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Luis A. Mora-Tembre

UAV-Based Characterization of Tree-Attributes and Multispectral Indices in an Uneven-Aged
Mixed Conifer-Broadleaf Forest
Reprinted from: Remote Sens. 2022, 14, 2775, doi:10.3390/rs14122775 . . . . . . . . . . . . . . . . . 73

Ben Jolly, John R. Dymond, James D. Shepherd, Terry Greene and Jan Schindler

Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery
Reprinted from: Remote Sens. 2022, 14, 1573, doi:10.3390/rs14071573 . . . . . . . . . . . . . . . . . 91

Xiaoping Sun and Yang Xiao

Vegetation Growth Trends of Grasslands and Impact Factors in the Three Rivers Headwater
Region
Reprinted from: Land 2022, 11, 2201, doi:10.3390/land11122201 . . . . . . . . . . . . . . . . . . . . 103

Bo Yao, Lei Ma, Hongtao Si, Shaohua Li, Xiangwen Gong and Xuyang Wang

Spatial Pattern of Changing Vegetation Dynamics and Its Driving Factors across the Yangtze
River Basin in Chongqing: A Geodetector-Based Study
Reprinted from: Land 2023, 12, 269, doi:10.3390/land12020269 . . . . . . . . . . . . . . . . . . . . 113

Ke He, Jialin Lei, Yifei Jia, Entao Wu, Gongqi Sun, Cai Lu, et al.

Temporal Dynamics of the Goose Habitat in the Middle and Lower Reaches of the Yangtze River
Reprinted from: Remote Sens. 2022, 14, 1883, doi:10.3390/rs14081883 . . . . . . . . . . . . . . . . . 135

Tim J. Arciszewski, Erin J. Ussery and Mark E. McMaster

Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators
Measured in a Stream in Canada’s Oil Sands Region
Reprinted from: Environments 2022, 9, 73, doi:10.3390/environments9060073 . . . . . . . . . . . . 153

Matthew D. Petrie, Neil P. Savage and Haroon Stephen

High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region
Reprinted from: Environments 2022, 9, 96, doi:10.3390/environments9080096 . . . . . . . . . . . . 181

v



Xintong Liu and Hongrui Zhao

Multiscale Analysis of Runoff Complexity in the Yanhe Watershed
Reprinted from: Entropy 2022, 24, 1088, doi:10.3390/e24081088 . . . . . . . . . . . . . . . . . . . . 197

Weihan Zhang, Xianghe Liu, Weihua Yu, Chenfeng Cui and Ailei Zheng

Spatial-Temporal Sensitivity Analysis of Flood Control Capability in China Based on
MADM-GIS Model
Reprinted from: Entropy 2022, 24, 772, doi:10.3390/e24060772 . . . . . . . . . . . . . . . . . . . . . 211

Zander S. Venter, Ruben E. Roos, Megan S. Nowell, Graciela M. Rusch, Gunnar M. Kvifte

and Markus A. K. Sydenham

Comparing Global Sentinel-2 Land Cover Maps for Regional Species Distribution Modeling
Reprinted from: Remote Sens. 2023, 15, 1749, doi:10.3390/rs15071749 . . . . . . . . . . . . . . . . . 233

Khaleel Muhammed, Aavudai Anandhi and Gang Chen

Comparing Methods for Estimating Habitat Suitability
Reprinted from: Land 2022, 11, 1754, doi:10.3390/land11101754 . . . . . . . . . . . . . . . . . . . . 247

Ning Zhang, Kangning Xiong, Hua Xiao, Juan Zhang and Chuhong Shen

Ecological Environment Dynamic Monitoring and Driving Force Analysis of Karst World
Heritage Sites Based on Remote-Sensing: A Case Study of Shibing Karst
Reprinted from: Land 2023, 12, 184, doi:10.3390/land12010184 . . . . . . . . . . . . . . . . . . . . 267

Beatrice Adoyo, Urs Schaffner, Stellah Mukhovi, Boniface Kiteme, Purity Rima Mbaabu,

Sandra Eckert, et al.

Pathways towards the Sustainable Management of Woody Invasive Species: Understanding
What Drives Land Users’ Decisions to Adopt and Use Land Management Practices
Reprinted from: Land 2022, 11, 550, doi:10.3390/land11040550 . . . . . . . . . . . . . . . . . . . . 283

Kishwar Ali, Nasrullah Khan, Rafi Ullah, Muzammil Shah, Muhammad Ezaz Hasan Khan,

David Aaron Jones and Maha Dewidar

Spatial Pattern and Key Environmental Determinants of Vegetation in Sand Mining and
Non-Mining Sites along the Panjkora River Basin
Reprinted from: Land 2022, 11, 1801, doi:10.3390/land11101801 . . . . . . . . . . . . . . . . . . . . 305

vi



About the Editors

Matteo Convertino

Matteo Convertino is an associate professor at Tsinghua University, Shenzhen International

Graduate School, where he is the principal investigator of the fuTuRE EcoSystems Lab (TREES) and

the Associate Director of the State Key Lab of Ecological Remediation and Carbon Sequestration. His

expertise is in ecosystem patterns, networks and flows, ecosystem health, biocomplexity engineering,

ecosystem data science and analytics, ecological forecasting, systemic risk and strategic portfolio

management, biogeomorphology, and socio-eco-hydro-climatology. Convertino’s work is focused

on developing nature-based solutions to counter ecological imbalances, namely ecohydrological

engineering for restoration and protection, and policies that enhance the water and carbon cycles

and biodiversity. His work is based on the identification of optimal ecological connections and

flows (dynamical trees) constituting the backbone of ecosystem health. The current applications

focus on coastal and urban ecosystems from a holistic basin perspective where everything flows

and can be positively engineered by trading off risks and decisions. Such research is performed via

pattern-oriented theoretical and computational models based on information and network sciences

which develop into digital ecosystem models for guiding scientific investigation and eco-engineering

applications.

Dr. Convertino has produced 95+ publications and technical reports. Dr. Convertino,

among others, was granted the Pengcheng Peacock Talents Award from the Shenzhen government

(2022–2024), the Ministry of Science and Education Foreign Talents Award (2021), the SOUSEI

top 20% performing scientist award from Hokkaido University, the 2016 Top 10 Team honorific

mention for the Dengue and Influenza Forecasting Challenge sponsored by the Office of Science

and Technology Policy (US White House), and the 2011 Young International Research Scientist

Fellowship from the Chinese Academy of Sciences.

Jie Li

Jie Li is a postdoctoral researcher at the University of Amsterdam, where his research focus is on

building information theoretical higher-order network models and applying the models to unravel

the intricacies of multiplex disease networks within the scope of an EU-funded project. The major

goal of the EU project is to understand the causative mechanisms underlying the comorbidity of

cardiovascular diseases and depression and identify the significant biomarkers responsible for the

development of the complex comorbidity. The core of his work is to infer higher-order interactions

based on information theory and develop novel methods to analyze a comprehensive disease network

combining high-order and pairwise interactions into one graph. Dr. Li’s current research interests

lie primarily in higher-order relationships, information theory, multiplex disease networks, and

their applications in biomedical fields related to CVD and depression comorbidities. His expertise

traverses a diverse spectrum, from bio-complexity engineering to ecological pattern forecasting, from

digital signal processing, data analytics, and visualization to causal inference and network-based

analyses. Dr. Li’s research efforts have resulted in multiple impactful papers, technical reports within

the project framework, and presentations at international conferences. Prior to being a postdoctoral

researcher, he completed his Ph.D. at Hokkaido University, where he was involved in a research

project on information dynamics for complex ecosystem prediction and design led by Dr. Matteo

Convertino.

vii





Preface

The collective behavior of species is the by-product of species interactions and habitat structural

organization and flows, all shaped by evolution and systemic environmental pressure. This

universal equation is hidden by data whose availability, uncertainty, and relevance may not allow

us to fully predict the ecological patterns considered, a by-product of collective behavior. This is

why this Topic aims to highlight the saliency of data and the nexus between data, patterns, and

eco-environmental determinants, including methodological advancement to extract salient features

from data. Specifically, ecological information is key to assessing ecosystem health, performing robust

predictions of ecosystem function from water to carbon flow, and extracting indicators for precise

ecosystem management, planning, and engineering.

