonal energy consumption for heating and ventilation based on short periods of
heat demand measurements and to determine the optimal duration of the measurement
period [72]. Bonetti and Kokogiannakis [73] revealed a fine performance of the software
in the framework of exploring exergy potential of seven different building wall types
for utilizing nocturnal ventilation as a passive cooling strategy. Eller et al. [74] used the
software to explore the potential of a bio-based phase change material (PCM) applied to
construction components regarding the impacts on thermal performance under several
climates, and determined the associated potential of energy savings.

IDA-ICE

IDA Indoor Climate and Energy (IDA-ICE) [75] software is a whole year detailed and
dynamic multi-zone simulation application for the study of indoor climate and energy. The
IDA-ICE user interface is designed to ease the development and simulation of both simple
and advanced cases, in a 3D environment, in combination with comprehensive tables,
providing the optimal feedback. A simple procedure for calculating and reporting thermal
loads and energy demand, together with a built-in version handling system, facilitates
comparisons among different systems and results.

IDA physical systems are described using symbolic equations, in either Neutral
Model Format (NMF) or Modelica. IDA-ICE offers separated but integrated user interfaces
to different user categories, e.g., wizard interfaces for developing the building model,
standard interface serving for model setup by means of concepts and objects (such as zones,
radiators, and windows), interfaces for advanced users to import, browse, and edit the
mathematical formulations, etc.

Salvalai [76] used IDA-ICE as a building energy simulation platform within which
a water-to-water heat pump model was implemented. Results obtained were in good
agreement with experimental data. Hesaraki and Holmberg [77] also used IDA ICE
to investigate the impact of low-energy heating systems in newly built semi-detached
dwellings in Stockholm, in relation to the Swedish building regulations. They demonstrated
that the installation of heating systems in combination with under-floor and ventilation
radiators not only met energy requirements of regulations but also provided thermal
comfort. Numerical results were validated with measured data. Rabani et al. [78] used
the software to develop a fully integrated BES optimization CFD daylight simulation
applied for a generic office building located in Oslo. The proposed model successfully
optimized building envelope properties, fenestration parameters, and HVAC systems’ set
points towards minimization of building energy consumption and acceptable thermal
and visual comfort conditions. As far as its accuracy is concerned, very good agreement
with internal air temperature has been documented in comparison with measurements
obtained at controlled free-floating conditions regarding PCM performance [62]. Recently,
IDA-ICE was used for the energy-renovation study of two Danish heritage/historical
buildings [79]. Two renovation cases were studied through the available measurement
and calculation results before and after renovations and significant energy-saving amounts
were demonstrated without compromising the cultural values of buildings.

IESVE

IES Virtual Environment (IESVE) IESVE [80] is an in-depth suite of building perfor-
mance analysis tools. It allows the design and operation of energy efficient buildings.
Whether working on a new building or existing building renovation project, IESVE of-
fers the ability to test different options, identify the optimal passive solutions, compare
low-emission and renewable-energy technologies, and formulate conclusions on building
energy indicators. It includes numerous utilities providing sustainable analysis compatible
with the needs of different design team members and design stages. The main modules
included in this software are the following:

• Model, IT geometry creation and editing
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• ApacheCalc, loads’ analysis
• ApacheSim, thermal
• MacroFlo, natural ventilation
• Apache HVAC, component-based HVAC
• SunCast, shading visualization and analysis
• MicroFlo, 3D CFD
• FlucsPro/Radiance, Lighting design
• DEFT, model optimization
• LifeCycle, life cycle energy and cost analysis
• Simulex, building evacuation

Murray et al. [81] applied IESVE to plan a retrofitting project of a case study building
located at Cork University College, for which both modelling and actual interventions were
applied. This approach allowed the comparison between simulated and measured data
and a good agreement between them was concluded. Ouedraogo et al. [82] used IESVE
to investigate the impact of climate change on future trends of electricity demand for air
conditioning in public buildings within the period 2010–2080. Their study highlights the
fact that the predicted mean temperature using a specific climate-change data scenario
will increase by about 2 ◦C by 2050, yielding to a significant increase in air-conditioning
energy consumption for case-study buildings in the Burkina Faso built environment. For
this specific region, they concluded that shading devices could reduce the cooling load
by 40%; thus, they could play an important role in climate-change resilience strategies for
buildings. Recently, the tool was used to investigate the energy-saving potential obtained
by the application of bio-based wall construction in rural residential buildings in Northeast
China [83]. Interestingly, it was found that reductions of 45.82–204.07 kWh/m2/year in
heating energy demand and more than 40% in coal consumption are possible through the
application of bio-based wall constructions.

SUNREL

SUNREL [84] developed by the National Renewable Energy Laboratory (NREL) is
an hourly based building energy simulation software oriented to the design of small,
energy-efficient buildings where the loads are governed by the dynamic interactions
among the building envelope, environment, and occupants. It has a simplified multi-
zonal airflow algorithm that can be used to calculate infiltration and natural ventilation.
Users can enter the optical interactions of windows with identical layers of clear or tinted
glass and no coatings on the layers. Thermal properties are modelled with a fixed U-
value and fixed interface coefficients. SUNREL is particularly appropriate for passive
solar buildings and incorporates specialized algorithms that treat the physical effects of
Trombe walls, glazing, controllable window shading, active-charge/passive-discharge
thermal storage, and natural ventilation. The building is represented by a thermal network
model solved with forward finite differencing, among other techniques. Additionally, a
simple graphical interface allows users to easily provide input and preview the output.
Elzafraney et al. [85] used SUNREL to demonstrate the benefit of enhanced concretes
containing coarse aggregates of recycled plastics. The tool was used to simulate the thermal
and building energy performance of two building configurations with and without polymer
aggregates, and it was found that the former one led to a substantial reduction of heating
and cooling loads while ensuring thermal comfort.

TAS

TAS [86] simulates the dynamic thermal performance of buildings and their systems.
Its prevailing module is the TAS Building Designer, which undertakes dynamic simulation
with integrated convective airflow. It has a 3D graphics-based geometry input that includes
a CAD link. TAS incorporates an HVAC systems/controls’ simulator, which can be directly
interconnected with the building simulator. The TAS Ambiens module incorporates a 2D
CFD package, which produces space microclimate at a cross-section level. TAS combines
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dynamic thermal simulation with natural ventilation calculations, which include advanced
control functions on aperture opening as well as the ability to simulate mixed mode
systems. The software has heating and cooling plant sizing procedures, which include
optimum start.

Wong at al. [87] used TAS to investigate the impact of vertical greenery systems on the
temperature and energy consumption of buildings. The results revealed a linear correlation
between shading coefficient and leaf area, where a lower shading factor leads to a greater
thermal insulation. As far as the use of TAS for understanding the influence of different
architectural design strategies in energy demand is concerned, Pino et al. [88] demonstrated
its efficient use for such purposes, especially for office buildings. Recently, it was employed
to compare traditional and contemporary mosque buildings by means of dry bulb air
temperature and various thermal loads in Oman [89]. As shown by Salem et al. [90],
the software can adequately predict the impacts of both combined heating power (CHP)
and combined cooling–heating power (CCHP) in a real-case scenario of a hotel building
in the UK, regarding energy efficiency, energy cost, payback, and carbon emissions. In
the same study, additional simulations under climate-change projections revealed that a
CCHP system outperforms a CHP system. Amirkhani et al. [91] investigated the impact
of a Low-emissivity window film on the overall energy consumption of an existing hotel
building in the UK using the software, and estimated that by applying the suggested low-e
film, savings in heating, cooling, and total energy consumptions may reach 3%, 20%, and
2.7%, respectively.

TRNSYS

TRNSYS (Transient system simulation program) [92] is a program with a modular
structure that implements a component-based approach. Its components extend from sim-
ulating a single pump or pipe to a multi-zonal building model. Its components assemble in
a fully integrated visual interface called TRNSYS Simulation Studio, while building input
data are entered through a dedicated visual interface (TRNBuild). The simulation engine
then solves the algebraic system of the discretized differential conservation equations
consisting of the energy system. HVAC system components are solved simultaneously
with heat conservation through the building envelope and the air network at each time step.
In addition, the TRNSYS library includes components for solar thermal and photovoltaic
systems, low-energy buildings, HVAC systems, renewable energy systems, cogeneration,
fuel cells, etc. The modular nature of TRNSYS facilitates the compilation and integration
of new mathematical models to the program regarding, for example, walls’ boundary
conditions, systems’ properties, and operation schedules. It presents high flexibility and
compatibility with other software (e.g., Matlab/Simulink, Excel/VBA) for co-simulation,
optimization, and optimal control purposes. TRNSYS can generate redistributable applica-
tions that allow less-skilled users to run simulations and parametric studies. It has been
widely used and tested for whole building energy simulations for more than 20 years. It
exhibits perhaps the highest sophistication regarding modelling of solar radiation passing
through windows since it considers variable optical properties with incidence angle and in
terms of treatment of direct and diffuse solar radiation distribution into a zone [62].

Ibanez et al. [93] used TRNSYS to simulate the impact of Phase Change Materials
(PCM) integrated into walls, ceiling, and floor of an experimental room built with concrete
panels with PCM, on the whole building energy balance. An acceptable agreement be-
tween the simulated and experimental results was obtained. Beausoleil-Morrison et al. [94]
developed an ESP-r/TRNSYS co-simulator, which was applied for evaluating the perfor-
mance of a solar-thermal system in a low-energy building. The suggested co-simulation
environment proved to be an effective tool for designing solar buildings, particularly when
architectural, energy conversion, and storage systems are all integrated. The software has
been also used to present and compare a series of passive and active measures for energy
upgrading of various building types (educational, museum, sports facility, Municipal Office
building, and a residential, detached building) in a typical Mediterranean climate [95]. In
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such climatic conditions, Pérez-Andreu et al. [96] applied TRNSYS to study the benefits
of passive construction measures in a typical Mediterranean dwelling, in terms of energy
consumption and thermal comfort, taking into account site wind and occupants’ behav-
ioral conditions. Validation and model-calibration processes revealed excellent agreement
between simulated and actual (measured) data referring to indoor monthly averaged air
temperature and relative humidity.

2.2. Urban Microclimate Modelling

The global trend towards urbanization in parallel with climate-change implications
justifies the growing interest in the study of combating adverse effects of extreme microcli-
mate conditions on urban activities relating to building energy consumption and health.
The Urban Heat Island (UHI) effect presented evermore high intensities during the last
10 years, which significantly impacted pedestrians’ thermal comfort and perception of
air quality as well as energy demand of buildings in dense urban environments. Lands-
berg [97] states that the UHI phenomenon is the most obvious climatic manifestation of
urbanization. Indeed, numerous studies in the scientific literature have highlighted the
adverse effects of urban extreme microclimates, especially UHI, on building energy de-
mand and consumption as well as thermal comfort and well-being [98–100]. In accordance
with the scientific evidence, the European Commission indicated the requirement to ac-
count for local climate, especially in developing strategies to meet the Nearly-Zero Energy
Building (NZEB) goal (refer, for example, to its 2012 release “Evaluating and Modelling
Near-Zero Energy Buildings: are we ready for 2018?” [101]). Considering the latest research
findings as well as trends in energy policies that necessitate building energy design with
accurately predicted performance indicators, building simulation techniques, taking into
account the external microclimate effects, should no longer be considered as “for research
purposes only” and move to the practitioner level at the early design stages. Accepting
the suggestion that in modern case studies indoor and outdoor physical effects are insep-
arable, this paper extends the review to include basic computational methods and tools
for quantifying urban microclimate effects. The present section reviews the methods and
popular computational tools that can be used to quantify the physical variables comprising
urban microclimate (mainly by means of its UHI manifestation) in open spaces, such as
wind speed, temperature, and relative humidity, including thermal comfort indicators of
pedestrians.

The Urban Heat Island effect is related to higher urban temperatures in city centres
compared to the surrounding rural or suburban areas [102]. This situation emanates from
anthropogenic heat sources, e.g., vehicles, power plants, air-condition units, etc., as well
as by other heat stresses produced by the use of ground or building materials of poor
thermal behaviour and the lack of heat sinks (e.g., water surfaces) and of vegetation [103].
Fundamental causes of the UHI were indicated by Oke [104] and their relative importance
was further validated in numerous follow-up studies:

• Trapping of short- and long-wave radiation in areas between buildings
• Reduced long-wave radiative heat loss due to low sky-view factors
• Increased sensible-heat storage in the construction materials
• Anthropogenic heat released mainly from fuel combustion (domestic heating,

vehicles, etc.)
• Reduced evapotranspiration due to limited plantation, which means that energy is

converted into sensible rather than latent heat
• Reduced heat displacement due to reduced wind speed

Studies of the UHI are usually focused on the so-called heat island intensity, which
is the maximum temperature difference between the city and the surrounding rural or
suburban area. The intensity is mainly determined by the heat conservation of the region
and is, therefore, subject to diurnal variations and short-term weather conditions [105,106].
There are two major simulation methods often used to assess UHI [107]:
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• Energy balance models
• Computational Fluid Dynamics (CFD) models

In the following subsections, the background of the simulation methods and a com-
parative analysis between them is discussed, while the most popular computational tools
of each method are briefly described in terms of their strengths and weaknesses.

2.2.1. Energy Balance Models

The energy-balance (or urban energy-budget) concept was first suggested by Oke [104].
This method adopts the principle of energy conservation for a given control volume, and
manipulates the wind-induced phenomena, i.e., turbulence and velocity fields, as simple
heat fluxes. These fluxes are generally defined by analytical or empirical equations. In
the last two decades the energy-budget concept has been enhanced to the so-called Urban
Canopy Model (UCM), which is derived from the energy balance equation for a control
volume containing two adjacent buildings. The model considers the energy exchanges
between solid surfaces of the domain and the urban canopy and predicts the ambient
temperature and solid-surfaces’ temperature of the urban fabric components. However,
the airflow is decoupled from the temperature field, being treated as a separate input into
the control volume. For this purpose, the logarithmic or the power law [16] is widely used
in order to represent airflow in the domain of interest. In the UCM approach, all surfaces
and control volumes are interconnected by means of an electrical analogue. The energy
conservation equation [107] is then applied to each node, thus being discretized to an
algebraic system comprised of matrices of temperature and humidity coefficients. An itera-
tive solution of the system provides the temperature and relative humidity distributions
throughout the domain. One-layer [108] and multiple-layer [109] schemes depend on the
nodes’ number on the building walls, while such models can be also developed into one to
three dimensions. This approach is fast, in general, as it treats building canopies with a low
number of nodes. It provides acceptable predictions but mainly in large-scale cityscapes.

The omission of an air velocity pattern represents the major drawback of UCM mod-
els. Indeed, the resolution of the air velocity field facilitates the study of special airflow
effects, e.g., eddy circulation and dissipation, wake regions, and turbulence intensity, and
of the atmospheric phenomena (e.g., precipitation and stratification), towards the deter-
mination of heat fluxes’ components. The consequent approximation of heat fluxes using
empirical correlations in UCM models rarely captivate the interaction between velocity
and temperature fields. Provided that data for three-dimensional geometries of building
canopies and urban structures correspond to high computer loads, the urban complex is
often represented by homogeneous columns as building boxes. Cityscape geometry is
also approximated with coarse grids on ground, roofs, and walls, hence, weakening the
reliability of the energy-conservation solution, especially when the focus is on pedestrians’
thermal comfort.

2.2.2. Computational Fluid Dynamics

Unlike the energy-balance models, CFD simultaneously solves all the governing equa-
tions of airflow within the urban fabric, i.e., conservation equations of mass, momentum,
thermal energy, chemical species, and turbulence parameters for single- and multi-phase
flow phenomena. As a result, CFD can produce more accurate information about the
UHI effect within and above building canopies compared to the energy budget models.
Consideration of complex details in addition to complicated atmospheric interactions of the
cityscape is, nonetheless, both a computational and theoretical challenge. The former refers
to the high number of the computational nodes to simulate the airflow, while the latter
is related to the unmatched temporal and spatial resolution of the physical mechanisms
occurring within the cityscape. For example, turbulence length scales within and above the
canopy differ significantly; thus, they cannot be modelled in the same scale. This suggests
the division of the CFD simulation into different scales for UHI studies [107]: Meso-scale
and Micro-scale (within the urban canopy).
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Meso-scale models present horizontal resolutions ranging from one to several hun-
dreds of kilometres. Vertically, they vary with the depth of the so-called Planetary Boundary
Layer (PBL) (the layer between the earth surface and geostrophic wind), i.e., in between
200 m and 2 km [107]. In such models, large-scale interactions under the PBL are analysed,
involving treatment of the atmospheric stratification and surface layer. In this approach,
the atmospheric stratification is resolved by adopting either the hydrostatic or the non-
hydrostatic assumption in the Navier–Stokes equations. The hydrostatic assumption refers
to a simplified motion equation in the vertical axis in terms of a balanced correlation
between the buoyancy and the pressure term. On the other hand, the non-hydrostatic
assumption refers to the full Navier–Stokes equation in the vertical axis. Meteorological
schemes mostly use Monin–Obukhov or other similarity schemes to model the surface
sublayer [110], and building canopies are simulated by means of aerodynamic roughness.
This means meso-scale models manipulate the complex phenomena within the urban
canopy only by a roughness value. Consequently, information about variations of depen-
dent variables within the canopy layer is extremely limited. However, this simplification
facilitates the understanding of physical phenomena (for instance, surface drag, shear
stress) at least within the urban surface layer but above the canopy layer. The precision
of meso-scale modelling is strongly dependent on the available land-use parameters. De-
tailed information of solid surfaces at micro-scale level (e.g., thermo-physical properties,
geometry, optical properties) is rarely available for the entire urban area of interest. Even
in the contrary case, applying these details to a meso-scale model increases the required
computational resources. Since the spatial resolution is in the order of a few kilometres,
it is also necessary to assume a meso-scale zone as a homogeneous area and estimate the
surface properties with bulk values, e.g., albedo, emissivity, and roughness.

On the other hand, micro-scale CFD resolves the conservation equation inside the
canopy layer. In the meso-scale layer, the horizontal spatial quantities are usually ac-
counted for as homogeneous values, while the quantities within the actual geometry are
simulated in detail, taking into account surface physical interactions in the micro-scale
layer. These interactions are generally represented by the Monin–Obukhov similarity
theory to represent the PBL in meso-scale layers. Obviously, it is not realistic to apply
micro-scale modelling for an entire city, with all geometric details, due to the high com-
putational cost. Therefore, the common approach is to limit the simulation into a small
domain in the magnitude of some blocks of buildings (few hundreds of meters), as done,
for example, by Stavrakakis et al. [103]. On the other hand, the treatment of the PBL in
a micro-scale model is not as comprehensive as in the meso-scale model, which means
that micro-scale modelling does not account for atmospheric interactions such as vertical
mixing or Coriolis effect. Observational schemes [107] can significantly improve the afore-
mentioned limitations. However, providing boundary conditions in the micro-scale model
is even more complicated than in the meso-scale model. In micro-scale modelling more
measurements are necessary due to high fluctuations of airflow quantities near surfaces.
Although the assumptions of a homogeneous boundary layer [111] and corresponding
boundary conditions [103] may be adopted, these approaches are physically weak con-
sidering the stochastic nature of airflow velocity and the variety of height and geometry
of buildings. Similar to the meso-scale modelling, the treatment of turbulent closure and
radiation significantly affects the precision of the micro-scale model prediction.

As far as turbulence modelling is concerned, many theories have been proposed,
such as the Direct Navier–Stokes (DNS) simulation, Large Eddy Simulation (LES), and
Reynolds Averaged Navier–Stokes (RANS) [16]. Although the precision can be improved
using LES and DNS, the application of these schemes is very demanding in terms of
CPU resources. On the other hand, RANS models (such as the Standard k-ε model or
its modifications [112]) are widely used for turbulence modelling in UHI studies as their
requirements for computational resources are moderate in comparison to LES and DNS.
However, it should be mentioned that RANS modelling provides limited representation
of physical phenomena such as the so-called “horse-shoe vortex” around buildings [113].
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This implies that accurate modelling of turbulence phenomena is still one of the weakest
points of RANS modelling. Additionally, the size scale of the case considered substantially
affects RANS modelling as it is related to the turbulence-length scale i.e., the size of the
large energy-containing eddies in the turbulent layer.

2.2.3. Collation of Urban Microclimate Modelling Methods

Table 3 contrasts the capabilities of UHI study methods by means of the governing
equations, limitations, domain-size restrictions, resolution in time and space, and com-
putational cost. It becomes obvious that the meso-scale method is practical when urban
surface details are less important, i.e., heat transfer at the urban scale, pollutant dispersion,
and thermal comfort are not adequately assessed by this method. On the contrary, for
cases that such information is required, meaning that the physical phenomena within the
urban canopy are of interest, micro-scale CFD or UCM methods are more useful. It should
be pointed out, however, that when CFD models are applied in near real-time and -size
manner, small time steps and detailed geometries may be prohibitive due to extremely high
computational costs for simulations of whole cityscapes. This implies that major assump-
tions should often be adopted in order to produce realistic results, at least for practical
engineering purposes. The most common assumptions followed when micro-scale CFD
models were applied for UHI assessments are:

• Restricted computational domain near the area of interest, i.e., the rest of the actual city
is represented by roughness equations only (without detailing building geometries).

• Geometry simplifications in order to avoid high spatial resolution.
• Assume homogeneous boundary layer, ignoring the interactions with PBL (200 m

height and above).
• Application of unstructured grids (tetrahedral or polyhedral) in order to avoid dense

grid propagation along the Cartesian axis of the domain.

Table 3. Collation of major UHI simulation methods.

Key Feature UCM
CFD

Meso-Scale Micro-Scale

Governing
equations

-Energy balance equation
-Empirical velocity

equation within the urban
canopy

-Heat conduction equation
on solid surfaces

-Navier–Stokes equations
including the Coriolis term

with hydrostatic or
non-hydrostatic

assumption
-Monin–Obukhov for
ground surface effects

-Heat conduction equation
for soil

-Momentum equations
(Navier–Stokes)

-Wall functions representing
laminar-turbulent stratification

near solid surfaces.
-Heat transfer equation near

surfaces
-Chemical-species conservation

equations
-Turbulence model

Major limitations

-Decoupled velocity field
from hygrothermal effects

-Representation of cityscape
using arrays of similar

buildings
-Low resolution of model

geometry
-Assumes steady-state

conditions mainly
-Empirical assumptions for

convective latent and
sensible heat

-Treatment of the urban
canopy layer as roughness

-Difficult to provide
Land-use database

(user-defined functions are
required)

-Turbulent effects not
captured

-PBL effects are ignored
-Difficult to create database for

canopy details (user-defined
functions are commonly required)
-Precise boundary conditions are

required, often produced from
external, sophisticated physical

models
-Homogeneous inflow boundary

layer, especially when RANS
modelling for turbulence is

applied

Maximum size of
cityscape domain Whole City Whole City District level

Spatial resolution for
grid meshing 1–10 m 1–10 km 0.2–10 m

Temporal resolution
(time step) Hour Minute Second

Computational load Medium Relatively high
Very high (depending on the

turbulence model applied and
grid size)
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Although these assumptions may cause deviations of predictions in comparison with
measurements (if available), it has been extensively demonstrated in simulated, mea-
sured data comparative studies in real-scale cases that the produced deviations (even
when applying the RANS model) are considered acceptable at least for practical en-
gineering purposes [114–116]. It has been pointed out, however, that it is still a re-
search challenge to bridge the gap between micro-scale and meso-scale modelling tech-
niques [117] towards perhaps integrated models utilizing the respective benefits of high-
resolution analysis and large urban scales, in order to achieve more accurate predictions at
simulation environments.

2.2.4. Urban Microclimate Simulation Tools

This section summarizes research-based, commercial, or freely available simulation
tools of each method discussed above. It is true that today’s scientific literature contains a
plethora of field modelling tools, which are mainly products of mathematical interpretation
of the physical phenomena encountered in the urban environment. Since this paper focuses
on the physical analysis within the urban canopy layer, meso-scale models are beyond the
scope of this review, and the present section describes energy balance models (UCM mainly)
and micro-scale CFD tools (excluding the FEM-based ones, since they are not so commonly
used in urban microclimate analyses). Respective common modelling developments and
tools used worldwide (but there are many more) are the following [107,118]:

• Energy balance models

� UHSM
� TEB
� SOLWEIG
� Rayman

• CFD tools

� ENVI-met
� ANSYS-Fluent
� ANSYS-CFX
� Phoenics

A summary of strengths and weaknesses of simulation tools is provided in Table 4.

Table 4. Strengths, weaknesses, and special features of computational urban microclimate simulation models and tools.

Model or
Tool/Method

Strengths Weaknesses

Special Modelling Features
Most Common
Applications

CPU
Load

AvailabilityEvaporation and
Evapotranspiration

Radiation

UHSM/UCM

>Solution of heat
transfer equations at

representative
heights (ground,

building,
atmosphere)

>Anthropogenic
heat

>Spatial
discretization of

equations
>Distribution of
temperature and
relative humidity

>Hourly
temperature results

>No thermal comfort
indicators are
incorporated

>Very simplified
geometry

>Wind speed
decoupled from heat

transfer equations
>Simple roughness
equation for wind

speed
>Turbulence is dealt

with simple drag
equation

>High urban physics
expertise and

computer skills are
required
>Lack of

documentation and
tutorials

>Since it is a
customized model,

User-defined models
only are assumed

>Short- and
long-wave
radiation

models are
included

>Assessment of
UHI intensity and

implications by
means of physical
parameters only

(temperature,
relative humidity,

incident
radiation)

Low

Research-based;
The user must
reproduce the

model

233



Energies 2021, 14, 6707

Table 4. Cont.

Model or
Tool/Method

Strengths Weaknesses

Special Modelling Features
Most Common
Applications

CPU
Load

AvailabilityEvaporation and
Evapotranspiration

Radiation

TEB/UCM

>Full 3D modelling
>Solution of heat

budget at three surfaces
(ground, walls, and

roofs)
>Turbulent fluxes are

simulated in the
PBL/Canopy layer

interface
>Roads of any

orientation may be
placed

>Conduction fluxes
through solid surfaces

>Monin–Obukhov
conditions for the

surface layer
>Human comfort index

included
>A comprehensive

Building Energy Model
(BEM) is included in
tool’s latest version

>Relatively
simplified geometry

>Wind speed
decoupled from heat

transfer equations
>High urban physics’

expertise and
computer skills are

required
>Scattered

documentation and
examples (some

information included
in SURFEX tool
documentation)

>Water interception
and evaporation as

well as snow mantel
evolution models are

included
>User-defined

evapotranspiration
models for

plantations are
required

>Short- and
long-wave
radiation

models are
included

>Simulation of
urban fluxes’

impacts on the
atmosphere

>Investigation of
UHI intensity

>Co-simulations
with future

climate forecast
models towards

the assessment of
future urban

canopy
microclimates

>Calculation of
building thermal
loads, taking into
account external

microclimate

Medium

Free (open
source

available in
http:

//redmine.
cnrm-game-

meteo.fr/
projects/

teb)

SOLWEIG/UCM

>Modelling of 3D
radiation fluxes

>Relatively accurate
geometry

>Solves for mean
radiant temperature

(thermal comfort)
> Interconnected to
QGIS open platform

> Well-structured
documentation and

guides
>Ability for the user to

integrate own
models/codes, e.g.,

boundary conditions

>Velocity pattern
decoupled from heat

transfer
>Turbulence is not

modelled
>Plantation

evapotranspiration is
ignored

>Relatively high
knowledge of

urban/building
physics is required

>By-default models
for Evaporation

>Evapotranspiration
is not included

>Short- and
long-wave
radiation

models are
included
>Direct

calculation of
the mean
radiant

temperature

>Calculation of
mean radiant
temperature

>Estimate radiant
effects of UHI

Medium Free (Open
source)

Rayman/UCM

>Modelling of 3D
radiation fluxes

>Relatively accurate
geometry

>Solves for radiant heat
fluxes from solid

surfaces and from
human body

>Solves for thermal
comfort indicators (PET,

SET*, and PMV)
> User friendly

> Average expertise in
urban physics is

required

> Velocity pattern
decoupled from heat

transfer
>Turbulence is not

modeled
>Limited

documentation and
tutorials

>Evaporation is
included

>Evapotranspira-tion
is ignored

Short- and
long-wave
radiation

models are
included

>Calculation of
mean radiant
temperature

>Estimate radiant
effects of UHI

Medium Free

ENVI-
met/microscale

CFD

>Urban
microclimate-dedicated

tool
>Full 3D simulation

>Compilation of
prevailing urban

physics phenomena
>Most reliable thermal

comfort models and
indices are included

>Average expertise in
urban physics is

required for simple case
studies

>Compatibility with
BES software

>Widely used and
validated in a plethora

of case studies
>Excellent

documentation and
user guides

>Restricted to
Cartesian geometries

>Structured grids
only

>Limited turbulence
modelling options

>Very high CPU load

>Models for
evaporation and

evapotranspiration of
trees are included

>Short- and
long-wave
radiation

models are
included
>Mean
radiant

temperature
calculation

code is
included

>Simulation of
UHI

> Calculation of
thermal comfort

at pedestrian level
>UHI mitigation

strategies
>Building energy

performance
when coupled
with BES tools

Very high
(depend-

ing on
grid size,
time step,
physical
models,

and
available

CPU
resourses)

Commercial
(Only its

Lite version
is still free,

but only for
limited

domain size
and reduced

out-
put/analysis

options)
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Table 4. Cont.

Model or
Tool/Method

Strengths Weaknesses

Special Modelling Features
Most Common
Applications

CPU
Load

AvailabilityEvaporation and
Evapotranspiration

Radiation

ANSYS-
Fluent/microscale

CFD

>General purpose CFD
platform

>Many options of
turbulence models and

radiation models
>Flexibility and easiness

of grid generation
>Parallel-processing

supported
>User friendly

>Extensive
documentation with

tutorials
>Applies the so-called
multigrid solver, which

means faster
convergence compared
to other CFD software

>Since it is a general
CFD platform, the

user has to develop
and incorporate

user-defined models
in terms of boundary

conditions; thus, it
requires high

expertise in urban
physics

>The high purchase
cost limits its use by

practitioners
>High CPU load

>Thermal comfort
indicators not

included.
User-defined
functions are

required.
>No database of

vegetation properties

>User-defined
models for

evaporation and
evapotranspiration
should be prepared

and compiled

>Short- and
long-wave
radiation

models are
included

>User-
defined

function for
mean radiant
temperature
is required

>Simulation of
UHI

>UHI mitigation
strategies

>Building energy
performance

when coupled
with BES tools

High (de-
pending
on grid

size, time
step,

physical
models,

and
available

CPU
resourses)

Commercial

ANSYS-
CFX/microscale

CFD

>General-purpose CFD
platform

>Many options of
turbulence models and

radiation models
>Flexibility and easiness

of grid generation
>Parallel processing

supported
>Extensive

documentation with
tutorials

>Particularly useful for
wind-comfort
assessments

>Since it is a general
CFD platform, the

user has to develop
and incorporate

user-defined models
in terms of boundary

conditions; thus, it
requires high

expertise in urban
physics

>Not so extensive ver-
ification/validation
exists in literature

specifically for urban
microclimate
assessments

>High CPU load
>Thermal comfort

indicators not
included.

User-defined
functions are

required.
>No database of

vegetation properties
>Less grid-meshing
flexibility compared

to Ansys Fluent

>User-defined
models for

evaporation and
evapotranspiration
should be prepared

and compiled

>Short- and
long-wave
radiation

models are
included

>User-
defined

function for
mean radiant
temperature
is required

>Simulation of
UHI

>UHI mitigation
strategies

High (de-
pending
on grid

size, time
step,

physical
models,

and
available

CPU
resourses)

Commercial

Phoenics/microscale
CFD

>General purpose CFD
platform

>Many options of
turbulence models and

radiation models
>Parallel processing

supported
>Extensive

documentation with
tutorials

>Includes the Foliage
module to account for

evaporation
phenomena from

vegetation

>Since it is a general
CFD platform, the

user has to develop
and incorporate

user-defined models,
thus it requires high
expertise in urban

physics and computer
skills

>Thermal comfort
indicators not

included.
User-defined

functions are required
>Limited flexibility in
grid generation (e.g.,
tetrahedral meshing

is not included)
>High CPU load

>The Foliage module
simulates

evaporation from
vegetation

>Short- and
long-wave
radiation

models are
included

>Simulation of
UHI

>UHI mitigation
strategies

Very high
(depend-

ing on
grid size,
time step,
physical
models,

and
available

CPU
resourses)

Commercial
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UHSM

The Urban Heat Storage Model (UHSM) enhances the Oke’s urban energy balance
equation and it was developed by Bonacquisti et al. (2006) [119]. The model is founded on
four-equation energy balance at the ground level and building level, namely:

• Energy balance equation at building surfaces
• Energy balance equation at the ground level
• Sensible heat balance equation
• Latent heat balance equation

It involves three simulation sections, i.e., atmospheric layer (maximum height above
building heights) and building and ground levels. The aforementioned equations formulate
a system of linearized algebraic equations to relate four major unknown variables, i.e.,
building surface temperature, ground surface temperature, air temperature, and relative
humidity. Ground and building aerodynamic roughness are evaluated as function of drag
coefficients of soil and of wind speed in the canopy layer. Wind deceleration within the
urban canopy was evaluated as a function of buildings’ density, drag coefficients, and wind
speeds within the atmospheric layer section. Anthropogenic heat is also taken into account,
using expressions representing heat releases by buildings (produced mainly by electricity
and fuel consumption), by transportation (vehicles exhausts), and by human metabolic
rates. The equations are spatially discretized in the domain (sub-domains) and based on the
heat storage within the urban canopy an iterative solution procedure is followed towards
the calculation of the unknown variables in each sub-domain.

The main data used as inputs in the model are the thermo-physical and optical
properties of urban surfaces as well as atmospheric parameters. The main output of the tool
is the spatial distribution (in hourly basis) of ground and building surface temperature, air
temperature and relative humidity, the mean surface temperature, and mean temperature
at the pedestrian level height. The tool was applied by Bonacquisti et al. [119] in the case of
Rome, Italy, and air temperature was used as a validation parameter, i.e., it was compared
with in situ temperature observations. Using this tool, the same authors concluded UHI
intensities (temperature increase compared to rural areas) of 2 ◦C and 5 ◦C, for winter and
summer, respectively.

TEB

The Town Energy Budget (TEB) tool [120] was developed in the Centre National de
Recherches Météorologiques, Toulouse, France, and it was presented by Masson [121]. The
TEB tool is canyon-based but generalized to capture large horizontal scales. Due to the
complex shape of the cityscape, the urban energy budget is divided into three parts, i.e.,
for roofs, walls, and roads. The model simulates turbulent fluxes into the atmosphere
at the surface of the meso-scale atmospheric model covered by buildings, roads, or any
other artificial material. Heat fluxes are computed for each land type by the appropriate
scheme, and then they are averaged in the atmospheric model grid mesh, with respect to
the proportion occupied by each type. The fluxes calculated are Latent and sensible heat
fluxes, upward radiative fluxes, and component momentum fluxes.

Cityscape geometry is normally represented by buildings that have the same dimen-
sions. Buildings are located along identical roads, the lengths of which are considered
far greater than their widths. Finally, any road orientation is possible, all existing with
the same probability, and this hypothesis allows the computation of averaged imposition
parameters for road and wall surfaces. In order to treat the conduction fluxes through solid
surfaces, TEB discretizes each surface type into several layers. The equations applied to
represent temperature evolution in these layers are based on energy budget considerations
and several prognostic equations for the surface layers of roofs, walls, and roads emerge.
The set of equations describing heat transfer mechanisms and turbulent fluxes is similar
to that of the UHSM tool. The main difference is that the surface layer is represented
by the Monin–Obukhov equations. Its latest version includes a Building Energy Model
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(BEM) suite mainly for thermal loads’ predictions. Ren et al. [122] integrated TEB into a
climate change air quality model and demonstrated improvement of predictions of NOx,
PM2.5, and ground-level O3 in four major north American Cities. The tool was used by
Reder et al. [123] towards the suggestion of climate resilience strategies and measures by
means of UHI mitigation. As documented by Pigeon et al. [124], the software, enhanced
with the BEM suite, allows reliable predictions of buildings’ heating and cooling demands
in comparison with the more detailed model, EnergyPlus, for various building types. Lately,
and in view of recent trends referring to assessments of future climate change impacts on
the development of energy policies, TEB has gained interest in the prediction of impacts of
climate change scenarios on UHI and urban energy performance [125–127].

SOLWEIG

SOLWEIG is a radiation-dedicated module of the Urban Multi-scale Environmen-
tal Predictor (UMEP) [128], which was developed by the Earth Sciences Department in
Gothenburg University, and it is extensively described by Lindberg et al. [129]. UMEP is
a climate service plugin for QGIS. It is an open-source tool and can be used for various
applications related to urban metabolism processes such as thermal energy balance, energy
consumption, etc. UMEP consists of a coupled modelling system, which combines “state-
of-the-art” 1D and 2D models related to the processes essential for scale-independent urban
climate estimations. SOLWEIG, together with the energy balance model SUEWS available
in the UMEP QGIS plugin, simulates spatial gradients of 3D radiation fluxes and the mean
radiant temperature (Tmrt); therefore, it is particularly useful for the assessment of thermal
comfort indicators in the cityscape. Mean radiant temperature is derived by modelling
short- and long-wave radiation fluxes in six directions, i.e., upward, downward, and from
the four cardinal points (horizon) taking into account angular factors. The model requires
a relatively limited number of inputs, such as irradiance components (direct, diffuse radia-
tion), air temperature, relative humidity, urban geometry, and geographical coordinates.
The output refers mainly to radiation components’ fluxes and Tmrt distribution.

The framework theory, based on which the mean radiant temperature is calculated,
is that one introduced by Hoppe [130] in which radiation fluxes in all six directions are
considered. As an energy balance model, it presents the general shortcomings of this
certain family of models; e.g., it disregards the velocity pattern in the domain of interest
as well as its fluctuations (turbulence). Another shortcoming is that SOLWEIG does not
account for evapotranspiration from vegetation. Lindberg et al. (2008) [129] demonstrated
its usefulness by performing mean radiant temperature simulations in an urban area of
Gothenburg and validated numerical results through comparisons with field measurements.
Using SOLWEIG, Chen et al. [131] investigated the spatial variation of mean radiant
temperature in different urban settings in Shanghai towards the detection of “hot-spots”
with the highest thermal discomfort within the cityscape. In terms of its accuracy, it has
been proven that SOLWEIG is equally useful with the microscale ENVI-met model referring
to the modelling of the radiation field; however, it presents higher discrepancies because
of its less comprehensive calculation model of diffuse radiation [132]. Hosseini-Haghighi
et al. [133] developed a systematic approach to upgrade the outdoor thermal comfort
using ArcGIS CityEngine for 3D city modeling and SOLWEIG as the climate assessment
model, in view of the warmest forecasted year, 2047. The suggested workflow revealed
the heat-stress areas and facilitated the efficient intervention regarding tree placement as a
passive strategy for heat mitigation.

Rayman

The Rayman [134] software was developed in the Meteorological Institute of Albert
Ludwigs University of Freiburg. The capabilities of the tool are described by
Matzarakis et al. [135]. Similarly to SOLWEIG, it is a variant of energy balance models,
and it mainly computes radiant heat conservation between human skin and its environ-
ment. It focuses on the calculation of the mean radiant temperature towards the prediction
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of thermal comfort conditions. The most important inputs required are Geographical
coordinates, meteorological data (temperature, relative humidity, and cloud covering), per-
sonal parameters (clothing and activity level), Geological morphology, and urban features
(buildings, trees). The results obtained by the model include, among others, Distribution
of mean radiant temperature, radiation fluxes, and thermal comfort indices (PMV and
PET). In contrast to SOLWEIG it computes more thermal comfort indicators and comprises
a more user-friendly environment. However, it should be mentioned that Rayman dis-
regards evapotranspiration from vegetation, while it treats trees as simple obstacles to
radiation fluxes. Wind-induced effects and turbulence flow are also ignored. In comparison
to SOLWEIG, RayMan has a higher calculation sensitivity and faster simulation speed,
while it achieves the best accuracy at high solar altitudes on clear summer days [132].
Battisti [136] used both Rayman and ENVI-met tools to study the impact of using cool ma-
terials enhanced with more vegetation and permeable surfaces and demonstrated dramatic
improvements regarding summer thermal comfort. Using both ENVI-met and Rayman,
Peng and Jim [137] verified that green-roof cooling effects are not restricted to rooftops but
extend to the ground to improve neighborhood microclimate.

ENVI-Met

ENVI-met [138] is a three-dimensional, non-hydrostatic model for simulating a micro-
climate, especially within the urban canyon, taking into account the physical interactions
among solid surfaces (e.g., ground and building surfaces), vegetation, and air. It is based
on the theoretical background of Computational Fluid Dynamics. It applies the FDM
discretization scheme, and it makes use of advanced numerical algorithms for solving
the airflow-governing equations, i.e., conservation of mass, momentum, thermal energy,
chemical–species’ concentration, and turbulence parameters, as well as particle dispersion.

The main input of the model includes, among others, the properties of the incoming
wind of the urban domain (wind speed, direction, temperature, relative humidity), a simpli-
fied geometry of the urban domain (since only structured grids and cartesian geometries are
supported), thermo-physical properties of ground and building materials and of vegetation,
and personal parameters of pedestrians (such as metabolic rates and clothing insulation)
when the BIO-met is employed. The simulator then executes an iterative solution proce-
dure and produces Distribution of temperature, relative humidity, pollutant concentration,
turbulence parameters, wind speed, and thermal comfort indicators (e.g., mean radiant
temperature and PMV modified for outdoor conditions), at different heights throughout
the urban area of interest.

The background of the ENVI-met system includes sub-models solving for the follow-
ing special physical mechanisms:

• Long- and short-wave radiation fluxes, accounting for shading
• Radiation reflection from building facades, ground materials, and vegetation
• Evapotranspiration and sensible heat fluxes from vegetation
• Evaporation from water surfaces
• Chemical–species’ propagation
• Particles’ dispersion
• Heat and water transfer within soil mass
• Body/skin–airflow interactions (e.g., heat transfer, wettedness effect) towards the

calculation of thermal comfort indicators

ENVI-met is a useful micro-scale model for the prediction of UHI effects within the
urban canopy with acceptable accuracy provided that the model settings are correctly
defined. In the case of complex geometries, radical simplifications may be required (such
as building merging) in order to comply with grid-mesh restrictions. In addition, mesh
possibilities are limited to structured grids with large grid cells (typical spatial resolution:
0.5–10 m). Hence, the effect of viscous sublayers (near solid surfaces) may be seriously
underestimated. Another drawback is that only the Standard k-ε model is available
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for turbulence modelling. Due to the large number of computational nodes, it presents
normally very high CPU time until full convergence.

Wania et al. [139] used the ENVI-met system to study the influence of different
vertical and horizontal densities of street vegetation on particle dispersion. It was demon-
strated that vegetation reduces wind speed, which limits a canyon’s ventilation and, there-
fore, leads to an increase in particle concentration. Vegetation was also found to reduce
wind speed at crown height and to disrupt the flow field in close vicinity of the canopy.
Szucs [140] highlighted that comfortable and healthy public open spaces encourage people
to spend more time outdoors, socialize, exercise, and participate in re-creational events.
In this framework, Szucs (2013) used ENVI-met to examine whether climatic conditions
in Dublin boost long-term outdoor activities during summer and investigated the extent
to which urban planning and the resulting urban morphology of the built environment
influence the microclimate created by means of the wind profile. It was confirmed that
areas of limited long-term outdoor activities are subjected to high wind speeds, often at
the windward sections and around corners of buildings. Compared to the UCM tools
SOLWEIG and Rayman, it presents a much better accuracy in comparison to actual mea-
sured data regarding radiation parameters [132]. Wai et al. [141] developed an integrated
methodology including both ENVI-met and the Weather Research and Forecast (WRF)
to explore the cooling performance of a water-spraying system in a sub-tropical compact
and high-rise cityscape in a future-climate summer (2050) condition. It was indicated
that the spraying system may provide cooling of 2–3 ◦C for ambient air temperature at
the pedestrian level, improving significantly the thermal comfort conditions. In general,
it has been widely used for urban planning purposes combating microclimate extremes
worldwide; for example, in MDPI one can find 69 research articles with the keyword
“envi-met” in their abstract. It presents good compatibility with BES tools; for example,
its interconnection with EnergyPlus is now a well-established method [55,142] towards
assessments of local climate impacts on building energy performance, especially when
building-envelope measures are tested (green roofs, cool materials, insulation materials,
PCMs, etc.).

ANSYS-Fluent

Ansys Fluent [143] is a FVM-based, general-purpose CFD platform that provides
comprehensive modelling for a wide range of incompressible, compressible, laminar, and
turbulent fluid flow problems, under steady or transient conditions. In the software, a wide
range of mathematical models for transport phenomena (e.g., heat transfer, momentum,
chemical reactions, etc.) is combined with the ability to model complex geometries with
high flexibility in grid meshing. Among a wide variety of applications, the platform has
been widely used for assessing microclimate conditions in open spaces. In such cases,
Fluent has been frequently used to simulate turbulent airflow within urban canopies. To
“relax” modelling complexity of fluid flow and related transport phenomena in porous
media (i.e., vegetation), various useful features are provided such as porosity functions
and others.

Fluent solves for the majority of physical phenomena encountered in urban systems.
In addition to those simulated by ENVI-met, it includes:

• A wide variety of turbulence models (RANS, DNS, and LES) providing the user
the opportunity to choose (according to the available computational resources and
expertise) among different turbulence models aiming to capture the desirable spectrum
of turbulent-length scales.

• A wide variety of two-phase flow models to capture particles dispersion.
• A wide variety of radiation models to simulate short- and long-wave radiation.
• A pluralism of grid-meshing options including structured and unstructured grids to

build grids with the minimum computational cost, ensuring adequate resolution of
results.

• Access to input user-defined functions.

239



Energies 2021, 14, 6707

In general, ANSYS Fluent is the one of the most complete platforms existing in the
CFD industry including well-known and the latest developments of fluid flow-related
models. In terms of computational requirements, Fluent envisages solutions using multiple
parallel processors, thus reducing computational costs. The latter, however, is a matter
of the user’s desires of resolution level; i.e., if a large urban area with a high level of
geometrical detail is considered, then the computational cost can be very high, similarly
to the most micro-scale CFD tools. The main limitation of the platform is that, since it
is not targeted for specific problems, it requires relatively high expertise on fluid flow
and transport phenomena for the user to formulate a specific problem. In this sense,
the software does not include evapotranspiration and thermal comfort models, which
means that, for microclimate modelling, the user should provide him/herself the models
via user-defined functions. Nonetheless, it can be easily used to produce the results of
parameters required to compute thermal comfort indicators (wind speed, relative humidity,
temperature, turbulence intensity) externally.

Numerous CFD studies of the UHI by using Fluent exist in the scientific literature.
For example, Stavrakakis et al. [103] used Fluent for the assessment of thermal and wind
comfort of pedestrians in an urban area in Crete, Greece. Special physical models, such
as evaporation from water surfaces and evapotranspiration from vegetation as well as
thermal comfort indicators, were incorporated and compiled in the CFD platform (through
user-defined function) towards the formulation of a holistic model that solves for UHI
effect on pedestrians’ perception of thermal comfort. The micro-scale model developed was
then used to assess the pre-renovation situation and to indicate the optimum interventions
including vegetation, shading devices, and cool materials in proper locations of the urban
domain. Saneinejad et al. [144] studied the evaporative cooling effect on air temperature
and thermal comfort within urban street canyons. They took advantage of Fluent capability
to incorporate user-defined physical models and they developed a coupled CFD model
that solves for vapour and heat transfer in the air, heat and moisture transfer within
the porous building walls, and radiative heat exchange between building walls. The
effect of evaporation of building surfaces on temperature was adequately quantified and a
substantial impact of this phenomenon on pedestrian thermal comfort was shown. Recently,
Fluent was used as a reliable database generator for validating a novel energy balance-based
model, undertaking the calculation of spatially averaged air temperature within the urban
canopy [145]. In terms of its prediction accuracy regarding urban microclimate assessments
in real-scale cases, Antoniou et al. [116] applied CFD unsteady RANS modelling and
computed an average absolute difference of 1.35 ◦C, of 0.57 m/s, and of 2.31 ◦C regarding
air temperature, wind speed, and surface temperatures, respectively. As demonstrated in
the international scientific literature, Ansys Fluent is particularly useful to test and verify
UHI mitigation strategies in cityscapes provided that the designer is familiar with urban
physics and possesses computer skills.

ANSYS-CFX

CFX [146] is a FVM-based, general purpose CFD tool that possesses similar capabilities
as the ANSYS-Fluent software reported above, at least for airflows within urban canopies.
The main differences are focused on mesh-generation algorithms and solution algorithm
as well as differences in functionality and operability of available GUIs related to user’s
actions during pre- and post-processing. By means of spatial discretization, Fluent uses
a cell-centered approach, while CFX uses a vertex-centered approach; hence, Fluent can
handle polyhedral mesh and cut-cell meshes, while CFX is limited to the traditional tetra-
and hexa-mesh topologies. Concerning the comparison between the results obtained by
CFX and Fluent, they present similar accuracy; however, Fluent has presented a slightly
better accuracy for incompressible flows, although it requires more computational time to
converge. This happens due to the fewer computational nodes in CFX grids in comparison
to Fluent grids. Fluent has a more functional pre-processor and, thus, it requires less time
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to prepare the grid and work on available GUIs. Fluent has post-processing capabilities of
its own while CFX needs a dedicated post-processor.

Priyadarsini et al. (2008) [147] used CFX to investigate the UHI effect on temperature
rising in the urban canopy in Singapore. They determined the key factors causing the
phenomenon and investigated the possibilities of improving heat release rate by opti-
mizing airflow in selected hot spots. The main parameters put to the test were building
geometry, materials of façades, and the location of air-conditioning units and their impact
on the outdoor air temperature. Although a simple model was used (evapotranspiration
from vegetation was ignored), good agreement between the computed and the measured
results was obtained. It has been demonstrated that the software is particularly useful
for urban morphology optimization in terms of acceptable wind speeds within the urban
canopy [148], as well as to verify the performance of several bioclimatic interventions
(e.g., cool materials) with respect to the reduction of urban surface temperature on hot
summer days [149,150].

Phoenics

Phoenics [151] is a FVM-based, general-purpose CFD platform, which, at least for
airflows within the urban canopy, provides similar modelling features and capabilities
as CFX and Fluent. As the other CFD programs, Phoenics can solve for the most impor-
tant conservation equations of mass, momentum, heat, chemical species, and turbulent
parameters, towards the provision of results of microclimate parameters such as relative
humidity, wind speed, turbulence intensity, and temperature. Similarly to the other CFD
platforms, it provides access to the user to incorporate special physical models, such as
evapotranspiration from vegetation. A substantial advantage of Phoenics over the other
CFD tools is that it provides access to the source Fortran-based code rather than only offer-
ing the opportunity to incorporate user-defined models. Like previous tools, it possesses
a wide variety of models to simulate turbulence, heat, and radiation transfer and, due
to its wide validation, it can be confidently used to study microclimates in urban areas.
Since it is not just a microclimate-oriented tool, expertise above average on computing
and transport phenomena is required in order to develop a reliable microclimate model.
The major difference is that it does not implement tetrahedral grids, and either a Body-
Fitted or a hexahedral-unstructured grid option is available for complex geometries. The
software includes a plant canopy module called FOLIAGE, which accounts for vegetation
evaporation phenomena.

Fintikakis et al. [152] used Phoenics to study the urban microclimatic conditions in the
historic centre of Tirana. They developed a microclimate model and incorporated it into the
CFD platform towards the estimation of pedestrian thermal comfort in order to decide the
best retrofitting measures (e.g., trees’ kind and orientation, high albedo ground materials,
earth-to-air heat exchangers) that ensure the best comfort conditions in strategic locations
of the urban domain. Although a simple model was developed (evapotranspiration and
radiation were neglected in the mathematical model and they were imposed as temperature
boundary conditions taken from field measurements, instead), it provided adequate results
at least for practical design purposes. Maragkogiannis et al. [153] combined Terrestrial
Laser Scanners (TLS) and aerial ortho-photography with computational fluid dynamics
(CFD) to study the thermal conditions of a public square in Chania, Greece. Yang et al. [154]
reported that the software presented good structure for developing modular applications
but required powerful computer or cloud computing to speed up simulations.

3. Discussion

3.1. Building Energy/Urban Microclimate-Coupled Simulations

As presented in the above sections, currently there is a tremendous availability of com-
putational tools and methods that can be used to conduct urban energy planning studies,
even in completely simulated environments. The obvious opportunity that emerged is the
ability to predict the energy performance of a group of buildings, taking into account mi-
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croclimate variations in the vicinity of buildings, at least at a district level. Apparently, the
designer may have all the necessary computer tools to conduct joint simulations of urban
microclimate and building(s) energy performance, which, however, requires knowledge of
building physics, specifically regarding indoor–outdoor interactions. The main question
is how the practitioner can really develop such kind of co-simulations. The answer, of
course, simply resides on the energy conservation of the control system building/outdoor
space. The energy balance equation for a building may be expressed as follows: The
heating/cooling load of the building equals the sum of the internal heat gain from lights,
occupants, equipment, the convective heat transfer between building’s interior surfaces
and internal air, and the convective heat transfer due to air infiltration and the change
of energy stored in the internal air. On the other hand, the energy balance equation for
building exterior surfaces may be expressed as follows: The conduction heat flux through
the wall equals the sum of the transmitted solar radiation, the absorbed solar radiation,
the net long-wave radiation heat flux, and the convective heat flux exchanged with the
outdoor air.

The above description of the heat exchange between indoor and outdoor spaces
reveals the physical influences of the external environment to the internal space and vice
versa. These influences may be described as follows:

• The incident solar irradiance on building walls.
• The convective heat flux at the external surfaces, which is represented by the Convec-

tive Heat Transfer Coefficient (CHTC) and by temperature differences between the
ambient air and external surfaces.

• The intensity of long-wave radiation.
• The heat and water-vapor transfer through infiltration.

Ideally, all the above influences should be adequately captured and participate in
appropriate boundary conditions of the building energy simulation (BES) model. The last,
however, often present some deficiencies in capturing all the impacts described above,
such as the following:

• They disregard the non-uniformity of the CHTC in the vicinity of the building. They
rely only on a mean value of CHTC based on climate data time series, usually of the
wider climate zone (data from remote meteorological stations).

• Infiltration is handled by empirical formulas rather than a more precise representation
(accounting for velocity fluctuations through openings, for example).

• Surrounding trees are treated like simple obstacles on incident radiation rather than
contributors of moisture and obstructions to outdoor airflow; thus, CHTC and air
infiltration rates are underestimated.

• Evaporative cooling effect emanating from water surfaces is ignored.
• Surrounding buildings’ (other than being treated as obstacles on incident radiation)

effect on airflow pattern and, therefore, on CHTC is not normally taken into account.
• Outdoor climate data are most commonly taken from default libraries of wide climate

zones available in the tools’ background, which are, however, different from the actual
ones especially during summer season due to the Urban Heat Island effect.

On the other hand, as presented in previous sections, the UCM or CFD tools seem
very promising towards the simulation of the urban microclimate. The CFD micro-scale
models can simulate physical mechanisms that comprise the urban microclimate and by
these means they can quantify all the influences of outdoor physical environment to indoor
energy consumption. Consequently, the drawbacks reported above can be eliminated
under the perspective of CFD/BES tools’ coupling. Indeed, numerous authors in scientific
literature succeeded to couple these methods based on information exchanging between
the two tools in each given time interval as follows [55–57,155]:

• An initial value of external wall temperature in the CFD model is adopted as a wall
boundary condition. Air properties of the incoming wind are taken from the nearest
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meteorological station and they are set as inflow boundary condition in the CFD
model. Boundary conditions for physical features, such as trees and water surfaces,
are also set as boundary conditions.

• The CFD model is executed and provides a preliminary prediction of the microclimate
in the vicinity of the building(s) of interest, i.e., air temperature, convective heat
transfer coefficient, and relative humidity.

• These climate parameters are then passed to the BES tool as climate data (i.e., instead
of using the default data from the BES tool libraries) and the BES tool calculates, apart
from Energy-related indicators, external walls’ temperature.

• The new updated value of building external walls returns to the CFD model as a wall
boundary condition, which is executed again towards the update of a microclimate
surrounding the building. The updated microclimate is then passed to the BES tool,
which is executed again towards the update of the energy-related indicators and the
wall temperature.

• And so on.

The iterative process above ends when the wall temperature computed by the BES
tool, taking into account its pass from the CFD tool, presents a really small change from one
loop to the other (convergence of solution). Then the solution is obtained and the building
energy-related indicators are finally calculated.

As stated by Kato [21], the full coupling is practically absurd and sometimes im-
possible because of its enormous computation amount, especially when similarly small
time-step scales over long periods are adopted in the two models. Alternatively, he sug-
gests a coupled CFD network model in building energy (heat) and airflow simulation.
However, the suggested approach again requires quite advanced knowledge of transport
phenomena and computer skills; hence, again it may be considered difficult to use by
practitioners, especially professionals conducting studies for compliance purposes with
regulations, e.g., energy audits or energy studies for new or renovated buildings. Focusing
on that target audience, an alternative practical, although less accurate, approach (let it be
called “semi-coupled approach”) would rely on the use of an urban microclimate model
responsible for producing local climate data, and then automatically (or manually) passing
them as input conditions to the BES tool. Essentially, this semi-coupled approach resides
to only insert a weather file to the BES tool, which, instead of a default file of the wider
climate zone, is now being produced in a control volume close to the district/building
of interest from the micro-climate model. In such an approach, normally a UCM tool is
preferred due to its simplicity and fast calculation [156]. To date, the main steps of such
semi-coupled approach are the following:

• Incoming-wind properties are taken from the nearest meteorological station or from
the weather file of the climate zone and they are set as boundary conditions in the
urban microclimate model.

• Appropriate boundary conditions to account for urban physical phenomena, e.g.,
radiative heat fluxes, evaporation, and evapotranspiration, are set to water and vege-
tations’ surfaces of the microclimate model.

• Estimations of the incident solar radiation on solid surfaces may emerge, utilizing a
solar ray tracing model, taking into account albedo and emissivity values of materials.

• The microclimate model is then executed and provides the local microclimate in the
vicinity of the building, quartier, or district.

• The microclimate provided by the microclimate model can then be transformed in the
format of weather files of the BES tool and compiled in the BES tool.

Obviously, the tactic above is a one-way approach, i.e., the microclimate model is
executed first and the climatic conditions that emerged are then passed to the BES tool in the
format of the default weather file. It should be mentioned that, since this method treats field
and zonal models separately, an average expertise is required by the user in order to obtain
correct estimations of initial parameters used as boundary conditions. This means that the
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user should apply external or incorporated special models that solve for these parameters
in order to provide boundary conditions, e.g., a correct “guess” of internal temperature
and solution of conduction equations to estimate external surface temperatures, taking into
account incident solar radiation. It may be concluded that BES/CFD coupling provides a
more accurate prediction of energy-related indicators, hence, a more accurate selection of
retrofit measures. Through this coupling procedure it becomes clear that energy-related
indicators are only a “symptom” of the mathematical interpretation of building and urban
physics and, more specifically, of indoor–outdoor interactions. It should be highlighted,
however, that further research is required to confront the challenge of high CPU loads and
time required for fully coupled approaches. Fortunately, the dramatic improvement of CPU
technologies and resources promises such reliable studies in simulation environments.

3.2. Perspectives on the Use of Advanced Simulation Methods

Provided that the ideal physical model for built environment and energy performance
assessment is available, it could be integrated to a decision-making procedure in the context
of a retrofitting strategy. Building design optimization is indeed a complex task, since the
optimal solution should satisfy many criteria, e.g., energy saving, emissions’ avoidance,
and cost-efficiency indicators (NPV, payback period, etc.). Scientific research has already
presented advanced optimization methods and tools to respond to the aforementioned chal-
lenge. For example, Nguyen et al. [157] reviewed simulation-based optimization methods
in the building sector. They provided an overview on the subject focusing on discontinuous
multi-modal building optimization problems, the performance of optimization algorithms,
multi-criteria optimization, surrogate models, stochastic optimization, and the propagation
of optimization techniques into real-world design challenges. The paper is recommended
as a good source of studies and approaches for building energy optimization. Handling
of large databases that emerge by extensive parametric simulation analysis towards the
identification of optimal solutions is a cutting-edge issue, especially in the context of recent
energy regulations. For example, the EU directive 244/2012/EU suggests the exercise of
extensive parametric analysis in the scope of identifying the cost-optimal minimum energy
performance requirements of buildings and, furthermore, the identification of the nearly
zero energy building (NZEB) levels. Responding to the NZEB challenge, Cao et al. [158]
reviewed the feasibility of categorized state-of-the-art technologies, namely, passive energy-
saving technologies, energy-efficient building service systems, and Renewable Energy
Sources. Based on data derived from international energy reports for the US, China, and
the EU, they introduced a ZEB concept.

Although new developments regarding advanced physical modelling have flourished
during the last 20 years, it is true that they lack acceptance by the wider engineering and
architects’ community. An extensive survey presented by Fernandez-Antolin et al. [159]
showed that one of the main reasons for limited preference on using advanced simulation
tools by recent graduate architects is that they consider them inconvenient and challenging
to learn. The study suggests that a key driving force to boost the use of such simulation tools
in practice is to integrate related education courses, even at the undergraduate level, e.g.,
in design courses and in building system courses. In the same study, recommendations to
software vendors to improve user-friendliness of the problem setup (geometrical model
and input conditions) are also reported. Emphasis on bridging the gap between the
use of building energy simulation tools and architectural design is given by researchers
of the same team [160]. The study raises the dilemma of suggesting the use of energy
simulations in the early design stages and concluded that modern architects should be
capable to understand simulated results in the context of suggesting design solutions. To
that direction, it is acknowledged that teachers in higher education institutes should bring
and exercise advances of simulation tools to the attention of students (future architects and
engineers). From the software vendors’ side, it is expected that no further increase in cost
is presumed in case of providing additional information and guidelines when requested.
In addition, the administration of educational institutions should also encourage their use
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in a constructive way, envisaging subsidies and incentives to boost their adoption, and
being responsible for reviewing the projects before granting a license.

The usefulness of utilizing reliable simulation tools in the architectural design stage
has been highlighted and demonstrated in many studies (refer, for example, to ref. [161]). In
this context, Xie and Gou [162] exploited two case studies (a Sports’ Centre and a Hotel) that
compare building performance simulation as an early intervention and a late verification
tool in the architectural design process, contextualizing the building simulation research
in real building practices. In the first case study, a simulation tool was integrated in the
early-design stage, while, in the other one, the simulation tool was used at the post-design
stage, mainly to verify the results obtained by the suggested architectural design. Through
collating technical results with those of designers’ perceptions regarding the usefulness
of simulation tools via questionnaire surveys, it was concluded that a design team must
not only provide quantitative results to obtain accredited building design but also provide
documentation of at least two design strategies towards the confirmation of the schematic
design. This suggests that the focus of green building rating systems is shifting from simply
obtaining accurate quantitative goals for the decision-making process. The present focus is
to encourage the selection of multiple design plans and optimize the design solutions.

4. Conclusions

This work intended to inform building designers, engineers, and urban planners
on the state of the art regarding tools and methods that may be used in practice in the
framework of energy efficiency and climate mitigation and adaptation technical studies.
Current energy policies, as regards transition to low-carbon economies in future sustainable
Cities, necessitate putting advanced study techniques into practice. The comprehensive
overview of tools and methods provided herein may guide the target audience through
the ongoing design challenges as well as through practical solutions to respond in their
studies. To summarize, the following major conclusions may be drawn:

• Informed decision making on building energy renovation and urban rehabilitation
through the reliable quantification of energy, cost, and environmental and comfort
indicators is becoming increasingly important, even at practical engineering levels, to
meet ambitious goals and trends of policies regarding energy efficiency and climate
change resilience.

• To respond in meeting minimum energy performance requirements, especially for
nearly zero energy buildings, more accurate building energy performance simula-
tion is required. To that direction, studies in simulation environments should take
into account systems’ operation schedules, occupancy schedules, and external local
microclimate effects.

• A plethora of building energy simulation (BES) tools is available, including powerful
tools that are still freely available such as the EnergyPlus and the eQUEST software
(among many others).

• Urban microclimate and BES tools presented herein are verified and validated.
• All the UCM models presented herein are freely available (open source).
• A coupled BES/urban microclimate simulation method facilitates more reliable pre-

dictions of impacts of external microclimate on buildings’ energy performance; hence,
it quantifies the energetic impacts of external bioclimatic interventions on buildings.

• Most common BES/CFD-coupled methods refer to:

� EnergyPlus/Envi-met
� TRNSYS/Fluent

• Further research is required regarding the reduction of CPU loads and time of coupled
building energy and urban microclimate simulations.

• Complexity of physical phenomena in urban planning suggests that the modern
designer should acquire know-how in building physics and better computer skills. In
parallel, further work by software vendors on improving user friendliness remains a
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crucial factor that can boost such simulation approaches and practices from research
to practice.

• Higher education institutes play a key role in providing the necessary knowledge and
expertise to their students in order to respond to evermore required informed decision
making at the design stage. It is admitted that simulation tools and practices should
be integrated into educational courses in order to ensure a good readiness level of
the modern designer to be able to understand better the impacts of alternative design
strategies and to work in teams with other experts, e.g., engineers, building physicists,
IT experts, etc.

Author Contributions: Methodology, G.M.S. and M.D.; investigation, G.M.S. and D.A.K.; writing—
original draft preparation, G.M.S.; writing—review and editing, D.A.K. and M.D.; supervision, M.D.;
project administration, G.M.S. and M.D. All authors have read and agreed to the published version
of the manuscript.

Funding: Part of this research was funded by the PROGRAMME MED EUROPEAN TERRITORIAL
COOPERATION 2007–2013, project: REPUBLIC-MED, grant number: 1C-MED12-73.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: Part of the work was conducted in the framework of the lead author’s former
position as a scientific collaborator in the Centre for Renewable Energy Sources and Saving (CRES)
and in the framework of the REPUBLIC-MED (1C-MED12-73) project (project duration: March
2013–June 2015). CRES was the Lead Partner (LP) of the project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings
(recast) L153/13. Off. J. Eur. Union 2010, 3, 124–146.

2. European Commission–Department. Energy in Focus, Energy Efficiency in Buildings; European Commission: Brussels, Belgium,
2020.

3. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018, amending Directive 2010/31/EU on the
energy performance of buildings and Directive 2012/27/EU on energy efficiency L156/75. Off. J. Eur. Union 2018, 156, 75–91.

4. Commission recommendation (EU) 2019/786 of 8 May 2019 on building renovation. Off. J. Eur. Union 2019, 127, 34–79.
5. Santamouris, M. Heat Island Research in Europe: The State of the Art. Adv. Build. Energy Res. 2007, 1, 123–150. [CrossRef]
6. Santamouris, M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy

poverty and mitigating the local climate change. Sol. Energy 2016, 128, 61–94. [CrossRef]
7. Chapter 9: Energy Efficiency in Building Renovation. In Handbook of Energy Efficiency in Buildings-A Life Cycle Approach; Asdrubali,

F.; Desideri, U. (Eds.) Elsevier: Amsterdam, The Netherlands, 2019; pp. 675–810.
8. Liao, Z.; Dexter, A. A simplified physical model for estimating the average air temperature in multi-zone heating systems.

Build. Environ. 2004, 39, 1013–1022. [CrossRef]
9. Stephan, L.; Bastide, A.; Wurtz, E. Optimizing opening dimensions for naturally ventilated buildings. Appl. Energy 2011, 88,

2791–2801. [CrossRef]
10. Wang, S. Dynamic simulation of building VAV air-conditioning system and evaluation of EMCS on-line control strategies.

Build. Environ. 1999, 34, 681–705. [CrossRef]
11. Katsaprakakis, D.A. Computational Simulation and Dimensioning of Solar-Combi Systems for Large-Size Sports Facilities: A

Case Study for the Pancretan Stadium, Crete, Greece. Energies 2020, 13, 2285. [CrossRef]
12. BIPV Design and Performance Modelling: Tools and Methods; Jakica, N.; Yang, R.J.; Eisenlohr, J. (Eds.) IEA PVPS Task 15, Report

IEA-PVPS T15-09: 2019; IEA: Paris, France, 2019; ISBN 978-3-906042-86-2.
13. Azar, E.; Menassa, C.C. A comprehensive analysis of the impact of occupancy parameters in energy simulation of office buildings.

Energy Build. 2012, 55, 841–853. [CrossRef]
14. Azar, E.; O’Brien, W.; Carlucci, S.; Hong, T.; Sonta, A.; Kim, J.; Andargie, M.; Abuimara, T.; El Asmar, M.; Jain, R.K.; et al.

Simulation-aided occupant-centric building design: A critical review of tools, methods, and applications. Energy Build. 2020, 224,
110292. [CrossRef]

15. Foucquier, A.; Robert, S.; Suard, F.; Stéphan, L.; Jay, A. State of the art in building modelling and energy performances prediction:
A review. Renew. Sustain. Energy Rev. 2013, 23, 272–288. [CrossRef]

246



Energies 2021, 14, 6707

16. Stavrakakis, G.M.; Stamou, A.I.; Markatos, N.C. Evaluation of thermal comfort in indoor environments using Computational
Fluid Dynamics (CFD). In Indoor Work and Living Environments: Health, Safety and Performance; Harris, R.G., Moore, D.P., Eds.;
Nova Science Publishers Inc.: Hauppauge, NY, USA, 2009; pp. 97–166. ISBN 978-1-61728-521-9.

17. Kaminski, M.; Carey, G.F. Stochastic perturbation-based finite element approach to fluid flow problems. Int. J. Numer. Methods
Heat Fluid Flow 2005, 15, 671–697. [CrossRef]

18. Seong, M.; Lim, C.; Lim, J.; Park, J. A Study on the Status and Thermal Environment Improvement of Ceiling-Embedded Indoor
Cooling and Heating Unit. Sustainability 2021, 13, 10651. [CrossRef]

19. Lee, M.; Park, G.; Park, C.; Kim, C. Improvement of Grid Independence Test for Computational Fluid Dynamics Model of
Building Based on Grid Resolution. Adv. Civ. Eng. 2020, 2020, 1–11. [CrossRef]

20. Tan, G.; Glicksman, L.R. Application of integrating multi-zone model with CFD simulation to natural ventilation prediction.
Energy Build. 2005, 37, 1049–1057. [CrossRef]

21. Kato, S. Review of airflow and transport analysis in building using CFD and network model. Jpn. Archit. Rev. 2018, 1, 299–309.
[CrossRef]

22. Rumianowski, P.; Brau, J.; Roux, J.J. An adapted model for simulation of the interaction between a wall and the building heating
system. In Proceedings of the Thermal Performance of the Exterior Envelopes of Buildings IV Conference, Orlando, FL, USA, 4–7
December 1989; pp. 224–233.

23. Chen, Q. Ventilation performance prediction for buildings: A method overview and recent applications. Build. Environ. 2009, 44,
848–858. [CrossRef]

24. Technology Roadmap-Energy Efficient Building Envelopes; OECD/IEA Report; OECD/IEA: Paris, France, 2013.
25. Feijó-Muñoz, J.; González-Lezcano, R.A.; Poza-Casado, I.; Padilla-Marcos, M.Á.; Meiss, A. Airtightness of residential buildings in

the Continental area of Spain. Build. Environ. 2019, 148, 299–308. [CrossRef]
26. Han, G.; Srebric, J.; Enache-Pommer, E. Different modeling strategies of infiltration rates for an office building to improve accuracy

of building energy simulations. Energy Build. 2015, 86, 288–295. [CrossRef]
27. El-Darwish, I.; Gomaa, M. Retrofitting strategy for building envelopes to achieve energy efficiency. Alex. Eng. J. 2017, 56, 579–589.

[CrossRef]
28. Hansen, A.R.; Gram-Hanssen, K.; Knudsen, H.N. How building design and technologies influence heat-related habits. Build. Res.

Inf. 2017, 46, 83–98. [CrossRef]
29. Liu, J.; Yao, R.; McCloy, R. An investigation of thermal comfort adaptation behaviour in office buildings in the UK. Indoor Built

Environ. 2013, 23, 675–691. [CrossRef]
30. Tuniki, H.P.; Jurelionis, A.; Fokaides, P. A review on the approaches in analysing energy-related occupant behaviour research.

J. Build. Eng. 2021, 40, 102630. [CrossRef]
31. Goyal, S.; Barooah, P. A method for model-reduction of non-linear thermal dynamics of multi-zone buildings. Energy Build. 2012,

47, 332–340. [CrossRef]
32. Hazyuk, I.; Ghiaus, C.; Penhouet, D. Optimal temperature control of intermittently heated buildings using Model Predictive

Control: Part I—Building modeling. Build. Environ. 2012, 51, 379–387. [CrossRef]
33. BEST Directory. Available online: https://www.buildingenergysoftwaretools.com (accessed on 26 August 2021).
34. Al Ka’bi, A.H. Comparison of energy simulation applications used in green building. Ann. Telecommun. 2020, 75, 271–290.

[CrossRef]
35. Najjar, M.; Figueiredo, K.; Palumbo, M.; Haddad, A. Integration of BIM and LCA: Evaluating the environmental impacts of

building materials at an early stage of designing a typical office building. J. Build. Eng. 2017, 14, 115–126. [CrossRef]
36. Abanda, F.; Byers, L. An investigation of the impact of building orientation on energy consumption in a domestic building using

emerging BIM (Building Information Modelling). Energy 2016, 97, 517–527. [CrossRef]
37. Singh, P.; Sadhu, A. Multicomponent energy assessment of buildings using building information modeling. Sustain. Cities Soc.

2019, 49, 101603. [CrossRef]
38. BEAVER. Available online: https://www.acadsbsg.com.au/beaver/ (accessed on 26 August 2021).
39. Mahmud, K.; Amin, U.; Hossain, J.; Ravishankar, J. Computational tools for design, analysis, and management of residential

energy systems. Appl. Energy 2018, 221, 535–556. [CrossRef]
40. ACADS-BSG Pty Ltd.; Elms Consulting Engineers. ABCB Energy Modelling of Office Buildings for Climate Zoning; ABCB: Canberra,

ACT, Australia, 2002.
41. BSim. Available online: https://sbi.dk/bsim/Pages/About-BSim.aspx (accessed on 26 August 2021).
42. Rose, J.; Lahme, A.; Christensen, N.U.; Heiselberg, P.; Hansen, M.; Grau, K. Numerical method for calculating latent heat storage

in constructions containing phase change material. In Proceedings of the 11th International IBPSA Conference, Glasgow, UK,
27–30 July 2009.

43. Sikula, O.; Plášek, J.; Hirs, J. Numerical Simulation of the Effect of Heat Gains in the Heating Season. Energy Procedia 2012, 14,
906–912. [CrossRef]

44. Zweifel, G. Prefabricated Systems for Low Energy Renovation of Residential Buildings; Retrofit simulation report-IEA ECBCS Annex 50;
Energy Conservation in Buildings and Community Systems Programme, March 2011; EMPA: Dübendorf, Switzerland, 2011.

45. Liu, M.; Wittchen, K.B.; Heiselberg, P.K. Development of a simplified method for intelligent glazed façade design under different
control strategies and verified by building simulation tool BSim. Build. Environ. 2014, 74, 31–38. [CrossRef]

247



Energies 2021, 14, 6707

46. Sørensen, M.J.; Myhre, S.H.; Hansen, K.K.; Silkjær, M.H.; Marszal-Pomianowska, A.J.; Liu, L. Integrated Building Energy Design
of a Danish Office Building Based on Monte Carlo Simulation Method. Energy Procedia 2017, 132, 93–98. [CrossRef]

47. Energy Simulation Software for Aiding Building Design. Available online: http://pages.suddenlink.net/enerwin/ (accessed on
26 August 2021).

48. Al-Mumin, A.; Khattab, O.; Sridhar, G. Occupants’ behavior and activity patterns influencing the energy consumption in the
Kuwaiti residences. Energy Build. 2003, 35, 549–559. [CrossRef]

49. Soebarto, V.; Williamson, T. Multi-criteria assessment of building performance: Theory and implementation. Build. Environ. 2001,
36, 681–690. [CrossRef]

50. ASHRAE Standard 90.1. Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; American Society of Heating
Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 1989.

51. EnergyPlus. Available online: https://energyplus.net/ (accessed on 26 August 2020).
52. Crawley, D.B.; Hand, J.W.; Kummert, M.; Griffith, B.T. Contrasting the capabilities of building energy performance simulation

programs. Build. Environ. 2008, 43, 661–673. [CrossRef]
53. Tsikaloudaki, K.; Laskos, K.; Theodosiou, T.; Bikas, D. Assessing cooling energy performance of windows for office buildings in

the Mediterranean zone. Energy Build. 2012, 49, 192–199. [CrossRef]
54. Goia, F.; Haase, M.; Perino, M. Optimizing the configuration of a façade module for office buildings by means of integrated

thermal and lighting simulations in a total energy perspective. Appl. Energy 2013, 108, 515–527. [CrossRef]
55. Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. An integrated simulation method for building energy performance assessment in urban

environments. Energy Build. 2012, 54, 243–251. [CrossRef]
56. Shen, P.; Wang, Z. How neighborhood form influences building energy use in winter design condition: Case study of Chicago

using CFD coupled simulation. J. Clean. Prod. 2020, 261, 121094. [CrossRef]
57. Zhang, R.; Mirzaei, P.A.; Jones, B. Development of a dynamic external CFD and BES coupling framework for application of urban

neighbourhoods energy modelling. Build. Environ. 2018, 146, 37–49. [CrossRef]
58. Design Builder. Available online: https://designbuilder.co.uk (accessed on 26 August 2021).
59. Simulated Results and Hierarchy of Retrofitting Measures–Heraklion (Report D3.4.1, Project IMPULSE-Interreg MED, Project

Ref.: 1MED15_2.1_M2_178). Available online: https://impulse.interreg-med.eu/what-we-achieve/deliverable-database/detail/
?tx_elibrary_pi1%5Blivrable%5D=3167&tx_elibrary_pi1%5Baction%5D=show&tx_elibrary_pi1%5Bcontroller%5D=Frontend%
5CLivrable&cHash=691291ce60531eb9a0aba6e6b1e51766 (accessed on 14 October 2021).

60. Stavrakakis, G.; Androutsopoulos, A.; Vyörykkä, J. Experimental and numerical assessment of cool-roof impact on thermal and
energy performance of a school building in Greece. Energy Build. 2016, 130, 64–84. [CrossRef]

61. Androutsopoulos, A.; Stavrakakis, G.; Damasiotis, M. Cool Roof Impacts on a School-building Thermal and Energy Performance
in Athens, Greece. Procedia Environ. Sci. 2017, 38, 178–186. [CrossRef]

62. Mazzeo, D.; Romagnoni, P.; Matera, N.; Oliveti, G.; Cornaro, C.; De Santoli, L. Accuracy of the Most Popular Building Performance
Simulation Tools: Experimental Comparison for A Conventional and A PCM-Based Test Box. In Proceedings of the Building
Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2020.

63. Hirsch, J.J. Associates in Collaboration with Lawrence Berkeley National Laboratory. eQUEST. Available online: https://www.
doe2.com/equest/ (accessed on 26 August 2021).

64. Park, B.R.; Hong, J.; Choi, E.J.; Choi, Y.J.; Lee, C.; Moon, J.W. Improvement in Energy Performance of Building Envelope
Incorporating Electrochromic Windows (ECWs). Energies 2019, 12, 1181. [CrossRef]

65. Kim, K.H.; Oh, J.K.-W.; Jeong, W. Study on Solar Radiation Models in South Korea for Improving Office Building Energy
Performance Analysis. Sustainability 2016, 8, 589. [CrossRef]

66. Ke, M.-T.; Yeh, C.-H.; Jian, J.-T. Analysis of building energy consumption parameters and energy savings measurement and
verification by applying eQUEST software. Energy Build. 2013, 61, 100–107. [CrossRef]

67. Seyednezhad, M.; Najafi, H. Solar-Powered Thermoelectric-Based Cooling and Heating System for Building Applications: A
Parametric Study. Energies 2021, 14, 5573. [CrossRef]

68. Wang, F.; Lin, H.; Tsai, M. Energy Efficient Approaches by Retrofitting Heat Pumps Water Heating System for a University
Dormitory. Buildings 2021, 11, 356. [CrossRef]

69. ESP-r. Available online: http://www.esru.strath.ac.uk/Courseware/ESP-r (accessed on 26 August 2021).
70. Høseggen, R.; Wachenfeldt, B.; Hanssen, S. Building simulation as an assisting tool in decision making. Energy Build. 2008, 40,

821–827. [CrossRef]
71. Bourgeois, D.; Reinhart, C.; Macdonald, I. Adding advanced behavioural models in whole building energy simulation: A study

on the total energy impact of manual and automated lighting control. Energy Build. 2006, 38, 814–823. [CrossRef]
72. Ferdyn-Grygierek, J.; Bartosz, D.; Specjał, A.; Grygierek, K. Analysis of Accuracy Determination of the Seasonal Heat Demand in

Buildings Based on Short Measurement Periods. Energies 2018, 11, 2734. [CrossRef]
73. Bonetti, V.; Kokogiannakis, G. Dynamic Exergy Analysis for the Thermal Storage Optimization of the Building Envelope. Energies

2017, 10, 95. [CrossRef]
74. Eller, C.; Rida, M.; Boudier, K.; Otoni, C.; Celani, G.; Labaki, L.; Hoffmann, S. Climate-Based Analysis for the Potential Use of

Coconut Oil as Phase Change Material in Buildings. Sustainability 2021, 13, 10731. [CrossRef]

248



Energies 2021, 14, 6707

75. EQUA. IDA ICE—IDA Indoor Climate and Energy. Available online: https://www.equa.se/en/ida-ice (accessed on 26 August
2021).

76. Salvalai, G. Implementation and validation of simplified heat pump model in IDA-ICE energy simulation environment.
Energy Build. 2012, 49, 132–141. [CrossRef]

77. Hesaraki, A.; Holmberg, S. Energy performance of low temperature heating systems in five new-built Swedish dwellings: A case
study using simulations and on-site measurements. Build. Environ. 2013, 64, 85–93. [CrossRef]

78. Rabani, M.; Madessa, H.B.; Nord, N. Building Retrofitting through Coupling of Building Energy Simulation-Optimization Tool
with CFD and Daylight Programs. Energies 2021, 14, 2180. [CrossRef]

79. Rose, J.; Thomsen, K.E. Comprehensive Energy Renovation of Two Danish Heritage Buildings within IEA SHC Task 59. Heritage
2021, 4, 155. [CrossRef]

80. IESVE. Available online: https://www.iesve.com (accessed on 26 August 2021).
81. Murray, S.N.; Rocher, B.; Sullivan, D.O. Static Simulation: A sufficient modelling technique for retrofit analysis. Energy Build.

2012, 47, 113–121. [CrossRef]
82. Ouedraogo, B.; Levermore, G.; Parkinson, J. Future energy demand for public buildings in the context of climate change for

Burkina Faso. Build. Environ. 2012, 49, 270–282. [CrossRef]
83. Yin, X.; Yu, J.; Dong, Q.; Jia, Y.; Sun, C. Energy Sustainability of Rural Residential Buildings with Bio-Based Building Fabric in

Northeast China. Energies 2020, 13, 5806. [CrossRef]
84. SUNREL. Available online: https://www.nrel.gov/buildings/sunrel.html (accessed on 26 August 2021).
85. Elzafraney, M.; Soroushian, P.; Deru, M. Development of Energy-Efficient Concrete Buildings Using Recycled Plastic Aggregates.

J. Arch. Eng. 2005, 11, 122–130. [CrossRef]
86. Tas. Available online: https://www.edsl.net (accessed on 26 August 2021).
87. Wong, N.H.; Tan, A.Y.K.; Tan, P.Y.; Wong, N.C. Energy simulation of vertical greenery systems. Energy Build. 2009, 41, 1401–1408.

[CrossRef]
88. Pino, A.; Bustamante, W.; Escobar, R.; Pino, F.E. Thermal and lighting behavior of office buildings in Santiago of Chile. Energy

Build. 2012, 47, 441–449. [CrossRef]
89. Al Rasbi, H.; Gadi, M. Energy Modelling of Traditional and Contemporary Mosque Buildings in Oman. Buildings 2021, 11, 314.

[CrossRef]
90. Salem, R.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Comparison and Evaluation of the Potential Energy, Carbon

Emissions, and Financial Impacts from the Incorporation of CHP and CCHP Systems in Existing UK Hotel Buildings. Energies
2018, 11, 1219. [CrossRef]

91. Amirkhani, S.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Impact of Low-E Window Films on Energy Consumption
and CO2 Emissions of an Existing UK Hotel Building. Sustainability 2019, 11, 4265. [CrossRef]

92. Transient System Simulation Tool. Available online: http://trnsys.com (accessed on 26 August 2021).
93. Ibáñez, M.; Lázaro, A.; Zalba, B.; Cabeza, L.F. An approach to the simulation of PCMs in building applications using TRNSYS.

Appl. Therm. Eng. 2005, 25, 1796–1807. [CrossRef]
94. Beausoleil-Morrison, I.; Kummert, M.; Macdonald, F.; Jost, R.; McDowell, T.; Ferguson, A. Demonstration of the new ESP-r and

TRNSYS co-simulator for modelling solar buildings. Energy Procedia 2012, 30, 505–514. [CrossRef]
95. Katsaprakakis, D.A.; Zidianakis, G.; Yiannakoudakis, Y.; Manioudakis, E.; Dakanali, I.; Kanouras, S. Working on Buildings’

Energy Performance Upgrade in Mediterranean Climate. Energies 2020, 13, 2159. [CrossRef]
96. Pérez-Andreu, V.; Aparicio-Fernández, C.; Vivancos, J.-L.; Cárcel-Carrasco, J. Experimental Data and Simulations of Performance

and Thermal Comfort in a Typical Mediterranean House. Energies 2021, 14, 3311. [CrossRef]
97. Landsberg, H.E. The Urban Climate; Academic Press Inc.: New York, NY, USA, 1981.
98. Su, M.A.; Ngarambe, J.; Santamouris, M.; Yun, G.Y. Empirical evidence on the impact of urbanoverheating on building cooling

and heatingenergy consumption. iScience 2021, 24, 10249. [CrossRef]
99. Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches

and findings. Energy 2019, 174, 407–419. [CrossRef]
100. Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113.

[CrossRef]
101. Bloem, J.J.; Strachan, P. Evaluating and Modelling Near-Zero Energy Buildings; Are We Ready for 2018? European Commission,

JRC-Institute for Energy and Transport: Petten, The Netherlands, 2012.
102. Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands

and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [CrossRef]
103. Stavrakakis, G.; Tzanaki, E.; Genetzaki, V.; Anagnostakis, G.; Galetakis, G.; Grigorakis, E. A computational methodology for

effective bioclimatic-design applications in the urban environment. Sustain. Cities Soc. 2012, 4, 41–57. [CrossRef]
104. Oke, T.R. The energetic basis of the urban heat island. Q. J. Roy. Meteorol. Soc. 1982, 108, 1–24. [CrossRef]
105. Santamouris, M. Energy and Climate in the Urban Built Environment; James & James Ltd.: London, UK, 2001.
106. Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban Physics: Effect of the micro-climate on comfort, health and

energy demand. Front. Arch. Res. 2012, 1, 197–228. [CrossRef]

249



Energies 2021, 14, 6707

107. Mirzaei, P.A.; Haghighat, F. Approaches to study Urban Heat Island–Abilities and limitations. Build. Environ. 2010, 45, 2192–2201.
[CrossRef]

108. Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A Simple Single-Layer Urban Canopy Model for Atmospheric Models:
Comparison with Multi-Layer and Slab Models. Bound. Layer Meteorol. 2001, 101, 329–358. [CrossRef]

109. Kondo, H.; Genchi, Y.; Kikegawa, Y.; Ohashi, Y.; Yoshikado, H.; Komiyama, H. Development of a Multi-Layer Urban Canopy
Model for the Analysis of Energy Consumption in a Big City: Structure of the Urban Canopy Model and its Basic Performance.
Bound. Layer Meteorol. 2005, 116, 395–421. [CrossRef]

110. Yamada, T.; Bunker, S. Development of a Nested Grid, Second Moment Turbulence Closure Model and Application to the 1982
ASCOT Brush Creek Data Simulation. J. Appl. Meteorol. 1988, 27, 562–578. [CrossRef]

111. Richards, P.; Hoxey, R. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence
model. Comput. Wind. Eng. 1993, 46, 145–153. [CrossRef]

112. Stavrakakis, G.M.; Tomazinakis, N.; Markatos, N. Modified “closure” constants of the Standard k–ε turbulence model for the
prediction of wind-induced natural ventilation. Build. Serv. Eng. Res. Technol. 2011, 33, 241–261. [CrossRef]

113. Shah, K.B.; Ferziger, J.H. A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle.
J. Wind. Eng. Ind. Aerodyn. 1997, 67-68, 211–224. [CrossRef]

114. Stavrakakis, G.; Koukou, M.; Vrachopoulos, M.; Markatos, N. Natural cross-ventilation in buildings: Building-scale experiments,
numerical simulation and thermal comfort evaluation. Energy Build. 2008, 40, 1666–1681. [CrossRef]

115. Brozovsky, J.; Simonsen, A.; Gaitani, N. Validation of a CFD model for the evaluation of urban microclimate at high latitudes: A
case study in Trondheim, Norway. Build. Environ. 2021, 205, 108175. [CrossRef]

116. Antoniou, N.; Montazeri, H.; Neophytou, M.; Blocken, B. CFD simulation of urban microclimate: Validation using high-resolution
field measurements. Sci. Total. Environ. 2019, 695, 133743. [CrossRef] [PubMed]

117. Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [CrossRef]
118. Pignatta, G.; Lim, N.; Mughal, M.O.; Acero, J.A. Tools for Cooling Singapore: A Guide of 24 Simulation Tools to Assess Urban Heat

Island and Outdoor Thermal Comfort; ETH: Zurich, Switzerland, 2018.
119. Bonacquisti, V.; Casale, G.; Palmieri, S.; Siani, A. A canopy layer model and its application to Rome. Sci. Total. Environ. 2006, 364,

1–13. [CrossRef]
120. TEB. Available online: https://www.umr-cnrm.fr/spip.php?article199&lang=en (accessed on 26 August 2021).
121. Masson, V. A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models. Bound. Layer Meteorol. 2000, 94,

357–397. [CrossRef]
122. Ren, S.; Stroud, C.; Belair, S.; Leroyer, S.; Munoz-Alpizar, R.; Moran, M.; Zhang, J.; Akingunola, A.; Makar, P. Impact of

Urbanization on the Predictions of Urban Meteorology and Air Pollutants over Four Major North American Cities. Atmosphere
2020, 11, 969. [CrossRef]

123. Reder, A.; Rianna, G.; Mercogliano, P.; Castellari, S. Parametric investigation of Urban Heat Island dynamics through TEB 1D
model for a case study: Assessment of adaptation measures. Sustain. Cities Soc. 2018, 39, 662–673. [CrossRef]

124. Pigeon, G.; Zibouche, K.; Bueno, B.; Le Bras, J.; Masson, V. Improving the capabilities of the Town Energy Balance model with
up-to-date building energy simulation algorithms: An application to a set of representative buildings in Paris. Energy Build. 2014,
76, 1–14. [CrossRef]

125. Meyer, D.; Schoetter, R.; Riechert, M.; Verrelle, A.; Tewari, M.; Dudhia, J.; Masson, V.; Van Reeuwijk, M.; Grimmond, S. WRF-TEB:
Implementation and Evaluation of the Coupled Weather Research and Forecasting (WRF) and Town Energy Balance (TEB) Model.
J. Adv. Model. Earth Syst. 2020, 12, e2019MS001961. [CrossRef]

126. Nogueira, M.; Lima, D.C.A.; Soares, P.M.M. An integrated approach to project the future urban climate response: Changes to
Lisbon’s urban heat island and temperature extremes. Urban Clim. 2020, 34, 100683. [CrossRef]

127. Roberge, F.; Sushama, L. Urban heat island in current and future climates for the island of Montreal. Sustain. Cities Soc. 2018, 40,
501–512. [CrossRef]

128. UMEP Manual. Available online: https://umep-docs.readthedocs.io/en/latest (accessed on 26 August 2021).
129. Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0–Modelling spatial variations of 3D radiant fluxes and mean radiant

temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [CrossRef]
130. Höppe, P. A new procedure to determine the mean radiant temperature outdoors. Wetter Leben 1992, 44, 147–151.
131. Chen, L.; Yu, B.; Yang, F.; Mayer, H. Intra-urban differences of mean radiant temperature in different urban settings in Shanghai

and implications for heat stress under heat waves: A GIS-based approach. Energy Build. 2016, 130, 829–842. [CrossRef]
132. Liu, D.; Hu, S.; Liu, J. Contrasting the performance capabilities of urban radiation field between three microclimate simulation

tools. Build. Environ. 2020, 175, 106789. [CrossRef]
133. HosseiniHaghighi, S.; Izadi, F.; Padsala, R.; Eicker, U. Using Climate-Sensitive 3D City Modeling to Analyze Outdoor Thermal

Comfort in Urban Areas. ISPRS Int. J. Geo-Inform. 2020, 9, 688. [CrossRef]
134. Rayman. Available online: https://www.urbanclimate.net/rayman/index.htm (accessed on 26 August 2021).
135. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model.