Matteo Convertino and Jie Li

Editors
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Editorial

Sensing Linked Cues for Ecosystem Risk and Decisions

Matteo Convertino 1,2

1 fuTuRE EcoSystems Lab (TREES), Institute of Environment and Ecology, Tsinghua Shenzhen International
Graduate School, Tsinghua University, Shenzhen 518055, China; matteo@sz.tsinghua.edu.cn

2 Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen
International Graduate School, Shenzhen 518055, China

Ecological indicators of ecosystem anomalies are fundamentally important to sensing
how close we are to slow or catastrophic ecosystem shifts and to targeting systemic controls
for preservation, restoration and eco-based development. Ecosystem anomalies, I argue, are
grounded in ecohydrological determinants and lead to alterations in socio-ecological functions
and services, including the collapse of species or hydroclimatological disasters such as
floods, droughts and heatwaves on land and in the ocean. Therefore, linked ecological cues
in the form of multiscale data are salient for predicting the risk of ecological change.

The aim of this Special Issue was to gather advances in ecosystem monitoring and mon-
itored data, including technology and ecological data (phenotypical, phylogenetic, eDNA,
macroecological, etc.), data fusion, pattern reconstruction and analysis, and inference mod-
els for the extraction of predictive information aimed at guiding ecosystem engineering
(integrated ecological and environmental engineering), considering both predictions and
field restoration.

The centrality of data must be seen as connected data as follows.

(1) Ecological data address biodiversity and water as green-blue foundational elements
beyond biogeochemical fluxes that are the byproducts of the baseline ecological
configuration. Species sense the quality of the environment, and ecological data
reflect the functioning of eco-environmental ties. There is no environment that is fully
abiotic, and yet efforts to compile ecological data must be comprehensive of the flows
of ecosystems over time;

(2) The spatial connections among habitats (natural and self-emergent habitats and those
of human-made design, which are reflected in geomorphological and infrastructural
data, respectively) are the basis of any ecological function with strong climate feedback;
thus, “climate neutral” efforts must consider the engineering of salient hydrologic
flows and eco-geomorphological connections (broadly defined as ecological ties) whose
scale-free organization is the optimal configuration of our ecosystem;

(3) Networks of people’s decisions, from the behavior of citizens to stakeholder devel-
opment and management strategies, are critical for an ecosystem’s function and
intelligence, in which the latter is as much a conscious action as the reactions of
species to information sensed in ecosystems. All these decisions are associated with
ecological information (extracted by models as perceptrons) for which digitized infor-
mation carries values and thresholds with respect to the functions of ecosystems to
create forecasts, assess indicators and ecosystem states and define ecosystem services
and controls (what is needed and/or desired, for which the definition of optimal
trade-offs is essential).

Despite their tremendous importance for understanding the function, integrity, and
future trajectories of biodiversity, ecological networks (or, more broadly, ecological ties)
are traditionally restricted to the biological interactions of species. However, ecological
networks represent the structures of food webs, hydro-bio-geochemical/energy flows,
and the many and diverse types of interactions between all species in ecosystems the

Environments 2023, 10, 169. https://doi.org/10.3390/environments10100169 https://www.mdpi.com/journal/environments
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underpinning ecosystemic function that defines fitness and risks. Multilayer networks,
sensu lato, are connecting people, habitats, and climate with feedback that affects our
conscious and unconscious behaviors, health, evolution and existence in the long term.
In general, any tie, or set of knots, is ecological information about biotic components in
“abiotic” environments that we need to sense, map and frame.

Can we infer visible and invisible collective networks from ecosystem patterns?
More importantly, can we intelligently engineer salient eco-hydro-geomorphological net-
works to adaptively optimize our collective (biodiverse) beliefs and decisions, enhancing
climate/human-impacted ecosystem services? Can we design key indicators, controls,
plans, portfolio investments and policies for our desired future ecosystems? Indeed, we
can, and we must.

Various initiatives are targeting global information gathering of ecological commu-
nities and their restoration, such as GeoBON (https://geobon.org/ebvs/indicators/) (ac-
cessed on 10 September 2023), Restor (https://restor.eco/), Allen Coral Atlas (https://
allencoralatlas.org/), the UN Biodiversity Lab (https://unbiodiversitylab.org/en/), Global
Forest Watch (https://www.globalforestwatch.org/), NEON (https://www.neonscience.
org/), BioTIME (https://biotime.st-andrews.ac.uk/), the Living Planet (https://www.
livingplanetindex.org/), PREDICTS (https://www.nhm.ac.uk/our-science/our-work/
biodiversity/predicts.html) and GBIF (https://www.gbif.org/). Global environmental
databases such as BioClim (https://www.worldclim.org/data/bioclim.html), WorldClim
(https://www.worldclim.org/), Copernicus Climate Data Store (https://cds.climate.copernicus.
eu/#!/home), and NOAA Climate Data (https://www.ncei.noaa.gov/cdo-web/) address
the “abiotic” spheres of ecosystems. It is desirable that these eco-environmental databases
are used together to pinpoint risks and solutions to global challenges, considering local–
global “butterfly effects” in space–time (i.e., ecological ties).

In this Special Issue, many papers highlighted data and methods used to infer pat-
terns across multiple scales and ecosystems, as well as to provide solutions, including
predictive capabilities. For marine ecosystems, the delicate nature of the phytoplankton–
environmental nexus was highlighted is in determining the extent and persistence of
algal blooms [1], and the ways in which the phenology of coastal vegetation in a cold
temperate intertidal system impacts remote sensing (and the subsequent classification of
coastal habitats) was addressed [2]. Both studies actually emphasize how ecological condi-
tions affect the information that can be gathered and yet add intrinsically uncontrollable
(but measurable) uncertainty into monitoring technology; this is rather important and
unappreciated since a large number of scientists and policy makers assume that all data
are the undisputable, golden truth. This far from reality, and data fusion and selection
should be dynamical processes based on the value of information constrained via predictive
patterns predict.

Other papers showed the potential of extracting vegetation information from tree
attributes [3] to study gross ecosystem production [4] and plant seasonal phenomena like
flowering [5]. More importantly, several studies highlighted the critical role of hydroge-
omorphology in shaping vegetation patterns [6] by also introducing new methods such
as the use of a “geodetector” [7] which includes spatial and risk dependencies. Species
have been shown to be bioindicators of ecosystem structures, such as geese for basin veg-
etation [8] and fish in rivers, which are also affected by climate and other anthropogenic
factors [9].

Hydrological dynamics was also studied in its complexity, considering river runoff [10]
and its consequences when poorly managed, i.e., floods [11]. Hydrological dynamics which
also experience variability due to changes in temperature extremes can trigger wildfires [12]
in water-depleted landscapes where vegetation is largely combustible.

The roles of human decisions, such as land management practices, which are largely
affecting woody invasive species [13] as undesired species, and human disturbances like
mines, which alter vegetation [14], are critical in positive and negative human–ecological
feedback respectively. Capturing this feedback is necessary, including in important natural
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world heritage sites, such as through remote sensing [15]. The advancement and refinement
of methods in treating ecological data, for example, for tracking salient changes in species
distributions [16], is constantly important due to the availability of new technology such as
satellite imagery [17] and small-scale biological data [1].

In conclusion, ecological data are the sine qua non condition for making optimal
ecosystem decisions in which the collective design and engineering of ecological components
(changing an ecological structure by taking advantage of species’ collective behaviors and
human enhancements) optimizes systemic function. We argue that we must transition from
a reductionist way of thinking to consequentialist thinking in which data-informed, nature-
based patterns are the ultimate objective achieved via optimal strategic decisions. Top-down
ecosystem inputs (natural flows and infrastructure) coupled with well-placed bottom-up
ecological components and enhancers create self-organized habitats and ecosystems: this is
Pareto optimal dynamics, leading to scale-free ecological patterns.

This is particularly important when thinking about the future climate and the co-
existence of natural and future human habitats which support each other in risks and needs.
The collectivity of data, design (natural and human-made) and decisions is necessary for
all ecosystems in which we are the primary ecosystem engineers.
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Algal Bloom Ties: Spreading Network Inference and Extreme
Eco-Environmental Feedback

Haojiong Wang 1, Elroy Galbraith 1 and Matteo Convertino 2,3,*

1 Laboratory of Information Communication Networks, Graduate School of Information Science and
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2 fuTuRE EcoSystems Lab (TREES), Institute of Environment and Ecology, Tsinghua Shenzhen International
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3 Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Tsinghua Shenzhen
International Graduate School, Shenzhen 518055, China

* Correspondence: matteo@sz.tsinghua.edu.cn

Abstract: Coastal marine ecosystems worldwide are increasingly affected by tide alterations and an-
thropogenic disturbances affecting the water quality and leading to frequent algal blooms. Increased
bloom persistence is a serious threat due to the long-lasting impacts on ecological processes and
services, such as carbon cycling and sequestration. The exploration of eco-environmental feedback
and algal bloom patterns remains challenging and poorly investigated, mostly due to the paucity of
data and lack of model-free approaches to infer universal bloom dynamics. Florida Bay, taken as an
epitome for biodiversity and blooms, has long experienced algal blooms in its central and western
regions, and, in 2006, an unprecedented bloom occurred in the eastern habitats rich in corals and
vulnerable habitats. With global aims, we analyze the occurrence of blooms in Florida Bay from three
perspectives: (1) the spatial spreading networks of chlorophyll-a (CHLa) that pinpoint the source
and unbalanced habitats; (2) the fluctuations of water quality factors pre- and post-bloom outbreaks
to assess the environmental impacts of ecological imbalances and target the prevention and control
of algal blooms; and (3) the topological co-evolution of biogeochemical and spreading networks to
quantify ecosystem stability and the likelihood of ecological shifts toward endemic blooms in the long
term. Here, we propose the transfer entropy (TE) difference to infer salient dynamical inter actions
between the spatial areas and biogeochemical factors (ecosystem connectome) underpinning bloom
emergence and spread as well as environmental effects. A Pareto principle, defining the top 20% of
areal interactions, is found to identify bloom spreading and the salient eco-environmental interactions
of CHLa associated with endemic and epidemic regimes. We quantify the spatial dynamics of algal
blooms and, thus, obtain areas in critical need for ecological monitoring and potential bloom control.
The results show that algal blooms are increasingly persistent over space with long-term negative
effects on water quality factors, in particular, about how blooms affect temperature locally. A di-
chotomy is reported between spatial ecological corridors of spreading and biogeochemical networks
as well as divergence from the optimal eco-organization: randomization of the former due to nutrient
overload and temperature increase leads to scale-free CHLa spreading and extreme outbreaks a
posteriori. Subsequently, the occurrence of blooms increases bloom persistence, turbidity and salinity
with potentially strong ecological effects on highly biodiverse and vulnerable habitats, such as tidal
flats, salt-marshes and mangroves. The probabilistic distribution of CHLa is found to be indicative
of endemic and epidemic regimes, where the former sets the system to higher energy dissipation,
larger instability and lower predictability. Algal blooms are important ecosystem regulators of
nutrient cycles; however, chlorophyll-a outbreaks cause vast ecosystem impacts, such as aquatic
species mortality and carbon flux alteration due to their effects on water turbidity, nutrient cycling
(nitrogen and phosphorus in particular), salinity and temperature. Beyond compromising the local
water quality, other socio-ecological services are also compromised at large scales, including carbon
sequestration, which affects climate regulation from local to global environments. Yet, ecological
assessment models, such as the one presented, inferring bloom regions and their stability to pinpoint
risks, are in need of application in aquatic ecosystems, such as subtropical and tropical bays, to assess
optimal preventive controls.

Entropy 2023, 25, 636. https://doi.org/10.3390/e25040636 https://www.mdpi.com/journal/entropy
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1. Introduction

1.1. Algal Blooms as the Epitome of Marine Ecosystem Health

Algal blooms are a manifestation of abnormal changes in phytoplankton communities
in aquatic ecosystems, such as estuaries and lakes [1,2]. Despite discussions on the per-
ceived global increase in algal blooms attributable to intensified monitoring and emerging
bloom impacts, these blooms are increasing worldwide as highlighted from satellite images
by Dai et al. [3], and thus they are posing various concerns for the local ecology and global
climate. Blooms are highly destructive and persistent [4,5], causing various ecological
catastrophes, such as the eduction of vegetated communities, widespread sponge mortality
and loss of marine habitat geomorphological structure [6] due to, for instance, habitat
calcification [7].

Despite this tremendous damage to aquatic ecosystems, the mutual influence between
blooms and the environment has received little attention from scientists and policy makers.
Algal blooms are, in fact, the byproduct of nitrogen (N) and phosphorus (P) change but can
alter the N/P balance [8] and temperature [9] with implications on carbon sequestration
of vegetation in blue carbon ecosystems affected by blooms [10], such as for seagrass. All
these elements can be exacerbated by local and global climate change [11].

Despite the limited literature of the effects of blooms into the environment, some
studies have explored the relationship between phytoplankton and water quality in bloom
conditions [12], climatic and regional variations in phytoplankton as characteristic features
of blooms [13,14] and habitat-specific effects that vary by local planktonic biogeochemical
stress [15]. Fewer studies have inferred the spatial spreading of blooms characterized as
complex networks and predicted blooms based on spatially explicit biogeochemical factors.

This type of biocomplexity study, such as the one we propose, would be necessary to
define micro–macro feedback useful for risk assessment, management and policies aimed to
minimize eco-environmental imbalances, leading to a decrease in ecosystem health, such as
due to blooms. Blooms are the epitome of marine ecosystem health because their emergence
is largely related to altered ecohydrological factors at the basin-scale, from land and ocean,
leading to quick and persistent increases in phytoplankton with short-term impacts [16] and
long-lasting systemic effects on the ecological function and the environment. This is beyond
one species or humans only and is related to the progressive degeneration of ecosystem
function from its optimality or baseline in relation to the initial or desired conditions.

1.2. Complex Marine Ecosystems

Marine microbial food webs consist of heterotrophic protists, phytoplankton, prokary-
otes and viruses (i.e., the ocean microbiome). Together, they are responsible for a large part
of the production, respiration and nutrient transfer in oceans; they affect, for instance, the
carbon cycle both in blue carbon habitats and in the ocean via the carbon pump. As marine
ecosystems are increasingly affected by anthropogenic disturbances both from land and
ocean, predicting ecosystem responses above critical environmental pressure relies on a
better understanding community dynamics, including their composition, spatial/temporal
distribution and interactions.

Long-term observations are especially useful for this, and both Galbraith and Con-
vertino [15] and Galbraith et al. [17] provided clear ecological patterns to use as indicators
of ecosystem health in relation to ocean microbiome variability intended as a complex
network. Chlorophyll-a (CHLa) seems to be the best indicator of community health; how-
ever, currently there is the need to quantify how much CHLa variability implies changes
in ecological effects (e.g., blooms) and long-term effects, such as on the environment and
ecosystem function (e.g., carbon cycle).
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Coastal and marine ecosystems that experienced marine heatwaves, which were
particularly significant in 2014–2015 worldwide, provide a unique opportunity to study
how warming affects community dynamics (namely, microbiome interactions) and how
imbalance of the latter affects the environment back in the long term. The presented tool
for ecosystemic risk assessment and the results from FL Bay are the main innovations of
this paper.

The topological network structure is an effective and intuitive way to describe the
dynamical dependencies among diverse of analogous units of an ecosystem, or ecological
communities composed of hundreds or thousands of populations of species [18,19]. This
is particularly important for marine ecosystems where both structural networks (such
as coastal and marine habitat connections and flows) and functional networks (such as
prokaryotic and eukaryotic interactions) are not directly visible or known.

Yet, causal network discovery and inference models (e.g., see Li and Convertino [20] for an
articulated discussion about ecosystems) are particularly important for mapping the ecological
baseline on which current ecosystem assessment and future predictions of ecosystem patterns
(tangibly liked to ecosystem services) can be made. Complex networks have great potential to
help in solving contemporary real-world problems in a wide range of fields [21–26].

Complex networks have been used to analyze the dynamics of pseudo-periodic time
series [27] and the functional dynamics of complex systems [28–31]. Furthermore, networks
have become an excellent method for the study of functional and structural dependencies
among very complex units with different temporal dynamics [32–35].

However, most of the considered networks in the literature and particularly those
inferred in ecosystems, typically represent relationships based on known or assumed affili-
ations [36,37] or fixed connections [38]. This makes it difficult to represent the independent
local properties of each node and, more importantly, the unique dependencies between
different nodes.

This issue is particularly relevant for algal blooms where the biogeochemical networks
are hypothesized to vary dramatically over time and space. This has been verified by
recent studies on prokaryotic networks whose topological variability was strongly related
to systemic ecological stress [15,17]. Nonetheless, no analyses have been made so far on
bloom spreading networks, and this research presents a novel template for characterizing
and predicting algal blooms based on chlorophyll-a and associated water quality factors.

1.3. Ecological Patterns as Chlorophyll-a Spreading Networks

Species, including eukaryotes at the microscale, operate in dynamical ecosystems
where the ability to respond to changing environmental flows is paramount. An effec-
tive collective response, affecting the re-balancing of optimal ecosystem states requires
suitable information transfer among species; thus, ecosystems critically depend on eco-
environmental interaction networks. This underpins the process of ecosystem evolution
toward low entropy states (characterized by scale-free distribution of CHLa as investigated
in this paper) [39] as well as adaptation to new environmental stress states [40], some
of which can be undesired, such as those with persistent and large blooms. In this pa-
per, we highlight the central role of information transfer as a salient feature for collective
eco-environmental dynamics leading to algal blooms.