Int. J. Biometeorol. 2010, 54, 131–139. [CrossRef] [PubMed]
136. Battisti, A. Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces. Energies 2020, 13, 5819.

[CrossRef]

250



Energies 2021, 14, 6707

137. Peng, L.L.; Jim, C. Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation. Energies 2013, 6, 598–618.
[CrossRef]

138. ENVI-Met Homepage. Available online: http://www.envi-met.com (accessed on 26 August 2011).
139. Wania, A.; Bruse, M.; Blond, N.; Weber, C. Analysing the influence of different street vegetation on traffic-induced particle

dispersion using microscale simulations. J. Environ. Manag. 2012, 94, 91–101. [CrossRef] [PubMed]
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Abstract: Photovoltaic (PV) systems have become one of the most promising alternative energy
sources, as they transform the sun’s energy into electricity. This can frequently be achieved without
causing any potential harm to the environment. Although their usage in residential places and
building sectors has notably increased, PV systems are regarded as unpredictable, changeable, and
irregular power sources. This is because, in line with the system’s geographic region, the power
output depends to a certain extent on the atmospheric environment, which can vary drastically.
Therefore, artificial intelligence (AI)-based approaches are extensively employed to examine the
effects of climate change on solar power. Then, the most optimal AI algorithm is used to predict
the generated power. In this study, we used machine learning (ML)-based algorithms to predict
the generated power of a PV system for residential buildings. Using a PV system, Pyranometers,
and weather station data amassed from a station at King Khalid University, Abha (Saudi Arabia)
with a residential setting, we conducted several experiments to evaluate the predictability of various
well-known ML algorithms from the generated power. A backward feature-elimination technique
was applied to find the most relevant set of features. Among all the ML prediction models used
in the work, the deep-learning-based model provided the minimum errors with the minimum set
of features (approximately seven features). When the feature set is greater than ten features, the
polynomial regression model shows the best prediction, with minimal errors. Comparing all the
prediction models, the highest errors were associated with the linear regression model. In general,
it was observed that with a small number of features, the prediction models could minimize the
generated power prediction’s mean squared error value to approximately 0.15.

Keywords: solar photovoltaic; power prediction; residential load; environmental parameters; ma-
chine learning models; ensemble models; artificial neural networks; correlation; backward
feature elimination

1. Introduction

The building sector consumes about one-fifth of the total energy worldwide. The world
energy demand for buildings is projected to increase from 81 quadrillion Btu in 2010 to
approximately 131 quadrillion Btu by 2040 [1–3]. Buildings in the United States (US),
including commercial and residential, accounted for about 28% of total US end-use energy
consumption in 2019 [4]. Fossil fuels, the primary energy source, accounted for about
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80% of US energy production in the last decade [5]. The combustion of fossil fuels to
generate electricity was reported to be the largest single source of carbon dioxide (CO2)
emissions in the US in 2013. It has accounted for about 37% of total CO2 emissions and
31% of total greenhouse gas emissions in the country [6]. Renewable energy sources are
one of the critical sources of reductions in CO2 emissions. The 2030 challenge requires
the global architecture and building communities to design carbon-neutral buildings
by 2030 [7]. Moreover, in Saudi Arabia, within five years (2011–2016), the electricity
consumption increased from 219.66 terawatts to 287.44 terawatts, i.e., 30% [2,3,8]. In the
field of renewable energy technologies, photovoltaic (PV) devices have been extensively
adopted in the last decade. The global installed PV capacity increased from 1 gigawatt (GW)
in 2000 to 177 GW in 2014, and reached about 633 GW in 2019 [8]. In the US, the installed
PV capacity increased from around 2 GW in 2010 to over 88 GW in 2020 [9]. The US market
continued this rapid expansion in 2014, with an estimated 6.2 GW added to the grid, raising
the total capacity to approximately 19 GW [5]. The demand for PV technology is anticipated
to grow over the next few years. A number of countries have set a percentage target for
a renewable energy source of the total electricity supply at the national or state levels.
In 2015, 38 out of 50 states in the US introduced renewable portfolio standards (RPSs),
which require electric utility and other retail electric providers to supply a predetermined
minimum percentage of customer demand with eligible renewable electricity sources,
thereby creating specific standards for solar energy [10].

In Saudi Arabia, several programs focus on increasing the use of renewable energy.
In its National Transformation Program, Saudi Arabia recently set an ambitious target to
migrate from oil dependency and divert oil and gas exploration to various higher-value
uses [11,12]. As part of its Vision 2030, the country is required to produce 40% of its energy
from renewable sources [13]. Due to the availability of solar radiation throughout the year,
Saudi Arabia is one of the prime locations for harnessing solar energy [14]. The accuracy
of predicting the amount of energy produced by the solar PV system is imperative for
appraising the capacity of the PV system, calculating incentives, and obtaining a more
accurate forecasting of the investment’s feasibility. Several studies in the literature have
suggested simulation, modeling, and prediction-based methods for estimating the amount
of energy produced by PV systems [15–19].

In this paper, the power generation data were extracted from the polycrystalline PV
system at King Khalid University (KKU) in Abha city (one of the coldest cities in Saudi
Arabia, with heavy rains and fog). They are correlated with the solar irradiance and other
parameters, measured for the same period by the weather station, to develop a model
using artificial intelligence (AI) techniques, namely, least absolute shrinkage and selection
operator (LASSO), random forest (RF), linear regression (LR), polynomial regression (PR),
extreme gradient boosting (XGBoost), support vector machine (SVM), and deep learning
(DL), to predict the amount of energy produced by the PV system. The contribution of this
work was to study the most compelling features that can be used to predict the solar panel’s
generated power for the building sector using the backward feature elimination method,
which shows an accurate prediction of power with fewer features. The method of backward
feature elimination helps to indicate that fewer features can achieve similar results.

2. Literature Review

Numerous studies have developed different forecasting models to estimate the energy
output of renewable energy systems. The studies, however, differ with regard to the crucial
variables that are to be predicted. Brahimi [20], proposed an artificial neural network
(ANN)-based method to forecast the daily wind speed in a number of locations in Saudi
Arabia. The weather data were collected from multiple local meteorological measurement
stations operated by King Abdullah City for Atomic and Renewable Energy (K.A.CARE.).
For this research work, five machine learning (ML) algorithms were developed and com-
pared with each other, including ANN, SVM, random tree, RF, and RepTree. The proposed
model was a feed-forward neural network (NN) model that applied a back-propagation
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algorithm with the administered learning technique. The similarity between predicted and
actual data from meteorological stations exhibited a reasonably satisfactory agreement [20].
A study [4] analyzed various ML methods to predict the output power for uniform solar
panels. The researchers used a distributed RF regression algorithm and independent vari-
ables, namely, the latitude, wind speed, month, time, cloud ceiling, ambient temperature,
pressure and humidity. Another study [6] predicted the short-term, next-day global hori-
zontal irradiance using the earlier day’s meteorological and solar radiation observations.
The models used for this investigation were based on computational intelligence methods
of automated-design fuzzy logic systems. Fuzzy c-means clustering (FCM) and simulated
annealing (SA) algorithms were utilized in fuzzy logic systems for optimization. The
FCM model achieved 79.75% accuracy, and the agreement increased to 88.22% upon using
the SA model. A research work conducted by [21] used ANNs to investigate the corre-
lation between irradiance and PV output power. The model was designed for real-time
prediction of the power produced the next day. The PV power output data used for the
AI model were extracted from an installed PV system. The research findings revealed
that ML algorithms exhibit a marked capacity for predicting power production based
on various weather conditions and measures. The model helps in the management of
energy flows and the optimization of PV plants’ integration into power systems. In another
study [22], different NN-based techniques were compared with the results procured by
the simulation of a moderate manufacturing plant in the UK to forecast energy use and
workshop conditions for manufacturing facilities based on output plans, environmental
conditions, and the thermal characteristics of the factory building, along with building
activity and usage, by comparing two deep neural networks (DNNs), namely feed-forward
and recurrent. The recurrent (feed-forward) model can forecast building electricity with a
precision of 96.82% (92.4%), workshop air temperatures with a precision of 99.40% (99.5%),
and humidity with a precision of 57.60% (64.8%). Coupling modeling techniques with
ML algorithms makes it possible to forecast and maximize energy consumption in the
industrial industry using a low-cost, non-intrusive approach. Kharlova et al. [23] discussed
the end-to-end forecasting of PV power output by introducing a monitored deep learning
model. The suggested framework leverages numerical estimates of the weather’s historical
and high-resolution calculations to predict a binned probability distribution, rather than the
prognostic variable’s predicted values, over the prognostic time intervals. The suggested
sequence-to-sequence model with focus achieved a 48.1% accuracy by root mean square
error (RMSE) score on the test range, outperforming the best previously reported ability
scores for a day-ahead forecast of 42.5–46.0% by a large margin [24,25]. Rajabalizadeh’s
study took a PV housing unit in Swanson, New Zealand. The copula method was used to
model the stochastic association structure between meteorological variables, such as air
temperature, wind speed, and solar radiation. The Clayton copula method was used to
estimate a small-scale PV system’s output power. The prediction error was crucial and,
under all weather situations, copula increased forecasting results. The approach discussed
in this report is expected to be sufficient for the control of energy in a smart home. As the
model is easy to operate and precise, it will be accessible to residences [26]. The solar PV
system was installed on the roof of the Faculty of Electrical engineering, Universiti Tun
Hussein Onn Malaysia. The maximal PV output capacity on the roof will then be predicted
by using the estimation process and the ANN. The experimental results have validated
that ANN is capable of estimating PV performance similar to the approximation pro-
cess [27]. In this research work, a microgrid residential model was developed in San Diego,
California, in 2016. To verify the model precision, the solar irradiance and solar energy
generated in the residential microgrid, those expected for 2017, were used in NN-based
model. The two metrics used to calculate and compare the model’s precision were mean
absolute percentage error (MAPE) and mean squared error (MSE). The NN-based model
was observed to be effective [28]. Another research work conducted by [10] developed
an AI model that improved an ANN with tapped delay lines, built for one-day-ahead
forecasting. The model achieved a seasonal mean absolute error that ranged between 12.2%

255



Energies 2021, 14, 6759

and 26.0% in different seasons around the year. The inputs of the model were the irradia-
tion and the sampling hours. Monteiro et al. [29] developed models that could predict PV
power using numerically predicted weather data and previous hourly values for PV electric
power productions. The developed models, the analytical PV power forecasting model
and multilayer perceptron PV forecasting model, achieved an RMSE between 11.95% and
12.10%. Wei [30] investigated the southern climate of Taiwan in 2016 to predict the power
generation for the building roofs. This study was divided into three phases; the first phase
used BP3 solar panels installed on the rooftops of buildings. The most effective model with
regard to results is BP380(183.5 KWh/m2-y), BP3125(182.2 KWh/m2-y) with the perfor-
mance of power conversion is 12.4%, 12.3%, respectively. In the second phase, a surface
solar radiation measurement analysis was conducted to simulate meteorological instability
during hourly PV generation; the results obtained by a DNN method are compared with
backpropagation NN (BPN) and an LR model. In the third phase, a BP3125 panel was
used for both the second and third phases, and DNN attained the minimum MAEs and
RMSEs among the three models at lead times of 1 h, 3 h, 6 h, and 12 h, demonstrating its
adequate predictive precision. The approach was validated as sufficient for evaluating the
power-generation performance of a roof PV system. According to this paper, a centralized
grid unit is constructed to which PV panels are installed on rooftops with an energy storage
system, i.e., battery, under the power purchase agreement (PPA) scheme. The system’s
economic stability relies solely on the quality of the data. Therefore, AI techniques can
be used to adequately forecast and control grid load in real-time via PV. This is beneficial
for almost all the players concerned, i.e., the solar lease firm, the grid provider, and the
end-users [31].

It has been asserted in the extant literature that the models that use numerically
predicted weather data do not consider the effect of cloud cover and cloud formation when
initializing [32]. Pelland et al. [33] used sky imaging and satellite data to predict the PV
energy output. Another study [34] developed a model that predicts the global horizontal
radiation for the next day in several weather stations in Saudi Arabia. Although these
systems are primarily run and have proven remarkably helpful, they are referred to as
unpredictable, uncontrollable, and non-scheduled power source systems. This is because,
in line with the system’s geographic region, a certain kind of power output is contingent
on the atmospheric environment.

3. Experimental Settings

3.1. Site and Instruments

This study was conducted at KKU, located in Abha, Asir, Saudi Arabia. Saudi Arabia
is part of the northern hemisphere, centered in West Asia. The country is divided into
13 administrative regions. Abha is the capital of the Asir region, situated 2200 m above
sea level in the southwestern part of Saudi Arabia. Its coordinates are 18°13′14.40′′ N and
42°30′15.59′′ E. The solar PV system was installed on a south-facing rooftop at a tilt angle
of 22° with the parking lots of the KKU campus, as shown in Figures 1 and 2. For research
purposes, it was installed in November 2018 in the College of Engineering, far away from
the harsh weather conditions of the marine environment. The selected parameters for the
tilt and azimuth angle for the system are shown in Table 1. The parameters were selected
in accordance with the actual values of the existing system.

Table 1. Orientation Parameters Selected In the PV System.

Tilt angle 22°

Azimuth angle −21°

Field type Fixed tilted plane
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Figure 1. Geographical Location of Abha.

Figure 2. The Installed solar PV system at KKU.

As presented in Table 2, the solar PV system comprises 20 modules of type KS-240PC
with one TRIO-5.8-TL-OUTD-400 inverter of 5.8 kW rating. The 20 modules are distributed
in a total area of 33.2 m2 over one string of the maximum power point tracker (MPPT) for
maximum installation flexibility for optimal energy production. This inverter includes
two MPPTs and integrates power control, monitoring functionalities, and environmental
sensor inputs without the need for any external components. The total installed PV power
is 4.80 kWp. The PV array parameters considered here have the following manufacturer
parameters. The inverter’s nominal ac power is 5.22 kW and the maximum ac power is
5.8 kVA, as the name indicates. The maximum efficiency is 98% at a voltage level of 175 V.
The maximum efficiency is set as 97.5% according to the European efficiency, the average
operating efficiency over a yearly power distribution corresponding to the middle-Europe
climate. The inverter has two MPPT inputs, which make it possible to connect strings with
different panels to one inverter. The nominal power of the two strings connected to the
inverter is 4.6 kW ac, which fits well with the inverter’s nominal power.
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Table 2. PV Array Parameters and Characteristics.

Mechanical Characteristics

Model KS-240PC

Solar cells
Polycrystalline silicon

156 × 156 mm

No. of cells 60 (6 × 10)

Dimensions 1663 mm × 998 mm × 35 mm

Weight 23.5 kg

Front glass 4.0 mm tempered glass

Frame Anodized aluminum alloy

Cell area 2.9 m2

PV module Electrical Characteristics (STC)
STC: Standard test condition; 1000 W/m2, 25 °C, AM 1.5

Optimum operating voltage (Vmp) (V) 30.12

Optimum operating current (Imp) (A) 8.21

Open circuit voltage (Voc) (V) 37.94

Short circuit current (Isc) A) 8.69

Maximum power @ STC (Pmax) (W) 240 W

Module efficiency 14.8%

Operating module temperature −40 °C to +85 °C

Maximum system voltage
1000 V DC (IEC)/600 V

DC (UL)

Maximum series fuse rating 20 A

Power tolerance 0/+5%

Temperature Characteristics
NOCT: Nominal operating cell temperature, Irradiance level 800 W/m2,

Spectrum AM 1.5, Wind velocity 1 m/s, Ambient temperature 20 °C

Nominal operating cell temperature
(NOCT)

45 °C ± 2 °C

Temperature coefficient of Pmax −0.44%/°C

Temperature coefficient of Voc −0.33%/°C

Temperature coefficient of Isc −0.055%/°C

Radiation measurements were performed by a Pyranometer (Py), as shown in Figure 3).
This is a solar irradiance sensor designed to measure the global solar irradiances, which is the
amount of solar energy per unit area per unit time incident on a specific orientation surface
emanating from a hemispherical field of view.The global solar irradiance includes both direct
and diffuse sunlight, and, in some cases, specular reflections of sunlight. Nothwithstanding
this, the weather station mentioned in Section 3.2 includes a built-in Py. We observed the
SR20-T2 Py to be more precise than the weather station built-in Py, where we validated our
reading via the PVsyst software [35]. The Py’s specifications are summarized in Table 3.
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Table 3. SR20-T2 Py Specifications.

Spectral range (20% points) 285 to 3000 10−9 m

Calibration uncertainty <1.2% (k = 2)

Rated operating
temperature range

−40 to +80 °C

Sensitivity 7 to 25 10−6 V/(W/m2)

Impedance 20 to 200

Maximum operational
irradiance

2000 W/m2

Response time (95%) 4.5 s

Temperature response
<±1% (−10 to +40 °C) and <±0.4% (−30

to +50 °C) with correction in data processing

Figure 3. SR20-T2 Py.

3.2. Weather Station

Figure 4 shows the weather station used in this study, Davis Vantage Pro2, made in
the USA. It continuously collects and transmits weather data. It is equipped with several
sensors for different parameters such as temperature, pressure, rainfall, solar radiation.
The weather station was assembled with the console and the sensor suit. This console
and the sensor unit are dual-powered, and have an inbuilt battery and AC-power supply
connected as a backup. The sensor suite is succinctly described in Table 4, and the console
equipment that displays the pertinent data is presented in Table 5. The maximum capacity
of the anemometer is 322 kph (wind speed). This makes the weather station more durable
and sensitive to the lightest breeze. The weather station was installed on the rooftop
of KKU.

Figure 4. Rooftop Weather Station.
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Table 4. The Sensor Suite Consistency.

SI No. Parameter Type of Sensor Used

1 Temperature sensor PN junction silicon
diode

2 Wind speed sensor Solid state magnetic
sensor

3 Wind direction sensor Wind vane with
potentiometer

4 Rain collector

Tipping spoon type of
Tipping bucket, 0.01′′
per tip (0.2 mm with
metric rain adapter)

5 Relative humidity sensor Film capacitor element

6 Housing material UV-resistance, ABS,
Polypropylene

Table 5. Console Output.

Sl No. Parameter Resolution Range Accuracy

1 Barometric
pressure

0.01′′ Hg, 0.1 mm Hg,
0.1 hPa/mb

16.00′′ to 32.50′′ Hg,
410 to 820 mm Hg,
540 to 1100 hPa/mb

±0.03′′ Hg (±0.8 mm Hg,
±1.0 hPa/mb)
(at room temperature)

2 Clock 1 min 12 or 24 h format ±8 s/month

3 Dew point
1 °F or 1 °C. °C is converted
from °F rounded to the
nearest 1 °C

−105° to +130 °F
(−76° to +54 °C) ±3 °F (±1.5 °C) (typical)

4 Evapotranspiration 0.01′′ or 0.1 mm

Daily to 32.67′′
(832.1 mm);
Monthly Yearly to
199.99′′ (1999.9 mm)

Greater of 0.01′′ (0.25 mm) or
±5%

5 Forecast

Barometric Reading
Trend, Wind Speed
Direction, Rainfall,
Temperature, Humidity,
Latitude Longitude, Time
of Year

—– ——–

6 Heat Index
1 °F or 1 °C. °C is converted
from °F rounded to
the nearest 1 °C

−40° to +165 °F
(−40° to +74 °C) ±3 °F (±1.5 °C) (typical)

7 Humidity 1% 1 to 100% RH ±3% (0 to 90% RH),
±4% (90 to 100% RH)

8 Moon phase
1/8 (12.5%) of a lunar
cycle, 1/4 (25%) of lighted
face on console

New moon,
Waxing crescent,
First quarter,
Waxing gibbous,
Full moon,
Waning gibbous,
Last quarter,
Waning crescent

±38 min
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Table 5. Cont.

Sl No. Parameter Resolution Range Accuracy

9 Rainfall 0.01′′ or 0.2 mm (1 mm at
totals ≥2000 mm)

0 to 199.99′′ (0 to
6553 mm)

For rain rates up to 2/h
(50 mm/h): ±4% of total

or +0.01′′ (0.2 mm) (0.01′′ = one
tip of the bucket),
whichever is greater.
For rain rates from 2/h
(50 mm/h) to 4/h (100 mm/h):
±4% of total or +0.01′′ (0.25 mm)
(0.01′′ = one tip of the bucket),
whichever is greater

10 Rain rate 0.01′′ or 0.1 mm 0, 0.04/h (1 mm/h) to
96/h (0 to 2438 mm/h)

±5% for rates less than 5′′
per hour (127 mm/h)

11 Solar radiation 1 W/m2 0 to 1800 W/m2 ±5% of full scale

12 Sunrise and sunset 1 min Depends ±1 min

13 Temperature

0.1 °F or 1 °F or 0.1 °C or
1 °C (user-selectable) °C
is converted from °F
rounded to the nearest 1 °C

+32° to +140°F
(0° to +60 °C) ±1 °F (±0.5 °C)

14
Temperature
humidity
Sun wind index

0.1 °F or 1 °F or 0.1 °C or
1 °C (user-selectable) °C
is converted from °F
rounded to the nearest 1 °C

−90° to +165 °F
(−68° to +74 °C) ±4 °F (±2 °C) (typical)

15 Ultra violet (UV)
radiation dose

0.1 MEDs to 19.9 MEDs;
1 MED above 19.9 MEDS 0 to 199 MEDs ±5% of daily total

16 UV
radiation index 0.1 Index 0 to 16 Index ±5% of full scale

17 Wind direction
16 points (22.5°) on
compass rose, 1° in
numeric display

0°–360° ±3°

18 Wind speed

1 mph, 1 km/h, 0.4 m/s, or
1 knot (user-selectable).
Measured in mph, other
units are converted from
mph and rounded to the
nearest 1 km/h, 0.1 m/s,
or 1 knot.

1 to 200 mph, 1 to
173 knots, 0.5 to
89 m/s, 1 to 322 km/h

±2 mph (2 kts, 3 km/h, 1 m/s)
or ±5%, whichever is greater

4. Methodology

The methodology that was adopted to build an ideal ML model for Abha’s PV power
prediction involved four general phases: (1) data collection and presentation, (2) data
preparation (to obtain the data in a suitable format for analysis, exploration, and under-
standing the data to identify and extract the features required for the model), (3) feature
selection and model building (to select the appropriate algorithm and prepare a training
and testing dataset), (4) and model evaluation (to observe the final score of the model for
the unseen dataset).

4.1. Data Collection and Presentation

As illustrated in the first part of Figure 5, the power generation data extracted from the
polycrystalline PV systems placed at KKU are associated with four primary data sources
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measured over the same period of time. Weather station sensors (WS) were located near the
station to measure various parameters, namely ambient temperature (Ta), relative humidity
(RH), wind speed (W), wind direction (WD), solar irradiation (SR), and precipitation (R),
where solar irradiance was found to be more accurate using the Py sensor. The computed
parameters from the WS and Py were also considered. The latter included the solar PV
system inverters (N) and panel sensors (PVSR). The four sources of data were utilized
together to conduct our experiment. However, the collected data were for December 2019
until February 2020, between the autumn and the winter seasons. During this time, data
were acquired and tabulated from sunrise to sunset at an interval of each five minutes
for the parameters of low and high temperatures, average temperature, humidity, wind
speed, and solar radiations. This differentiated cloudy days, clear-sky days, and mix days.
Eventually, about 5000 samples were collected, with different data types such as integer,
float, and object. The generated power statistical summary is presented in Table 6.

Figure 5. Block Diagram of the System.

Table 6. Statistical Summary for The Generated Power (W).

Generated Power Scaled Generated Power

Count 5402 5402

Mean 2336.47108 0

Standard deviation 1569.29464 1

Minimum 0 −1.489

25% 796.435 −0.98145

50% 2460.935 0.07932

75% 3873.59 0.97959

Maximum 5828.5 2.22543

Eventually, the collected dataset represented the sensors readings, assuming
A = {a1, a2, a3, . . . , am} to be the dataset n− by−m matrix, where n = 5402 is the number
of the observations collected from each sensor and the vector ai is the ith observation with
m = 42 attributes, and the generated power p is the target of these features.
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4.2. Data Preparation

In general, data need to be pre-processed so that they have a proper format, and are
free of irregularities such as missing values, outliers, and inaccurate data values. Missing
values are typical in any dataset. They may have occurred during data collection or possibly
due to sensor-connecting issues. However, they must be considered by dropping their
rows, estimating their values or replacing them. In our case, the data had less than 1%
missing values in the total dataset; thus, eliminating these missing values was imperative.
Outliers and noisy data emerge due to data entering/transmission errors. We discovered
one outlier for “PV Energy”, which we handled by smoothing its value.

Data scaling is typically required because many ML algorithms perform more accu-
rately and converge faster when attributes are on a moderately similar scale and close
to normally distributed. In this work, standardization (see Equation (1)) was applied to
rescale data to have a mean μ(A,p) of zero and a standard deviation σ(A,p) of one, where
the scaled p is shown in Table 6.

(a, p)scaled =
((a, p)i − μ(A,p))

σ(A,p)
(1)

4.3. Feature Selection

Feature selection is one of the core concepts in ML and profoundly affects the model’s
performance. Its principal objective is to select the feature set with minimum cardinality
while maximizing the learning performance. We believe that, when predicting generated
power in the PV system, not every feature equally contributes to the prediction performance.
Features can be relevant, partially relevant, or even irrelevant. Feature selection algorithms
aim to assign weight to each feature according to its pertinence. As illustrated in Figure 5,
in this study, we applied two approaches to score each feature, namely, Pearson’s correlation
coefficient [36] (see Equation (2)) and Information Gain [37] (see Equation (3)). The former
measures the amount of correlation between each variable and the target, while the latter
quantifies the amount of information provided to the class by evaluating the impurity level
of each variable using the entropy H(·) with respect to the target.

ra,p =
∑n

i=1(ai − ā)(pi − p̄)√
∑n

i=1(ai − ā)2
√

∑n
i=1(pi − p̄)2

(2)

IG(p, a) = H(p)− ∑
v∈Values(A)

|pv|
|p| H(pv) (3)

The relevant attributes should be sasigned a greater scoring than less relevant at-
tributes. In Equation (2), features were selected by correlating all input sensor parameters
with PV-generated power p. Pearson’s Correlation Coefficient Equation (2) was used to
evaluate the correlation between the sensor parameters and PV-generated power, where
n is the observation size, ai and pi are the single observation points indexed with i, and ā
is the observation mean. A positive and negative correlation score would suggest higher
prediction accuracy because an increase in one value of the attribute increases/decreases
the generated power value. Meanwhile, zero correlation coefficient indicates no relation.
Nevertheless, Figure 6 indicates the amount of correlation of each attribute with the gener-
ated power. The Solar Average has the most crucial positive correlation (+ve) with 88%,
although the Out Humidity has the most significant negative correlation (−ve) with about
−42%. Meanwhile, the rain rate, rain and arc exhibited zero correlation. Furthermore,
profound/redundant features that are directly affected by the generated power have been
dropped, such as Voltage, Current, PV Energy, and Solar Energy, where the number of
attributes were reduced to m = 38.

263



Energies 2021, 14, 6759

Figure 6. Correlation Plots.

To evaluate the similarity between two ranked sets of features r represented by ra,p and
r̄ represented by IG(p, a)), Spearman’s rank correlation coefficient [38] (see Equation (4))
was used to assess the significance of the relationship between them.

SR(r, r̄) = 1− 6 ∑
i

(ri − r̄i)
2

m(m2 − 1)
(4)

Spearman’s rank correlation coefficient resulted in a range of [−1,1]. The maximum
value was reached when the two ranks were equivalent, while the minimum was reached
when they were precisely in reverse order and zero meaned no correlation between r and r̄.
However, after we measured the stability of the two sets of features, we observed them to
be stable with the value 0.96. In Figure 7, we show the comparison of two ranked feature
lists, where the x-axis and the y-axis represent the Pearson’s correlation coefficient and
information gain for features, respectively. Moreover, the linear line shows the stability
between them.

Backward elimination was applied after Pearson’s correlation coefficient was calcu-
lated, which selected the most appropriate attributes. We started with a complete set of
attributes and then recursively removed one attribute after each iteration. The eliminated
attribute is the attribute with the lowest absolute correlation coefficient |ra,p|. At each itera-
tion, we evaluated the loss using the remaining set of features. The backward elimination
criterion was applied from the lowest correlated attribute to the highest, one until only one
attribute remained.
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Figure 7. Spearman’s Rank Correlation Coefficient.

4.4. Model Selection and Evaluation

The selection of appropriate ML algorithms to predict the amount of power generated
p̂ based on the sensors’ readings was challenging, because each ML model performs
differently on the same dataset according to the model’s nature. A number of ML models
need to be trained and tested to select the optimal or superior one. Nonetheless, prior to
the training, the dataset needs to be divided into a training set, to build up a model by
extracting the features and train them to fit the model, and a testing set, to validate the
built model by predicting the outcome of the unseen data. There are numerous methods of
splitting the dataset, such as hold-out and cross-validation. As illustrated in the first part
of Figure 5, in this experiment, we used k-fold cross-validation with k = 10. It is known
for its ability to reduce overfitting while improving generalizability power. Moreover,
cross-validation is known to have a better bias-variance trade-off. Therefore, the models
are expected to perform equally well for the unseen data and the training data.

Many classical and modern regression and prediction models were examined in this
study to estimate the generated power from the PV system. These include LASSO, RF, LR,
PR, XGBoost, SVM, and DL.

The LR model [39] (see Equation (5)) is one of the simplest ML models used to find a
linear relationship between the generated power p and the input parameters A. Taking y as
the response value that lies in the best-fit regression plane, the intercept b in Equation (6) is
the reference position of the plane, and xm is the m predictor variable from the most effective
attributes. w1, . . . , wm in Equation (7) are the parameters of slope coefficients. The response
variable is the generated power p, and the predictor variables are selected from the most
effective attributes A variables. Nevertheless, Equation (5) can present all the datapoints
as a matrix (see (8)). Next, PR [40] (see Equation (9)) is a well-known algorithm, applied
when the data are correlated, but the relationships are non-linear. This is a particular case
of LR because we created polynomial attributes to fit the polynomial equation, where
the dth power is the PR degree. LASSO [41] is also a type of LR model trained with an
L1 regularizer in the loss function J(w)L1 = 1

n ∑n
i=1( fw(x)i − yi) + λ ∑n

j=1
∣∣wj

∣∣, to reduce
overfitting, which applies shrinkage. Shrinkage is where data values are shrunk toward a
central point, where λ denotes the amount of shrinkage. However, it is well-suited for data
that show high multi-collinearity levels and fewer parameters.

y ← fw(x) = bn + w1x1 + . . . + wmxm (5)
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bn =
(∑n

i=1 yi)(∑n
i=1 x2

i )− (∑n
i=1 xi)(∑n

i=1 xiyi)

n(∑n
i=1 x2

i )− (∑n
i=1 xi)2

(6)

wm =
n(∑m

i=1 xiyi)(∑m
i=1 x2

i )− (∑m
i=1 xi)(∑m

i=1 yi)

n(∑m
i=1 x2

i )− (∑m
i=1 xi)2

(7)

⎛⎜⎜⎜⎝
y1
y2
...

yn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b1
b2
...

bn

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
w1
w2
...

wm

⎞⎟⎟⎟⎠(
x1 x2 · · · xm

)
(8)

y = b + w1x1 + w2x2
1 + . . . + wdxd

1 (9)

An RF [42] is an ensemble of randomized regression trees that combine predictions
from multiple ML algorithms to make more accurate predictions and control overfitting.
XGBoost [43] has evolved as one of the most famous ML algorithms in recent years. It
relates to a family of boosting algorithms named the gradient boosting decision tree (GBDT),
a sequential technique that operates on the principle of an ensemble as it combines a set
of weak learners and delivers an increased prediction accuracy. The most prominent
difference between XGBoost and GBDT is that the former uses advanced regularization,
such as L1 (LASSO) and L2 (Ridge), which is faster and has less chance of overfitting.
An SVM [44] (see Equation (10)) performs a non-linear mapping of the training data to a
higher-dimension space over a kernel function φ. It is possible to perform an LR where
the kernel selection defines a more or less efficient model. The radial basis function (RBF)
e−γ‖x−y‖2

, as the kernel function, is used as a mapping function.

fw(x) =
n

∑
i=1

wT
i φ(xi) + b (10)

NNs [45,46] have been extensively applied to solve numerous challenging AI prob-
lems. They surpass the traditional ML models by dint of their non-linearity, variable
synergies, and customizability. The process of building an NN starts with the perceptron.
In simple and straightforward terms, the perceptron receives inputs, multiplies them by
some weights, and then carries them into an activation function such as a rectified linear
unit (ReLU) to generate an output. NNs are designed by adding these perceptron layers
together, in what is known as a multi-layer perceptron model. There are three layers of an
NN: input, hidden, and output. The input layer immediately receives the data, whereas
the output layer produces the required output. The layers in between are called hidden
layers, and are where the intermediate computation takes place.

Model evaluation is a critical ML task. It helps to quantify and validate the model’s
performance, makes it easy to present the model to others, and ultimately selects the most
suitable model. There are various evaluation metrics; however, only a few of these are
applicable to regression. In this work, the most common metric used for regression tasks
(MSE) is applied to compare the models’ results. MSE (see Equation (11)) is the average
of the squared difference between the predicted power p̂ and the actual power p. This
penalizes large errors and is more convenient for optimization, as it is differentiable and
has a convex shape.

MSE =
1
n

n

∑
i=1

( p̂i − pi)
2 (11)

Figure 5 schematically presents the overall AI system and methodology used in
the research and delineates all the steps from data collection until the computation of
predicted power.
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5. Results and Discussion

As noted previously and depicted in Figure 7, the two feature-scoring approaches
generated very similar results. Therefore, the learning performance was almost equiv-
alent using both approaches. We omitted the results of the information gain to reduce
duplication.

The results of the prediction error, illustrated in Figure 8, reveal that all prediction
models behave in a similar manner. The DL-based model gave the minimum error with the
minimum set of features (approximately seven features). The DL error was steady, with
almost over all feature sets’ cardinalities ranging from almost two features up to the full
cardinality. Thus, it can be concluded that, when using only a few features or looking for a
very stable prediction regardless of the features, DL is preferable.

Figure 8. Results attained with various ML techniques.

In contrast, PR’s prediction was the best when the feature set was greater than 10 fea-
tures. This illustrates the advantageous properties of PR in the extraction of marginally
useful knowledge, even from extremely irrelevant features. MSE kept steadily reducing
after adding more features. With regard to MSE, PR is the most optimal choice in this case,
as it had the lowest value.

As expected, LR had the highest error associated, with erros found over various
selected cardinalities. LR is not capable of modeling non-linear relationships. The generated
power is nonlinear in this problem. Thus, LR is not a suitable and adequate fit for the model.

LASSO, XGBOOST, SVM, and RF behaved in a similar manner. RF was the worst in
terms of MSE in the cases with a single feature. This is intuitive, due to the nature of the
algorithm. To build more decision trees, RF requires more features. Thus, one feature was
not sufficient to extract sufficient and relevant knowledge in this case. However, SVM was
extremely steady after selecting 13 features. This is due to the fundamental nature of SVM,
which works by selecting a set of support vectors to maximize the margin. These support
vectors are the same beyond the thirteenth feature. This is another way of indicating the
proper number of selected features.

Figure 9 illustrates the actual active power versus the predicted one from December
2019 to February 2020 using a PR model. Thus, we can observe that the model can reason-
ably predict the generated power. However, there are still obstacles to some predictions,
due to sudden voltage dips in the original dataset. The latter occured because we applied
a transient three-phase voltage dip to gauge the performance of the system under study.
The active power output from the whole PV system before the fault was 4000 W. After
the occurrence of a fault, a transient peak of 5800 W was instantly observed for the active
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power generation. Within a short interval, and according to the Saudi grid code [47],
the transient was cleared. The solar PV system controller action was sustained to cope with
the fault, after which the power oscillations were damped out and the system restored
to its regular operation. Therefore, immediately after the fault was cleared, the solar PV
system entered a voltage regulation mode [48,49], and the active power generated at the
solar PV terminals started to reach the rated values. p output’s mirrored characteristics are
a sign of the controlled converter action, which is only limited by the converter’s nominal
current rating.

Figure 9. Results.

6. Conclusions and Future Work

In this paper, seven well-known machine learning algorithms were successfully ap-
plied to solar PV system data from Abha (Saudi Arabia) to predict the generated power.
The prediction error of the algorithms was relatively low. This indicates that we can
confidently evaluate the feasibility of installing solar PV systems in residential buildings
using only a small set of weather station data. Although the algorithms behaved similarly,
the Deep Learning technique gave the minimum error with the minimum set of selected
features. However, Polynomial Regression produced the best prediction performance when
we incorporated more features.
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Abstract: Due to the long-term problem of electricity and potable water in most developing and
undeveloped countries, predominantly rural areas, a novelty of the pendulum water pump, which
uses a vertically excited parametric pendulum with variable-length using a sinusoidal excitation as
a vibrating machine, is presented. With this, more oscillations can be achieved, reducing human
effort further and having high output than the existing pendulum water pump with the conventional
pendulum. The pendulum, lever, and piston assembly are modeled by a separate dynamical system
and then joined into the many degrees-of-freedom dynamical systems. The present work includes
friction while studying the system dynamics and then simulated to verify the system’s harmonic
response. The study showed the effect of the pendulum length variability on the whole system’s
performance. The vertically excited parametric pendulum with variable length in the system is
established, giving faster and longer oscillations than the pendulum with constant length. Hence,
more and richer dynamics are achieved. A quasi-periodicity behavior is noticed in the system even
after 50 s of simulation time; this can be compensated when a regular external forcing is applied.
Furthermore, the lever and piston oscillations show a transient behavior before it finally reaches a
stable behavior.

Keywords: pendulum water pump; piston assembling; harmonic response; variable length pendu-
lum; excited parametric pendulum

1. Introduction

According to Canada’s government, about 40% of the world population does not
have a pleasing way of getting sanitary water, which is hugely affected by the developing
countries where up to 80% of illness in such areas is caused by inadequate water and
sanitation [1]. Furthermore, Ref. [2] shows that more than a billion people in developing
countries have insufficient clean water due to deprivation, change in climate, and bad
governance. This leads to several issues such as under supply of drinking water, deficient
structure to get water supply, swamp, droughts, and contamination of rivers as well
as large dams [2]. In addition, people entail good water for livelihood, essential care,
farming or agriculture, manufacturing, and trade. According to the 2019 UN World
Development report, stated about four billion people, which is virtually two-thirds of the
world population, encounter severe water scarcity at least one month in a year [2].

With the long-term problem of electricity and potable water in most developing and
underdeveloped countries, especially in rural areas, more research needs to be done in
areas that can positively affect their lives. One such area is the availability and accessibility
of water for domestic, agricultural, and even industrial uses. There is a need to modify the
existing water pump, such as the conventional hand water pumps. These rural dwellers
can access good water even without electricity for the pumping (for some types of pumps).
A pendulum can be used to provide the initial force for the pumping process in a recipro-
cating water pump [3,4]. With this principle, more water liters can be pumped with little
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effort since more energy can be overcome by small or little effort on the pendulum, thereby
increasing the whole system’s efficiency [5].

The importance of pendulum water pumps is that they significantly reduce to a
minimum the human strain, making the water pumps easy to operate [6,7]. The pendulum
is occasionally pushed with little effort, even with the fingers. It keeps the pumping
continuous, unlike an ordinary hand pump, which always requires a load with significant
steps [8]. A normal person can only make use of the hand pump for a few minutes.
When pressed, water stops pumping. The situation is different from the pendulum water
pump, i.e., a little pressure is needed to push the pendulum to keep changing and keep it
oscillating for several hours without getting tired.

In [9], authors presented a three-dimensional model and a fabricated water hand
pump with a pendulum. The pendulum’s energy was analyzed based on the pendulum’s
kinetic and potential energy without further algorithms. In addition, 1200 L per hour of
water discharge were observed using the pump with a pendulum. We noted that system
dynamics need to be studied deeper to improve system efficiency and control for better
performance and other research purposes.

In [8], a design, as well as the development of a pendulum-operated water pump,
are presented. The mode of operation of the pendulum-operated water pump is based on
defining the functions of all parts separately, but a mathematical model is not presented.

A fabricated set-up of an analytical design of a pendulum hand pump using Creo is
covered by [6]. The design calculations were performed manually. The analyses show that
the set-up has 70% efficiency at the initial angle of the pendulum, 39% efficiency when the
pendulum is at 60◦ with the lever, and 25.5% efficiency when the pendulum angle is at 0 or
90◦ with the lever. Similarly, experimental statistics from a test rig, including validation of
the dual-medium pressurizer’s energy transmission strategy, are considered in [10]. An
onshore pendulum’s wave energy converter test rig was built for validation. It uses a
hydraulic cylinder as a replacement for the wave that deploys a force on the pendulum.
The overall result of the simulation shows a similar response to the experimental results.

In [11], authors designed and fabricated a pendulum hand pump. Parts of the func-
tions were stated, the advantages and disadvantages of the pendulum pumps, the working
principle, and its applications. The equations of motion need to be derived and solved
numerically to allow further analysis to achieve better system performance. A kinematic
approach in the theoretical analysis of a pendulum hand pump dynamics is presented
in [5] where a nonlinear pendulum model is used to power the lever and the piston model
for the applied excitation force to the pendulum. It is observed that satisfactory results
are obtained where the frequency of excitation is greater than the pendulum’s natural
frequency of the model. In [5], we find the equation of the pendulum model as follows:

ϕ̈ +
g
l

sin ϕ = f (t), (1)

and the equation of the lever and piston as below

ẍ =
3
m

(
f1(t)

l1
l2
− bẋ− kx

)
, (2)

where: ϕ—pendulum’s angular displacement, g—acceleration due to gravity, l—length of
the pendulum, f (t)—input force from the pendulum model given as f (t) = f0 cos (ωt); f0—
forcing excitation amplitude, ω—excitation frequency, m—the mass of the lever and piston
model, k—spring constant, b—viscous damping constant, l1—distance from the input
force and the lever point of pivot, P, l2—distance from point k and P, and f1(t) = sin ϕ.
Integrating numerically, Equation (7) yields the piston displacement, x. Using the same
parameters presented in [5] (l = 3 m, ω = 5 rad/s, f0 = 3 m, l1 = 0.4 m, l2 = 0.6 m,
l3 = 1

3 l2, k = 5 N·m−1, b = 1 N·s·m−1, m = 4 kg), we use the proposed numerical approach
of our modified system to solve Equations (1) and (2), and we have the numerical solution
as shown in Figures 1 and 2, which is very similar to the ones presented in [5].
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Figure 1. Angular displacement of the Pendulum in Equation (1).

Figure 2. Linear displacement of the Piston in Equation (2).

The study needs a pivotal and in-depth analysis of fluid mechanics, and the pendu-
lum’s length can also affect the system’s performance.

To further reduce the human effort, we proposed to use a pendulum with a variable-
length model instead of the conventional pendulum. This modification would give a faster
and longer oscillation, which will, in turn, result in more rapid pumping of fluid since
the variable-length pendulum can undergo a quicker and longer oscillation, as presented
by the following authors: Ref. [12] derived the differential equations of dynamics for
both the first and the second mutation from the sum of kinetic and potential energy for
a rigid pendulum’s two and three degrees of freedom. It was observed that a successive
expansion in the forms of representation of the energy is introduced. The largest Lyapunov
exponent was used to classify the system based on computational analysis. The phase
planes and the Poincaré maps show some homogeneous dynamic patterns, such as quasi-
periodic and chaotic motions. Refs. [13,14], the Euler–Lagrange equation, and the Rayleigh
dissipation function are used to derive the equation for a three-degree of freedom pendulum
system. The numerical results reveal that a variable-length spring pendulum hung from
the occasionally forced slider can demonstrate quasi-periodicity and chaotic motions in
a resonance condition. Furthermore, near the resonance, linking bodies on the system
dynamics could lead to unforeseeable dynamical comportment.

Krasilnkov presents in [15] the variable-length pendulum harmonic oscillations, which
depend on the length of the pendulum. Lyapunov exponents, bifurcation diagrams, and the
Poincaré maps situated on phase plane diagrams were used to inspect the system behavior.
It was concluded that the system exhibited chaotic properties in the domain of higher-level
stability. A control scheme for a vertically excited parametric pendulum with variable
length is presented in [16]. It offers two energy sources: a vibrating machine and sea waves
simulated by a stochastic process [16]. For the pendulum to be controlled, a telescopic
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adjustment of the pendulum length [16] is used during the motion. The numerical results
show favorable terms for energy harvesting. Steady revolutions can be attained irrespective
of the forcing factors and for all established initial conditions. It is concluded that it is hard
to attain stable rotation due to the high reliance of the dynamical system on parameters that
causes the forcing and the initial conditions. However, the controlled pendulum can reach
stable rotations if the threshold velocity is sufficiently selected to modulate the control
operation.

In this work, we present the following:

• The mathematical model and simulation results of the variable-length pendulum
water pump were performed. The equations were solved using the Runge–Kutta
method with 5th order adaptive step size.
A vertically excited parametric pendulum with variable length [16] is used instead
of the conventional pendulum with constant length, minimizing human effort with
increasing output of water or liquid from the pump outlet.

• With the variable-length pendulum, more and richer dynamics can be achieved
flexibly, giving more and faster oscillations and providing long-lasting energy for the
fluid pumping—thus drastically reducing the human effort required for pumping and
saving time.

The presented work is practical and valuable because it shows the most responsible
mechanism for obtaining the minimum effort to swing the pendulum as well as provides
a methodology that guarantees relatively fast and long-lasting oscillations, as stated in
the problem definition below. First, the three-dimensional model is introduced. Next,
the components are listed, stating the functions of each part of the system. Finally, the
system’s working principle is supported by mathematical modeling, results of numerical
simulations covered by essential conclusions.

2. Problem Definition and Modeling

The rural area dwellers can use the pendulum water pump for farming and irrigation,
water-wells, and can also be used for fire extinguishing both in rural areas and in cities.
It can also be used for drainage to control liquid (water) levels in a protected area. Other
areas of application include: sewage, chemical industries, medical fields, steel mills, etc. [8].
It is useful and practical for older people and children who can operate it easily, since it
only requires minimum effort to swing the pendulum. Furthermore, the oscillating nature
of the pendulum and maintenance do not require special training or skills to perform the
task with hand or agility. Below, based on mathematical analysis and numerical simulation,
we show that an initial force could be only required and then maintained for pumping the
water. Based on the existing literature (to the best of our knowledge), none have used the
pendulum with variable length. In our work, a vertically excited parametric pendulum
with variable length [16] is used instead of the conventional pendulum, giving richer
swinging dynamics in the entire mechanical coupling.

2.1. A Three-Dimensional Model

The proposed system comprises three main parts: the pendulum, the lever, and the
reciprocating pump assembly containing the piston and the pushrod. Other parts include
bracket foundation link, pivot point, frame, support at the frame, delivery pipe, and suction
pipe. Figure 3 shows the three-dimensional physical model with the various parts of the
system. The pendulum’s angular motion is transmitted into the to-and-from motion of the
piston through the lever and the pushrod [2].
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Figure 3. Configuration of the three-dimensional model of the investigated system.

The system input is from the pendulum where an initial force is applied. The lever
and the spring act as a transmitter that transmits the energy to the piston (system output),
where the pumping of the liquid takes place.

2.2. Components of the System

We modify the existing pendulum water pump to achieve a maximum effect by using
a vertically excited parametric pendulum with variable length instead of the conventional
pendulum. Each component is briefly described below:

Frame: the rigid part serving as a support where the whole system assembly is mounted.
The parametric pendulum with variable length: Ref. [16], the required energy source

for commencing the action of pumping by oscillating. (Detailed in Section 3.1, case II).
Bracket: a connection between the pendulum and lever and also between the lever

and the piston.
Pivot point: also called the fulcrum, it is the part where the lever turns. It plays a

central role in the lever system, and the lever’s power is supplied between the pivot point
and the pendulum.

Bearing: to reduce rotational friction and support axial loads.
The rod: held up by double support bearing one on each side of the lever that forms

the lever’s fulcrum. The coupling of the lever crested on the bearing lever rotates with
the use of thrashing. A different support bearing is utilized at the pendulum’s bracket,
allowing for the pendulum’s motion.

Delivery pipe: it connects the pump’s cylinder with the exit. The liquid is dispatched
to the preferred exit point along this delivery pipe.

Suction pipe: it connects the origin of liquid to the reciprocating pump’s cylinder. This
pipe sucks the liquid from the source to the cylinder.

Reciprocating pump assembling: convert the mechanical energy into hydraulic energy
by sucking the liquid into a cylinder. A piston is reciprocating, which uses thrust on the
liquid and increases its hydraulic energy [17].

2.3. The Working Principle

The system free energy is based on the phenomenon of an oscillating pendulum-lever
system. The pendulum pump’s purpose is the oscillation of the body pendulum controlled
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with a small pressure hand. Change of the inertial forces causes the fluctuation of the
lever attached to the pump piston connected to a spring and a damper. The oscillations
of the pendulum serve as the model’s input [18]. These oscillations bring about the
swinging to and fro of the lever about its turning position; the lever is attached at one
end to the pump’s rod and brings about the lever movement. For water to flow from the
pump, the pendulum does not need to be balanced. Instead, the piston starts oscillating
based on gravitational potential, and water begins to come out through the delivery
pipe continuously. The pendulum is to be pushed occasionally in other to maintain the
continuous flow of water. The pendulum water pump works efficiently with 90◦ amplitude
regardless of the pendulum’s size [6]. The foot valve opens at the piston’s upstroke, and
suction brings water into the pump’s upper part (head) from the suction pump. The
piston’s valve opens up and permits water to spout upward above the piston on the
piston’s following downstroke. On the subsequent piston’s upstroke, water is propelled
over the exit [19]. The system does not require fuel or electricity for its operation. Therefore,
it is user-friendly and cannot cause global warming.

3. Mathematical Modeling

The complete system is made up of three parts: the pendulum, lever, and piston. These
are modeled separately and connected through the bracket, where forces are transferred
from one part to another. The motion of one makes the subsequent part move. As the
pendulum is set to motion, it transfers the force to actuate the lever. The lever motion is
imparted to the piston. The motion equation is established from Newton’s second law of
motion, i.e., F = ma since a force initiates the motion.

3.1. The Pendulum

Two cases are presented below in deriving the equations of motion of the pendulum.
Case I follows the standard models using Newton’s second law of motion to derive the
pendulum with constant length equations. The works existing in literature use this type of
pendulum to act as the system inputs. In Case II of the present work, we used a vertically
excited parametric pendulum with variable length as the system input. Hence, more
frequent and faster oscillations can be achieved. In this case, the Euler–Lagrange equation
is utilized to obtain the governing equations.

Case I: The energy needed for starting the pumping process is initiated by swinging
the pendulum with minimum effort [20,21]. The pendulum model showing the free body
diagram is shown in Figure 4, and its equation of motion is derived below. The force
response does not transmit a moment around the position 0, where the rotation takes place.
Therefore, the sum of the moments is 0 about the attachment point.

Figure 4. The pendulum free body diagram.

Summing all moments of forces, the following equation is found:

∑ Mt = I0 ϕ̈, (3)

∑ Mt = −(m + mb)gl sin ϕ− Tv + Th, (4)
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where: mb—pendulum’s bar mass (kg), m—the pendulum body mass (kg), l—length to
the pivot of mass of the end weight (m), Tv—moment of viscous friction force (N·m), Th—
excitation moment (N·m), ϕ—pendulum angular displacement (rad), I0—mass moment of
inertia (kg·m2), and g—acceleration due to gravity (m/s2).

Simplifications: (i) the pendulum mass is concentrated in the center point of the end
mass; (ii) sin ϕ ≈ ϕ, so we assume small angles of rotation in this case.

The mass moment of inertia I0 is given as:

I0 ≈ (m + mb)l2, (5)

For a more accurate approach, we consider the body’s relative mass of the system to
be situated at the system’s pivot of mass, which is:

lg =
(ml + 0.5mbl)
(m + mb)

, (6)

so the mass moment of inertia yields:

I0 =
mbl2

3
+ ml2. (7)

The moment of viscous friction Tv = bϕ̇, where b (N·s·m−1) states the coefficient of
viscous damping.

Equation (4) becomes:

− (m + mb)glg sin ϕ− bϕ̇ + Th = I0 ϕ̈, (8)

and at the assumed simplifications:

ϕ̈ +
b
I0

ϕ̇ +
(m + mb)glg ϕ

I0
= Th, (9)

where: Th = f0 cos ωt, f0—amplitude of forcing excitation (N·m).
The linearized method has the configuration of a typical unconstrained differential

equation of the second-order. Complementing Equation (9) to a canonical form, one finds

ϕ̈ + 2ζωn ϕ̇ + ω2
n ϕ = Th, (10)

where ωn is the excitation frequency (rad·s−1), ζ is the damping coefficient (N·s·m−1),

2ζωn = b
I0

, ω2
n =

(m+mb)glg ϕ
I0

. Later, we will show how numerous variables of the system
affect the independent response of the pendulum coupling. For the simplified pendulum
having its mass concentrated at its end, we find:

ωn ≈
√

g
l

. (11)

Case II: As shown in Figure 5, Lagrange’s equation is utilized to derive the governing
equation of the vertically excited parametric pendulum with variable length [16] using the
sine function as input for the angular position [16].
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Figure 5. Schematic diagram of the vertical parametric pendulum with variable-length.

It is possible to remodel the overall length of the pendulum l03 by readjusting the
location of the telescopic bar, l02. As the bar is recanted, the original length of the pendulum
l01 (l03 = l01) is regained. The centre of rotation is stimulated vertically as a result of excised
motion I = I(t). Using the Euler–Lagrange equation in two degrees of freedom, the
unconventional system is expressed in Equation (12)

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
+

∂D
∂q̇

= 0, (12)

where: ϕ(t)—angular displacement defined from the downward inclination point, Ek—
kinetic energy equation of the system, Ep—potential energy, and D—dissipative energy of
the system:

Ek =
1
2

m
(
(ẋe(t) sin ϕ(t) + cos ϕ(t)(l01 + l02 + xe)ϕ̇(t))2+

(− f0ω sin (ωt) + ẋe(t) cos ϕ(t)− sin ϕ(t)(l01 + l02 + xe)ϕ̇(t))2
)

,
(13)

Ep =
1
2

kx2
e (t)− gm( f0 cos (ωt) + cos ϕ(t)(l01 + l02 + xe(t))), (14)

D =
1
2

cp ϕ̇2(t). (15)

where: m—the mass of the pendulum body (a bob), k—spring stiffness, cp—viscous
damping coefficient of the pendulum. Putting Equations (13)–(15) into Equation (12)
and carrying out the analogous derivatives, the equation of motion is obtained as presented
in Equations (16) and (17):

ϕ̈ =

(
1

m(l01 + l02 + xe)(l01 + l02 + xe)

)(
−m(l01 + l02)

(
g + f0ω2 cos (ωt)

)
sin ϕ(t)−

cp ϕ̇(t)−mxe(t)
(

g + f0ω2 cos (ωt) sin ϕ(t)
)
−m(l01 + l02 + xe(t))(2ẋe(t)ϕ̇(t))

)
,

(16)

ẍe(t) =g cos ϕ(t) + f0ω2 cos (ωt) cos ϕ(t)− kxe(t)
m

− cẋe(t)
m

+ l01 ϕ̇2(t)+

l02 ϕ̇2(t) + xe(t)ϕ̇2(t).
(17)

The motion considered here is the enforce motion existing as a sinusoidal wave of the
conformation I(t) = f0 cos (ωt), where f0 is the excitation amplitude.

The above equation regains the established governing equation of the vertical para-
metric pendulum when l03 is varied due to the extension xe. It is assumed that an external
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force causes the excitation. Thus, we assumed the almost ideal case where an external
force could partially compensate for dissipation of mechanical energy through a frictional
contact from the human effort [16,22].

3.2. The Lever

The lever amplifies the pendulum force and transmits the force to the piston through
the bracket foundation link. To understand the lever model fully, we start with a simple
model, as can be seen in Figure 6, which shows the lever with the pivot in the middle of the
lever or center of gravity (CG), assuming that the CG is at the middle of the lever, that is, l1
is equal to l2. Figure 7 represents the lever component showing the pendulum’s connection
and then to the piston through two different bracket foundation links, respectively. From
Newton’s second law, the equation of motion of the lever is obtained, where ϕ is denoted
as the input for the lever model, which is the output from the pendulum model.

Figure 6. Schematic diagram of the lever device.

Figure 7. Schematic diagram of the lever device and connecting components like spring and damper.

Analyzing Figure 6, one writes: x1 = l1 sin ϕ, x2 = l2 sin ϕ and x1
x2

= l1
l2

= L. In

addition, v1
v2

= l1
l2

states a ratio of lever arms: where l1—distance from f1 and position
p, l2—distance from f2 and position p, x1 and x2 are the displacements at both ends of
the lever. With small-angle approximation and the motion at the lever end to be purely
translational in ‘x’ direction, the relationship between the forces and displacements is
carried out by summing the torques T around the pivot point (about fulcrum), i.e.,

∑
ccw

Tccw −∑
cw

Tcw = 0, (18)

where the subscript ccw—counter-clockwise direction, and cw—clockwise direction. With
the relations: f1l1 − f2l2 = 0 (balance of momentums), f1l1 = f2l2 or f1

f2
= l2

l1
= 1

L
(conservation of power in levers, see [23]); f1 and f2 (N) are the forces on both ends of
the lever.
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It can be noted that the force relationship with the velocity relationship is given as
v1
v2

= l1
l2
= L.

Therefore,
v1

v2
.

f1

f2
=

l1
l2

.
l2
l1

= 1, (19)

where we find that the power is preserved if v1 f1 = v2 f2, so it is the same on both sides of
the lever.

In Figure 7, one observes that the lever arms are unequal; one side will experience
a higher force and velocity than the other side. We assume some definitions Fk = −kx,
Fc = −cx, F = mẍ, and l3 = 1

3 l2, which is the distance from CG to p, k stiffness of the
stiffness (N·m−1), and c—viscous damping coefficient (N·s·m−1).

Using Newton’s second law, the lever governing equation is obtained as follows:

ml ẍl3 + cẋl2 + kxl2 = f1(t)l1, (20)

where ml—is the total mass of the lever, x—is the displacement of the lever. f1(t) = sin ϕ.

3.3. Piston Model

According to [20,24], piston has a reverse effect on the lever, and it damps oscillations
of the pump. Damping of the lever motion causes damping of the pendulum, but the force
damping the pendulum is less than the work of force that dampens the lever. Figure 8
shows a schematic diagram of the piston. An analysis leads to the equations of motion, as
it is shown below.

Figure 8. Schematic diagram of the piston.

We introduce the following denotations for the masses (kg): m1—buoy mass, m2—
piston model mass (total), m3—mass of the rod, m4—mass of the piston, m5—mass of the
pumped fluid, together with the two relations m2 = m3 + m4 + m5 in the upstroke and
m2 = m3 + m4 in the down stream. Therefore, the mass m2 changes in time t as it moves
upward and downward. In addition, the mass m2 is different in the upstroke due to the
pumping processes of the fluid. Ref. [25] delivers a mathematical representation of the
dynamical motion of the piston given in a state-space representation as it follows:

q̇ = Aq + f , for q(0) = q0. (21)

The state vector is presented as:

q =
[
xbc ẋbc xpc ẋpc pur plr

]T , (22)

where: xbc—position of the buoy’s center of mass (m), ẋbc—buoy velocity (m·s−1), xpc—
position of the piston center (m), ẋpc—piston velocity (m·s−1), pur—upper reservoir pres-
sure (Pa), plr—lower reservoir pressure (Pa).
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The governing equations are given in Equations (23) and (24):

m1 ẍbc + c
(
ẋbc − ẋpc

)
+ k

(
xbc − xpc − lR

)
= Fbc −m1g, (23)

where: lR—length of the rod (m), Fbc—force of the buoy’s center of mass (N).
We get the second-order differential equation of dynamics of the piston:

m2 ẍpc + c
(
ẋpc − ẋbc

)
+ k

(
xpc − xbc − lR

)
= −Ac(pur − plr)−m2g− Ff , (24)

where:

xbc =
Lr + 0.5Hb − (m1 + m4 + ρAc(Lc + Hu))(

Sbρsw − Hw
2

) , (25)

xpc =
0.5Hb − (m1 + m4 + ρAc(Lc + Hu))(

Sbρsw − Hw
2

) . (26)

Continuing, the pumping force is found in the following form:

Fp = −Ac plr + ρ(lc+Lu)Aur
(
z̈p + g

)
+ ρAcż2

p, (27)

where area of the piston Ac = πRp
2 (m2), zp—piston displacement about a zero mean,

Aur—area of the upper reservoir (m2), Ff —initial approximation of the friction in the
contact between the piston and the cylinder given as −Bẋpc, B = μ

Sp
2πRpHp—cylinder

damping coefficient (N·s·m−1), Sp—separation of piston and cylinder (m), Rp—radius of
the piston (m), and Hp—height of the piston (m).

The amount of water pumped by the piston in every upstroke is the water in the
cylinder, and the water inside the upper reservoir. Because of this, the fluid mass has to be
modified as follows:

m5 = ρ

(
lc +

pur

ρg

)
Ac, (28)

where: ρ—density of the fluid (kg·m−3), g—gravitational acceleration (m·s−2), and lc—
length of the cylinder (m).

The buoyancy force depending on the buoy Xbc and the position of the wave xw is
given in the form [25]:

Fbc =

(
xw − xbc +

1
2

Hb

)
Sbρswg, (29)

where: Hb—height of the buoy (m), Sb—surface of the buoy, ρsw—reservoir fluid density
(kg·m−3) and xw—definition of wave used for the simulation is given:

xw = Lr +
Hw

2
sin

(
2π

Tw
t− π

2

)
, (30)

where: Hw—wave height (m), Tw—wave period (s).

4. Numerical Results and Discussion

The numerical solutions of the system governing equations are solved using the
Runge–Kutta method with adaptive step-size, with a simulation time step size of 0.003 s
for case I and 0.005 s for case II. The initial condition for the pendulum angle ϕ(0) is 0.5π
radians for both case I and case II, with a time scale of 30 s and 50 s for the case I and case
II, respectively.

Case I: Water pump pendulum with constant length. We start with the pendulum
displacement, then the lever displacement, and finish at the piston’s displacement. Finally,
various parameters that determine the pendulum pump’s output discharge are analyzed,
and the numerical results are presented in Figures 9–11 for the pendulum, lever, and piston
displacement, respectively. Parameters analysis includes the pendulum’s mass, angle of
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suspension, and the pendulum’s length. Therefore, we present only the results with the
parameters that show good system responses.

For the pendulum displacement, the computations are performed using the be-
low stated parameter values: l = 0.5 m, M = 0.38 kg, m = 0.095 kg, f0 = 0.005 N,
ω = 5 rad·s−1, g = 9.81 m·s−2, b = 0.003 N·s·m−1. The period of rotational motion de-
pends on the length of the pendulum. The length is varied at a point in time until the
desired periods are obtained. As shown in Figure 9, amplitude of the total energy decreases
with time due to damped oscillations. Therefore, the pendulum has to be push occasionally
for a continuous fluid flow.

Figure 9. Angular displacement ϕ(t) of the pendulum for l = 0.5 m, b = 0.003 N·s·m−1.

Simulation of the lever displacement is shown in Figure 10, using the following param-
eter values: ml = 2.0 kg c = 1.0 N·s·m−1, k = 5.0 N·m−1, l1 = 0.4 m, l2 = 0.6 m, l3 = 1

3 l2,
f1(t) = sin ϕ, where ϕ—the pendulum angular displacement (rad) is the pendulum system
input. The results show that the total energy gradually decreases with time.

Figure 10. Linear displacement x(t) of the lever for l = 0.5 m, b = 0.003 N·s·m−1.

An analysis of the piston is presented. Some studies of fluid mechanics are also
included in the piston analysis for optimal pump performance. The linear displace-
ment of the piston is shown in Figure 11 with the values of the parameters as m1 =
10 kg, g = 9.81 m·s−2, c = 1.0 N·s·m−1, k = 50.0 N·m−1, lR = 4 m, g = 9.81 m·s−2,
B = 1.25915 N·s·m−1, m2 = 6.0242 kg, ρ = 1000 kg·m−2, ρsw = 1030 kg·m−2 Aur = 4 m2,
Alr = 4 m2, sb = 2 m, Hb = 2 m, Tw = 10 s, Hw = 4 m, Lc = 10 m, zp = 0 m, Hp = 2 m,
Lr = 2 m zp = 0 m, Rp = 0.05 m2. The same values for the spring constant, k, and the
viscous damping constant, c, was used because of the same connection. It can be observed
that the response of the piston is similar to the lever displacement. However, the displace-
ment is not as much as that of the lever because of higher piston mass and other considered
factors, overall pump parameters, and fluid analysis.
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Figure 11. Linear displacement xpc of the piston l = 0.5 m, b = 0.003 N·s·m−1.

The analysis for different lengths is carried out for a deeper understanding of the
relation between pendulum length and output of the system, which was not addressed
in [5]. Changing the right-hand side pendulum length alone, i.e., without changing initial
parameters of other parts, affects performance of the whole system. Therefore, the efficiency
of the pumping depends on the length of the right-hand side pendulum. As can be seen in
Figures 12–14, the system becomes more stable, but with a reduced number of oscillation
periods for the whole system when the parameter value l is changed from 0.5 to 1.2 m.

Figure 12. Linear displacement ϕ(t) of the pendulum (continued) for l = 1.2 m, b = 0.003 N·s·m−1.

Figure 13. Linear displacement x(t) of the lever (continued) for l = 1.2 m, b = 0.003 N·s·m−1.
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Figure 14. Linear displacement xpc of the piston (continued) for b = 0.003 N·s·m−1.

The simulation results shown in Figures 9–14 have been compared with the result
delivered by [5]. It has proved that our model follows a more realistic trend because it
includes friction and the effect of excitation force on the response of the investigated system.
Furthermore, the presented system in case I is more stable than one in [5], as shown in
Figures 1, 2 and 12–14. The obtained results clearly show how the pendulum’s length plays
a critical role in the overall system stability.

In addition, further analysis of Case I of the pendulum model is carried out by
increasing the viscous damping with other parameters left unchanged. When the viscous
damping b is increased to 0.3 N·s·m−1 with the same length l = 1.2 m, the time response
of the system decreases and vanishes within a few seconds, as shown in Figures 15–17.
Providing some technical recommendations, the value of b should be minimum for the
system to be more stable and oscillate for a more extended period. Therefore, the value of
the pendulum length, l, and the viscous damping, b, are to be selected with care as they
have more effect on the system performance.

Figure 15. Linear displacement ϕ(t) of the pendulum (continued) for l = 1.2 m, b = 0.3 N·s·m−1.
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Figure 16. Linear displacement x(t) of the lever (continued) for l = 1.2 m, b = 0.3 N·s·m−1.

Figure 17. Linear displacement xpc of the piston (continued) for l = 1.2 m, b = 0.3 N·s·m−1.

Case II: Water pump pendulum with a vertically excited parametric pendulum with
variable length [16] is used instead of the conventional pendulum. Figures 18–20 show
the simulation results for the whole system when this type of pendulum with variable
length is used with the following parameter values: l01 = l02 = 4 m, m = 5 kg, xe = 1.5 m,
f0 = 10 N, ω = 0.5 rad·s−1, g = 9.81 m·s−2, cp = 0.1 N·s·m−1. The parameters’ values of
the lever and the piston remain unchanged. With cp = 1 N·s·m−1 and ω = 0.4 rad·s−1,
Figures 21–23 are obtained, which shows more stable oscillation of the variable-length
pendulum with more stability of the lever and the piston model as a result of the effect of
increasing damping.

Figure 18. Angular displacement ϕ(t) of the pendulum (Case II—a variable length concept of the
pendulum pump) for cp = 0.1 N·s·m−1, ω = 0.5 rad·s−1.
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Figure 19. Linear displacement x(t) of the lever (Case II—a variable length concept of the pendulum
pump) for cp = 0.1 N·s·m−1, ω = 0.5 rad·s−1.

Figure 20. Linear displacement xpc(t) of the piston (Case II—a variable length concept of the
pendulum pump) for cp = 0.1 N·s·m−1, ω = 0.5 rad·s−1.

Figure 21. Angular displacement ϕ(t) of the pendulum (Case II—a variable length concept of the
pendulum pump) for cp = 1 N·s·m−1, ω = 0.4 rad·s−1.
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Figure 22. Linear displacement x(t) of the lever (Case II—a variable length concept of the pendulum
pump) for cp = 1 N·s·m−1, ω = 0.4 rad·s−1.

Figure 23. Linear displacement xpc(t) of the piston (Case II—a variable length concept of the
pendulum pump) for cp = 1 N·s·m−1, ω = 0.4 rad·s−1.

Figures 18–23 show the time histories of the pendulum, lever, and piston, respectively.
Some irregularity and quasi-periodicity are reported, and the behavior does not settle
even after 50 s of simulation time. The pattern of recurrence does not lend to precise
measurement. However, the oscillations can occur regularly when a regular external
forcing forces them. In other words, the quasi-periodicity behavior can be compensated
when a regular external forcing is applied to the system.

5. Conclusions

A nonlinear model of a pendulum is used to power the model of the piston through
the lever. The system’s dynamic response is analyzed, and the presented results show
the system’s effectiveness after a series of simulations at various parameter values. The
numerical results show a good response of the scenario through the power transient from
the pendulum to the piston. In addition, the system’s response depends on the length
of the pendulum that can be manipulated to achieve better performance. The presented
results also show that the system can transfer energy with little human effort to do heavy
work since the piston’s mass is much bigger than the combined mass of the pendulum and
the lever. A novelty is presented where a vertically excited pendulum with variable length
is used instead of the conventional pendulum with constant length. In the proposed model,
the system response shows a quasi-periodicity behavior and does not settle even after 50 s
of simulation time. However, the quasi-periodicity behavior can be compensated when a
regular external forcing is applied to the system. No control algorithm is included since the
aim is to operate a system in rural and urban areas without electricity. However, the system
can be constructed to include a control algorithm and transformed into a mechatronics
system for any laboratories and industrial uses. Synchronization of the pendulum pump

287



Energies 2021, 14, 8064

and the human body could be considered a problem of biomechanics. Lastly, further
dynamical analysis can be performed to investigate the system’s behavior more, and more
studies on fluid mechanics will add value to the overall system operation.
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Abbreviations

The following abbreviations are used in this manuscript:

mb pendulum bar mass, kg
m pendulum end weight mass, kg
l length to end weight center of mass, m
ϕ pendulum angular displacement, rad
g acceleration due to gravity, m·s−2

I0 mass moment of inertia, kg·m2

Tv viscous friction, N
b viscous damping, N·s·m−1

Th excitation force, N
l01 pendulum natural length, m
l02 length of the telescopic rod, m
l03 total length of the pendulum, m
xe extension of the variable length pendulum
ωn excitation frequency, rad·s−1

f0 forcing excitation amplitude, N
ζ damping coefficient, N·s·m−1

L ratio of lever arm
f1, f2 forces on both end of the lever, N
ml overall mass of the lever, kg
k stiffness of the spring, N·m−1

c viscous damping coefficient, N·s·m−1

m1 buoy mass, kg
m2 piston model mass (overall), kg
m3 rod’s mass, kg
m4 piston’s mass, kg
m5 mass of the pumped fluid, kg
xbc position of the buoy’s center of mass, m
ẋbc buoy velocity, m·s−1

xpc position of the piston center, m
ẋpc piston velocity, m·s−1

pur upper reservoir pressure, Pa
plr lower reservoir pressure, Pa
lR length of the rod, m
Fbc force of the buoy’s center of mass, N

288



Energies 2021, 14, 8064

Hw wave height, m
Tw wave period, s
xw wave definition
ζ damping coefficient,
Ac area of the piston, m2

zp piston displacement about a zero mean, m
Aur area of the upper reservoir, m2

Ff initial approximation of the friction between the piston and the cylinder wall, N
B cylinder damping coefficient, N·s·m−1

Sp separation of piston-cylinder, m
Rp radius of the piston, m2

Hp height of the piston, m
ρ fluid density, kg·m−2

lc length of the cylinder, m
Ek kinetic energy of the parametric pendulum, J
Ep potential energy of the parametric pendulum, J
D dissipative energy of the parametric pendulum, J
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Abstract: The development of energy-efficient buildings and sustainable energy supply systems is
an obligatory undertaking towards a more sustainable future. To protect the natural environment,
the modernization of urban infrastructure is indisputably important, possible to achieve considering
numerous buildings as a group, i.e., Building Energy Cluster (BEC). The urban planning process eval-
uates multiple complex criteria to select the most profitable scenario in terms of energy consumption,
environmental protection, or financial profitability. Thus, Urban Building Energy Modelling (UBEM)
is presently a popular approach applied for studies towards the development of sustainable cities.
Today’s UBEM tools use various calculation methods and approaches, as well as include different
assumptions and limitations. While there are several popular and valuable software for UBEM, there
is still no such tool for analyses of the Polish residential stock. In this work an overview on the
home-developed tool called TEAC, focusing on its’ mathematical model and use of Artificial Neural
Networks (ANN). An exemplary application of the TEAC software is also presented.

Keywords: urban building energy modeling; Artificial Neural Network; energy clusters; Energy
Flexible Building Clusters; energy efficiency; environmental impact

1. Introduction

Cities around the globe are growing rapidly, following the rising population. Ac-
cording to the United Nations [1], approx. 55% of the world population currently lives
in urban areas, and it is foreseen to double the number of residents by 2050 [2]. Further
cities development is causing a rising negative impact on the natural environment. Thus,
it is necessary to manage cities effectively, heading towards urban sustainability. In gen-
eral, modern urban development should promote energy-efficient cities which respect
the natural environment and provide high-quality life conditions for residents [3]. The
above mentioned is valid for both existing and new urban areas; present cities should be
managed in a better, more effective way, while new ones should be correctly designed [4].
Urban modelling is a comprehensive subject, including three main areas: land use and
transportation model, Urban Energy System Modelling (UESM) [5] and Urban Building En-
ergy Modelling (UBEM). The UBEM is a concept allowing us to validate possible scenarios
of cities development towards their sustainability.

Nowadays, building energy analyses are performed using computational software,
allowing for comprehensive studies of a single building. Out of numerous available
tools [6], the Energy Plus is one of the most universal and popular software for various
energy-related studies of a singular building [7]. A study focused on the energy behavior
of a single building is called Building Energy Modelling (BEM). It is a well-known issue,
already performed by academics all over the world; the overview of some popular BEM
codes can be found in [8]. On the other hand, the UBEM allows aggregating the energy-
related results of singular buildings to the urban scale, including some complex phenomena
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occurring in urban environments. Therefore, energy-related analyses of city districts should
be performed using specialized UBEM software. According to [9], those tools are the most
appropriate approach for analyzing building stocks at a large scale. Each of the UBEM
tools has specific fields of applications, as well as they were developed with different
assumptions and constraints. Presently, the most popular UBEM software are CitySim [10],
Urban Modelling Interface—UMI [11], City Building Energy Saver—CityBES [12] and City
Energy Analyst—CEA [13]; the capabilities of some UBEM tools are overviewed in [14].
Some interesting analyses can be found in [15–21], where various issues of the UBEM were
examined, i.e., city-scale energy planning, renewable energy sources (RES) application,
Building Energy Cluster (BEC) modelling or Urban Heat Island (UHI) impact.

The UBEM model can be focused on buildings modelling at an urban scale with
different scopes. Some UBEM tools were developed in order to deal with a single and
specific aspect, e.g., to optimize daylighting [22] or to provide energy savings derived by
buildings [23], while others are more complex in order to examine more comprehensive
issues. The UBEM can be categorized into two main approaches (see Figure 1), accordingly
top-down and bottom-up methods [14,24]. Generally speaking, the top-down approach is
based on the estimation of energy consumption from data of a larger scale (e.g., residential
sector), while the bottom-up approach uses calculated energy consumption of individual
or group of buildings to aggregate then the results to the urban scale. Out of the literature
review, the bottom-up approach is presently a much more popular method of the UBEM.

Figure 1. Schematic of the UBEM techniques [25].

The top-down approach assumes the group of buildings as an energy sink, without
investigating individual end-uses, based on widely available aggregated data and historic
records. Two types of top-down approaches are specified, accordingly econometric or
technological. The popularity of the applications of the top-down methods increases
whenever the global crisis occurs, such as the one at the end of the 1970s. Some exemplary
UBEM analyses using the top-down approach can be found in [26–29].

The bottom-up approach uses data from a small scale (i.e., a single building) for exam-
ining the energy consumption at a larger scale (i.e., for a whole region). Usually, the input
data for the bottom-up models include parameters such as building geometry and envelope
structure, equipment and appliances, exterior and interior climate conditions, occupancy
and working schedules. Those detailed parameters are then furtherly used to analyze a
whole residential area—it is the biggest advantage of the bottom-up approach. There are
two types of bottom-up approaches, accordingly statistical and engineering studies [30].
The statistical approach can be focusing on regression [31,32], conditional demand anal-
ysis (CDA) [33,34] or Artificial Neural Network (ANN) approaches [35,36]. On the other
hand, the engineering approach might be specified using population distribution [37,38],
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archetypes [39,40] or sample [41] techniques. The state-of-the-art review on the available
bottom-up approaches of the UBEM can be found in [42,43].

Despite the fact, that UBEM became a popular trend for engineers and researchers all
over the world, there is no such software available to analyze Polish residential building
stock. Therefore, a multi-criteria computer analytic tool called TEAC (Tool for Energy
Efficiency Analyses of an Energy Cluster), which allows to perform energy, environmental and
economic analyses of the Polish household sector was developed. The TEAC software uses
a hybrid approach of the UBEM, combining both top-down and bottom-up techniques. The
goal of this work is to present the mathematical approaches defining the TEAC software.
In this paper, an overview of the method applied for the ANN training process is discussed.
Moreover, most of the applied dependencies, expressing considered phenomena of urban-
scale areas, are presented. The ANNs application was proven to be useful and efficient
for various UBEM analyses, in particular as a main part of the TEAC software. The TEAC
software is comprehensively described in [25], while some of its’ applications can be found
in [44–46]. The analyses described in this paper present exemplary results for a simple
neighborhood, considered as BEC. The results are based on the overall energy demand
of the cluster, allowing for some further analyses, e.g., the environmental impact of the
examined neighborhood or economic profitability of the proposed modernizations. Due to
the application of the ANN (and the TEAC software in general), it is possible to perform
such comprehensive analyses without the time consuming detailed energy modelling of
individual buildings.

2. TEAC Software Concept

A brief concept of the TEAC software is described in this section. The TEAC software
is a tool for various UBEM analyses of Polish single-family stocks. It is based on a hybrid
approach of UBEM: both top-down and bottom-up methods are included. As a basis for
the TEAC software some economic and market-derived drivers were used (econometric
model), the ANN was implemented for energy demand predictions (neural network model)
as well as a data of representative single-family houses of Poland was used (archetype
model). A sequence chart of the TEAC software development is shown in Figure 2. The
whole process can be divided into two stages, where the first one includes the software
development, while the second one responds to the application phase (marked with a blue
outline).

 

Figure 2. The schematic concept of the TEAC software.

The procedure is developed for the Representative Single-Family Houses (RSFH) of
Poland, and those seven buildings were defined by means of the Design Builder software [47].
The process was performed to obtain input files (IDF-format), which then are used for
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parametric simulations performed by means of the Energy Plus software. The simulations
were automatized by the code written in Python programming language and all their
results were collected in the csv-files. The performed parametric simulations included
the following variables: weather data (air temperature and total solar radiation), building
geometry data (area, volume, windows area, U-values of building enclosure), ventilation
and infiltration rates, heating system data (type and efficiency), as well as built environment
information (building orientation and its’ closest surrounding). In total, 358,400 parametric
simulations were performed, and their gathered results (expressing the heating demand)
were used in the ANN training process. The application of ANN was performed using
the MATLAB software [48]; it is furtherly described in Section 3. The obtained code
was rewritten in the Phyton language, allowing to predict the heating demand of an
examined neighborhood. Also, some additional modules were defined using the Python
language, allowing for various energy-, environmental-, and economic-related analyses
of the built area. In general, the TEAC software consists of four main modules, while the
3rd module consists of seven submodules. The final analyses of the considered area are
performed based on the predicted heating demands, built environment data, as well as
some precalculated energy-related data. The results can be presented by means of Urban
Energy Maps (UEM) [49], various types of graphs, e.g., Load Duration Curves (LDC), or
tabular summaries. The developed software can be used by various authorities in order to
improve the local energy efficiency. The comprehensive description of the TEAC software
can be found in [43].

3. Mathematical Model

City-scale analyses are characterized by huge complexity, thus present UBEM tools
usually require significant computational resources. Then, various assumptions are neces-
sary to simplify the examined issue at an urban scale. Therefore, selecting the appropriate
methods is required for valid calculations. In this section, the TEAC software is described,
especially its’ mathematical model and applied methodologies. Out of all modules of the
TEAC software, the ANN application is the most important one—it is detailly presented in
this section.

Whenever research is focused on the energy consumption at a building-level or
whole city-scale, numerous variables are involved. Those variables usually interact with
each other in a not fully understood way, as well as some of them (e.g., outdoor climate
conditions) are highly unpredictable. Those types of problems are most appropriate for
Artificial Intelligence (AI) applications, which are based on some input-output parameters
and functional relationships between them. In general, Artificial Neural Networks (ANNs)
can be classified into two main groups: Feed Forward Neural Network (FFNN) and Feed
Backward Neural Network (FBNN); the comprehensive classification of the ANNs can be
found in [50]. The ANNs have proven to be universal approximators in various fields of
application—state-of-the-art overviews can be found in [50–52]. The ANNs are successfully
applied for energy loads forecast at the building-scale [53,54], as well as urban-scale [34,55].

The structure of the defined ANN was investigated, in order to provide the best data
regression with a reasonably short calculation time for the analyzed issue. Following the
procedure published in [56], the different number of neurons within a single hidden layer
was examined; the analysis started with 2 and ended with 24 neurons. The final structure
of the applied network includes 14 input neurons, 12 neurons within a single hidden
layer and one output neuron (see Figure 3). The output expresses the heating demand,
while the inputs parameters define: the analysis timestep period (assigned as TP), outdoor
temperature (DBT), total solar radiation (ITH), building heating area (A0), building volume
(V0), total windows area (Awin), air-change rate (ntot), U-values of exterior walls (Uwall),
roofs (Uroof), ground floors (Ufloor) and windows (Uwin), heating system efficiency (HCOP),
as well as building orientation (OV) and closest surrounding (SV) variant.
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Figure 3. The structure of the defined ANN.

The ANN module in the TEAC software is based on the network trained using the
Levenberg-Marquardt method [57–59]. The L-M method was developed in the early 1960s’
for solving nonlinear problems. During the definition process, also Bayesian Regulariza-
tion [60] and Conjugate Gradient [61] methods were examined, but the L-M network was
characterized by the best accuracy of predictions. The L-M method is based on a gradient
vector and a Jacobian matrix—it might be considered as a combination of two minimization
approaches, accordingly the Gauss-Newton [62] and the gradient descent [63] methods.
The L-M method works more like a gradient-descent method when the parameters are
far from their optimal value, while when the parameters are close to their optimal value
it acts more like the Gauss-Newton method. Due to the fact, that the L-M method is a
hybrid approach, it can be used to trade off the best features of different algorithms to solve
a variety of problems. The L-M algorithm is particularly effective in solving non-linear
equations; thus, it was effective for heating demand predictions of an urban area. Further
below, for the convenience of the reader, the L-M method is briefly explained.

If the fitting model is a function ŷ(ti; p) of an independent variables ti, and a vector of
parameters p of data points (ti; yi), minimize the sum of the weighted squares of the errors,
as follows:

X2(p) = ∑m
i=1

[
y(ti − ŷ(ti; p))

σy,i

]
(1)

where σy,i is the measured error for datum y(ti). Equation (1) can be rewritten using the
weighting matrix W, as follows:

X2(p) = (y− ŷ(p))TW(y− ŷ(p)) (2)

X2(p) = yTWy− 2yTWŷ + ŷTWŷ (3)

If the function ŷ(ti; p) is nonlinear in the model of parameters p, then the minimization
of the X2(p) is carried out iteratively.
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Using the Gradient Decent Method for a minimalization task, the objective function
can be expressed with the following equation:

∂

∂p
X2 = 2(y− ŷ(p))TW

∂

∂p
(y− ŷ(p)) (4)

∂

∂p
X2 = −2(y− ŷ(p))TW

∣∣∣∣∂ŷ(p)
∂p

∣∣∣∣ (5)

where the
∣∣∣ ∂ŷ(p)

∂p

∣∣∣ is the Jacobian matrix, assigned as J; thus:

∂

∂p
X2 = −2(y− ŷ(p))TW J (6)

Finally, the parameter update hGD (for the gradient descent method), which represents
the movement of the parameters in the direction of steepest descent is expressed as follows:

hGD = αJTW(y− ŷ) (7)

where α is a positive scalar determining the length of the steps in the steepest descent direction.
The Gauss-Newton method is used for minimizing a sum-of-squares objective function.

Typically, it is much faster than gradient descent methods for moderately sized problems.
Let us assume, that the function may be locally approximated using the first-order Taylor
series, as follows:

ŷ(p + h) ≈ ŷ(p) +
∣∣∣∣∂ŷ(p)

∂p

∣∣∣∣h = ŷ(p) + Jh (8)

using the approximation ŷ(p + h) ≈ ŷ(p) + Jh into Equation (3):

X2(p + h) ≈ yTWy + ŷTWŷ− 2yTWŷ− 2(y− ŷ)TW Jh + hT JTW Jh (9)

which can be rewritten as a normal equation for the Gauss-Newton formula:[
JTW J

]
hGN = JTW(y− ŷ) (10)

It is important to mention, that for both, the gradient descent and Gauss-Newton
methods, the right-hand side vectors in normal equations, accordingly Equations (7) and
(10), are identical.

Therefore, the L-M algorithm adaptively varies the parameters between the gradient
descent and the Gauss-Newton methods. The L-M formula can be expressed as follows:∣∣∣JTW J + λI

∣∣∣hGN = JTW(y− ŷ) (11)

where λ is the damping parameter, I is the identity matrix and the hLM is the parameter
update for the L-M method. If the values of λ are normalized to the values of JTW J, then
the L-M formula for non-linear least squares looks as follows:[

JTW J + λdiag
(

JTW J
)]

hGN = JTW(y− ŷ) (12)

The L-M method is used to solve some non-linear least squares problems. In the
TEAC software, the L-M algorithm was used during the ANN training process, allowing
for heating demand predictions. The heating demand of a building is a complex and
multilayered issue, for analyses of which the L-M method is appropriate.
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Validation of the Defined ANN

The data used for the ANN training process were divided into three groups of samples:
training, validation and testing sets, in constant shares of respectively 70, 15 and 15%.
Training data, which is unknown for the network, is used to test the predefined network
(adjusted according to its error) and measure its’ performance. Three networks were
trained, for monthly, daily and hourly predictions. In Figure 4 the training results are
shown; the graph shows a regression plot for the test group of samples. A good match was
observed for hourly study, where the correlation coefficient (R) equals 0.9083, while for
daily and monthly studies R equals 0.9958 and 0.9838 accordingly.

 
(a) 

 
(b) 

 
(c) 

Figure 4. Regression plots for the test data of the ANN analysis for different calculation periods: (a) hourly, (b) daily and (c)
monthly.

The definition of ρ for a population of random variables (X,Y) can be described as
follows:

ρX,Y =
cov(X, Y)

σXσY
(13)
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where cov is the covariance, σX is the standard deviation of X and σY is the standard
deviation of Y. Using relationship (14),

cov(X, Y) = E[(X− μX)(Y− μY)] (14)

Equation (13) can be rewritten as follows:

ρX,Y =
E[XY]− E[X]E[Y]√

E[X2]− (E[X])2
√

E[Y2]− (E[Y])2
(15)

where E is the expectation, μX is the mean of X and μY is the mean of Y.
Finally, when applied to a sample, the R is commonly represented by rXY, and for a

given paired data (xn,yn) is defined as:

rXY =
∑n

i=1

(
xi − −

x
)(

yi − −
y
)

√
∑n

i=1

(
xi − −

x
)2
√

∑n
i=1

(
yi − −

y
)2

(16)

The predefined ANN is a key module of the TEAC software. It allows to predict
a heating demand of the examined region, consisting of RSFH of Poland. Due to the
application of AI, it is possible to predict the heating demand of an urban area almost
effortless, using only a sequence of data lines, describing the analyzed neighborhood. Then,
the obtained heating demand, simultaneously with the electricity demand, are furtherly
used as a basis for further analysis of the cluster. Also, it is important to mention, that
heating demand is the main component of the whole energy consumption of the reference
residential buildings in Poland. Thus, predicting heating demand (obtained using the data
describing the built environment of the examined cluster) by means of the ANN is huge
facilitation for those types of study.

An exemplary line for a single building is presented below. Each color represents one
group of parameters, accordingly: orange—calculation step, green—localization (exterior
climate), blue—building location, black—building enclosure variant, and yellow—heating
system variant. The definition can be performed using some keywords (first line) or using
the actual values describing the building. The TEAC software is using the building’s
coordinates in order to load the analyzed object parameters (buildings placement is defined
earlier in 1st module of the software). In order to perform urban-scale analyses, all buildings
within the examined region must be described using the mentioned formula in the exact
order. Using that type of data, the heating demand predictions of the whole urban-scale
region can be performed. The whole process is described in detail in [43].

{hourly, Lodz, 1_1, base, base}

{TP, DBT, ITH, A0, V0, Awin, ntot, Uwall, Uroof, Ufloor, Uwin, HCOP, OV, SV}

{1, −4.30, 0.00, 134.31, 330.80, 23.10, 0.60, 1.18, 0.65, 1.75, 2.75, 0.59, 225, 6}

Some validation of the predefined ANN was made in order to check the capability and
accuracy of the network for heating demand predictions of the Polish single-family sector.
The validation of the trained ANN was performed comparing the predicted values with the
results obtained using the Energy Plus software. The used temperature range and variety of
values within that assortment seem sufficient to perform accurate predictions for various
localizations (outdoor climates). Here, an examination of the weather parameters (thus
different building locations), particularly the outdoor temperature values, is presented, for
scenarios before and after building retrofitting. The performed validations can be seen in
Figure 5, for Extreme Winter Week (EWW) periods, for better results legibility. The EWW is
the coldest week of the year for the examined locations. The validation was performed for
cities Czestochowa and Olsztyn, which were not used as input data during ANN training.
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In both cases, very good prediction accuracy was obtained, despite the fact, that the used
weather data was unknown for the network. The network is also capable to predict the
trend of heating demands. An interesting fact is that the predictions are almost perfectly in
the most meaningful moments (peaks), while some differences are observed for very low
demands (lower than 0.5 kW).

(a)

(b)

Figure 5. Comparison of heating demands obtained using the Energy Plus (solid lines) and the ANN pre-dictions (markers)
for Czestochowa (a) and Olsztyn (b).

A short collation out of the preformed validation is presented in Table 1. It can be
seen, that annual heating demand (HCA) is predicted with a high accuracy—the difference
is less than 9% compared to the Energy Plus outputs. Similar outputs are observed for the
predicted heating demand during EWW periods (HCEWW). The accuracy of peak demands
(HDmax) varied from approx. 2% up to 14%, nevertheless, the higher differences are usually
observed for the modernized buildings, for which peak demands are overall low. Based on
the performed validation it can be concluded, that the defined network is an effective tool
for the heating demand predictions for Polish climate conditions. In practice, the trained
network is capable to perform heating demand predictions regardless of the analyzed
building location, aside from extremely harsh places in terms of their climates, such as for
example Zakopane city.
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Table 1. Comparison of the results obtained by means of the Energy Plus (E+) and the TEAC software.