Connectomics is broadly defined as the study of structural and functional networks
(the connectome), which are maps of a system (such as the nervous system), mainly in the
brain; however, this concept has been extended to ecosystems (see Convertino and Valverde
Jr. [41]) to characterize both functional species interaction networks, their stimuli with the
environment or the envirome itself as set of interdependent environmental processes [15]
and habitat networks [20]. The connectome enables understanding of how spreading
information is processed (coded, stored, transmitted and decoded in an information sense,
which can be any ecological information) at and among different scales of the system (e.g.,
one node and the whole system, while also considering cross-scale dependencies).
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As the connectome is the salient information of ecosystems, its knowledge allows one
to improve predictive skills in the short and long term to represent ecosystem patterns.
For the aforementioned needs, i.e., to detect the trajectories of spreading blooms and their
potential environmental impacts, we demonstrate the capability of an information-theoretic
approach to infer bloom networks and biogeochemical feedback. The optimal information
flow model was developed initially for inferring species interaction networks in any ecosys-
tem from abundance data [20] and was later applied to predict fish biodiversity patterns Li
and Convertino [42] and eco-environmental interactions of the ocean microbiome [17].

The ecological time series underpinning ecological dynamics are particularly im-
portant for assessing ecological states and early warning signals of shifts [43] before the
inference of ecological networks. The proposed model applies transfer entropy (TE) differ-
ences (to target the salient directed interactions) to infer a spatial network strategy that can
identify the sources and sinks of bloom outbreak as well as foretell changes probabilistically
in water quality factors (in average and fluctuations) when blooms happen.

Through the model, we specifically infer and analyze the spatial ecological corridors
determining bloom spread and direct interactions between CHLa and environmental factors
to quantify the environmental effects of ecological dysbiosis; previous efforts (see Wang
and Convertino [44]) focused on the whole set of biogeochemical interactions useful for
forecasting outbreaks, except for bloom spreading networks.

Previously, CHLa has often been used as an indicator of blooms given its sensitivity to
environmental changes, ease of monitoring and ability to reflect phytoplankton biomass
effectively [45] but has not yet been verified as a systemic indicator of ecosystem health
related to ecosystem function. We discuss the results of applying this model to algal blooms
observed in Florida Bay (Florida, USA) in the Florida Everglades National Park between
2005 and 2006 when a recurrence of large blooms was observed.

Due to its unique lagoon configuration and climate, Florida Bay (Figure 1) regularly
experiences algal blooms [46] as frequently as many other aquatic ecosystems in subtropical
and tropical climates. Thus, for algal blooms, there is the need for a powerful dynamic
prediction model to support decision-making and bloom prevention.

8



Entropy 2023, 25, 636

A
West

(mangroves, deep water)
North Central

(coastal marshes)

South Central
(tidal/seagrass flats

coral)

East
(marshes, segrass flats,

sponge, coral)

North East
(flats, 
sponges,
corals)

Cora
l R

eef

0.8

0.4

0.6

0.2

East (epidemic)

Transitory

West-Central (endemic)

B

Figure 1. Florida Bay and area classification based on CHLa dynamics. The red–blue classification
in plot (A) is related to the probabilistic structure of CHLa as highlighted in plot (B). Plot A also
highlights the main habitats and species present in FL Bay.
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2. Materials and Methods

The proposed TE network inference model that can be used for variable interaction
discovery and prediction at multiple scales is explained. Its structure is graphically shown
in Figure 2. The model is a further refinement on the one proposed by Li and Convertino [20]
for the use of TE differences to prune the network and define salient predictors of ecological
patterns, which are algal blooms in this case.

ti
m

e 
se

ri
es

T
ra

n
sf

er
 E

n
tr

o
p

y

d
if

fe
re

n
ce

obtain edges

larger

Edge_color: TE

Edge_direction: TE sign

obtain nodes

larger

row sum

row sum

TE X     Y

TE X     Y
X Y

B   Pruning: Pareto TE difference

variables

X

12

Y

Node_color: OTE

row sum of mTE
1 Y

TE X     Y d>TE X     YmTE X,Y

A   Inference 

Figure 2. Ecological corridor inference model. The structure of the TE inference model. Here,
variables are annotated as X and Y generically. X can be thought of as CHLa and Y as all other
environmental variables. The first step of the proposed model is to infer variable pairwise interaction
as TE and node collective influence (OTE), determined via Equations (2) and (5), respectively. The
second step is to prune the network considering only salient Pareto interactions via thresholding
TE differences with a threshold d of causal significance, which is set to consider the top 20% of TEs
(Equation (4)) that are necessary and sufficient to predict bloom spread.

2.1. Datasets

The Florida International University Southeast Environmental Research Center (FIU
SERC) established a water quality monitoring system of 28 spatially distributed stations in
Florida Bay (Figure 1), where each station (considered as a node in a network perspective)
collects monthly data on chlorophyll-a (CHLa), total organic carbon, inorganic and organic
nitrogen and phosphorus (TN and TP), turbidity (TURB), pH, salinity (SAL), water temper-
ature (TEMP) and dissolved oxygen (see Boyer and Briceño [47] and Nelson et al. [14] for a
description on how data are measured).

We used a threshold-based quantile regression method (analogous to Nelson et al. [14])
to establish an average threshold of ≥2 μgL−1 on CHLa, universally applied to all stations,
to distinguish bloom from non-bloom states across all stations. Initially, the dataset for
this study spanned 2004 to 2006, corresponding to before, during and after a severe bloom
outbreak in Florida Bay in 2005 [48] in terms of a CHLa extreme. In 1999, several blooms
were observed in the same area but with lower CHLa extremes [14].

Then, the dataset (comprising all 2004, 2005 and 2006 CHLa monthly data) was filtered
to include only those months and stations with CHLa values exceeding the critical blooming
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threshold, i.e., those months and stations indicating sustained bloom conditions. As a
result, the final dataset contained 18, 63 and 136 rows of measurements (i.e., months) for
the 2004, 2005 and 2006 bloom periods (pre-, peri- and post-bloom), respectively. More
generically, 2005 can be considered as epitomic of bloom outbreaks, while 2004 and 2006
are representative of early and post-bloom periods.

2.2. Ecosystem Organization and Connectome

The entropy of the ecosystem, manifesting ecological disorganization in relation to
CHLa variability, is dependent on the probability distribution functions (pdfs) that affect
TE calculated on the pdf divergence and asynchronicity. The TE variability of an area, or
the whole system, can be decomposed into eco-environmental interactions (considering
CHLa and environmental factors acting as determinants or effect of ecological imbalance)
and the ecological areal interactions underpinning bloom spread. This variability affects
the organization propagation of CHLa (i.e., how randomly distributed CHLa is) and, in
an information-balance equation, can be written as the spatio-temporal convolution of the
aforementioned components composing the ecosystem connectome, i.e.,

eco-function︷ ︸︸ ︷
H(CHLa) = ∑

m,n

∫ t

0

eco-connectome︷ ︸︸ ︷
(1 − TE(Xm, CHLam))︸ ︷︷ ︸

eco-env feedback

∗ (1 − TE(CHLam,n))︸ ︷︷ ︸
eco-corridors

dτ , (1)

where X stands for all other environmental variables except for CHLa, and m, n stands
for the location of each area being monitored over the period t. The specific TE chosen
in Equation (1) is related to TE analytics and the posed objectives, to be later specified. It
should be noted that the time delay τ between eco-env factors in Equation (1) has been set
to one due to the sub-monthly variability of CHLa and the resolution of the data.

Equation (1) is focused on CHLa patterns where networks are the backbone determi-
nants of the ecological “weave” (CHLa interconnected patterns) that can be potentially
controlled. Space and time are the dimensions along which CHLa is considered, plus
other dimensions along gradients of environmental features on which stress–response pat-
terns and related features (e.g., early warning signals and risk thresholds) can be derived.
The networks define sources, sinks, pathways and determinants to guide monitoring and
environmental control for bloom prevention.

In this paper, we specifically analyze the spatial ecological corridors determining
bloom spread and direct interactions between CHLa and environmental factors (second and
first term in Equation (1), where, for the latter, only CHLam → Xm interactions are consid-
ered) to quantify environmental effects of ecological dysbiosis; Wang and Convertino [44]
focused instead on the whole set of biogeochemical interactions useful for forecasting
except for bloom spreading networks.

2.3. Eco-Environmental Network Inference

Transfer entropy (TE), constructed from information entropy [49], measures the causal
relationship between two asynchronous and divergent variables (expressed as a time series)
X and Y (in the bivariate form, yet not accounting for second-order indirect interactions) by
quantifying the predictive information flow between them [50]. Previously, the TE-based
model, called the optimal information flow model (in relation to the maximization of ecosys-
temic entropy to gather the largest information), was used to discover causal relationships
in human and aquatic ecosystems, e.g., for bacteria [15,17,25] and fish interactions [20] and
to assess ecosystem health.

The information flow, and thus the predictive relationship between variables, is bi-
directional. In this paper, we took the form of bivariate TE (while skipping interactions
higher than the third-order, which was our first modeling assumption considering the
weakly third-order interactions between environmental factors [51]) and calculated the
difference between the pairwise information flows to identify the strongest causal fac-
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tor, i.e., TEX→Y and TEX←Y (where X and Y can be either ecological, such as CHLa, or
environmental variables) as follows:

TEX,Y = TEX→Y − TEX←Y

= ∑ p(yt+1, ym, xn)log
p(yt+1|ym, xn )

p(yt+1|ym )

− ∑ p(xt+1, xn, ym)log
p(xt+1|xn, ym )

p(xt+1|xn )
,

(2)

where xt+1 and yt+1 are the values of variables X and Y at time t + 1 (yet, Δt = 1 month,
which is our second modeling assumption considering the fact that CHLa values are very
sensitive to past changes in the immediate past reflecting Markovian dynamics [51], while
long-term increasing trends can lead to extreme CHLa shifts). xn and ym denote the histories
of time-varying variables X and Y up to t − n + 1 and t − m + 1, respectively. TEX→Y is
the transfer entropy of time series variable X to Y, whereas TEX←Y indicates the transfer
entropy of Y to X.

In this study, we considered only positive TEX,Y where X = CHLa and Y are all other
environmental factors for eco-environmental feedback in Equation (1) and considered
all TEX,Y where X and Y are both CHLa in two different nodes. Additionally, in the TE
calculation, we did not investigate the optimal time delay between X and Y nor the optimal
set of factors that are predictive of CHL, as in [20], due to: (i) the fact that bloom eco-env
feedback occurs at scale lower than one month (at which data are available) and (ii) our
interest into the entire systemic dynamics. This first part of all TE inference is considering
all pairs of variables (Figure 2A).

The unbounded causality matrix, or more precisely the predictive causality matrix TE

unconstrained to any prediction of biodiversity patterns as in [42], based on calculated TEs
without the optimization of Δt and predictive environmental factors of ecological patterns
in an optimal information flow perspective, can be constructed as follows:

TE =

⎡⎢⎣TE1,1 · · · TE1,Y
...

. . .
...

TEX,1 · · · TEX,Y

⎤⎥⎦. (3)

where TEX,Y is indeed a difference of transfer entropies as in the transfer entropy graph
neural network model (TEGNN) (originally developed by Duan et al. [52] and applied to
algal blooms by [51]) in contrast to the optimal information flow model (OIF) originally
developed by Li and Convertino [20]. For each year, two networks were constructed with
each defined by an underlying matrix of transfer entropy differences TE. One inferred
matrix was a spatial network in which the 28 stations were nodes, and the causal influences
among them were the edges.

The time series used to calculate the transfer entropy differences (Equation (2)) in this
network were the time series of CHLa measurements at each station. The second inferred
network was a water quality network, in which the nodes were the water quality factors
(CHLa, TN, TP, SAL, TEMP and TURB), and the edges were the causal influence among
them. In this study, however, the causality matrix underlying the water quality network was
further filtered to focus only on the effect of CHLa on other water quality factors in relation
to the objective to quantify this eco-environmental feedback; the reverse effect of water qual-
ity factors on CHLa and the interactions among water quality factors were not considered
in this task but were in Convertino and Wang [51] and Wang and Convertino [44].

Following the Pareto principle [53], the largest 20% of values (and not 20% of events)
identify the most influential variables (stations or factors), which are Pareto elements with
the largest portfolio effect (à la Anderson et al. [54], which is about variance-mean scaling
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related to CHLa distributions), yet defining the risk of blooms. Therefore, we only retained
the largest 20% of values in the mTE in order to focus on the most influential variables.

mTEX,Y =

{
TEX,Y, TEX,Y > d
0, otherwise

, (4)

where d is the threshold value, or Pareto critical value, of significant causal relationships as
necessary and sufficient to predict bloom dynamics. If TEX,Y > d, then X is a significant
cause of Y; otherwise X is a weak cause of Y, or X and Y are mutually causal without any
preferential direction in causality (Equation (4) and Figure 2). Additionally, the values in
the matrices for each of the three years were normalized to enable better comparison of the
inferred interactions. This second part of salient TE selection is about the network pruning
(Figure 2B).

2.4. Eco-Environmental Factor Predictive Causality

The total outgoing transfer entropy (OTE as in Galbraith et al. [17] reflecting the total
direct influence of one variable for all other influenced variables) of a node can be used to
measure its influence on the collective dynamics (Equation (5)) as follows:

OTE = ∑
Y

mTEX,Y, (5)

where OTE is the sum of the Xth row in the mTE matrix (after the application of the
threshold as in Equation (4). The larger the OTE, the stronger the influence of node X on all
other directly connected nodes in the network. In an information-balance perspective, OTE
is the cumulative effect of all environmental or ecological variables for a node.

3. Results and Discussion

3.1. Spatio-Temporal Spreading and Fluctuations

To infer and characterize the spreading networks of blooms, while underpinning the
ecological risk, we considered Florida Bay blooms between 2004 and 2006. We inferred
a novel spatial influence network underpinning bloom spread among a set of spatially
distributed water monitoring stations. This was achieved by deriving a TE matrix from
spatio-temporal patterns of CHLa derived from monitored stations (see Section 2.3). The
TE matrix for 2004 suggests that the study site was free of severe blooms, except for a few
stations in the northwest: specifically, stations 16, 14, 25 and 26 (Figure 1) at least in 2004
where the resurgence of blooms was observed after the large bloom in 1999 [14,51].

Ecological spreading corridors are defined by the most divergent and asynchronous
CHLa among nodes, while defining the most likely interdependent area, at least in a
predictive causality sense (causality considering all other feasible connections, which are
all other nodes in this case). Divergence and asynchronicity, as highlighted by Li and
Convertino [20], are related to the difference in pdfs of CHLa (in two nodes) at different or
equivalent time periods, respectively.

Spreading can be related to marine currents; however, in this study, the purpose is
not to define the precise mechanisms underpinning the ecological patterns but rather to
define the patterns’ backbone networks, which are the salient spreading networks. This
also identifies the potential coastal areas of influence of biogeochemical loads in FL Bay
and the maximum extent of blooms—something that is poorly quantified but necessary for
bloom prevention.

In analogy, runoff in terrestrial basins are predicted equivalently to CHLa, where the
amount (and distribution) of water in different locations changes in an asynchronous way
and is dependent on river network spreading to define the timing and divergent volume.
True causality, leaving aside the feasibility of its assessment, must be included considering
all areas where CHLa can spread, which, in a bay, is virtually everywhere; however, this is
challenged by the data limitation that is constrained only to the used stations in this case.
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The properties of network edges, representing eco-environmental interactions, depend
on mTE (Equation (4)). The edge directions of the spreading network (Figure 3) suggest
that an algal bloom would have initiated around station 16 and then moved west with
a preferential direction toward the northwest. The edge colors (proportional to mTE)
suggest that the bloom was moderately strong but localized in 2004 (Figure 3A) with
a high probability to continue growing in the bay (due to mTE directions). The spatial
spreading mTE matrix for 2005 revealed large and widespread bloom outbreaks that were
concentrated in the western and central areas of the bay (Figure 3B).

In that year, the spatial influence was the strongest near stations 25, 16, 14 and 12 in
the northwest and station 28 in the south region. The edge colors indicate that the bloom
at all stations was moderately strong and also very likely to continue in the NE direction.
Station 28 seems largely affected by many other stations in the bloom spread and yet is
likely a sink node with potentially strong ecological effects also considering its proximity
to the FL coral reef.

The matrix for 2006 (Figure 3C) shows the most extreme area interactions as well as
a reversal in the spreading of blooms, i.e., moving from NE to central areas. The edge
colors imply that bloom activity was extremely high, covering a wide area of Florida
Bay. Nonetheless, the resulting graph suggests that, after the largest outbreak, the bloom
moved from the easternmost into the north-central area, while the bloom in the west
region dissipated.

We show how, by analyzing the information flow among spatially distributed nodes, it
is possible to model the spatial spread of a phenomenon, such as algal blooms. In addition,
this approach is able to detect sources, sinks, directions and salient pathways of bloom
spreading. Due to various unaccounted factors, such as wind intensity and direction,
current direction and bathymetry, there is a certain dynamic spatial change of blooms that
is not attributed to the aforementioned factors. However, the model can take into account
any environmental factor if available and can attribute the degree of variability of CHLa.