Base Variant Modernized Variant
E+ TEAC Rel. Diff. E+ TEAC Rel. Diff.

Czesto-chowa
HDmax [kW] 11.98 13.03 8.76% 3.11 3.55 14.15%

HCEWW [kWh] 1489.34 1480.53 −0.59% 366.58 331.39 −9.60%
HCA [kWh/a] 23,593.90 25,661.56 8.75% 4423.06 4794.51 8.40%

Olsztyn
HDmax [kW] 11.82 11.30 −4.40% 3.22 3.29 2.17%

HCEWW [kWh] 1235.38 1102.17 −10.78% 298.51 261.58 −12.37%
HCA [kWh/a] 27,149.09 25,961.23 −4.38% 5622.02 5957.98 5.98%

Symbols used: HDmax—maximal heating demand; HCEWW—heating demand for EWW period; HCA—annual heating demand; Rel.
Diff.—relative difference.

4. An Exemplary Application of the TEAC Software

It is possible to analyze the actual residential neighborhood using the TEAC software.
In this example, the part of the Smulsko neighborhood, located in Lodz (Poland), is exam-
ined. The neighborhood is analyzed as an Energy Cluster (EC), and due to the fact, that the
analysis is focused on the buildings, the area might be considered as a BEC [21]. The area is
defined based on the satellite image shown in Figure 6. That image was adjusted (rotated
by 45 degrees counter-clockwise) to the predefined grid used by the TEAC software, where
each cell represents a parcel for only one house. The built environment is defined by
overlapping the grid with the satellite image; whenever a building image fits within a cell,
thus the parcel was considered as occupied. The building placement is done following
the statistical data (assuming a share of the Polish RSFH) [64] and rotating each house
randomly. The schema of the examined BEC is shown in Figure 7; it is a square-based zone,
23 by 23 parcels, consisting of 202 houses (each color represents a different RSFH).

  

Figure 6. The satellite image of the Smulsko cluster (on left, source: [65]) and its adjustment schema (on right).

In this case, deep buildings thermal modernization is analyzed, concerning their
full electrification. The refurbishment assumes building enclosures retrofitting to the
actual energy-efficiency standards, following the Polish regulations. The modernization
also includes heating system upgrades, from standard stoves to highly efficient heat
pumps. Moreover, in all buildings, the lighting systems are modernized with LEDs. Also,
Renewable Energy Sources (RES) are applied by means of photovoltaic (PV) systems
mounted on the appropriate roof slopes, avoiding surfaces oriented North, North-East,
and North-West. The Isometric Radiation Model (IRM) was used in order to calculate
the solar outputs; it is comprehensively described in [66]. Finally, some smart-metering
techniques are applied for the examined BEC. All the proposed modernizations follow
the smart-city concept; thus, the examined neighborhood might be considered as the
Energy Flexible Building Cluster (EFBC) [20]. The TEAC software is capable to analyze
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a single-family house neighborhood as an EFBC, considering various energy-, economic-
and environmental-related issues; some of the available outputs are presented.
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Figure 7. The final schema of the Smulsko cluster for the analysis in the TEAC software.

The default outputs using the TEAC software are maps, which might present various
results, i.e., heating and electrical energy demands, greenhouse gasses (GHG) emission,
RES potential or economic indexes (presenting the modernization or operation costs). It
should be repeated, that all the results are obtained based on the predicted heating demand
(out of the ANN usage), as well as the electricity consumption for the predefined scenarios.
As an example, a comparison of CO2 emissions before and after modernization is shown in
Figure 8. Maps allow us to validate the proposed modernizations for the whole area, as
well as for some smaller parts of the neighborhood. On the other hand, maps can be also
used to select the most appropriate region for modernization.

 

Figure 8. CO2 emission maps for the Smulsko cluster before (on left) and after (on right) modernization.

A short summary of the analysis results is shown in Table 2, where both examined
variants, before (V0) and after (V1) deep retrofitting, are compared. All of the results are
obtained out of the TEAC software. In the modernized scenario, only electricity is used,
supported by renewables. The heating demand is significantly reduced (by approx. 95%),
same as the electricity consumption (63%). The peak demands are also significantly lower,
accordingly by 94.6% and 40.5%. Out of the obtained results ones for heating purposes are
more important, due to the fact, that heating, in general, is a dominant demand for Polish
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residential buildings (especially single-family houses). The total amount of 640.40 MWh
electricity is produced out of 4443.45 m2 of PVs, allowing for energy independence (zeroth
demand) for more than a quarter of the year (approx. 2450 h). The proposed modernization
is also highly pro-ecological—the GHG emissions are significantly reduced (in the range
of 82–92%) in the examined cluster. Finally, some economic aspects are presented. The
building’s deep retrofitting costs slightly over 15 M PLN, and those actions will be profitable
after 14–18 years, depending on the calculation method, where the longest time is the most
likely, calculated using the Life Cycle Cost (LCC) approach. The whole PV installation
costs approx. 3.72 M PLN and due to electricity consumption savings, its payoffs after
approx. 9.3 years. Furthermore, using the EC concept it is possible to recon the whole
neighborhood as a unity, not as numerous singular buildings. That approach allows to
generate some additional savings out of the cluster operating, without (or with minimal)
initial costs. Those annual savings, for the modernized scenario, are as high as 62 k PLN,
which is a 24% reduction. In Figure 9 a comparison of electricity Load Duration Curves
(LDC) is presented. It is evident, that the proposed modernization improved the safety of
the local grid: the electricity demand is more uniform, peak demands are lower, as well as
some temporal energy-independency (marked as a green box) is observed. The analysis
performed using the LDC is an extremely valuable approach in terms of verifying the
modernizations validity.

Table 2. An energy-related summary for the Smulsko cluster.

HCA

[MWh/a]
ECA

[MWh/a]
CO2

[t/a]
SO2

[t/a]
NOx

[t/a]
PM2.5
[t/a]

PM10

[t/a]

V0 4913.76 1895.19 2032.16 27.21 1.72 5.63 7.27
V1 256.33 701.13 272.89 4.99 0.23 0.47 0.61

Symbols used: V0—base scenario; V1—modernized scenario; HCA—annual heating demand; ECA—annual
electricity demand.

Figure 9. Comparison of the electricity LDCs for the Smulsko cluster.

5. Conclusions

This paper presented an application of the ANN trained using the L-M method, for
analyzing various issues referring to UBEM. The analysis was performed by means of the
TEAC software—a home-developed research computational tool for UBEM of the Polish
residential sector. The L-M method was used for the ANN training process. The purpose
of the AI application was to define a network, capable to predict the heating demand
of the neighborhood of a single-family house in Poland, with sufficiently high accuracy,
compared with the Energy Plus software outputs. The L-M method was the most accurate
(for the examined purpose) out of all examined ones, which was discussed in this paper.
The high accuracy was obtained, not only for the total values, i.e., annual heating demand
but also for much more detailed results, i.e., peak demands. Thus, the applied method
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allows not only predicting the accurate values of heating demand (see Table 1), but also its
time evolution and characteristics (see Figure 5). Moreover, due to the ANN application,
the total computational time of the performed analysis was much shorter comparing with
the traditional approaches. The computing time of annual energy demand for a single
house is reduced out of approx. 20 s (using the Energy Plus software) to approx. 2 s only
(by means of the TEAC software). Additionally, the required computational resources are
also significantly lesser.

The TEAC software is a useful tool for UBEM of the Polish residential sector. It
focuses on the single-family houses sector, due to its impact on the national energy pro-
file. The Polish single-family houses sector is characterized by a huge potential for the
overall improvement of energy efficiency, which might be validated using the TEAC soft-
ware. The tool is using the EC concept, in order to maximize the energy-, economic- and
environmental-related profits in the examined region. The TEAC software can be used
for various analyses of actual residential areas, as shown in the example discussed in this
paper. The developed tool might be used by the local authorities to perform urban-scale
management, as well as academics for various UBEM analyses. Further development of the
TEAC software is planned (e.g., the addition of GUI), in order to make the TEAC software
available as a user-friendly web application.
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Abstract: The use of solar radiation in the urban environment is becoming increasingly important for
the sustainable development of cities and human societies. Several factors influence the distribution
of solar radiation in urban areas, including urban morphology and the physical properties of urban
materials. Most of these factors can be modeled with a relatively high accuracy using 2D and 3D
solar radiation models. In this paper, the r.sun and v.sun solar radiation models are used to calculate
solar radiation for the city of Košice in Eastern Slovakia to assess the accuracy of both approaches
for vertical surfaces frequently found in urban areas. The results were validated by pyranometer
measurements. The results showed relatively good estimates by the 3D v.sun model and poor
estimates by the 2D r.sun model. This can be attributed to an improper representation of vertical
surfaces by a digital surface model, which has a strong impact on solar resource assessments. We
found that 3D city models prepared in level of detail 2 (LoD2) are not always adequate in case of
complex buildings with morphological structures, such as terraces. These cast shadows on facades
especially when solar altitude is high and, thus, assessments, even by a 3D model, are inaccurate.

Keywords: 3D city model; renewable energy; solar radiation; urban solar radiation model

1. Introduction

The majority of the human population is located in cities, where, in developed coun-
tries, about 80% of the population lives [1]. This contributes to problems associated with
dense urban areas, such as urban heat island effects, which ultimately lead to a higher
energy demand, but also to higher production of unwanted exhalants and emissions.
Moreover, the use of solar energy helps to mitigate various environmental problems and
improve the quality of life in the cities. Solar thermal or photovoltaic applications are very
common around the world and have become an important factor in the overall energy
production mix in many countries. Therefore, it is increasingly important to know the solar
resource potential of urban areas.

Solar radiation in urban areas is a key input factor in many urban energy models
and sustainable city designs. Examples include thermal and photovoltaic applications,
passive heating systems, or urban microclimate designs [2–4]. The implementation of
distributed photovoltaic systems transforms the urban environment from a place of energy
consumption to a place of energy production. Distributed solar systems are scalable
at a micro-scale and open up new investment opportunities for electricity production
within the city, allowing consumers to become producers. The changes, associated with
rapidly expanding solar benefits in cities, are expected to have disruptive impacts on urban
electricity infrastructures and related institutions, and will require tools to evaluate and
plan for future changes.

The increasing availability of three-dimensional (3D) city models and high-resolution
geospatial data stimulated solar resource assessments for urban areas [2,5–7]. Currently,
there are several well-developed models of solar radiation distribution, such as the r.sun

Energies 2021, 14, 8364. https://doi.org/10.3390/en14248364 https://www.mdpi.com/journal/energies
307



Energies 2021, 14, 8364

model by Hofierka and Šúri [8], the Solar Analyst model in the ArcGIS program [9], the
Perez model [10], the SORAM model [11], SURFSUN3D [12], and the SOL model [6], often
used for solar radiation assessments in urban areas. Hofierka and Zlocha [5] developed
v.sun, a 3D version of the r.sun model for 3D city models. Freitas et al. [6] pointed out
that 3D solar radiation modeling that includes vertical surfaces, such as facades, is very
time consuming if applied to large cities. The data must include topologically correct 3D
vector data that usually require manual editing and verification of 3D polygon orientation
represented by a normal vector. A frequent solution to the problem is the use of a high-
resolution digital surface model (DSM) approximating vertical surfaces, such as facades,
by quasi-vertical surfaces [13]. This introduces an error in solar radiation estimates for
vertical surfaces. To date, no in-depth analysis has been published that assesses whether
this approximation is acceptable.

Nevertheless, the previously predominant two-dimensional (2D) solar radiation mod-
els, such as the r.sun model [8], are gradually being augmented by 3D solar radiation
models that allow a better representation of vertical surfaces (building facades) while facili-
tating interactive assessment of PV potential in complex urban environments [12,14–16].
Technological advances provide new opportunities for complex 3D approaches in solar
modeling [17].

The main objective of this study is to compare the results of 2D r.sun and 3D v.sun
solar radiation models implemented in GRASS GIS [18] with field measurements by a
pyranometer for the city of Košice in eastern Slovakia to demonstrate the applicability of
2D vs. 3D approaches in assessing the solar resource potential in urban areas. Therefore,
five locations are selected with morphologically diverse buildings still typical for this urban
area. The measurements and solar radiation modeling were carried out during a typical
summer day (23 June 2021) for three different time moments. The solar radiation values
were calculated for the time of measurements using the r.sun and v.sun modules integrated
in the open-source GRASS GIS software. By comparing the r.sun and v.sun models with
the measurements, we demonstrate the accuracy of the models specifically for selected
building facades.

2. Methods and Data

Most GIS-based solar radiation models provide estimates of solar radiation over
large areas using digital terrain models (DTMs) and selected atmospheric and land cover
parameters derived from ground-based or satellite-based data [19–22]. These topographic
solar radiation models can only be used for 2D surfaces, such as land surfaces or rooftops.
There are 2 models implemented in GRASS GIS that are based on the same fundamental
basis of solar radiation, but they work differently with the geometric representation of the
Earth’s surface. The r.sun model is for 2D surfaces, such as terrain or roofs, represented by
rasters, while v.sun is for 3D city models represented by 3D vectors [5].

The solar radiation methodology used in the r.sun and v.sun models is based on the
European Solar Radiation Atlas (ESRA) methodology [23,24] and described in [8] and [5].
The calculation of the direct (beam) component of solar radiation on surfaces for clear-sky
atmospheric conditions B (W/m2) is quite straightforward:

B = G0exp{−0.8662TLKmδR(m)} sin δexp (1)

where G0 is the normal extra-terrestrial irradiance outside the atmosphere (W/m2), TLK is
the air mass 2 Linke atmospheric turbidity factor (-), m is the relative optical air mass (-),
δR(m) the Rayleigh optical thickness at air mass m (-), and δexp is the solar incidence angle
measured between the sun and a surface.

The diffuse component implemented in this model is empirically derived from Eu-
ropean climate conditions. The model for estimating the clear-sky diffuse irradiance on a
surface D [W/m2] is defined by the following equation [25]:

D = G0Tn(TLK)Fd(h0)
{

F(γN)(1− Kb) + Kb sin δexp/ sin h0
}

(2)
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where Tn(TLK) is a diffuse transmission function dependent on the Linke turbidity factor
TLK, Fd(h0) is a diffuse solar altitude function dependent on the solar altitude h0, F(γN) is
a function accounting for the diffuse sky irradiance dependent on surface inclination γN ,
and Kb is a measure of the amount of beam irradiance available. For surfaces in a shadow,
we assume δexp = 0 and Kb = 0.

The ground reflected clear-sky irradiance received on a surface R (W/m2) is propor-
tional to the total horizontal irradiance, which is a sum of beam and diffuse irradiance
on a horizontal surface, mean ground albedo, and a fraction of the ground viewed by a
surface [26]. The reflected radiation contributes to total radiation only by several percents
in open areas and depends strongly on the reflectance of surrounding surfaces [8].

2.1. The r.sun Solar Radiation Model

The r.sun model implemented in the open GRASS GIS environment is one of the
commonly used GIS-based solar radiation models [18]. The r.sun model is based on a
comprehensive methodology for spatially and temporally distributed solar radiation and
irradiance calculations developed by Hofierka and Šúri [8]. The model can calculate
direct (beam), diffuse, and reflected solar radiation components of the total solar radiation
for a specific location on land surface, given day, latitude, and atmospheric conditions.
The module is designed to meet the needs of users in different scientific fields, such as
environmental sciences, photovoltaics, agriculture, or forestry. Its applications range from
local to regional scales. Another typical feature of this module is that it considers the
shadow effect of local topography, which can be switched on and off according to the type
and need of a given calculation. Solar irradiation maps are calculated by integrating the
corresponding irradiances in selected time steps between the sunrise and sunset times for
a given day.

The r.sun module works in two modes. In the first mode, it calculates the angle of
incidence of solar radiation (expressed in degrees) and the solar irradiance values (W/m2)
for the set local time. In the second mode, the daily solar irradiation amounts are calculated
for the set day. By scripting, these two modes can be used separately or in combination to
provide estimates for any desired time interval [27].

Together with the r.sun model, the PVGIS online tool was developed to assess the
photovoltaic potential of chosen locations within the regions of Europe and Africa [28].
The r.sun model was also used in the assessments of photovoltaic potential in urban
areas [2]. The most commonly investigated surfaces include roofs of buildings. Thus, we
can determine, for example, the photovoltaic potential for installing PV systems on these
rooftops [2].

The basic input parameters of the r.sun model include a DSM and raster maps of slope
steepness, aspect, and land surface albedo, as well as Linke’s turbidity coefficient. Another
input parameter is the specific hour of the day and day of the year for which calculations
of global solar radiation, or its individual components, will be performed.

The advantages of this model according to Šúri et al. [27] are as follows:

• Full integration with GRASS GIS;
• Calculations can be performed in sunny weather or during the day;
• Input and output data can be processed by other tools in the GRASS GIS environment;
• The data are obtained from meteorological and satellite stations;
• Memory management and code optimization allows to use high-resolution data from

a local to global level.

The growing trend of solar applications in urban areas requires the use of the most
efficient models that can evaluate the solar potential of each surface. Therefore, it is
important to evaluate the complex morphology of urban areas using models that exploit
3D environments. While the r.sun model can be applied to 2D surfaces in the form of
rooftops, the v.sun model has been developed to detect the solar potential of vertical
surfaces and facades [5].
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2.2. The v.sun Solar Radiation Model

The v.sun model is essentially a 3D variant of the r.sun model that can also calculate
direct, diffuse, and reflected solar radiation for a given day, latitude and surface, and
atmospheric conditions. It is implemented in the GRASS GIS environment and is based on
practically the same radiation methodology as the r.sun model. The difference, however, is
that the v.sun model uses a new vector-voxel calculation procedure for complex 3D urban
surfaces [5].

Buildings and urban areas are represented by 3D vectors in the form of polygons
when using the v.sun model in 3D urban models. A typical simple digital representation
of buildings is a box model. Although the calculation of the incident solar radiation for
each polygon may seem simple, the shading effect of neighboring buildings must also be
taken into account. This is why it is important in the v.sun model to take into account
the variations in solar incidence and to divide each polygon into smaller segments. By
segmenting the polygons in the next step, we are able to determine a more accurate estimate
of the solar potential of polygonal areas thanks to voxels [5].

The v.sun model estimates direct, diffuse, and reflected radiation during clear-sky
conditions. As solar radiation passes through the atmosphere, airflow and atmospheric
cloudiness are taken into account, which can change the nature of the radiation. Similar
to r.sun, the calculation works in two modes. The first mode is used to compute solar
irradiances (in W/m2) for 3D polygonal data. The second mode aims to use the 3D vector
data to determine the daily solar irradiation (in W/m2) over the time span of a particular
day within the year. The advantage of these modes is that they can work alone or in
combination to estimate the solar radiation impact at different time intervals.

The fundamental difference between the v.sun and r.sun module is in the geometry.
While v.sun uses a complete or full 3D model of the city (roofs as well as vertical surfaces,
such as facades, are taken into account), r.sun is a 2D (for a given x,y position, only one
elevation value is possible). Thus, the r.sun model is more suitable for modeling the
distribution of solar radiation for roofs and areas outside buildings.

The preparation of the input data of the v.sun model is quite complicated in terms
of structure and topology. The orientation of the polygons (surface normals) must be
outwards, and the vertices in all polygons must be ordered in the same manner clockwise
or counterclockwise. The accuracy of the calculations depends on the size of the polygons
that can be controled by a parameter [5].

2.3. Study Area and Data

Our study area is located in the central part of the city of Košice (Figure 1). The city
of Košice is the second largest city in Slovakia with a population of approximately 240,000
inhabitants and an area of 242.77 km2. It is part of an agglomeration with more than 367,000
inhabitants and the Košice-Prešov agglomeration with 555,800 inhabitants is one of the largest
urbanized areas in Slovakia. The city of Košice is a typical example of an urban area in a
temperate climate in Central Europe. The eastern part of Slovakia, where the city of Košice is
also located, is characterized by warm and relatively dry summers and cold, slightly humid
winters, with average daily temperatures ranging from −2 ◦C in January to 21 ◦C in July.
The average annual number of clear-sky and overcast days for the city Košice is 48 and 126,
respectively [29]. Based also on this factor, an area of 4 km2 was selected, where different types
of buildings are located, from administrative to residential buildings.
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Figure 1. Location of the study area in the city of Košice, Slovakia.

The geometric 3D model of the city of Košice was derived from photogrammetric
data collected by PHOTOMAP, s.r.o. company Košice. The model represents a level of
detail 2 (LoD2) [30], which means that the model contains information about the basic
geometry of buildings, including roofs. The 3D model itself was processed by combining
data from aerial surveying and airborne laser scanning. The aerial survey imagery was
photogrammetrically mapped in the PHOTOMOD software and the aerial laser scanning
data were vectorized in the Ustation software. The 3D city model is stored in a shapefile
vector format and consists of 61,766 polygons. A DTM with a cell size of 0.2 m was derived
from LIDAR (light detection and ranging) data collected in late summer 2016 using the
LEICA ALS70 airborne laser scanner.

Pyranometer MS-60 [31,32] produced by the EKO-INSTRUMENTS company was used
to measure solar irradiances. The pyranometer’s response time is 95% less than 18 s; the
measured irradiance values are in the range of 0–2000 W/m2; and maximum measuring
error is +/−18 W/m2. Measurements were taken at selected locations around 9:00 a.m.,
12:00 p.m., and 4:00 p.m., local time. Two minute measurements at five s intervals were
taken at the given location, then the values were averaged.

2.4. Calculation of Solar Radiation

Urban zones can be distinguished on the basis of their morphological and functional
characteristics, which are often associated with specific socio-demographic and cultural
features [33]. These factors play an important role in the use of solar energy, so it is impor-
tant to analyze the different aspects of solar radiation distribution in urban environments.
Based on these factors, 5 locations in the city of Košice were selected to demonstrate the use
of the r.sun and v.sun modules, and then these locations were compared with the data from
the pyranometer measurements (Figure 2). These include two buildings in the city centre
(the State Theatre and the Greek-Catholic Church) and three buildings from the wider
city centre of Košice, namely the Municipal Swimming Pool, the apartment house, and
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the residential house. The actual measurements were carried out on the selected vertical
facades of the buildings. We opted for south-facing facades at the selected locations in
most cases; in one case, it was the east-facing facade. Subsequently, the measured values
were compared with the calculated irradiance values by the v.sun and r.sun models. In
case of the v.sun model, it can be easily identified as an attribute value for the specific
polygon representing the facade. In case of the r.sun model, the identification of the site on
the steeply inclined surface approximating the facade is more complicated, essentially it
is a matter of a specific cell identification within the DSM. The positions of pyranometer
measurements were measured by the global navigation satellite system (GNSS) using the
Topcon HiPER HR. The point measurements were performed for 30 s using the real-time
kinematic (RTK) positioning via weighted averaging with an overall accuracy of the fixed
solution between 1 and 2 cm.

Figure 2. Positions of the selected locations in the city of Košice: Apartment house, Československá
Street (1); Residential house, Muránska Street (2); State Theatre, Hlavná Street (3); Municipal swim-
ming pool, Protifašistických bojovníkov Street (4); and Greek-Catholic Church of the Nativity of the
Virgin Mary, Moyzesova Street (5).

3. Results

The selected buildings have different architectures and different types of facades. We
selected four south-facing and one east-facing facade. The day during which the mea-
surements took place represents a typical summer day (23 June 2021). The measurements
took place at approximately 9:00 a.m., 12:00 p.m., and 4:00 p.m., local time. Since we only
had one pyranometer, we had to conduct the actual measurement between 8:30 a.m. and
9:30 a.m., since it was not possible to be at all selected locations at the same time. This
was also performed for the 12:00 p.m. and 4:00 p.m. measurements. The exact times of
measurements were recorded by the pyranometer. We then computed irradiances by solar
models for these exact times of measurements. Using the r.sun module, we calculated raster
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maps for the selected time horizons for the center of the city of Košice, which are shown
in Figure 3. The calculation of solar radiation by the r.sun model is based on the DSM
representing terrain and buildings. The facades are only approximated by steeply inclined
surfaces. To compare the model with pyranometer measurements for the selected locations,
we used their GNSS positions and identified raster cells containing the modeled solar
irradiance values. The 3D distribution of solar irradiance by the v.sun model is shown in
Figure 4. The model calculates solar irradiance only for polygons of the 3D city model. This
means that it is much easier to identify solar irradiance for a particular facade represented
by a polygon than by raster cells.

Figure 3. Solar irradiance from the r.sun model in the city center of Košice on 23 June 2021 (W/m2).
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Figure 4. Solar irradiance from the v.sun model in the city center of Košice on 23 June 2021 (W/m2).

Since the real time of measurement is always recorded by the instrument, we could use
the solar radiation models for these exact times to ensure the correct comparison between
the values. In the following subsections, we present the results for the particular locations.

3.1. Apartment House

The first location is situated in the wider center of Košice in Československá street-
apartment house (Figures 1 and 2). The facade faces the east. At 8:26 a.m., we recorded
a value of 663 W/m2, which is the highest value of all measured objects at that time
(Table 1). This is evidently due to the fact that the facade itself is oriented to the east, so
solar irradiance is higher than in other south-facing facades or even on horizontal surfaces.
The v.sun model gave us a value of 581 W/m2 (Figure 5A), and the r.sun model calculated
a value of 40 W/m2. The value from the r.sun model was read on a nearly perpendicular
building facade represented by a high-resolution DSM. However, the facade approximation
in this relatively tall building, apparently, led to geometric deformations that prevented a
correct calculation of solar irradiance. Figure 5A shows that in the morning facades receive
more solar irradiance than flat, horizontal rooftops.

Table 1. Solar irradiance at the apartment house in Československá street in W/m2 on 23 June 2021.

Time Pyranometer v.sun r.sun Position

8:26 a.m. 673 581 40 east

11:25 a.m. 249 396 46 east

3:13 p.m. 72 180 952 east
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Figure 5. Solar irradiance at the apartment house from the v.sun model on 23 June 2021 (W/m2) at (A) 8:26 a.m., (B) 11:25
a.m., and (C) 3:13 p.m. The black circle represents the measurement location.

At 11:25 a.m., the measured facade value dropped to 249 W/m2 compared to the
morning measurement. A similar decrease can be observed in the v.sun value (396 W/m2).
This decrease in solar irradiance is due to its facade orientation. The r.sun value still shows
a low value due to an improper geometric representation of the facade by the particular
raster cell. Figure 5B clearly shows that, at this time, solar irradiance is the highest at the
rooftops as well as south-facing facades.

At 3:13 p.m., we recorded a value of only 72 W/m2. This indicates that the site was
already shaded. With the v.sun model, we recorded a value of 180 W/m2, and r.sun
calculated a value of 952 W/m2. The v.sun model probably records a small amount of
beam irradiance, whilst the r.sun model shows a completely opposite value to the morning
and noon values and confirms the problem with the accuracy of geometric representation
of the facade. At this time, the rooftops receive a relatively large amount of solar irradiance
(Figure 5C).

3.2. Residential House

The second analyzed location is a residential house in Muránska Street. It is a classic
two-story house in the wider center of Košice. In this case, we selected a south-facing
facade. The value measured by the pyranometer at 8:39 a.m. is 458 W/m2 (Table 2), which
is more than 200 W/m2 less compared to the previous location (Table 1). In the morning,
east-facing facades receive more solar irradiance than south-facing facades. We recorded a
value of 372 W/m2 with the v.sun model and 574 W/m2 with the r.sun model (Figure 6A).
Both values vary from the measured value, but they are still reasonable.

Table 2. Solar irradiance at the residential house in Muránska street in W/m2 on 23 June 2021.

Time Pyranometer v.sun r.sun Position

8:39 a.m. 458 372 574 south

11:34 a.m. 549 514 903 south

3:59 p.m. 188 164 709 south

Figure 6. Solar irradiance at the residential house from the v.sun model on 23 June 2021 (W/m2) at (A) 8:39 a.m., (B) 11:34
a.m., and (C) 3:59 p.m. The black circle represents the measurement location.
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The value recorded by the pyranometer at 11:34 a.m. is slightly higher (549 W/m2)
than that recorded in the morning. In June, during the noon, the sun altitude is high, so
the solar incidence angle is lower for facades than for rooftops, leading to lower solar
irradiance values (Figure 6). Both the v.sun and r.sun models also show maximal values,
albeit the v.sun estimate is very close to the measured value (514 W/m2). At 3:59 p.m., the
value recorded by the pyranometer (188 W/m2) was significantly lower than that recorded
in the morning, and a similar value was predicted by the v.sun model (164 W/m2). The
r.sun prediction is almost four times higher than the actual value (709 W/m2).

3.3. State Theatre

The third location in our study is the State Theatre right in the center of the city of
Košice on Hlavná Street. It is a building constructed in the Neo-Baroque style, which
corresponds to its rather structured and complicated architecture (Figure 7). The value
measured by the pyranometer at 8:57 a.m. was 413 W/m2, which is almost 260 W/m2 less
compared to the first location facing to the east (apartment building), but similar to the
residential house. The recorded value was quite accurately modeled by both models: v.sun
(317 W/m2) and r.sun (456 W/m2) (Table 3).

Figure 7. Solar irradiance at the State Theatre on 23 June 2021 (W/m2) at (A) 8:57 a.m., (B) 11:50 a.m., and (C) 3:31 p.m. The
black circle represents the measurement location.

Table 3. Solar irradiance at the State Theatre in W/m2 on 23 June 2021.

Time Pyranometer v.sun r.sun Position

8:57 a.m. 413 317 456 south

11:50 a.m. 505 503 688 south

3:31 p.m. 87 293 287 south

The value recorded by the pyranometer at 11:50 a.m. is 505 W/m2. This can also be
attributed to the architecture of the building mentioned above, but also to the position of
the Sun in the sky at that moment in time. The v.sun model showed almost an identical
value. From this point of view, we can conclude that the comparison of the results is very
accurate at this point in time at this location.

The measurement at 3:31 p.m. recorded a value of 87 W/m2. The v.sun model
calculated a significantly higher value (293 W/m2) as did the r.sun model (287 W/m2).
This can be explained by the fact that, during the measurement at the given place at 3:31
p.m., the sun was slightly shaded by a cloud.

3.4. Municipal Swimming Pool

The fourth location that we will compare is the Municipal Swimming Pool in the
Protifašistických bojovníkov Street. The building itself is a morphologically complex
structure made up of the swimming pool itself, but also other institutions that are housed
there. The measurement at 9:19 a.m. showed a value of 502 W/m2; the r.sun and v.sun
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models showed slightly different values (579 W/m2 and 386 W/m2, respectively), which
can be considered acceptable (Figure 8) (Table 4).

Figure 8. Solar irradiance at the Municipal Swimming Pool on 23 June 2021 (W/m2) at (A) 9:19 a.m., (B) 12:09 p.m., and (C)
3:47 p.m. The black circle represents the measurement location.

Table 4. Solar irradiance at the Municipal Swimming Pool in W/m2 on 23 June 2021.

Time Pyranometer v.sun r.sun Position

9:19 a.m. 502 386 579 south

12:09 p.m. 155 513 819 south

3:47 p.m. 97 170 760 south

The measurement recorded at 12:09 p.m. is much lower (155 W/m2) and in comparison
to predicted values by the v.sun and r.sun models (513 W/m2 and 819 W/m2, respectively).
However, this fact has a logical explanation. During the actual measurement at that time,
we noticed that there was a terrace above the measured facade (Figure 9), which caused a
shadow at the time of the measurement since the solar altitude was very high. However,
the terrace is not present in our 3D city model and DSM, so the solar radiation models do
not reflect this fact in the results. At 3:47 p.m., we have already measured a slightly lower
value at this location than at noon (97 W/m2); a similar value was calculated by the v.sun
(170 W/m2). The r.sun model again predicted a very high value (760 W/m2), probably due
to a DSM distortion at this site.

Figure 9. Location of the terrace on the Municipal Swimming Pool building: (A) real state of the building with terrace
(white rectangle); (B) geometric 3D model, missing the terrace (white rectangle). The black circle represents themeasure-
ment location.

3.5. Greek-Catholic Church

The last location we have consiidered in this article is the Greek-Catholic Church of
the Nativity of the Virgin Mary in Moyzesova Street. We also focused on the south-facing
facade of the building. At 8:50 a.m., we measured 348 W/m2; v.sun (Figure 10) calculated
a value slightly lower (237 W/m2) (Table 5). With the r.sun model, we again recorded a
significantly higher value, due to the aforementioned facade representation issues.
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Figure 10. Solar irradiance at Greek Church on 23 June 2021 (W/m2) at (A) 8:50 a.m., (B) 11:44 a.m., and (C) 3:25 p.m. The
black circle represents the measurement location.

Table 5. Solar irradiance at Greek-Catholic Church in W/m2 on 23 June 2021.

Time Pyranometer v.sun r.sun Position

8:50 a.m. 348 237 645 south

11:44 a.m. 534 483 771 south

3:25 p.m. 313 357 202 south

At 11:44 a.m., the pyranometer recorded value of 534 W/m2. The r.sun and v.sun
models also recorded similar values, which were increased compared to the morning
measurement. The value recorded at 3:25 p.m. by the pyranometer (313 W/m2) is approxi-
mated by the v.sun model with a value of 357 W/m2 and 202 W/m2 by the r.sun model.
This lower value by r.sun is clearly also affected by a geometric distortion of the DSM.

4. Discussion

The modeling and use of solar radiation in urban environments are an important area
of study in various scientific fields and disciplines, especially for solar resource assessments,
such as photovoltaic and thermal applications, as well as urban heat island effects. Over the
last decade, several studies have focused on this matter [34–36]. In this study, we focused
on the accuracy of 2D (r.sun) and 3D (v.sun) solar radiation models for facades in built-up
areas in comparison with field measurements using a pyranometer.

We selected five different buildings in locations in the wider center of Košice, which
are shown in Figures 1 and 2. The measurements were carried out during a typical
summer day (23 June 2021) for morning, noon, and afternoon time horizons, using the
EKO-INSTRUMENTS MS-60 pyranometer during 2 min measurements in 5 s interval. The
averaged value for each location was used in a comparison with the predicted values by
the r.sun and v.sun models.

The results showed relatively large differences in the measured and predicted values of
solar irradiance. The mean error and mean absolute error of all predictions are −22 W/m2

and 103 W/m2 for v.sun, respectively, and −219 W/m2 and 345 W/m2 for r.sun, respectively.
Evidently, the 3D v.sun solar radiation model predicted solar irradiances on vertical surfaces
with much better accuracy. The 2D r.sun solar radiation model failed to accurately predict
solar irradiances in most cases, mostly due to an improper geometric representation of facades
by a DSM. High sensitivity of the solar radiation model to input parameters, such as slope
steepness or aspect, explains poor results of the model. Nevertheless, the model can provide
acceptable results for rooftops and areas between the buildings. However, our results clearly
show that a DSM does not provide a sufficiently accurate approximation of vertical surfaces
in urban areas to estimate their solar resource potential with an acceptable accuracy.

This study also showed that the morphological complexity of buildings can affect
the solar assessments, even in a 3D approach, because currently many 3D city models
are available in a LoD2 accuracy with missing morphological structures, such as terraces,
casting shadows, especially when solar elevation is high (Figure 9).
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It should be noted that this analysis was carried out for selected buildings only and
we did not include a complex analysis of shadows cast by neighboring buildings nor trees.
This could affect some of the predicted values, especially in the morning and afternoon
that have lower solar elevations.

In the manner of every other model, the r.sun/v.sun models have their advantages
and disadvantages. The v.sun module can compute a 3D solar radiation for buildings
represented by a 3D city model, but the disadvantage is its complicated preparation in terms
of structure and topology. Another disadvantage is that it cannot account for vegetation,
and this is an area for future improvements. The advantage of the r.sun model is a very
simple preparation of input data for raster map calculations, which is easier and faster
than for the v.sun model. To conclude, the r.sun solar radiation model should be only
used for 2D surfaces, such as roofs and areas between buildings, while the v.sun solar
radiation model is more appropriate for buildings, including facades, or other vertical
surfaces represented by 3D polygons.

5. Conclusions

Solar energy is one of the most important renewable sources of energy. Therefore, it is
desirable to model solar radiation in detail, especially in urban areas. There are currently
several models that seek to model more accurately the distribution of solar radiation. Such
models include r.sun and v.sun, which we analyzed in our study. They have the advantage
of choosing parameters for spatial modeling, while working with spatially differentiated
input and output data in raster/vector format. Both models use the same solar radiation
component; however, they treat the geometry of input data differently. The results of both
models were validated by in situ pyranometer measurements. The comparison of the
results of individual models and measurements took place in locations that represent a
typical urban environment in the study area. In addition to apartment buildings, with a
relatively simple surface geometry, there are often historic buildings in the center with
a more complex morphology of facades. By selecting different types of structures, we
identified the shortcomings of individual models as well as input data.

The comparison of models and in situ measurements showed relatively good estimates
by the 3D v.sun model and poor estimates by the 2D r.sun model. This can be attributed to
an improper geometric representation of vertical surfaces by a DSM, which has a strong
impact on solar resource assessments of the model. We also found that the LoD2 3D city
models can be problematic in case of complex buildings with morphological structures,
such as terraces. These cast shadows on facades especially when solar altitude is high and
thus assessments even by the 3D model are inaccurate.

Nevertheless, both solar radiation models can be used effectively for solar resource
assessments when used properly. The drawback of the v.sun model is that it does not
provide estimates of solar radiation for urban greenery, which is often important part
of urban areas. Our results also showed that the r.sun model is not able to accurately
represent the spatial distribution of solar radiation on vertical surfaces, but its simplicity
and speed provide a major advantage in modeling horizontal surfaces, such as roofs of
buildings. The vector solar model v.sun proved to be a more suitable alternative for use
in a 3D environment, based on its vector-voxel approach and its ability to model even
vertical surfaces.

Our analysis can be helpful for solar resource assessments in urban areas using these
solar radiation models or other solar radiation models with implemented similar method-
ology based on DSM and 3D city models. We see a great potential in integration with other
areas of research and industry, for example for thermal and photovoltaic applications. We
also envisage the use of these models in urban planning, and also in addressing the issue
of urban heat islands.
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2. Hofierka, J.; Kaňuk, J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew. Energy
2009, 34, 2206–2214. [CrossRef]

3. Ratti, C.; Baker, N. Energy consumption and urban texture. Energy Build. 2005, 37, 762–776. [CrossRef]
4. Lindberg, F.; Grimmond, C. The influence of vegetation and buildings morphology on shadow patterns and mean radiant

temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol. 2011, 105, 1–13. [CrossRef]
5. Hofierka, J.; Zlocha, M. A new 3D Solar Radiation Model for 3D City Models. Trans. GIS 2012, 16, 681–690. [CrossRef]
6. Freitas, S.; Catita, C.; Redweik, P.; Brito, M.C. Modelling solar potential in the urban environment: State-of-the-art review. Renew.

Sustain. Energy Rev. 2015, 41, 915–931. [CrossRef]
7. Biljecki, F.; Stoter, J.; LeDoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art Review. ISPRS Int. J.

Geo Inf. 2015, 4, 2842. [CrossRef]
8. Hofierka, J.; Šúri, M. A new GIS—Based solar radiation model and its application to photovoltaic assessments. Trans. GIS 2004, 8,

175–190.
9. Chow, A.; Fung, A.S.; Li, S. GIS modeling of solar neighborhood potential at a fine spatiotemporal resolution. Buildings 2014, 4,

195. [CrossRef]
10. Cheng, L.; Zhang, F.; Li, S.; Mao, J.; Xu, M.; Ju, W.; Liu, X.; Wu, J.; Min, K.; Zhang, X.; et al. Solar energy potential of urban

buildings in 10 cities of China. Energy 2020, 196, 117038. [CrossRef]
11. Erdély, R.; Wang, Y.; Guo, W.; Hanna, E.; Colantuono, G. Three-Dimensional Solar Radiation Model (SORAM) and its application

to 3-D urban planning. Sol. Energy 2014, 101, 63–73. [CrossRef]
12. Liang, J.; Gong, J.; Zhou, J.; Ibrahim, A.N.; Li, M. An open-source 3D solar radiation model integrated with a 3D Geographic

Information System. Environ. Model. Softw. 2014, 64, 94–101. [CrossRef]
13. Redweik, P.; Catita, C.; Brito, M.C. Solar energy potential on roofs and facades in an urban landscape. Sol. Energy 2013, 97,

332–341. [CrossRef]
14. Ranalli, J.; Calvert, K.; Boz, M.B.; Brownson, J.R.S. Toward comprehensive solar energy mapping systems for urban electricity

system planning and development. Electr. J. 2018, 31, 8–15. [CrossRef]
15. Huld, T. PVMAPS: Software tools and data for the estimation of solar radiation and photovoltaic module performance over large

geographical areas. Sol. Energy 2017, 142, 171–181. [CrossRef]
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Citation: Hasečić, A.; Almutairi, J.H.;
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Abstract: The heat transfer performances of ionic liquids [C4mpyrr][NTf2] and ionanofluids with
Al2O3 nanoparticles under a laminar flow regime, and with constant heat flux on the tube wall is
numerically modeled and analyzed for three values of initial/inlet temperature and for two Reynolds
numbers. Heat transfer characteristics were considered by analyzing the temperature distribution
along the upper wall, as well as by analyzing the Nusselt number and heat transfer coefficient. The
results obtained numerically were validated using Shah’s equation for ionic liquid. Thermophysical
properties were temperature-dependent, and obtained by curve-fitting the experimental values of the
thermophysical properties. Furthermore, the same set of results was calculated for the ionic liquid
and ionanofluids with constant thermophysical properties. It is concluded that the assumption that
thermophysical properties are constant has a significant influence on the heat transfer performance
parameters of both ionic liquid and ionanofluids, and therefore such assumptions should not be
made in research.

Keywords: ionanofluids; computational fluid dynamics; heat transfer; Nusselt number; temperature-
dependent properties

1. Introduction

Nanofluids are a mixture of base fluid and small nanoparticles up to 100 nm size. It is
proven that nanofluids have better thermal properties than the base fluids [1], therefore,
in the last two decades, a substantial amount of research has been conducted related to
the nanofluids and their application to the solar systems and other heat exchange devices.
A major part of those research studies was focused on the thermophysical properties
and heat transfer of nanofluids where the base fluid was water and ethylene-glycol, with
nanoparticles with different oxides (Al2O3, TiO2, CuO, etc). Ribeiro et al. [2] introduced
ionanofluids, the suspension of nanoparticles in ionic liquids as a new class of nanofluids.
One of the first experimental investigations of ionanofluids was done by Altin et al. [3],
who analysed the rheological properties of the suspensions of the nanoparticles in the
ionic liquids. Following this, Wang et al. [4] and Altamash et al. [5] also experimentally
analyzed the rheological properties of ionanofluids. They concluded that ionanofluids
show non-Newtonian flow behavior. When it comes to the thermophysical properties of the
ionanofluids, Nieto de Castro et al. [6] were among the first who conducted experimental
investigations into the thermophysical properties of ionanofluids. They studied the thermal
properties of imidazolium and pyrrolidinium and higher wall carbon nanoparticles, and
concluded that nanoparticles cause improvement in the thermal conductivity and heat
capacity of ionanofluids compared to the base fluids. Ionanofluids are mainly analyzed in
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respect to their thermophysical properties. The analyses were experimentally conducted
by Fox et al. [7], Bridges et al. [8], Titan et al. [9–13] and Bhattacharjee et al. [14], while
Minea et al. [15] gave a comparison of thermal conductivity for different ionanofluids.
Fox et al. [7] experimentally investigated the influence of alumina nanoparticles on the
thermophysical characteristics of ionanofluids, and showed that fibrously shaped Al2O3
nanoparticles show a greater improvement in thermal conductivity. Bridges et al. [8]
showed that the increased heat capacity of ionic fluids was improved with alumina par-
ticles without a detrimental effect on thermal stability. Titan et al. [9–13] showed that an
increased heat transfer coefficient of forced convection and a deterioration in the natural
heat transfer of a nanoionic fluid relative to an ionic fluid, as well as showing that there are
significant improvements in the thermophysical characteristics of ionanofluids compared
to the base ionic fluids. Besides the thermophysical properties, they also analyzed the rheo-
logical behavior of the ionanofluids and concluded that ionanofluids show non-Newtonian
flow behavior.

As it can be seen from the literature overview, the experimental investigations of
ionanofluids are rare in comparison to the published experimental investigations of the
nanofluids. When it comes to the analyses of ionanofluids by using computational fluid
dynamics, to the authors best knowledge there are only few studies available [16–23],
whereas Said [24] analyzed the use of adaptive neuro fussy interface systems to predict the
thermal conductivity and viscosity of ionanofluids. Computational fluid dynamic analyses
of ionanofluids are mainly focused on the heat transfer performances.

Minea et al. [16] numerically analyzed heat transfer in a square enclosure filled with
ionic liquid nanofluid. Although they stated that the thermophysical properties are tem-
perature dependent, it can be concluded that they are only a function of initial temperature.
Chereches et al. [17,18] numerically analyzed heat transfer behavior of ionanofluids in lam-
inar flow for different Reynolds numbers and one initial temperature for case without [17]
and with [18] insulation over the pipe walls. Titan et al. [19] investigated the natural
convection heat transfer of Al2O3 nanoparticle enhanced N-butyl-N-methylpyrrolidinium
bis {(trifluoromethyl)sulfonyl} imide ([C4mpyrr][NTf2]) ionic liquid. The heat transfer
performance of ionanofluids was also numerically analyzed by Prasad et al. [20] and
Rupesh et al. [21]. Prasad et al. [20] analyzed the heat transfer in a 2-D flat plate, whereas
Rupesh et al. [21] analyzed the heat transfer performance of ionanofluids around a circular
cylinder. The most recent numerical investigations of the heat transfer behavior of particle
suspension in ionic liquids were done by Shah et al. [22] and Bouchta et al. [23].

Although it has been shown that ionanofluids flow behavior corresponds to non-
Newtonian flow, the assumption of Newtonian fluid was made in many studies [3–5,9–13].
In most numerical research a single-phase assumption was made, whereas the properties
of ionanofluids are calculated as the properties of a mixture and a function of the weight
percent of nanoparticles and base liquid. Furthermore, the studies all assumed that the
properties are constant and related only to the initial and boundary conditions.

In this research, a numerical analysis of steady, laminar forced convection flow of
Al2O3 nanoparticles in ([C4mpyrr][NTf2]) ionanofluids in a straight tube with constant
heat flux on the tube wall for different Reynolds numbers and different values of initial
and inlet temperature is presented. The heat transfer characteristic of the ionic liquid and
ionanofluids for different weight percentages were analyzed and compared. The geometry
was chosen due to its common application in solar collectors. The main contribution of this
research is that this is, to the authors best knowledge, the first research on heat transfer
characteristics of ionanofluids in which the thermophysical properties are temperature re-
lated and described in corresponding equations and implemented in such form. Moreover,
the results are compared with results obtained for constant thermophysical properties for
different initial temperature values. Although the term constant thermophysical properties
is used, it must be emphasized that the thermophysical properties are a function of the
initial/inlet temperature and therefore are constant for the same initial/inlet temperature.
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2. Materials and Methods

The mathematical model can be summarized in the following governing and constitu-
tive equations:

Continuity equation
d
dt

∫
V

ρdV+
∫
s

ρv · ds = 0 (1)

where ρ is density and v is the velocity vector.
Momentum equation

d
dt

∫
V

ρvdV+
∫
s

ρvv · ds =
∫
s

T · ds +
∫
V

fbdV (2)

where T the Cauchy stress tensor and fb is the resultant body force.
Thermal energy equation

d
dt

∫
V

ρcvTdV +
∫
s

ρcpTv · ds = −
∫
s

q·ds +
∫
V

(T : gradv)dV (3)

where cp is the specific heat, T is the temperature and q is the heat flux vector.
Stoke’s law

T = 2μ
.

D− 2
3

μdivvI− PI (4)

where
.

D =
1
2
[gradv + (gradv)T] (5)

is the rate of strain tensor, μ is the dynamic viscosity, p is the pressure and I is the unit
tensor.

Fourier’s law
q = −k gradT (6)

where k is thermal conductivity.
Thermophysical properties of ionic liquid and ionanofluids.
Relationships for thermophysical properties (density, thermal conductivity, viscosity

and specific heat) of ionanofluids [C4mpyrr][NTf2] with the Al2O3 nanoparticles used in
this study are obtained by curve-fitting the experimental results from the literature [22] and
are given in the Table 1. Additionally, relationships for certain properties, such as density,
were already given by Titan [22] and are used as such.

Table 1. Equations used for predicting the thermophysical properties for different weight percent wt%.

Thermophysical
Property

Base Liquid 0.5 wt% 1.0 wt% 2.5 wt%

Density,[
1000 kg·m−3] −7.77·10−4T + 1.6129 [22] −0.0008T + 1.6324 −0.00087T + 1.665 −0.001T + 1.722

Viscosity, [Pa·s] 8·1023T−10.15 3·1022T−9.544 2·1027T−11.46 3·1028T−11.93

Heat capacity,[
kJ·kg−1·K−1]

−3·10−6T2 + 0.0048T + 0.3941 0.0016T + 1.7234 −6·10−6T2 + 0.0076T + 0.1891 −8·10−6T2 + 0.01T + 0.2965

Thermal cond.,[
W·m−1·K−1]

−6·10−5T + 0.1398 [22] −0.01 ln T + 0.1826 −0.008 ln T + 0.1748 −0.007 ln T + 0.1745

The curve-fits are applied to the experimental values of the thermophysical properties
obtained by Titan [22], and the results are presented in Figure 1.
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(a) Density (b) Viscosity

(c) Heat capacity (d) Thermal conductivity ratio

Figure 1. Comparison of the predicted values for thermophysical properties using equations from Table 1 with measured
data obtained by [22].

As it can be seen from Figure 1, the temperature variations of density (Figure 1a),
viscosity (Figure 1b), heat capacity (Figure 1c) and ratio of thermal conductivity of base
liquid and corresponding ionanofluids (Figure 1d) were compared with experimental
results obtained by Titan [22]. The comparison was made for the base liquid as well as for
ionanofluids with concentrations of 0.5, 1.0 and 2.5 wt% (weight percent). The square of
correlation factor (R2) for density was above 0.95, for viscosity above 0.99, for heat capacity
above 0.98 and for the ratio of thermal conductivity above 0.8, regardless of weight percent.

The numerical method employed for modeling the flow and heat transfer of ionic
liquid and ionanofluids was the finite volume method. The methodology closely follows
the one presented in [23,24].

3. Results

The steady-state flow of ionic liquid [C4mpyrr][NTf2] and ionanofluids with Al2O3
nanoparticles through the horizontal straight tube of 1.75 m length and 0.014 m diam-
eter was analyzed with convective heat transfer included. The geometry of the prob-
lem can be seen from Figure 2. The case study was analyzed for initial temperatures
Tin1 = 293 K, Tin2 = 303 K and Tin3 = 335 K, for two Reynolds number values (100 and
512), and for three values of weight percentage (0.5 wt%, 1.0 wt% and 2.5 wt%). Addi-
tionally, the heat transfer characteristics of pure ionic liquid was also analyzed. The wall
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heat flux was constant q = 13 kW·m−2. At the outlet, the pressure was set to 0 Pa. For the
purpose of set up, the inlet boundary conditions uniform velocity profile was used.

Figure 2. Geometry and boundary conditions.

The effects of natural convection were neglected. Due to computational efficiency,
fluid flow was analyzed through a part of the tube in the shape of a longitudinal wedge
with an angle of 5◦ as it can be seen from Figure 3.

Figure 3. Geometry and mesh of longitudinal wedge with angle of 5◦.

The heat transfer characteristics of the ionic liquid and corresponding ionanofluids
were investigated by analyzing the heat transfer coefficient and Nusselt number. Addition-
ally, the temperature profile for each case is presented.

The heat transfer coefficient and Nusselt number were calculated using the following
equations:

hIL/NEIL =
q

(Twall − Tin)
,
[
W·m−2·K−1

]
(7)

NuIL/NEIL = hIL/NEIL
D

kIL/NEIL
[−] (8)

where
q
[
W·m−2] is heat flux through the shell of the tube given as the boundary condition

Twall [K] is temperature of the tube shell
Tin [K] is initial (reference) temperature
hIL/NEIL

[
W·m−2·K−1

]
is the heat transfer coefficient of the ionic liquid (IL) or io-

nanofluids (NEIL)
D [m] is diameter of the tube
kIL/NEIL

[
W·m−1·K−1

]
is the thermal conductivity of the ionic liquid (IL) or ionanoflu-

ids (NEIL)
The validation of the presented model along with the grid refinement was done for

the ionic liquid [C4mpyrr][NTf2] and the results were compared with results obtained by
using the Shah’s equation. The grid sensitivity study was performed for four different
values of base cell sizes. The characteristics of the analyzed grids are given in Table 2.
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Table 2. Grid characteristics for grid sensitivity study.

Grid Characteristic Cell Size [mm] Number of Cells

1 2.4 46,688
2 1.2 198,356
3 0.6 1,353,488
4 0.3 8,493,674

The results for each grid, and the results obtained by using Shah’s equation, can be
seen from Figure 4. It can be seen from Figure 4 that as the grid is systematically refined,
the results approach the results obtained from the Shah’s equations.

Figure 4. Grid sensitivity study and model validation.

Furthermore, one can conclude that for grid 3 (base cell size of 0.6 mm), the obtained
results are grid independent since for further refinement the results remain the same.
Hence, the numerical study was performed for grid 3, with a base cell size of 0.6 mm.

Over 40 numerical simulations were performed in order to compare temperature pro-
files and hence heat transfer characteristics (heat transfer coefficient and Nusselt number)
for ionic liquid and ionanofluids with temperature-dependent thermophysical properties
and with constant thermophysical properties. For better presentation of the findings, the
results were compared in accordance with different perspectives, i.e., in accordance with
the weight percent, Reynold numbers, initial temperatures, and/or in accordance with the
temperature/dependency of thermophysical properties.

4. Discussion

Figure 5 presents the temperature distribution along the top wall, Twall , at Re = 100
and Re = 500 and 0.5 ≤ wt% ≤ 2.5 for fluids with constant thermophysical properties,
whereas Figure 6 presents the temperature distribution along the top wall, Twall , at Re = 100
and Re = 500 and 0.5 ≤ wt% ≤ 2.5 for fluids with temperature-dependent thermophysical
properties in accordance with Table 1.
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(a) T = 293 K (b) T = 303 K

(c) T = 335 K

Figure 5. Temperature profile for Re = 100 and Re = 512 for 0.5 ≤ wt% ≤ 2.5 and constant thermophysical properties.

(a) T = 293 K (b) T = 303 K

Figure 6. Cont.
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(c) T = 335 K

Figure 6. Temperature profile for Re = 100 and Re = 512 for 0.5 ≤ wt% ≤ 2.5 and temperature-dependent thermophysical
properties.

It can be seen from the Figures 5 and 6 that the temperature at x = 0 m is same as the
inlet temperature, and in the developing region (up to x = 0.4 m) the immediate increase
is noticeable. Following the gradual linear increase in the developed region due to the
constant heat flux applied to the wall surface, the temperature at the upper wall reaches
the maximum value at the outlet (x = 1.75 m).

Furthermore, for both constant and temperature-dependent thermophysical prop-
erties, the increase in the weight percent of nanoparticles results in lower temperature
profiles of the upper wall. One can conclude that the increase in the weight percent of
nanoparticles results in more heat transfer from the wall to the fluid regardless of the
temperature-dependency of the thermophysical properties. The same can be concluded
for the influence of the Reynold’s number; the increase in the Reynold’s number results in
an increase in heat transfer from the wall to the fluid for ionic liquid and ionanofluids for
constant and temperature-dependent thermophysical properties.

To better understand the influence of the temperature-dependency of the thermophys-
ical properties of the ionic liquid and ionanofluids on the temperature profile, Figure 7
presents the temperature distributions on the upper wall for Re = 100, inlet temperatures
T = 293 K, T = 303 K and T = 335 K and wt% of 0, 0.5 and 1.0 for both constant and
temperature-dependent thermophysical properties.

(a) Base IL (b) 0.5 wt%

Figure 7. Cont.
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(c) 1.0 wt%

Figure 7. Temperature profiles comparison for ionic liquid and ionanofluids with and without constant thermophysical
properties for Re = 100.

When analyzing the temperature profile on the upper wall for ionanofluids with and
without constant properties for constant weight percent and Reynolds number, and with
variable inlet temperatures, it can be concluded that the temperature profile is higher when
the assumption of constant thermophysical properties is made, regardless of the weight
percent or the inlet temperature. Therefore, it can be concluded that the temperature-
dependent thermophysical properties of ionanofluids cause better heat transfer from the
wall of the tube to the fluid.

Heat transfer performances of ionic liquid and ionanofluids for different weight
percent were analyzed through the heat transfer coefficient (Equation (7)) and Nusselt
number (Equation (8)). Figure 8 presents the heat transfer coefficient along the tube for
ionic liquid, and ionanofluids of 0.5 wt%, 1.0 wt% and 2.5 wt%, and for Reynolds numbers
of 100 and 512, for reference temperatures T = 293 K, T = 303 K and T = 335 K.

(a) T = 293 K (b) T = 303 K

Figure 8. Cont.
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(c) T = 335 K

Figure 8. Heat transfer coefficient for 0.5 ≤ wt% ≤ 2.5 and Re = 100 and Re = 512.

It is shown in Figure 8 that the increase in the Reynolds number, as well as the increase
in the nanoparticle weight percent, causes an increase in the heat transfer coefficient,
meaning that the heat transfer is higher for higher values of wt% and Re. The same
conclusion can be made for each inlet temperature. Furthermore, it is noticeable that
the heat transfer coefficient has the highest values at the inlet of the tube, leading to the
exponential decrease in the developing region (up to x = 0.4 m). Following this, the values
of the heat transfer coefficient gradually decrease in a linear manner when progressing
towards the outlet of the tube where the heat transfer coefficient has the minimum value.

Moreover, in this study, the influence of the assumption of the constant thermophysical
properties on the heat transfer performances for ionic liquid and ionanofluids was analyzed.
Therefore, Figure 9 presents the Nusselt number values along the tube for both ionanofluids
with temperature-dependent thermophysical properties and for ionanofluids with constant
thermophysical properties. Analysis was undertaken at a constant weight percentage, so
that the influence of the assumption could be analyzed for different inlet temperatures and
Reynolds numbers.

(a) Base IL (b) 0.5 wt%

Figure 9. Cont.
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(c) 1.0 wt% (d) 2.5 wt%

Figure 9. Nusselt number for ionanofluids with and without constant thermal properties for different temperature values
and different Reynold numbers.

When analyzing Figure 9, one can conclude that the assumption of the constant
thermophysical properties of both ionic liquid and ionanofluids has a great influence on
the Nusselt number. The influence is more significant as the weight percent increases. The
greatest difference between the results for constant and variable thermophysical properties
is for the weight percentage of 2.5%, where significant divergence is noticeable for the
Nusselt number, both for Re = 100 and Re = 512, as well as for each inlet temperature. When
analyzing curves for the temperature-dependent thermophysical properties (Figure 1) it
can be seen that, for wt% 2.5, the viscosity exponentially decreases, resulting in a significant
difference in the viscosity values for different temperatures. The Nusselt number values for
constant thermophysical properties for Re = 512 and T = 293 K correspond to the Nusselt
number values obtained by Chereches et al. [17].

For better understanding of the heat transfer performances of ionic liquids and io-
nanofluids, the heat transfer coefficient was analyzed and compared in accordance of
weight percent for ionic liquid and ionanofluids, with and without constant properties for
Re = 100 (Figure 10) and Re = 512 (Figure 11).

(a) T = 293 K      (b) T = 303 K 

Figure 10. Cont.
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(c) T = 335 K

Figure 10. Heat transfer coefficient of ionic liquid and ionanofluids with and without constant thermal properties for
0.5 ≤ wt% ≤ 2.5 and Re = 100.

(a) T = 293K (b) T = 303K

Figure 11. Heat transfer coefficient of ionic liquid and ionanofluids with and without constant thermal properties for
0.5 ≤ wt% ≤ 2.5 and Re = 512.

The heat transfer coefficient increases as the weight percent of ionanofluids increase,
and it has the lowest value for ionic liquid for both Re = 100 and Re = 512, regardless of
inlet temperature. Furthermore, it is noticeable from Figures 10 and 11 that the assumption
of the constant thermophysical properties has the greatest influence on the heat transfer
performances of the observed ionanofluids. The greatest influence is for those with a
weight percent of 2.5%. It can also be seen from Figures 10 and 11 that for ionic liquids and
ionanofluids with constant thermophysical properties, the heat transfer coefficient is higher
or lower (depending on the weight percent and inlet temperature), which can mislead a
conclusion that the heat transfer performances are better or worse than they really are.

5. Conclusions

This paper presents a numerical investigation of the forced heat transfer of a ionic
liquid [C4mpyrr][NTf2] and ionanofluids with Al2O3 nanoparticles through a straight tube.
Geometric and physical models were defined that adequately describe the problems, as
well as the numerical grid on which the simulations were performed in the STAR-CCM +
2019.2 software. Numerical research was undertaken with the following approximations:
the effects of natural convection were neglected, and fluid flow through a part of the tube
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in the shape of a longitudinal wedge with angle of 5◦ was analyzed. Thermophysical
properties of the analyzed ionic liquid and ionanofluids were assumed to be a function
of temperature. The adequate equations for each thermophysical property were gained
via curve-fitting the experimental values with square of correlation factors above 0.95
for density relations, 0.99 for viscosity relations, 0.98 for heat capacity relations and for a
ratio of thermal conductivity above 0.8, regardless of weight percent. In order to obtain
grid independent solutions, a grid sensitivity study was performed, and the model was
validated with the results of Shah’s equation. The presented analysis of the obtained
results of the Nusselt number and the heat transfer coefficient of the ionic and nanoionic
liquid shows the change in the considered parameters along the tube for different wt% and
different Reynolds numbers. During the analysis of the numerical results of the Nusselt
numbers and the heat transfer coefficient of both the ionic and nanoionic liquid, a decrease
in the Nusselt numbers and the heat transfer coefficient with a decrease of a wt% was found.
Moreover, it is concluded that an increase in the Reynolds number results in an increase
in both heat transfer coefficient and Nusselt number. The Nusselt number and the heat
transfer coefficient of the ionic and nanoionic liquid decrease exponentially along the tube
for any case under consideration. The results were compared against the results related to
the ionic liquid and ionanofluids with constant thermophysical properties. It is concluded
that the assumption that thermophysical properties are constant has a significant influence
on the heat transfer performance parameters of both ionic liquid and ionanofluids, and
therefore such assumptions should not be made in research.
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Abstract: Particle Swarm Optimization (PSO) is a member of the swarm intelligence-based on a
metaheuristic approach which is inspired by the natural deeds of bird flocking and fish schooling. In
comparison to other traditional methods, the model of PSO is widely recognized as a simple algo-
rithm and easy to implement. However, the traditional PSO’s have two primary issues: premature
convergence and loss of diversity. These problems arise at the latter stages of the evolution process
when dealing with high-dimensional, complex and electromagnetic inverse problems. To address
these types of issues in the PSO approach, we proposed an Improved PSO (IPSO) which employs a
dynamic control parameter as well as an adaptive mutation mechanism. The main proposal of the
novel adaptive mutation operator is to prevent the diversity loss of the optimization process while
the dynamic factor comprises the balance between exploration and exploitation in the search domain.
The experimental outcomes achieved by solving complicated and extremely high-dimensional opti-
mization problems were also validated on superconducting magnetic energy storage devices (SMES).
According to numerical and experimental analysis, the IPSO delivers a better optimal solution than
the other solutions described, particularly in the early computational evaluation of the generation.

Keywords: inverse problem; energy storage device; global optimization; PSO; adaptive mutation operator

1. Introduction

Recently, inverse problems, or real world design problems, have been recognized
as an active research topic in the fields of academia and engineering sciences, and the
optimal solution to such kinds of problems is difficult and hard due to the presence of
multimodal cost functions. Because traditional optimization methods are incapable of
resolving inverse or real-world problems, a wealth of studies has consequently contributed
to the development of nature-inspired algorithmic models, to improve computational
capabilities and diversity of the search space in engineering complex and complicated
problems. At the same time, researchers have tried to design various nature-inspired
algorithmic models in the state of the art to enhance the computational capabilities as well
as increase the diversity of search space in engineering optimization problems.

In this modern world of optimization, when one wishes to solve the engineering
optimization problems arising from electromagnetics, more devotion will be paid to opti-
mization techniques. From the previous work, we knew that the optimization problems
have more minima and one optimum solution, while the current existence of the stochastic
algorithm will try to reach the global optimum region or space. One of these methods’
limitations is that they have a slow rate of convergence or require additional computational
modifications. In order to relieve unnecessary computational engagement and develop a
robust method for the case study, such techniques play an imperative role in improving
and makes the algorithms more efficient while building a decent balance between clarity,
reliability, and computational performance.

Energies 2021, 14, 8575. https://doi.org/10.3390/en14248575 https://www.mdpi.com/journal/energies
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There are a series of metaheuristic algorithms in order to finds the global best solution
of inverse problems, but still, there is no evolutionary method to solve most of multimodal
optimization problems. Thus, many efforts of the scientist and researchers have been
made to optimize the general structure of the algorithm to resolve real-world engineering
optimization problems. In this regard, various algorithms have been developed as reported
in the following paragraph.

In the field of engineering, a variety of optimal optimization algorithms are used,
including ant colony optimization, differential evolution, glowworm swarm optimization,
artificial bee colony, genetic algorithm, cuckoo search algorithm, and particle swarm
optimization. Among all these methods, PSO is the most recent and simple algorithm [1].
In the search process of the PSO, each candidate shares information with other candidates
to expand the search area or space [2]. The PSO optimization algorithm aims to iteratively
optimize an issue, starting with a set or population of candidate solutions, referred to as a
swarm of particles in this perspective, in which each particle knows both the global best
position within the swarm (and its resultant worth in the perspective of the problematic), as
well as its personal best position (and its fitness cost) revealed so far during the search [3].
The particles travel randomly in the search space in an iterative process until the entire
swarm converges to the global minima.

The PSO comprises three parameters: one control parameter and two learning param-
eters. Each parameter plays a significant role in the search process. The constant cognitive
c1, and the social constant c2, give experiences to the personal pbest and global best gbest.
The inertia weight balances the exploration and exploitation search domain [4].

The fundamental equations for updating position and velocity in a PSO are:

Vk
i = wVk

i + c1r1.(pbestk
i − Xk

i ) + c2r2.(gbestk − Xk
i ) (1)

Xk
i = Xk

i + Vk
i (2)

where i denotes the ith particle, k is the generation number, vi
k is the ith particle’s velocity,

and Xi
k is its position. For the learning parameters, the cognitive constant represented by c1

and the social constant by c2, c1 attempting to bring the particle into Pbest where c2 pushing
the particle into gbest, and r1 and r2 are random values ranging from 0 to 1.

Many researchers and scientists developed various formulations and strategies for
the basic three parameters that were explained and described in [5]. When solving a high-
dimensional optimization issue, the basic PSO converges early because the parameters are
inappropriately chosen and the mutation operators are incapable to optimize the problems.
Researchers have recently modified the traditional PSO by adding mutation operators,
hybridization with other algorithms, changing the topological structure, and introducing
new inertia weight approaches for various problems and produced better results.

In order to control the premature convergence, many researchers have used different
mutation operators to make the optimal algorithm more robust and improve the capability
of exploration and exploitation searches of the particles. However, most of the strategies
are problem-oriented; for example, student “T” mutation is used in local search, but it may
fail if the distance between the current search and the optimal position is too wide [6]. The
literature illustrates that the performance of a PSO is related to three basic parameters, i.e.,
inertia weight w, cognitive constant c1, and social constant c2. However, in the basic PSO,
the values of w, c1, and c2 are not appropriately designed to keep a decent balance between
local and global search. Consequently, the values of the parameters must be correctly
adjusted. A new concept known as the smart particle swarm optimization (SPSO) process
is applied in [7] to address the aforementioned problems. The smart particle is based on
the convergence factor (CF) technique, which combines memory of particle positions, the
second stage is for comparison, and finally the leader declaration, to find the best optimal
solution. Furthermore, some researchers have worked on energy system management and
design algorithms for the purpose of developing smart artificial intelligence [8–13].
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In this paper, a new approach is proposed that is focused on dynamic inertia weight
with novel mathematical equations and mutation mechanisms. The mutation process is
followed by the personal best particle and global best particles by a unique design roulette
wheel selection method to overcome the premature convergence problem by developing
proper stability between the exploration and exploitation search.

The remaining of this paper is organized as: the related work of the research is
reviewed in Section 2; The novel IPSO is described in Section 3; The numerical results
analysis are given in Section 4; A discussion is presented in Section 5; The application of
the work is reported in Section 6; and the conclusion is given in Section 7.

2. The Related Work

The previous literature work is mainly categorized into the following four categories.

2.1. Proper Adjustment of Parameters

Researchers have modified the basic three PSO parameters to achieve a decent balance
between exploration and exploitation search. Eberhart and Shi first used an inertia weight
in the PSO algorithm to control the searching capabilities of the particles [4].

The velocity equation is modified after the incorporation of the inertia weight w:

Vk
i = wVk

i + c1r1(pbestk
i − Xk

i ) + c2r2(gbestk
i − Xk

i ) (3)

To control the diversity of the population and improve the performance of PSO, the
authors presented a tactic where the inertia weight can be determined based on Euclidean
distance [14]. In [15], an updated version of PSO that sought to solve the drawbacks
of traditional PSO in perspective of photovoltaics (PV) parameter estimation has been
reported. In this work two ways for controlling the inertia weight and an acceleration
coefficients are designed to improve the performance of PSO and to ensure an adequate
balance between local and global search, a sine chaotic inertia weight mechanism is first
used. Thus, in search of an optimal solution, a tangent chaotic technique is used to steer
acceleration coefficients. In [16], an improved multi-strategy particle swarm optimization
(IMPSO) approach is described. It proposes to optimize the structure and parameters for
better mapping the highly nonlinear characteristics of railway traction braking employing
multi-strategy evolution methods with a nonlinear decreasing inertia weight to enhance the
global optimizing performance of particle swarms. In the PSO velocity update equation,
an adaptive inertia weight factor (AIWF) is added. The main feature is that, unlike a
traditional PSO, where the inertia weight is held constant during optimization, the weights
are attuned adaptively built on the particle’s feat rate in reaching the optimum solution [17].

2.2. Mutation Methods

Many scholars have been working to update the traditional PSO by introducing
mutation operators to preserve the diversity of the population and solve the problem of
premature convergence. Some of the updated mutation mechanisms are reviewed in the
following paragraph. An adaptive mutation strategy is described using the extended non-
uniform mutation operator, in which adaptive mutation is used to help trapped particles
and extract them from local optima [18]. The hybridizing inertia weight modification
tactic, based on new particle diversity and adaptive mutation strategy, has been used
to escape local algorithm convergence in complex networks [19]. In [20], they applied
different mutation operators on particles in instruction to increase the search capability of
particles and avoid them stagnating. In [21], the author proposes a novel idea using an
adaptive mutation-selection strategy to conduct local pursuit of the global optimal particle
in the up-to-date population, which could help to improve the exploratory potential of the
search domain and speed up the convergence speed of the candidates. In [22], the work’s
aim is to find the best solution with a combination of stochastic methods and PSO with
an adaptive cauchy mutation method to design the new algorithm. In [23], the author
presents a multiple scale self-adaptive cooperative mutation strategy-based particle swarm
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optimization algorithm (MSCPSO) to address the two fundamental drawbacks of PSO. To
improve the capability of sufficiently searching the whole solution space, we use multi-
scale Gaussian mutations with varying standard deviations in the suggested approach.
Equations (4) and (5) are the mathematical representation:

Gd(t) = Gd(t− 1) +
N

∑
i=1

cid(t) (4)

in which

cid(t) =
{

0, vid(t) > Td
1, vid(t) < Td

if Gd(t) > k1 then

Gd(t) = 0; Td =
Td
k2

(5)

In [24], the authors proposed a novel approach to the learning parameters. According
to this idea, the two learning variables are dynamically modified in order to affect the
particles escaping from a local optimum and converge to the global optimal solution.
In [25], the application of Cauchy mutation and Gaussian mutation in the modified PSO is
investigated. The major aim is to obtain greater convergence and obtain the best results
in the solutions of various real-world problems. In the domain of swarm intelligence, the
PSO serves as a basis. The proposed PSO used an improved weight factor compared to the
traditional PSO to achieve better convergence.

2.3. Topological Structure

When dealing with complex and high-dimensional optimization problems, researchers
are currently working on changing the topological structure of particle swarm optimization
to escape the issue of premature convergence. In [26], an example-based learning PSO
has been reported to improve swarm and convergence speed diversity. According to the
ELPSO idea, many global best particles are set as examples to participate in the velocity
update equation, selecting from the current best candidates instead of the gbest particle.
The proposed work mathematically is shown as:

Vk
i = wVk

i + c1rand1k
i (pbestk

ri
− Xk

i ) + c2rand2k
i (gbestk

ri
− Xk

i ) (6)

In [27], instead of pbest and gbest particles, only the “historical best info” has been used
in the conventional PSO velocity update equation to maintain the population diversification.
In [28], the exact particles location and position were described and explained for the
purpose of adjusting the balance for exploration and exploitation in the search process and
is mathematically expressed as:

Xk+1
i = (1− β(t))pk

i + β(t)pr
g + α(t)Rk

i (7)

In [29], an advanced particle swarm optimization algorithm (APSO) approach is
presented. The algorithm uses an improved velocity to modify the equation to ensure
that the particles reach the best solution speedily as compared to traditional PSO. In [30],
PSO with combined Local and global expanding neighborhood topology (PSOLGENT) is
proposed that employs a novel expanding neighborhood topology. In [31], a local search
strategy was developed where every candidate tries to reach a better position during the
search process and then tries to get the best in the whole swarm.

2.4. Hybridization

Researchers also modified the PSO algorithm by combining it with other optimizers
for the purpose of enhancing the performance and expanding the search ability of the
particles during the evolution process. According to recent research work, when PSO
integrates with other evolutionary operators such as crossover, selection, and mutation, the
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efficiency of the PSO improves and the PSO is strengthened in terms of robustness, stability,
and convergence rate. In [32], the genetic algorithm (GA) is used to amend the decision
vectors using genetic operators, while the PSO is used to boost vector position. In [33], the
PSO algorithm is paired with the sine cosine algorithm (SCA) and levy flight distribution.
According to the SCA algorithm, the updating solution is based on the sine and cosine
functions, while levy flight is a random walk that uses the levy distribution to produce
search steps and then uses big spikes to search the exploration space more effectively. A
new hybrid algorithm is proposed that combines the exploitation capabilities of the PSO
with the integration of the exploration capabilities of the grey wolf optimizer (GWO). On
the basis of the idea, it combines two methods by substituting a particle from the PSO
with a low probability for a partially better particle from the GWO [34]. The hybridization
method of PSO and differential evolution (DE) has been reported in [35]. The main idea of
the proposal is to control diversity and keep a good balance between the local and global
searches of the candidates.

Indeed, PSO has been widely used in large areas of research such as in the application
of face recognition systems [36], artificial neural network [37], Internet of Things [38],
reliability engineering [39], power-system [40], indoor navigation [41], control-systems [42],
EEG signals [43], deep-learning [44], wireless sensor networks [45], cloud computing [46],
energy grid [47], Image segmentation [48], and electromagnetics [49,50].

3. The Proposed Work

As explained previously, the traditional PSO algorithm is facing challenges. The main
challenge in the PSO process is premature convergence and lack of diversity problems
due to unbalance between exploration and exploitation searches of the particles. The PSO
technique demands significant testing in order to establish the right parameters required to
address the aforementioned difficulties. Therefore, we developed a novel strategy for the
control parameter and presented a modified mutation mechanism for the personal best
and global best particles.

In the traditional PSOs, the inertia weight value is constant in the search process, so
the particles are unable to find the best solution. On the other hand, many researchers
are practices the maximum and minimum inertia weight values for exploration and ex-
ploitation searches respectively. As the values of inertia weight have an imperative role
in a dynamic environment, to solve real world problems in a dynamic environment, we
developed a novel strategy for the inertia weight which will try to maintain the best balance
between exploration and exploitation search of the candidates in the PSO process. Based
on global best function particle values, the inertia weight value is frequently changed
during the development process. In the search procedure, the proposed inertia weight
strategy is important and works with the current mutation mechanism, and this process
mathematically stated as:

wi =
Gbestvalue

Mg
(8)

where w is inertia weight, i denotes the ith particle, Gbest value is the best objective function
value of global best particle and Mg represents the maximum number of generation.

Furthermore, because of the presence of static fitness, the traditional PSO technique
experiences a lack of diversity problem in the early phases of the evolution process for
global best particle gbest and personal best particles pbest. During the search process, all
the particles follow the gbest particle, it may be possible that if the gbest does not know
the best solution, then all the particles are trapped in a local optimal region. During the
optimization process, the difference between the global best particle and the current particle
is so small due to the increasing number of generations that it causes the particles to become
static or stagnant, and as a consequence, the particle velocity is approaching zero, which
causes the algorithm to prematurely convergence.

To tackle the aforementioned issues and difficulties in the conventional PSO algorithm,
we introduced a new mechanism and strategy that chooses a different mutation operator
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based on the selection ratio. The mutation operators are accompanied by personal best
particles and global best particle for the purpose of enhancing the performance of the PSO
process as well as preserving the diversity of the swarm. The proposed adaptive mutation
operators are mathematically expressed by:

Q1 = pbest1
ij = pbestij + Rlyij (9)

Q2 = gbest1
j = gbestj

+ Rlyj (10)

Q3 = pbest1
ij = pbestij + stdij (11)

Q4 = gbest1
j = gbestj + stdj (12)

Q5 = pbest1
ij = pbestij + gamaij (13)

Q6 = gbest1
j = gbestj + gamaj (14)

The inspiration of the mutation operators is described in the following paragraph.
The basic PSO is inspired by the flocking of birds or school fishes, such as the birds

flying in the air randomly, and the learning rate of each particle in the PSO process is
randomized as well. Also, during the motion of birds, the wings of birds play an imperative
role in order to continue flight. At the same time, the wings of the birds need randomized
energy for their flight to spend more time in the air. Consequently, in the flying mode,
the wings of birds are tired due to the presence of less energy during a long journey, and
as a consequence, the birds are unable to explore more search space. Viewing the same
procedure in the PSO process, where the two particles play a primary role during the
search procedure, if the values of personal best and global best particles (energy of the
given particles) are less or reduced during the passing of computational time, the velocity
of the particles approaches zero, and as a result, the algorithm converges prematurely. In
order to avoid this kind of issue, we conducted the mutation operators on particles with the
purpose of improving the searching process of the PSO process and enabling the personal
and global best particle to explore more optima space. Thus, the novel mutation operators
generate random numbers that will provide more energy to the particles and explore more
space regions in the evolution process.

In the PSO optimization process, each mutation operator plays a key role in the
proposed strategy and has a self-determining selection ratio. The optimum proposed
ratios of Q1 and Q2 denoted by X, Q3 and Q4 by Y and Q5 and Q6 by Z respectively.
Where X, Y and Z are all set to 0.3 during the initial phases of the optimization process,
which ensures that each mutation is chosen an equal number of times. The mutation
ratio is updated during the search process depending on the previous mutation operator
success rate to summarize the information gained from the history of the objective function.
Explicitly, the following updated equations for the novel mutation of mechanism as:

X = l + (l − 3l)
outRly

outn
(15)

Y = l + (l − 3l)
outstd
outn

(16)

Z = l + (l − 3l)
outgama

outn
(17)

The number of successful mutations of unique mutation operators in the primary mu-
tation operations is represented by probability (out) in the above equation. The minimum
ratio of each mutation operator is predefined by a constant l, and its value is set to 0.04.
Furthermore, during the evolution process the values of X, Y and Z are updated after every
generation. The selection process of the best mutation is adapted to the roulette wheel
selection method on the basis of the selection ratio of mutation operators, as the roulette
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wheel selection mechanism is such that the ratio of mutation operators having a longer
stay (high selection ratio) will be chosen with a high probability.

4. Numerical Results Analysis

The proposed Improved PSO has been compared to five other well-known optimal
algorithms on ten mathematical test functions having dimensions 100. The details are given
as under:

• A Particle swarm optimization with adaptive mutation for multimodal optimization
(AMPSO) [20].

• A modified PSO algorithm with dynamic parameters for solving complex engineering
design problem (MPSOED) [24].

• Analysis of gaussian & cauchy mutations in modified particle swarm optimization
algorithm (GCMPSO) [25].

• Global Particle Swarm Optimization for High Dimension Numerical Functions Analy-
sis (GPSO) [27].

• Modified particle swarm optimization algorithm for scheduling renewable generation
(MPSO) [51].

• Modified particle swarm optimization with effective guides (MPSOEG) [52].

For the current research work, we use mathematical test functions for the purpose to
evaluate the novel method as well as other algorithms, as the said benchmark problems are
popular in the field of engineering and are normally considered benchmark problems. In
this paper, we employed ten mathematical functions to examine the effectiveness of particle
swarm optimization with parameter adjustment. All these are unimodal and multimodal to
validate the proposed IPSO algorithm’s performance, and the results are compared to the
various PSO variants such as, GPSO, AMPSO, MPSO, MPSOED, GCMPSO and MPSOEG,
in tabulated data and plots of various methods indicated from 1~10. Table 1 shows these
test functions along with the search space in which they are commonly optimized.

Table 1. High Dimensional Classical Benchmark Functions.

Function’s Name Mathematical Definition Range

Rastrigin f1(x) = 1
4000

n
∑

i=1
z2

i −
n
∏
i=1

cos
(

zi√
i

)
+ 1 [−600, 600] D

De Jong’s f2(x) =
n
∑

i=1
ix2

i
[−5.12, 5.12] D

Bent Cigar f3(x) = x2
i + 160

n
∑

i=2
x2

i
[−100, 100] D

Step f4(x) =
D
∑

i=1
(xi + 0.5)2 [−100, 100] D

Quartic f5(x) =
n
∑

i=1
x4

i + random(0.1) [−1.28, 1.28] D

Sphare f6(x) =
n
∑

i=1
x2

i
[−100, 100] D

Schwefel’s Problem 1.2 f7(x) =
D
∑

i=1

(
n
∑

I=1
zi

)2
+ fbias1

, z = x− 0

and fbias1
= 450

[−100, 100] D

HappyCat
f8(x) =

∣∣∣∣ n
∑

i=1
x2

i − n
∣∣∣∣ 1

4

+
(0.5

n
∑

i=1
x2

i +
n
∑

i=1
xi)

n + 0.5 [−100, 100] D

Alpine1 f9(x) =
n
∑

i=1
|xsin(xi) + 0.1xi| [−10,10] D

Griewank f10(x) = 1
4000

n
∑

i=1
z2

i −
n
∏
i=1

cos
(

zi√
i

)
+ 1 + fbias2 ,

z = x− 0 and fbias2 = −180

[−100, 100] D

“D” means search space Dimension.
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To judge a proper comparison among the various methods while analyzing the factual
analysis of these optimization functions, we employed the same parameter values for all
algorithms in the computational testing. The maximum generation was set to 2000 and
the dimension to 100. In 60 trial runs, Table 2 records and reports the best values while the
worst, mean, variance solution values for are available in Appendix A.

Table 2. Statistical Analysis of the Best Objective Function Values for 100 Dimensions Bench-
mark Problems.

Function IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

f1 −14.30 −3.10 −4.00 −2.60 −1.70 −5.40 −7.35

f2 −99.00 −2.80 −5.80 −22.00 −10.80 −26.10 −16.94

f3 −32.30 −10.30 −14.60 −7.68 −7.96 −15.20 −4.65

f4 −75.46 −14.50 −9.70 −17.28 −39.22 −26.30 −24.38

f5 −60.70 −26.71 −16.30 −47.93 −12.04 −26.70 −19.15

f6 −11.30 −2.80 −3.30 −7.48 −5.20 −2.20 −5.30

f7 −95.00 −72.00 −29.00 −32.40 −28.40 −46.20 −22.49

f8 −1.50 0.20 1.20 1.50 0.40 −0.40 −0.90

f9 −19.12 −3.80 −1.50 −7.00 −7.50 −4.80 −7.73

f10 −31.80 −18.10 −10.90 −10.80 −7.80 −21.30 −4.90

5. Discussion

On the basis of these comparable data metrics, we claim that our proposed approach
(IPSO) performs better as compared to the well-known other algorithms and strategies. The
following are the most complicated benchmark problems that are chosen for the validation
to recheck the performance of various algorithms. Consequently, the best objective function
values for various techniques and our proposed algorithm are indicated in Table 2, while
worst, mean and variance results are tabulated in the Appendix A.

Consider the test function, namely the “Rastrigin function”, which is a complex
multimodal function with a single global optimal solution and multiple local minima.
According to tabulation results, we know that our new approach surpasses other methods
such as GPSO, AMPSO, MPSO, MPSOED, GCMPSO, and MPSOEG. The test results of
Rastrigin function shows that our proposed method performed well as compared to other
ones, so it comes in the first category.

To recheck the stability and power of our proposed PSO, we validated the test function,
i.e., the “Alpine 1” test function. The Alpine is also a complicated and complex multimodal
function, having many local minima and one global optimal solution, while having the
range between [−10, 10]. The tabulation value of Alpine function indicates that our
algorithms gives minimum result as compared to others. We conclude that our novel
approach shows outclassed results on Alpine function as compared to other algorithms.

Similarly, if we check the results of our modified PSO (IPSO) on sphere function,
which is unimodal and complex, the global optimal solution of the sphere function is zero
and having the range of the search space is [−10, 10]. The tabulation results shows that our
modified PSO optimized the said function.

In addition, our modified method produced the top results on the HappyCat bench-
mark function. The HappyCat function is frequently used to validate the algorithms, due
to the presence of so many local minima and complicated structures. If we observe the
results of the Quartic function, it shows that our modified approach also gave the top
results as compared to the other ones. In summary, the Schwefel’s Problem 1.2 function
and De Jong’s, Bent Cigar, Step, Quartic, Alpine1, and Griewank were all these complex
and complicated optimization problems that are commonly used to validate algorithms. In
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short, our novel IPSO shows good results for most optimization problems as compared to
other well-known modified algorithms.

The convergence curve based on test functions f1, f5 and f7 is represented in Figures 1–3
respectively, while the curves for f2, f3 , f4, f6, f8, f9 and f10 are availble in appendix shows
the convergence characteristics for various algorithms. Viewing the critical study of test
function f 1 we notice that our approach finds the required solution space after 500 genera-
tions and other methods such as AMPSO, GPSO, MPSOED, and GCMPSO perform badly,
which indicates their low performance and robustness.

From the study of second test function plots, we understand the low performance
of other comparable methods and the efficacy of our proposed approach, as in the whole
search process, other well-defined methods could not converge to a global region, while
our novel modified approach finds the main region after 2000 generations. Similarly,
our observation on the third function f3 plot is reported as the said idea converged
before 600 generation, while other algorithms never found the optimal solution of the
said algorithms.

If we observe the plot of the sixth test function, we conclude that MPSO performs a
little bit better than AMPSO and while the IPSO (proposed approach) performs outclass
as compared to all other algorithms, which shows its stability and maturity. So, from the
plots, it is obvious that the novel algorithm shows the best performance.

Figure 1. Algorithms convergence plots on f1.

Figure 2. Algorithms convergence plots on f5.
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Figure 3. Algorithms convergence plots on f7.

In this article, we employ the logarithm values of the objective function for comparison.
From the graphical results of the test functions, the proposed IPSO converges to the global
optimal region faster than the GPSO, AMPSO, MPSO, MPSOED, GCMPSO, and MPSOEG.
The reasons are (1) the proposed novel adaptive mutation operator has prevented the
diversity loss of the optimization process, (2) the proposed dynamic factor comprises the
balance between exploration and exploitation in the search domain. Thus, we conclude
from the plots that the suggested approach convergence plots for various test functions
proves its superiority compared with others. From the convergence trajectories, it is clear
that the novel technique is more efficient, stable and robust. Viewing the numerical results,
the proposed IPSO’s final solution has significantly greater quality as compared to the
others, namely “GPSO”, “AMPSO”, “MPSO”, “MPSOED”, “GCMPSO” and “MPSOEG”.

6. Application

For better performance analysis of our proposed approach, we choose an engineering
electromagnetic device i.e., “TEAM workshop problem 22 (SMES)” as another case study.
The optimal design of a SMES device is a popular problem in computational electromag-
netics, and it is the 22nd benchmark problem for testing electromagnetic analysis methods
(TEAM 22) [53]. The SMES device stores energy in the form of magnetic fields which
is generated from the superconducting coils. The TEAM workshop problem 22, is also
known as an optimization case of the SMES that has been adapted as a magneto-statics
benchmark problem. The following diagram of TEAM 22’s design goal, as illustrated in
Figure 4, is that the main idea of the problem is to keep the stored energy as close as 180 M
Joule, while minimizing the magnetic stray field observed on lines a and b. The first coil
is charged to store energy, and the second should be built to reduce the first coil’s high
magnetic stray. In addition, to maintain the superconductivity of the inside and outside
coils, the quenching condition should not be violated. As, the manufacturing tolerance in
geometric variables (e.g., R2, d2 and h2 in Figure 4), as well as perturbation compensation
of the current controller, can lead to a faulty device.

According to the design procedure of the problem, it incorporates three parameters
related to the creation of SMES [54,55].{

min f = B2
stray/B2

norm +
∣∣∣Energy− Ere f

∣∣∣/Ere f

s.t (Ji < −6.4
∣∣(Bmax)i + 54)(A/mm2)(i = 1, 2)

(18)

Obviously, this SMES device is a single objective function design problem, but it
actually combines two objective functions to integrate magnetically stored energy in a
couple of coils Wm, Wer f = 180, M Joule, N = 22, and Bnorm = 3m Tesla.
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Figure 4. Schematic diagram of SMES device.

The mathematical equation for the stray magnetic field as follows:

OF =
B2

stray

B2
re f

+

∥∥∥wm − wm.re f

∥∥∥
wm.re f

(19)

B2
stray =

N
∑

i=1
B2

stray.i

N
(20)

The finite element method is applied to calculate the performance parameters in the
above two equations in current research work. When a magnetic field is created, it is
essential to keep the physical condition of coils in order to guarantee superconductivity
within the solenoids.

Because the current density is 22.5 A/mm2 then Bmax must be less than 4.92.

Ji < (−6.4|(Bmax)i|+ 54)
(

A
mm2

)
(21)

where, J1, indicates the coil’s current density, and Bmax, represents the maximum magnetic
flux density of the ith coil, while i, denotes the coil’s number.

The inner solenoid is fixed in this electromagnetic problem, optimization of SMES
device is; r1 = 2 m, d1 = 0.27 m and h1

2 = 0.8 m, whereas the outer-solenoid geometrical
dimensions is 0.6 ≤ r2 ≤ 3.4 m and 0.1 ≤ r2 ≤ 0.4 m are optimized.

The super conducting magnetic energy storage device conveys currents in opposing
directions, associated with radius, height, thickness, and search space of the stray field, as
demonstrated in Table 3. For the sake of fair comparison, we set all of the parameters to the
same values for IPSO, GPSO, AMPSO, MPSO, MPSOED, GCMPSO, and MPSOEG, and the
average value of the objective function was reported in Table 3. The results demonstrate
that the novel IPSO recorded output is superior to those of the others.

To synthesize a magnetic field with a desired distribution, appropriately designed
current-carrying coils can be used. There are several applications in biomedical engineering:
a uniform magnetic field is the background of nuclear magnetic resonance spectroscopy,
and a linear profile of the field is required for magnetic resonance imaging. Furthermore,
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in magneto-fluid hyperthermia (MFH), field uniformity aids in the uniform dispersion of
heat generated in the nano-particle fluid that was previously injected into the target region,
such as a tumor mass being treated. As a result, major practical applications influenced the
concept behind this benchmark problem.

Table 3. Results Comparison of IPSO with other variants on TEAM Workshop Problem 22.