In a complex network sense, the bloom spatial network in 2004 is small in scale
and regular in topology but has an obvious active station (station 16) that is an actively
connected hub for bloom spreading. Therefore, it is much easier to take measures against
blooms at this time (whether possible) or to prevent triggers by controlling environmental
determinants. This area is well-know to be heavily influenced by nutrient efflux from the
Everglades [14].

Particularly with the outbreaks of blooms in 2005 and later in 2006, the network has
many more areas that are very active and affected, yet bloom management becomes more
difficult. Over time, a spreading network transition is observed from a regular/small-
world in 2004, to scale-free in 2005 and regular (or uniform) topology in 2006 with long-
range connections.

3.2. Water Quality Trends and Bloom Impacts

The investigation of the impact of CHLa extremes (the magnitude, duration and
frequency) on ecosystem health is a poorly covered topic in science. To explore how algal
blooms impacted the water quality in Florida Bay, we analyzed how CHLa impacted other
water quality variables using TE (see Section 2.3). We focused our analysis on how CHLa
implicated potential changes in water quality—in terms of predictive causality—for stations
where extreme blooms were most likely.

At the most active station in 2004 (i.e., station 16, characterized by coastal marshes,
which is likely the source of blooms; see Figure 3A), blooms did not affect TN, TP, SAL and
TURB, except for a slight effect on the water temperature (see Figure 4A). Rather, TN, TP,
SAL and TURB, likely driven by a riverine efflux in the bay, triggered CHLa changes lead-
ing to blooms as highlighted in Wang and Convertino [44] and Convertino and Wang [51].
In 2005, the impact of blooms on other water quality factors was mostly evident at sta-
tion 25, which is a deep-water mangrove habitat, where the blooms were the most intense
(see Figure 3B).
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Figure 3. Inferred spatial CHLa for the 2004, 2005 and 2006 pre-, peri- and post-bloom periods
in Florida Bay. Link and node color (from blue to red) is proportional to mTE based on CHLa
interdependence between node pairs and OTE considering only TECHLa−>Env where Env stands for
all other environmental factors. East to west node and link dynamic increases are observed from 2004
to 2006 as well as a spreading network transition from regular/small-world to scale-free and regular
(or uniform) with long-range connections for 2004, 2005 and 2006 (A–C). Each year corresponds to
a different bloom precursor area and environmental factors (the central and northwest areas more
affected by nutrients), widespread and extremely localized outbreak (the northeast more affected by
temperature and turbidity and sequential effects of spreading).
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CHLa induced not only water temperature changes but also variations in the total
nitrogen and salinity (TN and SAL) with a higher impact on the latter (Figure 4B). In 2006
(see Figure 3C), where blooms were the most extreme but localized (the NW area), the
effect of blooms on water quality peaked at station 3, followed by stations 5 and 2 and
then station 6 in terms of magnitude (Figure 4C). Stations 2 and 3 experienced blooms
throughout the year, while station 6 had a relatively short bloom (7 months as reported in
the data).

At stations 3 and 6 (characterized more by tidal flats), blooms induced changes in
the water temperature, salinity, total phosphorus and turbidity, while, at stations 2 and
5 (characterized more by submerged marshes), blooms led to substantial fluctuations in
the total nitrogen, total phosphorus, salinity and turbidity. Information flow patterns (TE
patterns) suggest that blooms first strongly caused water temperature alterations, then
enhanced the salinity and nitrogen and later impacted other nutrients (phosphorous) and
the turbidity. This is aligned with an understanding of the underlying microbiological
processes [51].

In the vicinity of station 2, blooms caused a large change in salinity, while the effects
on TN, TP and TURB were less significant. As blooms are a manifestation of eutrophication
in water bodies, large amounts of phytoplankton cause dramatic changes in the total
phosphorus and turbidity, such as near station 3, with a minor influence on the temperature
and salinity. Around station 5, the bloom had a strong influence on the turbidity and
salinity, with a minor impact on the TN and TP due to the deeper water in this area.

Despite the bloom near station 6 being relatively short, it still caused elevated changes
in both the salinity and turbidity and, in a minor way, in the water temperature and
total phosphorus. In general, the occurrence of blooms had serious effects on the total
phosphorus, salinity and turbidity in the eastern zone of Florida Bay; a worrisome condition
because of the highly valuable biodiversity in that area comprising a wide set of sponge,
fish and coral species.

Our results reveal that algal bloom severity also caused environmental degradation
a posteriori beyond the direct causal effects of environmental change (particularly from
temperature in the ocean and nutrients from estuarine efflux) in triggering blooms a priori.
Certainly, the primary causal pathway is about temperature leading to CHLa changes;
however, the inferred networks also manifests the feedback of CHLa change on temperature.
While this can be minor with respect to the first mechanism, it is also possible in relation to
algal overgrowth and local temperature increase.

This substantiates environmental changes due to ecological imbalances [9], such as the
oceanic positive feedback mechanism, which can lead to further increases in phytoplankton
growth, chlorophyll-a concentration and temperature. Blooms are ecological processes that
consume energy and yet increase the local temperature—precisely, algal blooms absorb
light from the sun and carbon from the atmosphere, which increases the temperature of
surface water. Whether this can be captured by our data or other data is an open question,
but what is certainly true is that the bidirectional CHLa-temperature feedback is inferred
as well as the CHLa-salinity.

Rising temperature, also related to local eutrophication, implies more evaporation
from waterbodies and yet higher salinity if the hydrology is not changed. Of course, if the
algae grow overly much (in term of biomass), a large amount of oxygen is depleted when
they die, and this creates hypoxia and cascading risks, such as the death of species and
the emergence of toxins. This can also lead to an exceeded capacity of zooplankton to sink
carbon to the bottom of the ocean and, thus, an increase in the size and frequency in blooms,
which is not good for the generated temperature, which is a co-occurring risk factor.
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Figure 4. Inferred biogeochemical networks for the 2004, 2005 and 2006 pre-, peri- and post-bloom
periods in Florida Bay. The purpose was to quantify local eco-environmental impacts for bloom
sources. Only four nodes in 2006 and one node for 2004 and 2005 were considered because those are
the most active in terms of the CHLa OTE. However, blooms are spreading phenomena, and other
nodes are involved. Stations 16 and 25 are characterized by mangrove habitats in the west region,
while stations 2, 3, 5 and 6 (displayed proportionally to a gradient of potential impact of CHLa on
the environment) are characterized by coastal marshes and marine flat habitats in the east region
of Florida Bay. The color of the directed edges is proportional to ranges of mTE for TECHLa−>Env

only. The node color for CHLa is proportional to OTE and, for other water quality factors, depends
on the frequency of the local blooms during that year (manifesting the potential impact of CHLa
on the environment): specifically, blue, green, orange and pink are for 6, 7, 10 and 12 months of
bloom occurrence.

3.3. Bloom Intensity and Area Dependency

We explored the interaction dynamics of blooms by analyzing the annual probability
distribution, or pdf, of the outgoing transfer entropy (OTE; see Figure 5) pre-, peri- and
post-bloom. OTE quantified the extent to which blooms around one area can predict CHLa
dynamics (in terms of the value and distribution) in other areas: higher OTE values indicate
higher area interactions with higher spreading and predictability. In 2004, the OTE ranged
between 0 and 1.7; most values with a non-zero probability were between 0 and 0.6.

It can be seen that most of the stations have no bloom, resulting in a low probability
of large values of OTE but a high probability of low OTE. The pdf is bimodal with a
leptokurtic character. In an ecological sense, the dynamics are characterized by highly
localized blooms and few traces of bloom emergence in other areas. Thus, the bloom spatial
network system was relatively contained in 2004 and corresponds to a regular/small-world
topology (Figure 3). This also corresponds to simple low-TE dynamics of eco-environmental
interactions (Figure 4).

In 2005, the OTE range increased to a maximum of 4.0, with most OTEs having a
higher probability than in 2004. In 2006, the range of OTEs increased even further to a
maximum of 13, with all OTE values having a higher probability. This also corresponds
to a shift in the pdf to being more platykurtic while highlighting more widespread and
common bloom dynamics.

From the perspective of complex networks, the number of nodes with large OTE
values increased over time. This indicates an explosive spread of blooms across FL Bay.
Therefore, the initial energy dissipation became higher over time. In 2005, the system
was in an active and complex state, which makes the management of blooms extremely
challenging. The 2006 pdf has higher entropy because it is a distribution closer to a Poisson
pdf than previous years.
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Figure 5. Probability distribution of the CHLa collective influence and ecosystem potential. (A–C) are
for the 2004, 2005 and 2006 pre-, peri- and post-bloom periods in Florida Bay. CHLa’s collective
influence was assessed based on OTE range and distribution, where the latter defines the energy
potential (in dashed red, black and blue for 2004, 2005 and 2006 aligned with the distinct epidemic,
transitory and endemic dynamics as in Figure 1B), stability of ecosystem states and transition
probabilities from one to another.