Algorithm R2 h2/2 d2 Objective Function Fitness

IPSO 2.9918 0.2028 0.2939 0.0717
GPSO 2.9713 0.2037 0.3192 0.1287

AMPSO 3.0017 0.6000 0.3201 0.1136
MPSO 3.0084 0.8265 0.2786 0.1356

MPSOED 2.8464 0.5729 0.3382 0.1123
GCMPSO 2.6050 0.2040 0.1000 0.1210
MPSOEG 3.1103 0.7325 0.2731 0.0821

7. Conclusions

PSO is a relatively new metaheuristic for global optimization of a multimodal objective
function with continuous variables, and has been recognized a standard global optimizer.
Although a wealth of efforts have been devoted to improve its convergence speed, solution
quality, and algorithm stability, the performance of the existing PSOs are still unsatisfactory.
For example, a premature convergence and the loss of diversity are two challenging issues
to be addressed for existing PSOs. In this respect, a novel adaptive mutation operator is
designed to ensure the diversity of particles in the optimization process, and a dynamic
factor is proposed to ensure a good balance between exploration and exploitation searches.
The numerical results on mathematical test problems and an engineering application
prototype have validated the effectiveness of the proposed PSO algorithm. Consequently,
the present work provides a feasible global optimizer for optimizations of multimodal
functions with continuous variables.

In future study, we would really want to analyze the convergence problem using a
hybrid optimization algorithm (PSO & ABC) and introducing novel formulations for the
cognitive and social components, designing novel selection methods for the leader particle,
and creating new equations for the personal best particle using the idea of neighborhood.
At the same time, we may choose other case studies such as, solenoid problems, as well as
using some novel shifted or rotated mathematical test functions.
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Abbreviations

PSO Particle Swarm Optimization
IPSO Improved Particle Swarm Optimization
C1 Cognitive Constant
C2 Social Constant
pbest Personal Best
gbest Global Best
W Inertia Weight
SPSO Smart Particle Swarm Optimization
CF Convergence Factor
AIWF Adaptive Inertia Weight Factor
GA Genetic Algorithm
SCA Sine Cosine Algorithm
GWO Grey Wolf Optimizer
DE Differential Evolution
PV Photovoltaics
Mg Maximum Generation
Rly Rayleigh’s method
Std Students
Out Outcome
Q Mutation Operator
SMES Super Conducting Magnetic Storage System
TEAM Testing Electromagnetic Analysis Method
Wm Magnetic Energy
OF Objective Function
Ji Current Coil Density
Bmax Maximum Magnetic Flux

Appendix A

Performance Comparison based on Worst, Mean and Variance.

f1 Rastrigin

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 0.00 0.20 0.10 0.20 6.70 1.10
Mean −12.18 −2.14 −2.10 −1.49 −0.62 −0.21 −3.80

Variance 4.14 0.77 1.13 0.84 0.68 3.45 2.35

f2 De Jong’s

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 1.00 1.00 0.00 0.00 0.00 16.90 1.20
Mean −50.64 −1.25 −3.22 −14.41 −7.09 −10.70 −9.77

Variance 30.13 1.08 1.87 7.44 3.59 12.08 6.63

f3 Bent Cigar

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 1.00 1.80 1.70 1.10 0.00 2.60
Mean −27.01 −7.32 −7.37 −5.69 −3.24 −8.02 −1.01

Variance 10.12 2.92 6.22 3.02 2.84 5.93 2.20

f4 Step

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst −1.00 0.90 1.10 1.80 1.70 1.01 0.10
Mean −45.65 −5.65 −3.79 −7.13 −15.65 −9.95 −11.49

Variance 26.14 5.12 3.75 6.10 12.91 8.78 7.70
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f5 Quartic

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 1.00 0.00 1.00 0.00 0.00 0.75
Mean −54.37 −11.58 −7.79 −22.93 −5.77 −11.18 −8.16

Variance 16.18 8.70 5.52 14.99 3.76 10.00 6.71

f6 Sphare

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.80 0.90 1.60 0.80 1.00 1.41 0.93
Mean −5.55 −1.09 −1.18 −2.85 −2.90 −0.82 −3.73

Variance 3.90 1.05 1.43 2.67 2.62 0.90 2.09

f7 Schwefel’s Problem 1.2

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 5.90 8.30 10.00 10.10 8.90 6.00 6.11
Mean −68.62 −62.69 −10.44 −12.20 −10.38 −12.75 −6.26

Variance 33.84 21.23 17.25 15.15 13.06 18.28 9.42

f8 HappyCat

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 1.90 2.40 2.30 2.50 2.60 8.00 1.19
Mean −0.75 0.60 1.46 1.88 1.17 1.77 −0.44

Variance 1.17 0.43 0.21 0.29 0.40 1.34 0.71

f9 Alpine1

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 3.20 2.90 0.90 3.00 2.90 3.30
Mean −14.57 −2.28 1.74 −4.37 −1.34 −0.28 −1.69

Variance 6.33 1.70 1.25 2.62 4.15 2.43 4.20

f10 Griewank

IPSO GPSO AMPSO MPSOED MPSO GCMPSO MPSOEG

Worst 0.00 0.90 1.10 1.00 2.00 1.60 1.10
Mean −17.02 −8.47 −5.60 −7.01 −2.50 −13.59 −2.35

Variance 10.86 6.17 4.14 4.68 3.27 7.94 2.17

Figure A1. Algorithms’ convergence plots on f2.
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Figure A2. Algorithms’ convergence plots on f3.

Figure A3. Algorithms’ convergence plots on f4.

Figure A4. Algorithms’ convergence plots on f6.
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Figure A5. Algorithms’ convergence plots on f8.

Figure A6. Algorithms’ convergence plots on f9.

Figure A7. Algorithms’ convergence plots on f10.
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Discription of Mathematical Test Function

Rastrigin is a multimodal function and is challenging to solve because it contains
several local minima regions where an optimization algorithm with limited exploratory
power is likely to become trapped. The function’s lone globally optimal solution, 0, is
located within the domain of [−5.12, 5.12] at f (x*) = [0, 0, . . . , 0].

The step mathematical test function is one of the more complicated and complex
problems due to the lack of suitable direction. The minimum value is fixed at zero. The
search region of said benchmark problem is [−100, 100], and the shape of the given
benchmark problem is flat.

Researchers are using the Quartic function as a benchmark problem due to its uni-
modal quality. Its global point is zero and the space of its search is mentioned and presented
between the values of [−1.28] and [1.28].

The test function, namely “Sphere,” is a unimodal and continuous function, and the
solution of such types of problems is easy. The search domain should be mentioned in the
brackets [−5.12, 5.12]. The zero is the minimum value of the given sphere function where
the value is derived by the computational scientist and the research optimization school.

Griewank is the mathematical test function that is used in the field of engineering
design for the validation of computational techniques. The mentioned problem is complex
and multimodal, and its feasible range of function is [−100, 100]. The scientist has already
discovered that the global optimal solution to the aforementioned benchmark problem
is zero.

The Alpine 1 function is a mathematical test function used to validate computing
strategies in the field of engineering optimization. This function is Multimodal and Contin-
uous with a −10 ≤ xi ≤ 10 constraint. The origin is the location of the global minimum,
where x = (0, 0) and f(x) = 0.
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Abstract: Short-term load forecasting (STLF) is a fundamental tool for power networks’ proper
functionality. As large consumers need to provide their own STLF, the residential consumers are the
ones that need to be monitored and forecasted by the power network. There is a huge bibliography on
all types of residential load forecast in which researchers have struggled to reach smaller forecasting
errors. Regarding atypical consumption, we could see few titles before the coronavirus pandemic
(COVID-19) restrictions, and afterwards all titles referred to the case of COVID-19. The purpose of this
study was to identify, among the most used STLF methods—linear regression (LR), autoregressive
integrated moving average (ARIMA) and artificial neural network (ANN)—the one that had the best
response in atypical consumption behavior and to state the best action to be taken during atypical
consumption behavior on the residential side. The original contribution of this paper regards the
forecasting of loads that do not have reference historic data. As the most recent available scenario,
we evaluated our forecast with respect to the database of consumption behavior altered by different
COVID-19 pandemic restrictions and the cause and effect of the factors influencing residential
consumption, both in urban and rural areas. To estimate and validate the results of the forecasts,
multiyear hourly residential consumption databases were used. The main findings were related
to the huge forecasting errors that were generated, three times higher, if the forecasting algorithm
was not set up for atypical consumption. Among the forecasting algorithms deployed, the best
results were generated by ANN, followed by ARIMA and LR. We concluded that the forecasting
methods deployed retained their hierarchy and accuracy in forecasting error during atypical consumer
behavior, similar to forecasting in normal conditions, if a trigger/alarm mechanism was in place and
there was sufficient time to adapt/deploy the forecasting algorithm. All results are meant to be used
as best practices during power load uncertainty and atypical consumption behavior.

Keywords: short term load forecast; atypical consumption behavior; load profile; COVID 19; power
load uncertainty

1. Introduction

In residential short-term load forecasting (STLF), future power consumption is pro-
jected by applying a preestablished relationship between power load and its influence
factors, or by dynamically assessing historical data and adapting the correlation of the
influence factor—namely, time and/or weather—with the load [1]. Defining this relation-
ship is a two-part process: (a) identifying the correlation between power consumption and
factors that influence that consumption, (b) quantifying the effect on consumption by using
a suitable technique to estimate each factor. In order for this analysis to generate results
that could be easily multiplied, a good understanding of the consumer to be analyzed is
required [2]. A prerequisite for developing an accurate forecasting model under atypical
consumption behavior or power load uncertainty is a trigger that announces the decision
factors for atypical consumption behavior to occur. This knowledge concerning the behav-
ior of the load curve is determined by correlation between the influence factors, consumer
data and statistical analysis of past consumption [3–7].
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Papers from a literature review address the issue of the methodology used to model
the first COVID-19 lockdown effects on power load. In [3] we can see a comparison
of convolutional neural network (CNN)-based model forecasting with multiple linear
regression (MLR) and an unknown forecasting method used by the system operator (SOM)
using a Romanian database of all consumers. We can see in [3] that CNN was the most
accurate method used for the COVID-19 database, with a median mean absolute percentage
error (MAPE) of 1.0007% relative to 1.0692% for MLR and 1.1552% for SOM. In addition,
we can see in [3] that the CNN method had higher maximum errors than the SOM. A
database of New York (NY) consumption for the same atypical COVID-19 lockdown
consumption event was analyzed in [4] by deploying three forecasting methods, namely
Fully Connected Deep Neural Network (FCDNN), Long Short-Term Memory (LSTM), and
Gated Recurrent Unit (GRU), along with Auto-Regressive Integrated Moving Average
(ARIMA) which did not produce meaningful results on their database and therefore was
not considered. The MAPE results in [4] were best in GRU with 4.04%, followed by
FCDNN with 4.08% and lastly LDTM with 4.26%, all under the 5.35% benchmark for the
NY database. The Jordanian National Electric Power Company (NEPCO) power database
was used in [5] to evaluate, also during the COVID-19 lockdown period, the forecast
efficiency of Autoregressive Integrated Moving Average with Exogenous (ARIMAX) and
Artificial Neural Network (ANN). The daily forecast accuracy was also evaluated with
MAPE and had better results with ARIMAX (5.5%) than with ANN (5.8%). Covering the
largest US deregulated wholesale electricity market—Pennsylvania, New Jersey, Maryland
(PJM)—[6] assessed forecasting under uncertainty in the pre-COVID-19 era by using a
Gaussian process and obtaining an efficiency between 2.21% and 3.20% MAPE. Even
though the atypical consumption was not related to COVID-19, the methodology used was
suitable for any power load uncertainty related to an unforeseen event. Paper [7] assessed
national European databases from France and Italy, and was the first study applying
the lessons learned from the previous COVID-19 affected power load databases. The
forecasting methods used in [7], covering data both from a pre-COVID-19 database and
collected during lockdown and post-lockdown recovery, included ARIMA, Generalized
Additive Models (GAM), Kalman Filtering and a combination of the first two methods
(GAM+ARIMA). During the first lockdown the MAPE results were high, ranging from
4.28% for the GAM+ARIMA model through 4.81% for Kalman static filtering and 4.83%
for GAM to 5.44% for the ARIMA model. All papers addressing the issue of forecasting
under atypical consumption used methods that were altered by the operator to address the
changing consumption profile. This limitation offered us a chance to focus on the consumer
profile rather than on the historic trend, giving the forecasting methodology a flexibility in
tackling unforeseen power consumption events.

The modeled characteristics of the consumer to be analyzed [1] are an essential in-
dicator of the health of the forecast, seen even more during unpredictable power load
events, as the previous research states [3–7]. Power consumers absorbing load in similar
socio-economic and weather/climate areas usually have similar consumer behavior, and
consumption forecast models developed for a type of consumer can easily be adapted for
forecasting the consumption of other consumers in the same conditions. The main aim of
the work was to identify the best load forecasting methods, of the ones applied, that gave
us the smallest forecasting errors in atypical consumption behavior.

Part of an already ongoing COVID-19 pandemic, the first confirmed cases to reach
Romania were on 26 February 2020. Following a rather similar European pattern the
pandemic evolved and the first load curve-impacting pandemic-related legal measures
were deployed on 16 March 2020, when the Romanian president decreed that a state
of emergency should be implemented in Romania for a period of 30 days. Growing
numbers of new COVID-19 confirmed cases in Romania led to the government announcing
Military Ordinance No. 3 on 24 March 2020, instituting a national lockdown. These
unprecedented restrictions were enforced by the support of military personnel, police and
Gendarmerie [8–12]. People were not allowed to leave their homes or households, although
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some exceptions (work, buying food or medicine etc.) were allowed. Older people (over 65)
were allowed to leave their homes only in the time interval of 11 a.m. to 1 p.m. This rule
was applied to 16.4% of the rural population in Bihor County [13], for whom this restriction
was assessed as an influence factor. On 14 May 2020 the state of emergency was lifted and
replaced with a state of alert, meaning a decrease in the lockdown measures. A second
wave of COVID-19 infections led to a partial lockdown on 9 November 2020. A third wave
meant a milder lockdown with reduced restriction rules on 9 March 2021, and mainly local
quarantines for the affected locations [8–12]. Urban or rural residential consumers included
in the database were not affected by local lockdowns.

In order to validate the results of this study, we used a large multiyear database
containing hourly consumption [14] separated into residential urban and residential rural
consumers in Bihor County, Romania. The advantages of this database are that it contains
a huge number of consumers (households) and that the residential consumers are the ones
that have the best correlation to the consumption influence factors, e.g., weather. Previous
research was conducted [3–7] mainly on national or international databases containing all
consumption, including residential, commercial, industrial, transport, etc. This means that
the nonresidential consumers, which have the obligation to forecast their own consumption,
accounted for more than half of the power consumption forecasted.

By addressing only forecasting for residential consumers, we mitigate the risk of low
efficiency STLF in the area in which the power networks are most vulnerable from the
financial point of view and from the stability point of view.

The main contributions of this paper can be summarized as follows:

• Identify the profile of Bihor County’s urban and rural residential consumers relative
to other EU residential profiles

• Evaluate the efficiency of STLF methods during COVID-19 lockdowns in different scenarios
• Compare the STLF results for residential Bihor County consumers with previous

research on STLF under uncertainty.

The rest of the paper is structured as follows: Section 2 describes the database used to
test and validate the three STLF methods, presenting also the particularities. In Section 3
the Methodology used is presented, mainly the STLF algorithms and succession of steps,
as shown in Figure 1. Case analysis and results are presented in Section 4. Section 5 covers
a discussion of the findings and state of the research, and finally conclusions and future
research best practices are covered in Section 6.

Figure 1. Flowchart of STLF in atypical consumption behavior.

2. Database Presentation

The database is a representative sample of both rural (7k households) and urban
consumers (23k households). The database is a multiannual (2019–2021) recording of
hourly energy use and is provided as Supplementary Material to this manuscript. Due to
the volume of information to disseminate in this paper, we approach all the specifications
and particularities of the database that are essential to this research. The urban households
are located in cities in Bihor County, Romania, in the second climatological area, with
an annual average temperature of 11.6 ◦C [15]. We present three charts specific to the
yearly average urban database. Figure 2 shows the yearly consumption relative to 2020,
the year for which we have the atypical consumption behavior that we targeted in our
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STLF deployment. Figure 3 shows the weekday consumption and Figure 4 the seasonal
profile consumption. For profiling reasons, Figure 2 presents only 2020 data, but Figures 3
and 4 statistically address all three years covered by the database. The rural households are
located in Bihor County, Romania, in the third climatological area, with an annual average
temperature of 9.6 ◦C [16]. In Figure 5 we can see a representative chart of the 2020 yearly
consumption segmented into weekly loads starting on Sundays. Figures 6 and 7 show
the statistics of the specific consumption of the rural household over weekdays and over
each season.

Although weekly patterns are rare in nature, they are common in human activities,
which is why we chose a 3D yearly chart; this chart contains essential information for
classifying the consumption pattern.

The weekday pattern for urban residential consumers in Bihor County (RBCR) was
relatively similar to the weekday patterns in Ireland, Hungary, Italy and UK, with the
caveat that the household electric energy consumption was different [17]. With regard to
the daily high peaks, the urban RBCR consumer was closer to the consumer profile from
Hungary and Italy than that from Ireland and the UK [17].

Figure 2. Weekly load curve in 2020 for urban consumers.

 

Figure 3. Box and whiskers plots for days of the week in 2020 (urban).
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Figure 4. Box and whiskers plots for hourly consumption in each season in 2020 (urban).

 

Figure 5. Weekly load curve in 2020 for rural consumers.

 

Figure 6. Box and whiskers plots for days of the week in 2020 (rural).
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Figure 7. Box and whiskers plots for hourly consumption in each season in 2020 (rural).

In comparing the weekday consumption for rural and urban RBCR, the differences
were due to the specific activities that take place in rural areas (Figure 8). While the
urban consumption on weekdays (Monday to Friday) showed a bell shape, the rural chart
showed a flattened reversed bell. While the most active days in terms of electric energy
consumption seemed to take place on Wednesdays in the urban areas, in the rural ones the
highest consumption was associated with Fridays [14].

 

Figure 8. Rural vs. urban weekly consumption patterns.

The weekend daily consumption pattern was relatively similar for urban and rural
consumers in the regard that the consumption was lower on Saturday and higher on
Sunday. The increase in Sunday consumption was bigger for the urban RBCRs. The same
load profile was seen in all other countries’ consumers that were analyzed [17] with a
higher consumption on Sunday vs. Saturday [14].

A particularity of the rural RCBR is that it stands out of the large EU patterns identi-
fied in previous studies [17], with less consumption on Saturday relative to Friday. This
particularity could be a good asset in forecasting and deploying power network resources.

With regard to the meteorological season’s consumption pattern, we can see that the
county is similar to the other EU countries covered so far in previous studies [17] with a
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good correlation with the day degree influence factor. The seasonal consumption pattern
was more closely related to that of Italy and Hungary than that of Ireland and the UK [14].

The gap in summer consumption in seasonal analysis was steeper for the rural RBCR
consumers (Figure 9). We associate this finding with a poor penetration of air-conditioning
cooling devices in rural areas. In addition, in comparison to previous studies [17], we can
see that this consumption was increased in the winter not due to electrical heating but
mainly to the lower availability of natural light and the movement of activities indoors.

 

Figure 9. Rural vs. urban meteorological season consumption patterns.

The differences in consumption patterns could be connected to energy-related edu-
cation levels [18] and with poor market availability of smart meters and hourly billing
for RBCRs.

In previous research [2] we found that identifying, analyzing and clustering consumer
types can have a very good outcome in modeling and forecasting short-term and medium-
term power consumption. These findings have implications in assessing and developing
commercial electric energy prices.

The database used in this study was extracted from a public national database [19].

3. Methodology

Although most of the research on load forecasting is on advance forecasting tech-
niques, decision-making revolves around classical forecasting methods: moving average,
linear regression and multiple linear regression [20]. We assess three methods of forecast-
ing for atypical consumption behavior: linear regression (LR), autoregressive integrated
moving average (ARIMA) and Artificial Neural Network (ANN). Previous estimations
performed with fuzzy forecasting methods gave high errors [21], so we did not include
fuzzy forecasting in this study.

The first steps were digesting the database and preparing it for deeper understanding
and ease of mathematical modeling. Influence factor databases were also added and
filtered, including the weather database and the weekly and daily databases containing
socio-cultural and economic activity milestones. The database was a fixed one, and none of
the methods used was trained to update in real time with an expanding database.

3.1. Database Filtering for Outlier Values and Noise Removal

A relatively simple filter to remove outlier values was constructed. The limit of the
outlier value was stated at six times the mean value. First, 25 outlier values in each database
were double-checked and manually confirmed [14,22,23].

ε(x) = x o f x0; i f ε(x) ≥≤ ε (6m), x = m (1)
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where:

x is the actual value,
m is the mean value.

3.2. Correlation of Database Values with the Exterior Influence Factors

We used a standard correlation model for a yearly database [2]:

r = Correl(x, y) = ∑i=8760
0 (xi − x)(yi − y)√

∑i=8760
0 (xi − x)2(yi − y)2

(2)

where x is the actual power database value and x is the average of similar temporal values,
e.g., same time interval of the same day of the week in the same season; y is the actual
meteorological/daylight database value and y is the average of similar temporal values.

3.3. Linear Regression

The first forecasting in each line of estimation was carried out with the industry’s most
commonly used method [20]:

ŷ(t) = a0 +
n

∑
i=1

aixi(t) + r(t) (3)

where:

y(t) is value at time t to be forecasted;
x1(t) represents the influence factors;
r(t) is the residual load at t;
ai is the regression parameter.

3.4. Autoregressive Integrated Moving Average

Having a proven higher efficiency in forecasting data highly related with human
activities and behavior [24,25], we used as the second forecasting method the ARIMA
technique:

Xt − α1Xt−1 − · · · − αp′Xt−p′ = εt + θ1Xεt−1 + · · ·+ θqXεt−q (4)

where:

Xt represents the time series data;
αi represents the parameters of the autoregressive part of the model;
θi represents the parameters of the moving average part;
εt is the error term.

3.5. Artificial Neural Network

Available on a large scale and easy to train and use, the ANN method is the first
weapon of choice after regression techniques. We used a multilevel ANN (feed forward)
including gradient descent and backpropagation algorithms by minimizing error with a
non-Euclidean-type function. Multilevel feed forward networks are trained via supervised
methods involving the use of training instances of the form (Xp, tp)

Xp = (Xp
1, Xp

2, . . . , Xp
N ) is the input vector for the training p;

tp = (tp
1, tp

2, . . . , tp
M ) is the desired output vector for p;

N is the number of input units of the network;
M is the number of output units.

If F(X) is the function processing the problem as per input X:

tp = F(Xp) (5)
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then the output by processing the input data using neural network is defined by:

Op = (Op
1, Op

2, . . . , Op
M) (6)

where Op is the result of processing of the input, Xp, by using the function Fw(w;Xp) network
applied as an approximation of F(X), so:

Op = Fw(w;Xp) (7)

The error recorded during processing through the network of the input vector Xp—i.e.,
the measured error in a unit of output Uj—defined by ep

j is expressed as the difference
between desired and actual output achieved:

ej
p = tj

p − Oj
p (8)

Error Ep, recorded during the processing through the network of the input vector Xp

and established across the whole neural network, is obtained by combining the error ep
j

based on a relationship of the form:

Ep =
M

∑
j=1

f
(

ep
j

)
(9)

For error calculation the Ep error and zero based log sigmoid function are used:

f (x) =
ea+bx

1 + ea+bx (10)

3.6. Forecasting Error Assesing with Mean Absolute Percentage Error (MAPE)

Usually, the assessment of forecasting errors is conducted with two or three indicators,
such as Mean Absolute Error (MAE) and MAPE of Root Mean Square Error (RMSE),
but taking into consideration that the average values for rural and urban consumption
per household differed significantly [14] we used only the MAPE to evaluate forecasting
method accuracy.

MAPE =
1
N

N

∑
i=1

∣∣Pi − Pi
∣∣

Pi
100% (11)

where Pi is the power value at time I, Pi is the forecasted power value for time i and N is
the number of the forecasted value.

3.7. Trigger/Alarm for Atypical Consumption Behavior in Near Future

An unpredictable and unexpected event that is related to human behavior as con-
sumption has very limited available information that can be used in forecasting [26,27].

We assume that such an event will not be visible prior to occurrence in available
databases. Therefore, we must rely on big data analytics [28] and identify a threshold using
methods other than the Twitter analytics proposed in [28] that can raise the alarm for the
next STLF. Behind every forecast, there is a human operator that makes sure the database
is delivered correctly, and this method would first check the assumptions that are made.
Knowing that all human activities are subject to error, we must try to deploy an automatic
trigger that raises an alarm based on an explosion of breaking news, such that the human
operator could address this alarm and decide if action is needed or if the forecast should be
deployed as before [29,30].

3.8. Steps to Identify the Best Forecasting Method under Atypical Consumer Behavior

The recommended way to address a forecast, and afterwards forecast under atypical
behavior, is stated hereunder:
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1. Database presentation, including specific, known influence factors;
2. Database filtering, denoising and outlier value removal;
3. Identification of sensitivity of consumer behavior to influence factors (weather, socio-

economic activities, etc.) by correlation;
4. Deploying multiple forecasting algorithms and identifying the most accurate one for

the specific database;
5. Setting up a trigger/alarm for future atypical consumption behavior;
6. Deploying forecasting methods adapted for the atypical event;
7. Identifying best practices and disseminating them.

All these steps should take into consideration that each database has its particularities,
and these steps should address each and every one of them, e.g.: one deployment for
weekdays and a separate one for weekend days, separate deployments for winter and
summer, etc.

4. Case Analysis

Applying the steps mentioned in Section 3.8, the returned results were as follows:

1. The few outlier values identified were removed by the filtering algorithm.
2. The database had high fidelity and we encountered few outlier values, under 0.02%

(0 or close to 0, or unusually high, more than six times the load peak value);
3. We assessed the correlation between the influence factors, mainly weather and socio-

cultural events, and consumption among rural consumers to be r = −0.2797 versus
that among urban consumers, r = −0.2651;

4. In order to validate the correlation results we clustered the database by weekdays,
one profile for each weekday, to identify characteristics and compare with similar
consumption in the EU [17]. Clustering was also performed for meteorological seasons
for the above-mentioned comparison;

5. The overall short-term load forecast (STLF) was performed over 2020 day by day,
using the above-mentioned algorithms, and the results are described in the box and
whiskers BW charts in Figure 10 for rural and Figure 11 for urban consumers. This
forecast was carried out not taking into consideration the influence of the COVID-19
restrictions and lockdowns, just the usual influence factors and historic data.

 

Figure 10. Overall forecasting results for rural consumers in 2020.
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Figure 11. Overall forecasting results for urban consumers in 2020.

6. Examining the forecast for the first day of lockdown without any correction to the
algorithm, we encountered very high values of MAPE, as shown in Table 1 and in
Figures 12 and 13. Using the atypical consumer behavior alarm trigger, we could
increase the forecast accuracy by altering the algorithm, as shown in Table 2, by
adding weekend parameters—a combination of morning Saturday and afternoon
Sunday—for the first weekday of lockdown; the first day of the lockdown in Bihor
County, Romania, was a Tuesday, and as we say in Eastern Europe, Tuesday—three
times bad luck [31]. This day provided a mix of bad luck and opportunity for power
market participants and for the power grid operating personnel;

7. The effects of the second and subsequent lockdowns did not have such a big impact
on the forecast accuracy relative to the preceding history of power load; the MAPE
results were almost similar to a common forecast.

Table 1. MAPE results using the unaltered STLF algorithm.

STLF 24 March
MAPE LR

[%]
MAPE ARIMA

[%]
MAPE NN

[%]

RURAL 4.6343 3.5849 2.9351
URBAN 5.3092 4.2102 3.3686

Table 2. MAPE results using the adapted STLF algorithm (TRIGGER ON).

STLF 24 March
MAPE LR

[%]
MAPE ARIMA

[%]
MAPE NN

[%]

RURAL 1.7462 1.3848 1.1217
URBAN 1.7405 1.3802 1.1180
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Figure 12. STLF results for 24th March 2020—rural consumers without the adapted algorithm.

 

Figure 13. STLF results for 24th March 2020—urban consumers without the adapted algorithm.

5. Discussion

As all the STLF literature states, a deep understanding of the consumers analyzed or
of the database modeled is critical in forecasting under atypical consumer behavior [18,32]
or under power load black swan events [26].

The analyzed database was composed of multiyear data from rural (7k households)
and urban consumers (23k households) in Bihor County, Romania and we managed to
identify the social, economic and weather influence factors. The database contained nonres-
idential consumers at levels that did not influence the residential patterns, including small
and medium enterprises (SME).

During this study, we found large gaps between the unaltered STLF algorithm and
algorithms adapted to atypical consumption or unforeseen events.

Previous studies [3–7] focused on algorithms for predicting outcomes with no historical
database for a comparable situation. We tried to highlight the fact that for each unforeseen
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power load event or atypical behavior pattern, we should adapt the algorithm individually
for each scenario. If for COVID-19 lockdown there was an easy fix, as the weekend historical
consumption could be easily applied to all of the methods proposed, for other unforeseen
events that cause atypical consumption behavior we need to identify scenarios and trends.

We plan to broaden our area of research by covering power load consumption unfore-
seen events at different layers of social, educational and economic levels and by analyzing
different databases that encountered unforeseen events, e.g., the February 2021 Texas black-
out, February 2014 Ukraine War, February 2020 market crash, 2021 global and European
energy crisis, etc. As future research projects we aim to identify historical power load data
that are related to unforeseen events and use them as a load forecast “library” for atypical
consumption behavior as a cause of such events.

Regardless of the future conditions and state of the pandemic, its impact should be
further studied in regard to the medium- and long-term load forecast (MTLF and LTLF), as
COVID-19 more significantly affected other social and economic areas that have a relatively
large impact on power consumption. Only working from home and online education,
which prior to COVID-19 were merely exceptional cases, will become standard activities
that might have a major impact on residential load consumption.

6. Conclusions

The three methods applied were deployed in a short period of time. The hardware
configuration of the machine that generated the forecasts included 8 GB RAM, 500 GB SSD
and an i5 Intel Processor. The LR and ARIMA methods were easy to use and adjust and
could be modeled and tuned in Excel [14] (Microsoft Office 2019). For the ANN method
R Statistics software’s CRAN package was used. All analyzed methods output a good
response to the influence factors with a retardation of one measurement or production
data. We are certain that if a database of meteorological data collected from the immediate
vicinity were available, we could increase the forecasting methods’ accuracies by at least
0.5% (MAPE) for standard consumption data. The ANN method results, for this particular
database, did not significantly improve after 100 epochs during the training process. The
best results were obtained with seven hidden layers and 10 neurons in each hidden layer.

As we had available multiple metrics to evaluate our forecast, we used only MAPE
because there was a significant difference between rural and urban household consumption
(kWh) with an approximately 20% larger consumption in rural households.

The high reduction in MAPE of residential consumption on the first day of lockdown
in Bihor County, Romania when the algorithm was adapted for the atypical consumption
justifies the importance of this study; we had an overall MAPE = 4.0071% compared to
the adapted algorithm MAPE = 1.4152%. This almost 3% difference in accuracy could
have major economic effects on participants on the energy market. In [3] the results from
the same country, but including a database that also contained commercial and industrial
consumers, were relatively similar (MAPE) for the model adapted for pandemic effects,
but our unadapted forecast method had a 2% to 3% higher MAPE. We conclude that
residential consumers are highly sensitive to unforeseen events. We intend to focus our
future research on a trigger algorithm that could automatically flag unforeseen events and
atypical consumption behavior. This future focus may cover an algorithm for identifying
an increase in information shared via social media related to energy consumption and its
impact on the load curve, and use this to define the trigger to flag atypical or unforeseen
power load consumption events. Also we intend to identify the influence of the level of
education [33] and energy education in the power consumption response to atypical events.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15010291/s1.
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Abbreviations

ANN artificial neural network
ARIMA autoregressive integrated moving average
ARIMAX Autoregressive Integrated Moving Average with Exogenous
CNN convolutional neural network
EU European Union
FCDNN Fully Connected Deep Neural Network
GAM Generalized Additive Models
GRU Gated Recurrent Unit
LR linear regression
LSTM Long Short-Term Memory
LTLF long-term load forecast
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLR multiple linear regression
MTLF medium-term load forecast
NEPCO National Electric Power Company
NY New York
PJM Pennsylvania, New Jersey, Maryland
RCBR residential consumers in Bihor County, Romania
RMSE Root Mean Square Error
SME small and medium enterprise
SOM system operator method
STLF Short-term load forecasting
UK United Kingdom
US United States
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Abstract: Capacitive energy extraction based on double layer expansion (CDLE) is a renewable
method of harvesting energy from the salinity difference between seawater and freshwater. It is based
on the change in properties of the electric double layer (EDL) formed at the electrode surface when the
concentration of the solution is changed. Many theoretical models have been developed to describe
the structural and thermodynamic properties of the EDL at equilibrium, e.g., the Gouy–Chapman–
Stern (GCS), Modified Poisson–Boltzmann–Stern (MPBS), modified Donnan (mD) and improved
modified Donnan (i-mD) models. To evaluate the applicability of these models, especially the
rationality and the physical interpretation of the parameters that were used in these models, a series
of single-pass and full-cycle experiments were performed. The experimental results were compared
with the numerical simulations of different EDL models. The analysis suggested that, with optimized
parameters, all the EDL models we examined can well explain the equilibrium charge–voltage relation
of the single-pass experiment. The GCS and MPBS models involve, however, the use of physically
unreasonable parameter values. By comparison, the i-mD model is the most recommended one
because of its accuracy in the results and the meaning of the parameters. Nonetheless, the i-mD model
alone failed to simulate the energy production of the full-cycle CDLE experiments. Future research
regarding the i-mD model is required to understand the process of the CDLE technique better.

Keywords: CapMix; CDLE; electric double layer; salinity difference energy; modified Donnan

1. Introduction

The rapid economic development has led to increasingly serious conflict between
resources and the environment, which forced the world to search for sustainable and green
energy to substitute traditional energy [1–3]. One promising and reliable opinion is to
extract energy from the salinity difference between seawater and freshwater. It is based
firmly on the fact that when two solutions with different salinity are mixed, the entropy of
the system will increase, which can be captured and converted into electrical energy [4].
Theoretically, about 2.5 MJ of free energy could be generated by controlled mixing of 1 m3

river water with a large amount of seawater. The global potential for energy extraction
from the world coast would, then, reach 2 TW of power, which satisfies around 20% of the
world’s energy demand [5,6].

By considering the tremendous amount of energy available from salinity difference,
some techniques were proposed to harvest this energy. The pressure-retarded osmosis
(PRO) [7,8] and reverse electrodialysis (RED) [9] are two advanced techniques and have
been demonstrated at a pilot scale [7,10]. In PRO, the seawater and freshwater are sepa-
rated by a semi-permeable membrane, which drives water from the freshwater to permeate
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into the more concentrated seawater due to the difference in osmotic pressure. The ex-
panding volume of the seawater can be depressurized through a hydroturbine to generate
electricity. In RED, the solutions with different salt concentrations flow alternately in
compartments, which are separated by a stack of positively and negatively charged ion-
exchange membrane. The ion diffusion across the membranes generates a current that can
be extracted [10,11]. Up to now, the highest reported power density for PRO and RED are
around 10 and 1 W/m2, respectively [12]. Although significant progress has been made
in both PRO and RED, the drawbacks of these techniques are also obvious, including the
high cost and short lifetime of membranes, as well as the use of additional converters
(hydroturbine in PRO) for effectively producing electricity. These drawbacks hampered
the commercialization of both PRO and RED techniques and drive researchers to develop
new technologies, such as Capacitive mixing (CapMix).

The so-called CapMix is an innovative technology that was recently introduced for
extracting energy from salinity differences. It is the common name for several electrode-
based technologies [13–16], including Capacitive energy extraction based on Double Layer
Expansion (CDLE), Capacitive energy extraction based on Donnan Potential (CDP) and
Soft Electrode technique (SE). In CDLE, the porous electrodes are first charged in salty
water by an external power source and then discharged in fresh water; this process leads to
an electrical double layer (EDL) expansion and results in an increase in electric potential.
In CDP, the porous electrodes are covered by ion-exchange membranes, which only allow
anion or cation to pass through and thus generates a Donnan potential difference across
the membrane. In the SE technique, instead of using membranes in CDP, the electrodes are
made of an activated carbon core together with a polyelectrolyte layer, either cationic or
anionic. The major disadvantage of CapMix is the intermittent power production as well
as the low power density, and the largest reported power density for CDLE, CDP and SE
are 35, 105 and 50 mW/m2, respectively.

Among the techniques of the CapMix family, CDLE is the earliest technique that
was first proposed and implemented experimentally by Brogioli [13] in 2009. It is the
simplest one in terms of structure, composed of two electrodes that are parallel to each
other and a spacer serving as a channel for water flowing through the cell without the
use of ion-exchange membranes. The performance of the CDLE technique is dependent
on the properties of the electrodes, cell structure as well as operation method. In the
study of material properties, Iglesias et al. [17] investigated the effect of carbon wettability
and pore size distribution on the performance of CDLE and found that electrodes with
hydrophilized material improve the energy production of CDLE. They also concluded
that activated carbon with a predominant pore population in the 1 nm region gives an
optimum result. In another study about the effects of pore sizes of the porous electrode,
Nasir et al. [18] also suggested that the optimum average pore diameter of electrodes for
CDLE is about 1 nm. Furthermore, Iglesias et al. [19] investigated the possibility of stacking
individual CDLE cells in series to increase energy production. They found that multiple
cells in series might increase the potential rise and that such an increase is limited and
cannot compensate for the increase in internal resistance. The influence of the operation
conditions, such as the flow velocity and the solution temperature, on the performance
of CDLE, was also investigated. It was reported that a higher flow rate might lead to
an improvement in the power production of CDLE [18] and that by controlled mixing
solutions with different temperatures, the potential rise can be maximized, and thus the
energy production can be increased [20].

By following experimental works, theoretical studies were also conducted over the
years to provide a platform for identifying the influences of different parameters on
the CDLE process. The theoretical models in CDLE focus mainly on the description
of thermodynamic properties of EDL as well as the transport of ions inside the porous
electrode. Among different equilibrium models, the Gouy–Chapman–Stern (GCS) model
has been widely used to simulate the thermodynamic CDLE cycle [18,21–23]. This model is
simple but does not account for the effects of EDL overlap and the finite size of the ions. To
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remedy this problem, Jiménez et al. [24] developed a modified Possion–Boltzmann–Stern
(MPBS) model and applied it to predict the maximum energy production of CDLE. It was
also extended to consider the influences of multi-ionic solutions and cylindrical pores,
suggesting that the presence of multivalent ions would reduce the net energy gain in a
CDLE cycle [25].

The model for the description of EDL at equilibrium alone cannot be applied to
describe the dynamic behavior of CDLE cells. It should, in principle, be coupled with
ionic and current transport models to give a fully quantitative description of the complex
mechanisms affecting the performance of the CDLE as performed by Rica et al. [26,27].
The dynamic model originally proposed by Rica et al. [27] was based on a 1D theory that
was developed by Biesheuvel and Bazant [28] with the use of the GCS model. It was later
found that by using a modified Donnan (mD) model instead, the kinetics of ionic transport
and adsorption in the CDLE could be better described in the cases where the EDLs are
overlapped within the micropores of the electrodes.

For whatever purpose, an accurate description of the structural and the thermody-
namic properties of the EDL at equilibrium is essential in understanding the behavior of
CDLE cells. In the literature, however, the use of different EDL models in the study of
CDLE is somehow arbitrary without giving a detailed discussion on the applicability of the
models, especially the rationality and the physical interpretation of the relevant parameters
contained in the models, even though these models have been successfully applied in many
works [19,22,23]. However, the physical meaning behind the parameters is important for
better understand the thermodynamic properties of the EDLs. Mainly, for this reason, we
strive to highlight the physical differences between some commonly used EDL models and
then evaluate the applicability of different EDL models for the performance assessment of
the CDLE technique.

The remainder of this contribution is organized as follows. In the next section, a brief
description is provided of the experiment setup and the operation scheme. Then, a detailed
elaboration of different EDL models is made in Section 3. The comparison between the
experimental results with the simulations of different EDL models is then presented in
Section 4, followed by physical interpretations of the parameters used in the models and a
discussion on the models’ applicability. The contribution ends with concluding remarks.

2. Materials and Methods

In order to investigate the performance of the CDLE cells and also explore the applica-
bility of different EDL models in the description of CDLE behaviors, a series of experiments
were made using the setup shown in Figure 1.

2.1. Materials

The slurry of activated carbon was made by mixing commercial activated carbon
power (YP-50F, Kuraray Chemical Company, Tokyo, Japan) with a polyvinylidene fluoride
binder (Kynar HSV 900 PVDF, Arkema, France) at a ratio of 90:10 wt%. The mixture was
dispersed in N-methylpyrrolidone (NMP, 99%, Sigma Aldrich, Milwaukee WI, USA) and
was stirred for 12 h to form a homogeneous slurry. It was then cast on a titanium plate and
dried in an oven at 80 ◦C for 2 h to form the carbon sheet electrode. Each electrode had a
size of 30 mm × 60 mm and a total weight of about 0.08 g.

The structure of raw activated carbon and the fabricated electrode was both deter-
mined by the nitrogen adsorption/desorption isotherm (Micromeritics ASAP 2000) that
was based on the Brunauer–Emmett–Teller (BET) method. The average pore diameter
and pore volume were estimated by the Barrett–Joyner–Halenda (BJH) method and t-plot
method, respectively. The experimental results are listed in Table 1; note that the pore
thickness (Hp) is defined as the ratio of the micropores’ volume (Vmicro) to the microporous
area (Smicro) [28]. As seen in Table 1, there are reductions in some structural parameters
of the fabricated electrode (including the specific surface area, micropore surface area,
total volume and micropore volume) compared to the same parameters of raw activated
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carbon. The reason for this may be attributed to the PVDF binder in the fabricated electrode.
Nevertheless, there is not much difference in the average pore diameter between activated
carbon and fabricated electrode.

Figure 1. (a) Photograph of the CDLE cell, from left to right: acrylic plate, titanium current collector
with electrode, silica gel tablet, titanium current collector with electrode, acrylic plate. (b) Schematic
of the CDLE experiment setup.

Table 1. The specific surface area (SBET), microporous surface area measurement (Smicro), total
volume of pores (Vtot), volume of micropores (Vmicro), characteristic pore thickness (Hp) and average
pore diameter (DBJH) results of activated carbon and electrode.

Materials
SBET

(m2/g)
Smicro
(m2/g)

Vtot
(cm3/g)

Vmicro
(cm3/g)

Hp
(nm)

DBJH
(nm)

Raw Activated
Carbon 1659.457 1176.362 0.835 0.502 0.427 3.805

Fabricated
Electrode 1272.124 906.254 0.649 0.387 0.427 4.043

With the fabricated electrodes, the CDLE cell was also self-made. As illustrated in
Figure 1 for the structure and component, it was composed of two rectangular acrylic
plates, one pair of activated carbon electrodes, one pair of titanium current collectors and
a hollow silica gel tablet with a thickness of 0.5 mm that form a flow channel between
two electrodes.
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2.2. Operations

Our experiments consist of two parts: (i) a single-pass experiment with a constant
voltage charge and (ii) a full-cycle experiment.

As schematically shown in Figure 1b, the experimental setup consists of two containers
for fresh and seawater, respectively, two peristaltic pumps (BT100J-1A, HUIYU WEIYE
Fluid Equipment Co., Ltd., Beijing, China), a CDLE cell and a potentiostat (PGSTAT30,
Metrohm Autolab, Utrecht, The Netherlands) that is used to maintain a constant voltage
between the electrodes and measure the change in current.

Before each experiment, the electrodes were short-circuited to ensure that no external
charge was left on the electrodes, and the cell was fully flushed by deionized water until
the effluent conductivity reached a stable value. The details of the two sets of experiments
are summarized in what follows.

(i) Single-pass experiment: The experiments were performed in a single pass mode to
investigate the amount of total charge stored on activated electrodes at equilibrium, using
NaCl solution with a concentration of 5, 20, 100, 200 and 600 mM, respectively. It consists of
two steps. In the charge step, a fixed electrical voltage (0.1 to 1.0 V) was applied to the cell
when the feed solution was continuously passing through the cells. The charged positive
and negative ions in the solution were then adsorbed into the EDL that was formed near
the electrode surface, and as a result of the movement of charged ions, an electric current
was generated. This step continued until an equilibrium state was reached. The total
electrode charge per mass Q (C/g) can, therefore, be calculated by integrating the electric
current I over the charging time t(s) and then divided by the mass of total electrodes in the
cell melec, as [29]:

Q =

∫
Idt

melec
(1)

Following the charge step, a zero voltage is immediately applied over a sufficiently
long time to remove any ions adsorbed in the electrodes.

To illustrate how the current varies with time in the charge and discharge steps, we
show in Figure 2 the current profiles obtained at Vext = 0.2, 0.6 and 1.0 V with a solution
concentration of 600 mM. It is seen clearly that the current I dropped quickly at the initial
stage of charging. After around 100 s, the electrodes were nearly saturated with charged
ions as the electric current I of the circuit has reached a stable value that closes to zero. At
this moment, the cell could be deemed to reach an equilibrium state.

Figure 2. Electrical current as a function of time during the charging and discharging step. The
applied voltage V = 0.2, 0.6 and 1.0 V, solution concentration c = 600 mM.
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The small electric current at the end of the charging step is known as the leakage cur-
rent Ilea, and it should be subtracted from the measured current Imea to give the net current
I = Imea − Ilea, used in calculating the electrode charge Q at equilibrium in Equation (1).

(ii) Full-cycle experiment: in this set of experiments, we used 20 mM and 600 mM
NaCl solutions as the freshwater and seawater, respectively. These solutions were supplied
intermittently to the CDLE cell by a peristaltic pump at a flow rate of 10 mL/min. To
harvest the energy, we connect an external resistance Rext = 100 Ω to the cell. As a result,
the voltage across the cell can be calculated by: V = Vext − I·Rext.

A complete cycle CDLE process consists of four steps (Figure 3). In step 1, the circuit
was closed, and the cell, immersed with seawater, was charged by a fixed voltage Vext (0.2
to 0.9 V) until the cell potential V becomes equal to Vext. This is followed by step 2, the
circuit was opened, and the freshwater was pumped into the cell to replace the seawater
until the cell potential increased to a stable value (Vf resh). Then in Step 3, the circuit was
closed, and the cell was discharged at the same external voltage Vext as it in Step 1, this step
continued until the cell potential V decreases to the Vext. Finally in Step 4, the freshwater
in the cell was replaced by the seawater until the cell potential V declined to a stable value
(Vsalt). The surface area enclosed in the cycle in Figure 3 represents, therefore, the extracted
energy, i.e.,

W =
∮

V(Q)dQ. (2)

Figure 3. Schematic of the relation between the cell potential and the electrode charge at one
CDLE cycle.

The corresponding V − t profile is exemplified in Figure 4a for the case of Vext = 0.2 V,
which shows that the equilibrium cell potential can only reach 0.185 V due to the use of
a large external resistance load in the circuit. The result with respect to the Q − V cycle
is shown in Figure 4b, which mimics closely the theoretical plot in Figure 3 and therefore
suggests the success of our experiments.
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Figure 4. A full CDLE cycle at the applied voltage Vext = 0.2V, Rext = 100 Ω, c f resh = 20 mM, csea = 600 mM. (a) Cell potential
V as a function of time t; (b) cell potential V as a function of electrode charge Q.

3. Theory of Electrical Double Layers

The mechanism behind CDLE is the formation of EDL near the electrode surface and
the change in the properties of EDL when the concentration of the solution is changed.
Therefore, a proper description of the structural and thermodynamic properties of EDLs
at equilibrium is of great importance for understanding the performance of the CDLE
technique. For this reason, we may start with a summary of the basic assumptions and
simplifications about activated carbon electrodes when applying different EDL models.
These include [30–33]:

(i) the electrodes are symmetric, meaning that the applied voltage is equally distributed
over each electrode and the adsorption amount of the anion in the anode is equal to that of
cation in cathode;

(ii) The electric potential of the anode is opposite to that of the cathode in sign but is
equal in magnitude;

(iii) the adsorbed ions are positioned only on the surface of electrode particles, meaning
that they cannot become part of the electrode matrix.

With these common considerations, different EDL models have been developed over
the years to remedy the inherent defects of the Poisson–Boltzmann theory, as shown
schematically in Figure 5 and detailed in what follows for the GCS, MPBS and mD
models, respectively.

Figure 5. Schematic view of GCS, MPBS and mD models.
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3.1. Gouy–Chapmann–Stern Model

The GCS model is the simplest extension of the PB theory in accounting for the effect
of the finite size of ions. As illustrated Figure 5, it conceptualizes the structure of EDLs
near the electrode surface as being composed of two layers: (i) a compact Stern layer where
the ions are immobile and strongly adsorbed to the electrode surface, with a thickness
corresponding to the closest approach of hydrated ions to the electrode surface; (ii) a diffuse
layer where thermal motion causes the ions to be spread out in space.

It follows that no free charges exist in the Stern layer, while the distribution of ions in
the diffuse layer can still be described by the Boltzmann equation, i.e.,

ni = ni,∞ exp
(
− zieψ

kBT

)
(3)

where ψ is the electric potential (V), ni,∞ is number density (1/m3) of the ith species at the
bulk solution, e is the elementary charge (C), zi is the valence of the ith species and kB is
the Boltzmann constant (J/K), respectively.

The distribution of electric potential can, therefore, be described by the Poisson
equation as

∇× (ε0εr∇ψ) = −e ∑i zini (4)

where ε0 and εr are the free space permittivity and the relative permittivity of the electrolyte
solutions, ∇ is the divergence operator.

As a result, the GCS model can be expressed as:

∇2ψ =

{
0 in Stern layer

− e
ε0εr

∑ zini,∞ exp
(
− zieψ

kBT

)
in Difuse layer

(5)

subject to the following boundary conditions:

ψ|x=0 = ψs (6)

ψ|x=δ− = ψ|x=δ+ (7)

dψ

dx

∣∣∣∣
x=δ−

=
dψ

dx

∣∣∣∣
x=δ+

(8)

ψ|x→∞ = 0 (9)

where x is the normal distance from the electrode surface, δ is the thickness of the Stern
layer and ψs is the surface potential, ∇2 is the Laplace operator.

The GCS model, as given above, is quite general in that it can be applied to electrode
particles with any geometry immersed in any electrolyte solution and can readily be solved
numerically to obtain the relation between the surface potential ψs and the surface charge
σs. When used in practice, however, it is commonly assumed that the particle is of planar
geometry and that the electrolyte is symmetric. For this special case, the analytical solution
to the GCS model can be obtained to give the profile of electric potential ψ as a function
of x,

ψ =

{
ψs − ΔψSt × x/δ in Stern layer

4kBT
e tan h−1

(
eΔψd
kBT

)
exp

(
x−δ
λD

)
in Diffuse layer

(10)

with the Debye length λD given by:

λD =

√
ε0εrkBT
2e2ni,∞

(11)
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where ΔψSt is the electric potential drop across the Stern layer, ΔψSt = ψs − ψd, Δψd is the
electric potential difference across the diffuse layer, Δψd = ψd − ψ∞ and ψd and ψ∞ are the
electric potential at the outer Stern plane and in the bulk solution, respectively.

It follows from Gauss’ law that the surface charge σs can be related to both ΔψSt and
Δψd as

σs = −ε0εr

(
dψ

dx

)∣∣∣∣
x=0

= −ε0εr
ΔψSt

δ
=

√
8n∞ε0εrkBTsin h

(
zeΔψd
2kBT

)
(12)

The total differential capacitance of the double layer, C, can then be given by

1
C

=
1

CSt
+

1
Cd

(13)

where Cst and Cd are the differential capacitances to the Stern layer and the diffuse layer,
respectively, with

CSt = − dσs

dΔψSt
=

ε0εr

δ
(14)

and

Cd = − dσs

dΔψd
=

ε0εr

λD
cos h

(
zeΔψd
2kBT

)
(15)

As a result, the surface charge density σs from Equation (12) can also be written as a
product of ΔψSt and CSt, i.e.,

σs = −ΔψSt × CSt (16)

3.2. Modified Poisson–Boltzmann–Stern Model

The GCS model accounts for the effect of the finite size of ions only in the Stern
layer but treats the ions in the diffuse layer still as point-charges. In the case of high ion
concentration and high surface potential, however, the interfacial region can be largely
enriched in counterions to the extent that the point charge hypothesis for the EDL structure
leads to unrealistically high counterion concentrations in the vicinity of the solid/solution
interface [34]. This fact means a non-negligible role of the size of the ions, even in the
diffuse layer, and therefore, as illustrated in Figure 5, a maximum ion concentration must
exist corresponding to the closed packing of ions. As a result, the model for the diffuse
layer should properly be modified to address the non-ideal behavior of ions therein. This
leads Bikerman [34–36] to arrive at, by means of the approximate “free volume” approach:

ni =
ni,∞ exp

(
− zieψ

kBT

)
1 + ν ∑k nk,∞

[
exp

(
− zkeψ

kBT

)
− 1

] (17)

where ν has the meaning of average excluded volume per ion.
When combined with the Poisson equation and consideration of a Stern layer, the

MPBS model can be written for a (z:z) symmetric electrolyte as,

∇2ψ =

⎧⎪⎨⎪⎩
0 in Stern layer

− e
ε0εr

2zn∞sin h
(

zeψ
kBT

)
1+2ν sin h2

(
zeψ

2kBT

) in Diffuse layer
(18)

with
ν = 2d3n∞ (19)

where d is the spacing of counterions near a highly charged surface, and it is unnecessarily
the diameter of the counterions. One may think of it as a cutoff [36] for the unphysical
divergences of PB theory and could include at least a solvation shell (ion–ion correlations
could effectively increase it further).
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Equation (18) should also be subject to the same boundary conditions of Equations (6)–(9)
as the GCS model, and therefore it is also convenient to be solved numerically. However,
for a planer electrode surface, an analytical solution to the surface charge density σs is
available for a symmetric electrolyte and it can be written as,

σs = −2zen∞λD

√
2
v

ln
[

1 + 2vsin h2
(

zeΔψd
2kBT

)]
(20)

The relation between σs and ΔψSt, as given in Equation (16), also holds in the MPBS model.

3.3. Modified Donnan Model

When dealing with the experimental results of CDLE processes, the application [28]
of both GCS and MPBS models implicitly assume that the characteristic pore thickness
is much larger than the Debye screening length so that the pore space is mostly filled
with quasi-neutral electrolyte, exchanging ions with a charged, thin double-layer “skin”
on the electrode matrix. This is, however, far from realistic because the activated carbon
particles are themselves porous, presenting a very large specific surface inside the small
micropores (≤2 nm). Therefore, as schematically shown in Figure 6, the free space between
different carbon particles filled with electroneutral solution constitutes a macro-porosity
that serves as a path for salt and charge transport, whereas the micropores store ionic
charge in their EDLs. This fact implies that both GCS and MPBS descriptions of the EDL are
not valid inside the micropores of activated carbon particles, which have a size comparable
to the EDL thickness and even to that of hydrated ions, leading to EDLs overlap and other
complications, such as the observed exceptionally large values of the capacitance.

Figure 6. Schematic view of the structure of porous electrode.

To tackle this problem, Biesheuvel et al. [37] combined a modified Donnan description
of the diffuse layer together with a charge-free Stern layer to determine the voltage drop
at the carbon/solution interface inside the micropores. The main assumption of the mD
approach is that the diffuse layer potential inside the micropores is constant, as illustrated
in Figure 5, and it is controlled by the concentration of ions in the macropores of the
electrode matrix, i.e., one can write [37]

ni,mi = ni,∞ exp
(
− zieΔψd

kBT
+ μatt

)
(21)

where the subscript “mi” emphasizes that it applies only to micropores, Δψd is now known
as the Donnan potential and μatt is an excess chemical potential that quantifies the chemical
attraction between ions and carbon material of the electrodes [37].
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This allows one to introduce the concept of volumetric charge density as the number of
charges removed from solution per unit micropore volume, and in the case of a symmetric
binary z : z electrolyte, it is given by [31]

ρ = −2zen∞ exp(μatt)× sin h
(

zeΔψd
kBT

)
(22)

and
ρ = −CSt,volΔψSt (23)

where CSt,vol is the volumetric capacitance (F/m3) of the Stern layer, and it was suggested
to be quantified empirically by [38,39]

CSt,vol = CSt,vol,0 + α×
( ρ

F

)2
(24)

with both CSt,vol,0 and α (F·m3/mol2) being determined by fitting the mD model to the
experimental data.

One key of the mD model is to describe the excess chemical potential properly, μatt. For
simplicity, it was generally taken as a constant irrespective of the specific type of ions [30,38].
Although this assumption makes the mD model works well for some cases, it cannot
describe the experimental data in a range of bulk salt concentrations simultaneously [37].
An improved modified Donnan model (i-mD model) was developed [39] to rectify this
problem by relating μatt with the micropore total ion concentration cions,mi, based on the
theory of image forces, to give

μatt =
E

cions,mi
(25)

with the energy parameter (kT mol/m3), E, defined as

E = z2 × kBT × λB × d−4
p (26)

where λB is the Bjerrum length, λB = e2/4πε0εrkBT, at which the bare Coulomb energy of
a pair of ions is balanced by thermal energy (λB = 0.72 nm in water at room temperature),
and dp is the size of micropore.

3.4. Booth Correction of Dielectric Permittivity

In most applications of the GCS and MPBS models, the solvent dielectric permittivity
was assumed to be a constant or was treated as a fitting parameter. However, it is known
that with the increase in the electric field, the relative permittivity of solvent εr shows a
decreasing trend. The reason for this is that under a large electric field condition, electrolyte
molecules become highly oriented, which results in poor capability of providing polariza-
tion [40]. To account for this effect of dielectric saturation into EDL models, Booth [41,42]
derived the following equations to calculate the relative electrolyte permittivity under the
local electric field condition as:

εr(E) =

{
m2 +

(
εr(0)−m2) 3

βE

[
cot h(βE)− 1

βE

]
for E ≥ 107 V/m

εr(0) for E < 107 V/m
(27)

with
β =

5μ

2kBT

(
m2 + 2

)
(28)

where E = |−∇ψ| is the norm of the local electrical field vector, εr(0) is the relative
permittivity at zero electric field, m is the index of refraction of the electrolyte at zero
electric field frequency, μ is the dipole moment of the solvent molecule, and in the case of
water, μ = 1.85 D (Debye).
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For aqueous binary symmetric electrolytes at room temperature (T = 298 K), one may
set [40,43]: εr(0) = 78.5, m = 1.33 and β = 1.41× 10−8 m/V. The result for the relative
permittivity as a function of the electric field is shown in Figure 7. It suggests that εr may
change significantly from 78.5 in the bulk solution to 1.79 near the electrode surface in the
cases where the electric field is very strong.

Figure 7. The relative permittivity εr(E) as a function of electric field.

The importance of the Booth correction of dielectric permittivity is, therefore, that it
may be used to account for the non-ideal behavior (or excess chemical potential) of ions
in EDLs in a different way than MPBS and mD models and that it can be combined with
either GCS or MPBS model for the performance assessment of CapMix processes.

4. Experimental Results and Model Applications

The key property of the CDLE cells is the dependence of the equilibrium electrode
charge Q on the applied voltage V under different electrolyte concentrations, also known
as the Q–V curves. The applicability of different EDL models can, therefore, be justified by
comparing the simulated Q–V curves with the results of single-pass experiments.

4.1. Gouy–Chapmann–Stern Model

As discussed above, the GCS model is usually applied to the cases where the Debye
screening length of the EDL, λD, is much less than the characteristic pore thickness Hp so
that a planer electrode surface could effectively be defined. As a result, Q (C/g) can simply
be evaluated by multiplying σs with the specific electrode area Se f f (m2/g) as:

Q =
1
2

σs × Se f f (29)

The corresponding voltage drop across the cell can, by assuming it to be evenly
distributed on the two electrodes, relate to ΔψSt and Δψd directly as:

V = 2(ΔψSt + Δψd) (30)

With these definitions, the GCS model can readily be applied to the CDLE cell to
obtain the Q–V curves under different electrolyte concentrations. Since it is commonly
assumed in the GCS model that εr = εr(0), the unknown parameters of the specific system
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only involve Cst and Se f f . As a result, we may fix εr = 78.5 at T = 298 K and evaluate
Cst and Se f f simultaneously by fitting the simulated Q–V curves to the measured data
over all the NaCl concentrations of interest by using a nonlinear least square algorithm,
supplemented with suitable lower and upper bounds. The result gives CSt = 0.131 F/m2 and
Se f f = 619.46 m2/g. At first glance, a good agreement between the calculated and measured
Q–V curves, as shown in Figure 8 and the fact that Se f f = 619.46 m2/g is comparable with
the findings of reported results [19,22,23] seems to substantiate the rationale of Cst and Se f f

values. However, further analysis suggests that CSt = 0.131 F/m2 corresponds to a Stern
layer thickness of 5.3 nm. This is far greater than the hydrated radius [44] of Na+ ions and
is therefore unreasonable, meaning that an arbitrary setting of CSt = 0.1 F/m2, as shown by
previous work [21,22], is also problematic.

Figure 8. Equilibrium electrode charge Q versus applied voltage V for different values of NaCl
solution. Lines refer to the results of GCS model (CSt = 0.131 F/m2, Se f f = 619.46 m2/g, εr = 78.5),
marks refer to the experiment data and error bars of the experimental data are indicated by horizontal
lines through the marked data points.

On the other hand, it is noted from Table 1. that the characteristic pore thickness Hp is
on the order of magnitude of 0.43 nm, whereas the Debye screening length of the EDL is
about 0.4 nm at a bulk concentration of 600 mM. This suggests that Hp is always smaller
than λD in all the cases studied, and therefore violates the assumption of thin double-layer
“skin” on the electrode matrix. As a result, the GCS model is deemed to be not applicable,
especially when the NaCl concentration is small.

If combined with Booth correction of dielectric permittivity, the GCS model gives even
worse agreement, as shown in Figure 9, with δ = 4.2 nm and Se f f = 540.25 m2/g. This
suggests that accounting for the variation of εr with the electric field does not remedy the
inherent problem of the GCS model, still making the parameters physically meaningless,
and therefore should also be abandoned in the interpretation of the experimental results.

4.2. Modified Poisson–Boltzmann–Stern Model

The MPBS model bears the same conceptualization on the EDL geometry as the GCS
model but accounts for the effect of finite-size of ions. We can, therefore, still use Equations
(29) and (30) to calculate Q and V in the simulations. As shown in Figure 10, the agreement
between the calculated and measured Q–V curves is nearly the same as the GCS model
does, with CSt = 0.141 F/m2 and Se f f = 580.88 m2/g when εr is fixed at 78.5. The minor
difference between the CSt value of the two models also suggests that the MPBS model
breaks down in the regime of experimental interest.
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Figure 9. Equilibrium electrode charge Q versus applied voltage V for different values
of NaCl solution. Lines refer to the results of the GCS model with Booth correction
(δ = 4.2 nm, Se f f = 540.25 m2/g), marks refer to the experiment data and error bars of the exper-
imental data are indicated by horizontal lines through the marked data points.

Figure 10. Equilibrium electrode charge Q versus applied voltage V for different values of NaCl
solution. Lines refer to the results of MPBS model (CSt = 0.141 F/m2, Se f f = 580.88 m2/g, εr = 78.5,
d = 0.75 nm), marks refer to the experiment data and error bars of the experimental data are indicated
by horizontal lines through the marked data points.

Not surprisingly, when combined with Booth correction, the MPBS model does not
move the needle at all. It gives δ = 7.3 nm, Se f f = 857.79 m2/g and the spacing of counterions
d = 1.42 nm, with an acceptable agreement between the calculated and measured Q–V
curves, as shown in Figure 11. As a result, accounting for the variation of εr with the electric
field in the MPBS model does not help to rectify the problems associated with the model
in the cases where the assumption of thin double-layer “skin” on the electrode matrix is
not valid.
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Figure 11. Equilibrium electrode charge Q versus applied voltage V for different values of NaCl solu-
tion. Lines refer to the results of MPBS model with Booth correction (δ = 7.3 nm, Se f f = 857.79 m2/g,
d = 1.42 nm), marks refer to the experiment data and error bars of the experimental data are indicated
by horizontal lines through the marked data points.

4.3. Modified Donnan Model

In contrast to the GCS and MPBS models, the mD model considers that the micropores
of activated carbon particles have a size comparable to the EDL thickness and even to that
of hydrated ions, leading to EDLs overlap and a constant diffuse layer potential. The total
charge in electrode at equilibrium can, therefore, be calculated as:

Q = −1
2
× ρ× vmi (31)

where vmi is the micropore volume per unit electrode mass (cm3/g).
Using this expression for Q and Equation (30) for V, the Q–V curves of the CDLE cell

under different electrolyte concentrations can conveniently be obtained in the mD model.
The unknown parameters involved are, however, version-dependent. In the standard mD
model [29,30,38,39,45], where μatt is taken as a constant, the optimal values of μatt, vmicro,
CSt,vol,0 and α are all in need of determination from the procedure of fitting the simulated
Q–V curves to the measured data over all the NaCl concentrations of interest. The result
shows when a nonlinear least square algorithm is used, μatt = 1.18, vmi = 0.35 cm3/g,
α = 10.5 F·m3/mol2 and CSt,vol,0 = 2.1 × 108 F/m3. These values are in line with those
suggested by other works [30,38,45], with a good agreement between the simulated and
measured Q–V curves as a result, as shown in Figure 12.

The fact of vmi = 0.35 cm3/g suggests that about 90% of the micropore space is available
for counterion adsorption. This is deemed to be much more reasonable than the result
(∼70%) of the GCS and MPBS models imply. On the other hand, CSt,vol,0 = 2.1 × 108 F/m3

is equivalent to εr = ∼7.29 given a Stern layer thickness on the order of magnitude of
hydrated ions of Na+. This is also reasonable, as Booth correction of dielectric permittivity
(see Figure 7) suggests. Therefore, the mD model is physically much more plausible than
both GCS and MPBS models.
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Figure 12. Equilibrium electrode charge Q versus applied voltage V for different values of NaCl
solution. Lines refer to the results of mD model (a = 10.5 F·m3/mol2, CSt,vol,0 = 2.1 × 108 F/m3,ߤୟ୲୲ = 1.18, vmi = 0.35 cm3/g), marks refer to the experiment data and error bars of the experimental
data are indicated by horizontal lines through the marked data points.

In the improved mD (i-mD) model [39], the excess chemical potential, μatt is related
to the total concentration of all ions in the micropores as given in Equation (25). The
energy parameter E should now be determined a priori, instead of μatt. Using the same
fitting procedure as discussed above, we found that the optimal values of the fitting
parameters are: E = 436.7 kT mol/m3, CSt,vol,0 = 2.06 × 108 F/m3, α = 13.6 F·m3/mol2

and vmi = 0.364 cm3/g. The value of vmi = 0.364 cm3/g suggests that the availability
of micropore volume for storing the counterions is ∼94%. CSt,vol,0 = 2.06 × 108 F/m3

corresponding to εr = ~7.17 also implies a reasonable Stern layer thickness. The difference
between mD and i-mD models is, therefore, mainly on the CSt,vol,0 values. As shown in
Figure 13, the decrease of CSt,vol with increasing volume charge in both mD models follow
essentially the same pattern. As a result, εr also decreases but only slightly. It becomes
~6.77 and ~6.49 at ρ = 1.2×108 C/m3 in the mD and i-mD model, respectively.

With the optimal parameters, it is seen from Figure 14 that the simulated Q–V curves
by i-mD model agrees almost entirely with the experimental data, much better than the
results of the other models (see Figures 7–12).

To facilitate the comparison of different EDL models, we summarize in Table 2. the
physical parameters involved in the models and the optimal values obtained from the
fitting procedures. As discussed above, the parameter values of both mD and i-mD models
are not only reasonable but also roughly the same. However, as clearly seen from the results
shown in Figures 12 and 14, the i-mD model is superior to the mD model in reproducing
the dependence of Q on V under different electrolyte concentrations.
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Figure 13. Stern layer capacity CSt,vol as a function of surface charge density ρ.

Figure 14. Equilibrium electrode charge Q versus applied voltage V for different values of NaCl
solution. Lines refer to the results of i-mD model (a = 13.6 F·m3/mol2, CSt,vol,0 = 2.06 × 108 F/m3,
E = 436.7 kT mol/m3, vmi = 0.36 cm3/g), marks refer to the experiment data and error bars of the
experimental data are indicated by horizontal lines through the marked data points.
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Table 2. Optimal parameters values for different theoretical models in the present paper.

Models Parameters

Cst
(F/m2)

Seff

(m2/g)

δ
(nm)

εr
d

(nm)

GCS 0.131 619.46 5.3 78.5 -
GCS—B * 1.0–1.15 540.25 4.19 68.5–78.5 -

MPBS 0.141 580.88 4.92 78.5 0.75
MPBS—B * 0.09–0.095 857.79 7.29 74.6–78.5 1.42

Cst,vol,0
(F/m3)

α
(Fm3/mol2)

Cst,vol
(F/m3)

μatt
E

(kT mol/m3)
vmi

(cm3/g)

mD 2.1 × 108 10.48 (2.1–2.24) × 108 1.18 - 0.35
i-mD 2.06 × 108 13.65 (2.06–2.23) × 108 0.23–2.76 436.7 0.367

*: with Booth correction.

By contrast, the optimal parameters of the GCS and the MPBS models are physically
unreasonable, especially about the Stern layer thickness. As seen in Table 2, even the
minimum d value of 4.19 nm is still far greater than the hydrated radius [44] of Na+ ions,
in contradiction with the physical explanation of the Stern layer. It is mainly this finding
that makes us believe the applicability of the GCS and MPBS models is questionable.

4.4. Full CDLE Experiment

The extracted energy per gram W in our CDEL experiment is 0.1 to 0.15 J/g at an
applied voltage ranging from 0.3 to 0.8 V, which is comparable to the relevant reported
energy production of other works, i.e., the W ranged from 0.2 to 0.6 J/g at an applied
voltage ranging from 0.3 to 0.7 V is reported by D. Brogioli et al. [22], and W ≈ 0.11 to
0.22 J/g at Vext = 0.4 V reported by Nasir et al. [18]. The reason for the difference in
energy production might be attributed to the different CDLE cell design and electrode
materials. Note that the results of Q vs. V obtained in single-pass experiments clearly show
that, for a fixed value of Q, the reduction in the electrolyte concentration results in higher
cell potential. This allows us to extract energy by intermittently exchange seawater and
freshwater thorough a CDLE cell. In addition, one may expect that, in a full CDLE cycle,
the potential rise ΔV at sept 2 and the energy extracted should both increase monotonically
with the applied voltage Vext, if the kinetics of the full CDLE cycle is solely controlled by
the diffusion of ions within the porous electrodes. However, this not the case. As shown
in Figure 15, the experimental results suggest a parabolic curve for both ΔV and W. The
potential rise ΔV increases monotonically until it reaches a maximum value at Vext = 0.6 V
and then followed with a progressive decay with further increase in Vext. Correspondingly,
the energy extracted, W, achieves a maximum value at Vext = 0.6 V. This phenomenon
was also observed by Jiménez et al. [24] and Iglesias et al. [17] and explained qualitatively
by the MPBS model assuming a spherical geometry of solid carbon particles [24]. Our
findings do not, however, support the use of such an MPBS model because the results
of single-pass experiments, as shown in Figure 14, clearly indicate that both ΔV and W
should monotonically increase with an increase in the applied voltage. The large deviation
between experimental data and theoretical prediction at higher applied voltage suggested
that using only the equilibrium double layer model itself is not sufficient to describe the
performance of a full CDLE cell. An advanced model as the one developed by Rica et al. [27]
is then required to include the effect of advection, mass transfer at the electrode/solution
interface, ionic diffusion through the electrodes and build-up of EDLs at the micropore
space, etc. This work is now undertaken and will be discussed in detail in the near future.
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Figure 15. (a) Potential rise ΔV in step 2 of CDLE process as a function of cell voltage. (b) Extracted energy of one CDLE
cycle at different cell voltage. Rext = 100 Ω, c f resh = 20 mM, csea = 600 mM. The line refers to the theoretical prediction by
i-mD model, marks refer to the experiment data and error bars of the experimental data are indicated by horizontal lines
through the marked data points.

5. Conclusions

In this study, a series of single-pass and full-cycle experiments were performed for a
self-made CDLE cell in order to exploit its potential to harvest energy from an intermittent
exchange of seawater and freshwater. The focus is, however, on the analysis of different
EDL models in describing the structural and thermodynamic properties of EDLs at the
micropore scale at equilibrium. The results suggest that both GCS and MPBS models
involve physically unmeaningful parameters, despite their ability to well reproduce the
Q–V curves (the key performance of the CDLE cell) at different NaCl concentrations. The
reason is, perhaps, that both models were applied on the assumption of thin EDLs, which
is unreasonable since λD � Hp in all the cases of interest. By contrast, both the mD and
i-mD models consider the strong overlap of EDLs within the micropores of the electrodes,
making the diffuse potential constant. As a result, the non-ideal properties of the EDLs
were well accounted for with only a few parameters that are physically interpretable. In
particular, the i-mD model considers the excess chemical potential as a function of the total
concentration of NaCl within the micropores instead of a constant value. This makes i-mD
model superior to mD model in describing the performance of the CDLE cell at equilibrium,
and therefore should be recommended to be used in the first place.

However, when applied for practical use, it was found that the theoretical calculation
of the i-mD model alone gives inconsistent results with the data of the full-cycle CDLE
experiments about the dependence of ΔV and W on the applied voltage. The model
and the single-pass experimental results suggest that both ΔV and W should increase
monotonically with the applied voltage, in contrast to a parabolic behavior that was found
experimentally with a maximum of W located at Vext = 0.6 V. The reason for this difference
may be attributed to the higher current leakage and the effect of ion size at larger applied
voltage [18,24,25]. However, to understand the performance of the full-cycle CDLE cells
better, an advanced model is expected to include the effect of advection, mass transfer at the
electrode/solution interface, ionic diffusion through the electrodes and i-mD description
of EDLs at the micropore space, etc. Thus, the knowledge we obtained from this study
provides important guidance towards the application of EDL models in CDLE technology.
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Nomenclature

CapMix Capacitive mixing
CDP Capacitive energy extraction based on Donnan Potential
CDLE Capacitive energy extraction based on Double Layer Expansion
SE Soft Electrode
EDL Electric double layer
PB Poisson Boltzmann
GCS Gouy–Chapman–Stern
MPBS Modified Poisson–Boltzmann–Stern
mD modified Donnan
SBET Specific surface area
Smicro Microporous surface area measurement
Vtot Total volume of pores
Hp Pore thickness
DBJH Average pore diameter
Q Equilibrium electrode charge per mass, C/g
I Electric current, A
Imea Measured current, A
Ilea Leakage current, A
melec Mass of total electrodes, g
Vext Applied voltage, V
V Cell potential, V
×V Potential increase due to the double layer expansion, V
Rext External resistance, Ω
W Extracted energy, J/g
c Electrolyte concentration, mm
c f resh Electrolyte concentration of freshwater, mol/m3

csea Electrolyte concentration of seawater, mol/m3

cions,mi micropore total ion concentration, mol/m3

ni number concentration of the ith species in diffuse layer, 1/m3

ni,∞ number concentration of the ith species at the bulk solution, 1/m3

ni,mi number concentration of ith species in the micropores of the electrode, 1/m3

e elementary charge, C
zi valence of the ith species
kB Boltzmann constant, J/K
ε0 free space permittivity, F/m
εr relative permittivity of the electrolyte solutions
ψ electric potential, V
ψs surface potential, V
ΔψSt electric potential drop across the stern layer, V
Δψd electric potential difference across the diffuse layer, V
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σs surface charge density, C/m2

C total differential capacitance of the double layer
Cst differential capacitances of the stern layer, F/m2

Cd differential capacitances of the diffuse layer, F/m2

ν average excluded volume per ion, m3

d spacing of counterions near a highly charged surface, m
λD Debye length, m
λB Bjerrum length, m
ρ volumetric charge density, C/m3

μatt excess chemical potential, kT
CSt,vol volumetric capacitance of the Stern layer, F/ m3

CSt,vol,0 volumetric capacitance of the Stern layer (low charge limit), F/ m3

α Parameter to describe nonlinear part of Stern capacity, F·m3/mol2

E energy parameter, kT mol/m3

dp size of micropore, m
m index of refraction of the electrolyte at zero electric field frequency
μ dipole moment of the solvent molecule and in the case of water, D(Debye)
Se f f effective specific electrode area, m2/g
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Abstract: To facilitate wind power integration for the electric power grid operated by the Inner
Mongolia Electric Power Corporation—a major electric power grid in China—a high-resolution
(of 2.7 km grid intervals) mesoscale ensemble prediction system was developed that forecasts
winds for 130 wind farms in the Inner Mongolia Autonomous Region. The ensemble system
contains 39 forecasting members that are divided into 3 groups; each group is composed of the
NCAR (National Center for Atmospheric Research) real-time four-dimensional data assimilation
and forecasting model (RTFDDA) with 13 physical perturbation members, but driven by the
forecasts of the GFS (Global Forecast System), GEM (Global Environmental Multiscale Model),
and GEOS (Goddard Earth Observing System), respectively. The hub-height wind predictions
of these three sub-ensemble groups at selected wind turbines across the region were verified
against the hub-height wind measurements. The forecast performance and variations with lead
time, wind regimes, and diurnal and regional changes were analyzed. The results show that
the GFS group outperformed the other two groups with respect to correlation coefficient and
mean absolute error. The GFS group had the most accurate forecasts in ~59% of sites, while
the GEOS and GEM groups only performed the best on 34% and 2% of occasions, respectively.
The wind forecasts were most accurate for wind speeds ranging from 3 to 12 m/s, but with
an overestimation for low speeds and an underestimation for high speeds. The GEOS-driven
members obtained the least bias error among the three groups. All members performed rather
accurately in daytime, but evidently overestimated the winds during nighttime. The GFS group
possessed the fewest diurnal errors, and the bias of the GEM group grew significantly during
nighttime. The wind speed forecast errors of all three ensemble members increased with the
forecast lead time, with the average absolute error increasing by ~0.3 m/s per day during the
first 72 h of forecasts.

Keywords: mesoscale ensemble system; wind power prediction; wind speed; diurnal variation;
global forecast downscaling

1. Introduction

Wind energy, with its vast availability, cleanliness, and renewability, is growing rapidly
in the energy share, and plays an increasingly important role in the electric energy sector [1].
However, the intermittent and volatile nature of wind speeds poses a great challenge to the
grid-connected transmission of wind power output, threatening the security of the grid
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system and sometimes leading to massive wind abandonment [2]. Reliable wind power
forecasting is urgently needed for timely and accurate dispatch of power resources [3,4].
Wind speed forecasting methods include statistical approaches, machine learning meth-
ods [5–11], and numerical weather prediction [12]. There have been many works on wind
prediction reported in the past two decades, especially over the last few years. However,
most of these works are on the refinement of statistical and AI approaches [13–18]; there
have been very few studies examining and analyzing the errors of numerical weather
models. As a matter of fact, for wind forecasts beyond ~1 h, numerical weather prediction
models become essential and fundamental. Improving the performance and capability of
numerical weather prediction models and machine learning post-processing for wind farm
weather prediction is therefore critical.

The performance of numerical weather models relies greatly on model resolutions [19]
and regional climates [20], topography [21], underlying land-surface and soil properties [20],
weather measurements [22] and data assimilation schemes for model initiation [23], as well
as the lateral boundary conditions for limited-area models [24]. For these reasons, many
studies and energy forecasting firms use an ensemble of global and regional NWP outputs
to reduce forecast errors [25,26].

There are three main error sources in numerical weather forecasting: uncertainties
in initial values [27], approximation of the dynamical and physical models [28], and the
intrinsic unpredictability of atmospheric motions [29]. Ensemble numerical weather pre-
diction methods [30,31] have been used to improve the accuracy and reliability of weather
forecasts through probabilistic forecasts. Probabilistic forecasts and uncertainty quantifi-
cation are beginning to take the place of single numerical forecasts in the wind energy
industry. An ensemble forecast system can simulate the impact of the uncertainties of
initial and boundary conditions derived from different global model forecasts, atmospheric
physical parameterization schemes, and data assimilation modules. Perturbation members
of a mesoscale ensemble forecast system include sub-grid energy stochastic perturbation
members, physical parameterization perturbation members, initial and boundary value
perturbation members, and some others. Analyzing the error characteristics of ensemble
forecast members is important for exploring the value of ensemble forecast outputs and
improving the ensemble forecast system.

With respect to model forecast verification, several researchers have explored
the effects of model physical processes on wind speed forecasting [32–36]. Different
physical parameterization schemes often present different forecast capabilities un-
der different meteorological conditions or regimes [24,37,38], different geographical
regions [39–42], and/or different topographic environments [43]. In responding to
atmospheric long- and short-wave radiative forcing, model forecast errors often exhibit
diurnal and seasonal variations [44–47]. Some other researchers focused on revising
model forecast results through post-processing by using statistical and machine learn-
ing methods [48]. However, the errors of the model initial and boundary conditions
derived from different global model background fields are often large [49,50], but very
little attention has been paid to this issue [51]. In fact, we could not find any report
investigating the impact of model initial and boundary conditions of the wind farm
wind forecasting based on a 2–4 km grid high-resolution ensemble numerical weather
prediction model.

The wind energy density in the Inner Mongolia Autonomous Region, China, is
outstanding—over 400 W/m2 in some regions [52]. In 2019, wind power generation in
Inner Mongolia was 66.6 billion kWh, accounting for ~16.4% of China’s total wind power
generation in the same period (China National Energy Administration). In response
to the demand for wind power integration in Inner Mongolia, the Inner Mongolia
Electric Power Company (IMEPC) has developed a mesoscale ensemble numerical
weather prediction system that is composed of 39 perturbed WRF (Weather Research
and Forecasting) forecast members. The system is constructed with multiple global
models of forcing, multiple physical parameterization schemes, and stochastic kinetic
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energy perturbations. The 39 forecast members contain three subgroups of 13 physical
perturbation members, driven by the forecasts of the GFS (Global Forecast System),
GEM (Global Environmental Multiscale Model), and GEOS (Goddard Earth Observing
System), respectively.

This paper evaluates the output of the IMEPC mesoscale ensemble prediction system,
focusing on its hub-height wind prediction for the wind farms distributed across the Inner
Mongolia Autonomous Region during the spring of 2020. The model performance of three
sub-ensemble groups driven by the forecasts of the GFS, GEOS, and GEM global models
was studied, and the variations in the forecast errors with forecast lead time, wind speed
regimes, diurnal forcing, and regional changes were analyzed. The findings of this study
provide guidance for the proper use of the ensemble prediction system at the wind farms,
and for the development of model forecast post-processing capabilities by the IMEPC. Our
results also support modelers to improve the ensemble model system by adjusting the
ensemble members according to the error properties of the ensemble members driven by
different global model forecasts.

The remainder of this paper is organized as follows: Section 2 describes the obser-
vations in the study area and the setup of the ensemble forecast system used for the
numerical experiments. Section 3 presents the results of the wind speed forecast error
analysis. Section 4 presents the conclusions from these analyses. Finally, Section 5 discusses
the limitations of the present work, and describes the outlook for the future.

2. Data and Meteorology

2.1. Ensemble Numerical Weather Prediction System

The IMEPC’s WRF-based ensemble weather forecasting system produces wind
power forecasts over 100 wind farms distributed across the Inner Mongolia Autonomous
Region. This system was jointly developed by the Inner Mongolia Meteorological
Bureau, the US National Center for Atmospheric Research (NCAR), and Nanjing Uni-
versity of Information Science and Technology (NUIST); it started real-time operational
forecasting in late 2019. The system uses the forecasts of the GEOS (USA), GEM
(Canada), and GFS (USA) to derive the initial and boundary conditions to drive the
WRF forecast members. The system is configured with 10 physical parameterization
schemes, including 9 boundary layer schemes and 1 radiation scheme, and 3 stochastic
kinetic energy backward feedback dynamical perturbation (SKEP) schemes, making
up the 13 perturbation members that are driven by initial and boundary conditions
derived from the global model forecasts of the GFS, GEM, and GEOS, respectively. The
system constitutes a total of 39 ensemble forecast members.

The details of the 13 WRF members are listed in Table 1. Each member runs with
the WRF real-time four-dimensional data assimilation system (WRF-RTFDDA) [23,53–55].
The operational ensemble forecast system runs with 3-hour data assimilation and forecast
cycles, and each cycle produces 72-hour forecasts at a temporal resolution of 15 min. The
system assimilates the observations of the hub-height wind speed (the wind turbine wind
speed) and meteorological tower weather observations of the wind farms in the region,
along with various conventional weather observations [56–58].

The ensemble model contains three forecast domains (Figure 1). Domain 2 and
Domain 3 cover the central and western plateau regions of the Inner Mongolia Au-
tonomous Region (40~45◦ N, 105~120◦ E), at 2.7 km grid intervals. Domains 2 and 3
are embedded in a coarser grid domain (Domain 1) with a grid size of 13.5 km. Most of
the wind farms studied in this paper are located in Domains 2 and 3, featuring complex
terrain including stratified high plains, stony hills, terraces, foothills, and inter-hill low-
lands. The wind farms are mostly built around four major mountain ranges, including
Langshan Mountain (LS), Seertengshan Mountain (SRTS), Ural Mountain (ULS), and
Daqingshan Mountain (DQS), along with fan sites located near the Yinshan Mountains
(YS), a low plain area to the south of the Hetao Plain (HTPY), and a high plain area
near the Xilin Gol League (XLGL) (Figure 1b).
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Table 1. Mesoscale ensemble prediction member names and parameterization scheme configuration.

Member Name Member Perturbations

CTRL YSU PBL [59]
BOU BouLac PBL [60]

MYNN2 MYNN 2.5 level TKE scheme [61]
MYJ Mellor–Yamada–Janjic TKE PBL scheme [62]
SHS Shin–Hong ‘scale-aware’ PBL scheme [63]

TEMF TEMF (Total Energy Mass Flux) scheme [64]
UNW UW boundary layer scheme from CAM5 [65]
GBM Grenier–Bretherton–McCaa scheme [66]
QNS Eddy-diffusivity mass flux, quasi-normal scale elimination PBL [67]

SKEBA Stochastic kinetic energy backscatter scheme A
SKEBB Stochastic kinetic energy backscatter scheme B
SKEBC Stochastic kinetic energy backscatter scheme C
RRMG Morrison Microphysics + Mellor–Yamada–Janjic PBL scheme

2.2. The Observations and Forecasts

Verification statistics of the ensemble forecasts were calculated based on 411 rep-
resentative wind turbine sites selected from 130 wind farms, with 1–4 wind turbine
sites per wind farm, depending on the wind farm’s size. The wind turbine sites are
mainly distributed in central Inner Mongolia (Figure 1b). The analysis period was
from 1 March to 15 April 2020. Wind speeds at the hub height of the wind turbines,
~50–80 m high from the ground, were retrieved from the SCADA (Supervisory Control
and Data Acquisition System) of the wind turbines and averaged to 15-minute win-
dows. To maintain the data continuity, for periods with less than an hour of missing
data, a linear interpolation was used to fill in the gaps. For computing the verification
statistics, forecasts of the ensemble numerical weather prediction were interpolated
to the location and hub height of the selected turbines through a bilinear interpola-
tion method, forming observation and forecast-matched pairs for direct comparison.
With 411 wind turbines, 45 days, 72 h of forecasts per day at 15 min intervals, and
39 ensemble members, there were a total of 207,735,840 data samples processed in the
verification computation.

To analyze the regional differences in the model forecasts, the wind farms were
divided into seven sub-areas according to the distribution of wind farm clusters and
topographic characteristics. These areas are marked in the cyan boxes in Figure 2. The
wind farm sites in Area 1 are located on the northern slope of Langshan Mountain. The
sites in Area 2 are mostly concentrated between Langshan Mountain and Seertengshan
Mountain. Area 3 is over the southern part of the Loop Plain to the north of the
mountain. Area 4 is between Seertengshan Mountain and Ural Mountain, and some of
the turbine sites are close to the local mountain peaks. Area 5 is in the eastern part of
Ural Mountain, with higher elevation. Area 6 is located in the relatively more complex
area of Daqingshan Mountain to the west of Ural Mountain, with lower elevation, and
the turbine sites are more dispersed. Finally, Area 7 is characterized by a high plain
area with a flattering topography near the Xilin Gol League. The numbers of stations
in these sub-areas are 22, 61, 13, 131, 72, 72, and 40, respectively.

2.3. Evaluation Metrics

The statistical verification of the ensemble forecasts includes calculation of systematic
error (BIAS), mean absolute error (MAE), and correlation coefficient (CC) for all selected
wind turbine sites and the wind turbine sites in each sub-area. The ensemble wind speed
forecast performance is assessed by examining both individual metrics and their combina-
tions. The three statistical variables are calculated based on the hub-height observed (Xo)
and forecast (Xf) 15-minute mean wind speed pairs.
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Figure 1. (a) Schematic diagram of the ensemble prediction domains for wind farms in the Inner
Mongolia Autonomous Region. The horizontal resolution of the coarse-grid simulation domain is
13.5 km, and the horizontal resolution of the two-nested fine-grid simulation domain is 2.7 km.
The colored background is the terrain. (b) Topography (color filled map) and distribution of test
stations (black dots) in the study area. The black line in (b) marks the provincial boundary of the
Inner Mongolia Autonomous Region, while Areas 1–7 mark the seven subregions enclosed by
cyan-colored rectangles.
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Figure 2. Diurnal variation in the observed wind speeds for the seven sub-areas. The red line is the
median value, dark blue is 25–75%, and the light blue zone (including dark blue zone) is 5–95%. The
x-axis represents the time (UTC).

3. Statistical Verification Results

3.1. Characteristics of the Winds in the Region

Figure 2 shows the diurnal variation in wind speed observations averaged at all wind
turbine sites over the study area, as well as those in the seven sub-areas given in Figure 1.
The wind speed over the whole region (Figure 2) exhibits evident diurnal variations, with
errors gradually increasing during daytime (from 00:00 to 09:00 UTC, i.e., 08:00–17:00 LST).
The median wind speed maximizes between 09:00 UTC and 10:00 UTC (~6.8 m/s), and
then starts to decrease in the nighttime. The 25 and 75% sub-quartile wind speeds are
4.2 and 8.2 m/s, respectively; ~5% of the wind speeds are greater than 12 m/s, and ~5% of
the wind speeds are less than 2 m/s.

Although the median wind speeds in all seven sub-areas are close (~6 m/s), the diurnal
variations in the wind speeds in these regions are quite large. Area 1 possesses a high peak
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wind speed at 02:00 UTC and 15:00 UTC, and is also prone to greater wind speeds during
the day–night transition. The median wind speed in Area 2 tends to slowly increase during
daytime, with two local maxima at 03:00 UTC and 09:00 UTC, respectively. The wind speed
in Area 3 is higher at night, with a peak median wind speed at 18:00 UTC.

Wind farms in Areas 4, 5, and 6 are in complex mountainous terrain, where winds
increase until 09:00–10:00 UTC during the daytime, and show a decreasing trend at night.
Finally, Area 7 is in a high plain region, and the diurnal variation in its wind speed is
relatively flat, with a small peak in the afternoon, a small trough in the evening, and then a
gradual rebound at night.

3.2. Overall Performance of the Wind Forecasts

To compare the forecasts of the ensemble members driven by the initial and boundary
conditions derived from the three global model forecasts (GFS, GEOS, and GEM), we first
calculated the error metrics of each ensemble member, and then averaged the errors of
the 13 members within each subgroup. The average error for each sub-group is computed
as follows:

xm =
1
13

13

∑
i=1

xi (1)

where xi (m/s) represents the error metrics of the forecast of the ith ensemble member.
With verification done for 0–24 h forecasts for the 45 days for all 411 wind turbines, the
total number of data samples used in computing the statistical verification in each cell of
the Table 2 was 23,081,760.

Table 2. Statistical verification of all stations for the GFS, GEOS, and GEM groups (45 days).

GEOS Group GEM Group GFS Group
Mean Max Median Min Mean Max Median Min Mean Max Median Min

CC 0.68 0.66 0.62 0.58 0.64 0.63 0.58 0.53 0.70 0.67 0.65 0.61
BIAS (m/s) +0.56 +0.75 +0.60 −0.05 +0.76 +0.91 +0.79 +0.15 +0.67 +0.91 +0.69 +0.04
MAE (m/s) 1.84 2.13 2.06 1.86 1.99 2.32 2.15 1.99 1.81 2.10 2.03 1.80

The overall performance of the three groups of global model forecast members, along
with the CC, BIAS, and MAE of the 0–24-hour wind turbine hub-height wind forecasts
of all members of the three groups, are calculated and shown in the ‘mean’ column in
Table 2. The CC and MAE of the wind forecasts of the GFS group are better than those
of the GEOS group, and both are better than those of the GEM group. In contrast, the
BIAS in the GEOS group is smaller than that in the GFS group. The GEM group has the
worst scores for all three metrics. The minimum, maximum, and median of correlation
coefficients, mean errors, and mean absolute errors of 13 member predictions (13 outcomes
for each background field) versus observations are shown in the ‘min’, ‘max’, and ‘median’
columns, respectively, in Table 2. Ensemble average forecasts outperformed the best
members. Overall, the GFS group was better than GEOS, and GEM was the worst, which is
statistically significant (with all at a confidence level above 98%).

To assess the overall performance of the members driven by the three global model
forecasts, the statistical metrics of the three group ensemble forecasts were ranked from
the best to the worst for each wind turbine site. The number of stations that performed the
best and worst by each ensemble group was counted, as shown in Table 3, along with their
proportion to the total turbine sites. The performance of the three ensemble forecast groups
varies with the geographic setting of the turbines, as well as the local regional weather and
climate characteristics. The statistical verification metrics were calculated separately for
each site.
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Table 3. Ranking statistics of wind speed forecast errors for the three ensemble forecast groups driven
by the GFS, GEOS, and GEM model forecasts.

GEOS Group GEM Group GFS Group

NBPS */R * NWPS */R NBPS/R NWPS/R NBPS/R NWPS/R
CC 141/34.3% 81/19.7% 8/1.9% 318/77.4% 262/63.7% 12/2.9%

BIAS 315/76.6% 28/6.8% 27/6.6% 315/76.6% 69/16.8% 68/16.5%
MAE 152/37.0% 47/11.4% 9/2.2% 355/86.4% 241/58.6% 9/2.2%

* NBPS: # of best performing stations; NWPS: # of worst performing stations; R: ratio with reference to the total.

Among the three forecast groups, the GFS groups performed the best at ~59–64% of
the total sites in terms of CC and MAE, the GEOS group achieved ~34–37%, and the GEM
group performed the best for the remaining ~2%. Conversely, from the perspective of the
worst performance of the forecasts, the GEM group underperformed at ~77–86% of sites,
the GEOS group at ~11–20%, and the GFS group at only ~2–3%. It is interesting to point
out that the GEOS group performed the best (~77% of sites) in terms of BIAS, and had
relatively more cases with larger positive and negative deviations.

Figure 3 shows the distribution of the turbine sites colored for the predominant best
performing ensemble group in terms of the mean CC, BIAS, and MAE among the three
ensemble forecast member groups driven by the GFS, GEOS, and GEM global model
forecasts. In general, the sites that achieved the best CC and the best MAE coincide.
Nevertheless, for BIAS, the GEOS group performed the best at the most turbine sites.

Figure 3. Distribution of the sites colored for the dominant best performing ensemble groups
driven by the GFS, GEOS, and GEM forecasts: (a) correlation coefficients, (b) mean absolute errors,
and (c) biases.
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3.3. Variations of Forecast Errors with Wind Regimes

Wind power generation is proportional to the cubic wind speed [68]. Therefore, it is
important to evaluate the model performance in different ranges of wind speeds. Herein,
the wind speed is divided into bins of 3 m/s from 0 to 21 m/s, and the forecast errors for
each wind speed bin are computed and shown in Figure 4.

Figure 4. (a) BIAS and (b) MAE of the wind forecasts of the ensemble groups driven by the GFS,
GEOS, and GEM. The line charts are the error statistics, and the histograms correspond to the number
of data samples.

The winds in the region are mostly 3–12 m/s (Figure 4). The wind forecast bias
of all three groups is similar. The wind forecast bias is negatively correlated with the
observed wind speeds, with a nearly linear relationship. For the weak wind conditions
of 0–3 m/s, the wind speed is overestimated by 2 m/s. In the bin of 3–9 m/s, the
bias gradually decreases to 0, and then the negative bias gradually increases with the
wind speed. For winds over 15 m/s, the negative bias reaches 4–5 m/s. The MAE
of the wind forecast of the three groups is around 2 m/s in the wind speed range of
3–12 m/s. The overestimation of wind speed in the low-wind-speed range (0–3 m/s) and
the underestimation of wind speed in the high-wind-speed range lead to larger MAE for
the weak and strong wind ranges.

For the winds in the range of 0–6 m/s, the forecast errors of the GFS and GEOS groups
are basically the same, and both are better than the GEM group. For strong winds over
12 m/s, the forecast errors of the GEOS and GEM groups are very similar, and worse than
the GFS group. The overestimation of wind speeds in the low-wind-speed range and the
underestimation of wind speeds in the high-wind-speed range are smaller for the GFS
group than for the other two groups.

3.4. Diurnal Variation in Wind Forecast Errors

Figure 5 presents the diurnal variation of the mean observations, and the forecasts
and MAE of the wind speed for the ensemble groups driven by the GFS, GEOS, and GEM
forecasts. During daytime (00:00–09:00 UTC), the mean wind speed increases from 6 m/s to
7 m/s from morning to evening. Overall, the bias of the wind forecasts of all three groups
is small. The GEOS group shows a bias close to zero, the GEM group has a weak negative
deviation, and the GFS group has a bias that gradually increases from a negative deviation
of ~0.1 m/s to a positive deviation of 0.2 m/s.
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Figure 5. (a) Diurnal variation in wind speed observations and forecasts, and (b) MAE of the ensemble
groups driven by the GFS, GEOS, and GEM. The x-axis represents the time (UTC).

At ~11:00 UTC, the wind forecasts of all three ensemble groups experience a sharp
increase toward a positive deviation. Within half an hour, the bias of the wind forecasts
of the GEOS, GFS, and GEM groups increases to ~0.9, 1.1, and 1.3 m/s, respectively.
Subsequently, at night, the mean wind speed gradually weakens and the mean bias of
the wind speed forecasting of the GFS group remains roughly unchanged, but the mean
deviation in the GEOS and GEM groups continues to increase. By 23:00 UTC, the positive
wind forecast biases of all three groups decrease rapidly as the boundary layer starts to
grow after sunrise.

The GEM ensemble group possesses the largest MAE of the wind forecasts during
daytime, followed by the GEOS group, while the MAE of the GFS group is the lowest. After
a brief increase, MAE stabilizes at ~1.5 m/s between 03:00 and 11:00 UTC. After sunset
(11:00–13:00 UTC), the MAE of all three groups increases to ~2.2 m/s. After nightfall, the
MAE of the wind speed forecast of the GEM group continues to increase significantly, to
2.7 m/s, while that of the GEOS and GFS groups only increases to 2.3 m/s. Finally, after
sunrise at 22:00 UTC, the MAE of all three groups decreases rapidly. Overall, the MAE of
the GFS group was smaller than that of the other two groups, and the MAE of the GEM
group was the largest for both nighttime and daytime. The MAE of the GEOS group during
nighttime is similar to that of the GFS group.

To further compare the distribution of the wind forecast errors of the three en-
semble groups and their diurnal variations, the forecast deviations of each ensem-
ble member were analyzed for four day-periods: daytime (00:00–10:00 UTC), sunset
(10:00–12:00 UTC), nighttime (12:00–22:00 UTC), and sunrise (22:00–00:00 UTC); the re-
sults are summarized in Figure 6.

The error distributions of the wind forecasts of all three groups are quite wide. The
forecast members of the GFS group have relatively smaller variance (i.e., smaller dispersion)
than the other two groups. In contrast, the forecast members of the GEM group have
relatively larger variance and median bias. During the daytime and sunset periods, the
error distributions of the three ensemble groups are relatively similar, and the numbers of
samples with positive and negative deviations are close. However, during the night and
sunrise phases, most of the model forecasts in all groups overestimate the wind speed, and
the positive deviations of the GEM group are significantly larger than those of the GFS and
GEOS groups.
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Figure 6. Boxplots of the wind forecast bias distributions for the ensemble groups driven by the
GFS, GEOS, and GEM forecasts for daytime (00:00–10:00 UTC), sunset (10:00–12:00 UTC), nighttime
(12:00–22:00 UTC), and sunrise (22:00–00:00 UTC). The black horizontal line marks the median bias,
while the white triangle represents the mean bias.

3.5. Forecast Errors in Seven Regions

The previous analysis indicates that the ensemble members driven by the three global
model forecasts perform differently at different sites (Figure 3). To further investigate
the regional differences in these ensemble groups, the wind farms in the study area were
divided into seven sub-areas, according to geographical location, from west to east (see
Figure 1). As shown in Figure 1, the wind farms are mainly built along the narrow
mountain ridges that span the Inner Mongolia region. Based on the topography and wind
farm distribution in the seven areas, they can be divided into four main types:

(a) The wind farms located on the northern slope of a mountain, with another mountain
tens of kilometers to its northwest (Areas 1 and 3);

(b) The wind farms located on valley passes or leeward slopes of mountains. (Areas 2, 4,
and 5);

(c) The wind farms located over relatively low terrain (Area 6);
(d) The wind farms located over flat terrain away from significant mountains (Area 7).

Figure 7 demonstrates that (1) the diurnal variation in the average wind speed and
the forecast bias of the three ensemble groups in the four representative areas are quite
different, (2) the trend of the wind speed forecast bias of the three ensemble groups is
consistent, and (3) the average bias of the wind speed forecasting of all three ensemble
groups is negatively correlated with the magnitude of the wind speed, i.e., the higher the
wind speed, the smaller the bias.

Area 1 (Figure 7) is located on the north slope of a mountain. The wind in this region
displays a very complex diurnal evolution, and the bias of the wind forecasts of all three
ensemble groups presents similar, negatively correlated evolution of the mean wind speed.
Among the three ensemble groups, the GEOS group has the smallest bias in the daytime
and the largest late at night. The GEM group possesses the largest bias during most times,
except for a 2-hour period around 18:00 UTC.
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Figure 7. The BIAS of the wind forecasts of the three ensemble groups in the seven sub-areas. The
x-axis represents the time (UTC).

Area 3 (Figure 7) is on the southern slope of the Hetao Plain, with a relatively low
altitude. This area is affected by the prevailing westerly and northwesterly winds. Blocked
by the Langshan Mountain tens of kilometers away to the northwest, the wind speed is
smaller during the daytime and higher at nighttime compared to other areas, and the area
is prone to strong winds. The nighttime wind speeds in this area gradually increase from
6.1 m/s at sunset to 7.1 m/s before sunrise, and a peak occurs at night (18:00 UTC). The
bias of the wind speed forecasting of the three ensemble groups is small during daytime, at
close to 0 for the GFS group, and with slight negative bias for the GEOS and GEM groups.
In the evening, with the adjustment with the atmospheric boundary layer, the wind speed
forecasts of the three ensemble groups grow rapidly to positive bias, reaching a maximum
at ~13:00 UTC, and then gradually decreasing. The wind forecast biases of the GFS and
GEOS groups are close, but the forecast bias of the GEM group has a much larger amplitude
of diurnal variations, with a positive bias 0.3–0.4 m/s larger than that of the GFS group at
night. It should be noted that the CC of the sites in Areas 1 and 3 is high (0.7~0.85).
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The diurnal variations in the average wind speed and the wind forecast verification
in Areas 2, 4, 5, and 6 are relatively similar. Unlike Area 3, the wind speed in these areas
is characterized by high wind speeds during daytime, gradually strengthening after
sunrise, reaching a peak around 9:00 UTC, and then decreasing to a minimum in the
early morning. The bias of the wind speed forecasting of the three ensemble groups
exhibits a very similar diurnal trend, with very little bias during daytime and a stable
positive deviation of ~1.4 m/s at night. The GEOS group has a higher percentage of
superior forecasts in Areas 2 and 4, mainly in the middle of the pass and on the northern
slopes of the mountains in Area 4. The GFS group dominates better forecasts on the
high slopes. The western part of Area 6, which is on the eastern part of the mountain
peak, is a leeward slope where the forecast errors—mainly with negative bias—are
relatively larger.

Area 7 (Figure 7) is a high plain characterized by flat terrain. The wind speed is
characterized by a peak wind speed in the afternoon (08:00 UTC) and a shallow trough in
the evening at 13:00 UTC. The wind speed forecasts of the three ensemble groups possess
an obvious positive bias, except for the enhanced wind speed period in the afternoon
(06:00–09:00 UTC), when the bias is smaller. The biases of the wind speed forecasts of the
GFS and GEOS groups in this area are generally close to one another throughout the day, at
~0.5 m/s during daytime and close to 1.5 m/s at night. The GEM group underestimates the
wind speed during daytime and overestimates the wind speed during nighttime, both of
which errors are significantly larger than those of the GFS and GEOS groups. On average,
the GFS group performs the best in this area, with a high CC of ~0.75.

3.6. Growth of Forecast Errors with Lead Time

The 0–72 h forecasts of the ensemble groups driven by the GFS, GEOS, and GEM
were examined to analyze the growth of the wind forecast errors with the forecast length
(Figure 8). The MAE of the wind speed forecasts of the three ensemble member groups
increases with the forecast length at a rate of ~0.4 m/s per day for the 3 days (Figure 8a).
The MAEs of the wind speed forecasts of the GFS and GEOS groups are rather close to one
another, while the GFS group has a slight advantage. The wind speed errors of the GEM
group grow faster at nighttime, resulting in MAE of 0.4 m/s and 0.6 m/s more than the
other two groups on the first and second days, respectively.

Figure 8. Variation in wind speed forecast errors with forecast time for the ensemble groups driven
by the three global model forecasts: (a) BIAS and (b) MAE. The x-axis represents the time (hours).

Comparing Figure 8a,b, we can see that the large MAE of the wind forecasts at night
was mainly due to the systematic overestimation of the nighttime wind speeds by the
model. It is interesting to note that although the MAE of wind forecasts of the GFS and
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GEOS groups is relatively close, the bias of the wind speed forecasts of the GEOS group
is significantly better than that of the GFS group. Figure 8 shows more clearly that the
mean wind forecast error of the GEM group has a large diurnal variation, with a large
overestimation of positive wind bias in the nighttime and negative bias in the daytime.

4. Summary and Conclusions

In this paper, statistical verification of a mesoscale ensemble numerical weather pre-
diction system was conducted for hub-height wind prediction at 411 wind turbines rep-
resenting ~130 wind farms. The ensemble system contains 39 forecast members, and is
divided into 3 groups driven by the US GFS and GEOS and the Canadian GEM global
weather model forecasts. Each group contains the same set of 13 physical perturbations.
The verification period was from 1 March to 15 April 2020. This paper analyzes the error
characteristics of the mean wind forecasts of the three ensemble groups and compares their
performance. The error statistics (CC, BIAS, and MAE) of the wind forecasts—including
the diurnal variability, differences in seven geographical regions, dependence on wind
speed regimes, and growth by forecast time—are analyzed. The main conclusions of this
study are as follows.

(1) Among the ensemble groups driven by the GFS, GEOS, and GEM global weather
model forecasts, the GFS group significantly outperformed the other two groups
with respect to the CC and MAE of the wind forecasts, with 59–64% of the turbines
performing best. The GEM group was poorer overall, with only 2% of turbines
achieving the best prediction. The wind forecast MAE of the GEOS group was similar
to that of the GFS group, but the GEOS group tended to perform better in terms of
BIAS. In the GEOS group, there were some larger positive and negative biases that
offset one another, resulting in a smaller overall bias;

(2) All three ensemble groups overestimated the low wind speed (0–3 m/s) and underesti-
mated the high wind speed. All three groups had better forecasts for the wind speeds
ranging from 3 to 12 m/s, and the errors of the GFS and GEOS groups were similar.
For wind speeds greater than 12 m/s, the GFS group outperformed the GEOS group,
and the GEM group had the largest error. The average deviation of the wind forecasts
from the observations increased approximately linearly with the magnitude of wind
speeds, reaching more than −4 m/s for the cases of strong winds over 15 m/s;

(3) The wind speed forecasts of all three ensemble groups exhibited similar diurnal
variation in each of the seven subregions. The wind forecast bias was generally small
during daytime but overestimated by 1–1.5 m/s at night. The GFS group had the best
performance, the GEOS group was slightly worse, and the GEM group significantly
underestimated the wind speed during daytime. The GEOS group had more accurate
wind speed forecasts than the GFS group in nighttime in several complex terrain areas;

(4) The errors of the wind forecasts of the three ensemble groups increased with forecast
lead time, with a growth rate of ~0.3 m/s for the 3-day forecast period. The nighttime
MAE was 0.6–0.5 m/s higher than that in the daytime. The MAEs of wind forecasts of
the GFS and GEOS groups were relatively close to one another, and the GFS group
had a slight advantage. The wind speed forecast errors of the GEM group grew much
faster at night, and its biases were ~0.4–0.6 m/s larger than those of the other two
groups. The large MAE of the GEM group wind forecast during nighttime was mainly
due to the systematic overestimation of wind speed at night;

(5) Based on the results of this study, the ensemble outputs should first be processed to
remove the bias of the three subgroups separately before they are combined for deriv-
ing probabilistic wind power forecast products. The model post-processing should be
done for each region, as best as possible, for each wind turbine site independently, in
order to deal with the unique forecast error properties of the ensembles in different
regions. Model developers should devote their attention to mitigating the trend of the
wind forecast bias growth with wind speeds.
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5. Discussion

It should be noted that the performance of numerical weather models is highly
reliant on model resolution [18], regional climate [19], topography [20], underlying
land-surface and soil properties [19], weather measurements [21] and data assimilation
schemes for model initiation [23], as well as the lateral boundary conditions for limited-
area models [24]. The ensemble forecasts overestimate wind speeds. Similar results have
also been reported in several previous studies using the WRF model over different global
regions [24,36,38]. Although several studies have tried to identify the physical reasons
for this, they have not reached a consensus on the issue. From the dynamical point of
view, the height and roughness of the subsurface may not be sufficiently considered in
the WRF model [69,70], and from the thermodynamic point of view, the WRF model
may misestimate the cloudiness, making it difficult to predict the long- and short-
wave radiation accurately, and resulting in the misestimation of near-surface wind
speed [71–73]. Our results show that, driven by different global model forecasts, the
BIAS properties of the WRF forecasts differ, but the overall BIAS trends are the same for
all subregions in the studied domain.

This study focused on the wind forecast error characteristics of the Inner Mongolia
mesoscale ensemble forecasting system with respect to the impact of the ensemble members
driven by different global numerical weather prediction model forecasts. Our findings
provide a basis for developing a statistical post-processing of the ensemble forecasts to
improve wind and power forecasting for the wind farms, and for further improvement of
the forecast capability of the WRF models in the future.

However, the present study was based on only 45 days of wind prediction data in
the spring of 2020, making it insufficient to describe the year-round forecast error pattern.
We are collecting more data to expand this work to a full-year period, and studying the
seasonal variation patterns of wind forecast error statistics. Furthermore, this ensemble
forecast system contains 10 perturbed members of the varying atmospheric boundary
layer parameterization scheme. We are currently analyzing and comparing the error
characteristics of the wind forecasts using these different atmospheric boundary layer
parameterization schemes; the results will be reported in a separate paper.
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Abstract: When simulating cohesive cracks in the XFEM framework, specific enrichment schemes are
designed for the non-singular near-tip field and an iteration procedure is used to solve the nonlinearity
problem. This paper focuses on convergence and accuracy analysis of XFEM enrichment schemes
for cohesive cracks. Four different kinds of enrichment schemes were manufactured based on the
development of XFEM. A double-cantilever beam specimen under an opening load was simulated by
Matlab programming, assuming both linear and exponential constitutive models. The displacement
and load factors were solved simultaneously by the Newton–Raphson iterative procedure. Finally,
based on a linear or an exponential constitutive law, the influences of variations in these enrichment
schemes, including (i) specialized tip branch functions and (ii) corrected approximations for blending
elements, were determined and some conclusions were drawn.

Keywords: cohesive cracks; convergence rate; enrichment schemes; XFEM

1. Introduction

In quasi-brittle materials, such as geomaterials and concrete, the fracture behavior is
quite different from that of brittle materials. A fracture process zone (FPZ) of negligible size
develops at the crack front due to plasticity or micro-cracking [1]. The assumption of linear
elastic fracture mechanics (LEFM) is quite restrictive for certain types of failure, where
the nonlinear zone ahead of the crack tip is negligible in comparison with the dimension
of the crack. Employing LEFM may produce dangerous results for fracture propagation
in quasi-brittle materials [2]. Therefore, cohesive crack models have been developed to
analyze metal materials. Hillerborg et al. [3] introduced fracture energy into the cohesive
crack model and proposed various traction–separation relations for concrete. The cohesive
crack models have been extensively used in studies on the FPZ and nonlinear failure in
engineering structures.

Within the FPZ ahead of the crack tip, although damage develops to a certain degree,
cohesive stress can still be transferred. In the cohesive model, the nonlinear FPZ, where
degradation or damage mechanisms occur as a result of micro-cracking or micro-voids,
ahead of the crack tip is lumped into a discrete line [4,5]. This stress-softening type of
behavior in the FPZ is represented by a cohesive constitutive relation [6]. The FPZ is
characterized by two crack tips: a mathematical (or fictitious) crack tip and a physical
one. As shown in Figure 1, at the mathematical tip, the crack opening is zero and the
cohesive traction equals the tensile strength of the material, while, at the real crack tip, the
crack opening equals the critical crack opening and the cohesive traction is zero. The crack
smoothly closes from the physical tip to the fictitious tip, and the drawback of infinite stress
due to the LEFM theory is avoided [7].

Mathematics 2022, 10, 383. https://doi.org/10.3390/math10030383 https://www.mdpi.com/journal/mathematics
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Figure 1. The stress profiles around the fracture process zone.

Over the last two decades, the methodological development of the extended finite
element method (XFEM) has led to a phenomenal increase in applications. In the XFEM
framework, localized phenomena are modeled by incorporating a priori knowledge about
the solution into the FEM approximation using a partition of the unity property. The
fracture propagation can be handled even on a structured mesh by dynamically adjusting
the pre-selected local approximation spaces in the problem domain. To incorporate a
local approximation space, specialized enrichment functions and corresponding degrees
of freedom are added onto local existing FE nodes. In contrast to FEM, it relaxes mesh
constraints such as mesh conformance to physical discontinuities, mesh refinement around
the crack tip, and burdensome adaptive remeshing whenever the crack grows. Various
enrichment schemes have been specialized to apply the XFEM in modeling discontinuity
problems, such as bi-material [8,9], three-dimensional crack [10,11], inclusion and void [12],
microcrack [13,14], two-phase flow [15,16], and frictional contact [17,18] problems. These
applications have reached a high degree of robustness and are now being incorporated into
general software such as LS-DYNA and ABAQUS.

For linear elastic fracture simulation, two types of enrichment functions are required [19,20]:
(i) heaviside functions, which model the jump in the displacement field across the crack
surface; and (ii) tip branch functions, which are derived from the theoretical solution of
the displacement field in the neighborhood of the crack tip, to capture the singularity.
The XFEM provides higher numerical accuracy than FEM without any significant mesh
refinement. However, the convergence rate with respect to the mesh parameter h is not
improved, because the enriched zone becomes smaller as the mesh is refined [21]. On the
other hand, researchers [22] have found that the parasitic terms presented in the blending
elements may drastically reduce the convergence rate of XFEM approximations. However,
the influence of the parasitic terms cannot easily be predicted [23]; for some enrichments
or problems, such as bi-material structures, they may reduce the convergence rate, while
for others, such as strong discontinuities, they may only increase the absolute error while
keeping the convergence rate unchanged. In order to reach the optimal convergence rate,
special treatments to blending elements have been proposed, such as coupling enriched and
standard regions [24], hierarchical shape functions [25], the enhanced strain technique [26],
and the corrected XFEM [23]. Among these techniques, the corrected XFEM may be the
easiest to implement while producing the optimal result.

For cohesive crack simulation, enrichment schemes used for traction-free cracks are
no longer suitable. This is because, in the cohesive crack model, the singularity of the crack
tip field vanishes. The XFEM enriches the standard local FE approximations with prior
known information about the problem. The cohesive crack model abandons the singularity
of the crack tip stress field, which is an unrealistic assumption of LEFM. Therefore, new
enrichment functions have to be designed in the XFEM framework to simulate the true
asymptotic field for the cohesive crack model [2]. To date, various enrichment schemes
have been developed for modeling cohesive cracks. Originally, only a heaviside function
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was employed. Because the singularity vanishes in the near-tip field, the heaviside function
can be suitable for the entire crack, including the crack tip. This approach is used by Wells
and Sluys [27]. However, if only the heaviside function is applied to all nodes, the crack
is restricted to ending at the element edges to ensure that the jump in the displacement
field at the mathematical crack tip equals zero. The approaches given in Duarte et al. [28]
and Zi and Belytschko [29] overcome this deficiency by modification of the shape functions
within the tip element, so that the crack tip can lie within the element. Mariani and
Perego [30] proposed enrichment functions as a product of the heaviside function and ramp
functions. Some references provide special tip branch functions for cohesive cracks. Moës
and Belytschko [31] suggest the following tip branch function: φ(r, θ) = rk sin θ

2 , with k
being either 1, 1.5, or 2. Other enrichment functions based on analytical considerations
are given by Cox [32]. Meschke and Dumstorff [33] use four tip branch functions similar
to those for traction-free cracks, only replacing

√
r with r, e.g., φα(r, θ) = {r sin θ

2 , r cos θ
2 ,

r sin θ
2 sin θ, r cos θ

2 sin θ}. With the employment of tip branch functions, the crack can end
arbitrarily within the element. However, a loss of the partition of unity in the blending
elements may lead to a reduction in accuracy. Convergence and accuracy studies of these
enrichment schemes are needed for a suitable choice.

As far as convergence rates are concerned, when numerically simulating traction-free
crack by the XFEM, the factors that influence the convergence rate include the enrichment
zone size [21], the shape function polynomial order [24], the special treatment of the
blending elements, and the choice of enrichment functions. V. Gupta et al. [34] studied
the influence of enrichment zone size on convergence rate and found that, for traction-free
crack simulation, the convergence rate is controlled by the stress gradient outside the
enrichment zone and the error is caused by the blending element. When it comes to the
cohesive crack problem, the smoother stress gradient and the nonlinearity of the governing
equation make the accuracy and convergence properties new problems that require study.

In this paper, we focus on investigating the accuracy and convergence properties of
different enrichment schemes for cohesive crack simulation. A numerical simulation was
conducted on a double-cantilever beam specimen, assuming a linear or an exponential
constitutive law, in order to provide useful information for the choice of enrichment scheme
for cohesive crack simulation. The enrichment schemes we considered can briefly be stated
as follows.

(i) XFEM-h. Only the heaviside function is used, with a small modification of the shape
functions in the tip element.

(ii) XFEM-s. Both the heaviside function and the tip branch function φ(r, θ) = r sin θ
2

are used.
(iii) XFEM-c1. Only φ(r, θ) = r sin θ

2 is used as the tip branch function, and a corrected
approximation for φ(r, θ) = r sin θ

2 is used in the blending elements.
(iv) XFEM-c2. Both φ(r, θ) = r sin θ

2 and φ(r, θ) = r cos θ
2 are used as tip branch func-

tions in addition to a corrected approximation for these two tip branch functions in
blending elements.

The remainder of this paper is organized as follows. A description of the cohesive
crack problem domain and the XFEM formulation for the cohesive crack problem are
provided in Section 2. Information on these four enrichment schemes is provided in
Section 3. Section 4 presents the Newton iterative algorithm for solving the nonlinear
problem. In Section 5, numerical results of convergence and accuracy studies on these
enrichment schemes for different cohesive constitutive models are presented. The effect of
variations in these enrichment schemes is investigated. Finally, our main conclusions are
summarized as Section 5.
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2. XFEM Formulation for Cohesive Crack Problems

2.1. Model Problem Definition

Consider a two-dimensional domain Ω crossed by a cohesive discontinuity, as shown
in Figure 2. The strong form of the equilibrium equation of this body can be expressed as

∇ · σ + b = 0in Ω (1)

where ∇ is the gradient operator, σ is the Cauchy stress, and b is the body force. The
behavior of the bulk material is assumed to be linearly elastic, and the constitutive relation is
defined as σ = D·ε. The essential and natural boundary conditions are presented as follows

u = u on Γu
σ · nΓ = t on Γt

σ · nΓd = f c on Γc

(2)

where nΓ is the outward unit normal vector to the external boundary Γ, t is the prescribed
load vector on the boundary Γt, u is the the prescribed displacement on the boundary Γu,
and f c is the cohesive traction transferred across the Γc, which is related to the displacement
gap ω across the discontinuity according to the stress softening model.

Figure 2. A two-dimensional domain containing a cohesive discontinuity Γc.

2.2. Discretization of Governing Equations

In the XFEM, the displacement discontinuity can be directly embedded by introducing
additional degrees of freedom onto existing nodes whose supports are intersected by
discontinuities. Comprehensive overviews of the XFEM have been given by numerous
studies [35–37].

The generalized form of the XFEM approximation of the displacement field can be
written as

uh(x) = ∑
A

Ni(x)·ui + ∑
J

Nj(x)·φj(x) · aj (3)

In the above function, the standard FE approximation ∑
A

Ni(x)·ui represents the con-

tinuous part of the displacement field, while the second term represents the discontinuous
part, where ui and aj are standard and enriched DOFs, respectively, φj(x) are the enrich-
ment functions, which take different forms for specific kinds of discontinuity problems, A
denotes the set of all nodes, and J denotes the pre-selected set of local nodes associated
with discontinuities.

The weak form of the governing partial differential equation can be derived from the
principle of virtual work and the Galerkin procedure. When the cohesive crack model is
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assumed, the cohesive traction fc that transferred is a function of the crack opening ω. The
weak form of the equilibrium equation can be expressed as:

Wint = Wext + Wcoh (4)

Or ∫
Ω

σ · δε dΩ =
∫

Ω
b · δu dΩ +

∫
Γt

t · δu dΓ +
∫

Γt
f c · (δu

+
− δu−) dΓ (5)

Discretization of Equation (5) in the XFEM framework results in:

Kq = λ f ext + f coh (6)

where q is the generalized nodal displacement vector, qe = [ ue
i ae

i ] for each element, and
λ is the load factor.

The stiffness matrix K is composed of

K =

[
Kuu Kua

Kua Kaa

]
(7)

With
Kuu =

∫
Ω (Bu)T DBudΩ

Kua =
∫

Ωenr
(Ba)T DBudΩ

Kaa =
∫

Ωenr
(Ba)T DBadΩ +

∫
Γc

NTTcNdΓ
(8)

where Tc is the tangential modulus matrix of the cohesive crack determined by the cohesive

crack behavior and is obtained from the relation Tc = ∂ f coh(ω)
∂ω . The external nodal force f ext

and the cohesive nodal force f coh can be obtained as

f ext = λ
∫

Γt
NTtdΓ +

∫
Ω NTbdΩ

f coh = −∫Γc
σy(ω)(NT

+ − NT−) dΓ
(9)

where the crack opening displacement ω can be given by

ω =
→
n · (u+ − u−) = →

n · 2∑
i

Niai (10)

It can be observed from the Equations (8) and (9) that the cohesive behavior has a
direct effect on both the stiffness matrix K and the nodal force vector f coh. The relation
between the cohesive force and the crack opening makes the problem nonlinear.

The four enrichment schemes we examined are designed to consider the effect of their
variations, including the employment of tip branch functions and a corrected approximation
in blending elements. These four schemes are denoted XFEM-h, XFEM-s, XFEM-c1, and
XFEM-c2, and detailed as follows.

2.3. XFEM-h

Because the singularity of the displacement field around the crack tip vanishes, a
heaviside function is suitable for the entire crack, including the crack tip. In this scheme,
the approximation of the displacement field can be written as

uh(x) = ∑
i∈A

Ni(x)·ui + ∑
j∈J

Nj(x)·[H(x)− H(xj)
] · aj (11)

where H(x) is the heaviside function, which takes +1 on one side of the crack and −1 on
the other side, and J is the set of nodes whose supports are fully cut by the crack, which is
depicted in Figure 3a.
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(a) (b)

(c)

Figure 3. Node subsets and element types in different enrichment schemes. (a) XFEM-h; (b) XFEM-s;
(c) XFEM-c1; and XFEM-c2.

In order to make the displacement gap vanish to zero at the crack tip within the tip
element, we extended the method proposed by Zi and Belytschko [29] to quadrilateral
elements. Specifically, for the tip element, the modified shape function Nj(x) was used
instead of the standard shape function Nj(x). As shown in Figure 4, if the crack intersects
with boundary 14 within the tip element, we make a straight line through the crack tip point
and intersect the element boundary at points 5 and 6. Then, the shape function Nj(x) used
for the tip element is actually the standard shape function of virtual element 1564. Since
nodes 1 and 4 are enriched, the discontinuous part of the displacement can be written as

udisc = a1N1(x∗)[H(x∗)− H(x1)] + a4N4(x∗)[H(x∗)− H(x4)] (12)

where x* are the coordinates of virtual element 1564.

(a) (b)

Figure 4. Approximation of the displacement field in the tip element. (a) The crack intersecting with
boundary 14; (b) the corresponding parent element.

Since this scheme treats the entire domain with the heaviside function only, the
blending with the unenriched subdomain does not occur, which implies that the PU holds
in the entire domain.

2.4. XFEM-s

Another way to allow the crack tip to be located arbitrarily is to employ branch
functions. For traction-free cracks, the branch functions are chosen based on the analytical
solution of the displacement field in the vicinity of the crack tip, that is φα(r, θ) = {

√
r sin θ

2 ,
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√
r cos θ

2 ,
√

r sin θ
2 sin θ,

√
r cos θ

2 sin θ}. However, the combination of these functions does
not produce the non-singular stress field at the tip of the cohesive crack. On the basis of
the analytical solution of the cohesive crack problem, some researchers proposed that only
one non-singular enrichment function be used for the two-dimensional cohesive crack tip,
which takes the following form.

φ(r, θ) = r sin
θ

2
, or r3/2 sin

θ

2
, or r2 sin

θ

2
(13)

Others proposed that four branch functions be used to enrich the tip element, which is

{φα(r, θ)} = {
r sin θ

2 r cos θ
2 r sin θ

2 sin θ r cos θ
2 sin θ

}
(14)

In this enrichment scheme, r sin θ
2 is used as a branch function, which is presented in

Figure 5a. It is obvious that this branch function is suitable for capturing the displacement
gap at the crack tip.

(a)
(b)

Figure 5. Tip branch functions for cohesive cracks. (a) φ(r, θ) = r sin θ
2 and (b) φ(r, θ) = r cos θ

2 .

In this scheme, the XFEM approximation of the displacement field can be expressed as

uh(x) = ∑
i∈I

Ni(x)·ui + ∑
j∈J

Nj(x)·[H(x)− H(xj)
] · aj

+ ∑
k∈M

Nk(x)·[φ(x)− φ(xk)] · bk
(15)

As marked in Figure 3b, J is the set of nodes whose supports are intersected with
the crack, and M is the set of nodes whose supports contain the crack tip. If a node
simultaneously belongs to J and M, then it belongs to M.

2.5. XFEM-c1 and XFEM-c2

When branch functions are used in conjunction with a heaviside function, the partition
of the unity property does not hold in the blending elements. As shown in Figure 3, in
blending elements only some of the nodes are enriched, which means that ∑

k
Nk(x) �= 1.

In addition, the branch function is not a piecewise constant function like the heaviside
function, so the parasitic terms resulting from ∑

k
Nk(x)φ(x) do not vanish at the edges of

the tip element. The presentation of parasitic terms in blending elements can reduce the
convergence rate and accuracy [38]. Fries T.P. [23] proposed a corrected approximation
in which all nodes in blending elements are enriched and the enrichment functions are
modified, solving the problem most efficiently. The approximation of the displacement
field of the corrected XFEM can be written as:

uh(x) = ∑
i∈I

Ni(x)·ui + ∑
j∈J

Nj(x)·[H(x)− H(xj)
] · aj

+ ∑
k∈M∪L

Nk(x) · R(x)·∑
α
[φα(x)− φα(xk)] · bα

k
(16)
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where L is the set of second-layer nodes around the tip element, as marked with triangles
in Figure 3c. In this scheme, the set of nodes L is also enriched with branch functions and
additional DOFs bα

k . R(x) is a ramp function, which is defined as follows and depicted
in Figure 6.

R(x) = ∑
k∈M

Nk(x) (17)

Figure 6. The value of R(x) on a discretized mesh.

It can be seen in Figure 6, within the tip element, that we have R(x) = 1, while within
the blending element, the ramp function varies continuously and deceases to zero at the
element edges. After this modification, the PU holds everywhere in the domain. Improved
convergence rates were verified in applications to bi-material problems, while in other
applications only the error level was reduced.

In order to investigate the effect of an additional singular branch function in Equation (14),
only r sin θ

2 was employed in XFEM-c1, while both r sin θ
2 and r cos θ

2 were employed in
XFEM-c2. It can be seen from their plots in Figure 5 that the branch function r cos θ

2
can help to capture the stress gradient at the rear of the crack tip. In both schemes, a
corrected approximation in blending elements is used to eliminate the negative influence
of parasitic terms.

3. Nonlinear Algorithm

In order to guarantee the smooth closing of the crack as required by the definition of
the cohesive crack model, one more condition is required. This condition is usually referred
to as the zero stress intensity factor condition. It is assumed that the crack propagates under
the mode I loading condition, so only the mode I stress intensity factor (SIF) is taken into
account, i.e.,

KItip = 0 (18)

where KItip is the mode I SIF calculated at the crack tip. In FEM-based methods, the SIF can
be obtained by means of the domain integration method.

A SIF at the crack tip equal to zero implies that the stress component normal to the
crack tip is finite [39]. Alternatively, smooth closure can also be guaranteed by a stress
condition, where the stress projection in the normal direction nΓ of the crack is equal to the
tensile strength of the material, i.e.,

nΓ
T · σtip · nΓ = ft (19)

where σtip is the stress at the crack tip and ft is the tensile strength of the material. The zero
SIF condition and the stress condition can be used interchangeably, but the stress condition
is simpler to implement; therefore, it was adopted in this paper.

The discretized form of the stress condition can be written as

MT · C · B · q = S · q = ft (20)
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where S = MT · D · B is the operator by which the stress at the crack tip is calculated, and
M = nΓ ⊗ nΓ is the Voigt notation.

It is obvious that in the equilibrium condition (Equation (6)), as the cohesive force
depends on the crack opening ω, the problem is nonlinear. The scheme recommended
in [29] was employed, we combined Equation (6) and Equation (20), and q and λ were
solved simultaneously by the Newton–Raphson iterative procedure. The residual vector of
the governing equation is given by

r =
{

K · q− λ f ext − f coh(q)
ft − Sq

}
(21)

where the independent unknowns are q and λ. The Jacobian matrix is

Λ =

[
K− ∂ f coh(q)

∂q − f ext

−S 0

]
(22)

where ∂ f coh(q)
∂q is the additional stiffness term effective on the crack surface in the FPZ, which

can be obtained by
∂ f coh(q)

∂q
= −2

∫
Γc

∂σy(ω)

∂ω
NT · n · nT · NdΓ (23)

At the ith iteration, the increments in independent variables obtained from Equations (21)
and (22) are {

Δq
Δλ

}i

= −
(

Λi−1
)−1 · ri−1 (24)

4. Numerical Study

In this study, a double-cantilever-beam (DCB) specimen containing a level cohesive
crack was numerically simulated by the above four different enrichment schemes in order
to examine their accuracy and convergence performance. This configuration was taken
from the literature [29]. The boundary conditions and dimensions of this case study are
provided as a sketch in Figure 7. Uniformly distributed forces were applied on the left side
of the beam, and the plane stress condition was assumed to hold. The Young’s modulus
was 36.5 GPa and the Poisson’s ratio was 0.18, which are the material properties of common
concrete.

Figure 7. A sketch of the dimensions and boundary conditions of the double-cantilever beam.

Six finite element meshes were used in the convergence studies (17 × 9, 31 × 15,
61 × 31, 121 × 61, 301 × 151, and 601 × 301 grids of quadrilateral elements). The meshes
were created by making the element length in the x and y directions approximately equal,
with the number of elements being odd, such that the crack tip lies within an element. The
mesh size h was represented by the square root of the area of an element.
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4.1. Linear Softening Model

For the cases with a linear softening model, the cohesive force can be expressed as{
f c = ft

(
1− ω

ωc

)
0 ≤ ω ≤ ωc

f c = 0 ω > ωc
(25)

In this paper, the material properties of common concrete were used, where the tensile
strength ft = 3.18 MPa and the critical crack opening ωc = 0.0314 mm. The fracture energy
was Ef = 0.5 ftωc = 50 N/m. The plot of this softening model is provided in Figure 8.

 (mm)

f c  (M
Pa

)

Figure 8. Linear and exponential softening models in terms of the traction–separation relation.

Due to the nonlinearity of the problem, an explicit analytical solution for the displace-
ment field around the crack tip is not available. In order to evaluate the relative error level
for different mesh densities, we took the results obtained by the finest meshes with each
enrichment scheme as reference exact solutions. The h-version convergence rate of the
finite element method was quantified by means of the relative error in the L2-norm, which
was calculated by the following equations.

Eu =

∥∥∥u− ure f
∥∥∥

L2∥∥ure f
∥∥

L2
(26)

‖u‖L2 =

√∫
Ω\Γc

(u1)
2 + (u2)

2dΩ (27)

where the superscript ref denotes a reference solution.
In Figure 9, the deformed geometry of the cohesive crack problem is compared with

that of the traction-free crack problem when the same load factor is applied. When a
cohesive force exists between crack faces, the crack closes smoothly from the physical tip to
the fictitious tip. The Contour plots of σyy for the cohesive crack problem and the traction-
free crack problem are provided in Figure 10. It can be seen that, in the cohesive crack
model, a stress concentration appears ahead of the crack tip, which is the fracture process
zone (FPZ), rather than at the back of the crack tip, which is the case for the traction-free
crack problem. The stress gradient at the crack tip is much smaller compared with the
case with the traction-free crack. The stress at the crack tip in Figure 10b is finite, and
equal to material tensile strength. This means that the cohesive crack model abandons the
unrealistic assumption in the LEFM that the stress at the crack tip is infinite, which can be
seen in Figure 10a.
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(a) (b)

Figure 9. Deformed geometries of the beam with (a) a traction-free crack and (b) a cohesive crack.

(a) (b)

Figure 10. Contour plot of σyy for (a) the traction-free crack problem and (b) the cohesive crack
problem (unit: Mpa).

The stress σyy along the axis of symmetry is plotted in Figure 11. The stress profiles
obtained by different enrichment schemes are difficult to distinguish from one another.
They also show an obvious FPZ ahead of the crack tip, and the stress σyy is equal to the
tensile strength at the crack tip. In contrast, a stress singularity appears around the crack
tip in the traction-free crack problem.



Figure 11. Stress profiles of σyy obtained by different enrichment schemes for the linear soften-
ing model.

Figure 12 shows the relative error in the L2-norm plotted against the inverse of the
element size h, which is taken as the square root of the area of the element. The rates of
convergence were obtained by means of polynomial curve fitting of those data points. It is
interesting that, as the linear softening model is considered, with the employment of the
branch function r sin θ

2 , XFEM-s, XFEM-c1, and XFEM-c2 achieve a better convergence rate
of more than 1, compared with the 0.7 obtained by XFEM-h. The employment of the addi-
tional branch function r cos θ

2 results in a similar convergence rate but a higher accuracy.
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Figure 12. Convergence rate plot for the cohesive crack problem with the linear softening model (m
is the convergence rate).

As far as accuracy is concerned, the XFEM-s scheme provides less accuracy for cohesive
crack problems, especially when coarse meshes are used. It can be seen from the above
stress contour plot in Figure 10 that the singularity vanishes at the crack tip, and only a
finite stress gradient exists. If the parasitic terms resulting from the branch function are
not corrected, it can reduce the accuracy severely for the case of cohesive cracks. With the
corrected approximation for blending elements as in XFEM-c1 and XFEM-c2, the error level
is improved by around 2 times, while the convergence rate remains almost the same, which
is similar to the case of strong discontinuities.

4.2. Exponential Softening Model

Because of its simplicity, the linear softening model is frequently used; however, for
certain brittle materials, a nonlinear softening model may be more accurate. When the
cohesive traction–displacement relation changes, the stress gradient around the crack tip
differs, and that may affect the convergence rates of enrichment schemes. The same DCB
specimen was used for the numerical study of convergence rates. The cohesive force and
displacement gap relation can be expressed as

f c = ft · exp(− ft

Ef
·ω) (28)

The tensile strength was the same as ft = 3.18 MPa, and the fracture energy was made
to be smaller than Ef = 12.5 N/m to increase the gradient of the cohesive force. The linear
and exponential softening models used in this study are depicted in Figure 8. It can be seen
from the profile that they will result in a similar FPZ length, but different stress gradients.

The stress σyy along the symmetric line produced by different enrichment schemes
is provided in Figure 13, as well as a comparison of the two cohesive constitutive models.
Likewise, the stress profiles produced by these enrichment schemes are hard to distinguish
from one another. It can be seen from Figure 13 b that, when the traction–separation relation
changes, although the cohesive force remains equal to the tensile strength at the crack tip,
the stress gradient differs in the FPZ, and does not make much difference at the back of the
crack tip.
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(b)



Figure 13. (a) Stress profiles of σyy obtained by different enrichment schemes for the exponential
softening model and (b) a comparison of different cohesive constitutive models.

Figure 14 shows the convergence rates of these enrichment schemes when the expo-
nential softening model is inserted. Likewise, the enrichment schemes with tip branch
functions exhibit a higher convergence rate. The employment of the tip branch function
r cos θ

2 increases both the convergence rate and accuracy substantially. However, especially
when coarse meshes are used, these enrichment schemes achieve lower accuracy than
XFEM-h in terms of error level. In comparison with the cases of the linear constitutive
law, the difference between the convergence rates of these enrichment schemes is more
pronounced for the cases of the exponential constitutive law.
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Figure 14. Plot of the convergence rate for the cohesive crack problem with the exponential softening
law (m is the convergence rate).

4.3. Mixed-Mode Crack Problem

In this case, a plate with an inclined cohesive crack was analyzed using all four
enrichment schemes in order to investigate their convergence properites in depth. The
boundary conditions are shown in the sketch in Figure 15. The dimensions of the plate are
200 by 400 mm, with a thickness of 20 mm. The inclined crack is located at [0 150; 100 200].
A uniformly distributed tensile force fext = 1 Mpa was applied on the top edge with the
plane stress condition. All the material properties and softening laws were the same as in
previous cases.
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Figure 15. Boundary conditions of a plate containing an inclined crack.

The convergence rates of these enrichment schemes are provided in Figure 16. They
follow similar tendencies. The enrichment schemes with tip branch functions have similar
convergence properties, while the corrected approximation and additional tip branch
functions can increase the accuracy.
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Figure 16. Plots of the convergence rate for the mixed-mode crack problem with (a) the linear
softening law and (b) the exponential softening law (m is the convergence rate).
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5. Conclusions

The present work focuses on investigating the convergence properties and accuracy of
different enrichment schemes in the XFEM for modeling the cohesive crack problem. Four
kinds of enrichment schemes for cohesive cracks were manufactured to examine the influ-
ences of their variations on convergence performance and accuracy level. The convergence
study was conducted on a double-cantilever beam specimen with both the pure mode I
problem and the mixed-mode problem, and cases of linear and exponential constitutive
laws were considered. On the basis of the simulation results, our main conclusions are
as follows.

1. When both linear and exponential constitutive laws are assumed, the enrichment
schemes with tip branch functions achieve a higher convergence rate than XFEM-h;
however, they have lower accuracy in terms of the absolute error value.

2. In the case of the cohesive crack simulation, the corrected approximation for blending
elements did not change the convergence rate much, but the error level improved
substantially, which is similar to the case of traction-free cracks. The enrichment
schemes with tip branch functions have similar convergence properties, while the
corrected approximation and additional tip branch functions can increase the accuracy.

3. As far as accuracy is concerned, the enrichment schemes with tip branch functions
perform worse than XFEM-h when coarse meshes are used. If the parasitic terms
resulting from the branch function are not corrected, it can reduce the accuracy
severely for the simulation of cohesive cracks.

4. The traction–displacement relation can also affect the convergence properties of these
enrichment schemes. In the case of the exponential constitutive law, the difference
between the convergence rates of these enrichment schemes is more pronounced.
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Nomenclature

Ef Fracture Energy
KItip Mode I stress intensity factor
f c, f coh Cohesive traction
R(x) Ramp function
φ(x) Enrichment function
ωc Critical crack opening
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Abstract: The noise generated by different types of fans used in the turbomachinery industry is a
topic that has been studied for many years. However, researchers are still looking for a universal
solution to reduce noise while maintaining the performance of these machines. This paper, as a
contribution to the research, presents the results of numerical investigations of an axial fan installed
in a pipeline with a circular cross-section. In particular, the focus was on investigating the sensitivity
of the sound power level to changes in selected design and operational parameters of this fan. The
simulation studies used the unsteady Reynolds-averaged Navier–Stokes (URANS) approach and the
Ffowcs Williams–Hawkings (FW-H) analogy implemented in Ansys Fluent.

Keywords: axial fan; CFD; URANS; fan noise; aeroacoustics; sensitivity

1. Introduction

Axial fans typically work in very turbulent flow conditions, e.g., because of their
installations in pipelines, behind radiators, etc. This results in very unstable aerodynamic
forces on the impeller blades, which in turn cause excessive sound radiation. Noise from
flow machines consists of tonal noise, as a result of the interactions among the turbine
blades and stationary housing components or guide vanes and broadband noise resulting
from the acoustic signal generated by strong turbulent structures occurring in the flow. The
most modern aeroacoustic computational methods enable increasingly reliable predictions
of the generated noise. They usually require specific information about the transient flow
field, obtained by simulation using computational fluid dynamics methods.

The most accurate of these methods, a direct numerical simulation (DNS), could solve
the Navier–Stokes equation with no simplifications and could predict the unsteady flow
and the associated acoustic field. Unfortunately, DNS is not feasible for a complex geometry,
such as a fan, due to the enormous computational costs. Finding a non-stationary flow field
with less effort requires modelling of at least part of the of the turbulent fluctuation [1]. Two
different ways are currently used to reduce computational costs. The first is time averaging,
which is known as the unsteady Reynolds-averaged Navier–Stokes (URANS) simulation
(URANS), the second is a spatial filtering of the full Navier–Stokes equations, called large
eddy simulation (LES).

In the case of URANS, the reduction of calculation costs is enormous but the cost is
a large level of approximation. All random turbulent fluctuations are modeled, so only
tonal sources of rotating machine sounds can be predicted. LES solves large turbulent
structures, and only small eddies are modeled, but the computational costs are still high.
Since this paper contains a very large number of numerical calculations that involve
long-term calculations, the authors decided to use the URANS method in the simulations
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carried out. The relevance of this decision is confirmed by Kissner et al. [2], who show that
this way of modelling allows for satisfying accuracy to be achieved.

Solving aeroacoustics problems requires even more computational efforts. In addition
to determining the sound sources, it is important to determine how the sound wave
propagates. Assuming that the energy difference of the flow and the acoustic wave is
sufficiently large, one can focus on the one-way coupling between the fluid flow and the
acoustic signal generated. This line of reasoning led Lighthill to develop the aeroacoustic
analogy named after him.

Lighthill [3–5] first made a formulation of the acoustic analogy for jet noise in 1952,
which demonstrated that the flow mechanisms that were responsible for sound radiation
could be expressed in terms of the quadrupole source. Curle [6] extended Lighthill’s analogy
to the fluid–structure interaction and implemented an extra acoustic source produced from
the reaction force that was exerted on the fluids surrounding the body that did not move.
FW-H [7,8] generalized Curle’s analogy and extended the analogy to a moving structure.
The FW-H equation splits up the aeroacoustic source into three different kinds of source:
monopoles, dipoles, and quadrupoles.

The general theory of Lighthill introduced by FW-H, which takes into account the
motion of a body as a potential source, has been used in many noise studies of rotating
machines, i.e., turbines, fans, helicopters, etc. The FW-H analogy also takes surface sources
into account, which makes it possible to determine noise from sources other than the
quadrupole sources proposed by Lighthill. Schmitz and Yu [9] proved that, at a low Mach
number, the volume integral makes no significant contribution to the noise generated by a
hovering helicopter rotor. For a given range of speeds, the rotor is a surface of monopole
and dipole sources and their contributions depend on factors, i.e., geometry, speed, and
forces acting on the surface.

Brentner and Farassat [10], present a comprehensive review of the mathematical basis
of the FW-H equation, comparing integral formulas and sufficiently powerful numerical
methods applied to helicopter noise. They found that the contribution of the volume
integral is small for subsonic flows, but gives a larger result for supersonic and transonic
flows. In addition, they found that, by applying a permeable FW-H surface, instead of to
the body surface, this would allow quadrupole sources to be included.

Konstantinov et al. [11] showed results of URANS, Delayed Detached Eddy Simulation
(DDES), and LES flow and noise distributions in the test cabin segment. Compared to
the FW-H mathematical model and the hybrid approach of solving the wave equation,
including non-reflecting boundary conditions, a small influence on the sound pressure
level from the imperfect boundary condition in the LES was shown.

Sundström et al. [12] used the LES method to investigate which acoustic sources
predominated in low mass flux flows. They found that blade forces resulting from varying
wall pressures are the main sources of generated noise at low mass flux flows. It turned
out that sound sources coming from forces on blades (dipoles), were much larger than
quadrupole sources, especially in subsonic flows. Comparing these two sound sources, one
can see the relation Wd : Wq ∼ 1 : M2 can be observed. Moreover, it can be concluded that
monopole sources have a greater influence on the generated noise in sonic flows.

In a study by Al-Am et al. [13], the LES approach was used to numerically calculate
the influence of selected parameters on the noise generated around a flat plate. Noise
generated at the trailing edge and noise of turbulent nature was investigated. The flow
character and geometry were chosen to correspond to the Amiet model. It is shown that the
adopted model gives very good noise calculations in agreement with the analytical model
and DNS calculations. Moreover, regarding the ACAT1 fan noise test [2], RANS-based
analytical methods are commonly used to predict broadband fan noise. The accuracy of the
aerodynamic noise results obtained in post-processing calculations depends not only on
the choice of acoustic model itself, but to a large extent on the turbulent model adopted,
which has a significant influence on the nature of the flow and which in turn affects the fan
broadband noise. In continuation of this work, [14] focused on the importance of acoustic
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models. Twelve different models were investigated and several different solvers were
used to solve them. Both models—-based on acoustic analogies and those using direct
methods—were compared. The methods used are distinguished by the turbulence models,
the applied boundary conditions related to the propagation of the acoustic wave and the
noise from the rotor blade phenomena. It turns out that at low frequencies, the differences
in the generated noises are quite large, while at higher frequencies, the sound power level
is within ±3 dB. Furthermore, it is proven that by increasing the rotational speed, the
generated acoustic power is similar for different models.

Biedermann et al. in their study [15], provided detailed information on the broadband
noise reduction possibilities of a low pressure axial fan with serrations on the leading
edges. For the area of instability under partial load conditions, it is proposed that the
dominant noise reduction mechanisms are dependent on aerodynamic effects related to the
serrated geometry at the leading edge, which results in a reduction of the dominant low
and medium frequency noise levels. It was also shown [16] that under the same operating
conditions, the sound pressure levels at the two measurement points of the radial fan
increases by approximately 5.8% and 2.8%, when the ambient pressure increases from
50 kPa to 100 kPa. As the ambient pressure increases, the fan sound pressure level shows
an approximate logarithmic increase trend. It is worth mentioning that researchers [17]
have attempted various techniques to identify the source of the sound, i.e., isocontours
of the dilatation field, which revealed sources of acoustic scale disturbance, and may be
the cause of the noise, a dynamic mode decomposition for the pressure upstream and
downstream of the fan blade, which shows several strong fashions around the first three
blade frequencies, and finally the acoustic analogy of FW-H, which showed a difference of
about 5 dB between the blade tip and the lower parts of the blade in a specific frequency
range. These results are consistent with the expectations that higher flow velocities would
yield higher acoustic pressures.

The effect of the blade curvature on the generated noise was also investigated [18,19],
in relation to the classic Amiet formulation. It has been proven that a curved blade causes
a reduction in noise; this effect is particularly noticeable at the blade tip. Significant
differences were also observed regarding noise generation at the leading and trailing edges
of the blade, where the former is globally dominant but takes on values close to the latter
at around 3.75 kHz and higher [20,21]. Similarly, other researchers confirm this relationship
that the pressure fluctuation of the radial fan was smallest when the blade outlet angle
was smaller, and it was also shown that a corresponding increase in the blade outlet angle
reduced the amplitude of the pressure fluctuation in the blade pass frequency and its
harmonics, which is conducive to reducing rotor noise [22]. In [23], it was shown that, on
the upstream side on the blade walls, the sound pressure level was higher than on the
downstream side. This was due to the separation of the boundary layer at the leading
edge with increasing radial velocity near the ring, resulting in a low frequency noise. The
leading edge therefore turned out to be the dominant dipole source generating tonal noise
in contrast to the other rotor elements. The issues of stream separation at too low of a
rotational speed of the rotor are also discussed [24], where under rotating stall conditions
the fluctuation of the sound pressure amplitude becomes much greater than under other
conditions, and the fluctuation of the sound pressure level is greater at a low frequency
under stall conditions than under normal operating conditions.

The sensitivity analysis consists of examining how a given model depends on the
parameters entering into it. By testing the sensitivity, you can determine which input
variables have the greatest impact on a given output, and in this way, areas that require
more attention may be identified [25]. Sensitivity analysis is a concept used in various
engineering fields, i.e., acoustics, material science, environmental protection, etc. [26–28].

In the above works, different types of fans have been studied, both in terms of
increasing their efficiency and reducing noise emissions, which proves the relevance of the
issue. Researchers are still looking for a compromise to design these machines in such a
way that they achieve the greatest efficiency with the least possible noise emissions. The
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authors of this paper, in previous studies [29–31], also discussed the influence of design
parameters on the noise generated and the efficiency of different types of fans.

The research carried out in this work focuses on the sensitivity of the generated noise
to changes in the design parameters of the fan rather than on the determination of the exact
value of the acoustic power level.

2. Numerical Simulations

2.1. Research Object

The numerical study was carried out on an axial fan (see Figure 1) with a diameter
of 220 mm and a rotational speed of 3000 revolutions per minute, installed in a pipe of a
circular cross-section with a diameter of 230 mm. The rotor has six blades on a hub with
a diameter of 100 mm and a length of 200 mm at an angle of 20◦. For such an assumed
rotational speed, the fan achieves a volume flow rate of 750 m3·h−1.

(a) (b)
Figure 1. Geometrical model of the fan: (a) rotor, (b) pipeline.

The numerical model was a computational grid consisting of 2,120,050 cells, in which
the Navier–Stokes equations were solved using the finite volume method. The main fan
parameters are shown in Table 1.

Table 1. Parameters of the axial fan.

Parameter Symbol Unit Value

Rotational speed n r·min−1 3000
Number of blade z - 6
Rotor diameter D mm 220
Hub diameter Dh mm 100
Hub length Hl mm 200
Inlet/outlet diameter Di/Do mm 230
Inlet/outlet length Li/Lo mm 100
Blade angle θ ◦ 20

In the model, two characteristic zones can be identified: a rotating zone in which
the rotor is located and a stationary zone representing a curved pipeline. The geometric
model does not include the fan fixing elements inside the pipeline. To simplify the model,
steering systems and airflow straightening elements were also omitted. Marked in Figure 2,
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distances Lp and Lt are equal to each other and are 70.16 mm. Inlet straight sections Li and
outlet Lo of the pipeline are equal and amount to 100 mm.

Figure 2. Diagram of built-in fan.

The geometric model of the rotor was made in SolidWorks and then adapted to
the ICEM CFD environment. The ICEM CFD program was used to create a orthogonal
computational mesh based on a multi-block structure grids topology. In the areas close to
the leading and trailing edges, vortices were created due to the separation of the boundary
layer, which is why the computational grid was appropriately compacted at these points
in order to solve the flow with greater precision. In addition, a wall layer was modeled
to provide a parameter y+ < 5. In order to analyze the validity of the model performed,
an analysis of the independence of the results from the calculation grid was performed.
The mesh used (see Figure 3) allowed for results of sufficient accuracy to be obtained in a
reasonable time.

(a) (b)
Figure 3. Fan computational grid: (a) rotor mesh, (b) pipeline mesh.
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2.2. Mathematical Model

The first and very important step in the simulation is to locate the sources that can be
used to calculate the generated noise. This can be achieved using appropriate computational
fluid dynamics techniques. In this field, the basic equations are based on the Navier–Stokes
equations derived from the conservation of mass (continuity equation), conservation of
momentum, and conservation of energy.

The continuity equation can be written for fluids as:

ρ
∂ui
∂xi

= 0 (1)

where ρ is the density of the fluid, t is the time, components of the velocity vector u in the
coordinate system, and xi coordinates in the Cartesian system. The momentum equation is
written as:

ρ
∂ui
∂t

+ ρ
∂uiuj

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
, (2)

where p is the pressure and τij are viscous stresses. Equation (2) is derived by applying
Newton’s second law of dynamics, which relates the forces acting on a fluid volume to its
acceleration.

Turbulence model k−ω is one of the most popular models, which shows the phenomena
of turbulent flow. It belongs to a family of models in which all turbulence effects are
modeled. This is a two equation model. This means that the transport equations are solved
to include phenomena, such as convection and turbulent energy dissipation. The variables
considered in the equation are the turbulent kinetic energy k, representing the turbulence
energy, and the specific turbulent dispersion coefficient omega, denoting the dispersion
rate of the turbulence kinetic energy. Variable ω is also known as the turbulence scale. The
standard k− omega model works well for low Reynolds number flows where the boundary
layer is appropriately sized and the viscous sublayer is well separated. Thus, the standard
model k− ω is best suited for modelling the boundary layer. Other advantages include
excellent performance in complex near-wall flows with adverse pressure gradients and
separation, e.g., in rotating machinery. The model also predicts excessive and early vortex
separations.

Model k−ω SST is a model that offers the strengths of the k− ε proposed by Launder
and Spalding [32] and model k−ω proposed by Wilcox [33], and provides an additional
component to limit the overproduction of turbulent kinetic energy in areas of high pressure
gradients (stagnation points, areas of separation vortex near wall layer). Menter [34]
examining models k− ε and k− ω, and observed that the first handles turbulence well
in free and shear layers and shows negligible sensitivity to inlet boundary conditions for
quantities describing turbulent flow. This is a desirable quality because these quantities
are often not exactly known in practical calculations. However, the k − ω model better
models turbulent flow in the boundary layer but is more sensitive in free flow.

The sound pressure level (SPL) was determined using the FW-H analogy. This model
is based on the Lighthill analogy and allows noise to be determined by equivalent acoustic
sources. Ansys Fluent uses these equations to determine the sound pressure at a given
distance from a sound source by an integral over the surface containing those sources.
The FW-H equation is a non-homogeneous wave equation [7,35], which can be derived by
combining the continuity and Navier–Stokes equations. It can be written as

1
a2

0

∂2 p′

∂t2 −∇2 p′ = ∂2

∂xi∂xj

{
TijH( f )

}
− ∂

∂xi

{∣∣Pijnj + ρui(un − vn)
∣∣δ( f )

}
+

∂

∂t
{|ρ0vn + ρ(un − vn)|δ( f )}

(3)
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where ui—air velocity in the direction of xi, vi—surface velocity in the direction of xi,
un—air velocity normal to the surface f = 0, δ( f )—Dirac delta, vn—velocity of the surface
normal to the surface, H( f )—Heaviside function, p′—sound pressure in the far field
(p′ − p0), ni—normal vector pointing to the external area ( f > 0), a0—speed of sound in
the far field, Pij—compressive stress tensor, Tij—Lighthill stress tensor.

To solve Equation (3), the Green’s function must be used to the open area. The complete
solution involves the calculation of surface and volume integrals, the first representing
monopole, dipole, and partially quadrupole acoustic sources, and the second representing
quadrupole sources in the area outside of the source surface. The volume integral becomes
negligible when the Mach number value of the flow is small and the source area covers the
source area. In Ansys Fluent, choosing a source on a solid surface-like rotor, the volume
integrals are neglected, then the equation takes the following form:

p′ = (�x, t) = p′T(�x, t)p′L(�x, t) (4)

4πp′T(�x, t) =
∫

f=0

[
ρ0
(
U̇n + Uṅ

)
r(1−Mr)

2

]
dS

+
∫

f=0

[
ρ0Un

{
rṀr + a0

(
Mr −M2)}

r2(1−Mr)
3

]
dS

(5)

4πp′L(�x, t) =
1
a0

∫
f=0

[
L̇r

r(1−Mr)
2

]
dS

+
∫

f=0

[
Lr − LM

r2(1−Mr)
2

]
dS

+
1
a0

∫
f=0

[
Lr
{

rṀr + a0
(

Mr −M2)}
r2(1−Mr)

3

]
dS

(6)

where
Ui = vi +

ρ

ρ0
(ui − vi) (7)

Li = Pijn̂j + ρui(un − vn) (8)

The contribution of quadrupole terms (volume integrals) in the FW-H analogy is
proportional to the square of the Mach number (M2). In the analyzed system, the Mach
number reaches values below 0.1, which means that the volume integrals can be omitted.
Considering the time t and a distance to the observer r, the integral equation takes into
account the delay due to the distance from the source to the receiver, according to the
following formula:

τ = t− r
a0

(9)

Mr = Miri Ṁr =
∂Mi
∂τ ri

Qn = Qin̂i Q̇n = ∂Qi
∂τ n̂i Qṅ = Qi

∂n̂i
∂τ

Li = Li jn̂i L̇r =
∂Li
∂r ṙi Lr = Lir̂i LM = Li Mi

(10)

where �n,�r—unit vectors of radiation and normal to the wall, M—Mach number of the
surface source velocity component along the direction of the radiation vector.

2.3. Boundary Conditions and Solver Settings

The calculations started by simulating free flow, i.e., forced only by a rotating impeller
at 3000 r·min−1 around the X axis. For this purpose, boundary conditions of 0 Pa
corresponding to atmospheric pressure were applied at the inlet and outlet, respectively.
To reduce calculation time, the strategy involves running the simulation at a steady state
(MRF) for about 500 iterations until the solution converges below 10−4 and then take the
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results as initial conditions for the unsteady simulation (sliding mesh) with a time step of
5.5 · 10−5 s, which corresponds to 360 time steps per rotation of the rotor. Since the Mach
number value was approximately 0.1, the flow was assumed to be incompressible, reducing
the computational resources required and the computation time. The calculation used
the FW-H equation implemented in Ansys Fluent based on Lighthill’s acoustic analogy.
The rotor and the pipeline walls are indicated as sources of sound (control surface). As
receivers, 510 points were selected and placed on a sphere with a radius of 3 m where the
acoustic pressure was computed (Figure 4).

Figure 4. Receivers distribution.

The resulting sound pressure obtained in the time domain was subjected to Fourier
analysis. The boundary conditions are shown in Table 2.

Table 2. Boundary Conditions.

Boundary Condition Symbol Unit Value/Zone

Operating pressure Patm Pa 101,325
Inlet pressure Pi Pa 0
Outlet pressure Po Pa 0
Mesh motion n r·min−1 3000
Interface - - rotor/duct contact area
Wall - - rotor/duct walls
Time step t s 5.5 · 10−5

To obtain the fan characteristics, calculations were performed for 20 various volume
flow rate values in the range of 0.0997÷ 0.1994 m3·s−1, of which the points marked 1÷ 4
turned out to be a stall range, while the range 5÷ 20 determined the operating range of the
fan. In order to improve the readability of the presented graphs, we decided not to include
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characteristic points from the stall range on the graphs. Table 3 shows the calculation points
and the corresponding percentage of unthrottled flow.

Table 3. Measurement points.

Nr Volume Flow

Rate (m3/s)
Percentage (%) Nr Volume Flow

Rate (m3/s)
Percentage (%)

1 0.0997 50.00 11 0.1770 88.75
2 0.1097 55.00 12 0.1795 90.00
3 0.1196 60.00 13 0.1820 91.25
4 0.1246 62.50 14 0.1845 92.50
5 0.1595 80.00 15 0.1869 93.75
6 0.1645 82.50 16 0.1894 95.00
7 0.1670 83.75 17 0.1919 96.25
8 0.1695 85.00 18 0.1944 97.50
9 0.1720 86.25 19 0.1969 98.75

10 0.1744 87.50 20 0.1994 100.00

A pressure-based coupled algorithm was used to perform the calculations. The
pressure-based solver uses an algorithm called the projection method, which solves the
continuity and momentum equations [36]. The equation of momentum is calculated by the
second-order upwind scheme [37].

3. Results

3.1. Fan Characteristics

The numerical calculations were completed after 7200 time steps, which corresponds
to 20 rotations of the rotor. The flow is established after approximately 1000 steps. The total
pressure increase Δp was used as a criterion for flow stabilization. The velocity contours of
the resolved flow are shown in Figure 5.

Figure 5. Velocity contours of resolved flow.

On the basis of the obtained results, the basic parameters of the fan were calculated to
determine its characteristics. The formula was used to calculate the mechanical power

Nm = Mω (11)

439



Energies 2022, 15, 1357

where M is the torque on the rotor expressed in [Nm] and ω is the angular velocity
expressed in [rad·s−1]. The effective power was calculated as

Nu = ΔpV̇ (12)

where Δp is the pressure increase and V̇ is the volume flow rate behind the rotor. Due to
the low compression, the compressibility of the medium is not taken into account. The
efficiency was calculated according to the equation

η =
Nu

Nm
(13)

In Figure 6, it can be seen that points 1÷ 4 present a pressure increase significantly
different from the rest of the measurement points and reach Δp = 185.2÷ 215.7 Pa and
their amplitude is approximately approximately 20 Pa, while the amplitude at the points
5÷ 20 is only 2 Pa. The results of the calculations of pressure increase and efficiency are
shown in Figure 7.

Figure 6. Pressure increase.
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Figure 7. Pressure increase and efficiency characteristics.
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3.2. Aerodynamic Noise Characteristics

The acoustic power of the fan during its operational conditions was determined.
Therefore, distributions of the fluid pressure and velocity around the fan in the duct in
successive moments was calculated. Next, the FW-H analogy was used to determine the
sound pressure values in points on the sphere around the fan. In this case, reflections from
walls of the duct were not taken into account because the radiated power is a parameter of
the acoustic source. At low sound pressures and the assumption of unidirectional coupling
between the flow and the acoustic field, the reflections do not have much of an impact on
the power of the source itself. The considerable size of the sphere was necessary to be able
to treat the acoustic wave as locally plane in the receivers. Using the FW-H analogy, a time
domain acoustic signal was obtained on the surface of a sphere of radius R = 3 m. On this
area, 510 receivers were placed in which the acoustic signal was obtained. Sound pressures
were determined at the measurement points, from which the sound intensity was calculated
assuming that the wave was locally flat. The integral of the intensity along the surface of
the sphere gives the sound power value. The acoustic pressure was determined in each
of the receivers, and assuming a locally plane wave, on this basis the sound intensity was
calculated. The receivers on the sphere were evenly distributed and each was assigned to a
sphere surface element. Integration was performed using the rectangle rule (the value of
the intensity in the receiver multiplied by the surface element assigned to a given node) [38]

SWL = 10log10

(
P
P0

)
(14)

where P0 is the reference power equal to 10−12W and P is the power of sound expressed by
the formula

P =
∮

A
IdA =

∮
A

p2

ρ0c
dA ≈ ∑i Ai p2

i
ρ0c

(15)

where A is the surface area, prms is the root mean square of the sound pressure, ρ = 1.1225 kg/m3

is the density of air, c = 340 m/s is the speed of sound. On the basis of the calculated values of
the sound pressure, calculations were carried out to obtain the sound pressure level.

SPL = 20log10

(
prms

pre f

)
(16)

In addition, a Fourier analysis was carried out to verify the blade pass frequency
calculated from the relationship

BPF =
RPM× z

60
(17)

where pre f is the reference pressure equal to 2 · 10−5 Pa. The results are shown in Figure 8,
showing the blade pass frequency of 300 Hz and its harmonics.

The results obtained are compared with the fan characteristics in Figure 9. From the
results obtained, it can be concluded there is a significant increase in the sound power level
in the stall area compared to the working area, which is up to 10 dB. In the operating area,
the sound power level is in the range 79.3 ÷ 90.9 dB (see Table 4) and can be approximated
by a parabola with a local minimum. In experimental work [39], a similar character of
sound power level was obtained.
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Figure 8. FFT of acoustic signal.

Table 4. SWL results.

Nr SWL [dB] Nr SWL [dB]

1 88.47 11 79.39
2 89.96 12 79.32
3 90.88 13 79.30
4 90.80 14 79.33
5 80.18 15 79.49
6 79.87 16 79.59
7 79.70 17 79.73
8 79.63 18 79.83
9 79.55 19 79.90
10 79.48 20 79.95

From the resulting sound pressure level distribution shown in Figure 10, it can be
seen that there are negligible differences in cases 5–20. A common feature of all cases is a
higher sound pressure level on the upstream side and around the X axis at the height of the
blades. In cases 1–4, the sound pressure level is much higher than in the other cases, and it
is related to greater pressure fluctuation in the stall area.
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Figure 9. Pressure increase, efficiency, and sound power level characteristics.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10. Cont.
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(p) (q) (r)

Figure 10. Sound power level distribution: (a–r) are the measurement points 1–18.

3.3. Sensitivity of the Fan Parameters to the Change of the Blade Angle

The study investigated the sensitivity of the fan characteristics to a change in the blade
angle. For this purpose, we carried out additional numerical calculations for the blade
angle θ = 21◦ (Figure 11).

Figure 11. Geometry of the model with marked angles θ = 20◦ and θ = 21◦.
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The sensitivity of a characteristic function to changes in a design parameter can be
defined as the partial derivative of the function describing that characteristic, with respect
to that parameter. The sensitivity coefficients, in normalized form, can be found as

Sy
x =

∂yi/yi
∂xj/xj

(18)

where Sy
x is the normalized sensitivity coefficient, yi is model dependent variable and xj is

input parameter.

SΔp
θ =

∂p/p
∂θ/θ

≈ Δp/p
Δθ/θ

= 0.2416 (19)

Sη
θ =

∂η/η

∂θ/θ
≈ Δη/η

Δθ/θ
= 0.1042 (20)

SSWL
θ =

∂SWL/SWL
∂θ/θ

≈ ΔSWL/SWL
Δθ/θ

= −5.9558 · 10−5 (21)

The values from points 8 ÷ 16, which constitute the work area, were used for the
calculations. Two single (∗) symbols define the beginning of a new stall zone (see Figure 12).
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Figure 12. Pressure increase, efficiency, and sound power level characteristics for blade angles 20◦

and 21◦.
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4. Conclusions

Computer simulations using CFD techniques were carried out to investigate the noise
generated by the axial fan. The URANS time-averaging method and the FW-H analogy
implemented in Ansys Fluent were used in the calculations. Using these methods, the
sound pressure was calculated on a sphere with a radius of 3 m from the sound source, from
which the acoustic characteristics were determined and an FFT analysis was performed.
The analysis was carried out for twenty characteristic points for two different blade angles.
The main conclusions of the numerical analysis are presented below.

On the basis of the torque and total pressure increase analysis, the stall area can be
verified for the operating points 1÷ 4 and normal work in points 5÷ 20. In the stall region,
the total pressure increase is Δp = 185.2÷ 215.7 Pa, while in the normal operating area, it
is 79.8÷ 99.8 Pa.

Fourier analysis, calculated using the FW-H acoustic analogy of the acoustic pressure,
made it possible to determine the blade pass frequency equal to 300 Hz and its harmonics,
which allows to confirm the accuracy of the numerical simulations.

As expected, the determined characteristics show that the fan efficiency increases with
increasing total pressure increase.

The difference in the indicated sound power level in the test area is just 1 dB. However,
attention should be paid to the obtained characteristics of the sound power level, which
in the studied area has a local minimum, which encourages additional considerations on
determining the optimal operating point for which the emitted noise is the lowest.

The determined sound power level on a sphere with a radius of 3 m from the noise
source indicates higher emission from the upstream, which may be caused by turbulent
flow caused by the curved pipeline. The common feature of the presented results is a
greater level of generated noise around the X axis at the height of the blades.

From the simulations carried out for a variable blade angle, it can be seen that, for
angle θ = 21◦ at certain points of the characteristic curve, the fan efficiency increases from
2% to 8%. A sound power level at an angle of θ = 21◦ emits 1 dB less at certain points than
for angle θ = 20◦.

For blade angle θ = 21◦, the characteristic point that defines the stall zone has moved,
and for this, the angle is located between the points 1÷ 6.

The generated noise is influenced by many more design and operational parameters
of the axial fan. The aim of the article was to show the change in the angle of the rotor
blades in the entire exploitation area, i.e., with a variable flow rate. The calculations consist
of examining more than 20 measurement points for one parameter change, which require
a lot of computational time, but they are planned for the second part of the research.
Further experiments on the real object will be aimed at verifying the numerical model and
extending the research with parameters influencing the generated noise.
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Abbreviations

The following abbreviations are used in this manuscript:

BPF blade pass frequency
CFD computational fluid dynamics
DDES delayed detached eddy simulations
DNS direct numerical simulations
FFT fast Fourier transform
FW-H Ffowcs Williams and Hawkings analogy
MRF multiple reference frame
LES large eddy simulation
SST shear stress transport
URANS unsteady Reynolds-averaged Navier–Stokes
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Abstract: New studies are emerging to reduce energy costs and become a more sustainable society.
One of the processes where the greatest savings can be made is in cooking, due to its large-scale
global use. In this vein, this study aims to analyse the influence of the vessel in the thermal efficiency
at the cooking process. For that purpose, a numerical model of a cooking vessel was designed and
validated with three different experimental heating tests. One of the key factors of the process is the
contact between the vessel and the glass, therefore, two new approaches to model the thermal contact
between the vessel and the cooktop were explored. Once the numerical models were calibrated, a
full factorial analysis was performed to quantify the influence of the key parameters of the vessel in
the heating process during cooking (thermal conductivity, specific heat, convection and radiation
coefficients, and vessel concavity). Two of the most influential parameters in the heating process are
the conductivity and the thermal contact between the vessel and the glass. Higher cooking efficiency
can be achieved both with a low thermal conductivity vessel and with a high concavity, i.e., increasing
the isolation between the vessel and the glass.

Keywords: heat transfer; thermal distribution; cooking; finite element analysis; household
domestic appliances

1. Introduction

Domestic cooking appliances have significantly evolved towards a more user-friendly
and efficient use during the last decades due to the importance of cooking in our daily
life [1]. One of the most important elements of the cooking process is the vessel; however,
its influence on the energy efficiency has not yet been widely discussed in literature, in
contrast to other domestic appliances such as gas burners and induction systems [2–4].

There are few studies about the vessel influence during cooking related to thermal
efficiency and bottom temperature homogenisation. Cadavid et al. [5] analysed the thermal
efficiency of a pot on an electric stove using numerical simulations. Villacis et al. [4]
experimentally evaluated the energy efficiency of different materials for cookware used in
induction systems. Hannani et al. [6] analysed the thermal efficiency of some cookings pots
using a combined experimental and neural network method. Sedighi and Dardashti [7]
reported that both multilayer plates and some thermal properties, such as thermal con-
ductivity, provide a more uniform temperature profile. Ayata et al. [8] trained a neural
network to find a solution to the nonregular distribution of temperature using the most
efficient thickness distribution, and Karunanithy and Shafer [9] studied the efficiency of
different saucepans on various cooktops and agreed that the surface finish of the pan base
significantly affects the cooking efficiency.

Mathematics 2022, 10, 802. https://doi.org/10.3390/math10050802 https://www.mdpi.com/journal/mathematics
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There is no study that delves into all factors involved in the properties of cooking ves-
sels, probably due to the difficulty of conducting these tests experimentally [4]. To address
this need, we have developed high-fidelity simulations with the finite element method
(FEM) and designed a full factorial analysis to study the effect of the main parameters
of the vessel. The finite element (FE) model was based on a previous study [10], used to
analyse the thermal distribution on the bottom of a pan depending on the meat size and
position in the pan.

One of the main limitations of the FE model developed at [10] was the assumption
of a constant thermal conductance between the cooking vessel and the glass. The micro-
concavity of the vessel and the thermal-deformation of the vessel during the heating makes
very complex to model accurately this thermal contact conductance. To address this issue,
we explored two novel approaches: (I) including a layer of stratified air between the pan
and the glass and (II) setting a variable thermal contact conductance in the interaction
between the vessel and the glass along the radius, hereinafter referred to as Model I and
Model II, respectively, see Figure 1a.

Figure 1. (a) Representation of the systems that form Model I (S1 and S2 are the same for Model II).
S1 corresponds to the system of the solid/pan, S2 corresponds to the glass and S3 corresponds to the
air. The input heat is shown as red arrows, while outgoing heat is shown by blue arrows. Q̇pan−air

and Q̇air−glass corresponds only to Model I. (b) Distribution of thermocouples in the vessel and the
glass. The thermocouple (red) placed at the centre is used as input for the PI control (Tsensor). Blue
thermocouples are placed below the glass.

The first goal of this paper was to study how the bottom of the pan affects the cooking
and in detail, the influence of the contact between the vessel base and glass. For that
purpose, three FE models were calibrated independently based on experimental heating
tests in three different solids: two multilayer frying pans from the Würtembergische
Metallwarenfabrik (WMF) and Schulte brands and a steel plate (which was used as a flat
sample). Once a high-fidelity numerical model was achieved, the key parameters of the
vessel were analysed through a full factorial analysis.

This paper is organised as follows. We first describe the experimental set-up in
Section 2.1: the cooktop, the three vessels under investigation and the PI control algorithm
used to control the temperature of the vessel. The proposed FE models and the design
of the experiments (DoE) to analyse the key parameters of the vessels under heating are
explained in Sections 2.2 and 2.3, respectively. This is followed by the results and discussion
of the study and, finally, the main conclusions obtained are presented.

2. Materials & Methods

2.1. Experimental Set-Up

The experimental heating tests consisted of heating a vessel to 200 ◦C for 1800 s on
an induction cooktop prototype from BSH Home Appliances. The inductor used in the
experiments generates a power distribution resembling a ring, which is assumed to be
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rotationally symmetric; see Figure 1 in Cabeza-Gil et al. [10]. The applied power turns
into heat in a steel microlayer of 100 μm, which is placed at the bottom of the vessel, by
means of the dissipation of the eddy current density induced [11]. The power density
was controlled with a PI algorithm, whose input is a thermocouple, hereinafter referred
to as Tsensor, which was located at the centre of the cookware surface for all vessels [12].
To measure the thermal footprint in the glass, four thermocouples were placed under the
glass at a radius of 7.00, 5.00, 2.00 cm and at the centre, T1, T2, T3 and T4, respectively, see
Figure 1b.

Three different solids (two vessels and a steel plate) with different concavities, see
Figure 2, were heated: a multilayer WMF pan with a diameter of 21 cm and a thickness of
4.9 mm (red line); a multilayer Schulte pan, model Industar, with a diameter of 20 cm and a
thickness of 3.9 mm (green line); and a circular steel plate, which was specifically used in
this study since its base surface is practically flat, with a diameter of 20 cm and a thickness
of 6 mm (blue line). The multilayer pans consisted of three layers: steel, aluminium and
steel, from bottom to top. The WMF has an aluminium volume percentage of 71.43%,
while the Schulte pan has an aluminium volume percentage of 74.36%. The concavity
of each vessel was measured with a Faro Prime robot with an accuracy of ±27.00 μm
(see Figure 2). The emissivity (ε) of each vessel under investigation was measured with a
thermal emissometer, model TIR 100-2 from Inglas, along the whole spectrum.

Figure 2. The mean and deviation concavity for each solid under investigation are depicted. The red
line corresponds to the WMF, the green line to the Schulte and the blue line to the steel plate. The
axis x = 0 is placed at the lowest geometric point of the vessel located in the periphery.

A computer to which the experimental setup was connected calculated the supplied
power required and provided it to achieve the target temperature (200 ◦C) by means
of the PI controller [12]. The tests for each sample were carried out three times. The
software used to supply the power and to register all temperatures of the thermocouples
was MATLAB R2020a.

2.2. Model Description
2.2.1. Heat Transfer Model

Two different FE models were developed to simulate the heating process of the vessels
depending on how the heat transfer between the vessel and the glass was modelled. Both
models were divided into two coupled systems, the vessel (S1) and the glass surface (S2).
A new solid domain, a layer of air (S3), was included in Model I to simulate the thermal
contact between the vessel and the glass. In Model II, this thermal contact was modelled
through a variable thermal contact conductance.

In S1, Q̇pan represents the heat rate generated in the ferromagnetic microlayer of the
pan from the induction cooking hob. Q̇pan−amb indicates the convective and radiative heat
losses from the pan to the ambient environment, modelled by h1 and hr1, respectively,
which are the heat transfer convective and radiation coefficients. Heat losses between the
pan and the glass are different in each model because of the presence of air. In Model I,
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Q̇pan−air depicts the heat losses to the air between the pan and the glass. In S2, Q̇air−gla

represents the conductive heat transfer between the air and the glass and Q̇pan−gla between
the pan and the glass. In Model II, without the layer of air, Q̇pan−gla depicts the conductive
heat transfer between the pan and the glass. Q̇gla is the heat absorbed by the glass, and
Q̇gla−amb are the convective and radiative losses from the glass to the ambient environment,
which are also modelled as h1 and hr1, respectively.

The governing equations of the systems are described in Cabeza-Gil et al. [10], which
come from the local heat transfer equation (Equation (1)) [13,14].⎧⎪⎨⎪⎩

(a) P = ρSMce-SM
∂TSM

∂t − kSM∇2TSM,⇒ SM,

(b) 0 = ρSDce-SD
∂TSD

∂t − kSD∇2TSD,⇒ SD.
(1)

The domain of Equation (1a) is the steel microlayer (SM) of the vessel where the
electromagnetic power is supplied, being P the volumetric power density generated by the
induction heat source. Equation (1b) refers to the remaining part of the solid domain (SD).
The terms ρSD, ce−SD, and kSD are the density, the specific heat capacity and the thermal
conductivity of the solid material (steel or aluminium), respectively. TSM and TSD are the
corresponding temperature at some determined point in the volume domain.

Regarding the boundary conditions of the system, Equations (2) and (3) refer to the
convection and radiation heat losses to the ambient environment, respectively.

− λi
∂Ti
∂n

= hi(Ti − Tamb) , (2)

hi = hconv
i + hr

i = hconv
i + σε(T2

i + T2
amb)(Ti + Tamb) , (3)

where the subscript i refers to outer surface of the vessel or the glass and ∂Ti
∂n is the partial

T-derivative normal to the reference surface. hi includes both the convective and radiative
contributions, i.e., hconv

i and hr
i are the convective and radiative heat transfer coefficients,

respectively. σ is the Stefan–Boltzmann constant, ε is the emissivity of the pan and Tamb is
the ambient temperature.

Thermal conduction was differently modelled for Model I and Model II. In Model I,
the conduction heat losses were modelled through Equation (4) from the vessel to the air
(hva

c ) and from the air to the glass (hag
c ):

− λv
∂Tv

∂n
= hva

c (Tv − Ta), − λa
∂Ta

∂n
= hag

c (Ta − Tg) , (4)

where λv and λa are the thermal conductivity of vessel and air. Tv, Ta and Tg are the
respective temperatures at the vessel, air and glass surfaces. hva

c is the thermal contact con-
ductance to be evaluated between the vessel and the air, and hag

c is the thermal conductance
between the air and the glass. A perfect thermal contact between the vessel and the air
surface, and the air and the glass surface, was considered.

For the Model II, an iterative analysis was performed in the three samples under
investigation to determine the relationship between the air gap and the thermal conductance
coefficient along the radius, see Equation (5):

Qc =
∫ R

0

∫ 2π

0
hvg

c (r) · ΔT(r) · r · dr · dθ , (5)

where Qc refers to the heat loss at the contact between the pan and the glass, hvg
c (r)

corresponds to the thermal conductance coefficient depending on the radius between
the vessel and the glass, and ΔT(r) is the difference in the surface temperatures in the
volume domain.
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2.2.2. Finite Element Model

The FE model developed in this study is shown in Figure 3, and it is based on the
study developed by Cabeza-Gil et al. [10]. The vessel geometry and the inclusion of the
layer of air were different depending on the FE model analysed. Model I includes an air
layer between the solid and the glass whereas Model II includes a variable thermal contact
conductance. Both FE models consisted of a vitroceramic circular glass with a 200 mm
radius × 4 mm thickness and the corresponding vessel previously described in Section 2.1.
Due to the rotational symmetry, a quarter of the model was designed.

Figure 3. Vitroceramic glass is represented in orange, and the multilayer round WMF pan is repre-
sented in blue. Model I is modelled with the air (purple instance) between the glass and the pan,
while Model II replaces the air by modelling the interaction between the vessel and glass by a variable
thermal conductance coefficient along the radius.

The commercial software Abaqus v.6.14 was used to generate the model mesh and
perform the simulations. The glass was considered a shell, which was meshed with 1408
quadratic 4-node quadrilateral (DS4) and 32 3-node linear triangular (DS3) heat transfer
shell elements, while the vessel (WMF, Schulte pan and steel plate) was considered a 3D
solid, which was meshed with approximately 35,000 (depending on the solid) 10-node
quadratic heat transfer tetrahedral elements (DC3D10); see Figure 3. For the Model I, the
layer of air was approximately modelled with 200 DC3D10 elements.

The power density distribution generated by the induction system was numerically
computed in an electromagnetic FE model [15,16]. The power-density field from the FE
model was mapped using an in-house subroutine, which was written in MATLAB 2020a,
onto the FE mesh to perform the thermal analysis. The power supplied was calculated
using PI control, which is a temperature-level control, and it was added through the
URDFIL and DFLUX subroutines. This control reproduces the control implemented in
the experimental heating tests by determining the power supplied from the previous time
increment (Δt = 1 s) of the temperature sensor. The target temperature in the control was
200 ◦C, and the maximum power applied was limited to 2200 W, as in the experimental tests.

The whole model was at ambient temperature (Tamb = 23 ◦C) as initial condition.
The boundaries conditions applied to the model are described in Section 2.2.1. Briefly,
convection and radiation heat losses were imposed to all external surfaces of the model.
For Model I, the heat conduction between the vessel and the air, and the air and the
glass, was considered through a thermal contact conductance. Whereas for Model II,
the heat conduction between the vessel and the glass surfaces was considered through a
variable thermal contact conductance depending on the position (hvg

c (r). Convective and
conductance parameters used in the computational models were obtained individually
for each vessel after an optimisation process by fitting the experimental tests with the
numerical tests. In each vessel, the same convective parameter was applied for all external
surfaces. The coefficients of the glass were the same for all simulations. The thermal air
properties [14] used in the study are shown in Table 1.
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Table 1. Properties of air (Model I) modelled based on temperature as a continuum between the
vessel and the pan [12].

Temperature
(K)

Density
(kg/m3)

Conductivity
(W/mK)

Specific Heat
(kJ/kgK)

Expansion
Coefficient (-)

300 1.16 0.026 1.007

0.0037

350 0.99 0.030 1.009

400 0.87 0.034 1.014

450 0.77 0.037 1.021

500 0.69 0.041 1.030

550 0.63 0.044 1.040

600 0.58 0.047 1.051

2.2.3. Finite Element Method Discretization

The weak form of Equation (1a) can be written as:∫
Ω

PδTdΩ =
∫

Ω
ρce

∂T
∂t

δTdΩ−
∫

Ω
k∇2TδTdΩ (6)

being Ω the solid domain and δT the virtual temperature. The application of classical
differentiation rules to the last term of Equation (6) leads to the following statement:∫

Ω
PδTdΩ =

∫
Ω

ρce
∂T
∂t

δT dΩ +
∫

Ω
∇δT k∇TdΩ−

∫
∂Ω

k∇TδT d(∂Ω) (7)

The FEM discretization procedure starts from the following approximation of the
temperature function:

T(x, y, z) = NαTα, being α = 1, . . . , n (8)

where T(x, y, z), the temperature in the Cartesian coordinates, is represented by Nα, the
shape functions, and Tα, the nodal temperatures. n is the total number of degrees of
freedom of the model. Following the usual approximation of FEM, the virtual temperature
(δT) is identified as the shape functions, δT = Nβ. The matrix form of Equation (7) is
represented as follows:

Q(e)
α =

∫
Ω(e)

PNβdΩ +
∫

∂Ω(e)
k∇TNβ d(∂Ω) (9)

K(e)
αβ =

∫
Ω(e)

(kx Nα,x Nβ,x + kyNα,yNβ,y + kzNα,zNβ,z)dΩ (10)

M(e)
αβ =

∫
Ω(e)

ρceNαNβdΩ (11)

The assemblage and condensation procedures for the system matrices and vectors lead
to the well-known final system of algebraic equations, which has been solved implicitly
through the trapezoidal rule for time integration in Abaqus. The initial and boundary
conditions needed to solve the equations system are described in Section 2.2.1.