The pdf of the OTE proves that OTE reflects the probabilistic state of ecosystems with
particular reference to algal blooms in this case. The higher the entropy, the larger the
effect of blooms and the higher the ecological effects; interestingly, for FL Bay, we notice
that, the higher the entropy, the more scale-free the bloom spreading network is, although
a time delay may exist between ecological effects (CHLa, which is more random, such
as in 2006) and the largest spreading network (which was in 2005) signifying potential
long-term effects.

By flipping the pdf, it is possible to obtain information on the ecosystem potential
landscape about the energy dissipation, likelihood of shifts and relative stability of bloom
conditions (Figure 5). The energy dissipation of the system, which is the potential amount of
energy consumed by ecological processes, is visualized, where ∝ max[p(OTE)]− p(OTE),
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which scales with ∼ 1/p(OTE); therefore, the higher the leptokurtic character of the pdf is,
the lower the energy dissipation (such as in 2004).

The energy potential also gives the number of ecological states (metastable states are
identified by the point where the pre- and post-curvature of the energy landscape diverges
in sign; these are represented by the balls in Figure 5), the probability of a configuration
to be stable (the lower the energy potential with respect to all other states is, the higher
the stability) and the likely shifts among states (proportional to the slope of the energy
potential), all of which define the ”resilience” of the ecosystem, which is the rapidity to
bounce back to initial states.

Higher entropy corresponds to higher energy dissipation in relation to larger and
more random OTEs. This implies a lower probability of CHLa stable states, which are
much closer to each other and increase in number, implying a higher likelihood of shifts
with larger ecological impacts. For FL Bay, the energy dissipation also increases in average
value for the pre-, peri- and post-bloom periods indicating a diminishing resilience and
loss of complexity of the system; this also highlights the persistent effects of blooms despite
their relatively short duration.

4. Conclusions

This study uniquely proposed a model based on optimal transfer entropy (TE) with
TE differences to infer bloom spatial dependencies, which were used to pinpoint risk areas
and pathways to target monitoring and controls. Blooms showed non-trivial spreading
patterns manifested by network transitions with different stability results that determined
their persistence and potential ecological effects. For FL Bay, we predominantly highlighted
the spatial trends and the neglected impacts of algal blooms on the water quality. The
following specific results are worth highlighting.

• We showed how CHLa patterns carry information regarding the underpinning eco-
hydrological networks (and associated spreading determinants, such as nutrients)
that support ecosystem function and services. Salient Pareto interactions were de-
fined via thresholding TE differences with a threshold of causal significance that was
set to consider the top 20% of TEs (related to the tail of scale-free CHLa probability
distribution function), i.e., necessary and sufficient interactions to predict the risk of
bloom spreading.
More generally, the discovery and inference of the ”ecosystem connectome” (as biogeo-
chemical determinant and spreading networks) allows for the assessment of ecosystem
health (quantified by the proximity to an optimal condition, such as the non-bloom
state) as well as the investigation of causal determinants and their sources, proximity
to ecosystem shifts and targeted ecohydrological controls.

• Through spatial analysis of bloom spreading networks, we showed how regions not
previously involved in blooms (i.e., the highly biodiverse NE tidal-flat habitats with
corals and sponges) were caused by large imbalances of CHLa in the western and
central blooms, which were causally involved. The latter regions were characterized
by CHLa that was more randomly distributed and a higher probability of CHLa
extremes. This probabilistic structure, reflecting the spatial distribution of CHLa,
is likely tipping eastern regions to similar bloom endemics. From the perspective
of complex networks, this bloom event (2004–2006) evolved from a spatial network
with a localized trigger area and a small-world topology to a random topology with
long-range spatial diffusion.
In 2005, when most stations were blooming, the spatial spreading network was scale-
free (theoretically optimal in a purely topological and predictive sense [55,56]) with a
random biogeochemical network, including CHLa (topologically suboptimal), which
underpins the dichotomy between structural and functional networks for ecologi-
cal risks.

• In terms of temporal dynamics, subsequent to the first bloom outbreak, persistent and
recurring blooms were observed for several NE areas with long-lasting environmental
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impacts on turbidity and salinity aggravated by temperature increases. Bloom sources
were related to central coastal marshes and, to a lower extent, mangrove habitats.
We further showed that blooms were a recurring and persistent phenomenon over a
long period of time with continuous outbreaks in interdependent regions. This led to
higher energy dissipation and larger instability dictated by the more random distribu-
tion of CHLa, which was associated with a more uniform network with long-range
connectivity regardless of habitats, likely leading to the loss of ecological heterogeneity.

• The analysis of biogeochemical factors affecting water quality showed that the occur-
rence of blooms could only affect small fluctuations of temperature at the beginning
of the blooms; however, repeated bloom outbreaks largely affected other biogeochem-
ical factors (such as salinity, turbidity and CHLa triggering hysteresis or memory
effects) that are poorly systemically controllable due to the loss of vegetation and other
keynote species.
The concentration of CHLa can be influenced by temperature and salinity, and changes
in the CHLa concentration can, in turn, have indirect effects on water temperature
through various ecological processes. In some regions, facilitated by shallow-water
habitats, a water temperature increase can stimulate phytoplankton growth and
increase the concentration of CHLa. The increased CHLa can, in turn, absorb more
sunlight, which can lead to local warming of the water.
In the long term, the persistence of blooms, i.e., high CHLa, may also alter nutrient
cycling as highlighted by other studies with the term “oceanic positive feedback mech-
anism” [11], and our model was able to infer this secondary causal pathway together
with the primary one, where temperature change led to CHLa change and blooms.
This underscores that bloom management should start from the source, otherwise
blooms’ environmental impacts will gradually expand and become uncontrollable,
thus, also affecting the ecosystem stability and resilience and settling into undesired
ecological states.

Although the intensity, duration and spatial distribution of blooms are governed by
a multiplicity of factors, CHLa variability (independently of any trigger) still has a wide
degree of predictability and control in an ecosystem perspective considering both predictive
and ecological engineering models. We proposed a data-based inferential model to be used
for ecological intelligence to look into patterns of risk (source and pathways), trajectories
and determinants.

Our proposed spatial and biogeochemical network inference model provides valuable
information for the forecasting and management of blooms—for instance, by pinpointing
monitoring and nature-based solutions in source areas, such as coastal blue-carbon habitats
to inhibit progressive eco-environmental imbalances and the related impacts. Further work
will look into the precise quantification of critical thresholds (habitat- and climate-specific or
universal) as early warning signals of environmental factors (including controls) that lead
to persistent blooms and accounting for systemic stress, that is reflected by the condition of
habitats as their ecological history.
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Abstract: Intertidal vegetation provides important ecological functions, such as food and shelter for
wildlife and ecological services with increased coastline protection from erosion. In cold temperate
and subarctic environments, the short growing season has a significant impact on the phenological
response of the different vegetation types, which must be considered for their mapping using satellite
remote sensing technologies. This study focuses on the effect of the phenology of vegetation in the
intertidal ecosystems on remote sensing outputs. The studied sites were dominated by eelgrass
(Zostera marina L.), saltmarsh cordgrass (Spartina alterniflora), creeping saltbush (Atriplex prostrata),
macroalgae (Ascophyllum nodosum, and Fucus vesiculosus) attached to scattered boulders. In situ
data were collected on ten occasions from May through October 2019 and included biophysical
properties (e.g., leaf area index) and hyperspectral reflectance spectra (Rrs(λ)). The results indicate
that even when substantial vegetation growth is observed, the variation in Rrs(λ) is not significant at
the beginning of the growing season, limiting the spectral separability using multispectral imagery.
The spectral separability between vegetation types was maximum at the beginning of the season
(early June) when the vegetation had not reached its maximum growth. Seasonal time series of
the normalized difference vegetation index (NDVI) values were derived from multispectral sensors
(Sentinel-2 multispectral instrument (MSI) and PlanetScope) and were validated using in situ-derived
NDVI. The results indicate that the phenology of intertidal vegetation can be monitored by satellite
if the number of observations obtained at a low tide is sufficient, which helps to discriminate plant
species and, therefore, the mapping of vegetation. The optimal period for vegetation mapping was
September for the study area.