Mαβ

∂Tβ

∂t
+ KαβTβ = Qα (12)

2.3. Design of the Experiment

The influence of the key parameters of the model, the conductivity (k), specific heat
(ce), emissivity (ε), and concavity (Con) of the vessel, and the convective coefficients of the
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vessel (hconv
v ) and the glass (hconv

g ) in the cooking process were analysed following the DoE
methodology by a full factorial analysis [17]. The simulations consisted in heating the vessel
during 1800 s as in the experimental tests. A screening analysis was performed to observe
the influence of each variable and decide the levels of the DoE. Based on this analysis, an
intermediate value was selected for the conductivity, specific heat and concavity, whereas
the remaining terms (emissivity and convective coefficients of the vessel and the glass) had
two levels, resulting in 243 simulations (i.e., 33 × 32 = 243 simulations), see Table 2.

Table 2. Values of the analysed parameters for each level. Conductivity, specific heat and concavity
have three levels, whereas both convective parameters and emissivity have only two. The steel
density was considered constant with a value of 7900 kg/m3.

Process
Parameters

Low
Level

Intermediate
Level

Maximum
Level

k (W/mK) 49 142 235

ce (J/kgK) 300 420 540

Con Scenario #A Scenario #B Scenario #C

hconv
v (W/m2K) 3 - 9

hconv
g (W/m2K) 3 - 9

ε 0.3 - 0.9

The maximum and minimum levels of the conductivity and the specific heat were
chosen based on the properties of aluminium and steel [18]. The parameters affecting three
heat losses (ε, hv, hg) were chosen according to values reported in the literature [10,11].

To analyse the influence of concavity, three different scenarios, see Figure 4, were
considered. The red line was considered the reference case (from the WMF pan), here-
inafter referred to as scenario #B. Two more scenarios where the concavity was increased
by 1.5 times and decreased by 0.5 times were introduced (scenario #A and scenario #C,
respectively).

Figure 4. Concavities of the three different scenarios. Scenario #A (blue line) corresponds to a larger
concavity compared to scenario #B, the concavity measured to the WMF pan with the robot (red line).
Scenario #C (green line) corresponds to a flatter concavity compared to scenario #B.

The effect of the key parameters in the heating process were analysed measuring
different factors of the cooking process: time to reach steady state (tst), supplied energy
during the cooking (Ein), maximum temperature of the sensor (Ts) and temperature ho-
mogenisation at the bottom along the radius after 1 min from the start (Hr):

Hr = 1− 1
Sp

∫ 2π

0

∫ rext

0

| T̄ − T(r, θ) |
T̄

· r · dr · dθ, (13)
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where Hr refers to the temperature homogenisation along the radius in the second 60 of
the cooking, Sp is the cookware surface of the pan, r is the radius of the pan, T̄ is the mean
temperature of the nodes selected in the cookware surface and T(r, θ) is the temperature in
each node.

3. Results & Discussion

3.1. Experimental-Numerical Calibration of the Heat Loss Coefficients

The heat loss coefficients for the five calibrated models are presented in Table 3.
Only the WMF and Schulte pans were developed in Model I because the steel plate is
flat (Figure 2) and there is no layer of air to be modelled. Convective coefficients were
optimised to reduce the mean absolute error (MAE) between the experimental and nu-
merical temperatures. We obtained a convective coefficient of 8.0 W/m2K, similar to
Sanz-Serrano et al. [11], which obtained a convective coefficient of 9.5 W/m2K using the
difference finite method.

Table 3. Heat loss coefficients: convective coefficients (hconv
v and hconv

g ), thermal conductance coeffi-
cients (hvg

c , hva
c and hag

c ) and emissivity coefficient (ε) for the five FE models, the two with the layer of
air (Model I) and the three with the non-linear thermal conductance along the radius (Model II).

Model I Model II

WMF Schulte WMF Schulte Steel Plate

hconv
v (W/m2K) 4 6 5.5 7 8

hconv
g (W/m2K) 4 4 5.5 5.5 4

hvg
c (W/m2K) - - hvg

c (r) hvg
c (r) hvg

c (r)
hva

c (W/m2K) 3000 3000 - - -
hag

c (W/m2K) 3000 3000 - - -
ε 0.95 0.87 0.95 0.87 0.4

3.1.1. Model I: Modelling the Layer of Air between the Vessel and the Pan

Figure 5a,b show the WMF and Shulte heating processes, respectively. The dotted
lines indicate the values obtained from the experimental tests whilst the continuous lines
represent the computational results (see Figure 1b for the location of the thermal sensors).
Shaded areas in the experimental tests are the standard deviations. Both numerical results
of the surface thermocouples are within the experimental deviation.

Figure 5. Temperatures of the surface and area under the glass from 0 to 1800 s for both the experimen-
tal test (dotted lines) and computational simulations (continuous lines) in Model I. (a) corresponds to
the WMF pan and (b) to the Schulte pan.

The fitting between experimental and numerical results is good, although the exper-
imental glass temperatures of the WMF pan heat up slightly faster than the simulated
temperatures in the transient state (0–200 s). The temperatures in the steady state are
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practically the same. Table 4 shows the MAEs between the numerical and experimental
temperatures. The thermocouple placed in the centre (T4) presented the highest error,
6.75 ◦C.

Table 4. MAE of the three models with Model I. Tsensor, T1, T2, T3 and T4 are the thermocouples in
Figure 1b. The units are ◦C.

Tsensor T1 T2 T3 T4

WMF 2.63 4.63 5.36 3.33 6.75
Schulte 1.33 2.93 4.94 13.27 3.31

On the other hand, during the whole heating process in the Schulte (Figure 5b), both
the experimental and simulated results are similar (all MAEs are under 5 ◦C) except for T3,
which differs more from the experimental temperature (MAE of 13.27 ◦C). A misalignment
of the thermal sensor or the vessel in the experimental tests might be one factor. This area
has the largest concavity deviation and small variations can significantly influence the
thermal contact conductance and thus the temperature.

3.1.2. Model II: Fitting of the Nonlinear Thermal Conductance along the Radius

The equation that relates the thermal conductance coefficient and the air gap for the
pans (WMF and Schulte) is shown in Figure 6. An iterative inverse analysis, such as in
Paesa et al. [19], was performed, and it included several simulations of WMF with different
variable thermal conductances along the radius. The optimal result was correlated with the
concavity of the pan (see Figure 2), and thus, the following relationship, see Figure 6, was
achieved. The WMF pan was used as reference vessel and the parameter fitting were also
employed later for the Schulte pan simulations.

Figure 6. Relation between the thermal conductance coefficient and the air gap. The relation and its
equation, where y is the distance between the glass and the base of the pan, are shown graphically.
The R-squared value of the regression model is also presented.

The results of the simulations are shown in Figure 7. The surface thermocouples of
WMF and Schulte present very low MAEs of 3.09 ◦C and 1.80 ◦C, respectively (see Table 5).

Table 5. MAE of the two models modelled with Model II. Tsensor, T1, T2, T3 and T4 are the thermocou-
ples in Figure 1b. The units are ◦C.

Tsensor T1 T2 T3 T4

WMF 3.09 9.45 6.69 3.77 5.65
Schulte 1.8 2.48 12.17 15.01 4.48
Steel plate 2.76 4.55 1.7 0.89 5.39

Regarding the glass thermocouples in the WMF (see Figure 7a), the experimental
temperatures are slightly higher than the numerical temperatures in the transient state
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(approximately 0–200 s). For the Schulte pan, the experimental values are moderately
higher than the simulated one during the whole cooking (see Figure 7b).

The heat conduction between the steel plate and the glass was initially considered
as perfect as the plate is completely flat; however, the numerical results did not fit the
experimental results. Thus, a thermomechanical analysis was performed to observe if there
was a significant thermal deformation during the cooking that produced an input of air
between the plate and the glass. It was noted that the concavity changes with increasing
distance between the base vessel and the glass up to an axial displacement of 120 μm
(see Supplemental Data). Thus, hvg

c was modelled as piecewise as follows due to the
thermomechanical analysis: from the centre until a radius of 10 cm is 50 W/m2K; from 20
to 50 cm of radii, 150 W/m2K; and the rest of the pan, 500 W/m2K. With this assumption,
There was a clear correlation between the experimental and numerical temperatures, see
Figure 7c.

Figure 7. Temperatures of the surface and under the glass (see Figure 1b for location of the tempera-
ture sensors) from 0 to 1800 s for both experimental tests (dotted lines) and computational simulations
(continuous lines) in Model II: (a) WMF pan, (b) Schulte pan and (c) steel plate.

3.1.3. Comparative between Model I and Model II

Both Model I and Model II show a good agreement with the experimental results.
Overall, the results obtained for both the WMF and Schulte pans for Model II are slightly
worse than those for Model I (see Tables 4 and 5). If the concavity of the vessel is known,
Model I might provide more accurate results. On the other side, Model II is indispensable
for simulations where the concavity of the vessel is not known. However, it contains the
tedious work of obtaining the variable thermal contact conductance by an inverse analysis.

3.1.4. Heat Flux Analysis

The inbound energies, which are referred to as supplied power, and outbound energies,
which are referred to as heat losses, of the WMF (using the Model II approach) are shown
in Figure 8. The red dotted line represents the introduced power, the coloured areas refer
to the heat losses during cooking, and the dotted and continuous green lines depict the
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experimental and simulation temperatures of the sensor, respectively. At the beginning of
cooking, all the power is used as heat to warm up the vessel. When the temperature of the
sensor reaches the target (200 ◦C), the power decreases and maintains a constant value. The
power of the steady state (approximately 400–1800 s) is converted into heat losses, mostly
convection and radiation losses from the walls and the upper surface of the base (in yellow
and orange).

Figure 8. Representation of the heat losses of computational Model II of the WMF (coloured areas),
the amplitude of the power density introduced (red dotted line) and the experimental and simulation
sensor temperatures (dotted and continuous green lines, respectively). The blue area corresponds to
conduction losses between the base of the pan and the glass. The orange and yellow areas indicate
the convection and radiation losses in the base and walls of the pan, respectively.

The inbound and outbound energies of the Schulte and steel plate models are shown
in the Supplemental Data. The heat losses of the three models at their maximum power
level and at the end of cooking (red and pink line markers in Figure 8) are shown in Table 6.
In the transient state, conduction losses to the glass prevail above convection and radiation
losses. However, in the steady state, convection losses become higher than the remaining
ones. The results are consistent with Cabeza-Gil et al. [10] and Cadavid et al. [5].

Table 6. Conduction, radiation and convection losses in the three vessels under investigation. The
Schulte pan, that has the biggest concavity, presents the lowest conductivity losses during the
transient state.

Maximum Level End of the Cooking

WMF Schulte Steel Plate WMF Schulte Steel Plate

Conduction (W) 496.7 122.4 546.6 49.6 14.9 46.8
Convection (W) 104.9 65.1 53.5 153.1 111.0 65.1
Radiation (W) 77.8 71.2 32.76 77.8 71.2 32.7

The efficiency of the pans is calculated during the first 400 s as the energy used to
heat up the vessel divided by the supplied energy as in Karunanithy and Shafer [9]. The
efficiencies of the WMF, Schulte and steel plate are 79.95%, 82.5% and 74.18%, respectively.
These values are consistent with those in Karunanithy and Shafer [9] and Villacis et al. [4],
although the experimental setups were different and the experimental calculations can
lead to some errors due to the approximation of the average temperature of the vessel.
The energy necessary to heat up the solids during the 1800 s heating tests was 0.56 kWh,
0.38 kWh and 0.28 kWh for the WMF, Schulte and steel plate, respectively. These measure-
ments were calculated as the temporal integration of the power supplied in the microsteel
layer of the vessel.
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3.2. Design of Experiments (DoE)

In this section, the effects of the key parameters in the cooking and pan heating,
namely, conductivity (k), specific heat (ce), emissivity (ε), concavity (Con) of the vessel, and
convective coefficients of the vessel (hconv

v ) and the glass (hconv
g ), are presented. The main

responses in the heating tests, the time to reach steady state tst, the introduced energy Ein
and the homogenisation along the radius in the second 60 of the cooking Hr, are shown
through the main effects plots (see Figure 9). All results were supported by a Pareto analysis
(see Supplemental Data).

Figure 9. Main effects plot of conductivity (k), specific heat (ce), pan and glass convective coefficients
(hv and (hg)), emissivity (ε) and concavity (Con) for the responses: time to reach the steady state
(a), supplied energy (b) and temperature homogenisation along the radius in the second 60 of the
cooking (c). The units of the parameters are conductivity (W/mK); specific heat (J/kgK); convective
coefficients (W/m2K); emissivity (-); and concavity (-).

Regarding the time to reach the steady state, as shown in Figure 9a, conductivity has
the highest influence [20], and as it increases, the time to achieve the steady state decreases.
Specific heat also influences tst, and as it increases, more time is needed to heat the vessel.
The rest of the parameters have little influence.
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The most influential parameters in the supplied energy (Figure 9b) are the conductivity,
vessel convective coefficient, emissivity and concavity. These results are consistent with
Villacis et al. [4], Cadavid et al. [5], Newborough et al. [21] and Karunanithy and Shafer [9],
who found that the efficiency of the pan depends on the pan composition and external
surface emissivity.

We performed another analysis decreasing the cooking time to 400 s (see Supplemental
Data), where the influence of the specific heat was not as high as expected. The effect of
the supplied energy on the variable parameters was similar to that of the total lost energy
during the whole cooking period (t = 1800 s); see Supplemental Data.

Lastly, concerning the temperature homogenisation along the radius after 1 min of
cooking (Figure 9c), both convective coefficients and emissivity have no influence at all.
The most important parameter is the conductivity, which is directly correlated with the
temperature homogenisation.

3.3. Influence of the Vessel Concavity

To better explain the effect of the vessel concavity, three heating scenarios were per-
formed as examples with consistency in all of them, which means that they all have the
same parameters except for concavity, which varied according to the levels in Table 2,
which are represented in Figure 2.

The heat losses, amplitude of the power density and sensor temperature of the three
cases are shown in Figure 10. Figure 10a corresponds to the highest concavity case, followed
by Figure 10b,c with the lowest concavity. The conduction losses for the highest concavity
case are minimum, which makes an overheating of the temperature sensor (because the
sensor is placed at the center [10]). For the lowest concavity case, the conduction losses
are the main losses at the beginning of the heating. After reaching the highest heat losses,
the losses decrease rapidly as the glass has been heated; therefore, the temperature of the
sensor decreases slowly because the pan loses less heat.

Figure 10. Temperature of the sensor (green continuous line), amplitude of the power density (red
dotted line) and losses (coloured areas) of three WMF pans that only differ on its concavity, case #A (a),
case #B (b) and case #C (c) (see Figure 4). The yellow area represents convective and radiation losses
of the walls, the orange area represents convective and radiation losses of the base of the pan, and the
blue area represents conduction losses to the glass.
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4. Conclusions

This study explored two novel approaches to model the thermal contact between the
vessel and the cooktop, and thus achieving more realistic simulations. Once the numerical
model was optimised, a design of experiments was performed to analyse the influence of
the main parameters of the vessel during the cooking. The main conclusions of the study
are as follows:

• The conductivity is the governing factor of the effect of the vessel in the cooking. When
the vessel conductivity is high, it achieves the steady state and a better temperature
homogeneity sooner. In contrast, the supplied energy is considerably higher. Thus,
manufacturers should reach a compromise between being more energy effective
and achieving a homogeneous temperature in the cooking surface in the shortest
possible time.

• A more concave cooking vessel is more efficient, as the air layer between the pan base
and the glass acts as insulation, reducing the heat losses of the vessel to the glass. The
air gap should not be sufficiently large, as the magnetic field could lose efficiency.

• More than 80% of the heat losses during the transient state are due to the heat losses
from the vessel to the glass.

• The main heat losses in the steady state are due to the convection and radiation.
• Both numerical approaches (Model I, including a layer of air and Model II, adding a

variable thermal contact conductance) lead to similar results with MAEs lower than
5 K for the temperatures in the vessel and the glass. Model II adds the complexity of
calibrating the variable thermal contact conductance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10050802/s1, Figure S1: Profile of the steel plate modelled
with the thermo-mechanical analysis. The magnitude are the displacements and it is measured
in m; Figure S2: Maximum, minimum and mean temperature of a model made 100% of steel and
another made 100% of aluminium along the whole cooking; Figure S3: Main effects plot of steel
conductivity, steel specific heat, pan and glass convective coefficients, emissivity and concavity for
the: (a) maximum sensor temperature, (b) supplied energy in a cooking time of 400 s and (c) total lost
energy during the whole cooking. The units of the parameters are: conductivity (W/mK); specific heat
(J/kgK); convective coefficients (W/m2K); emissivity (-); Figure S4: Pareto analysis of the importance
of the ouputs studied in DoE: time to reach to stationary state (a), supplied energy (b), homogenisation
along the radius in the second 60 of the cooking (c) and maximum sensor temperature (d); Figure S5:
Representation of the losses of a computational simplify model of: (a) Schulte and (b) steel plate
(coloured areas) and the amplitude of the power density introduced (red dotted line). Blue area
corresponds to conduction losses between the base of the pan and the glass. Orange and yellow area
indicate the convection and radiation losses in the base and in the walls of the pan respectively.
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Abstract: The results of numerical simulations of transient heat transfer in the barrel wall of a 35 mm
caliber cannon for a single shot and the sequences of seven shots and sixty shots for chosen barrel
steels are presented. It was assumed that the cannon barrel was made of one of the three types of
steel: 38HMJ (1.8509), 30HN2MFA and DUPLEX (1.4462). To model the thermal phenomena in the
barrel, the barrel wall material was assumed to be homogeneous and the inner surface of the barrel
had no protective chromium or nitride layer. The calculations were made for temperature-dependent
thermophysical parameters, i.e., thermal conductivity, specific heat and thermal expansion (in the
range from RT up to 1000 ◦C) of the selected barrel steels. A barrel with a total length of 3150 mm
was divided into 6 zones (i = 1, . . . , 6) and in each of them, the heat flux density was calculated
as a function of time

.
qi(t) on the inner surface of the barrel. Using lumped parameter methods,

an internal ballistic code was developed to compute in each zone the heat transfer coefficient as a
function of time hi(t) and bore gas temperature as a function of time Tg(t) to the cannon barrel for
given ammunition parameters. A calculation time equaling 100 ms per single shot was assumed.
The results of the calculations were obtained using FEM implemented in COMSOL Multiphysics
ver. 5.6 software.

Keywords: anti-aircraft cannon barrel; modeling; heat transfer; numerical simulation; tempera-
ture field

1. Introduction

It is well known that modern anti-aircraft artillery systems consist of a number of guns,
some of which fire at the designated target, while the remaining guns follow the target
without firing a shot. This is due to the timing of the single cannon being fired, which is
chosen because the high temperatures in the barrel prevent the gun from being fired. In the
case of overheating the barrel of one of the guns, it loses its ability to fire. Shooting is then
taken over by the other guns that track the target on standby mode. It is also possible to
fire all battery guns at once. Low barrel life is a bottleneck that limits the improvement of
the weapon’s performance for a long time. Many years of research have shown that the
erosion of the internal bore is a direct cause that affects the service life of the barrel. The
erosion of the inner surface of the barrel is caused by the action of heat, chemistry and
mechanics, with heat playing a leading role [1–8]. Although the mechanism of gun barrel
wear is not fully understood, it is known that wear is very closely related to the maximum
temperature of the bore surface [9]. Usually, when designing the firing cycle, it is essential
to maintain the temperature below 800 ◦C, established by the manufacturer as a maximum
temperature when testing the gun barrel’s life [9,10]. The maximum temperature limit
of the barrel bore in operation is dictated by the thermophysical properties of the steel
grade of the barrel. In the steel grades under consideration in our paper, a temperature
above 800 ◦C causes allotropic changes connected with the reconstruction of the crystal
lattice of the alloy [11,12]. The kinetics of change is well described by the dilatometric
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curve characteristics for the individual steel grades [11–13]. The effect of temperature
on the barrel bore alters the volume of the surface layer, giving rise to a typical mesh of
cracks. This affects the flaking off of the protective coating on the inner surface of the
barrel. In older technological processes, the protective coating consists of electroplated
chromium. Currently, this process is being replaced by nitriding. In any case, the protective
coating is corroded by the structural transformations in the steel layer, which are directly
related to the phase transition between ferrite and austenite [3,12,14]. At present, research
is being conducted on the implementation of new steel grades with a higher allotropic
transition temperature into the production of gun barrels [12]. It is about shifting the
ferrite–austenite phase transition towards a higher temperature or using steels in which
this transition does not take place [11]. When calculating the heat transfer in the barrel,
constant values of thermal conductivity, specific heat and the density of the barrel material
are often taken [9,14,15]. Many publications believe that the thermal properties of the gun
barrel material are temperature dependent [16–20]. As a rule, the temperature dependence
of the barrel material density is neglected due to small changes [16]. It is very important to
correctly introduce the thermophysical properties of new steel grades as input data for the
heat transfer calculations in the barrel. We consider a phase change only in relation to the
thermal conductivity. However, in the literature, one can find papers in which the thermal
effect of the phase transformation has been included twice, i.e., in thermal conductivity
and specific heat, which seems to be an erroneous [16]. Thermal diffusivity a, thermal
conductivity k, specific heat cp and density ρ are related to the expression a = k/(ρ·cp). Each
of these thermophysical parameters can be determined on separate measuring stations or,
for example, the thermal conductivity can be calculated from the expression k = a·ρ·cp. The
phase transformation is visible in each thermophysical parameter. Thus, when calculating
the thermal conductivity k in the phase transition region from formula k = a·ρ·cp, this effect
will be taken into account both in thermal diffusivity and in specific heat. This means that
the phase change effect and the associated enthalpy will be accounted for twice. As a rule,
we consider the phase transition effect in thermal conductivity characteristic [21]. During
the continuous firing of artillery, the inner wall of the barrel will experience a continuous
rise of temperature. On each curve of the barrel temperature increase during the shot
we can distinguish the so-called highest peak temperature and lowest temperature of the
peak base, which is in fact the inner wall temperature of the barrel. In order to reach the
temperature of 800 ◦C of the inner barrel surface, it is often necessary to carry out numerical
simulations of the heat transfer in the barrel after firing several dozen shots [14,18,19].

Over the years, numerous research groups have carried out a series of tests to deter-
mine the temperature field of the gun barrel. These calculations are becoming more and
more accurate and verifiable in experimental research [1,15,22,23]. However, it is often
important to simulate heat transfer throughout the barrel, not just a fragment of it. In order
to avoid very time-consuming calculations, the barrel can be divided into sectors. In this
paper an initial boundary value problem (IBVP) of heat transfer in the barrel wall of a
35 mm caliber cannon was solved for the single shot and the sequence of seven shots for
chosen barrel steels. For calculation purposes, the barrel with a total length of 3150 mm has
been divided into six zones S1 to S6—Figure 1. The heat transfer coefficient was calculated
as a function of the time hi(t) in the six cross-sections P1 to P6 on the inner surface of the
barrel: P1: z = 216 mm, P2: z = 385 mm, P3: z = 535 mm, P4: z = 880 mm, P5: z = 2081 mm,
P6: z=2980 mm and the gas temperature as a function of time Tg(t). The functions hi(t)
in cross-sections P1 to P6 are valid in the zones S1 to S6. Additionally, the S0 zone of the
cannon breech was distinguished in the range from 0 to 216 mm, for which—at the present
stage of the research—the same function hi(t) was assigned as for the S1 zone. The calcula-
tions were carried out considering the temperature-dependent thermophysical parameters
in the model, i.e., thermal conductivity, specific heat and thermal expansion (in the range
from RT to 1000 ◦C). In 2020, the authors of this study tested the thermophysical properties
of selected barrel steels, i.e., 38HMJ (1.8509), 30HN2MFA and DUPLEX (1.4462) (in the
range from RT to 1000 ◦C) [12]. In this study, particular attention was paid to the correct
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introduction of thermophysical parameters depending on the temperature in the numerical
heat transfer tests in the barrel wall of a 35 mm caliber cannon for a single shot and the
sequence of shots for the chosen barrel steels. The idea is not to erroneously consider the
phase transition effects on the selected metals twice, such as in thermal conductivity and
specific heat.

Figure 1. Heat transfer zones S1 to S6 of the 35 mm cannon barrel input to the calculations: S1:
0 ÷ 385 mm, rout = 55.0 ÷ 55.0 mm; S2: 385 ÷ 535 mm, rout = 55.0 ÷ 57.0 mm; S3: 535 ÷ 880 mm, rout

= 57.0 ÷ 59.5 mm; S4: 880 ÷ 2081 mm, rout = 59.5 ÷ 44.07 mm; S5: 2081 ÷ 2980 mm, rout = 44.07 ÷
31.0 mm; S6: 2980 ÷ 3150 mm, rout = 31.0 mm. The zone S1 includes the zone S0 of the cannon breech
(reproduced with permission from [24], Military University of Technology, 2022).

1.1. Determination of the Heat Transfer Coefficient and Gas Temperature

The heat transfer coefficient can be calculated from a convective heat transfer correla-
tion for a fully developed turbulent pipe flow, which expresses the Nusselt number Nu as a
function of the Reynolds Re and Prandtl Pr numbers [25]:

NuD = 0.023 Re0.8
D Pr0.4 (1)

For fluid flow in a pipe of circular cross section of diameter D, if the gas has a velocity
w, density ρ, dynamic viscosity μ and thermal conductivity kp, the definitions of the Nusselt
and Reynolds numbers are, respectively:

NuD =
hD
kp

ReD =
ρwD

μ
(2)

By substituting Equation (2) into Equation (1), one can express h in the form:

h =
0.023
D0.2 ·

kp

μ0.8 Pr0.4(ρw)0.8 (3)

The approximate value of the Prandtl number can be calculated using the simplified
Eucken formula [23,25]:

Pr =
4γ

9γ− 5
(4)

where γ is adiabatic index of the gunpowder gases. For γ = 1.20, we have Pr0.4 ≈ 0.93.
Considering the weak temperature dependence of the kp

μ0.8 ≈ 285 relation (for the
average temperature of the gunpowder gases equal to 1000 ◦C), we have [25,26]:

h =
6.1

D0.2 (ρw)0.8. (5)
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Since the density ρ and velocity w of the gunpowder gases are functions of time, we
have different values of the time-dependent heat transfer coefficient h in the cross-section
P1 to P6 of the 35 mm cannon barrel. In the adopted model of heat transfer in the gun
barrel, we assume that the calculations ρ and w in the cross-section P1 to P6 are also valid
in zones S1 to S6, respectively.

Density ρ, velocity w and bore gas temperature as a function of time Tg(t) can be
determined by solving the interior ballistic model, which is a model with lumped parame-
ters [27–29]. The calculations took into account the phenomena occurring in the barrel until
the projectile exits the barrel and the after muzzle period. The condition for completing the
calculation is that the propellant pressure in the barrel drops to 0.18 MPa [30].

When the projectile is in the barrel, the model contains:
Energy conservation equation (the first law of thermodynamics):

dU = dQ− dW (6)

Here, differential of internal energy dU taking into account mass fraction of burning
propellant ‘zp’ with respect to its initial mass mp has the form:

dU = d
(
cvmpzpT

)
= cvmp

(
Tdzp + zpdT

)
(7)

Amount of heat dQ release during burning of propellant of isochoric flame temperature
T1 and specific heat at constant volume cv equals:

dQ = cvT1mpdzp (8)

Amount of sum of works of propellant gases dW taking into account coefficient of
secondary works ϕ is given by:

dW = d
(

ϕ
mv2

2

)
= ϕmvdv (9)

Substituting Equations (7)–(9) into Equation (6) and replacing cv by cv = R
γ−1 after

some algebraic manipulations, we obtain:

d(RT)
dt

=
( f − RT)mp

dzp
dt − (γ− 1)ϕmv dv

dt
mpzp

(10)

where f = RT1, γ = cp/cv.
Equation of state of propellant gases [27–29]:

p
(

V0 + sl − mp

ρp

(
1− zp

)− ηmpzp

)
= mpzpRT (11)

Equation of mass fraction burning rate of the propellant (gas inflow) [27–29]:

dzp

dt
=

S1

Λ1

√
1 + 4

λ1

κ1
zp · r1 p (12)

Equation of the projectile motion:

ϕm
dv
dt

= ps (13)

where ϕ = K + 1
3

mp
m .
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Definition of the projectile velocity:

dl
dt

= v (14)

Propellant gas density:

ρ =
mpzp

V0 + sl − mp
ρp

(
1− zp

)− ηmpzp
(15)

Assuming a linear distribution of the velocity of the propellant gases in the barrel, we
calculate the velocity w of gases in the considered cross-section i = 1, . . . , 6, (i–a cross-section
number from P1 to P6) of the barrel according to:

w =
li

l0 + l
· v (16)

where: li—distance from the bottom of the chamber to the cross-section i of the barrel;
l0—length of the canon chamber, l—projectile travel inside the barrel.

In the period after the projectile muzzle, the model includes:
Energy conservation equation, taking into account the outflow of gases to the environ-

ment (through the muzzle of the barrel):

dU = dQ− dH (17)

Considering that:

dU = d
[
cvmp

(
zp − ζ

)
T
]
=

mpR
γ− 1

[
T
(
dzp − dζ

)
+
(
zp − ζ

)
dT

]
(18)

dQ = cvT1mpdzp =
1

γ− 1
f mpdzp (19)

dH = cpmpTdζ =
γ

γ− 1
mpRTdζ, (20)

Equation (17) takes the form:

d(RT)
dt

=
( f − RT) dzp

dt − (γ− 1)RT dζ
dt

zp − ζ
(21)

Equation of state of propellant gases [27–29]:

p
(

V0 + slm − mp

ρp

(
1− zp

)− ηmp
(
zp − ζ

))
= mp

(
zp − ζ

)
RT (22)

Propellant gas density:

ρ =
mp

(
zp − ζ

)
V0 + slm − mp

ρp

(
1− zp

)− ηmp
(
zp − ζ

) (23)

Rate of mass fraction of propellant gases flowing out of from the barrel (gas outflow):

dζ

dt
=

sp
mp
√

RT

√√√√
γ

(
2

γ + 1

) γ+1
γ−1

(24)
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Assuming that the propellant gases flowing out of the barrel reach critical parameters,
their velocity in the considered cross-section i of the barrel will be calculated according to:

w =
li

l0 + lm
· wcr (25)

where wcr =
√
γRTcr =

√
2γ
γ+1 RT; wcr, Tcr—critical velocity and critical temperature of

propellant gases at the muzzle.
The initial conditions for calculations are the following:

t = 0, RT = RT1 = f , zp = 0.001, l = 0, v = 0, ζ = 0.

It should be added that the variables zp(t), l(t), v(t), T(t), ζ(t), w(t), ρ(t) and p(t) are
functions of time. The input data for the interior ballistic calculations are shown in Table 1.

Table 1. Input data to interior ballistics calculation.

Quantities and Units Values

m, kg 0.380

mp, kg 0.376

s, m2 9.98 × 10−4

V0, m3 373 × 10−6

lm, m 2.9342

K 1.04

f, J·kg−1 1.071 × 106

η, m3·kg−1 1.064 × 10−3

γ 1.2

R, J·kg−1·K−1 340

ρp, kg·m−3 1600

r1, m·Pa−1·s−1 0.597 × 10−9

S1, m2 134.4 × 10−6

Λ1, m3 75.2 × 10−9

κ1 0.755

λ1 0.159

p0, Pa 30 × 106

The calculation results of the heat transfer coefficient as a function of time hi(t) in
the six cross-sections P1 to P6 and the gas temperature as a function of time Tg(t) for the
35 mm anti-aircraft cannon barrel are shown in Figure 2, and so the values of hi(t) in the
section P1 are valid in the zone S0 and S1, P2 in the zone S2, P3 in the zone S3, etc. In this
paper, zone S1 includes the zone S0 of the cannon breech. Detailed and precise calculations
of heat transfer in the S0 zone are not the subject of the study.
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Figure 2. Heat transfer coefficient as a function of time hi(t) in the 6 cross-sections P1 to P6 and the
gas temperature as a function of time Tg(t) for the 35 mm anti-aircraft cannon barrel.

For t = 4.54 ms, we observe rapid drops of the heat transfer coefficient as a function
of time hi(t) in each of the six cross-sections P1 to P6. This is the moment when the bullet
leaves the barrel. The highest value is achieved by the heat transfer coefficient in the fourth
zone. It has a slightly lower value in zone three.

1.2. Thermophysical Properties of Selected Barrel Steels

The thermophysical properties, i.e., thermal conductivity, specific heat and density as
a function of temperature in the RT range up to 1000 ◦C, were adopted as a contribution to
the initial boundary value problem of heat transfer in the barrel wall of a 35 mm caliber
cannon, as shown in Figures 3–5 and in Tables 2–4.

For the selected steels, the experimental data on thermal conductivity was introduced
in the form of Table 2. Data between measurement points were approximated in COMSOL
software using cubic splines.

Figure 3. Thermal conductivity of selected barrel steels: 30HN2MFA, 38HMJ, DUPLEX [12].

473



Energies 2022, 15, 1868

Table 2. Data on thermal conductivity of selected barrel steels [12].

30HN2MFA 38HMJ DUPLEX 2205

T [◦C]
k

[W·m−1·K−1]
T [◦C]

k
[W·m−1·K−1]

T [◦C]
k

[W·m−1·K−1]

54.2 35.9 50.9 30.0 52.0 13.3

149.1 37.3 149.0 33.6 149.1 15.3

250.0 36.0 250.0 34.4 249.8 17.0

352.0 33.8 351.3 33.0 351.7 17.8

453.3 30.9 453.4 30.7 457.0 18.1

553.6 27.2 553.6 27.4 553.6 18.7

651.1 19.7 654.7 22.5 654.7 20.0

704.4 17.1 704.5 19.4 704.2 20.8

723.0 16.0 741.0 16.4 744.2 21.4

743.3 15.8 762.6 19.3 762.9 21.6

763.0 17.1 782.7 20.9 782.6 21.8

783.1 18.7 802.8 23.2 802.5 22.2

802.8 19.3 811.9 24.4 811.7 22.3

822.9 19.5 821.8 25.4 821.7 22.4

842.8 19.7 842.3 26.3 842.3 22.7

904.9 20.3 904.7 27.8 904.7 23.7

1004.3 20.6 1004.2 28.9 1004.1 25.9

The experimental specific heat data are presented in Table 3 and illustrated in Figure 4.
Data between points were approximated in COMSOL using cubic splines.

Figure 4. Apparent specific heat of chosen barrel steels: 30HN2MFA, 38HMJ, DUPLEX [12].
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Table 3. Data on apparent specific heat of selected barrel steels [12].

30HN2MFA 38HMJ DUPLEX 2205

T [◦C] cp [J·g−1·K−1] cp [J·g−1·K−1] cp [J·g−1·K−1]

38 0.440 0.458 0.417

70 0.462 0.485 0.442

100 0.475 0.502 0.462

150 0.492 0.525 0.492

200 0.505 0.543 0.515

250 0.517 0.559 0.534

300 0.528 0.574 0.548

350 0.539 0.587 0.559

400 0.550 0.598 0.567

450 0.560 0.609 0.572

500 0.569 0.618 0.576

550 0.579 0.626 0.579

600 0.589 0.634 0.582

650 0.598 0.640 0.584

700 0.607 0.645 0.588

750 0.616 0.650 0.594

800 0.625 0.653 0.602

850 0.634 0.656 0.614

900 0.642 0.657 0.629

991 0.658 0.658 0.668

The experimental density data are presented in Table 4 and illustrated in Figure 3.
Data between points were approximated in COMSOL using cubic splines.

Figure 5. Density of chosen barrel steels: 30HN2MFA, 38HMJ, DUPLEX [12].
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Table 4. Data on density of selected barrel steels [12].

30HN2MFA 38HMJ DUPLEX 2205

T [◦C] ρ [g·cm−3] T [◦C] ρ [g·cm−3] T [◦C] ρ [g·cm−3]

50 7.77 50 7.66 50 7.74

100 7.75 100 7.65 100 7.72

200 7.72 200 7.62 200 7.69

400 7.65 400 7.55 250 7.67

600 7.59 600 7.48 300 7.65

700 7.55 780 7.42 350 7.63

720 7.55 795 7.41 400 7.61

725 7.55 800 7.42 450 7.60

730 7.55 820 7.43 500 7.58

735 7.55 830 7.43 550 7.56

740 7.55 840 7.43 600 7.54

750 7.57 850 7.43 650 7.52

765 7.58 860 7.43 700 7.49

770 7.59 870 7.42 750 7.47

775 7.59 880 7.42 800 7.45

785 7.59 890 7.42 850 7.43

800 7.58 900 7.41 900 7.40

900 7.53 1000 7.37 1000 7.34

1060 7.46 1060 7.34 1060 7.32

Our tests described in [12] showed that for the 38HMJ steel at about and 30HN2MFA
at about 740 ◦C there was a ferrite–austenite phase transition, which was responsible for
the material shrinkage. In numerical simulations of heat transfer in the cannon barrels,
the energy related to the phase transition was included only in the material density and
thermal conductivity, while in the specific heat this energy was ignored. Phase transition
energy should not be taken into account multiple times, e.g., both in thermal conductivity
and specific heat [12].

2. Initial Boundary Value Problem

The results of the transient heat transfer numerical simulations in the wall of a 35 mm
cannon barrel for a single shot and for a sequence of shots has been presented in this
paper. The initial temperature of the cannon was assumed as T0 = 20 ◦C. The heat
transfer on the barrel’s outer surface was modeled as a boundary condition of the 3rd
kind in a form

.
q = hout·(T(t, rz, z)− T0). An equivalent heat transfer coefficient value of

hout = 9.2 W/
(
m2·K) was assumed to be the same on the entire outer surface of the barrel.

The governing equation for nonlinear and axially symmetrical 2D IBVP is as follows:

ρs(T)cs(T)
∂T
∂t

=
1
r

∂

∂r

(
ks(T)r

∂T
∂r

)
+

∂

∂z

(
ks(T)

∂T
∂z

)
(26)

with
rin < r < rout, 0 < z < lm, t > 0, (27)
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where T is the temperature of the gun barrel, t is the time, r is the distance between node
and the barrel axis line, ρ is the density of barrel material, and c is the specific heat of barrel
material, with the initial condition:

T(0, r, z) = T0 with rin < r < rout 0 < z < lm and t = 0 (28)

and the boundary conditions:

.
qi(t, r = rin, z) = hi(t)·(T(t, rin, z)− Tg(t, rin, z)), i = 1, . . . , 6, (29)

(i–a zone number from S1 to S6)

.
q = hout·(T(t, rout, z)− T0), (30)

where Tg is the gas temperature calculated by solving the internal ballistic model, rin = 35
2

mm, rout dependent on the variable z–Figure 1.
The same IBVP was solved for the series of shots (27) to (30). The initial condition

for the next shot was taken from the previous solution, i.e., T
(
tj, r, z

)
= T(0, r, z), with

j standing for the number of shot. The boundary conditions remained unchanged dur-
ing calculations. The calculations were made using FEM implemented in the COMSOL
Multiphysics program. The number of mesh elements, including quad elements, is 26,200.
Minimum element quality equals 0.8563. Duration of a single shot was 100 ms. A se-
quence of shots was adopted for the simulation of burst firing. The calculations were
made on 6 sections of the barrel S1 to S6 (z in the middle of each zone). The numerical
experiment was carried out on the DELL PRECISION TOWER 5610 workstation equipped
with an Intel (R) Xeon (R) CPU ES-1620 v3 @ 3.50GHZ with 16 GB RAM under Windows
10 Operating System. The total computation time of the sixty shots was approximately
6 h. Mesh compaction near the inner surface was performed with a geometric sequence
with length element ratio equaling 0.81 and the mesh between the zones compacted five
times—Figure 6.

Figure 6. Meshed cell with quad elements of a barrel (shown in Figure 1).

2.1. Temperature Distibution in the Cannon Barrel for a Single Shot

For each of the selected steels, the temperature distributions Ti(t, rin, z) of the barrel’s
inner surface at the 6 zones S1 to S6 (z in the middle of each zone) for the single shot are
shown separately in Figure 7. In each zone, the heat transfer coefficient as a function of
time hi(t) is different—Figure 2. The dashed line on each Figure shows the time the bullet
left the barrel (t = 4.54 ms).

477



Energies 2022, 15, 1868

Figure 7. Temperature distribution Ti(t, rin, z) of the barrel’s inner surface at the 6 zones S1 to S6 (z in
the middle of each zone) for the single shot for the selected steels. The signs: P1.5—in the middle of
the S1 zone, P2.5—in the middle of the S2 zone, etc.

The highest temperature, i.e., the so-called highest peak temperature occurs for DU-
PLEX steel. The 38HMJ and 30HN2 MFA steels behaved similarly, i.e., the temperature
distribution Ti(t, rin, z) of the inner surface of the barrel in the six zones S1 to S6 (z in the
middle of each zone) were practically the same for one shot. For each selected steel, zone
S3 had the highest temperature (Figure 8). The disturbance of the temperature distribution
Ti(t, rin, z) of the inner surface barrel in zone S5 was caused by a rapid decrease in the heat
transfer coefficient hi(t) at the moment the bullet left the barrel—Figure 1. In zone S6, this
effect did not occur because the bullet travelled there too briefly.
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Figure 8. Temperature distribution, the so-called highest temperature Ti(t, rin, z) of the barrel’s inner
surface in the 6 zones S1 to S6 (z in the middle of each zone) for the single shot for each selected steel,
separately. The signs: P1.5—in the middle of the S1 zone, P2.5—in the middle of the S2 zone, etc.
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2.2. Temperature Distibution in the Cannon Barrel for a Series of Seven Shots

In all the presented calculations, we assume the time-dependent heat flux density on
the inner surface of the barrel changes for the first and subsequent shots. This is because
the temperature of the inner surface of the barrel changes. For the selected steels, the
temperature distribution Ti(t, rin, z) of the barrel’s inner surface at the six sections S1 to S6
(z in the middle of each zone) for the series of seven shots is shown in Figure 9.

Figure 9. Temperature distribution Ti(t, rin, z) of the barrel’s inner surface at the 6 zones S1 to S6 (z in
the middle of each zone) for the sequence of seven shots for the selected steels. The signs: P1.5—in
the middle of the S1 zone, P2.5—in the middle of the S2 zone, etc.

The lowest temperature, i.e., the lowest peak temperature, for 38HMJ and 30HN2MFA
steel was the same for each shot in a series of seven shots. However, in the case of DUPLEX
steel, this temperature was higher for each shot in a series of seven shots compared to the
38HMJ and 30HN2MFA steel.
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2.3. Temperature Distibution along the Barrel Thickness for a Series of Seven Shots

For the selected steels, temperature distributions Ti(t, r, z) along the barrel thickness
for a sequence of seven shots in zone S6 (z in the middle of the sixth zone) and for the
for the first, fourth and seventh shots in zone S6 are shown in Figure 10. In addition, the
temperature distributions Ti(t, r, z) along the barrel thickness for the selected steels for the
first, fourth and seventh shots separately are illustrated in Figure 11.

Figure 10. Temperature distribution Ti(t, r, z) along the barrel thickness for selected steels for a
sequence of seven shots: left side—z in the middle of the sixth zone S6 (color-coded for the distance
from the inner surface of the barrel); right side—for the first, fourth and seventh shots. The sign:
P6.5—in the middle of the S6 zone.

Figure 11 shows the temperature distributions Ti(t, r, z) along the barrel thickness for
a sequence of seven shots in zone S6 (z in the middle of the sixth zone) for all three selected
steels: for shot 1—in the upper figure, for shot 4—in the middle figure, for shot 7—in the
bottom drawing.
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Figure 11. Temperature distributions Ti(t, r, z) along the barrel thickness for selected steels for the
first, fourth and seventh shots. The sign: P6.5—in the middle of the S6 zone.
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2.4. Temperature Distibution in the Cannon Barrel for a Series of Sixty Shots

Thermophysical properties, i.e., thermal conductivity, specific heat and density as a
function of temperature in the range of 1000 ◦C to 1300 ◦C, were obtained by the linear
extrapolation of experimental data of the selected steels in the RT range up to 1000 ◦C.
For the selected steels, temperature distributions Ti(t, r, z) of the barrels inner surface and
along the barrel thickness for a sequence of sixty shots in each zone S1 to S6 (z in the middle
of each zone) are shown in Figure 12 for 30HN2MFA steel and Figure 13 for DUPLEX steel.
The results for the 38HMJ steel are very similar to the results for the 30HN2MFA steel,
therefore they are not shown in a separate drawing.

Figure 12. Temperature distribution Ti(t, rw, z) along the barrel thickness at the zones S1 to S6 (z in
the middle of each zone) for the sequence of sixty shots, for the 30HN2MFA steel: black line—on the
inner surface of the barrel, red line—0.1 mm below the inside surface, blue line—0.5 mm below the
inside surface, green line—1 mm below the inside surface, violet line—2 mm under the inner surface,
yellow line—5 mm under the inner surface, light blue line—on the outer surface of the barrel. The
signs: P1.5—in the middle of the S1 zone, P2.5—in the middle of the S2 zone, etc.
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Figure 13. Temperature distribution Ti(t, rw, z) along the barrel thickness at the zones S1 to S6 (z in
the middle of each zone) for the sequence of sixty shots, for the DUPLEX steel: black line—on the
inner surface of the barrel, red line—0.1 mm below the inside surface, blue line—0.5 mm below the
inside surface, green line—1 mm below the inside surface, violet line—2 mm under the inner surface,
yellow line—5 mm under the inner surface, light blue line—on the outer surface of the barrel. The
signs: P1.5—in the middle of the S1 zone, P2.5—in the middle of the S2 zone, etc.

Figure 14 shows the envelopes of the so-called highest peak temperatures and lowest
peak base temperatures for 60 shots for all selected steels. For 38HMJ and 30HN2MFA
steels, the lines match blue.
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Figure 14. Envelope of the lowest and the highest temperature of the inner surface at the zones S1 to
S6 (z in the middle of each zone) for the sequence of sixty shots, for chosen steels: 30HN2MFA, 38HMJ,
DUPLEX. The signs: P1.5—in the middle of the S1 zone, P2.5—in the middle of the S2 zone, etc.

3. Discussion

The results of numerical tests of the heat transfer in the barrel of the 35 mm anti-aircraft
gun made of three selected steel grades showed a similar nature of heat transfer in the
38HMJ and 30HN2MFA steels, but a different one in the Duplex steel. The heat transfer
model is relatively simple and the obtained values of temperature fields on the inner surface
of the barrel were not overestimated, as they were in the paper [24]. The division of the
cannon into six zones S1 to S6 was agreed with the Polish weapons manufacturer. As
numerical tests of heat transfer in the barrel are very time-consuming, such a division
method reduces the calculation time to several hours for one steel.

In the case of a single shot—the temperature on the inner surface of the barrel:
In DUPLEX steel, the maximum temperature of the inner surface of the barrel, i.e., so-

called highest peak temperature was about 87 ◦C higher than for the other two steels, and
it dropped less than the other two. It results from a lower value of thermal diffusivity
coefficient as a function of the Duplex steel temperature in relation to the other two. In each
of the three selected steels, the maximum temperature of the inner surface of the barrel
occurred in the third zone, S3. In the second, S2, and fourth, S4, zones, the temperatures
were not much lower. In addition, the maximum temperatures on the inner surface of the
barrel in the first four zones, S1 to S4, occurred before the exit of the bullet from the barrel,

485



Energies 2022, 15, 1868

while the maximum temperatures in the fifth zone, S5, and the sixth zone, S6, occurred
after the bullet exited the barrel.

In the case of the sequence of seven shots—temperature on the inner surface of the
barrel:

In DUPLEX steel in the S3 zone, the highest temperature and the lowest temperature
of the inner surface, i.e., the so-called highest peak temperature and lowest temperature of
the peak base after the seven shots reached the values of 1088 ◦C and 462 ◦C, respectively—
Figure 9. The difference between the highest and lowest inner surface temperature was
maximum and equal to 626 ◦C in the S3 zone and minimum and equal to 468 ◦C in the
S6 zone—Figure 9. In the 38HMJ and 30HN2MFA steels in the S3 zone, the lowest and
the highest temperature of the inner surface after seven shots reached the values of 345 ◦C
and 1039 ◦C for 30HN2MFA steel, and 355 ◦C and 991 ◦C for 38HMJ steel, respectively.
The difference between the highest and lowest inner surface temperature for these steels
was maximum and equal to 694 ◦C for 30HN2MFA steel and 636 ◦C for 38HMJ steel in
the S3 zone and the minimum and equal to 552 ◦C for 30HN2MFA steel and 507 ◦C for
38HMJ steel in the S6 zone. For each of the selected steels, the lowest temperature reached
its maximum in the S6 zone, and the increase in the lower internal surface temperature,
i.e., in the lowest temperature of the peak base became an almost linear function of the
number of shots.

In the case of the sequence of seven shots—the calculation of heat transfer along the
barrel thickness:

On each curve of increasing temperature of the inner surface of the barrel during
the shot, we could distinguish the so-called highest peak temperature and the lowest
base temperature, which was in fact the temperature of the inner wall of the barrel. This
temperature was practically identical to the temperature of the barrel wall at a depth
of 0.5 mm below its inner surface—Figure 10. Therefore, it can be assumed that the
temperature of the inner surface of the barrel during a series of shots is equal to the barrel
temperature at a depth of 0.5 mm below its surface. Temperature distributions Ti(t, r, z)
along the barrel thickness for selected steels for the first, fourth and seventh shots are
shown in Figure 11. At a depth of 0.5 mm, the greatest temperature difference occurred
between 30HN2MFA, 38HMJ steels and DUPLEX steel. The difference increased with
subsequent shots and after the seventh shot in the zone S6 it was about 86 ◦C—Figure 11
(lower drawing).

In the case of the sequence of sixty shots—the temperature along the barrel thickness:
After sixty shots, the highest internal surface temperature of the barrel occurred in the

S3 zone and for all three steel grades, i.e., 30HN2MFA, 38 HMJ and DUPLEX steel, it was
similar and amounted to approx. 1363 ◦C for 30HN2MFA and 38 HMJ steels, and 1348 ◦C
for DUPLEX steel—Figures 12–14.

The lowest temperature of the internal surface in DUPLEX steel occurred in zones S1
and S2, i.e., around 849 ◦C in zone S1 and 916 ◦C in zone S2. For the remaining steels, the
lowest temperature also occurred in zones S1 and S2, i.e., about 748 ◦C for 30HN2MFA and
38 HMJ steels in zone S1 and 827 ◦C for 30HN2MFA and 38 HMJ steels in zone S2. This is
due to the fact that DUPLEX steel heats up to a higher temperature and cools down slowly
as it has a lower thermal diffusivity coefficient than 30HN2MFA and 38HMJ steels. As it
cools more slowly, the highest internal surface temperature after sixty shots is also lower
than it would have been if this shielding effect, which is associated with an increase in inner
wall temperature after each shot, was not observed in the heat flux density calculation. It
should also be remembered that for 38HMJ and 30HN2MFA steels there is a shrinkage of
the material and a phase change at a temperature of about 800 ◦C. The internal surface
temperature of about 800 ◦C was achieved in 30HN2MFA and 38HMJ steels after about
thirty shots in zone S5 (after 3.0 s) and S6 (after 2.9 s) and after about sixty shots in zone S1
(after 5.9 s)—Figure 12. It also means that the inner surface of the barrel in zones S5 and S6
will wear out the fastest. Due to the integral heat propagation effect in the steel, no changes
were observed in the highest or lowest temperature of the inner surface of the barrel in the
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case of 30HN2MFA or 38HMJ steels specifically related to this shrinkage effect. After sixty
shots, the maximum temperature of 30HN2MFA and 38HMJ steels and Duplex steel in the
S2 to S4 zones was practically the same and was about 1363 ◦C for 30HN2MFA and 38 HMJ
steels and 1348 ◦C for DUPLEX steel, while the lowest temperature in the 30HN2MFA and
38HMJ steels in the S5 and S6 zones was about 892◦, and in DUPLEX steel it was about
955 ◦C in zone S5 and 944 ◦C in zone S6. After sixty shots, the outer surface of the barrel in
zone S6 heated up to a temperature of about 226 ◦C for 30HN2MFA steel and 230 ◦C for
38 HMJ steel, and to 103 ◦C for DUPLEX steel–Figures 12 and 13. For selected steels, the
envelopes of the highest and the lowest temperatures are shown in Figure 14. There were
only differences between DUPLEX steel and the other steels, i.e., 30HN2MFA and 38HMJ.

4. Conclusions

The calculations of the heat transfer in the barrel of the 35 mm anti-aircraft gun were
made for the temperature-dependent thermophysical parameters, i.e., thermal conductivity,
specific heat and thermal expansion (in the RT range up to 1000 ◦C) of the selected barrel
steels. The paper indicates that the energy of the phase transformation should not be taken
into account multiple times, e.g., both in terms of thermal conductivity and specific heat.

The results of the numerical simulation of the heat transfer in the barrel of the 35 mm
anti-aircraft cannon are summarized as follows:

(1) After the first shot, the maximum temperature on the inner surface of the barrel, the
so-called highest temperature is the highest in DUPLEX steel—Figure 7. The temperature
difference in relation to the other two steels is about 87 ◦C in zone S3 and decreases with
successive shots, and after about 4 s and about 40 shots it is similar to the temperature of
DUPLEX steel (in zone S3)—Figure 14. After sixty shots, the highest temperature of the
30HN2MFA and 38HMJ steels begins to exceed the highest temperature of the DUPLEX
steel by about 15 ◦C, mostly in zone S3 and S4—Figure 14;

(2) After the first and subsequent shots, when the projectile leaves the barrel, instability
appears in the calculations of Ti(t, rin, z) in zones S5 and S6—Figure 8. This is related to a
sharp drop in the heat transfer coefficient hi(t) in these zones, much greater than in other
zones—Figure 2;

(3) In Figure 9, for a series of 7 shots, it can be seen that the shape of Ti(t, rin, z) is the
same in all zones from S1 to S6—Figure 9. In all zones, the so-called lowest temperature is
highest for DUPLEX steels in each zone;

(4) The so-called lowest temperature on the inner surface of the barrel Ti(t, rin, z) plays
a very important role in the analysis of heat transfer in the barrel, because it is related to
the phase transition of the steel from which the barrel is made. It can be assumed that
the temperature of the inner surface of the barrel during a series of shots is equal to the
barrel temperature at a depth of 0.5 mm below its surface, i.e., Ti(t, r = rin − 0.5 mm, z)
—Figures 10 and 11;

(5) For the 30HN2MFA and 38HMJ steels, for which the phase transition takes place,
the temperature of 800 ◦C appears in different zones at different times, the fastest in zones
S5 and S6. This means that zones S5 and S6 of the barrel will be exposed to the greatest
wear. Already after about 3 s, i.e., after about thirty shots, these parts of the barrel will
exceed the phase transition temperature—Figure 12;

(6) The so-called lowest temperature on the inner surface of the barrel Ti(t, rin, z)
made of DUPLEX steel is always higher than the same temperature for a barrel made of
30HN2MFA or 38HMJ steel—Figure 14. In 2 s, i.e., after twenty-five shots, the difference
between them in zones S2 and S3 is greatest at about 136 ◦C, after sixty shots it will drop in
zone S6 to about 52 ◦C;

(7) Due to the lack of a phase transition, the DUPLEX steel can operate above the
temperature of 800 ◦C. This steel does not have the material shrinkage effect and therefore
repeatedly exceeding this temperature in the process of heating and cooling the barrel has
no effect on the formation of cracks on the inner surface of the barrel.
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Abbreviations

cs J·kg−1·K−1 specific heat of the barrel steel
cp J·kg−1·K−1 isobaric specific heat of the propellant gases
cv J·kg−1·K−1 isochoric specific heat of the propellant gases
f J·kg−1 “force” of the propellant
H J enthalpy of the propellant gases flowing out from the barrel
K - constant of coefficient of secondary works
ks W·m−1·K−1 thermal conductivity of the barrel steel
kp W·m−1·K−1 thermal conductivity of propellant gases
l m travel of the projectile in the barrel
lm m total distance travelled by the projectile along the barrel bore
m kg mass of the projectile
mp kg mass of the propellant
p Pa pressure of propellant gases in the barrel
p0 Pa shot start pressure
Q J heat from combustion of the propellant
r1 m·Pa−1·s−1 coefficient of linear law of burning rate
R J·kg−1·K−1 gas constant of the propellant gases
s m2 cross-sectional area of the barrel bore
S1 m2 initial surface of grain of the propellant
t s time
T K temperature of propellant gases in the barrel
T1 K isochoric flame temperature of the propellant
U J internal energy of propellant gases in the barrel
v m·s−1 velocity of the projectile
V0 m3 volume of the empty canon chamber
W J sum of works of the propellant gases
w m·s−1 velocity of the gases
zp - fraction of mass burned of the propellant
Greek letters
γ - adiabatic index of the gunpowder gases
μ Pa·s dynamic viscosity of the gunpowder gases
ζ - fraction of mass of the propellant which flowed out from the barrel
η m3·kg−1 covolume of the propellant gases
κ1, λ1 - shape coefficient of the propellant grain
Λ1 m3 initial volume of grain of the propellant
ρs kg·m−3 density of the barrel steel
ρ kg·m−3 density of propellant gases
ρp kg·m−3 density of the propellant
ϕ - coefficient of the secondary works

488



Energies 2022, 15, 1868

References

1. Feng, G.-T.; Zhou, K.-D.; Zhang, Y.-Q.; He, L.; Li, J.-S.; Wang, J. The Study of Gun Barrel’s Two-Dimensional Nonlinear Thermal
Conduction. Int. J. Thermophys. 2019, 40, 37. [CrossRef]

2. Stiefel, L. (Ed.) Gun Propulsion Technology; American Institude of Aeronautics and Astronautics: Washington, WA, USA, 1988;
ISBN 0930403207.

3. Cote, P.J.; Rickard, C. Gas–metal reaction products in the erosion of chromium-plated gun bores. Wear 2000, 241, 17–25. [CrossRef]
4. Sopok, S.; Rickard, C.; Dunn, S. Thermal–chemical–mechanical gun bore erosion of an advanced artillery system part one:

Theories and mechanisms. Wear 2005, 258, 659–670. [CrossRef]
5. Sopok, S.; Rickard, C.; Dunn, S. Thermal–chemical–mechanical gun bore erosion of an advanced artillery system part two:

Modeling and predictions. Wear 2005, 258, 671–683. [CrossRef]
6. Ahmad, I. The Problem of Gun Barrel Erosion: An Overview. In Gun Propulsion Technology; Stiefel, L., Ed.; American Inst. of

Aeronautics and Astronautics: Washington, WA, USA, 1988; pp. 311–356, ISBN 0930403207.
7. Ebihara, W.T.; Rorabaugh, D.T. Mechanisms of Gun-Tube Erosion and Wear. In Gun Propulsion Technology; Stiefel, L., Ed.; American

Inst. of Aeronautics and Astronautics: Washington, WA, USA, 1988; pp. 357–376, ISBN 0930403207.
8. Baracuti, A.J. Wear-Reduction Additives-Role of Propellant. In Gun Propulsion Technology; Stiefel, L., Ed.; American Inst. of

Aeronautics and Astronautics: Washington, WA, USA, 1988; pp. 377–412, ISBN 0930403207.
9. Mishra, A.; Hameed, A.; Lawton, B. A Novel Scheme for Computing Gun Barrel Temperature History and Its Experimental

Validation. J. Press. Vessel Technol. 2010, 132, 061202. [CrossRef]
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Abstract: The zigzag channel is the uppermost channel type of an industrial printed circuit heat
exchanger (PCHE). The effect of geometric properties on the flow and heat transfer performance
of the channel is significant to the PCHE design and optimization. Numerical investigations were
conducted on the flow and heat transfer characteristics of supercritical CO2 (sCO2) in semicircular
zigzag channels by computational fluid dynamics method. The shear stress transfer (SST) k–ω model
was used as turbulence model and the National Institute of Standards and Technology (NIST) real
gas model with REFPROP database was used to evaluate the thermophysical parameters of sCO2 in
this numerical method. The effectiveness of the simulation method is verified by experimental data.
Thermal hydraulic performance for zigzag channels with different pitch lengths, bending angles, and
hydraulic diameters are studied comparatively based on this numerical method, with the boundary
conditions which cover the pseudocritical point. The comparison results show that reducing the
bending angle and pitch length will strengthen the effect of boundary layer separation on the leeward
side of the wall and enhance the heat transfer performance, but the pressure drop of the channel
will also increase, and the decrease of channel hydraulic diameter is beneficial to the heat transfer
enhancement, but it is not as significant as that of the straight channel.

Keywords: supercritical CO2; zigzag channel; micro channel; heat transfer; computational fluid dynamics

1. Introduction

A printed circuit heat exchanger (PCHE) is a type of compact heat exchanger with high
efficiency, high application pressure, and high application temperature. It was invented
in Australia in 1980 and promoted for commercial application by Heatric. It has broad
application prospects in the fields of ultra-high-temperature gas-cooled reactors, floating
liquefied natural gas storage units, and other industrial energy [1]. PCHE typically employs
diffusion-bonded arrays of plates where microchannels are formed by chemical etching [2].
The typical cross section shape is semicircular and the hydraulic diameter in a PCHE
passage is between 700 μm and 1.5 mm [3]. The flow channel geometries can be designed as
straight, zigzag, S-shape, and airfoil-finned channels [4]. However, the zigzag-type channel
is more widely used in industrial applications. CO2 is a nontoxic and inexpensive gas. It
has excellent thermophysical properties (high specific heat, high thermal conductivity, and
low viscosity) near the pseudocritical point, as shown in Figure 1, which can considerably
enhance the heat transfer without sacrificing the hydraulic performance [5]. Consequently,
the application of CO2 in PCHE has become the focus of researchers.

Heat transfer and hydraulic characteristics are the basis of PCHE thermal design.
Various experimental and numerical investigations have been performed to optimize the
channel structures, fluid mediums, and operation conditions. Nikitin and his team first
published the experimental results of the flow and heat transfer characteristics of sCO2 in
zigzag PCHE in 2016 and developed the correlations of Nu and f, while the correlations

Energies 2022, 15, 2099. https://doi.org/10.3390/en15062099 https://www.mdpi.com/journal/energies
491



Energies 2022, 15, 2099

are only applicable to channels of the specific geometric parameters and Reynolds number
range of those used in the experimental study [6]. Kruizenga et al. investigated the
thermal–hydraulic performance of sCO2 in a straight channel with semicircular cross
section using both experimental and numerical methods, the analysis results showed that
the commercial computational fluid dynamics (CFD) software can well predict the internal
heat transfer characteristics of the PCHE channel [7]. Saeed and Kim also conducted the
numerical analysis of an sCO2 PCHE using ANSYS-CFX and validated the simulation
results using published experimental data [8]. Tu and Zeng studied the flow and heat
transfer performance in semicircular straight channels of sCO2 fluid for both cooling and
heating process using CFD method. A modified model based on Douglas A. Olson [9]
correlation was proposed to predict the heat transfer performance of sCO2 in semicircular
channels for both heating and cooling conditions [10]. These literature conclusions fully
confirm the feasibility of the numerical method.

  
(a) (b) 

  

(c) (d) 

Figure 1. Thermophysical properties of supercritical CO2 at different pressure: (a) specific heat;
(b) density; (c) dynamic viscosity; (d) thermal conductivity.

Subsequently, a large number of studies focused on finding better channel types. Kim
et al. compared the heat transfer and hydraulic performance of sCO2 in PCHE with zigzag
and airfoil-shaped fins. It was found that the thermal performance of the airfoil fin was
close to that of zigzag, but the airfoil fin had lower pressure loss [11]. Mohammed et al.
investigated the effect of channel shapes (zigzag, curve, and step) on the thermal and
hydraulic performance of PCHE and found that the zigzag channels have the highest value
of heat transfer coefficient and pressure drop [12]. Matsuo et al. conducted numerical
simulations of three different channel types (zigzag, chamfered zigzag, airfoil) to study the
geometrical effects on the local heat transfer coefficient and pressure drop for supercritical
CO2 in PCHE and developed new correlations for Nu of the zigzag channels [13]. In the
research of [14–16], the PCHE with zigzag channel and discontinuous S-shaped fins were
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numerically and experimentally investigated, and it was found that the S-shaped channel
can significantly improve the hydraulic performance while keeping almost equal heat
transfer performance compared to the zigzag channels.

There are also studies focusing on thermal hydraulic characteristics of the other fluid
media in PCHE channels. Dai et al. studied the flow and heat transfer performance of water
in the semicircular zigzag passage experimentally [17]. Minghui Chen et al. investigated the
thermal–hydraulic performance of a zigzag channel PCHE using helium as fluid media [18].

Most of the studies on the flow and heat transfer characteristics of PCHE channels
use a specific geometric parameter channel or straight channel, or the comparison between
zigzag channel and other types of channels such as S-type and discontinuous airfoil fin
type. The experimental data and empirical correlations given in these studies are also
limited to a certain type of channel, and the operating pressure, fluid bulk temperature,
and Reynolds number are limited to a certain range. However, there are few studies on
the effect of geometric parameters on the flow and heat transfer performance of a zigzag
channel. This paper aims at modeling the forced convection heat transfer of CO2 within
the zigzag channels, which are the main channel type of PCHE, and studies the effects of
its main geometric parameters (hydraulic diameter, pitch length, and bending angle) on its
internal flow and heat transfer parameters, especially near the pseudocritical point. The
numerical method and analysis results of this study can be used as a reference for PCHE
industrial design and channel performance investigation.

2. Numerical Modeling

A numerical method for analyzing the steady-state flow and heat transfer properties
of a zigzag channel is defined. In this method, ANSYS Fluent 2019 is used to solve the
governing equations of the steady turbulent flow of sCO2 in the zigzag channels. The NIST
real gas model with REFPROP V9.1 database was used to evaluate the thermodynamics
and transport of approximately of CO2. Yoon et al. [19] and Ren et al. [20] conducted
comparative studies using STD k–e, realizable k–e, and SST (shear stress transport) k–ω
turbulence models to simulate the thermal–hydraulic performance of sCO2 intube-flowing
and found that the SST k–ω turbulence model gives the best quantitative prediction. The
same conclusion was likewise reached in [21–24]. Therefore, the SST k–ω model is adopted
for further analysis in this study. The pressure-based coupled algorithm was used to
establish the coupling of velocity and pressure. The numerical simulation is considered
convergent as all iterative residuals of the governing equations are less than 10−5, and
area-weighted average outlet temperature and area-weighted average inlet pressure are
stable.

2.1. Geometry and Boundary Conditions

The flow and heat transfer performance of CO2 in horizontal zigzag channels is
investigated in this paper. Figure 2 shows a schematic diagram of the computational
domain with the boundary condition adopted in this research. The study will consider the
effects of different geometric factors, including hydraulic diameter, bending angle, and
pitch length on the internal flow and heat transfer characteristics of the channel, as shown
in Table 1. To check the independent effect of the geometric parameter, the comparative
study only changes one geometric parameter at a time, and the rest remains unchanged.
For example, for investigating the effect of bend angle θ on the channel flow and heat
transfer performance, four types of bend angle, 100◦, 115◦, 140◦, and 180◦ (straight), are
considered for the geometric model, while Lp is fixed to 7.75 mm and dh is fixed to 2 mm.

As shown in Table 2, the inlet temperature was changed from 280 K to 350 K to ensure
the bulk temperature Tb covers the pseudocritical point of CO2 for this analysis. The
outlet pressure of CO2 varies between 7.5 MPa and 9 MPa to keep its condition near the
pseudocritical point. Constant wall heat flux (12 kW/m2 for heating case and −12 kW/m2

for cooling case) and mass flux 200 kg/m2-s were adopted in this numerical simulation.
The thermal properties of CO2 were obtained from NIST Database (REFPROP V9.1).
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Figure 2. Physical model of zigzag channel.

Table 1. Geometric parameters.

Geometric Parameters Values

Channel hydraulic diameters, dh, mm 1.17 (experimental validation), 2, 4
Bending angle, θ, ◦ 100, 115, 140, Straight

Channel pitch length, Lp, mm 3, 4.5, 6, 7.75
Channel total length, L, mm 500

Table 2. Boundary conditions in detail.

Inlet Outlet Wall

Temperature (K) Mass flux (kg/m2-s) Pressure (MPa) Constant heat flux (kW/m2)
280~350 200 7.5, 8, 9 ±12

2.2. Governing Equations

The governing equations regarding the continuity, momentum, and energy are ex-
pressed as Equations (1)–(3).

(1) Continuity equation:
∂

∂xi
(ρui) = 0 (1)

(2) Momentum equation [25]:

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂τij

∂xj
+ ρgi (2)

(3) Energy equation:
∂

∂xi
(ui( ρE + p)) =

∂

∂xi

(
ke f f

∂T
∂xi

)
(3)

where ρgi is the gravitational body force, ui is overall velocity vector, T is the tem-
perature, ρ is the density, ui is the velocity vector, E is the total energy, p is the static
pressure, τij is the stress tensor, and ke f f is the effective conductivity (ke f f = k + kt, kt
is the turbulent thermal conductivity).

(4) Direct numerical simulation (DNS) of Navier–Stokes equations is the most accurate
method for turbulence; however, it is not feasible in most situations to resolve the
wide range of scales in time and space as the CPU requirements by far exceed the
existing capacity. For this reason, averaging procedures such as the Reynolds method
have to be applied to the Navier–Stokes equations to filter out the turbulent spec-
trum [26]. However, the averaging process introduces additional unknown terms into
the transport equations that need to be provided by suitable turbulence models. The
SST k–ω turbulence model is used in this paper and is described as follows.
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The transport equations of the k–ω model are expressed as Equations (4) and (5):

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k
∂xj

)
+ Gk − ρβ∗kω (4)

∂

∂xi
(ρωui) =

∂

∂xj

(
Γw

∂ω

∂xj

)
+ Gω − ρβω2 (5)

where Gk is the generation of turbulence kinetic energy k due to mean velocity gradients,
Gω is the generation of ω, and Γk and Γw represent the effective diffusivity of k and ω
calculated by Equations (6) and (7).

Γk = μ + μt

(
F1

σk1
+

1− F1

σk2

)
(6)

Γω = μ + μt

(
F1

σω1
+

1− F1

σω2

)
(7)

where σk and σω are turbulent Prandtl numbers for k and ω, respectively, μ is the dynamic
viscosity of the fluid, and F1 is calculated as Equations (8)–(10).

F1 = tan h
(

φ4
1

)
(8)

φ1 = min

[
max

( √
k

0.09ωy
,

500μ

ρy2ω

)
,

4ρk
σω2Dωy2

]
(9)

Dω = 2(1− F1)ρσω2
1
ω

∂k
∂xj

∂ω

∂xj
(10)

The turbulent viscosity μt of the SST kω model is calculated using Equations (11)–(15).

μt =
ρk
ω

1

max
(

1
a∗ ,
√

2Sij F2
a1ω

) (11)

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(12)

F2 = tanh
(

φ2
2

)
(13)

φ2 = max

(
2

√
k

0.09ωy
,

500μ

ρy2ω

)
(14)

a∗ = a∗∞

⎛⎝ a∗0 +
ρk

6μω

1 + ρk
6μω

⎞⎠ (15)

where μt is the turbulent viscosity, y is the wall distance, and the constants used in the SST model
are as follows: a∗∞ = 1, a1= 0.31, σk1 = 1.176, σk2 = 1, σω1 = 2, σω2 = 1.168, a∗0 = 0.024.

The second-order upwind scheme of Equation (16) is used to discretize the convective
term of the above governing Equation [27].

ϕ f ,sou = ϕ +∇ϕ·→r (16)

where ϕ and ∇ϕ are the cell-centered value and its gradient in the upstream cell and
→
r is

the displacement vector from upstream cell centroid to the face centroid.
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2.3. Data Reduction

The hydraulic diameter, dh, was defined as Equation (17):

dh =
4A

Cwet
(17)

where A is the semicircular cross section area of the channel, and Cwet is the wet circumfer-
ence of the cross section.

The average heat convection coefficient, h, was defined as Equation (18):

h =
Qw

Tw − Tb
(18)

where Qw is the heat flux of the wall, Tw is the average wall temperature, and Tb is the fluid
bulk temperature.

The channel total pressure drop, ΔP, was defined as Equation (19):

ΔP = Pin − Pout (19)

where Pin and Pout are area-weighted average pressure at the inlet and outlet of the channel,
respectively.

2.4. Grid Independence and Model Validation

Meshes in this study are generated using ICEM CFD 2019, and the size of the first layer
adjacent to the wall is less than 2× 10−6 m to keep the wall y+ < 1. Structured hexahedral
cells are used in the whole computational domain, and the mesh is locally densified at the
bend of the flow direction, as illustrated in Figure 3.

 

Figure 3. Mesh structure of the computational domain.

Mesh independence analysis was performed with five different mesh sizes of 91,656,
152,988, 233,508, 314,028, and 394,548. Percentage changes in physical variables h and ΔP
were chosen as the basis for independence judgment. As the comparison result listed in
Table 3, the relative error percentage of h changes from 11.01% to 1.17%, and the relative
error percentage of ΔP changes from 19.78% to 0.59% with the mesh refinement. Conse-
quently, the mesh size of 314,028 elements is considered sufficient, and 300,000 is used as
the baseline for all the rest of the simulations.

496



Energies 2022, 15, 2099

Table 3. Mesh independence analysis.

No. Number of Elements h (W/m2-K) Error (%) ΔP(Pa) Error (%)

1 91,656 1655.298 11.01% 629.7 19.78%
2 152,988 1644.926 11.56% 639.9 21.72%
3 233,508 1737.778 6.57% 605.9 15.26%
4 314,028 1838.227 1.17% 528.8 0.59%
5 394,548 1860.027 0.00% 525.7 0.00%

2.5. Validation by Experimental Data

The experimental data in [28] were used to verify the accuracy of the numerical
method. The experiments were carried out to investigate the thermal performance of sCO2
in a straight channel with semicircular cross section. The hydraulic diameter and total
length of the channel are 1.17 mm and 500 mm. The operating pressure, heat flux, and
mass flux are 8.1 MPa, −20 kW/m2, and 330 kg/m2-s, respectively. As shown in Figure 4,
the CFD simulation results and experimental data maintain a good consistency with the
maximum relative error 17.1% over all analyzed Tb range, which covers the pseudocritical
point. Thus, the numerical method adopted in this study for the flow and heat transfer
performance of sCO2 in the semicircular channel is reliable and comparatively accurate.

 
Figure 4. Validation with experimental data [28].

3. Results and Discussion

3.1. Effect of Lp on the Channel Flow and Heat Transfer Performance

To study the effect of Lp on thermal and hydraulic performance of zigzag channel,
three different Lp (3, 4.5, and 6 mm) are considered for this comparative study. The other
geometric factors dh and θ take the valve 1.17 mm and 115◦, respectively, and remain
unchanged to avoid coupling effects. The channel has an inlet mass flux of G = 200 kg/m2-
s, an outlet pressure of Pout = 8 MPa, and a wall heat flux of Qw = ±12 kw/m2-k. The
bulk temperature Tb of CO2 varies between 280 K and 360 K, covering the pseudocritical
temperature Tm.

As shown in Figure 5, h of the three channels gradually increases and reaches the
maximum value as the Tb of the fluid approaches Tm. This is due to the surge of the specific
heat and thermal conductivity of CO2 near the pseudocritical point. ΔP of the three types
of channels decrease with the increase of Tb. This is mainly because the density of CO2
decreases with the rising of Tb. It can be seen from the comparison results of the three
channels that the heat convection coefficient h and pressure drop ΔP both decrease with
the rising Lp.

Figure 6 shows the velocity vector along the zigzag channel with different Lp. The
flow-field distribution possesses certain periodicity. A large velocity gradient occurs at the
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channel corner and the maximum velocity in the channel also appears in this area. Boundary
layer separation occurs at the corner of the channel and the local velocity increases due to
the appearance of vortex. As the velocity direction is different from the wall direction of the
next pitch, it can strengthen the mixing of the mainstream and the fluid near the wall, which
is conducive to the heat transfer enhancement. As can be seen from the partial enlarged
view, the local velocity increases with the reduction of channel Lp, which means that the
fluid at the boundary region is mixed with the fluid in the core region more sufficiently. As
a result, the reduction of Lp enhances the channel heat transfer, and improves the channel
total heat convection coefficient h. The local flow resistance ΔP also rises with the reduction
of Lp as the wall separation increases.

 
(a) (b) 

 
(c) (d) 

Figure 5. Effect of LP on flow and heat transfer performance: (a) h of cooling case; (b) ΔP of cooling
case; (c) h of heating case; (d) ΔP of heating case.

Figure 7 represents the local convective heat transfer coefficient in zigzag channel with
different Lp. The local heat transfer coefficient increases significantly on the windward
side of the corner area. It is because the boundary layer is locally thinner under the direct
flushing of the incoming flow. As mentioned above, the local fluid velocity increases with
the decrease of channel Lp, which also leads to the local heat transfer coefficient increasing.

3.2. Effect of θ on the Channel Flow and Heat Transfer Performance

In this part of the analysis, four different θ of the channel (100◦, 115◦, 140◦, and straight)
are considered for this comparative study with the inlet mass flux G = 200 kg/m2-s, outlet
pressure Pout = 8 MPa, and wall heat flux Qw = ±12 kw/m2-k. dh and Lp of the channels
remain unchanged with the values 2 mm and 7.75 mm, respectively. The bulk temperature
Tb of the CO2 varies between 280 K and 360 K to cover the pseudocritical temperature Tm.
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Figure 6. Velocity vector along the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm.

Figure 7. Local heat transfer coefficient of the zigzag channel with Lp of 3 mm, 4.5 mm, and 6 mm.

As can be seen from Figure 8, h and ΔP both decrease with the increase of θ, and
better thermal performance for all of the zigzag channels is demonstrated, compared with
the straight channel. The variation trend of h and ΔP of zigzag channel with Tb is the
same as that of the straight channel. This provides an approach for defining the flow and
heat transfer correlations in zigzag channels, as there have been several studies on the
correlations of Nu of the sCO2 semicircular straight channel [29,30].

Figure 9 shows the comparison of the velocity vector along the channel with different
bend angles of the zigzag channel. A sharper bending angle will significantly increase the
local fluid velocity at the turning position and aggravate the separation of the boundary
layer, which will result in more violent mixing of fluid between the wall area and the core
region. It means that the decrease of θ enhances the channel convective heat transfer under
the geometric parameters of the current study. Therefore, h increases with the decrease of θ.
As θ =180◦, the channel becomes a straight channel, and h is smaller than any of the zigzag
channels with bending angles.
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(a) (b) 

  
(c) (d) 

Figure 8. Effect of θ on flow and heat transfer performance: (a) h of cooling case; (b) ΔP of cooling
case; (c) h of heating case; (d) ΔP of heating case.

Figure 9. Velocity vector along the zigzag channel with θ of 100◦, 115◦, 140◦, and straight.

Figure 10 shows the contour plots of local convective heat transfer coefficient in zigzag
channel under different θ. It can be seen that the convective heat transfer coefficient of
the wall surface of the zigzag channel is significantly higher than that of the straight
channel. The region with the highest local convective heat transfer coefficient appears on
the windward side of the turning angle of zigzag channel. It is because this area is washed
by the mainstream and has a locally thinner boundary layer.
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Figure 10. Local heat transfer coefficient of the zigzag channel with θ of 100◦, 115◦, 140◦, and straight.

3.3. Effect of dh on the Channel Flow and Heat Transfer Performance

In this comparative evaluation study, three different dh of 1.17, 2, and 4 mm are used.
The other geometric factors Lp and θ are set to 4.5 mm and 115◦, respectively and remain
unchanged. The channel has an inlet mass flux of G = 200 kg/m2-s, an outlet pressure of
Pout = 8 MPa, and a wall heat flux of Qw = ±12 kw/m2-k. The bulk temperature Tb of CO2
varies between 280 K and 360 K, covering the pseudocritical temperature Tm.

With the reduction of channel dh, the distance from the mainstream region to the wall
also decreases, which is theoretically conducive to the heat transfer performance, and there
are indeed such conclusions in the study on the thermal performance of the straight channel
in [24,31]. Nonetheless, for the zigzag channels, the heat convection coefficient h does not
show an obvious increasing trend with the decrease of dh. It can be seen from Figure 11 that
h and ΔP increase significantly as dh changes from 4 mm to 2 mm, especially in the heating
cases. However, when dh changes from 2 mm to 1.17 mm, neither h nor ΔP show significant
change. This is different from the conclusion in the semicircular straight channel study.

Through the previous analysis cases, we found that the separation of boundary layer
promotes the mixing and diffusion in the fluid and enhances the heat transfer performance of
the zigzag channel. However, on the other hand, it will also reduce the effective heat transfer
area of the wall, which is disadvantageous to the heat exchange. Figure 12 shows us another
possible scenario. As for the dh = 4 mm diameter case, the boundary layer separation area
accounts for a large proportion of the total heat exchange area and the weakening effect of the
separation of boundary layer on heat transfer becomes dominant. It can also be seen from
Figure 13 that the local heat convective coefficient of the dh = 4 mm channel has not been
obviously enhanced on the windward side compared to the dh = 1.17 mm and dh = 2 mm
channels.

As can be also seen from Figure 12, the boundary layer separation effect is weakened
with the decrease of the dh. In the dh = 1.17 mm and dh = 2 mm diameter cases, the boundary
layer separation area will not account for as large a proportion of the total wall area as
that presented in dh = 4 mm case, which means that the boundary layer separation has a
positive effect on the heat transfer performance of the 1.17 mm and 2 mm channels. When
Lp >> dh, this positive effect is enhanced with the increase of dh. At the same time, there is
an opposite influence whereby the heat transfer will be weakened with the increase of dh
due to the increasing distance between mainstream region and the wall. The combination
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of these two effects makes the convective heat transfer coefficient close for the 1.17 mm and
2 mm channels.

  
(a) (b) 

  
(c) (d) 

Figure 11. Effect of dh on flow and heat transfer performance: (a) h of cooling case; (b) ΔP of cooling
case; (c) h of heating case; (d) ΔP of heating case.

Figure 12. Velocity vector along the zigzag channel with dh of 1.17 mm, 2 mm, and 4 mm.
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Figure 13. Local heat transfer coefficient of the zigzag channel with dh of 1.17 mm, 2 mm, and 4 mm.

All three geometric parameters produce effects on the flow and heat transfer perfor-
mance of the zigzag channel and have a certain regularity. When the size of dh is close
to Lp, the wall separation caused by channel turning will not strengthen the heat transfer
performance. For industrial design, from the point of view of enhancing heat transfer, the
Lp should be significantly larger than dh for the zigzag channels.

4. Conclusions

The thermal and hydraulic performance of sCO2 in zigzag channels of different pitch
lengths (3 mm, 4.5 mm, 6 mm, 7.75 mm), bending angles (100◦, 115◦, 140◦, straight), and
hydraulic diameters (1.17 mm, 2 mm, 4 mm) are studied comparatively with the boundary
condition covering the pseudocritical point using the CFD method. In this numerical
method, the SST k–ω is adopted as the turbulence model and shows the quantitative
prediction of the experiments’ heat transfer data. The following conclusions were obtained:

(1) The drastic change of CO2 thermophysical parameters has a significant effect on the
hydraulic and heat transfer characteristics of the zigzag channel near the pseudocriti-
cal point, and its variation tendency with bulk temperature is the same as that of the
straight channel.

(2) The reduction of pitch length enhances the effect of boundary layer separation behind
the corner, which can improve the heat transfer performance. As a result, the heat
convective coefficient and pressure drop of sCO2 in the zigzag channel increase with
the decrease of the pitch length.

(3) The decrease of channel bend angle can also increase the local velocity at the turning
location and enhance the boundary layer separation effect. Therefore, the heat convec-
tive coefficient and pressure drop of sCO2 in the zigzag channel both increase with
the decrease of channel bend angle.

(4) The decrease of channel hydraulic diameter is conducive to the heat transfer of the
zigzag channel, but it is not as significant as that of the straight channel, because
the boundary layer separation effect will be weakened with the decrease of channel
hydraulic diameter.
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Nomenclature

A Cross section area [m2]
C Circumference [m]
Cp Specific heat [J/kg-K]
d Diameter [m]
f Friction factor
G Mass flux [kg/m2-s]
h Heat convection coefficient, [W/m2-K]
k Thermal conductivity [W/m-K], turbulent energy [J/kg]
LP Pitch length [m]
Nu Nusselt number
P Pressure [Pa]
Q Heat flux [W/m2]
Re Reynolds number
T Temperature [K]
u Fluid velocity [m/s]
y Wall distance [m]
ρ Density [kg/m3]
ΔP Pressure drop [Pa]

Greek Symbols

α Heat convection coefficient: [W/m2-K]
ρ Density [kg/m3]
ω Specific rate of turbulence dissipation [s−1]
μ Dynamic viscosity [kg/m-s]
y Wall distance [m]
θ Bend angle [◦]

Subscripts

b Bulk
h Hydraulic
in Inlet
m Pseudocritical point
out Outlet
w Wall
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Abstract: The paper presents problems related to the processing of signals recorded with differential
field probes E and H. The fundamental problem to which special attention has been paid is the result
of the integration operation. Due to the presence of constant/slowly-varying components in the
raw signal, there is a drift present in the outcome of integration. This line wander can be enormous.
This is particularly evident if the integration is performed in a standard manner, uniformly over
the entire recorded waveform. The paper contains the Authors’ proposition to segment the signal
and perform the integration independently in each of the sub-regions. This approach is based on
the assumption of a local mean value instead of its global character for the recorded waveform.
Although this leads to more complex signal processing, it gives significantly better results as it is
suppressing the deterioration drift in the integrated signal more than 400 times. The results are
presented on laboratory recordings and outdoor tests. In the first case, voltage pulses with durations
of about 50 ns and rise times in the range of single ns were recorded. In the second case, high-energy
electromagnetic pulse signals were used. It was formed by sinusoidal waveforms packets of 3 GHz
frequency with a single packet duration of 5 μs and packet repetition frequency f ≤ 300 Hz.

Keywords: electromagnetic field; signal processing; numerical integration; high speed field
measurement

1. Introduction

The measurement of high-energy current pulses is performed for lightning current
measurements, measurement of partial discharges, measurements of the parameters of
high voltage and high current generators. These pulses are generated for electromagnetic
compatibility verification and testing in order to evaluate the system or equipment shielding
effectiveness and its resistance to a high electromagnetic field [1,2]. These pulses are also
generated and measured in magnetic flux compression generator tests where very high
current values, up to 1 MA, are used to generate electromagnetic fields capable of damaging
electronic devices [3,4]. The same is for Marx generators where very fast voltage pulses
ranging up to 1 MV are generated, and the energy achieved allows for electronic equipment
malfunction [5–7]. These high value pulses can be measured with the use of transducers
utilizing the optical Faraday effect [8], Ampere’s law by means of Rogowski coil and
electromagnetic field probes [9].

In most cases mentioned above, both high voltage and high current measurements
are performed indirectly by means of E and H field probes. This approach increases the
safety of the measurement as there is a galvanic isolation of the measuring circuit and the
tested circuit. On the other hand, it becomes necessary to perform additional conditioning
or processing of the measurement signal. Among other popular methods used, there is
the integration of measurement signals. It is performed when inductive or capacitive
sensors are used to measure the field. The voltage induced at the coil terminals is directly
proportional to the derivative of the magnetic field. For the capacitive sensors on the other
hand, the current induced in the capacitor circuit is directly proportional to the derivative
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of the electric field. They require integration in both cases. The problems are presented
in [10,11]. Moreover, in [12], Marconato et al. discuss the possibility of using different types
of analogue and digital integrations in a circuit for the magnetic field measurement in a
plasma machine. The proper selection of the integration interval plays a very important
role, which was described in [13–15] and illustrated with an example of the Analog to
Information (A2I) converter pre-integrator. On the other hand, an easy to implement
algorithm using a second-order generalized integrator to control an induction motor is
presented in [16].

Numerical integration brings the risk of accumulation of mean value present in the
processed signal, which is manifested by the occurrence of a significant drift in the inte-
grated output signal. The proposed methods described in the measurement instruments
documentation work well in practice for periodic, stationary signals. For single pulse and
in particular, floating signals, numerical integration with these methods often does not give
good results.

The main goal of the work is to develop a method of numerical integration of signals
which gives results comparable to analogue (hardware) integration (figures in the article).
An additional goal is to develop a method not demanding computing power, so that it can
be efficiently carried out directly on the oscilloscope (not always equipped with dedicated
software and high computing power). For this reason, the starting point is the fundamental
method of determining the mean value for the entire signal, the method commonly given
in the documentation. For this method it is assumed that the mean value is constant all
over the acquired signal. The Authors’ proposition is to split the signal into segments
(dependent on the signal form) and independently compute local mean values applied
in the following signal processing. The digital filtering tool is also not excluded from the
research field. An additional reason is the fact that digital filtering can also be used to
remove slow varying signal frequency components closely related to the local mean values.

Thus, in the area of electromagnetic field measurement, the need to integrate a deriva-
tive signal is quite common, but implementing the appropriate integration method for a
particular measurement case is not straightforward. Our paper focuses on discussing the
basic methods of integrating the signal from E and H field probes with special emphasis on
regions of averaging introducing significant differences in the case of numerical integration.
The paper is composed as follows:

• In the introduction, we present the most common applications required for
signal integration.

• The second chapter is devoted to the presentation of theoretical background for field
probes: electric field (D-dot type) and magnetic field (B-dot type) and the possible
signal integration methods for these probes. The problem of signal acquisition trigger
configuration is presented.

• The third chapter presents two measurement setups for different signal generators. We
explain our method of signal integration and discuss the defects of using an incorrect
numerical integration algorithm approach.

• The fourth chapter contains discussion and comparison of different approaches to the
integration aspect in the measurement of electromagnetic field.

• The fifth chapter contains summary of the achieved results where the proposed in-
tegration approach gives the effective cumulative integration drift attenuation. The
obtained outcomes are characterized by the drift attenuation level of a range of 400.

2. Fundamentals of Field Probes and Integration Methods

2.1. Field Probes Functional Principle

The field probes used for measurements belong to a group of transmitters for which the
signal (output voltage) is proportional to the rate of change of the measured quantity, i.e., to
the derivative of the measured quantity. This applies both to the electric field probe, based
on a capacitive transducer, and to the magnetic field probe using an inductive transducer.
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The B-dot and D-dot probes are available in two versions: single ground type for fast
alternating fields at the surface, and differential free field type for fast alternating fields in
space. For the B-dot ground magnetic field probe, the output signal can be written with
Equation (1). The output signal for the D-dot ground probe is given by Equation (2).

U(t) = Aeq
dB(t)

dt
= Aeq·μo·

dH(t)
dt

, (1)

U(t) = Rs·Aeq
dD(t)

dt
= Rs·Aeq·εo·dE(t)

dt
, (2)

where: Aeq is the equivalent area of the single sensor; B is the magnetic flux induction, H is
the magnetic field strength; μo is the vacuum permeability. Rs is the impedance seen by
a single channel of the sensor, D is electrical induction, E is electrical field strength; εo is
vacuum permittivity.

As can be seen from Equations (1) and (2), the output signal is proportional to the
physical dimensions of the probe, but most importantly it is proportional to the rate of
change of the field—the derivative of the field. This forces the necessity of signal integration
to obtain the value of measured field.

2.2. Signal Integration Methods

The following methods can be used to integrate the measurement signal:

• hardware (analogue) circuits;
• numerical methods.

Hardware integrators are built with RC circuits. The advantage of these integrators
is the operational simplicity. This approach gives a signal directly at the output of the
integrator that is proportional to the measured quantity, in this case the magnetic and
electric fields. The output signal is not enormously lagged behind the raw signal before
integration and can be directly recorded with an oscilloscope. This allows the operator for
quick reading of the fundamental parameters of the measured field such as: its amplitude,
frequency, rise and fall times or pulse length.

The condition for the correct integration of the signal is the preservation of time
parameters of the signal and integrator. It should be remembered that the integration
interval (0-t) should be shorter than the time constant τ = RC. This is a disadvantage of
hardware methods, because the time parameters of the signal (field) being measured, must
be known before the measurement. This makes it necessary to have a set of multiple
integrators with different time constants ready when starting an experiment for which the
frequency of the signal (field) is not known at all. The application of passive analogue
integrators is relatively easy. Nevertheless, one should remember several practical aspects,
which are already pointed out by the probe manufacturers themselves [17]. First, the
integrator should be connected directly to the oscilloscope’s input without any additional
connecting cables. This is shown in Figure 1c (recommended connection). Laying the
lead wires, one should remember to avoid, as far as possible, any bends in the cable.
Manufacturers of probes do not recommend using e.g., angled BNC connections. It is
also probably dictated by the fact that in the case of bent connections it is difficult to
maintain constant geometry of the circuit and consequently impedance parameters. It
is especially important at high frequencies. It should also be kept in mind that correct
integration results are easier to be obtained when the entire measurement path is at a
common ground reference potential. Therefore, a semi-rigid cable is commonly used in
this type of measurements. However, it is not recommended to use passive analogue
integrators in a measurement system with the optolink connections. This is mainly due
to the low voltage range of the optoelectronic circuit and noticeable noise deteriorating
the measurement signal. In this case, one should use numerical integration directly in the
oscilloscope or perform that stage in the post-processing activity.
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(a) (b) 

 
(c) 

Figure 1. Probe manufacturer recommendations for the passive integrator connection: (a,b) not
recommended, (c) recommended connection.

Numerical integration is the approximate calculation of definite integrals [18]. The
methods approximate the integral by using the sum of the values of the function being
integrated at several points. To obtain a more accurate approximation, the integration
interval is divided into small fragments. The final result is the sum of the estimates of the
integrals in each subinterval.

For the numerical integration of signals, the rectangle or trapezoid method can be
used, but the latter is more accurate and popular.

In the trapezoid method, the approximation improves because one approximates each
of the sub compartments linearly, which can be written as follows (3):∫ tn

t0
u(t)dt ≈ h

2 ∑n−1
i=0 (u(ti) + u(ti+1)), (3)

where n is the number of subintervals of length h.
The use of simple numerical methods is caused by the fact that in case of high sampling

frequency of the signal (this is usually the case), the error of integration is relatively small
(very narrow subintervals of integration). This gives the possibility of carrying out the
integration process directly on oscilloscopes recording the waveforms from measurement
equipment. The trapezoid method, though it can be considered basic (as compared for
example to Simpson method), is commonly used as an integration formula in oscilloscopes.

Numerical post-processing provides the most tools, methods and opportunities that
can be applied (if only necessary) into the integration process. In this case, the signal
recorded on the oscilloscope is processed using signal processing dedicated software
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and powerful computers, after the completion of measurement experiments. A rela-
tively long delay in obtaining results is a disadvantage of this procedure, but the cer-
tainty of the process correctness as well as the possibility of performing additional anal-
ysis, e.g., spectral or wavelet analysis and additional filtering often compensates for the
mentioned disadvantage.

2.3. Practical Problems of the Signal Acquisition

By definition, the output signals of B-dot and D-dot probes do not contain a constant
component. However, this component may appear in the conditioned measurement signal
immediately before the functional integrator block. There may be several reasons for this
condition. First of all, it can happen as a result of imbalance of the measurement path. An-
other reason may be the accumulation of electrostatic charges, especially in high-impedance
lines (leads of the Programmable Gain Instrumentation Amplifier). In practice, however, a
lot depends also on the selection of the oscilloscope recording time (period). Documenta-
tion dedicated to measurement instruments commonly gives the integration of a periodic,
rectangular signal generated by oscilloscope built-in test generator as an example. In this
case, as the signal occupies the entire recording period (window), and especially when the
screen presents the whole number of signal periods (with significant amplitude), removing
the DC component is an uncomplicated task (Figure 2). In manual mode (convenient for
demonstration but impractical especially for a series of measurements), the average value
is found using the oscilloscope knobs.

 
(a) (b) 

Figure 2. Rectangular waveform integration process, (a) signal non-zero mean value (purple), integral
signal (yellow), (b) signal with mean value extracted (purple), integral signal (yellow).

To automate the measurement, it is more convenient to determine the mean value
using a dedicated function and subtract it from the samples of the recorded signal be-
fore integration. This technique works well for periodic and single shot signals under
certain conditions.

For the single pulse signals, it is important to select the recording length as to record the
entire phenomenon, possibly without an excessive “zero” space following the occurrence
of the phenomenon. In each case, the trigger point is commonly set between the first
and second oscilloscope display division of the time base (typical setting). For such a
setting, the mean value before the trigger point (pre-trigger zone) for the background signal
(zero would be ideal) can be determined. Depending on the approach, the mean value in
the post-trigger region where the raw (not yet integrated) measurement signal (recorded
phenomenon) is located, can be determined separately. This variant is especially helpful in
cases where it is difficult to match the length of the registration window. Moreover, in the
case when, apart from the constant component, there are slowly varying components in the
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signal, high-pass filtering, preceded by a spectral analysis of the signal, it turns out to be
useful or even demanded.

3. Experiments Explanation and Results Discussion

3.1. Measurement Setup for Nanosecond Pulse

Experiments were performed in two independent configurations. The starting point
was the laboratory configuration presented in the Figure 3, with the measurement of voltage
and electric field in the neighborhood of the wire (plate-wire configuration) supplied by
the kilovolts/nanoseconds pulse generator.

 

Figure 3. Laboratory setup for the electric field measurement. Probes E01 and E02—Montena SGE3-
5G; Voltage probe—Tektronix P5100A; Attenuator—Montena attenuators: 10, 20, 30 dB, Analogue
integrator: Montena ITR1-2U; Oscilloscope—LeCroy Waverunner 940Zi.

The results of various laboratory integration configurations will be presented in the
example of measurement in the plate-wire system, used to estimate the voltage based on
the value of the electric field. The measurement system consisted of three independent
measurement paths. The first one was a voltage probe, the second was an electric field
probe with analogue integration—a hardware, capacitive integrator and the third was an
electric field probe identical to the second, but in this case the integration was performed
numerically (Figure 4).

 
 

(a) (b) 

Figure 4. Measurement setup (a), raw signal from electric field probes (b). Equipment used is the
same as in the Figure 3 setup. Additionally, there is a pulse generator NOISE INS-420 shown in the
picture. Figure 4b uses original oscilloscope time scaling. It’s a convenient way to differentiate pre
and post trigger signal regions.
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Figure 5 presents the results of a series of measurements of a system powered by a
pulse generator in the same manner as depicted above. The exemplary pulse was 2 kV
amplitude of a 50 ns duration.

 
(a) (b) 

 
(c) 

Figure 5. Measurement signals, (a) voltage probe, (b) electric field probe with analogue integration,
(c) electric field probe with numerical integration.

In Figure 5, one can see the high repeatability and stability of the signal pulses when
measured with voltage probe and ground plane field probe with hardware integration
(Figure 5a,b). Unfortunately, it cannot be observed (and consequently confirmed) in the
numerical integration case (Figure 5c). It is due the high sensitivity of the numerical
integration to the presence of a DC and very low frequency components in the input
signal. At first, in the case of numerical integration, the average value required for the
proper integration process was determined for the entire recording window (range marked
in red). The effect of accumulation of constant values can be seen already in the initial
phase of recording, before the actual triggering (t < 0), which results in the appearance,
instead of a zero signal, of rising or falling waveforms. As a result, the voltage impulse
itself, when analyzing the measurement series, is characterized by a very large dispersion.
Interpretation of the results in this case is difficult and leads to significant, unacceptable
results. For this reason, a number of experiments were carried out to eliminate the above-
mentioned undesirable effects. The first experiment assumed, as in the case of numerical
integration carried out on an oscilloscope, that the constant component does not change in
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the recording window. This time, however, the value was determined and subtracted from
the raw input only on the basis of the recorded background signal before the triggering of
the measurement system (t < 0)—Figure 6.

 

Figure 6. Integrated signal with mean value computed only for the pre-trigger region (blue region)
and subtracted from signal only in that region.

The nature of the results of the first approach should be considered experimental
(Figure 6). Although an improvement (signal stabilization) was achieved in the pre-trigger
region, the final effect is much worse than in the case of the standard approach. This is
mainly revealed in the enormous dispersion of the measurement series signals in the most
important area, i.e., in the interval containing the measurement signal. Therefore, it was
decided to modify the calculations so that the mean value determined in the pre-trigger
interval was subtracted from the entire recorded signal (Figure 7).

As one can see in the second approach, the obtained results are better than in the first
approach, but still much worse than the standard approach (Figure 5c). Nevertheless, the
results obtained in the first and second approaches, related to the standard calculations,
lead to the conclusion that the assumption that the constant component does not change
in the recording window cannot be taken for granted. Therefore, subsequent experiments
were carried out, fragmenting the recorded waveforms, determining the intervals in which
only the background is visible and those in which the measurement signal was recorded.
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Figure 7. Integrated signal with mean value computed only for the pre-trigger region (blue region)
and subtracted from all acquisition window signals.

Thus, in the third approach, mean values were determined in three intervals. Before
the signal, during the signal–square pulse and after the signal. These values were subtracted
independently in the respective regions. The results are shown in Figure 8, distinguishing
the regions for which local mean values were determined and then used in the calculations.
As can be observed, the assumption of local mean values significantly improved the
obtained results. As before, the pre-trigger region does not show any trends. However,
most importantly, the range in which the signal itself is located also does not show signs of
rising or falling trends. It is also worth noting that the record fragments containing rising
and falling edges obtained in this approach are characterized by a high repeatability in the
series as compared one to another.

Comparing the results obtained in the third approach to the signal acquired with an
analogue integrator, they are characterized by an even greater dispersion in the series.
This is primarily due to the frequency properties of the analogue integrator and the raw
numerical integration operation. This phenomenon can be minimized by averaging the
results from a series of measurements, or by performing low-pass digital filtering (based
on analysis of the signal spectrum), or by combining both techniques.
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Figure 8. Integrated signal with mean value computed and subtracted from respective portions of
signal (colored regions in the plot).

In order to meet the conditions of the experiment, another (fourth) approach of
calculating the mean value was carried out. This time the mean value was calculated
separately in pre-triggering and post-triggering intervals (Figure 9). The purpose of this
test was to check how the introduction of computational simplifications would affect the
final results. Though it represents much better performance compared to the first two cases,
as it could be expected, the results obtained here are worse than in the third approach.
The difference is especially visible in the intervals containing the rising and falling phases
of the rectangular pulses. In all cases, the integration was also performed in the regions
following the measurement signal. First of all, this activity made it possible to locate the
end of the phenomenon, observe transients, and finally, possibly, detect wave phenomena.
Summing up, the best results were achieved for the mean values calculated separately
before, during and after the observed signal. Additionally in this case, the numerical
low-pass filtration was carried out and the series of measurements were additionally
averaged. Digital low-pass filtration parameters were selected upon the frequency spectrum
of the measured square pulse signal (Figure 10) in order not to disturb the essential pulse
properties. Duration of the observed pulses ranges within 50–55 ns. For this application,
the low-pass filter cut off frequency was set to 400 MHz, which encompasses both a
fundamental and significant number of harmonics. The obtained outcomes are presented
in the Figure 11. Finally, a result very similar to the case with analogue integration was
obtained. Therefore, a question can be asked about the advisability of all the above-
mentioned measures. The answer is not complicated.
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Figure 9. Integrated signal with mean value computed and subtracted from pre-trigger and post-
trigger portions of signal (colored regions in the picture).

 

Figure 10. Frequency spectra set of measured signals.
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Figure 11. Digitally filtered integrated signal together with the averaged one based on the set
of acquisitions.

The conducted experiments were carried out in conditions of relatively low electric
field values and in a system in which the lead wires were not longer than 1 m, and the
probes themselves were connected to the ground of the system.

These conditions may not always be met. In general, measurements may be performed
for very large field exposure values with the requirement of the spatial distribution to be
determined. In such a case, the probes will not have a galvanic reference point (ground),
the recording devices will be located in special shielding boxes at a great distance from the
signal source. The consequence of the last two conditions is the necessity to use optical
links, ensuring galvanic isolation but also significantly limiting the range of operating
voltages of the measurement setup. Under such conditions, the use of passive analogue
integrators is limited.

3.2. Measurement Setup and Procedure for High Power Microwave—HPM Generator

The second, outdoor setup involved signal emitted from the HPM generator which has
the form of a set of packets (pulse/sinus train) of a sinusoidal waveform with a frequency
of 3 GHz. The duration of a single packet was approximately 5 μs and the repetition rate
of the packets was adjustable up to 300 Hz. The total duration of one emission cycle was
expressed in individual seconds. The measurement system setup is shown in Figure 12.
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Figure 12. Measurement setup for the electric E and magnetic H fields. Probe E—Montena SGE3-5G;
Probe H—Montena SGM2G; Balun—Montena BL3-5G; Optolink-Montena MOL3000 + FCLB100;
Attenuator—Montena attenuators: 10, 20, 30 dB; Oscilloscope—LeCroy Waverunner 940Zi.

Field measurements with the HPM generator were made at distances of 10, 20 and
30 m from the signal source (parabolic antenna). Each time a set of a dozen or so sinusoidal
packets was registered and the first of them was rejected due to its unspecified nature,
which stems from the properties of the generator itself (Figure 13).

(a) (b) 

Figure 13. Sample HPM sinusoidal packets registration (a), together with initial integration (b).

The recording of fast-changing bursts of pulses repeated with a relatively low rep-
etition frequency (GHz/kHz) requires an appropriate configuration of the recording de-
vice (oscilloscope), but thankfully it is typically available in devices operating in the
Gigahertz bands.

Based on the acquired signal (Figure 13), initial integration was performed, but it was
seriously disturbed. Integration of sinusoidal packets should result in sinusoidal wave
form as well. Such an expectation cannot be found in the Figure 13.

Despite the differential nature of the probes used, the recorded signal showed no-
ticeable low-frequency components (up to 2 MHz in Figure 14), which were the source of
significant errors in the integration operation (Figure 13b). Thus, the traditional integration
stage was additionally supplemented by high-pass filtering, with the cut-off frequency
determined on the basis of the observed signal spectrum. The cut-off frequency of the filter
was set to encompass the slow varying signal components—2 MHz region on Figure 14.
Sample results are shown in Figure 15.
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(a) (b) 

Figure 14. Electric field raw signal frequency spectrum, full bandwidth from 0 to 20 GHz (a), limited
bandwidth 0 to 20 MHz (b).

(a) (b) 

Figure 15. An example of electric field measurement signal, raw filtered signal from D-dot probe (a),
integrated filtered signal from D-dot probe (b).

Although the electric field was the fundamental measurement parameter, it was also
decided to register the magnetic field in the presented measurement system. This was
primarily due to the intention to obtain as much information on the recorded phenomenon
as possible. Independently, the reconstruction, re-alignment and configuration of the
source and measurement object in the presented case is very complex and complicated.
In practice, it becomes a one-time measurement observation opportunity. Registration of
electric and magnetic fields allows for additional verification of correctness of the results
by computation of the impedance of the medium, which in ideal conditions is 120π Ω.
Based on the registration of fields in the presented system (Figure 16), the determined
value of the medium impedance is 467 Ω +/− 26%, which is a satisfactory result because
only the catalogue data of the measurement system component were taken into account
when estimating the error, neglecting the imperfection of the geometric configuration of
the measurement system.
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(a) (b) 

Figure 16. Measurement results for the electric (a) and magnetic (b) fields measurement records in
the outdoor tests.

Issues related to signal processing (integration operation) have the same course irre-
spective of whether they concern registration of electric or magnetic field. Therefore, the
paper presents this issue only on the example of an electric field (most valuable parameter
in the measurements performed).

4. Discussion and Comparison of Results

The necessary integration of the differential probes signal can be carried out in many
ways. Hardware/analogue integrators give the possibility of direct integration, but their
use is justified in a case where the signal frequency band is known or the measured signals
have a relatively high amplitude and are grounded. However, these requirements cannot
always be met. This is especially difficult in the case of spatial measurements (floating
signals) and additionally high-energy EM fields. For safety reasons, the distances between
the measurement point and the measurement instrumentation location are large. In such
cases, fiber optic links are commonly used. Their basic feature, which is often a requirement,
is galvanic insulation of the signal connection. However, these links limit the amplitude of
the transmitted signals. In such systems (floating and low-amplitude signals), numerical
integration is commonly used. A list of the different signal integration techniques is
presented in Table 1.

In the work [19], passive RC integrators were used to integrate the signal from
B-dot probes installed in the magnetically insulated transmission line—MITL. The au-
thors get good results, but it should be noted that the probe is installed directly in the
MITL line, where one is dealing with the reduction of interferences. In addition, the spa-
tial configuration of the measurement system is constant and does not change during
the measurements.

Yako at al. in the work [20] present the B-dot probe with internal integration (self-
integration) obtained by the appropriate selection of the parameters of the measurement
circuit. The system is tested with standard 8–20 μs pulses with a current amplitude ranging
from 5 kA to 37 kA. As in the work [19], the spatial configuration of the system is constant,
and the measurement circuit has a short signal path. In addition, the frequency parameters
of the signal are known. The paper [21] presents the process of laboratory calibration of B-
dot probes with pulses of a rise time from 4 to 400 ns. Integration is carried out numerically.
Due to the stable parameters of the generated pulses, the standard method of eliminating
the constant component (signal mean value) was used. The use of numerical integration
and the elimination of the average value by means of low-pass FIR filters are presented
in [22]. The authors carry out measurements with D-dot probes. Conditioning and signal
processing is carried out using a dedicated (developed) measurement instrument instead
of the oscilloscope.
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Table 1. Integration methods comparison.

Integration Type Method
Common Signal

Parameter: Signal
Rise Time

Requirements, Measurement
Conditions

REF

Hardware Passive integrator
1 μs or 5 μs

Magnetically
insulated transmission
line (MITL). trise = 96 ns

Directly in the transmission
line, galvanic connection [19]

Hardware Self-integration probe
selected frequency band.

Lightning current
trise = 8 μs

Known signal parameters,
unchanged measurement

setup configuration, galvanic
connection

[20]

Numerical Mean value removal Calibration testing
signal trise = 4.2 ns

unchanged measurement
setup configuration, galvanic

connection
[21]

Numerical FIR filter

High-power
microwave (HPM)

pulses
trise = 3 ns

Self-developed measurement
instrument [22]

Numerical FFT and FIR filter
HV pulses measured in
the close neighborhood
of the cable trise ≤ 1 ns

Short connections, signal
processing in Matlab [23]

Numerical

Local Mean value
(segmented signal)

removal with an optional
FFT and FIR filter

HV pulses, HPM
pulses, trise ≤ 5 ns

Floating signals, spatial,
outdoor measurement.

Numeric operation computed
directly on oscilloscope

Current work

In turn, Huiscamp et al. [23] present a method of measurement of very fast voltage
pulses (trise < 1 ns) with amplitudes up to 14 kV with D-dot probes mounted directly on
the coaxial cable, with which the pulse is transmitted. The Authors propose to record
the signal using an oscilloscope and then post-process it based on FFT analysis, elimina-
tion of the mean value component, taking into calculations the parameters of the trans-
mission path and finally numerical integration. Signal processing is performed in the
Matlab environment.

The method proposed in this article is supposed to be effective and require relatively
simple numerical operations, although more complex operations such as FFT and filtration
are not excluded. Compared to the methods listed above, the approach presented in the
article is characterized by independent determination and elimination of the local mean
values in signal segments. Its simplicity also makes it possible to be implemented directly
on the oscilloscope. The measurement signal may contain variable frequency parameters
and an average value that varies along the acquisition. Sensing of the EM field in space
excludes the galvanic connection to the ground, which is guaranteed by the optical link.
The spatial configuration of the measurement system can vary and the distance between
the measurement instrument-oscilloscope location and the measurement probes does
not matter.

The above features make it possible to use the method in the outdoor EM field mea-
surements. In addition, the reliable value of the measured EM field is obtained right
after registration, which in the case of EM field tests is often more important than a low
measurement error.

5. Conclusions and Summary

Based on the waveforms recorded in the measurement grounded circuits, high repeata-
bility of the waveforms can be observed (Figure 5a,b). The effectiveness of the proposed
and used integration methods can be evidenced by the measure of the scatter of values,
containing the residual “constants” after integration. Based on Figure 5a,b, it is reasonable
to conclude that the recorded waveform in the final phase has zero value. However, in
the first approach to the implementation of integration (Figure 6), it can be observed that
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this is not the case at all. The scatter of the final values in this case varies from −83 kV/m
to 60 kV/m, i.e., the rate of changes is at the level of 143 kV/m. In the second approach
(Figure 7), the respective value is noticeably smaller, but still 104 kV/m. In the third and
fourth approaches (Figures 8 and 9), where the integration was performed segmented,
these values are mutually comparable and reach only 0.3 kV/m, which proves high ef-
fectiveness of the applied modifications. The elimination of the trend in the integrated
waveforms significantly facilitates or even enables a correct reading of the field parameters
after integration.

The presented problem is common as measurement signals are acquired with the
use of derivative nature probes. It extends the instrument (oscilloscope) user manuals
procedure for which signal is being integrated and contains the DC component that is not
varying along the acquisition buffer (window). In the practical conditioning procedure, it
was assumed that the mean value of the signal was a variable along time in the recorded
signal window. Based on that, the acquisition window was divided into pre and post
trigger regions along with the signal and background noise content periods. Additionally,
the measured signals frequency parameters were also taken into the account allowing for
a proper selection of frequency of numerical filtration parameters. The latter technique
promises to be a useful procedure in the integration computation. The presented HPM
pulse examples, due to the nature of the measured signal, were not a demanding task and
allowed for the elimination of slow-varying components (up to 5 MHz band). The filtration
process is not constrained to such signals and can be applied in general as an integration
technique. Each time, it should be adapted to the signals being measured, of course, so
that it does not disturb the information of the observed phenomenon. Finally, as a result
presented in the paper, it was possible to effectively determine the waveforms describing
the changes in the electric and magnetic fields using the numerical integration operation.
Removal of DC and additionally low-frequency components from the input raw signal,
made it possible to avoid the accumulation of non-zero average values of the integrated
waveform, which in turn gives the effect of saturation after integration.

Signal processing preceding the essential integration procedure assumes that it is
performed under given conditions. First, the DC band components are not varying in
time along the acquisition window (oscilloscope recording) and are relatively easy to
investigate. In practice, it does not have to be fulfilled, thus instead of a precise mean value
component one gets only an estimation. This, in turn, deteriorates the final results. The
idea of mean values computed independently in different sub-periods of the acquisition
window is also quite simple in terms of computational power requirements. On the other
hand, the application of different procedures can significantly decrease the distortion of
the measurement signal. Surely it can be a starting point to the automatic or at least
semi-automatic processing procedure.
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Abstract: High temperatures and non-uniform temperatures both have a negative bearing on the
performance of proton exchange membrane fuel cells. The temperature of proton exchange membrane
fuel cells can be lowered by reasonably distributed cooling channels. The flow field distribution of
five different cooling plates is designed, and the temperature uniformity, pressure drop and velocity
of each cooling flow field are analyzed by computational fluid dynamics technology. The results
show that while the pressure drop is high, the flow channel distribution of a multi-spiral flow field
and honeycomb structure flow field contribute more to improving the temperature uniformity. As
the coolant is blocked by the uniform plate, it is found that although the flow field channel with a
uniform plate has poor performance in terms of temperature uniformity, its heat dissipation capacity
is still better than that of the traditional serpentine flow field. The multi-spiral flow field has the
strongest ability to maintain the temperature stability in the cooling plate when the heat flux increases.
The increase in Reynolds number, although increasing the pressure drop, can reduce the maximum
temperature and temperature difference of the flow field, ameliorate the temperature uniformity and
improve the heat transfer capacity of the cooling plate.

Keywords: flow field design; structural optimization; honeycomb structure flow field; proton
exchange membrane fuel cell; computational fluid dynamics

1. Introduction

As one of the solutions to the global energy crisis and environmental problems, the
proton exchange membrane fuel cell (PEMFC) has the advantages of near-zero emissions
and high conversion efficiency [1–5]. However, the commercialization process of PEMFC
still faces many challenges. Among them, the hydrothermal management of PEMFC also
needs effective technical breakthroughs, which is the research focus of scholars today [6,7].
During the operation of a PEMFC, heat will be generated with the generation of electric en-
ergy. Fuel cells primarily generate heat from the entropic heat of reactions, the irreversibility
of the electrochemical reactions, ohmic resistances and heat from the condensation of water
vapors [8]. The increase in temperature in a certain range is conducive to improving the
activity of the catalytic layer and accelerating the rate of the electrochemical reaction, but if
the heat energy is not discharged in time, the overall temperature of the PEMFC will be too
high and the local temperature distribution will be uneven, which will seriously degrade
its performance [9–11].

A cooling plate is an indispensable structure of a fuel cell stack. It can reduce the
temperature of the PEMFC and improve the temperature distribution in terms of non-
uniformity [12,13]. Many studies have proven that a reasonably distributed flow channel
can effectively improve the uniformity of temperature distribution during fuel cell opera-
tion, reduce the pressure drop of the cooling flow channel, avoid the occurrence of fluid
blockage and cause the cooling liquid to circulate quickly.

Energies 2022, 15, 2609. https://doi.org/10.3390/en15072609 https://www.mdpi.com/journal/energies
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Kurnia et al. [14] studied the heat transfer performance of parallel, serpentine, wavy,
coiled and novel hybrid channels, and the coiled-base channel was discovered to be a
desirable option, particularly in sensitive applications where cooling performance is crucial.
Jeon [15] examined the cyclic and single cells and discovered that at high current densities,
the cyclic cell’s voltage was lowered due to increasing ohmic losses. The innovative ser-
pentine channel exhibits the highest uniformity index of temperature distribution, power
density and pressure drop, according to Atyabi et al. [16]. In comparison to other types, the
design obtained the lowest temperature observed at the catalyst layer. The cooling field in
serpentine channels had several passes and a high channel length, which allowed heat to
be removed from the system but resulted in a substantial pressure drop across the system.
Matian et al. [17] reported that increasing the size of the cooling channels resulted in a more
uniform temperature distribution because more air could pass through the channels for a
given pressure drop, allowing more thermal energy to be exchanged between the plate and
cooling air. According to the research of Wilberforce et al. [18], a mixture of serpentine and
parallel flow channels was intended to deliver better performance, owing to the prevalence
of the serpentine channel portion, while still ensuring an overall lower pressure drop given
the presence of parallel bypass channels, and the adapted serpentine designs with bypass
channels presented a pressure drop 50 times lower than the classical serpentine design.
Rahgoshay et al. [19] performed numerical analysis on two conventional cooling plates
with serpentine and parallel flow fields, and found that modifying the rate of heat transfer
has an effect on the performance of PEMFC and PEMFC with serpentine cooling flow
fields compared to parallel cooling flow fields. In terms of effective physical parameters,
the serpentine flow field offers greater cooling performance. According to the research
of Yang et al. [20], operating temperatures have been shown to have significant effects on
water distribution, and cells running at low temperatures have been shown to be more
prone to severe water flooding, particularly downstream. Shian et al. [21] also discovered
the essentiality of downstream water management; they investigated traditional straight
channel cooling plates and innovative non-uniform flow channel designs, and the results
showed that the downstream flow area improves the heat dissipation performance of the
cooling plate. The results show that the optimum thermal, water, and gas management may
be found in serpentine-based channel designs, and because of the substantially smaller pres-
sure drop, the innovative hybrid parallel-serpentine-oblique-fin channel design generates
the most net power. Sasmito et al. [22] evaluated numerically the performance of various
gas and coolant channel designs simultaneously. Due to the existence of complex turns,
Ravishankar et al. [23] presented four new designs and discovered that in comparison to
serpentine, the pressure drop needed to accelerate the flow is higher in spiral and innova-
tive designs. Castelain et al. [24] created an experimental device in order to characterize
the chaotic geometries’ thermal properties under consideration, and the measurements
corroborated the simulated values, which indicate that for chaotic geometries, the interior
convective heat transfer coefficient significantly increases when compared to the tube with
no bends. Liu et al. [25] used the genetic algorithm with several objectives to optimize
the operating condition, and then used the multi-objective genetic algorithm to optimize
the PEMFC’s channel design based on the ideal operating condition. The best channel
produced through optimization was a tapered channel with heights of 0.3909 mm and
0.2042 mm at the inlet and outflow, respectively.

Innovative heat dissipation methods combined with a traditional cooling flow field
are also being studied. Wen et al. [26] cut six pieces of heat conducting pyrolytic graphite
into a channel shape, bound them to six central cathode airway plates and added forced
convection; the results showed that this significantly reduced the volume, the temperature
control system’s weight and cooling capacity. Lin et al. [27] carried out a numerical
analysis of a PEMFC stack with water cooling to determine the impact of configurations
and cathode operating parameters on stack power density and efficiency of the system.
The orthogonal analysis method has been shown to be reliable in obtaining the best with
a confidence level nearing 95%, a mixture of setups and cathode operating conditions
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was discovered. Using graphite plates, Yin et al. [28] developed a new kW-scale air-
cooled PEMFC stack. The experimental results confirmed that the stack with a channel
on the edge performs better than the standard stack without edge channels. Because of
the improved internal water balance, the counter-cross flow operation is better for stack
performance than the co-cross flow operation. To improve the thermal management of
a 10-cell air-cooled PEMFC stack. As heat spreaders, Zhao et al. [29] used five vapor
chambers. The findings suggest that a high effective thermal conductivity can improve
heat transfer and even out the temperature in the stack. Afshari et al. [30] compared the
cooling performance of four different design methods, parallel flow field, serpentine flow
field and metal foam porous medium flow field, among the models tested, a model with a
porous metal foam flow field is the right alternative for decreasing the surface temperature
difference, highest surface temperature, and average surface temperature. According to the
simulation, Zhang et al. [31] investigated a novel method of cooling for a PEMFC stack; low
membrane hydration is also caused by a higher temperature in the stack and, as a result,
cell performance is limited, and the current density distribution is not uniform. The current
cooling technique may be improved by boosting the heat transfer co-efficient between the
stack and the coolant to minimize local overheating and improve the cell performance,
according to the findings. To eliminate the need for a bulky humidifier and to lighten the
cooling load of PEMFCs. Hwang et al. [32] used an external-mixing air-assist atomizer to
build a cathode humidification and evaporative cooling system, and discovered that the
humidification impact increased stack performance while the evaporative cooling effect
decreased coolant temperature at the stack output. Saeedan et al. [33] proposed using
water-CuO nanofluid as the coolant fluid and filling the flow field in the cooling plates with
metal foam. The results showed that at low Reynolds numbers, the role of nanoparticles in
improving temperature uniformity is more prominent. Furthermore, metal foam can lower
the maximum temperature in the cooling channel by approximately 16.5 K and uniformize
the temperature distribution, while the pressure drop increases only slightly. Asghari
et al. [34] investigated the design of a cooling flow field as well as a thermal management
sub-system of a 5 kW PEMFC system. The numerical simulation results show that a higher
flow rate of coolant results in a more uniform temperature distribution, whereas a lower
flow rate results in less pressure drop and parasitic losses. Ghasemi et al. [35] designed and
simulated six cooling flow field designs. The results show that the spiral cooling flow field
has the most uniform temperature distribution, but the pressure drop is large.

According to the literature created by predecessors, the design of a PEMFC cooling
flow field shows a diversified trend, but there are still few field designs, especially for high-
temperature PEMFCs, and most designs are lacking in innovation. This paper presents
five innovative PEMFC cooling flow field designs, and analyzes the heat dissipation
performance of the cooling plate by comparing the temperature and temperature uniformity,
maximum temperature, pressure drop and cooling liquid velocity between the traditional
serpentine cooling flow field and each new flow field. In addition, the operating conditions
are optimized according to the numerical analysis.

2. Model Description

2.1. Computational Model

The fuel cell stack consists of multiple fuel cell units stacked together. The cooling
plates are distributed at both ends of a single fuel cell and are in close contact with the
bipolar plate. The heat generated during PEMFC operation enters the cooling plate through
heat conduction in the bipolar plate, and then the heat is taken away by the coolant
circulation in the cooling plate. Figure 1 shows the structure of the fuel cell stack.
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Figure 1. Single cell structure of PEMFC.

Figure 2 shows the cooling plate model to be calculated. Heat is transported from both
sides of the cooling plate during its actual working process. The cooling plate is divided
from the central plane according to the cooling plate’s symmetry for ease of calculation, and
the half model of the overall cooling plate is analyzed to simplify the calculation. The heat
flux acts on the bottom, and the value is a fixed value of 5000 W/m2, which is a common
value encountered during typical PEMFC operation. The heat produced by PEMFCs is
comparable to the output cell power (with PEMFCs with a rated power of 1 kW, around
1–1.5 kW of heat is produced) [36].

Figure 2. Calculation model of cooling plate.

Five different cooling channels are designed, as shown in Figure 3. Among them,
model 1 is a multi-serpentine flow field, model 2 is a multi-turn flow field, model 3 is
a multi-helical flow field, model 4 is a flow field with a uniform plate, and model 5 is a
honeycomb structure flow field. The parameters of the geometric structure are shown
in Table 1.
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Figure 3. Design scheme of flow fields.

Table 1. Model parameters of flow fields.

Parameters Values

Cooling area length 180 mm
Cooling area width 180 mm
Cooling area height 3 mm

Channel and rib width 3 mm
Channel depth 1 mm

The steady-state calculation formula for calculating the heat flow of a double cooling
plate is as follows:

q =
Q

2A
(1)

The cooling plate has two sides for heat transfer. For the n-cell stack with current I,
when all the reaction enthalpies of the fuel cell are converted into electric energy and the
aquatic product is water vapor,

Q = nI
(
−Δh0

f /2F−V
)

(2)

where n is the number of cells, I is the cell current, V is the output voltage of the cell
and A is the total area of the cell, Δh0

f is the enthalpy of water formation, and F is the
Faraday constant.

The regional uniformity index of the area-weighted variable γa is calculated using the
following formula:

γa = 1−

n
∑

i=1
[(
∣∣φi − φa

∣∣)Ai]

2|φa|
n
∑

i=1
Ai

(3)

φa is the average of the variables across the surface:

φa =

n
∑

i=1
φi Ai

n
∑

i=1
Ai

(4)
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where γa is the uniformity index, φ is variable across the surface, A is a superficial area, i is
the mesh face index with n mesh faces, and n is the number of grids.

2.2. Model Assumptions

Although there is a temperature difference in the flow process of a cooling medium,
it is within the allowable range of error. Therefore, it is considered that the density of
the cooling medium is fixed. The simulation is carried out in an ideal situation to some
extent. A homogeneous heat distribution over the active area of the cell is assumed. For
the convenience of calculation, the following assumptions are made:

(a) The flow in the cooling channel is incompressible;
(b) The viscous loss between the fluid and the channel wall is not considered;
(c) The medium in the channel has the characteristics of a continuous medium;
(d) The boundary between fluid and solid is a non-slip boundary;
(e) The heat flux distribution at the bottom is uniform.

2.3. Governing Equations

Assuming that the flow of the cooling liquid in the channel is a three-dimensional
steady laminar flow, the continuity equation, momentum equation and energy equation in
the reaction process can be expressed as follows:

(a) continuity equation

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 (5)

(b) momentum equation

− 1
ρ

∂p
∂x

+ v∇2ux = ux
∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
(6)

− 1
ρ

∂p
∂y

+ v∇2uy = ux
∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z
(7)

− 1
ρ

∂p
∂z

+ v∇2uz = ux
∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
(8)

(c) energy equation

ux
∂t
∂x

+ v
∂t
∂y

+ w
∂t
∂z

=
λ

ρcp

(
∂2t
∂x2 +

∂2t
∂y2 +

∂2t
∂z2

)
(9)

where ux,uy,uz is the velocity component of fluid along the x, y and z axes; v is the kinematic
viscosity; λ

ρcp
is the thermal diffusion coefficient.

2.4. Boundary Conditions and Convergence Criteria

Unlike other high-temperature-resistant materials, graphite does not soften as the
temperature rises; in fact, its strength increases [37]. At the working temperature of a
fuel cell, graphite has great thermal conductivity, allowing waste heat from the bipolar
plate to be effectively transferred to the coolant. Because the volume of graphite varies
little when the temperature changes quickly, it has good thermal shock resistance [38].
It possesses strong chemical stability and corrosion resistance at the same time [37,39].
Therefore, graphite is used as the material of the coolant and cooling plate. The model uses
computational fluid dynamics software Fluent to analyze the heat transfer performance.
The material of the cooling plate is graphite. The energy equation has been introduced and
the SIMPLE algorithm is used to solve the continuity equation. The pressure term adopts
the standard discrete format. The K-epsilon turbulence model is adopted for the flow of the
coolant. A first-order slip boundary is used, the Navier-Stokes equations is used to calculate
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the flow iteratively, and the numerical simulation results are obtained. We set the inlet and
outlet pressure, temperature and flow monitors to cooperate with the residual monitoring
to determine that the solution is completed, and initialize with standard initialization. The
residual errors of all parameters are below 10−4 as the iterative convergence judgment
standard, and the calculated boundary conditions are shown in Table 2.

Table 2. Boundary conditions.

Parameters Values

Cooling plate properties
Material graphite
Density 2250 kg/m3

Specific heat 690 J/kg·K
Thermal conductivity 24.0 W/m·K

Coolant properties
Density 992.2 kg/m3

Specific heat 4179 J/kg·K
Thermal conductivity 0.62 W/m·K
Viscosity 0.000653 Pa·s

Operating conditions
Heat flux 5000 W/m2

Inlet coolant temperature
Inlet mass flow

313 K
0.002 kg/s

2.5. Grid Independence Verification

In order to verify that the numerical simulation results are not related to the number of
grids, five grid numbers (234,149, 1,192,719, 1,457,725, 1,959,970 and 2,481,860) are selected
for numerical simulation when the inlet mass flow is 0.002 kg/s. In Figure 4, we present
a partial view of the grid of model 3. Hypermesh finite element meshing software and
the hexahedral meshing method are used to encrypt the meshes to test the independence
of meshes. The numerical simulation results show that when the grid number is 234,149,
the numerical simulation results have the maximum deviation. Comparing the numerical
simulation results of the models with the grid number of 1,959,970 and 2,481,860, it is found
that the deviation between them is relatively small, and the numerical simulation results are
very close, indicating that the grid number between 1,959,970 and 2,481,860 can be selected
as the grid number of numerical simulation, but the larger the grid number is, the longer
the calculation time will be. Considering the calculation accuracy and calculation time
comprehensively, we select 1,959,970 here as the number of grids for numerical simulation.
Table 3 shows the grid independence verification.

 

Figure 4. Local mesh of model 3.
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Table 3. Grid independence verification.

Mesh Element Number Pressure Drop(Pa) Tmax(K) Tave(K)

Mesh1 234,149 15,254.47 318.64 316.49
Mesh2 1,192,719 17,013.06 319.71 317.74
Mesh3 1,457,725 17,113.01 318.73 317.74
Mesh4 1,959,970 17,105.10 318.76 317.74
Mesh5 2,481,860 17,105.63 318.79 317.74

2.6. Model Verification

In order to verify the reliability of the model, the research results of relevant materials
are consulted, and the numerical simulation results are compared with the results of
Baek’s [40] research in Figure 5. In the numerical simulation, the Model F studied by Baek
is used as the model, and the geometric structure and operating parameters (heat flux, inlet
temperature, mass flow rate) were set to the same as the reference. It can be analyzed from
the figure that when the inlet mass flow is 2 × 10−3 kg/s, the numerical simulation results
in this paper are the lowest compared with those in the references. When the inlet mass
flow rate is 6 × 10−3 kg/s, the numerical simulation results are the largest, approximately
10.1%. The results further verify the reliability of the numerical simulation method used in
this study.

 

Figure 5. Model verification [36].

3. Simulation Results and Discussion

3.1. Temperature Distribution

Figure 6 shows the center plane temperature distribution of six different flow fields,
and the cooling plate area of six different flow fields is 180 mm × 180 mm, where b, c, d,
e, f are arranged with four inlets and four outlets, and the inlet mass flow is 0.002 kg/s.
Figure 6a is a traditional single-channel serpentine flow field cooling plate. As can be
seen from the figure, the heat dissipation performance of the single-channel flow field is
the worst. The temperature distribution in the upstream of the flow channel in Figure 6e
is below the overall average temperature, but the local temperature in the middle and
downstream regions is high. Because the obstruction of the uniform plate leads to the low
flow rate of the cooling liquid, the waste heat absorbed by the coolant from the bipolar
plate cannot be discharged in time, resulting in the high local temperature of the cooling
plate. Figure 7 shows the velocity distribution of the flow field. It can be seen that the
velocity of this flow field is smaller than that of other flow fields due to the blockage of
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the uniform plate. In Figure 6b, due to the zigzag circling of a single channel, the local
temperature distribution is uneven. Later, the optimization design will be carried out
according to the design characteristics of the flow field. As can be seen from Figure 6c, the
flow field temperature gradually increases from the left inlet to the right outlet. Figure 6f
shows the temperature distribution of the honeycomb cooling flow field. It is observed that
the overall temperature distribution upstream of the cooling plate is uniform and low, but
the local temperature downstream is too high. Although the flow field of the honeycomb
structure can make the coolant evenly distributed, it is still unable to avoid fluid blockage,
resulting in a locally high temperature downstream. Figure 6d shows the temperature
distribution of the multi-helical flow field. Due to the long length of the flow channel, there
is an obvious temperature difference from inlet to outlet, but the overall situation is better
than that of Figure 6a.

 
Figure 6. Temperature distribution.

Figure 7. Velocity distribution.

Figure 6d shows the temperature distribution of the multi-helical flow field. It can
be seen from the figure that the temperature at the corner of the multi-helical flow field
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is slightly higher than that of the surrounding environment. This is due to the reflux
phenomenon of the fluid at the corner of the cooling channel. As shown in Figure 8, due
to the reflux phenomenon, a small part of the fluid stays at the corner and cannot be
discharged in time, while the heat of the cooling plate is continuously transmitted to the
remaining coolant, resulting in a local temperature difference.

 
Figure 8. Local velocity of multi-helical flow field.

Table 4 shows and compares the parameters of six different cooling plates, including
pressure drop, temperature difference, maximum temperature and temperature uniformity
index. The temperature difference is the difference between the maximum temperature and
the minimum temperature of the cooling plate in the simulation steady state. It can be seen
from the table that the maximum temperature and temperature difference of the traditional
single-channel serpentine cooling flow field are the maximum values of the six cooling
channels, and the temperature is also the most uneven, showing inefficient performance.
As can be seen from Figure 9c, the overall pressure of model 2 is high and the coolant is
blocked seriously, which is reflected in Table 4 with the maximum pressure drop.

Table 4. Simulation results.

Case ΔP (Pa) ΔT (K) Tmax (K) UT

Model0 49,263.63 19.681 334.254 0.992421
Model1 19,242.26 7.1984 321.197 0.997850
Model2 79,753.15 7.1079 320.879 0.998066
Model3 17,105.10 5.1586 319.741 0.999358
Model4 1026.86 8.3532 322.542 0.997854
Model5 1593.00 9.2961 324.673 0.998077

The fluid of model 4 and model 5 has no obvious blockage, and the pressure drop of
both is far less than model 0, model 1, model 2 and model 3. As can be seen from Figure 6,
the flow rate of the coolant of model 4 and model 5 in the channel is small, in which the
fluid uniform plate not only makes the coolant evenly distributed, but also hinders the
transverse diffusion of the fluid body, making the flow rate of model 4 the minimum. It
shows the highest temperature second only to the traditional single-channel serpentine
flow field. The coolant flow rate of model 1, model 2 and model 3 in the channel is large and
the pressure drop is high, but the higher flow rate promotes the discharge of waste heat,
showing the minimum temperature difference and the minimum maximum temperature.
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Figure 9. Pressure distribution.

3.2. Pressure Distribution

Figure 9 shows the pressure distribution of six different cooling channels, and the inlet
mass flow is 0.002 kg/s. As can be seen from the figure, compared with other situations,
the pressure distribution of model 4 and model 5 is more uniform. Model 0 and model 2
show the largest pressure difference in the reaction area, and the maximum pressure can
reach 49,265.57 Pa and 79,226.62 Pa, respectively. The reason for the large pressure drop of
model 0–model 3 is the long coolant transportation distance, while the coolant flow area
of model 4 and model 5 is wide, the flow channels cross and connect with each other, and
the pressure drop is reduced. The pressure loss produced by the long channel length is
avoided due to the large number and small length of model 4 and model 5 channels. Model
1 has four inlets and four outlets in comparison to the serpentine flow field. It can be seen
that the multi-inlet and multi-channel design helps to lessen the flow field’s pressure loss.
It can be summarized that the pressure drop can be effectively reduced by using a uniform
plate flow field and honeycomb structure flow field.

3.3. Effect of Heat Flux

Figure 10 shows the effect of heat flux at the bottom of the cooling plate on the average
temperature, maximum temperature difference, maximum temperature and temperature
uniformity index of the cooling plate. It can be seen from Figure 10a–c that with the increase
in bottom heat flux, the average temperature, maximum temperature difference and maxi-
mum temperature of the cooling plate increase significantly, among which the traditional
single-channel serpentine flow field cooling plate increases the most. In Figure 10c, when
the bottom heat flux is 4000 W/m3, the serpentine flow field cooling plate represented
by model 0 maintains a good temperature since the heat flux remains within model 0’s
heat exchange capacity. When the heat flux is increased to 5000 W/m3, the temperature of
model 0 rises significantly due to heat accumulation produced by the serpentine flow field’s
lengthy channel. For the maximum temperature difference, the effect of heat flux on the
maximum temperature difference of model 2 and model 3 is slighter than that of other types
of flow fields. In addition to the traditional serpentine cooling channel, the increase in heat
flux has the same effect on the average temperature and maximum temperature of different
types of cooling flow fields. For the new designed flow field structure, model 3 and model
4 show the highest temperature uniformity index, which shows that the deviation between
the quantitatively measured surface temperature and the average temperature of the heat
transfer surface of the flow channel structure is small, the temperature uniformity is high,
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and it has better heat dissipation performance. This is due to the uniform distribution
of cooling channels and weaker blockage of the multi-helix flow field and honeycomb
structure flow field.

 
Figure 10. Effect of heat flux on heat transfer characteristics. (a) Average temperature, (b) temperature
difference, (c) maximum temperature, (d) temperature uniformity index.

3.4. Effect of Fluid Reynolds Number

Figure 11a shows the maximum temperature of the cooling plate under different
Reynolds numbers of the coolant. The boundary conditions of the numerical simulation
are shown in Table 2, where the mass flow rate of the inlet is adjusted to achieve different
Reynolds numbers. The results show that the maximum temperature of each type of
cooling plate decreases with the increase in Reynolds number, because the larger mass flow
at the inlet accelerates the heat dissipation. Figure 11b shows that the increase in Reynolds
number will also increase the pressure drop in the channel due to the addition of more fluid
flow. The rising trend of the Reynolds number of model 0 and model 2 is faster, because
the fluid congestion in these two channels is more likely to occur.

Figure 12 shows the variation in the difference between the maximum temperature
and the minimum temperature of each cooling flow field at different Reynolds numbers.
The increase in the Reynolds number brings more flow of coolant, which alleviates the
polarization of the working temperature of all types of cooling plates and improves the
heat transfer capacity of the fuel cell cooling plates. Due to the multi-helical flow field
structure with good heat dissipation performance, the temperature difference of model 3
always remains at a low value with the increase in Reynolds number.

The temperature uniformity index can present the temperature uniformity numerically.
The closer the temperature uniformity index is to 1, the more uniform the temperature of the
cooling flow field is. As can be seen from Figure 13, with the increase in Reynolds number,
the temperature of all flow channels becomes more and more uniform. The traditional
single-channel serpentine flow field maintains the lowest temperature uniformity, and the
temperature uniformity of the multi-spiral flow field of model 3 is always the strongest.
On the whole, increasing the Reynolds number can improve the heat transfer effect of the
cooling plate.
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Figure 11. Effect of Reynolds number on heat transfer characteristics. (a) Maximum surface tempera-
ture, (b) pressure drop.

Figure 12. Effect of Reynolds number on temperature difference.

Figure 13. Effect of Reynolds number on temperature uniformity index.
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3.5. Flow Distribution Improvement

It can be found from Figure 14a that the center temperature of the multi-serpentine
cooling plate is high due to the transfer of heat from the inlet to the outlet and the winding
of the cooling channel in the middle of the cooling plate. Therefore, the mass flow of
the four inlets is redistributed with the total flow unchanged, as shown in Figure 14b,
where half of the flow of the external cooling channel is distributed to the internal winding
channel. The temperature uniformity at the bottom of the distributed cooling plate is
improved, the uniformity index is increased from 0.9978508 to 0.9980883, the maximum
temperature is reduced from 321.1978 K to 319.3245 K, the temperature difference is also
reduced, and the average temperature is also reduced by 1.2096 K.

 

Figure 14. Effect of changing inlet flow on temperature distribution.

3.6. Effect of Bottom Non-Uniform Temperature Distribution

During the continuous operation of a PEMFC, the heat transmitted at the bottom of
the cooling plate is not always uniform and constant. The temperature downstream of the
coolant is always higher than the temperature upstream of the coolant due to heat exchange.
After a lengthy period of operation, the temperature downstream of the cooling plate is
higher than that upstream, and the temperature falls from high to low from downstream to
upstream for cooling plates with a serpentine flow field, model 2, model 4 and model 5
cooling flow field distribution. To investigate the impact of non-uniform temperature on
the heat transfer of the cooling plate, the uniform heat flow at the bottom is altered into a
temperature gradient distribution from 324 K to 310 K. Figure 15 shows the temperature
distribution results of the middle surface of the flow field.

As can be seen from Figure 15, the four models show similar temperature distributions
in the case of non-uniform temperature distribution. The highest temperature of the four
models is 323.99 K of model 5, and the lowest temperature is 323.9 K; the difference is not
obvious. The lowest average temperature is 316.828 K of model 2 and the highest is 316.99 K
of model 5. Due to the low temperature in the upstream, the heat exchange capacity of
the coolant is small, and the heat exchange is mainly concentrated in the downstream
region, which causes the serpentine flow field to avoid the heat accumulation generated by
the longer flow channel, thus showing temperature performance similar to that of other
flow channels.
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Figure 15. Effect of bottom non-uniform temperature distribution.

4. Conclusions

In order to improve the overheating problem caused by the low heat dissipation
efficiency of the cooling plate during the operation of a PEMFC, five innovative cooling flow
field channel designs are proposed. The heat dissipation capacity of these five flow fields
under different working conditions is studied, and the following conclusions are obtained:

1. The flow channel distribution of a multi-spiral flow field and honeycomb structure
flow field is more conducive to improving the temperature uniformity. The flow
channel model 4 with a uniform plate has poor temperature uniformity because
the coolant is blocked by the uniform plate, but the heat dissipation capacity is still
stronger than the traditional serpentine flow field. Reasonable distribution of flow
between different channels can effectively improve the heat dissipation capacity of
the cooling plate.

2. The temperature distribution of a multi-spiral channel is uniform, but the pressure
drop is large, and the pressure drop of model 2 is the largest, which is not conducive
to pumping power, but the flow velocity in the channel is high and the heat dissi-
pation capacity is strong. The flow channels are connected with each other, such as
the uniform plate flow field and honeycomb structure flow field, which can make
the pressure evenly distributed. Although the long flow passage can speed up the
transmission of coolant, it can easily cause water congestion.

3. The multi-spiral flow field has the strongest ability to maintain the temperature
stability in the cooling plate when the heat flux increases. The increase in the Reynolds
number can reduce the maximum temperature and temperature difference of the flow
field, improve the temperature uniformity and improve the heat transfer capacity of
the cooling plate, but it will increase the pressure drop.
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Received: 26 June 2021

Accepted: 19 July 2021

Published: 22 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology,
Nowowiejska 21/25, 00-665 Warsaw, Poland; piotr.krawczyk@pw.edu.pl (P.K.);
janusz.lewandowski@pw.edu.pl (J.L.)
* Correspondence: michalina.kurkus-gruszecka.dokt@pw.edu.pl; Tel.: +48-22-264-5299

Abstract: Currently, energy policy is associated with the increase in the share of renewable sources
in systemic energy production. Due to this trend, coal-fired power units must increase their work
flexibility. Adapting a coal power plant to work with a lower load often causes the issue of maintain-
ing the temperature before the selective catalytic reduction (SCR) installation at a sufficiently high
level. This paper presents a CFD analysis of the mixing area of two flue gas streams before the SCR
installation with various methods for mixing flue gas streams. The novelty of the work is mixing the
flue gas streams of different temperatures using a flap shape developed by the authors. A series of
numerical simulations were performed to develop the location and method of introducing the higher
temperature gas, obtaining a uniform distribution of the exhaust gas temperature. The simulation
scheme was applied to a series of geometrical modifications of the boundary conditions. The tested
solution using only a single, straight flap in the flue gas duct allows the amplitude to be reduced
from 298 K to 144 K. As a result of the research, a mixing flap design was developed to reduce the
initial temperature amplitude of the flue gas streams from 298 K to 43 K.

Keywords: flue gas bypass; flue gas mixing; flue gas temperature before SCR; low-load power boiler
operation; power plant flexibility

1. Introduction

Due to the increasing number of renewable energy sources with a share in energy
systems, research is being conducted on a large scale to increase conventional power plant
flexibility [1]. This aspect was addressed in [2], where the authors analyzed increased
flexibility in systems with a high share of renewable sources. In [3], the flexibility and
economic aspects of power plant operation in new low-carbon systems were analyzed.
Increasing the flexibility of coal-fired power plant operation by activities related to the
regulation of the steam cycle are presented in [4]. In [5,6], the cooperation of conventional
power plants was analyzed in terms of the power grid flexibility. The works mentioned here
are broadly related to increasing the power range flexibility to lower the coal unit minimum
load [7]. At present, most coal-fired unit operating power fits the range of 50–100% of
nominal capacity. In case of a significant power increase in the system due to the power
produced by units with priority, e.g., renewables, the currently running conventional
power plants reduce their operation [8]. If the power supplied to the electricity network
still exceeds the demand, some conventional units have to be shut down and prepared
for restart [9]. Shutting down and restarting coal-fired units is economically inefficient,
shortens the unit’s lifetime, and causes increased emissions of harmful substances [7].
Therefore, research to reduce the minimum power block output to values below 50% of the
nominal load increases their stable operation under current conditions.

At the same time, the emission standards, concerning mainly dust, sulfur oxides, and
nitrogen oxides emissions, have recently been stringent [3]. Selective catalytic reduction
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(SCR) technology is the most frequently used for reducing nitrogen oxides in coal-fired
power boilers, as indicated in [10,11]. Such installations require operation in a specific flue
gas temperature range [11], between 585 K and 670 K, depending on the catalyst type. The
required range is also indicated in [12] (the authors analyzed the installation and its impact
on the quality of flue gases), and [13] concerns the installation’s operation optimization. The
issue that arises relatively often during attempts to increase the boiler operation flexibility
is the insufficiently high flue gas temperature before the SCR installation, which results in
its incorrect operation. One of the solutions for a too low temperature before the SCR issue
is to connect the higher temperature flue gas from another part of the boiler to the main
flue gas stream before the SCR installation. In the solution mentioned above, the key is to
effectively mix the flue gas streams at different temperatures to obtain a uniform flue gas
temperature field before the installation. The routing of an additional duct for transporting
hot exhaust gases requires the consideration of design possibilities. In many modernized
coal boilers, the SCR systems were installed additionally, so it is necessary to introduce
hot flue gases from the top of the duct. There is a high risk of not mixing the hot flue gas
stream with the main, cooler stream in such a configuration. The solution presented in this
paper in the form of an adequately profiled turbulizing flap enables effective mixing of
exhaust gas streams with the introduction of hot exhaust gas from the top of the duct and
obtaining a temperature field with appropriate uniformity before the SCR installation.

If the elements regulating the flue gas flow installation, e.g., control vanes or flaps,
are planned in an existing boiler, a key parameter that should be considered is the flue
gas pressure drop caused by the installed element, especially in boiler operation with
high loads. Any additional pressure drop in the flue gas ducts increases the flue gas fans’
power consumption, and in some cases, it can cause fan inefficiency. Increased power
consumption also negatively affects the overall power unit efficiency. The technology
developed by the authors makes it possible to regulate the pressure drop caused by the
additional turbulence flap, with the possibility to fold the flap during the boiler operation
with the nominal load. Thus, the impact of the device on the flue gas pressure drop is
reduced to a minimum.

With the increasing availability of computational power, computational fluid dynamics
(CFD) is increasingly being applied to the calculation of power boilers [14–18], characterized
by relatively large calculation volumes and multiple physical and chemical phenomena.
CFD methods are used in power boiler calculations for many purposes. In [15], the CFD
method was used to optimize nitrogen oxide removal from exhaust gases. The temperature
distribution in the boiler, validated by acoustic measurements, was modeled in [16]. In
several studies, the main objective was to determine the flue gas flow character in the
boiler. In [17], the influence of the NOx control installation on the flue gas flow in a boiler
was examined. The authors of [18] investigated heat transfer by conduction and radiation
from the flue gases to the evaporator and boiler superheaters. The flue gas and air mix
flow through the power boiler was analyzed in [19]. In [20], the exhaust gas recirculation
performance was determined. Many studies have used CFD methods to calculate the
distribution, formation and reduction of nitrogen oxides [21]. Many works also model
sub-systems of power boilers, such as SCR reactors [10,22] or dedusting systems. In [23],
the mixing of the flue gas stream with primary air was modeled to increase the flue gas
temperature before the SCR installation. However, the authors did not present the geometry
of the mixing system. Despite many works on numerical modeling of power boilers, there
is a lack of models in the literature concerning the mixing of flue gas streams with different
temperatures on a large scale. As the flow is non-reactive, without heat exchange with
the environment, and is single phase. In terms of the computational model complexity,
this type of numerical analysis has been carried out and verified many times over recent
years. Nevertheless, there are always limitations and risks inherent in the use of such a
calculation method. Today, models of this degree of complexity often allow the elimination
of experimental confirmation in industrial applications. In addition, the model has been
validated for the current flue geometry.
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This article presents the selected results of the calculations that led to developing the
final turbulence flap concept. The novelty of the work is the development of a device al-
lowing for effective mixing of the flue gas streams while maintaining the following criteria:

• The hot flue gas stream is introduced from the top. Introducing the stream of hot flue
gases from the bottom is impossible in terms of the boiler structure.

• The developed flap does not cause a significant pressure drop of exhaust gases during
operation (40–60% of the nominal boiler load).

• The flap design allows it to be folded during boiler operation at nominal load so as to
not interfere with the boiler operation.

• The device’s design must be relatively simple and reliable because it is exposed to
many hours of operation in high-temperature conditions and exhaust gas dustiness.

The developed shape of the flap allows for the flue gas stream to be mixed and obtain
a uniform temperature field. Based on the analysis of the available literature, it is the first
solution developed to mix the flue gas streams in the channel of a coal-fired boiler while
maintaining the above criteria.

2. Model Description

2.1. Investigated Duct Location in the Boiler

The numerical model includes the flue gas flow through the external duct located
downstream of the main boiler flue to the SCR installation, including introducing hot flue
gases from the bypass duct into the main flue gas stream. A representative geometry of an
OP-650 class coal-fired power boiler was chosen for the study. The analyzed boiler unit
schematic with the key components highlighted is shown in Figure 1: the boiler outline, the
SCR installation and the section of pipeline analyzed in this paper placed directly upstream
of the SCR installation. In Figure 1, the flue gas flow path is also marked with blue arrows.
The analyzed duct section is symmetrically divided on two sides of the boiler, which is
well illustrated by the axonometric view located in the upper left corner of Figure 1.

 

Figure 1. The analyzed boiler unit schematic with the key components: 1—boiler outline, 2—SCR
installation, 3—analyzed duct section.

For further analyses, a section of the flue gas duct leading from the main boiler
building to the SCR installation, marked in Figure 1 as number 3, was extracted from the
presented geometry. As the analyzed duct section upstream of the SCR installation consists
of two symmetrical parts, one of them was simulated in the numerical calculations using
symmetry conditions.
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2.2. The Developed Geometrical Variants

Four selected geometric options are presented in this paper, with the first three reflect-
ing the progress of the fourth and final concept. As mentioned earlier, this study analyzed
the bypass duct transporting higher temperature flue gases introduced from the top. The
hot flue inlet configuration is the most difficult from the point of view of mixing the flue
gas streams before the SCR system. The difficulty in mixing the flue gas streams is mainly
due to buoyancy forces and relatively slow flue gas velocities resulting from low boiler
load. To obtain a complete representation of the flue gas flow through the analyzed duct
section, a full 3D geometry was implemented for the numerical calculations. A general
schematic of the examined flue gas duct section is shown in Figure 2. The section shows
the inlets of the flue gas streams and the flow direction towards the SCR reactor.

Figure 2. A general schematic of the examined flue gas duct section.

The geometric variants of the turbulence flap are shown in Figure 3. The geometries
presented show the same bypass inlet location in each variant and the evolving geometry
of the exhaust gas mixing elements. The other elements in the flue gas duct are fixed vanes
which regulate the flue gas flow. The geometric variant G1 involves placing a single flap
directly behind the hot flue gas inlet. The flap is inclined at an angle of 45 degrees and its
length corresponds to covering half of the duct cross-section. A longer flap could not be
used in this solution due to limitations on the maximum flue gas velocity, which increases
as the flow cross-section area decreases.

In the geometric variant G2, three U-profiles were placed, with a total width of
approximately two-thirds of the channel width and a length corresponding to covering half
of the flow cross-section resulting from the velocity condition mentioned earlier. Geometric
variations G3 and G4 are a combination of G1 and G2. They use a flat flap in the upper
part and three U-profiles in the lower part. Both variants are constructed to cover half
of the main duct cross-section. Variant G3 uses shorter but wider U-profiles with a total
width of about the main duct of two-thirds. In variant G4, the profiles have a total width
corresponding to half the main channel width. The designed geometries of the turbulence
flaps, as seen from above, are shown in Figure 4.
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Figure 3. The four geometric variants developed, numbered from G1 to G4.

Figure 4. The four geometric variants seen from above, numbered from G1 to G4.

In order to adequately numerically reproduce the effects affecting the exhaust stream
mixing, especially the buoyancy forces, the computational geometry was considered at a
scale of 1:1. The basic geometrical dimensions of the analyzed channel section are shown
in Table 1.

Table 1. The basic geometrical dimensions of the analyzed channel section.

Parameter Value Unit

Length of the analyzed channel section 32.10 m
Width of the analyzed channel section 17.35 m
Height of the analyzed channel section 18.13 m
Volume of the analyzed channel section 1094.5 m3

2.3. Flow-Governing Equations and Model Assumptions

The main equations of fluid mechanics applied to numerical calculations of gas flow
such as momentum, mass, energy and species conservation were used for the calculations.
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They are widely described in many works, e.g., in [24]. Momentum conservation is
represented by Equation (1):
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Mass conservation (Equation (2)) is presented below:
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Equation (3) represents conservation of energy:
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The species conservation is given by Equation (4):
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A realizable k-ε turbulence model was implemented for the calculations, with full
buoyancy forces included. Detailed descriptions of the above equations and the k-epsilon
turbulence model with experimental verification are presented in [24]. The k-ε realizable
model was implemented since it is widely used to calculate free gas flows in relatively
large domains, such as in power boilers [19,20]. In [25], this model was used to develop a
flow in a large-scale coal-fired boiler. The analyzed channel geometry includes elements
that can cause rotation, wall boundary layers and gas recirculation. According to [26],
the applied turbulence model can provide improved numerical simulation results in the
abovementioned phenomena. In the k-epsilon model, Reynolds stresses are supplemented
by the Boussinesq relation according to Equation (5):
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With the turbulent viscosity calculated from Equation (6):

μt = ρCμk2/ε, (6)

Unlike the standard and RNG models, the value of Cμ is not constant in the k-epsilon
realizable model. Cμ is a function of the mean strain and rotation velocities and the
turbulence fields represented by k and epsilon. The effective thermal conductivity can be
calculated from the following formula (Equation (7)):

λe f f = λ + cPμt/Prt, (7)

Based on the literature [27], the turbulent Prandtl number was assumed to be 0.85.
In keeping with the character of the flue gas flow passing through the duct in an

industrial power boiler, the model adopts the simplifications and basic assumptions out-
lined below:

• Compressible single-phase gas flow;
• As there are particulate settlers in the boiler, the existence of fly ash particles is ignored;
• Gravity field is included with full buoyancy effects;
• The radiation effect is neglected;
• Flue gas composition assumed as a result of coal combustion with a relatively high

calorific value.
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The discrete form of the equations above and all assumptions were implemented in
ANSYS Fluent (18.2, ANSYS, Inc., Canonsburg, PA, USA).

2.4. Meshes

As a full-scale 3D channel section simulation was analyzed, considering many ele-
ments installed in the channel, such as vanes and a turbulence flap, which require adequate
calculation accuracy, so the implemented mesh is relatively large. The work performed
a grid sensitivity analysis, examining grids with the following estimated number of ele-
ments: 5.5 × 106, 11 × 106, 17.3 × 106, 29 × 106, 46 × 106. The grid element count varies
slightly between the analyzed cases, which is a direct result of the different turbulence
flap geometries. In investigating the mesh sensitivity, several numerical simulations were
performed analyzing parameters such as the final residual sum, mass, energy balance,
maximum and minimum temperatures in the domain and pressure drop in the channel.
The most reliable results were obtained for grids with 17.3, 29 and 46 million elements.
Meshes with approximately 29 million elements were selected for further analysis because
the parameters analyzed were highly reliable. The differences between the values obtained
in the simulation with the 46 million grid did not exceed 1%. The chosen computational
grid is shown in Figure 5.

Figure 5. Computational grid of geometry G2 with a zoomed-in view and named selection marked.

As previously mentioned, the analyzed channel section contains many installed
irregular-shaped flow control elements that significantly influence the simulation results.
Therefore, an unstructured mesh was used in the computational domain, introducing the
necessity of using more computing power. The mesh was given appropriately named
selections corresponding to the boundary conditions described in the following subsection.
The named regions are also shown in Figure 5.

2.5. Boundary Conditions and Simulations Settings

Each of the computational domains corresponding to the geometric variants was given
homogeneous boundary conditions. The zones defined are inlet, bypass inlet, outlet, wall
and symmetry, marked in Figure 5. The inlet boundary condition corresponds to a flow of
90% of the main exhaust stream at a temperature lower than that required for the efficient
operation of the SCR reactor. The design inlet type was defined as a mass flow inlet. The
main inlet turbulence was specified with the intensity ratio and the hydraulic diameter.
Immediately upstream of the design inlet, the boiler has a heat exchanger covering the
entire cross-section of the flue gas duct. Therefore, the flue gas flow upstream of the inlet is
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relatively uniform and regulated, making it possible to apply the uniform velocity field
condition at the domain inlet.

The bypass inlet boundary condition corresponds to the higher temperature flue
gases introduced into the main duct. These flue gases are led at 10% of the total amount
from the higher temperature boiler part. Mixed with 90% of the flue gases from the main
duct, they are supposed to ensure the safe operation of the SCR reactor in the appropriate
temperature range. The design type of the bypass flue gas inlet is a mass flow inlet type
with a uniform perpendicular velocity field. The uniform velocity field simplification was
applied due to the relatively large dimensions of the duct, whose cross-section is almost
four square meters. The flow is not laminar, and wall effects are negligible. The turbulence
was specified with the intensity ratio and the inlet bypass duct hydraulic diameter.

The domain outlet located just upstream of the SCR reactor was defined as a pressure
outlet. The appropriate conditions were applied, such as backflow temperature, exhaust
composition and turbulence defined by the intensity and hydraulic outlet diameter.

The remaining boundary conditions are the symmetry condition and the wall con-
dition. The symmetry condition was given on one surface, indicated in Figure 5, and it
corresponds to the second, symmetrical part of the boiler, clearly visible in Figure 1. The
wall condition was given on all other surfaces of the computational domain, i.e., the exter-
nal surfaces of the duct as well as all surfaces corresponding to the flow control elements
installed in the duct. All walls both inside and outside the channel were modeled as adia-
batic. This approach was justified because the walls inside the duct, which are part of the
flow control elements, are heated up to the temperature of the flue gases during the contin-
uous boiler operation. Meanwhile, the external duct walls are well insulated, as indicated
by modern temperature measurements installed within the examined boiler section.

The key chemical reactions affecting the flue gas composition no longer occur within
the investigated boiler section, so the composition was assumed to be homogeneous for the
inlets and the outlet. The flue gas composition and other boundary conditions are shown
in Table 2. As symmetrical duct operation was simulated, the mass values refer to half of
the flow.

Table 2. Flue gas composition and the main boundary conditions.

Parameter Value Unit

Oxygen volume fraction in the flue gas 0.033 -
Carbon dioxide volume fraction in the flue gas 0.137 -

Water vapor volume fraction in the flue gas 0.080 -
Nitrogen volume fraction in the flue gas 0.739 -

Other triatomic gas volume fraction in the flue gas 0.010 -
Main flow inlet temperature 567 K

Bypass inlet temperature 867 K
Outlet backflow temperature 597 K
Main inlet flow mass share 90 %

Bypass flow mass share 10 %
Main inlet mass flow 53.5473 kg/s

Bypass inlet mass flow 5.9497 kg/s

The key applied solver settings in ANSYS Fluent are coupled scheme with second or-
der discretization for all parameters, pseudo-transient mode, convergence criteria: 10-4. In
order to properly evaluate the simulation correctness, relevant parameters were monitored:
outlet mass flow, mass-weighted outlet temperature, maximum and minimum temperature
in the domain, pressure drop across the duct. The accuracy of the monitored parameters
was obtained at a level below 0.1%. Simulations were carried out with a computing server
and utilization of 60 cores. The time required to run a single simulation was approximately
8 h.

The numerical model was verified by comparing the current boiler geometry modeling
results with the empirical values. The calculations were performed for several operational
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states of the boiler. The obtained results of temperatures, pressure drops and exhaust gas
velocity distribution were compared with the current measurement data. The parameters
calculated using the numerical model for the existing boiler structure were convergent
with the measured parameters.

3. Results and Discussion

After calculating all geometric variants, and checking the results for correctness
through appropriate monitors, the outcomes obtained were evaluated. The most important
results testifying the effectiveness of mixing flue gas streams with different temperatures are
the temperature fields generated by the calculations carried out. The flue gas temperature
distribution for each geometric variant in the plane intersecting the design domain is
shown in Figure 6. The right-hand side of Figure 6 also shows the temperature distribution
on a plane perpendicular to the direction of flow, intersecting the mixing flap.

Figure 6. The flue gas temperature distribution for each geometric variant in the plane intersecting the
computational domain (on the left) and in the plane perpendicular to the flow direction intersecting
the mixing flap (on the right).

After analyzing the simulation results, it can be concluded that the most uniform
temperature distribution was obtained for the G4 geometric variant. The simulation results
of G1 variant indicate that the higher temperature exhaust gas is initially led to the lower
part of the duct. However, immediately after the mixing flap, through buoyancy forces
and the mass-dominant flow of the denser exhaust gas with a lower temperature, the hot
exhaust gas is pushed to the upper part of the duct. They are then mixed to a small extent
in the further duct section.

In variant G2, where U-profiles are used, mixing the flue gases is slightly better than
in variant G1. In that case, however, most of the hot flue gases right after the bypass duct
inlet are forced by the stream of denser and cooler flue gases into the spaces between the
U-profiles and flush out the hot flue gases from further parts of the U-profiles. Therefore,
the U-profiles installed in this way do not fulfill their intended role, not delivering the hot
flue gases to the lower main duct section. Immediately after the mixing flap, the flue gases
are directed upwards by buoyancy forces and mix to a small extent in the further section of
the duct.
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Variant G3 shows an improvement in the level of flue gas mixing compared to variants
G1 and G2. The application of U-profiles with a flat section at the flap top allows for an
appropriate hot flue gas distribution to the lower parts of the U-profiles. The initial flat
section prevents hot flue gases from being washed out by the lower temperature main
stream. However, as previously mentioned, the dimensions of each flap had to be adapted
to the condition of maximum coverage of half the main duct cross-section. Therefore,
U-profiles with a total width of two-thirds the width of the duct cannot be longer. Since the
U-profile of variant G3 is wide but relatively short, the hot flue gases are not introduced
deep enough to mix effectively with the cold flue gases.

The G4 variant represents the final concept developed, which represents a modification
of the G3 variant. Similar to variant G3, a flat section is used in the upper flap section
followed by three U-profiles. Variant G4 uses U-profiles that are narrower and longer than
the profiles used in variant G3. As with G3, the flat section of the flap prevents the hot flue
gases from being washed out in the upper duct section and ensures adequate hot flue gas
distribution to the U-profiles. Suitably long profiles transport the hot flue gases to the lower
part of the main duct. Then, due to the buoyancy forces, the hot flue gases are mixed with
the main flue gas stream of higher density and lower temperature. Further downstream,
the flue gas temperature is homogenized. Since the plane on which the temperature is
displayed follows the curvature of the flue gas duct, clearly visible in Figure 1, the hot flue
gas portion in the U-profile is cut off, so the observer cannot see the hot flue gas entering
the end of the profile.

Figure 7 shows the temperature distributions at the computational domain outlet,
corresponding to the SCR reactor exhaust inlet. The temperature scale has been narrowed
to 100 K (from 570 to 670 K). The target temperature of the perfectly mixed exhaust gas is
597 K. The best degree of mixing of flue gases was obtained in the geometrical variant G4,
as can be seen in Figure 7. In this case, the maximum flue gas temperature was 616 K, which
is only 2.18% of the percentage deviation from the perfectly mixed flue gas temperature of
597 K. The minimum flue gas temperature, in this case, was 573.6, which is a deviation of
3.91% from the target temperature. In the cases G1–G3, the temperature amplitudes are
considerably larger. All exceed values of 100 K. Simultaneously, in the lower section of the
duct, flue gases with a low temperature (close to the initial temperature of the main stream)
are observed, which indicates a complete lack of mixing of the lower layers of flue gases.

Figure 7. The temperature distributions at the computational domain outlet for each geometric
variant.
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Figure 8 shows a plot of the minimum and maximum temperatures found for each
geometric variant at the outlet of the computational domain representing the inlet to the
SCR reactor. The graph also shows the temperature amplitudes at the domain outlet,
indicating the degree of exhaust gas stream mixing.

Figure 8. Plot of temperature and amplitude of flue gas temperature at duct outlet for each geomet-
ric variant.

The velocity vectors determined on the plane intersecting the computational domain
are shown in Figure 9. It can be seen that for variant G1, the velocity of the main flue
gas stream increases significantly in the area under the turbulizing flap. Meanwhile, a
low-pressure field and backflows are created in the upper part behind the flap. In the
G2 variant, the flue gases flow freely through the spaces between the turbulence flap’s
U-profiles, creating a slight swirl of gas behind the flap. The flow is then stabilized. As in
the geometrical variant G1, in the variant G3 with its wide U-profile, the main exhaust flow
velocity increases significantly in the area below the flap. Above the flap, a low-pressure
field is created together with the backflow. The most uniform velocity field was obtained
for variant G4, which is also the most effective in mixing the exhaust gas streams. The main
exhaust stream flows gently through the relatively wide spaces between the flap U-profiles.
Slight turbulence is created in the upper duct behind the flat part of the turbulence flap.
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Figure 9. The flue gas velocity distribution for each geometric variant in the plane intersecting the
computational domain.

4. Conclusions

This article presents an innovative method of mixing flue gas streams in a coal boiler
using the designed mixing flap. The presented work is concerned with supporting the
SCR system operation under low-load conditions of coal-fired boilers, contributing to the
flexibility of the operation of these devices. The developed solution was exposed to CFD
calculations, in which the distributions of temperature, velocity, density and other key
thermodynamic parameters were examined. The results indicate that the invented flap
works as intended, causing an adequate mixing of the exhaust gas streams. It results in a
uniform gas temperature field before the inlet to the SCR system. The analyses showed
that the mixing flap developed by the authors could lower the flue gas amplitude in the
desired cross-section from 298 K to 43 K. In the intermediate solutions, amplitudes of 144,
125 and 106 K were obtained. By appropriate mixing, the maximum flue gas temperature
was reduced by 251 K. In addition, the developed solution was subjected to computational
analyses with regard to its functioning in the case of boiler operation with nominal load.
The flap, as previously mentioned, can be folded towards the upper wall of the duct. It
allows safe boiler operation in nominal conditions without significant pressure losses in
the flue gas duct.

The developed solution entails investment costs and operating costs. However, due to
the current energy policy and the need for coexistence of coal-fired boilers with renewable
energy sources, such solutions are necessary for these facilities to function. As in the flue gas
treatment installation, this type of modernization does not provide direct profits from the
implementation but allows the facility to operate in new conditions of the energy system.

It is planned to create a construction design and then install the device on the OP-650
boiler in the longer term. Work will then be carried out to optimize the method. The next
steps will involve the application of the method in coal boilers with different power ranges.
Although the solution is dedicated to power boilers, it is possible to use the developed
concept in other systems requiring mixing gases with different temperatures.
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Nomenclature

cP specific heat, J/(kg K)
E fluid total energy, J/kg
Fp pressure force, N
J species mass fluxes, kg/s
k turbulence kinetic energy, J/kg
P fluid static pressure, Pa
S mass source term, kg/(m3 s)
Sh energy source term, W/m3

T temperature, K
u velocity, m/s
x tensor length, m
Y species mass fraction
Greek symbols
ε turbulent kinetic energy dissipation rate
.

ω species production/destruction rate, kg/(m3 s)
ρ gas density, kg/m3

λ thermal conductivity, W/(m K)
δ the Kronecker delta,
μ viscosity, Pa s
Subscripts and superscripts
e f f effective
i tensor direction
j tensor direction
k species index
t turbulent
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15. Modliński, N.; Madejski, P.; Janda, T.; Szczepanek, K.; Kordylewski, W. A validation of computational fluid dynamics temperature
distribution prediction in a pulverized coal boiler with acoustic temperature measurement. Energy 2015, 92, 77–86. [CrossRef]

16. Adamczyk, W.P.; Isaac, B.; Parra-Alvarez, J.; Smith, S.T.; Harris, D.; Thornock, J.N.; Zhou, M.; Smith, P.J.; Żmuda, R. Application
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Abstract: This study examines the concentrations of air pollution in the vicinity of a combined
heat and power plant (CHP) and a communication route, using computer modeling of pollutant
dispersion and spatial analysis based on real measurements in the city of Łódź, Poland, Europe.
The research takes into account the concentrations of particulate matter (PM10, PM2.5, PM1.0) and
gaseous pollutants (SO2 and VOC) in winter and summer. The spatial distribution of pollutants
is discussed, including the presence of areas with increased accumulations of pollutants. Because
atmospheric air has no natural boundaries, when analyzing any location, not only local sources
of pollution, but also background pollution, should be analyzed. A clear difference was observed
between the concentrations of pollutants in the summer and winter seasons, with significantly higher
concentrations in the winter (heating) period. The impacts of road transport, individual heating
systems, and combined heat and power plants were also assessed. Computer calculations confirmed
that road transport accounted for the largest share of both PM and SO2 emissions. The CHP plant
was responsible for the smallest percentage of dust emissions and was the next largest producer of
SO2 emissions. The share of the total emissions from the individual sources were compared with the
results of detailed field tests. The numerical analysis of selected pollution sources in combination
with the field analysis shows that the identified pollution sources included in the analysis represent
only a part of the total observed pollutant concentrations (suggesting that other background sources
account for the rest).

Keywords: dispersion of pollutants; air quality monitoring; SO2; VOC; PM10; PM2.5; PM1.0; 3D
spatial analysis; outdoor air quality; air quality modeling

1. Introduction

According to data from the European Commission’s Joint Research Center (JRS) [1],
as much as 75% of the world’s population lives in urban agglomerations. In Europe, the
urbanization rate was 72% in 2015 [1]. Therefore, the state of air quality in large urban
agglomerations is a matter of key concern. According to a European Environment Agency
(EEA) report from 2020 [2], the most frequently analyzed pollutants are PM10, PM2.5, and
SO2. This is because large populations are exposed to these pollutants at concentrations
higher than recommended by the EU and WHO. According to an EEA report [2], as much as
48% of the population living in urban agglomerations is exposed to concentrations of PM10
above the acceptable level of 20 μg/m3 (average annual concentration) set by the WHO in
2005 [3], and 15% of the urban population in Europe is exposed to concentrations of PM10
above the EU standard of 40 μg/m3 (average annual concentration of PM10) [4]. Moreover,
74% of the urban population is exposed to average annual concentrations of PM2.5 above
the permissible level of 10 μg/m3 established by the WHO, and 19% of people are exposed
to an average daily concentration of SO2 above the recommended limit of 20 μg/m3. Using
less restrictive EU standards, only 4% of the European population is exposed to levels of
PM2.5 beyond the permissible concentration of 25 μg/m3 and less than 1% of the European
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population is exposed to SO2 at levels above the recommended limit of 125 μg/m3 (24-h
limit). However, in 2021, the WHO [5] updated its statements regarding permissible levels
of pollutants. For PM10 and PM2.5, the permissible annual average concentrations were
reduced by 25% and 50%, respectively, to 15 μg/m3 and 5 μg/m3. In the case of SO2, the
permissible level was increased by 100% from 20 μg/m3 to 40 μg/m3 (average daily SO2
concentration), but this is still well below the limit permitted by the EU.

The main emitters of pollutants are the energy industry [6,7], agriculture, individual
heating systems [8], and road transport [9,10]. According to the EEA [2], 41% of PM10
emissions are produced by secondary energy consumers (the commercial and public sectors,
as well as private households), 10% by road transport, and 3% by the energy industry.
The energy industry is responsible for as much as 47% of the emissions of gaseous pol-
lutants, including SO2. Other industries are responsible for 33% of gaseous pollutants,
while households together with the service sector and trade sector contribute 15%. This
information is based on statistical data collected by air quality monitoring systems situated
in all European Union member states and varies between nations. The monitoring system
consists of stationary ground stations that measure pollutant concentrations in a manual
daily system and an automatic continuous system [11]. Due to the low density of air quality
monitoring stations, the data they collect cannot be used for a detailed analysis of the
impact of individual pollution sources on local air quality. For example, in Poland there
are about 0.00062 stations/km2 (in 2017, the number of PM10 measurement stations was
194). In Europe overall, the figure is about 0.00060 stations/km2 (there were 2551 PM10
measurement stations in 2017) [12]. For this reason, air quality tests carried out with mobile
measurement devices [13] or using numerical programs for calculating/simulating pollu-
tant dispersion in a selected local area are very important. Mobile measuring equipment,
such as unmanned aerial vehicles, can be used to transport measuring devices [14,15] or
small stationary devices [16]. Numerical programs available include Aero 2010, Emitor,
OPA03 [17], AERMOD [18], ENVI-met, and Austal 2000 [19,20].

In this study, we analyzed various anthropogenic sources of pollutants in a selected
area, using numerical calculations and real measurements.

2. Methodology

2.1. Analyzed Area

The analysis was focused on an urban area in the city of Łódź. Łódź is the third largest
city in Poland (central-eastern Europe) in terms of the number of inhabitants (population
density: 2292.2 people/km2, population: 672,185, area: 293.2 km2). The area comprises a
thoroughfare running from the west to the east along Pojezierska Street, on the intersection
between Aleja Włókniarzy and Zgierska Street (Figure 1).

Figure 2 shows the selected fragment of the street (no. 1) is about 1.5 km long and runs
through areas of different types and purposes. We distinguish between shopping areas with
large-area stores (no. 2), green areas and parks (no. 3), single-family housing areas (no. 4),
multi-family developments (no. 5) and industrial areas (no. 6). The gross development
index in the area ranges from 0.5 to 1.0. The analyzed street plays an important role as a
road transport route connecting two main streets in the city in the east–west system. It is
both a local access route to residential and industrial areas and a transit route through the
city. According to [21], the average traffic volume on this road section for every 15 min
is between 500 and 750 vehicles (between 2000 and 3000 vehicles per hour). In the close
vicinity, there is one of the two main heat and power plants in the city, called EC-3 (Figure 2).
The EC-3 combustion installation includes 9 boilers: five coal-fired steam boilers, one steam
boiler fired with light fuel oil, and three water boilers fired with heavy oil. The total thermal
capacity is 804 MW, and the electrical capacity is 205.85 MW [22].
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Figure 1. Location of the research area in the city of Łódź in Poland, Europe (photo background
source: Google Earth Pro).

2.2. Methodology of Analysis

We used both actual measurements and numerical calculations of the dispersion of
emissions from selected pollution sources. Based on analysis of the research area, three
probable sources of air pollution were selected: EC3 heat and power plants fired with
hard coal, light, and heavy fuel oil; road transport, and individual heating systems. The
actual measurements were performed in the first quarter of the year, in the period from
January to March 2021 (this is the winter heating season in central and eastern Europe),
and in the third quarter of the year, from June to August 2021 (the summer period in
Poland). Mobile measuring equipment was used, consisting of measuring and sampling
devices installed on an unmanned aerial vehicle (UAV) and on a transport platform (TP).
The use of the UAV allowed for measurements at heights from 5 m to 50 m above the
ground. The TP was used for measurements at a height of about 2 m above the ground.
The measuring apparatus was equipped with a laser-scattered (LS) sensor, which was used
to measure PM10, PM2.5, and PM1.0 (10,000 particles per second). It was also equipped
with ElectroChemical (EC) sensors to measure H2S (3 ppb–1 ppm), O2 (0.20–100%), VOCs
(Ethanol, Iso-Butane, 0–500 ppm, sensor type: MOS) and SO2 (0.5–2000 ppm). Validation
of the measurement data of particulate matter was performed on the basis of data from an
accredited measuring station VIEP (the method equivalent to the reference method), while
the gaseous pollutants were validated in relation to the VEGA-GC microchromatograph
(equipped with a thermal conductivity detector TCD, minimum concentration of 500 ppb
(0.005 ppm)). Numerical analyses of pollutant dispersion were carried out using the
ArcGis [23] program, which was used to produce a graphical presentation of the actual
measurement data, and the OPA03 program by Eko-Soft [24], which was used to simulate
the concentrations of pollutants from selected pollution sources. Interpolation in ArcGis
was carried out using the Empirical Bayesian Kriging 3D method. Both software programs
are described in detail in [14,25]. The calculations performed in the OPA03 program are
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based on the legal acts in force in Poland [26] and the European Union [4]. The OPA03
software is based on the proprietary algorithm of the EKO-Soft company, in accordance
with the methodology described in the Polish law [26]. Data on the wind rose in the
analyzed period, emitter parameters (such as the number of chimneys and their height,
speed of exhaust gases, mass concentration of pollutants emitted, average hourly number
of vehicles, and type of fuel) were added to the program. Details for individual pollutant
emitters are presented further in the article.

 

Figure 2. Map of the main areas affecting air quality: 1—analyzed area from the west intersection “I”
to the east intersection “II”; 2—area of large-format stores; 3—green areas; 4—single-family houses;
5—multi-family houses; 6—industrial areas: warehouse, offices, small handicraft industries, and EC3
heat and power plant (photo background source: Google Earth Pro).

The input data for the calculation of pollutant emissions from the EC-3 CHP plant
were provided for scientific purposes by Veolia Energia Łódź and are the actual measure-
ments of emissions from the CHP plant taken during the analyzed period. According to
annual data, the maximum recorded emissions of PM10, PM2.5, and SO2 were 2.667 kg/h,
1.143 kg/h, and 128.81 kg/h, respectively. In accordance with the methodology presented
in [27], the average volume of traffic measured during field measurements was adopted
for the analysis. Different vehicle types and fuels were considered. According to [28],
gasoline-powered passenger cars account for 55% of all vehicles using the analyzed com-
munication artery, diesel-powered cars accounted for 30%, and LPG gas-powered cars for
15%. Vans were divided between those with diesel engines (75%) and those with gasoline
engines (25%). Tractors and buses were 100% diesel, and 100% of motorcycles had gasoline
engines (detailed data on pollutant emissions are provided later in this paper). Finally, we
considered individual heating systems in single-family houses located in the immediate
and close vicinity of the studied area. Individual heating systems are used for domestic hot
water in summer and for heating in winter. It was assumed in the calculations that 70% of
the buildings used hard coal as fuels, and 30% used natural gas.

In the numerical analysis in the OPA03 software, the simulation can be performed with
or without the background level of pollution in the air. The background level of pollutions
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is understood as the concentration of pollutants in the air without the analyzed pollutant
emitter. Background levels of pollution were not included in the numerical analyses, to
illustrate the individual impact of pollution sources on the dispersion of air pollutants.
A common level of 2 m above ground level was adopted for the analysis. Particulate matter
pollutants PM10, PM2.5, and PM1.0 were included in the field measurements, as well as
gaseous SO2 and VOCs. For the purposes of comparison, the numerical analysis was based
on PM10 and SO2 emissions.

2.3. Meteorological Conditions

Characteristic data for the winter (1st quarter of the year) and summer (3rd quarter of
the year) periods in central Poland were selected for the analysis. The winter period was
from January to March, which is the so-called the heating period because the outside air
temperatures oscillate predominantly around 0 ◦C. For this reason, it was decided to choose
two representative measurement series, A and B, for which the average air temperature
was about 6 ◦C with a relative humidity of about 76% (Table 1). In the summer period,
from June to August, average air temperatures above 18 ◦C predominate. Therefore, it
was decided to choose two series, C and D, in which the average temperature was higher
than 20 ◦C.

Table 1. Meteorological data for representative measurement series during the winter and summer
periods (source: [29]).

Series
Date

Y.M.D

Temperature
[2 m Above Ground]

Relative Humidity
[2 m Above Ground]

Wind Speed
[10 m Above Ground]

Wind
Direction

◦C % m/s ◦

Min Mean Max Min Mean Max Min Mean Max Mean

A 22 January 2021 3.2 6 9.4 66 78 91 1 2.8 4 191
B 25 February 2021 −1.4 7 17.4 39 75 97 1 1.3 3 207
C 24 June 2021 17.2 22 28.3 61 81 100 1 2.1 5 190
D 7 July 2021 18.4 25 31.4 40 65 89 1 2.8 7 167

In the analysis of the dispersion of pollutants, another important parameter is the
speed and direction of the wind. In the city of Łódź in 2021, winds from the west W (11%)
and west–north WSW, and SW (9%) directions were prevailing, with wind speeds ranging
from 0 m/s to 7.5 m/s (Figure 3). In the winter period from January to March, the average
wind speed was 2.92 m/s (11% W). In the summer period from June to August, the average
wind speed was 15% lower, amounting to 2.47 m/s (9% WSW).

 

Figure 3. Wind rose for the city of Łódź in 2021 (own study based on data from source [29]).
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3. Results

Based on the results of the field measurements, 3D maps were drawn using ArcGis
software of the dispersion of pollution in the analyzed area. This form of 3D spatial analysis
is an innovative approach, so the results are not comparable with the literature data. Due to
the fact that dust pollution has similar field dispersion characteristics [14], PM10 pollution
was selected for the graphic presentation. Figure 4 shows the results of PM10 dispersion for
series A and B in the winter period, together with a longitudinal and vertical cross-section
for series B to show changes in the altitude of the pollution.

 

 

Figure 4. Spatial distribution of PM10 concentrations during the winter season in series A and B.

The selected series of representative measurements for the winter period show a vari-
able concentration of PM10. In series A, the average concentration of PM10 was 21.80 μg/m3

and the maximum concentration was 42.40 μg/m3. According to the air quality index
adopted in Poland [30], the air quality of series A is classed as “Good” (limit of PM10
20.1–50.0 μg/m3). The spatial analysis shows that the entire area of analysis was char-
acterized by an even concentration of PM10. In comparison, series B showed double the
concentrations of PM pollutants. The mean concentration of PM10 was 54.80 μg/m3 and
the maximum 77.60 μg/m3. According to the air quality index in relation to PM10, the air
quality of series B is “Moderate” (50.1–80.0 μg/m3). In series A, the concentration of PM10
did not exceed the level of 50 μg/m3 allowed by EU standards, whereas in series B the
EU limit was exceeded in many places by 55%. The increased concentration of particulate
matter in series B can be explained by the fact that the average wind speed was less than
half that in the series A. Tall buildings, with heights of 15–30 m, also contributed to the
accumulation of pollution in the analyzed area. In series B, there are spaces with lower and
higher PM10 concentrations. Elevated levels of PM10 > 60 μg/m3 (red in Figure 4) occur at
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street crossings and in more densely built-up areas. Lower PM10 concentrations (green in
Figure 4) relative to the mean value occur in the highest part of the analyzed area. This is
probably related to the stronger ventilation. From the vertical cross-section view of the 3D
dispersion, it can be concluded that concentrations above 40 μg/m3 occur mainly close to
the ground surface. At the intersections, the concentration of PM10 increases with height,
which is probably related to the upward movement of pollutants and car exhaust fumes.

The concentrations of PM10 in series C and D in the summer period (Figure 5) were
up to four times lower compared to the winter period. The mean concentrations of PM10 in
series C and D were 8.20 μg/m3 and 12.10 μg/m3, respectively. In contrast to the winter
period, during the summer period the concentration of PM10 was similar in the whole
analyzed area. There were no areas with concentrations of particulate matter above the
average value. Only in series D, during a period of high temperatures and low humidity,
were PM10 concentrations observed exceeding 30 μg/m3, as can be seen in the upper left
area of Figure 5. The source was earthworks at a construction site. To sum up, during
the summer period the permissible level PM10 of 50 μg/m3 was not exceeded [4]. In the
summer, the use of fuel for heating purposes in individual heating systems is reduced
and the average speed of road transport increases. This contributes to lower emissions of
particulate matter. To facilitate comparison of the 3D dispersion maps, further analysis of
the air quality parameters was limited to two of the selected representative measurement
series in order to facilitate the graphical reception and comparison of the results.

 

 

Figure 5. Spatial distribution of PM10 concentrations during the summer season in series C and D.

The emissions of pollutants selected in this study are mostly related to the combustion
of fossil fuels. Therefore, SO2, which is another of the products of the combustion of
fuels used in motor vehicles, was also included in the analysis. In series A of the winter
period, the concentration of SO2 varied from 0.006 ppm to 0.346 ppm, i.e., from 20 μg/m3
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to 970 μg/m3. Spatial analysis (Figure 6) showed the presence of an area with a high
concentration of SO2 above 0.24 ppm (>670 μg/m3) at the sites of traffic jams before
the eastern intersection. It may also be due to SO2 being transported downwind from
industrial emitters such as EC3. The second place with a high concentration of SO2 was
at the extreme western intersection. Concentrations of SO2 below 0.16 ppm (<450 μg/m3)
were recorded only at a height of more than 30 m above ground level, in an area of low-
rise single-family housing. This was probably due to the stronger ventilation in the area.
According to the cross-section of the 3D dispersion map, the highest SO2 concentrations
above 0.24 ppm were measured at ground level. With increasing heights above ground
level, the concentration of SO2 decreased up to threefold. This suggests that the main
sources of SO2 were car exhaust fumes and exhaust fumes from individual heating systems
(single-family buildings). According to the EU, 15% of SO2 emissions are caused by
individual heating systems [2]. Across the entire area, at a height of 2 m the permissible
level of SO2 (350 μg/m3) according to EU standards [4] was exceeded by about 20–277%.

 

 

Figure 6. Spatial distribution of SO2 concentrations during the winter season in series A and during
the summer season in series C.

In the summer period, the SO2 concentration decreased significantly, and was up to
three times lower compared to the winter period. In series C (Figure 6), the concentration
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of SO2 ranged from 0.001 ppm to 0.122 ppm (max 320 μg/m3). Similar to the winter period,
the spatial distribution showed the presence of areas with increased SO2 concentrations at
the intersections and the sites of traffic congestion. However, according to the cross-section
of the pollution dispersion map, in summer the highest concentration of SO2 was not at
ground level, as it was in winter. This can be explained by the fact that there was no
thermal inversion in the summer period. This prevented the accumulation of pollutants
and enabled faster mixing (dilution) in the atmospheric air. The concentration of SO2 was
lowest at the highest point of the area of analysis and in the open space behind the crossing
from the eastern side. This was probably related to the fact that these are zones of increased
ventilation [31].

Finally, we considered the concentrations of Volatile Organic Compounds (Figure 7).
In the winter and summer periods, the average VOCs concentration was about 20 μg/m3

(0.005 ppm). However, in the winter period the VOCs concentration reached 0.09–0.12 ppm
(310–420 μg/m3), i.e., 53% higher than the maximum VOCs concentration in the summer
period (0.023–0.079 ppm). This can be explained by a higher degree of photochemical
reactions in the summer period, which reduce the concentration of VOCs. The cross-section
of the pollution dispersion map for the winter months shows that the highest concentrations
of VOCs were recorded close to the ground surface. As the altitude increased, the VOCs
concentration quickly decreased to levels below 0.005 ppm (20 μg/m3). In summer, the
highest concentrations of VOCs pollution occurred in the area around Pojezierska Street
and towards the western intersection, where the heat and power plant is located. Xu et al.
similarly identified a heat and power plant as the main origin of VOCs [32].

 

 

Figure 7. Spatial distribution of VOCs concentrations during the winter season in series A and during
the summer season in series D.
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Table 2 presents the results of actual measurements from the representative series
(A–D) taken during the 3 months of research in the winter and summer periods. The data
show that in the winter period the concentration of particulate matter was almost four times
higher relative to the average value than in the summer period. The concentration of SO2
was three times higher in the winter than in the summer. The average VOCs concentration
remained at a similar level, regardless of the season.

Table 2. Measured concentrations of pollutants in a representative measurement series during the
winter and summer periods in 2021.

Winter Summer

Series A B C D

Date 22 January 2021 25 February 2021 24 June 2021 7 July 2021

PM10
μg/m3

max 42.38 77.54 16.00 32.00
mean 21.79 54.80 8.23 12.08
min 11.28 41.69 3.30 8.60

PM2.5
μg/m3

max 36.60 65.40 15.00 30.00
mean 14.98 38.62 5.22 10.77
min 4.80 23.10 2.70 7.40

PM1
μg/m3

max 36.50 65.40 10.00 19.20
mean 13.98 37.59 3.70 9.12
min 3.80 22.10 1.10 6.40

VOCs
ppm

max 0.090 0.122 0.023 0.079
mean 0.0049 0.00598 0.005 0.022
min 0.001 0.001 0.001 0.001

SO2
ppm

max 0.346 0.269 0.164 0.122
mean 0.248 0.131 0.059 0.075
min 0.006 0.008 0.001 0.001

The next part of the analysis used numerical software to calculate the dispersion of
selected pollutants in relation to their probable sources of emissions.

The area of interest includes a heat and power plant with a chimney 120 m tall, from
which emissions are released. Data were obtained from Veolia Energia Łódź, comprising
a collective measurement of emissions (kg/h) from the chimney after desulphurization
and dedusting of flue gases from five boilers. As can be seen in Table 3, the emissions
were mostly composed of SO2 (despite the exhaust gas treatment systems). This suggests
that the EC-3 CHP plant may be responsible for the high concentrations of SO2 found in
our analysis.

Table 3. Maximum hourly emissions of pollutants for the EC-3 CHP plant (own calculations based
on data from Veolia Energia Łódź).

Emitter Maximum Hourly Emission [kg/h]

H120
PM10 PM2.5 SO2
2.667 1.143 128.81

Based on the parameters of the emitter and the amounts of pollutants, OPA03 software
was used to simulate the dispersion of emissions from the EC-3 CHP plant. The results are
shown in Figures 8–12. According to the simulation, in winter, the maximum concentration
of PM10 emitted from EC-3 was 0.21 μg/m3 (Figure 8).

566



Energies 2022, 15, 553

  

Figure 8. Dispersion diagram of the maximum 1-h concentrations of PM10 emitted in the summer
and winter periods from EC-3.

 

Figure 9. Dispersion diagram of the maximum 1-h concentrations of SO2 emitted in the summer and
winter periods from EC-3.
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Figure 10. Dispersion diagram of the maximum 1-h concentrations of PM10 emitted in the summer
and winter periods from road traffic.

 

Figure 11. Dispersion diagram of the maximum 1-h SO2 concentration in the summer and winter
periods from road traffic.
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Figure 12. Dispersion diagram of the maximum 1-h PM10 concentrations of emissions from individual
heating systems in the summer and winter periods.

In summer, the maximum concentration of PM10 according to our simulation was
0.42 μg/m3, i.e., twice as high as in the winter period. This can be explained by the exhaust
velocity from the chimney in the summer period, which at 5.24 m/s was three times
lower than in the winter period (16.2 m/s). A slower exhaust outlet in the summer period
allows for faster precipitation of pollutants, and this results in a higher concentration of
dust pollutants in the vicinity of the heat and power plant. However, in both the winter
and summer periods the concentration of PM10 caused by the emission from EC-3 did
not exceed 0.5 μg/m3 at a height of 2 m, which is less than 1% of the permissible value
(50 μg/m3).

The analysis shows that SO2 was emitted from the CHP plant at a higher concentration
than PM10 (Figure 9). In the winter period, the highest one-hour concentration according
to the simulation was 20.35 μg/m3. This value occurred in the immediate vicinity of
EC-3, covering the entire area of the analyzed street. At a distance of about 2 km from
the CHP plant, the concentration of SO2 decreased to between 15 μg/m3 and 20 μg/m3.
At a distance of about 6 km, it fell to below 15 μg/m3. In the summer period, the scope
of the EC-3′s environmental impact area was reduced by about 16%, which translated
into a higher concentration than 25 μg/m3 of SO2 within a 1 km radius of EC-3. Based
on computer simulations, Lee et al. [7] also observed higher SO2 concentrations in the
summer period, which were also explained by the lower outlet velocity in the summer
period compared to the winter period. This resulted in a greater accumulation of pollution
in the immediate vicinity of the heat and power plant.

The permissible maximum one-hour concentration of SO2 in the air is 350 μg/m3 [4].
The emissions of SO2 from the combined heat and power plant amounted to only 8.9% of
the limit value in the summer period and to 5.8% in the winter period.

According to traffic volume studies carried out during the air quality measurements,
an average of 983 vehicles per hour traveled between the west and the east intersections in
the winter period, at an average speed of 32 km/h. In the summer period, the intensity
increased by 14% to 1118 vehicles per hour. The average vehicle speed increased to
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approximately 39 km/h. The analyzed street was used mainly by passenger cars, which
accounted for 89% (summer period) and 91% (winter period) of the total number of vehicles.
Light trucks accounted for 8% or 7% of the traffic in each period, trucks for 2% or 1%, and
public buses for 1%. These results were used to create a numerical simulation in the
OPA03 program of the dispersion of linear pollutants (Figures 10 and 11). Comparing the
simulations of PM10 dispersion in the summer and winter periods (Figure 10), it can be
observed that in the summer period there were higher concentrations of PM10 emissions.
In the winter period, the maximum one-hour concentration was 12 μg/m3, whereas in
the summer period it was 17.7 μg/m3. This was related to a 14% higher number of
vehicles in the summer season, with a simultaneous increase in speed of only 7 km/h
compared to the winter period. According to the simulation, the emissions from vehicle
traffic had a small range of influence, as they were limited mainly to the immediate area
of the street. This was due to the densely built-up area and the presence of tree stands
(15–30 m tall trees). As Long et al. observed [27], local rough terrain has an impact on local
meteorological conditions, especially in terms of wind direction and speed. Highly rough
terrain contributes to protection against low windspeed and reduced airing, reducing the
accumulation of pollutants. According to the simulation, the maximum concentration of
PM10 was 35.4% of the permissible average daily concentration of 50 μg/m3 [4].

The spatial distribution of SO2 (Figure 11) according to the simulation was similar to
the data for particulate matter. It was concentrated mainly in the road area and a small area
of the surroundings (about 40 m). According to the simulations, the highest concentrations
of SO2 occurred within the lanes of the road, reaching 43.5 μg/m3 in winter and 52.3 μg/m3

in summer. In the area of the pedestrian sidewalks, the one-hour concentration decreased
to below 15 μg/m3. Road traffic emissions were at 12.4% of the maximum permissible level
of 350 μg/m3 stipulated by the EU [4] in winter and 14.9% of the maximum in summer.

In the immediate vicinity of the analyzed street, there are about 170 single-family
houses with individual heating systems (70% coal fired and 30% natural gas). Based
on detailed data in the literature on this source of emissions [33], presented in Table 4,
calculations were made in the OPA03 program for point emitters located using the map of
the analyzed area (Figure 2).

Table 4. Hourly emissions of pollutants from individual heating systems (source: [33]).

Source of Heat Hourly Emission [g/GJ]

5-years-old or older boiler,
automatically powered by fine coal

PM10 SO2
91.00 343.00

Natural gas fired boiler 0.30 0.40

There was a visible difference between the summer and winter periods in terms of the
concentrations of PM10 and SO2 (Figures 12 and 13). Therefore, different scales were used
in the figures to present the results. During the summer period, the PM10 concentration
(hourly maximum) (Figure 12) fluctuated between 0.03 μg/m3 and 0.161 μg/m3, because
the heating systems were used mainly for the purpose of preparing domestic hot water. In
the winter period, the concentration of PM10 emitted from individual heating systems was
higher than the highest value calculated in the summer period, ranging from 0.6 μg/m3 to
4.0 μg/m3. This can be explained by the increased combustion of fuels for the production of
thermal energy to heat the buildings in winter. Kaczmarczyk et al. [8] and Specjał et al. [34]
made similar observations.
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Figure 13. Dispersion diagram of the maximum 1-h SO2 concentrations of emissions from individual
heating systems in the summer and winter periods.

The concentration of SO2 in the summer was more than 10 times lower than in the
winter period, when there is increased production of heat energy. According to the results
presented in Figure 13, in the summer period the maximum hourly SO2 concentration
varied in the range of 0.12–0.72 μg/m3, whereas in the winter period it was in the range
of 5.0–16.0 μg/m3. The maximum value calculated in the summer period was 0.2% of
the permissible value, and in the winter period it was 4.6% of the permissible value
(350 μg/m3).

The pollution from individual heating systems depended strongly on local factors,
especially the wind direction. The highest concentrations of PM10 and SO2 recorded in
the axis of the location of the emitters, as the pollutants moved mainly in the direction of
the WSW wind, which is dominant in the area. As a result, the emissions from individual
heat sources did not affect the whole area of the analyzed street, but only the part in the
direction of the wind.

4. Conclusions

In this study, we have compared the results of simulations performed using numerical
software with data from actual field measurements. Maps were created of the distributions
of air pollution in the vicinity of a heat and power plant and a communication route. For
the numerical simulations, we assumed the highest concentrations of emissions from the
selected pollution sources. According to the simulations, in the winter and summer periods,
the maximum concentrations of PM10 were 16.22 μg/m3 and 18.29 μg/m3, respectively.
According to our actual measurements, the maximum hourly concentration was in winter
about 58.8 μg/m3 and in summer 23.5 μg/m3. The difference between the results of the
simulation and the actual concentration of PM10 indicates the possibility of an additional
source of dust pollution not included in the study, or the influence of background pollutants
transported by the wind. There may also have been calculation errors associated with
our method.
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According to the simulation data shown in Figure 14, road transport accounted for the
largest percentages of total PM10 emissions, at around 74% in winter and 96.9% in summer.
The CHP was responsible for the smallest share of PM10 emissions, amounting to 1.3% or
2.3% of the total emissions according to the numerical calculations. This was related to
the legal restrictions on dust emissions from power plants and the use of modern flue gas
cleaning systems. The total maximum concentrations of SO2 according to the numerical
calculations were 81.0 μg/m3 in winter and 84.0 μg/m3 in summer. The concentration of
SO2 according to the actual measurements was about 350% higher than in the simulation
for the winter period and about 140% higher than in the simulation for the summer period.
Similar differences between real measurements and the results of simulations were reported
by [7]. As in the case of PM10, it can be explained by the high concentrations of pollutants
transported by the air close to the ground surface, especially in winter during so-called
thermal inversion. This causes the phenomenon of smog in the winter (poor air quality), as
demonstrated by Wielgosiński et al. [35]. The vertical cross-sections through the dispersion
maps of pollutants in winter (Figures 4, 6 and 7) showed the highest concentrations close
to the ground level (approx. 2 m).

 

Figure 14. Percentage share of selected air pollution sources in the total maximum hourly concentra-
tions of air pollutants in the summer and winter periods, based on numerical calculations.

According to the calculations performed by the OPA03 program (Figure 14), most
emissions of SO2 were caused by road transport, which was responsible for 53.8% and
62.2% of the total maximum concentrations in winter and summer, respectively. Road
transport has a particularly strong impact on air quality in densely populated areas [36],
where vehicles generate much higher concentrations of pollutants due to slow traffic and
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high vehicle aggregation with little airflow [37]. This is especially important in Poland
where, according to comparative studies, the air quality is worse than in other European
Union countries [38]. According to data from the European Union [2] and Poland [28], road
transport is one of the main sources of PM and gas emissions. Individual heating systems
were responsible for the smallest share of SO2 emissions, amounting to 21.1% in winter and
0.8% of total emissions in summer. Similarly, Kaczmarczyk et al. [8] reported that individual
heating systems were primarily responsible for the emission of particulate matter, especially
when hard coal was used as fuel. Comparing the results from numerical calculations with
the actual measurements shows the importance of using mobile measuring devices in air
quality analyses, because simulations do not take into account all potential sources of air
pollution or the correct level of background pollution. The presented research methodology
can be implemented in any urban area, with a particular focus on local scale analysis.
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Abstract: One of the most favorable renewable energy sources, solar photovoltaic (PV) can meet
the electricity demand considerably. Sunlight is converted into electricity by the solar PV systems
using cells containing semiconductor materials. A PV system is designed to meet the energy needs of
King Abdulaziz University Hospital. A new method has been introduced to find optimal working
capacity, and determine the self-consumption and sufficiency rates of the PV system. Response
surface methodology (RSM) is used for determining the optimal working conditions of PV panels.
Similarly, an adaptive neural network based fuzzy inference system (ANFIS) was employed to
analyze the performance of solar PV panels. The outcomes of methods were compared to the actual
outcomes available for testing the performance of models. Hence, for a 40 MW target PV system
capacity, the RSM determined that approximately 33.96 MW electricity can be produced, when the
radiation rate is 896.3 W/m2, the module surface temperature is 41.4 ◦C, the outdoor temperature is
36.2 ◦C, the wind direction and speed are 305.6 and 6.7 m/s, respectively. The ANFIS model (with
nine rules) gave the highest performance with lowest residual for the same design parameters. Hence,
it was determined that the hourly electrical energy requirement of the hospital can be met by the PV
system during the year.

Keywords: solar PV module; performance prediction; simulation; self-consumption model; RSM;
ANFIS; hospital

1. Introduction

The energy planning systems have transformed from specific objectives with con-
straints to more complex approaches due to the insertion of multiple criteria, investors
and needs of nations that are usually in conflict. Renewable and non-renewable energy
sources are the basis of different energy systems. The world energy need is presently
met mainly from fossil fuels (81%), renewable energy (14%), and nuclear sources (5%) [1].
Fossil fuels are disposable, and unsafe for the environment due to their impacts on cli-
mate and pollution rising. Similarly, nuclear sources and power reactors are deemed
dangerous by some scientists as a result of their high capital costs, the power systems’
control, opposing public opinion, nuclear waste management, and economies of the scale
envisaged. However, they have many advantages such as lower emissions, higher security
of supply and enabling of possible other technologies. The major direction of the world
is to develop independent small nuclear units for energy generation that bring greater
simplicity of design, short construction times, and reduced siting costs. On the other hand,
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small nuclear units are much more easily manageable investments whose costs often rival
the capitalization of large plants. Renewable energy sources alleviate their downsides,
and eventually cost less than fossil fuels that own useless production technologies. For
instance, due to urgent environmental pollution and climate change issues, using a mix
of fossil fuels and renewable energy sources, Italy carried out an ‘energy transition’ to-
wards a more sustainable energy production and consumption system by adopting nuclear
power to reduce the consumption of fossil fuels [2]. Solar photovoltaic (PV) as a favorable
renewable energy source can meet the electricity demand of Saudi Arabia providing a
50 GW additional capacity. However, the aggregate global renewable energy capacity has
reached 227 GW in recent times [3]. The average sunlight energy falling on Kingdom’s
land is about 2200 thermal kWh/m2 per year which is acceptably higher when compared
to some countries heavily investing in solar energy generation technologies. During the
summer seasons, the electricity need reaches its peak load, which is twice higher than in
the winter. Therefore, it is worthwhile to generate clean solar PV energy via sunlight [4].
In Saudi Arabia, the electricity consumption is estimated to exceed 40 GW nowadays
and reach 120 GW per hour until the year 2028. The electricity consumption of industrial
and service sectors is increasing about 6.9% per year mainly due to the investments and
capacity expansions. This growth will require more fossil fuel consumption and eventually
release a higher amount of CO2 into the atmosphere. Although the Kingdom’s annual
solar irradiance is about 2000–2450 kWh/m2, the availability of immense empty lands and
ideal locations for solar installations and PV generation [4]; the renewable energy share of
Kingdom is still less than 0.1%, compared to 14% share of the rest of the world [5]. In this
context, Alnaser and Alnaser [6] claimed that only 0.1% of Kingdom’s land is sufficient
for the solar PV projects to meet the electricity demand estimated for 2050. Many coun-
tries are interested in reliable, sustainable, suitable, and diversified energy sources, and
technologies due to the pros and cons of non-renewable energy sources and technologies.
The challenging problem for a country is the determination of the proper energy sources
and technologies for the public and private investments. Although Saudi Arabia has wind,
and geothermal resources that can solve all energy demand in the future, the new PV
technologies are more productive and can generate more energy efficiently. This study
also aims to encourage government bodies and private organizations to invest in solar PV
energy generation systems for achieving sustainable energy infrastructure.

A solar photovoltaic (PV) system aims to convert sunlight directly into electricity
using PV cells. This system uses solar modules consisting of various solar cells containing
semiconductor materials. Yildirim and Aktacir [7] investigated the efficiency of PV cells,
the parameters affecting photovoltaic panel performance, and variabilities depending on
PV technologies. Martin et al. [8] reported that the efficiency of converting solar energy
into electrical energy is 9% using organic modules, which can reach 25% using crystalline
modules. Monocrystalline, Multi-crystalline and thin film Silicone are broadly used in
those PV technologies available which have the highest market share [7]. The most efficient
PV modules are obtained from Monocrystalline technology, even highly more efficient than
multi-crystalline technology are considered the leader of PV technologies [9] in industry.
On the other hand, although solar radiation has the greatest influence on the power of the
PV module [10] obtained, the module surface temperature affected by the wind speed and
outdoor temperature are also important parameters. The wind speed and its direction have
a cooling effect on the temperature of the PV module surface and significantly increase the
electricity generation [11,12]. Kalledis et al. [10] have reported that the PV module surface
temperature is reduced with rising wind speed. Although certain values of different
parameters are considered as the ideal conditions, the reality is usually different, and
the parameters do not represent the optimal field circumstances in which the PV panel
operates [13].

Today, many studies in the literature related to renewable energy sources consider
them as the alternative to fossil energy sources. Taylan et al. [1] used multi-criteria group
decision making approaches for determining the attributes of energy sources, and selected
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technologies for PV energy generation. Lee [14] investigated the energy systems’ essentials
for the global economy to produce friendly new technologies for investment. Fan [15]
stated that using energy more effectively results in energy efficient systems and reduces
direct operating costs and initial investment costs. Tian et al. [16] built an energy evaluation
procedure to integrate uncertain factors using stochastic models. Taylan et al. [1] used
the experts’ opinions and machine learning approaches to find out that solar PV was
an attractive energy system for investment in the Kingdom. The regular daylight in the
Kingdom is 12 h 8 min and 48 s on average, longer than several countries using solar PV
systems extensively for energy generation. Akpolat et al. [17] investigated a PV system
installed for a faculty building and found out that an 84.75-kWp grid- system can produce
remarkable power and save about 90.298 kWh of energy annually for faculty buildings.
Muteri et al. [18] summarized the current literature of life cycle assessment applied to dif-
ferent types of grid-connected PV systems to critically analyze the results related to energy
and environmental impacts generated during the life cycle of PV technologies to provide
information for future analyses. Yet, PV modules have 0.09 US$/kWh, however, diesel gen-
erators on average have 0.25 US$/kWh levelized electricity cost. Pradhan et al. [19] carried
out a comparative analysis about different possible PV configurations in detail and found
that the hybrid solar PV-wind energy system is the most suitable energy generation system.
Almarshoud [20] examined the performance of a pilot PV system based on real time solar
radiation data in 32 sites. Mittal et al. [21] used artificial neural networks (ANNs) to pre-
dict the PV Modules performance. Yahya-Khotbehsara, and Shahhoseini [22] merged the
numerical and analytical approaches to determine the PV module parameters of Monocrys-
talline, Multi-crystalline and thin film technologies. Goverde et al. [23] investigated the
PV module surface spatial temperature differences affected by wind. Goossens et al. [24]
used wind tunnel experiments to investigate the influence of wind flow, and temper-
ature patterns on the electrical performance of buildings integrated with PV modules.
Curto et al. [25] investigated the economic impacts of feasibly generating energy from solar,
wind and sea wave plants to achieve specific targets of decarbonization in Lampedusa, a
small Italian island where currently the energy is supplied totally by diesel power plants.
Awan et al. [26] determined that the northern province, Tabuk, is the most feasible region
for a solar PV plant. Rani et al. [27] proposed a fuzzy TOPSIS approach for ranking the
status of renewable energy sources. Daus et al. [28] calculated the unit cost of generated
electric energy from solar PV for the utility sector, health facilities, housing, industrial
enterprises, recreation areas and agricultural industries. Yoomak et al. [29] searched the
location problem and its effect on the performance assessment of solar PV systems installed
on the rooftop of residences in distinct regions of Thailand. Kassem et al. [30] analyzed
the solar radiation of five distinct locations in Northern Cyprus statistically in addition
to some meteorological parameters such as relative humidity, air temperature, sunshine,
and solar radiation. Ascencio-Vásquez et al. [31] used the performance of PV systems to
evaluate the risks occurring due to the diverse climate conditions for standardizing the
evaluation criteria in regions. Zell et al. [32] believed that understanding the spatial and
temporal variability requires considerably more data to optimize the planning and setting
of solar energy power plants. Roy et al. [33] studied the features of perovskite solar cells
and found them superior to the existing PV technologies for presenting the efficiency and
various architectures used to date. Naderloo (2020) [34] predicted the solar radiation using
ANN methods, ANFIS and RSM, carried out the sensitivity analysis, and found out that
ANNs and RSM were superior to the ANFIS. Benmouiza and Cheknane (2019) [35] used
fuzzy c-means (FCM), subtractive clustering, and grid partitioning algorithms to develop
an ANFIS for forecasting solar radiation. The findings depicted that the ANFIS model
developed with the FCM clustering algorithm gave the best results considering the RMSE
approach of 112 W/m2. Mohammadi et al. (2016) [36] developed and employed an ANFIS
model to identify the solar radiation relevant parameters and predict the daily level of solar
radiation. The results revealed that the climate conditions influence the solar radiation
characteristic which is not identical for all locations. Aldair et al. (2018) [37] validated the
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effectiveness of ANFIS for tracking the maximum power point tracking (MPPT) approach
in a stand-alone PV system. The results indicated that the ANFIS model controllers are
more efficient and give better dynamic responses than the incremental conductance method
and constant voltage method. Khosravi et al. (2020) [38] investigated the ANFIS and ge-
netic algorithm combination and based on teaching-learning optimization algorithms and
determined the optimum design parameters of different 100 MW solar power stations with
a molten salt storage system.

PV systems generate cheaper and cleaner energy during the daytime and stop gener-
ating after the sun sets. So, these systems must be connected to the local electricity grid for
transferring the excessively generated power to the grid and taking it from the grid back
during the night. The disadvantage of these systems is that a self-balanced energy is needed
for instantaneous energy consumption. The excessive power must be well-managed to
avoid the problems. Hence, a well-established control system and restrictions of the en-
ergy generation for balancing the supply and demand level is required. This approach
is called offsetting energy generation and consumption. This system is called an on grid
photovoltaic system.

The design of grid photovoltaic systems requires detailed analysis by considering
local parameters. Knowing the performance of PV panels under real operating conditions
is extremely important. Solar panel manufacturers only give PV panel performance under
standard test conditions (STC). Although STC defines solar radiation at 1000 W/m2, surface
temperature 25 ◦C and air mass (A.M.) 1.5 as ideal conditions, the reality is different; these
parameters do not always represent the optimal field circumstances in which the PV
panel operates [13]. In this study, to determine the optimal solar PV energy generating
conditions and the panel performance, as a statistical and mathematical approach RSM
was employed for modeling and analysis of this complex problem. As it was clearly stated,
the response (the amount of solar PV energy generated) is affected by several factors.
However, the response (PV generated) and the independent parameters’ relations are not
usually clearly known. On the other hand, the response cannot be formed well by linear
approximations due to the complexity of problems, therefore higher degree polynomials
might be employed.

This study aims to design a solar PV system for generating the electricity need of King
Abdulaziz University (KAU) Hospital in Jeddah city. The hospital’s energy demand is very
high, and the energy consumption bill is around $1.5 million per month. Initially a detailed
field work was conducted to determine the PV system performance for self-consumption
and self-sufficiency models under real operating conditions. A two step work was carried
out: in the first step, a 40 MW PV system was constructed to generate the electricity
need of the KAU hospital. The second step includes determining the optimal operating
conditions by RSM and ANFIS approaches. Both approaches were employed using the
following parameters: surface temperature (◦C) of modules, wind speed (m/s), radiation
(W/m2), outdoor temperature (◦C), and wind direction. The RSM aimed to find out the
optimal operating conditions of the solar PV panels and the factor space operating intervals
required for the PV panel system. Our investigations depicted that generating maximum
solar PV of 42.27 MW is possible for the KAU hospital, if the radiation level is about
896.3 W/m2, the module surface temperature is 50.0 ◦C, the outdoor temperature is 40.3 ◦C,
the wind direction is 305.6 and the wind speed is 6.7 m/s. On the other hand, the operation
conditions of solar PV panels were simulated under different conditions, for instance, it
was determined that obtaining a 33.96 MW solar PV system, the radiation should be 896.3,
the module surface temperature should be 43.4 ◦C, the outdoor temperature should be
40.3 ◦C, the wind direction should be 305.9 and the wind speed should be 6.7 m/s.

The ANFIS intended to develop and analyze the solar PV modules by estimating the
performance of them. The ANFIS models developed for the PV generation system can pre-
dict the performance of modules containing five, nine and eleven rules. Figure 1 presents
the flow chart for this study including the solar power plant (SPP) design procedure and
the applied methods.
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Figure 1. The solar PV panel system flow chart.

Thus, the design of this study is as follows; in Section 2, the solar PV system design is
explained. Simulation of the solar PV system is discussed in Section 3. The data related to
solar PV system parameters are analyzed, additionally, the performance prediction and
optimization methods; the RSM and ANFIS approaches are given in Section 4. Section 5
covers the results, finding and discussions for the PV system. Section 5 is devoted to
the conclusions.

2. Materials and Methods

2.1. Solar Energy Generation Design for KAU Hospital

The aim of this study is to construct a solar power plant (SPP) system to generate
electricity for KAU Hospital. The hospital is in the KAU campus, the coordinates are
[Lat/Lon] 21.290 and 39.130, as shown in Figure 2.

Figure 2. Location of the KAU hospital.

The hospital has a very high electricity consumption. Monthly electricity consumption
data of KAU hospital for 2018 and 2019 are given in Figure 3. The maximum energy
consumption of the hospital is during February, and the minimum consumption is in May.
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When the data of 2019 are analyzed, the annual average hourly electricity need of KAU
hospital is determined as 21.694 kWh.

Figure 3. Monthly electricity consumption of KAU hospital.

2.2. The Solar Power Plant Types

The schematic picture of the PV solar system designed for the hospital is given in
Figure 4. The system proposed for the hospital is an on grid PV system. While the sun
is available during the day, the electricity need of the hospital will be met by generating
electricity from solar energy. This model is known as a self-consumption model and was
established to meet the electricity needs of a hospital. These models are called self-sufficient
models. If the capacity of the system is well designed, which means greater than the energy
consumption of the hospital, the excess energy can be supplied to the national grid during
the daytime and reused at night.

Figure 4. On grid solar power system for KAU hospital.

In this study, the PV system was designed according to the self-consumption model
approach without storing the energy generated, and then the system’s self-sufficiency
values in different capacities were found. At the end of the study, the optimum capacity of
the PV system was determined for different self-sufficiency rates.

2.3. PV System Design

This study aimed to find the hourly electricity consumption values by using the
monthly respective data set of the KAU hospital. Additionally, the data obtained from
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Harran University hospital (HUH) in Sanliurfa, Turkey, were employed for model building
because the energy consumption of HUH is met by the SPP in accordance with the self-
consumption model. In SPP of HUH, the electrical energy generation and consumption
values of the hospital, and the local meteorological data are measured and recorded every
5 min. In this study, the electricity consumption (electricity load) profiles of both hospitals
were considered equal by benchmarking the parameters. The PV system has been designed
to perform the following steps:

2.3.1. Determining the Hourly Distribution of the Energy Consumption of the Harran
University Hospital

Using electrical energy consumption of HUH between 1 January 2019 and 31 December
2019, hourly energy consumption was determined for an average day of the month. In
Figure 5, according to the monthly and annual data of HUH, the distribution of electricity
consumption for an average day is given. As can be seen from Figure 5.

Figure 5. Monthly and yearly average distribution of the electricity consumption of Harran University hospital.

• The maximum energy consumption of HUH is in July.
• Electricity consumption is the highest in 4 months (summer period) from June to September,
• Electricity consumption is the lowest in the period of 6 months (winter period) from

November to April,
• The electricity consumption profiles of an average day obtained for May and Octo-

ber are similar to the consumption profile obtained for an average day determined
according to annual data.

2.3.2. Determining the Load Profile of the Energy Consumption of the Harran
University Hospital

The electrical energy consumption load profile (LR) of HUH was calculated according
to the following equation. In this equation, it shows hourly electrical energy consumption
value with Qhour and annual/monthly average hourly energy need with Qaverage. Accord-
ing to the 2019 data of HUH, the daily average electrical energy consumption profile for
2019 is presented in Figure 6.

LRhour = Qhour/Qaverage (1)
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Figure 6. Average daily electrical energy consumption profile of Harran university hospital for 2019.

2.3.3. The Hourly Energy Consumption Distribution of the KAU Hospital

The electricity consumption profiles of two hospitals are considered similar. Con-
sidering the daily electricity consumption profile of HUH, and the hourly electricity con-
sumption distribution profile, and the monthly total energy consumption values of KAU
hospital, the average hourly energy requirement (Qhour) of KAU hospital was calculated
according to following equation:

Qhour = LRhour .Qaverage (2)

According to the consumption data in 2019, the KAU hospital’s (Figure 3) hourly
electricity requirement is 21.694 kWh on average. The daily electricity consumption pro-
file of the hospital is presented in Figure 7. This figure shows the maximum electricity
requirement of KAU hospital which shows that it is 25.135 kWh at 11:30. If the PV system
is designed according to the maximum electricity requirement of the KAU hospital, a PV
system with 25 MW of capacity should be sufficient. However, in real operating conditions
(local climatic conditions) PV panels perform with lower efficiency than their efficiency
stated in the catalogue because of high temperature. PV panels are tested under 1000 W/m2

solar radiation and 25 ◦C outdoor temperature conditions.

Figure 7. Daily average electrical energy consumption profile of KAU hospital.

PV system designing in accordance with the self-consumption model (according to the
hourly electricity consumption need) aims to meet the electricity needs of KAU hospital. To
meet up the electricity needs of KAU hospital, an on-grid PV system of different capacities,
ranging from 25 MW to 100 MW, was designed. Thus, performance evaluation of PV
systems designed for different capacities was made easy. In all PV systems, crystalline
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silicon technology was used. PV panels are mounted and fixed in the open area to face
them to the optimum tilt angle of the south direction. The optimum tilt angle for Jeddah is
22 degrees. Total losses of the PV system (inverter, cable, dust, etc.) were considered as
14%. In this study, all PV designs determined for KAU hospital were simulated under the
local climate conditions of Jeddah and detailed analysis was carried out. For PV system
simulation, the Solar-GIS program [39] was used. The PVGIS program [40] was used to
validate the simulation results obtained from the Solar-GIS program which are the online
ideal free tools that can be used for estimating electricity generation of the PV system. In
Figure 8, the monthly electricity generation values obtained by both PVGIS and Solar-GIS
programs of the PV system with 25 MW capacity are compared. The results obtained from
both programs are very close to each other.

Figure 8. The comparison of monthly electricity generated from both PV-GIS and Solar-GIS programs
for a 25 MW PV system.

3. Solar PV System Analysis and Performance Prediction

3.1. Data Collection and Analysis

Determining the optimal performance of the solar PV generation plant, precise and
truthful parameters were ascertained, and related data were collected. The data employed
in this study are for the time duration from January 2019 to December 2019 of radiation
(W/m2), module surface temperature (◦C), wind speed (m/s), outdoor temperature (◦C),
and wind direction which were gathered from Harran University solar power plant located
in the university campus. Wind direction measurement is expressed with an angle showing
0◦ of the north, 90◦ of the east, 180◦ of the south and 270◦ of the west. Historical data
for the (37.158/39.007) [Lat/Lon] of variabilities of solar resources were obtained from
monitoring stations located in Sanliurfa, Turkey. A comprehensive statistical analysis
was conducted to determine the multicollinearity to show the intercorrelation between
the independent factors. The findings showed that the module surface temperature and
outdoor temperature are highly related to the remaining independent variables. The ‘P, F, t
and VIF’ tests indicated the availability of redundant information among the independent
variables, and weak linear relations, the interactions of predictors may be nonlinear, and
the nonlinear relations can be dealt with RSM, ANFIS and simulation approaches.

Truly, there is often no unique ‘best’ set of independent variables that can be said
to yield the most excellent outcomes. Different techniques do not all automatically lead
to the same final prediction of related variables. As a result of the fact that the variable
selection process is sometimes subjective, analysts may therefore need to emphasise their
judgments on the pivotal areas of the problem. In this study, the highest coefficient of
determination (R2) was found 0.946 for several combinations of sets of independent (input)
variables. One interesting combination of the input variables was the radiation, module

583



Mathematics 2021, 9, 2929

surface temperature and outdoor temperature. The other combination was the addition of
all parameters for model development, both giving 0.946 coefficient of determination ratio.
Therefore, we used all five parameters for ANFIS model development.

3.2. RSM for Optimization of Solar PV System

RSM is an optimization method used to determine the operating conditions of a pro-
cess leading to achieving the best process performance [41]. RSM has extensive applications
in semiconductors, electronics manufacturing, and machining. In most RSM problems,
the form of relationships between independent factors and response is assumed unknown.
When there are curvature relations between the factors in a system, a higher degree poly-
nomial of process optimization approach can be employed, such as a second order model
or above. Obviously, a polynomial model is unlikely to be a reasonable estimate of the
true functional relationship over the entire domain of independent parameters, but for
a relatively small region, the method works quite well. Figure 9 shows that there is no
serious indication of the abnormality or excessive evidence of possible outliers. This plot
also reveals nothing of unusual interest among the residuals, and the residual scatter does
not appear more for the outcomes that show nonhomogeneous conditions. Therefore,
the model is assumed to be adequate, the investigation of the normality assumption also
approves the adequacy.

Figure 9. The probability plot of solar PV generation response, and the dispersion of residual.

The regression equation of solar PV generation where the factors are radiation (x1),
module surface temperature (x2), outdoor temperature (x3), wind direction (x4) and wind
speed (x5) were established according to the following equation.

yijk = β0 + ∑k
j=1 β jxj + ∑k

j=1 β jjx2
j + ∑ ∑i<j βijxixj+ ∈ijk (3)

where β0, β j, βjj, and βij represent the overall mean effect, the effect of the j-th level of
the row factor, the effect of the j-th level of column factor, and the effect of the interaction
effect in the quadratic model, respectively. ∈ijk is a random error component of a second
order RSM, where yijk is the response and refers to the solar PV generation level in this
study. xi and xj present the variables that are called factors. Dirnberger and Kraling
(2013) [42] described the measurement procedure and uncertainty analysis which covers
the complete daily calibration process of measurement devices in detail, the correction
to standard testing conditions, and determination of electrical module parameters. They
presented recent progress in reducing the measurement uncertainty for crystalline silicon
and thin-film PV modules.
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Solar PV generation (yk)(kWh) = −13499 + 20.8x1+752x2+349x3−8.1x4+107x5+0.52x1x2+0.12x1x3
+ 0.1277x1x4+1.16x1x5+242x2x3+0.74x2x4−235x2x5−2.34x3x4+329x3x5+1.05x4x5−0.0389x2

1−103x2
2

−165.6x2
3−0.0275x2

4−198x2
5

The essential effects that arise from this analysis are the key impacts of x1, x2, x3,
x4 and x5. The interactions between the parameters x1 x2, x1 x3, . . . are presented in the
regression model with the coefficients presented above in the model.

3.3. ANFIS Approach for PV Efficiency Estimation and Analysis

The ANFIS model comprises ANNs and fuzzy logic to forecast the output data
identified by input parameters. An ANFIS model is constituted by membership functions
(MFs) [15]. Higher MFs numbers usually affect the outcomes optimality with lower
accuracy [43], additional MFs cannot improve the effectiveness of a fuzzy model [44].
A fuzzy model’s performance depends on efficiently selected system parameters, their
complexity, and the type of training algorithm called the ANNs [45–48].

An ANFIS includes fuzzy implications presented in fuzzy ‘If-Then’ rules to represent
the relations of fuzzy inputs-outputs parameters linguistically [15]. An efficient parameter
control depends on the number of rules. In other words, an ANFIS is shaped by fuzzy
rules and their term sets [46]. The rules are the backbone of an ANFIS system. When the
parameters are nonlinear, Gaussian membership functions are used for identifying the
fuzzy terms which will be used to forecast the PV generated. The aim of an ANFIS model is
to forecast the performance of the solar PV module. The set of input–output data was split
into three randomly selected parts: training data, testing, and validation data. Training
data set includes 319 observations served for the ANFIS model building, and for testing
and validation 100 data were employed, respectively. The designed ANFIS model consists
of five nodes for input parameters with 25 Gauss membership function, five nodes in the
hidden layer (H1~H5), and a node (Pk) to show the solar PV model outcome for the output
layer. Hence, the ANFIS model has a total of sixty eight nodes arranged with thirty linear
and fifty nonlinear parameters corresponding to the five input parameters.

The input parameters of ANNs are the radiation (W/m2; x1), module surface temper-
ature (◦C; x2), outdoor temperature (◦C; x3), wind direction (x4), and wind speed (m/s;
x5) and the outcome parameter of network is the PV generated (Pk). The input-hidden
and hidden-output layers’ coefficients called weights are presented by wij and wjk, corre-
spondingly. The following equation was used to calculate the k-th neuron’s outcomes in
the hidden layer.

netk =
25

∑
i=1

wik fi (4)

The input variables’ MFs is shown by fi, wik, depicts the weighting coefficient in
the hidden layer. pk = f (netk) shows the output MFs in the hidden layer and is found
according to the following equation.

pk = f (netk) =
1

(1 + exp (−netk))
(5)

where f (net) is the activation function in ANNs and the following equation was used to
determine it.

netk =
m

∑
j=1

pkwjk (6)

where m and wjk show the number of neurons in a hidden layer and the weights, respec-
tively. For the training process, input data were used, the outcomes of ANFIS model were
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determined and compared with the actual (Ak) outcomes presented in Equation (8). The
learning constant value η was set up as 0.25, 0.50, and 0.70 as given in the following equation.

Δwij = −η
∂E

∂wij
, Δwjk = −η

∂E
∂wjk

(7)

The best outcome of learning constant was obtained when η is equal to 0.70. The error
of the p’th observation can be calculated according to the following equation.

E =
1
2

N

∑
p=1

Ep =
1
2

N

∑
p=1

l

∑
k=1

(Ak − Pk)
2
p (8)

The number of training data N, actual outcomes (Ak) and the predicted outcomes (Pk)
are presented in the equation given above. The (E) shows the error estimator, is a squared
error minimization function and called the Least-Squares Estimator (LSE). For specifying
Gaussian membership functions (MFs), two parameters (c, σ) are used; the center ‘c’ of
MFs and the width ‘σ’ of MFs are used for identifying the MFs.

The Gaussian MFs are shown in Figure 10 for the input parameters ‘wind direction’
and the ‘module surface temperature’, respectively. Their fuzzy linguistic term set can be
stated as {very low, low, average, high, and very high}. The MF can be presented with a
mathematical relation conforming to the following equation for the fuzzy linguistic term
‘average’ for the wind direction.

Gaussian (x, c, σ) = e−1/2( x−c
σ )

2
(9)

Figure 10. Gaussian MFs for wind direction and module surface temperature.

The fuzzy membership function of the fuzzy term ‘average’ used to identify the factor
‘wind direction (x4)’.

μ(x4) = f(x) =

⎧⎨⎩ 0, x < 15.75 and x > 343.292

e−
1
2 (

x−178.812
70 )

2
, 15.75 ≤ x ≤ 343.292

A neuro-fuzzy model is a set of fuzzy ‘If-Then’ rules [47]. Sugeno fuzzy modelling
approach suggests an efficient way to produce fuzzy rules from the parameters data. In
a Sugeno fuzzy model, fuzzy rules are usually constituted in the following form. In the
following equation, B and C are the antecedent of the fuzzy term sets, whereas yn = fn(x1,
x2, . . . , xm) is the consequent part of the fuzzy rule. The input parameters (x1, x2, . . . , xm)
are depicted as polynomial functions fn(x1, x2, . . . , xm), and rn is the constant, presented
as follows:
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IF x1 is B and x2 is C . . . . . . THEN yn = fn(x1, x2, . . . ,xm) = bnx1 + cnx2 + dnx3 + . . . knxm + rn (10)

The fuzzy reasoning procedure produces crisp outputs, ‘y’ shows the amount of PV
generated under certain conditions by the modules. Thus, a fuzzy rule set of input–output
parameters of a PV energy generation plant can be presented as follows.

Rule 1. IF ‘The radiation is 249 (W/m2) and the module surface temperature is 28 ◦C AND the
outdoor temperature is 31.2 ◦C AND the wind direction is 180. AND the wind speed is 2.92 m/s
THEN The amount of PV energy generated is (kWh) = 4.575x1 − 14.39x2 + 14.13x3 − 0.0469x4
− 6.22x5 + 339.4934 (1490 kWh).

Rule 2. IF ‘The radiation is 336 (W/m2) and the module surface temperature is 26.7 ◦C AND the
outdoor temperature is 15.6 ◦C and the wind direction is 134. AND the wind speed is 3.22 m/s
THEN The amount of PV energy generated is (kWh) = 6.785x1 − 65.26x2 + 25.35x3 − 0.574x4 −
67.35x5 − 275.995 (363 kWh).

The ANFIS model for the solar PV generation was developed using 319 data for
training, 100 for testing, and 100 for the validation of the model. The training errors were
determined for the observations by differencing the actual data (At) and the predicted
data (Pt) obtained from the solar PV fuzzy inferencing model. The ANFIS model was
optimized during the training process, and several factors were arranged to obtain the
best outcomes. The optimization of ANFIS model and training process depend on certain
factors such as the range of influence was set to 0.7, so the squash factor set to 1.25, the
accept ratio set to 0.75 and the reject factor was set to 0.157 in this study. Additionally, the
error tolerance limit was arranged as 0.001 and epochs as 3000. Consequently, the Root
Mean Square Error (RMSE) achieved 66.98 for the training process of ANFIS model with
nine rules, 113.5208 for ANFIS model with five rules, and 68.47 for the ANFIS model with
eleven rules. On the other hand, the training error can be recorded as the mean squared
error (MSE) for a trained ANFIS model. The MSE was calculated as follows:

MSE =
1
n ∑n

t=1(At − Pt)
2 (11)

To minimize the training process error, the gradient vector is obtained initially, cal-
culated from the output layer by derivation of the findings and propagating backward
until the input layer. In this work, three ANFIS models were developed including 5, 9 and
11 rules based on the sub clustering algorithm. Considering the training error and RMSE,
the ANFIS model having 9 rules gave the best outcomes with minimum error for the solar
PV generation model examined. The error (residual) was determined 0.5362% for the solar
PV generation model of 9 rules ANFIS model, 1.26% for the ANFIS with 5 rules and 1.082%
for the ANFIS model that has 11 rules. On the other hand, the performance of the ANFIS
models was tested based on different rule-bases of the solar PV system. The findings are
assessed and compared with the other models using the average prediction error approach.
The following equation was employed for the calculation of the average prediction error.

Average prediction error =
1
n ∑n

k=1
|Ak − Pk|

Ak
× 100 (12)

4. Results and Discussions for Solar PV System Findings

4.1. The Assessment of PV System Simulation

According to the results of the simulation of the PV system, yearly average values of
PV electricity (AC) delivered by the total installed capacity of a PV system were found to be
1843 kWh/kWp. Figure 11 shows the distribution of hourly electricity production values
of the designed PV systems by all months. As seen in Figure 11a, the system capacity is
25 MW and the maximum monthly electricity production is between 16 and 19 MWh. The
maximum electrical energy requirement of KAU hospital will be approximately 25 MWh.

587



Mathematics 2021, 9, 2929

The energy generation amount of the PV system for a capacity of 25 MW was less than
the hourly electricity requirement of the hospital. As seen in Figure 11b, when the system
capacity is 35 MWh, the maximum electricity generation is approximately in the range of
23 to 26 MWh. Therefore, it cannot meet the hourly energy needs of the hospital in some
months. Figure 11c shows that the system capacity is 45 MW and there is an exceeding
production level of the hourly maximum electrical energy requirement of the hospital in
all months. In case the electricity produced from the PV system is more than the electricity
consumption of the hospital, the excess production is given to the local electricity grid (on
grid PV system). When there is no production of the PV system, the electricity need of the
hospital is met by the local electricity grid.

Figure 11. Average hourly profiles of total photovoltaic power output for; (a) 25 MW of PV capacity,
(b) 35 MW of PV capacity, (c) 45 MW of PV capacity.

In all PV designs, the highest electrical energy production during the year was deter-
mined in March. The daily distribution of electrical energy production values of all PV
systems in March are shown in Figure 12. In addition, the graphs show the hourly electrical
energy consumption profile of the hospital for an average day of 2019.

Figure 12. Average hourly profiles of total photovoltaic power output in March for 25 MW of PV
capacity, 35 MW of PV capacity and 45 MW of PV capacity.

As seen in Figure 12, when the system capacity is 25 MW, the maximum electricity
generation is approximately 20 MWh. The energy generation capacity of the PV system
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with 25 MW is below the hourly electricity requirement of the hospital. On the contrary,
as it is seen in Figure 12 when the system capacity is 35 MW, the maximum electricity
generation is approximately 27 MWh. The PV system produces the electrical energy needs
of the hospital between 12:00 and 14:00 h. The PV system of 45 MW capacity can meet the
electrical energy requirement of the hospital between 10:00 and 16:00 h, and some extra
energy is produced.

Figure 13 shows the ratio of meeting the hourly electricity requirement of the hospital
with energy generated from the PV system by all months. This ratio is called the self-
sufficiency value of the PV system. For example, if the self-sufficiency ratio (SSR) is 30%,
it means that 30% of the electrical energy requirement is produced from the PV system.
On the other hand, self-consumption indicates that the entirety of the energy produced
from the PV system is consumed instantly. This system does not have any storage units
and are not fed to the local electricity grid. As it is seen in Figure 13, the self-sufficiency
profile is similar in all capacities. Among the distribution of SSR data by month, the lowest
performance was observed in February, but the highest performance was observed in May.

Table 1 presents the self-sufficiency ratio of PV systems for monthly and yearly periods.
The highest performance was observed in May and this ratio was 31% for PV25, 37% for
PV30, 43% for PV35, 50% for PV40, 56% for PV45, 62% for PV50, 93% for PV75 and 124%
for PV100. According to the annual simulation results given in Table 1, the self-sufficiency
ratio of the PV system for the KAU hospital is found as 24% for PV25, 29% for PV30, 34%
for PV35, 39% for PV40, 44% for PV45, 48% for PV50, 73% for PV75 and 97% for PV100.

The annual total electricity consumption value of the KAU hospital for 2019 was
190.042.560 kWh. Figure 14 shows the annual electricity generation distribution of PV
systems with different capacities for an average day.

Figure 15 presents the total annual electricity generation of the PV systems, and its
comparison with the annual total electricity consumption of the KAU hospital. SSR is
also given as a percentage in Figure 15. When the simulation results are analyzed, it is
determined that the PV system capacity is 40 MW according to the self-consumption model
for the KAU hospital. Based on this self-sufficiency model, the capacity of the PV system is
considered 100 MW.

The Assessment of Solar PV Module Using RSM Approach

Figure 16a,b show the contour plots of solar PV plants under uncertain conditions.
For instance, as depicted in Figure 16a, in case the wind speed is above 2 m per second,
and the outdoor temperature is between 30 and 38 ◦C, the PV yield is 28 MWh. Similarly,
Figure 16b shows the contour plots of the PV energy yield, when the wind speed is between
3 and 5.5 m per second and the radiation is above 820 W/m2. Figure 16c,d shows the
three-dimensional graph called response surface plot of solar PV energy generation versus
wind speed, outdoor temperature, and radiation.

The difference of response is not the same at all levels of the factors in some problems.
There is an interaction between the factors. Hence, the parallel lines in Figure 17, indicate,
approximately, the factors’ lack of interaction. Therefore, when Figure 17 is examined, the
lines seem not to be parallel. This indicates interaction between the factors. In general,
optimal solar PV generation is attained at average module surface temperature, high
radiation, wind direction and wind speed level. Changing from low to high module surface
temperature and outdoor temperature reduce the PV yield. Changing from intermediate to
high degree module surface temperature, and outdoor temperature essentially reduces the
PV generation. Figure 18 shows the individual effect of factors on the PV system. Hence,
optimal PV generation levels of characteristics were determined and presented in Figure 18.
Generating maximum PV of 42.27 MW is possible when the radiation level is 896.3 W/m2,
the module surface temperature is 50 ◦C, the outdoor temperature is 40.3 ◦C, the wind
direction is 305.6 and the wind speed is 6.7 m/s.
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Figure 13. The ratio of PV systems meeting the hourly electricity need of the hospital (a) 25 MW of
PV capacity, (b) 35 MW of PV capacity, (c) 45 MW of PV capacity.
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Table 1. Self-sufficiency ratios of PV systems.

PV25 PV30 PV35 PV40 PV45 PV50 PV75 PV100

January 0.22 0.27 0.31 0.36 0.40 0.45 0.67 0.90
February 0.19 0.23 0.27 0.31 0.35 0.39 0.58 0.78

March 0.26 0.31 0.36 0.41 0.47 0.52 0.78 1.03
April 0.27 0.32 0.37 0.42 0.48 0.53 0.80 1.06
May 0.31 0.37 0.43 0.50 0.56 0.62 0.93 1.24
June 0.24 0.29 0.33 0.38 0.43 0.48 0.72 0.96
July 0.25 0.29 0.34 0.39 0.44 0.49 0.74 0.98

August 0.26 0.31 0.36 0.41 0.46 0.51 0.77 1.02
September 0.25 0.30 0.36 0.41 0.46 0.51 0.76 1.01

October 0.23 0.28 0.33 0.37 0.42 0.46 0.70 0.93
November 0.22 0.27 0.31 0.36 0.40 0.45 0.67 0.90
December 0.23 0.27 0.32 0.36 0.41 0.45 0.68 0.90

Yearly 0.24 0.29 0.34 0.39 0.44 0.48 0.73 0.97

Figure 14. The annual distribution of electricity generation of PV systems for an average day.

Figure 15. Total annual electricity generation of PV systems of different capacities.
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Figure 16. The contour plot of solar PV generation versus wind speed and outdoor temperature (a) and wind speed and
radiation (b). The three-dimensional graph of solar PV energy generation versus wind speed, outdoor temperature (c), and
wind speed radiation (d).

Figure 17. The plots of independent parameter interaction for solar PV generation.
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Figure 18. The individual effect of factors on solar PV generation system.

Figure 18 clearly shows that the intermediate module surface temperature, and out-
door temperature essentially increase the solar PV generation with high radiation, and
wind speed. Hence, the optimal solar PV generation characteristics are determined and
presented in Figure 18. When the operation conditions of solar PV are simulated under
certain conditions, it was determined that the optimal solar PV of 33.96 MW is obtained
if the radiation is 896.3, module surface temperature is 43.4 ◦C, outdoor temperature is
40.3 ◦C, wind direction is 305.9 and the wind speed is 6.7 m/s.

The effect analysis of the main factors x1, x2, x3, x4 and x5 and the interactions x1x2,
x1x3, x1x4 and etc are presented in the regression model. The effects of interactions and
main factors showed that four factors positively affect the solar PV generation, only wind
direction negatively affected it. Our investigation showed that the coefficients of x1x2,
x1, x1x2, x1

2 and x1
2 are very small, hence these interactions can be bounded. The effects

of interactions and the main parameters are plotted in Figures 17 and 18, respectively.
Four effects are positive in this equation, only wind direction has a negative effect. Hence
all main effects are only considered to determine the optimal level and maximize the solar
PV level.

4.2. The Assessment of Performance of Developed Models Using ANFIS Approach

For inferencing and obtaining the outcomes, fuzzy reasoning is used. As appears in
Figure 19, fuzzy ‘If-Then’ rules are used for reasoning procedure, a nine rules ANFIS model
was developed for the PV energy generation system. As appears in Figure 16, when the
radiation is 249 W/m2, the module surface temperature is 28 ◦C, the outdoor temperature
is 31.2 ◦C, the wind direction is 180 and the wind speed is 2.92 m/s, then according to
ANFIS approach, the PV module can generate 14.90 MW power.

Figure 19. Fuzzy reasoning for PV energy generation system.

For testing the developed RSM and ANFIS models, the randomly selected input data
were used to test the methods and to determine how perfectly they can generate and
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predict the consequences of the parameters. This step covers testing the performance of
RSM and ANFIS approaches for the validation of the models. As appears in Table 2, a large
amount of data set was utilized to identify the input–output interactions of the model. The
findings of the RSM and ANFIS models for certain input factors are presented in Table 2.

Table 2. Actual and predicted solar PV generated for certain parameters.

Radiation-
(W/m2)

Module Surface
Temperature-

(◦C)

Outdoor
Temperature-

(◦C)

Wind
Direction

Wind
Speed-(m/s)

Actual PV
(MW)

Predicted PV
by ANFIS

(MW)

Predicted PV
by RSM

(MW)

896.33 43.73 26.16 232.64 3.63 19.98 19.98 19.99
826.38 41.64 25.05 235.65 3.33 21.01 22.00 21.22
658.68 37.27 28.08 59.63 3.02 19.93 19.95 19.94
589.66 49.96 39.08 262.91 3.35 24.95 24.96 24.93
573.58 48.56 38.70 278.39 4.42 25.64 25.64 25.65
570.30 46.60 36.26 218.72 3.95 25.81 25.72 25.59
561.30 41.62 30.26 125.83 1.28 24.64 24.65 24.91
552.27 46.25 36.21 216.56 3.97 25.03 25.05 25.29
548.65 38.49 32.64 63.35 3.15 26.20 26.21 26.33
538.25 46.39 37.40 89.96 2.52 24.23 24.22 24.13
533.89 47.18 36.54 214.12 3.25 23.76 23.79 23.51
530.75 37.48 33.72 182.00 5.90 25.26 25.28 25.37
526.28 35.71 30.55 39.37 3.73 25.41 25.45 25.31
520.78 47.59 38.69 285.97 4.44 23.36 23.37 23.42

The results and findings showed that the average prediction error of the RSM model
was found to be 1.743%. Similarly, the ANFIS models were evaluated with three different
numbers of fuzzy rules: five, nine, and eleven rules. It was determined that the ANFIS
model with five rules generated 1.96%, the one with nine rules had 0.75%, and the model
with eleven rules had 1.16% error level on average. Figure 20 shows the actual solar PV
versus predicted solar PV levels for real life data of certain parameters for the RSM and
the ANFIS model with nine rules. The results and findings clearly depicted that these
ANFIS models can be successfully employed for the performance prediction of solar PV
modules. For instance, when the radiation is 573.58 W/m2, the module surface temperature
is 48.56 ◦C, the outdoor temperature is 38.70 ◦C, the wind direction is 278.39 and the wind
speed is 4.42 m/s, the ANFIS model predicts the PV panels’ performance to be 24.96 MW.
Similarly, it is also predicted by the ANFIS approach that the PV module can generate
41.19 MW power when the radiation is 750 W/m2, the module surface temperature is
25 ◦C, the outdoor temperature is 20 ◦C, the wind direction is 250 and the wind speed is
12.43 m/s.

Figure 20. The comparison of actual and predicted solar PV generation model outcomes.
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4.3. Comparison of the Results with the Cases Introduced by Other Works

Naderloo (2020) [34] developed a neural network and RSM methods to predict solar
radiation and found out that RSM was superior to the ANFIS model in terms of perfor-
mance, speed, and simplicity. The correlation coefficients and mean square errors of each
method were considered for comparison of the ANFIS (0.993 and 0.0005), ANN (0.996 and
0.00029), and RSM (0.996 and 0.00027). Benmouiza et al. (2019) [35] analyzed the perfor-
mance of the ANFIS model and found out that RMSE is 102.57 W/m2 for 32 fuzzy rules
and 129.13 for 243 fuzzy rules models, and the correlation coefficients were found to be
0.923 and 0.905 for these models, respectively. Mohammadi et al. (2016) [36] developed
an ANFIS model for solar radiation based on RMSE during training and testing phases
with 1, 2 and 3 fuzzy input parameters. They found that when the number of inputs is
increased, the RMSE decreases, and the prediction accuracy enhances. Similarly, in our
study, three ANFIS models were developed including five, nine and eleven fuzzy rules
based on the sub clustering algorithm. The RMSE of ANFIS model with nine rules gave the
best results with minimum error of solar PV generation. The results are presented in Table 3
for comparison. The RMSE was found to be 66.98 for the training process of ANFIS model
with nine fuzzy rules, and RMSE was found at 113.52 for ANFIS model with nine rules,
and 68.47 for the ANFIS model with eleven fuzzy rules. Aldair et al. (2018) [37] developed
ANFIS controllers to determine the stand-alone PV system for which two input variables:
the radiation and temperature were considered for the ANFIS model development. The
difference between our model and Aldair’s [37] model is that our model was established
based on more variables.

Table 3. The PV power output comparison of ANFIS and RSM models.

PV Model Power Output (Aldair et al.) [37] Our PV Model Power Output

Radiation
Temperature

(◦C)
ANFIS (MW) ANFIS (MW)

RSM
(MW)

500 0 33.36 46.14 48.50
500 25 27.72 34.78 35.23
500 50 22.58 32.02 30.61
750 0 51.4 56..12 52.98
750 25 43.6 47.78 41.19
750 50 35.98 36.86 34.53

1000 0 69.4 70.25 71.36
1000 25 59.1 58.17 60.88
1000 50 48.74 43.79 39.24

The ANFIS and RSM methods developed are highly efficient and effective under
different weather conditions especially when the temperature is around 25 ◦C regardless of
the radiation variation. In our study, all PV designs determined for KAU hospital were
simulated under the local climate conditions of Jeddah and detailed analysis was carried
out and presented in the previous sections of this work. For PV system simulation, the
Solar-GIS program [43] and the PVGIS program [44] were used to validate the simulation
results obtained from the Solar-GIS program. Figure 8 shows the comparison of monthly
electricity generation obtained from both the PV-GIS and the Solar-GIS programs for a
25 MW PV system.

5. Conclusions

This study covers an on-grid PV system design in accordance with a self-consumption
model developed for KAU Hospital. The solar PV system was simulated. In the design, the
data of Harran university hospital, which produces electrical energy with the solar power
plant, were used. The annual average PV electricity (AC) delivered by the total established
capacity of the PV system was found to be 1843 kWh/kWp.
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• A solar PV system with a capacity of 35 MW and/or more will be sufficient for the
KAU hospital and meet the electrical energy demand of the hospital;

• For a PV system of 40 MW capacity, the maximum electricity generation is approx-
imately between 26 and 31 MWh. Hence, the hourly maximum electrical energy
requirement of the hospital between 11:00 and 15:00 h can be met by the PV system
during all months;

• In all PV designs and simulation tests, the highest electrical energy production during
the year was observed in March;

• The self-sufficiency ratio for March was 31% for PV25, 37% for PV30, 43% for PV35,
50% for PV40, 56% for PV45, 62% for PV50, 93% for PV75 and 124% for PV100;

• The self-sufficiency ratio for the yearly period was found as 24% for PV25, 29% for
PV30, 34% for PV35, 39% for PV40, 44% for PV45, 48% for PV50, 73% for PV75 and
97% for PV100.

Additionally, the RSM and ANFIS models were developed to analyze the performance
of the solar PV panels’ energy generation system depending on uncertain parameter levels.
The conclusions regarding the RSM approach showed that a polynomial model is rational
for approximation and can be used for defining the relationships efficiently for the entire
space of the independent parameters. Hence, Figure 9 showed the normality, and no
extreme evidence pointing to possible outliers. Figure 16 examination showed that the
parameters’ lines are not parallel. This is the indication that an interaction exists between
the factors. Hence, the optimal solar PV generation can be attained, at average module
surface temperature, high radiation, wind direction and wind speed level. Changing from
low to high module surface temperature and outdoor temperature reduces the solar PV
yield. The optimal level of solar PV generation is achieved with average module surface
temperature, high radiation, and high wind speed level. High surface temperature is not
desired and can be reduced drastically with wind speed.

The conclusion demonstrated that the ANFIS model with nine rules gave the highest
performance with the lowest residual. The ANFIS model can produce and predict the solar
PV value for the output parameter regarding predetermined input parameters’ intervals.
The Gaussian MFs seems appropriate for defining the fuzzy linguistic terms used in fuzzy
rules and in the inner loop of the model for fine-tuning the PV generation. Results and
findings showed that the ANFIS model can successfully be utilized for the prediction of
solar PV module performance.

As a result, meeting the electricity needs of KAU hospital is possible with a suitable
capacity of PV system according to its economic resources. The PV systems’ investment is
particularly more attractive nowadays with the reducing PV system cost, and improved PV
panel technologies (such as bifacial cell, hetero-junction solar cell). A 40 MW capacity PV
system is recommended according to the self-consumption of KAU hospital. In addition,
the capacity of the PV system for the self-sufficiency model should be 100 MW.
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Abstract: The operation of various types of turbomachines is importantly affected by sediment
erosion. Francis turbines used for power generation typically suffer said effects due to the fact
that they are used in sediment-laden rivers and are usually operated disregarding the long-term
effect of the erosion on turbine performance. This investigation seeks to study the erosion rate
for the main components of the turbines located at San Francisco hydropower plant in Pastaza,
Ecuador. A sediment characterization study was performed in order to determine the properties of
the particles present in Pastaza River and accurately predict their effect on the turbine flow passages.
A numerical approach combining liquid–solid two-phase flow simulation and an erosion model was
used to analyze the erosion rates at different operating conditions and determine wear patterns in
the components. As expected, the results indicated that an increase in the erosion rate was obtained
for higher intake flows. However, a dramatic increase in the erosion rate was observed when the
turbine was operated at near-full-load conditions, specifically when guide vane opening exceeded a
90% aperture.

Keywords: Francis turbine; sediment erosion; CFD; DPM

1. Introduction

Hydroelectric power is a renewable energy source and a significant component of
worldwide electricity production. Around 17% of the total consumed electricity is produced
through hydraulic energy sources [1,2], and almost 65% of the total electricity produced
in Latin America is generated by hydroelectric power plants (around 709 TWh/y) [3,4].
However, most of the total technical hydraulic potential (2859 TWh/y) of the region is not
harnessed by its installed hydropower capacity. Several large-scale hydropower projects are
being currently studied and developed in the Andean region in the hopes of increasing the
installed capacity and harnessing a larger portion of the available hydraulic potential. One
of the most crucial factors that needs to be taken into consideration during the development
of the aforementioned projects is the fact that hard particles are present in almost all rivers
of the Andean and Himalayan region, causing considerable the erosion, mechanical wear,
and failure of turbine components [3,5].

Sediments flowing through the river deposit in the dam’s reservoir, reduce the reser-
voir’s capacity, and increase the erosion wear of critical turbine components, such as: the
spiral casing, guide vanes, runner, and draft tube. This phenomenon reduces the lifespan
of the turbine and decreases its efficiency, which increases the cost of maintenance over
time, leading to economic losses [6,7]. Erosion wear depends on several factors, including
particle concentration, velocity, composition, size, and shape. Other variables, namely tur-
bine materials and operating conditions, also have an effect on the erosion rate. Therefore,
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erosion reduction strategies can only work effectively after in-depth analyses making a
holistic assessment of all the variables involved [8,9].

Extensive research has been conducted on erosion in Francis turbines. In 2013, Singh
and Banerjee performed an analysis on the erosion of the runner blades, guide vanes,
and labyrinth seals of the Maneri Bhali Stage-II hydroelectric power plant in India. Data
collection of sediments at relevant locations and measurements of turbine efficiency were
performed during three years to determine the effect of silt erosion on the efficiency of tur-
bines [10]. In 2016, Koirala used a computational analysis coupled with field observations
to determine the erosion patterns on the guide vanes of Kaligandaki hydroelectric power
plant in Nepal and proposed erosion protection methods [11]. A year later, Masoodi and
Harmain presented a detailed comparison of two sediment-laden rivers and their effect on
the runner blades of Himalayan hydroelectric power plants in India. A new erosion model
was proposed in this study [12]. Most recently, in 2020, Qian et al. executed a study on the
erosion wear of the runner blades of a Francis turbine in Jhimruk Hydroelectric Center in
Nepal using numerical simulations and comparing the results with the damage of the run-
ners. He proposed changing the opening of the guide vanes to improve turbine efficiency
and reduce the erosion rate [13]. Moreover, Noon and Kim discussed and analyzed the
latest experimental and numerical techniques to determine sediment and cavitation erosion
on different turbine components using baseline data from the Tarbela Dam hydroelectric
project in Pakistan [14]. However, all the aforementioned studies were performed in Asia,
and no research on the topic has been performed on South America, where similar erosion
issues are found.

This study focuses on the analysis of sediment erosion in the Francis turbines of San
Francisco hydroelectric power plant in Ecuador. The turbines of this power station suffer
erosion wear damage, and to date, no effective strategies have been proposed to reduce the
damage. A sediment characterization of the Pastaza River was conducted for this study
in order to perform a numerical analysis of the turbines with sediment properties set as
close as possible to the real conditions. Finally, a study on the erosion rate and pattern in
different components of the turbine was carried out to better understand this phenomenon.

2. Case of Study: San Francisco Hydropower Plant

San Francisco hydro-power plant (SFH) is one of the largest energy generation centers
in Ecuador, producing around 1140 GWh of electricity per annum, which represents 12% of
the energy demand in the country. SFH is a 230 MW run-of-river hydropower plant located
along Pastaza River, which consists of two vertical Francis turbines, each one running at
327.27 rpm under a net head of 213.4 m and a flow rate of 58 m3/s. Since the plant began
operations in 2007, it has suffered erosion problems, especially at the guide vanes and the
outlet band of the runner. Figure 1 presents a georeference of the plant.

Figure 1. San Francisco hydroelectric power plant location.

2.1. Sediment Characterization at Pastaza River

The Pastaza River originates in the Andes mountains, where irregular geography
and the presence of soft sediments due to high volcanic activity contribute to the high
sediment content of South American rivers [15]. These sediments pass through the turbines
of hydraulic power plants, resulting in sediment erosion on exposed turbine components.
To tackle the problems derived from erosion wear, an analysis of the particulate matter that
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flows through each power plant becomes necessary for a proper assessment of the erosion
in a particular station. On this basis, the samples for the analysis were collected from the
following zones of the hydropower plant:

1. The reservoir after the desilting chamber;
2. The outlet of the discharge gate;
3. The outlet of the draft tube.

2.1.1. Sediment Analysis

In order to characterize the particles of the Pastaza River at San Francisco hydropower
plant, the collected sediment samples were analyzed at the Soil Mechanics and Materials
Testing Laboratory, Escuela Politecnica Nacional, performing a sieve and composition
analysis. The results of this analysis were considered during the study.

2.1.2. Particle Size and Distribution

A similar approach as the one followed by Koirala et al. [11,16] was used for this study.
The sieve analysis was carried out under the ASTM D422-63 (2007) standard. Five sieve
measurements of 4.75 mm, 2.00 mm, 0.85 mm, 0.425 mm, and 0.075 mm were used on five
120 g sediment samples.

Additionally, since particle roundness (R) and sphericity (S) affect most macroscale
mechanical properties of the particle such as strength, compressibility, and shear wave
velocity, it is necessary to estimate these parameters to increase the fidelity of the simula-
tion [17]. Roundness is described as the ratio between the average radius of curvature of
the particle corners and the radius of the maximum inscribed circle, while sphericity is
defined as the ratio of the particle width to particle length [18]. The sphericity (spherical
shape factor) and roundness of the particles were estimated using the Krumbein–Sloss
chart [19].

2.1.3. Mineral Composition Analysis

The mineral composition analysis for the study was performed through a particle
count method using a D8 ADVANCE X-ray diffractometer and Diffrac plus software.

2.1.4. Sediment Concentration

Pastaza River is the third-largest river in Ecuador with an average annual flow
144.4 m3/s and a precipitation of 3255 mm. Sediment concentration was determined
based on data from San Francisco hydropower plant. The samples were collected daily
1 km upstream of the reservoir, in the reservoir itself, in the desilting chamber, and at the
discharge during a month, as shown in Figure 2. Since heavier particles tend to deposit
on the reservoir bed and mostly only suspended particles are drawn by the intake, water
samples were taken at a constant depth of about 2 m from the surface. The average concen-
tration was estimated considering daily values from all sampling points throughout the
sampling period.
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Figure 2. Sediment concentration in July 2010.

3. Numerical Analysis of the Erosion in Francis Turbines

3.1. Governing Equations
3.1.1. Liquid Phase Mathematical Model

Fluids were calculated using a Eulerian approach. The general form of the equa-
tions involved in the calculations is presented. The mass continuity equation has the
following form:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (1)

where:

• u = fluid phase velocity;
• ρ = fluid phase density.

The momentum conservation equation is shown in Equation (2).

ρ∂(ui)

∂t
+

ρ∂(uiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
μ

(
∂ui
∂xj

+
∂uj

∂xi

)]
+ fi (2)

where:

• p = pressure;
• μ = dynamic viscosity;
• fi = external forces.

3.1.2. Turbulence Model

A realizable k-ε turbulence model was selected for its ability to correctly capture
the turbulent nature of the flow in Francis turbines [20–22]. This model was selected for
its robustness and its improved boundary-layer-solving capacity under strong pressure
gradients and flow separation compared to the standard k-ε model [23]. In addition,
the k-ε turbulence model has a low computational expense when compared to k-ω SST.
The transport equations for the realizable k-ε take the following form:

∂(ρk)
∂t

+
∂(ρkuj)

∂xj
=

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
+ Gk + Gb + ρε−YM + Sk (3)

∂(ρε)

∂t
+

∂(ρεuj)

∂xj
=

∂

∂xj

[(
μ +

μt

σε

)
∂ε

∂xj

]
+ ρC1Sε − ρC2

ε2

k +
√

vε
+ C1ε

ε

k
C3εGb + Sε (4)

C1 = max

⎡⎣0.43,

√
2Si,jSi,j

k
ε√

2Si,jSi,j
k
ε + 5

⎤⎦ (5)
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where:

• Gk = turbulent kinetic energy due to velocity gradients;
• Gb = turbulent kinetic energy due to buoyancy;
• YM = contribution of compressible fluctuations to the dissipation rate;
• C1ε, C2 = constants;
• σk, σε = Prandtl numbers;
• μt = Eddy dynamic viscosity;
• Sk, Sε = user-defined terms.

The turbulence viscosity μt is computed by:

μt = ρCμ
k2

ε
(6)

Model variable Cμ is defined by:

Cμ =
1

4.04 +
√

6cosφ kU∗
ε

(7)

φ =
1
3

cos−1(
√

6W) (8)

W =
SijSjkSki

S̃3
(9)

S̃ =
√

SijSij (10)

Sij =
1
2

(
∂uj

∂xi
+

∂ui
xj

)
(11)

U∗ =
√

SijSij + Ω̃ijΩ̃ij (12)

Ω̃ij = Ωij − 2εijkωk (13)

Ωij = Ωij − εijωk (14)

where Ωij is the tensor for the mean rate of rotation in a reference frame rotating at an
angular velocity ωk.

3.1.3. Solid Phase Mathematical Model

Solid particles were simulated using a Lagrangian approach and were treated as if
their volume fraction were low compared to that of the continuous phase. Equation (15)
was derived from the force balance on the Lagrangian reference frame.

∂(vp)i

∂t
=

18μ

ρpd2
p

CDRe
24

+

(
ρ

ρp

)
(vp)i

∂ui
∂xi

+

(
1 +

ρ

ρp

)
g− 1

2
ρ

ρp

∂

∂t
(ui − vpi) + Fz (15)

where:

• vp = particle velocity;
• ρp = particle density;
• CD = drag coefficient;
• Re = Reynolds number;
• Fz = other interaction forces per unit mass.
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The term Fz activates force terms in situations in which multiple reference frames are
used and frame or mesh rotation is activated. The drag coefficient was estimated using the
equations for the nonspherical drag law shown in Equation (16).

CD =
24

Resph
(1 + b1Reb2

sph) +
b3Resph

b4 + Resph
(16)

b1 = exp(2.3288 + 6.4581φ + 2.4486φ2) (17)

b2 = 0.0964 + 0.5565φ (18)

b3 = exp(4.905− 13.8944φ + 18.4222φ2 − 10.2599φ3) (19)

b4 = exp(1.4681 + 12.2584φ− 20.7322φ2 + 15.8855φ3) (20)

where:

• Resph = Reynolds number of an equivalent sphere;
• φ = spherical shape factor.

Particle dispersion caused by turbulent flows can be estimated using the stochastic
tracking model [24,25]. This method, also known as the discrete random walk model, takes
into account the effect of turbulent velocity fluctuations on the trajectories of particles.
Instantaneous fluid velocity, as shown in Equation (21), was used to integrate the particle
trajectory equations along their path to predict the turbulent dispersion of particles. Ran-
dom velocity fluctuations u′ were determined through Equation (22), where ζ is a normally
distributed random number. Particle diffusivity was estimated using Equation (23), where
the integral time scale as defined in Equation (24) describes the time the particle remains in
turbulent motion along a path ds.

u = u + u′(t) (21)

u′ = ζ
√

2k/3 (22)

D(t) = u′iu
′
jT (23)

T =
∫ ∞

o

v′p(t)v′p(t + s)

v′2p
ds (24)

3.1.4. Erosion Model

The erosion model developed by Oka, Okamura, and Yoshida [26,27] was used to
determine the erosion for the present case. This model is one of the most frequently used to
determine the erosion in CFD analyses where solid particles suspended in a liquid medium
are present [28–30]. The equation developed by Oka is the following:

E(α) = g(α)E90 (25)

where:

• E(α) = erosion damage in mm3kg−1;
• g(α) = impact angle dependence of the normalized erosion;
• E90 = erosion damage at a normal angle.

and:
g(α) = (sinα)n1(1 + Hv(1− sinα))n2 (26)

E90 = K(aHv)k1b
( v

v′
)k2

(
D
D′

)k3

(27)

k2 = 2.3(Hv)0.038 (28)

n1, n2 = 2.3(Hv)0.038 (29)
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where Hv is the material Vickers hardness in GPa, k2 is a velocity exponent, k3 is a diameter
exponent, and constants n1 and n2 are model exponents used to calculate the impact angle
influence on the erosion rate. D′ and v′ are the reference diameter and velocity, respectively.
The calibrated values of these parameters for the present case, in which sand particles and
stainless steel were considered, are the ones presented in Table 1.

Table 1. Oka model parameters.

Parameter Units Value

k1 - −0.12
k2 - 2.36
k3 - 0.19
n1 - 0.78
n2 - 1.27
a - 0.0221
b - 0.45
E90 mm3 kg−1 3.53

3.2. Geometry and Conditions

Details of the general specifications of the turbine are presented in Table 2. In order to
reduce the computational effort while using a more precise mesh for the numerical analysis,
only one period of the turbine was simulated, which is comprises one stay vane, one guide
vane, one runner blade, and an outlet domain representing the draft tube.

Table 2. Turbine specifications.

Parameter Value

Runner inlet diameter (mm) 1530.8
Number of runner blades Zb 13
Height of the guide vane (mm) 540.4
Number of guide vanes 20
Number of stay vanes 20

The computational domain is presented in Figure 3. The geometry was obtained
performing a 3D scanning of the turbine. The obtained profiles were reconstructed us-
ing ANSYS BladeGen to obtain a smoother geometry optimized for mesh construction
using TurboGrid.

3.3. Operating Conditions

Table 3 shows the operating conditions that were used to perform the simulations.
These conditions were translated to mass flow inlet and pressure outlet boundary condi-
tions. The atmospheric pressure from the region was used to define the outlet pressure.

Table 3. Operating conditions.

Parameter Equation Unit Case 1 Case 2 Case 3 Case 4

Guide vane opening - % 55.17 77.91 89.92 93.46
Volumetric flow rate - m3 s−1 33.2 50.8 59.7 62.4
Specific speed, nQE nQ0.5H−0.75 - 0.56 0.69 0.75 0.77
Discharge coefficient, QnD Qn−1D−3 - 3.31 5.06 5.95 6.22
Energy coefficient, EnD Hn−2D−2 - 4.78 4.78 4.78 4.78
Speed factor, nED nDH−0.5 - 0.46 0.46 0.46 0.46

605



Energies 2022, 15, 8

Figure 3. Computational domain of San Francisco’s Francis turbine.

The characteristics of the sediments used for this study are shown in Table 4. Particle
mass flow rate was calculated as a function of the volumetric water flow rate of each case
using the average particle concentration.

Table 4. Sediment characteristics.

Characteristic Unit Value

Density kg m−3 2650
Size μm 62
Average concentration kg m−3 0.334

3.4. Mesh

The mesh was generated using the Turbogrid module, which employs a high-fidelity
hexahedric structured mesh with a uniform distribution. y+ values were calculated for stay
vanes, guide vanes, and runner blades through the following equation:

y+ =
uty
ν

(30)

where uτ is the friction velocity, y is the distance to the nearest wall, and ν is the kinematic
viscosity. The first cell height of each domain was calculated to correctly compute the
boundary layer with the selected turbulence model, as shown in Figure 3, by applying a lo-
cally refined region near the domain walls. The obtained y+ values ranged between 45 and
125, which are considered appropriate for the selected turbulence model [31]. The quality
of the mesh was also evaluated using the orthogonal quality model. The orthogonal quality
of a cell was estimated as follows.

min

(
�Ai�Ci
|Ai||Ci| ,

�Ai�fi
|Ai|| fi|

)
(31)

where:

• Ai = face normal vector;
• fi = vector from the centroid of the cell to the centroid of the face;
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• Ci = vector from the centroid of the cell to the centroid of the adjacent cell.

A minimum orthogonal quality of 0.269 was obtained in 0.0000002% of mesh elements.
The average orthogonal quality in all meshes was 0.93. The walls of the fully structured
mesh are shown in Figure 4

Additionally, mesh independence studies were performed considering the pressure
drop between the domain inlet and outlet. The structured mesh distribution was modified
in all domain directions. Three different mesh resolutions were analyzed for each of
the four individual operating conditions evaluated in the study. The results shown in
Figure 5 indicate that the difference between the calculations of the fine and medium mesh
resolutions is negligible.

(a) Stay vane mesh (b) Guide vane mesh (c) Runner mesh

Figure 4. Mesh of the conceptual model.

Figure 5. Mesh independence analysis.

3.5. Solver

The numerical simulation was performed using the commercial software ANSYS
Fluent. The present simulation used a RANS approach for the liquid phase through a
realizable k− ε model. The dispersed phase was estimated using the discrete phase model
in the commercial CFD software ANSYS Fluent. The numerical simulation was performed
coupling all the subdomains with the following imposed boundary conditions:

1. The total mass flow inlet was designated at the inlet of the stay vane and the nonover-
lapping interfaces of the runner;

2. A rotating frame was applied for the runner domain, and other regions were consid-
ered to be in a stationary frame;

3. Periodic repeats interfaces were created between the stay vane outlet and guide vane
inlet and between the outlet of the runner and the inlet of the outlet domain;

4. A standard interface was created between the guide vane outlet and the inlet of
the runner;

5. The total pressure was designated at the outlet of the runner;
6. Solid walls were set as nonslip boundary conditions.

A setup used previously in [32] was used for the solid phase, where the injection was
applied at the domain inlet and fully elastic collision was assumed at the walls. An analysis

607



Energies 2022, 15, 8

of the adequate number of particle injections was also carried out to generate a statistically
meaningful sampling. One-hundred stochastic tracking tries were determined to be ade-
quate to ensure that erosion on the walls of the turbine flow passage was independent of
the number of injected particles.

The steady-state simulations were carried out using spatial derivatives discretized
through a second-order upwind scheme. Full pressure–velocity coupling was enabled
using the SIMPLE algorithm. Further, double precision was considered to improve the
computational accuracy. A quantitative assessment of the discharge difference was made
between the inlet and the outlet, which was lower than the order of 9× 10−3.

The postprocessing phase was carried out in ANSYS CFD-Post, obtaining estimations
of the erosion rate on the surfaces of the studied components. Additionally, the pressure
and velocity of the flow were determined. Turbine efficiency was calculated based on
these results.

3.6. Validation

The study was validated by reproducing the numerical experiment of Nguyen [28],
where a wet erosion test rig was used to discharge and project sand particles. A stainless
steel plate specimen with a 196 Vickers’ hardness was used for the experiment. The param-
eters of the experimental setup are shown in Table 5.

Table 5. Details of the experimental setup for the validation.

Parameter Units Value

Particle velocity m s−1 30
Particle diameter μm 150
Nozzle diameter mm 6.4
Plate dimensions mm 25 × 25 × 5
Standoff distance mm 12.7

The results shown in Figure 6 were obtained from the numerical assessment. A sat-
isfactory agreement between the erosion pattern and the results of the experimental and
computational tests was observed.

The chart shows the material removal in the specimen caused by sediment erosion,
where the center of the chart is aligned with the center of the nozzle. An inverted “W”
shape was obtained for the erosion pattern caused by an expected stagnation point in the
zone directly below the nozzle. The highest erosion rate was observed right outside this
stagnation zone.

Figure 6. Numerical and experimental material removal in the test specimen (5 min impingement).
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4. Results and Discussion

This section presents the results from the sediment analysis and the CFD analysis that
were carried out to study the effect of sediment particles over the main components of SFH
turbines when varying the guide vane opening. The simulation results were compared
with actual site data.

4.1. Sediment Characterization
4.1.1. Particle Size

The analysis showed that 99.58% of the particles at the desilting basin were finer than
425 μm. In addition, the largest percentage (62.33%) of particles was finer than 75 μm.
Figure 7 shows the particle size distribution of the sediment samples. The median grain
size was determined as 9.28 μm. Furthermore, the characterization of the particle density
was performed, obtaining a value of 2650 kg/m3.

Figure 7. Sediment size distribution.

4.1.2. Mineral Composition

Figure 8 shows the proportion of the mineral content in sediment samples. The results
showed that plagioclase minerals represented the highest proportion of sediments in
the samples. The hardness values for this mineral group lies between 6.5 and 7.5 in the
Mohs scale. When comparing this mineral composition to other reports, a difference in
the proportion of quartz and plagioclase sediments was observed. Quartz is typically
the predominant mineral found in most rivers, while in this study, plagioclase minerals
composed the greatest part of the sediments found in Pastaza River. Nevertheless, the
hardness values did not seem to differ significantly from other studies [10–12,14].
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Figure 8. Sediment mineral composition.

4.1.3. Particle Shape

Figure 9 presents the shape of the sediments found in the samples. The analysis
exhibited the sharp and slightly rounded edges of the sample particles, which are equivalent
to angular and subangular particles based on IEC 62364 standards [33].

Figure 9. Shape of sediments found in Pastaza River.

Comparing the shape of the sediments with the sample chart, the sphericity and
roundness were found to be S = 0.7 and R = 0.3, respectively.

4.1.4. Sediment Concentration

Table 6 shows particle concentration values in the river under normal conditions.
The average concentration value was used to determine the particle mass flow rate.

Table 6. Particle concentration in Pastaza River (kg m−3).

Maximum Minimum Average

0.436 0.125 0.334

4.2. Flow Field Prediction

Since erosion is governed by the velocity, incidence angle, and concentration of the
solid particles at the time of collision, the erosion prediction depends on the solutions
of these parameters. Figure 10 presents the flow field in the turbine, where the main
parameters that influence the sediment flow field are the inlet flow and the guide vane
opening. In this context, the highest velocity of the flow was observed on the pressure side
near the leading edge for the stay vanes. On the other hand, guide vanes and runner blades
presented higher flow velocity on the suction side and trailing edge

610



Energies 2022, 15, 8

The efficiency of the turbine was calculated at four different operating points using the
data from the flow numerical solution. These results were compared with the experimental
data from SFH, as shown in Figure 11.

Satisfactory agreement between results was obtained, though a better prediction of
the efficiency was obtained for higher flow rates.

(a) General view

(b) Stay vane (c) Guide vane (d) Runner

Figure 10. Velocity distribution in flow components at the best efficiency point.

Figure 11. Numerical and experimental efficiency of the turbine.

4.3. Sediment Erosion Prediction

The sediment erosion patterns in critical turbine components are presented in Figure 12.
As seen in Figure 12a, runner blades presented a higher erosion rate on the suction side
near the trailing edge. In a similar manner, the guide vanes presented higher sediment
erosion on the trailing edge of the suction side, as evidenced in Figure 12b. Comparing the
flow field from Figure 10 with the eroded zones in Figure 12, it is evident that zones with
the highest relative flow velocity experienced higher erosion rates, as expected.
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4.3.1. Erosion Description: San Francisco Francis Turbines

This section compares actual site erosion damage on the turbine with the results from
the CFD analysis. The images on the right of Figure 12 show the eroded components of a
Francis turbine in SFH. Guide vanes presented a higher erosion rate near the clearance gap
around the shaft and at both the leading and trailing edges of the vane since the inward
flow accelerates near this region due to the decreasing net head pressure at the guide
vane cascade. Regarding the runner, the most eroded areas were located at the leading
edge and trailing edge of the blades due to the increase in particle velocity in these areas.
Good agreement between numerical erosion results and site erosion was observed when
comparing both components. The eroded areas of the runner blades coincided with the
areas predicted by the numerical analysis. On the other hand, the eroded areas of the guide
vanes did not match perfectly with the numerically predicted areas since the clearance gap
near the hub and shroud that forces flow interaction with the shaft was not considered in
this study.

(a) Runner

(b) Guide vane

Figure 12. Erosion profiles in turbine walls.

4.3.2. Effect of Operating Condition on the Erosion Rate

Figure 13 shows the influence of the guide vane opening and flow velocity on the
erosion rate at the stay vanes, guide vanes, and runner. The erosion rate on the walls is
calculated as:

Er =
1
A

∫
Er f dA (32)

where Er f is the facet value of the erosion rate and A is the cell area. The erosion increases
when increasing guide vane opening since the velocity and the amount of particles im-
pacting the walls is multiplied due to the rise in water flow. A dramatic increase in the
erosion rate was observed for operating conditions with guide vane openings over 90%.
The sudden increase in erosion rate observed past a certain operating point may be related
to the increase in the intensity of turbulent vortices near the outlet of the blade. Previous
works [34,35] have found a direct relation among turbulent flow, vortex formation, and
accelerated erosion. Vortices and recirculation accelerate particles in the flow and change
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the impingement angle to critical values. Figure 14 shows the turbulence intensity of the
flow surrounding the blade for the different operating conditions.

(a)

(b)

Figure 13. Erosion rate as a function of (a) guide vane opening and (b) inlet velocity.

Figure 14. Flow turbulence intensity for different operating conditions.

5. Conclusions

A CFD study replicating the operating conditions of the Francis turbines of San Fran-
cisco hydropower plant in Pastaza, Ecuador, was carried out. Flow conditions and erosion
patterns were studied for different performance points, obtaining a detailed prediction of
wear damage in different turbine components. From the results of the numerical analysis,
the following can be concluded

Erosion damage increases significantly for higher flow rates, when the opening of the
guide vane exceeds an 85% aperture considering the closed position as a reference.
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Operating the turbines at the previously mentioned conditions would result in unnec-
essary and accelerated erosion wear since the best performance point was obtained at a
lower flow rate.

The operation of Francis turbines in sediment-laden rivers should be carried out with
particular consideration of the effect that guide vane opening has on the formation of
turbulent flow and vorticity. This situation can lead to accelerated erosion rates since
vortices and recirculation can accelerate particles in the flow and change the impingement
angle to critical values.

CFD is a powerful tool that can be used to prevent such occurrences and analyze the
operating conditions in hydropower plants that best harness the available power without
sacrificing mechanical integrity.

This study was conducted with the aim of contributing to the creation of a clear
and cost-effective strategy to prevent and reduce erosion in existing hydropower plants
and proposing an effective erosion-based operating procedure for Francis turbines in the
Andean region.
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