Keywords: vegetation phenology; spectral signature; intertidal coastal ecosystem; remote sensing;
eelgrass (Zostera marina L.); saltmarsh; classification

1. Introduction

Intertidal ecosystems are productive and dynamic environments located between low
and high tide levels. These environments play various essential ecological and biogeo-
chemical roles that benefit both terrestrial and marine ecosystems by sequestering carbon
and nitrogen and regulating biogeochemical cycles [1,2]. With the increase in population,
industrial development, and over-exploitation of resources over the past decades, coastal
and littoral environments are among the most vulnerable ecosystems in the world [1,3–6].
The anthropogenic pressures associated with coastal ecosystems and the increase in sea
levels linked to climate change contribute to the loss of 20 to 70% of these ecosystems [7,8].
In addition, global warming causes a rise in the number and intensity of winter storms
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and reduces the coastal ice cover in cold temperate regions and higher latitudes, leading to
rapid changes in coastal environment functions and structures [8]. Management activity
relies on the provision of spatial and explicit information on coastal vegetation distribution,
making it more important than ever [9].

Satellite remote sensing technology is increasingly used to map vegetation cover of
habitats, varying from forests to coasts and their temporal evolution [10,11]. However,
more in situ observations are needed to obtain accurate mapping and to orient the devel-
opment of satellite-based classification algorithms [12,13]. Optical remote sensing images
provide essential information on vegetation cover, such as the spatial extent presence
and the dominant vegetation type, the biomass estimate, the percentage cover, and the
leaf area index (LAI), [14–16]. Recent advances in satellite sensors and algorithms now
provide the ability to monitor coastal vegetation at relatively high spatial (<10 m pixel size)
and temporal (weekly) scales [17]. Spaceborne sensors commonly used to map coastal
vegetation ecosystems or habitats include Landsat-8 [18], Sentinel-2 [17,19], RapidEye [19],
and PlanetScope [20].

Mapping coastal vegetation using satellite remote sensing imagery relies on the as-
sumption that the dominant vegetation type presents unique spectral signatures to dis-
tinguish from others [9,21]. However, reflectance spectra of coastal vegetation frequently
overlap, change rapidly over the season, and are not always distinguishable by using
multispectral sensors alone due to the low number of broad spectral bands. Understanding
vegetation spectral reflectance variability is essential and can be used to map different
vegetation species using remote sensing images [22,23]. In addition, understanding the
seasonal evolution, i.e., the phenology [24], of the reflectance spectra of key vegetation
types can provide additional clues for distinguishing them from space [25,26]. It can help,
for example, to identify the season when the difference between the band is at its greatest.

The first objective of this study was to document with in situ measurements the
seasonal evolution of dominant vegetation reflectance spectra, along with biophysical
properties, in a cold temperate intertidal system. Analysis of spectral measurements is
crucial to determine appropriate spectral resolutions and a classification scheme. The four
prevalent vegetation types included eelgrass (Zostera Marina), macroalgae (Ascophyllum
nodosum, Fucus vesiculosus), saltmarsh cordgrass (Spartina alterniflora), and creeping saltbush
(Atriplex prostrata). The second objective was to assess the potential of combining multispec-
tral sensors onboard satellite constellations offering high spatial and temporal resolution
(i.e., Sentinel-2 Multispectral Instrument (MSI), Landsat-8 operational land imager (OLI),
RapidEye (RE), and PlanetScope (PS)) to quantify the phenological change of intertidal
vegetation. Finally, we identified the best seasonal window to classify and map coastal
ecosystems during the relatively short growing season (<6 months) in the studied system.

2. Materials and Methods

2.1. Study Area

The study area is an intertidal saltmarsh and seagrass meadow near the Baie de l’Isle-
Verte National Wildlife Area located along the south shore of the St. Lawrence Estuary,
Québec, Canada (Figure 1). The Baie de l’Isle-Verte (BIV), located east of the sampling site,
is a protected area of 322 hectares; it was created in 1980 by Environment Canada to protect
the intertidal cordgrass marsh of l’Isle-Verte and the adjacent coastal habitats, which are
used by waterfowl and numerous other fauna species.
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Figure 1. True-color image of l’Isle-Verte from PlanetScope captured on 3 September 2019. The outer
red box delimits the subset used for the study area, and the black dots identify the 13 harvest sites.
White dots on the upper panel are the locations selected for the classification validation.

The sampling site is protected from wave action by the Isle-Verte island (municipality
of Notre-Dame-des-Sept-Douleurs) (69°27′00′′W; 47°58′30′′N). This area is home to one
of the largest eelgrass meadows of the St. Lawrence Estuary, a rich and productive envi-
ronment that has been monitored by the Department of Fisheries and Oceans since the
1980s [27,28]. The climate of the study area is cold (mean annual temperature of 3.5 °C),
humid, and highly influenced by estuarine and marine conditions. In the winter, temper-
atures are well below the freezing point and most of the bay is covered by landfast ice
and ice formed along and attached to the shore, also known as ice foot [29] with a mean
winter temperature of −10.8 °C. In the summer, the temperatures on the shore remain
colder than inland due to the marine influence. The tides are semi-diurnal, with an average
tidal range of 3.5 m [30]. The spring tides can reach 4.7 m and are only 1.5 m during neap
tides. The estuarine waters are brackish (about 20–25 PSU) and relatively turbid in the
study area, limiting the detection of submerged vegetation by remote sensing [30–32].

2.2. In Situ Measurement

The sampling area was divided into four zones based on the frequency of immersion,
which is a function of elevation, the ice in the winter, the water temperature, and salinity
(Figure 2). The zones are: (1) the eelgrass bed of Zostera marina (EG); (2) the mud flat
with microphytobenthos (SD: sediment) and the macroalgae zone composed of Fucus and
Ascophyllum, mainly attached to scattered boulders (MA); (3) the low marsh cordgrass
zone dominated by Spartina alterniflora (SC); and (4) the high marsh zone mainly dominated
by Atriplex prostrata (CS, creeping saltbush) [30,31,33]. During the winter, ice scouring
creates ice-made tidal pools, which increase the spatial heterogeneity within the shore
habitats [34–36].
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Figure 2. Drone image collected on 1 September 2019 presenting the delimitation of the four zones of
the study site and the transect of 13 harvest points.

A 600 m transect perpendicular to the shoreline was set up to cover the four zones
identified above (Figure 2). Thirteen stations, or plots, were placed along the transect,
covering each zone of the coast, in relatively homogeneous patches of vegetation (>100 m2),
except for SD and MA where scattered boulders create high spatial heterogeneity from a
remote sensing perspective. A complete species composition list, including the percentage
cover estimates, was established for every plot in 50 × 50 cm (2500 cm2) quadrats (Table 1).

Table 1. Zone type, percentage coverage at the beginning and the end of the season, and the vegetation
biomass harvested at the end of the season in g/m2.

Station Zone Type
Coverage

Beginning of
the Season (%)

Coverage End
of the Season

(%)

Total Biomass
(g/m2)

Latitude (N) Longitude (W)

1 EG 100 100 122.4 47°58′59.52′′ −69°27′24.84′′

2 EG 100 100 45.0 47°58′58.08′′ −69°27′23.04′′

3 EG 50 100 48.3 47°58′57.00′′ −69°27′21.96′′

4 EG 20 50 16.4 47°58′57.72′′ −69°27′20.16′′

5 SD 100 100 NA 47°58′57.36′′ −69°27′19.44′′

6 MA 100 100 476.7 47°58′59.16′′ −69°27′15.12′′

7 MA 100 100 1018.7 47°58′58.80′′ −69°27′15.12′′

8 MA 100 100 1009.0 47°58′57.72′′ −69°27′12.14′′

9 SC 75 100 72.4 47°58′56.28′′ −69°27′10.80′′

10 SC 90 100 200.6 47°58′54.84′′ −69°27′08.28′′

11 SC 100 100 146.8 47°58′53.04′′ −69°27′06.84′′

12 SC 100 100 219.7 47°58′52.68′′ −69°27′06.12′′

13 CS 100 100 40.4 47°58′48.36′′ −69°27′06.48′′

Note: only one station was sampled for CS due to time constraints (i.e., low tide sampling) and difficulty in
identifying CS at the beginning of the season.

Each station was geolocated using a GPS, marked with a wooden post, and visited up
to 10 times from 17 May–25 October 2019 (Table 2). All stations were sampled during the
low tide, approximately every two weeks during the maximum growth period (defined as
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mid-May to early August for this study) and then every three to four weeks for the rest of
the season until late October due to a decrease of change in the vegetation in the summer,
or for practical reasons (instrument availability and other academic activities).

Table 2. Dates, sky, tidal levels and number of stations of the in situ data collection.

Date of Sampling Weather Conditions Tide Level (m)
Number of Stations

Visited

2019-05-17 Cloudy 0.5 10

2019-05-23 Partly cloudy 1.1 13

2019-06-05 Partly cloudy 0.5 13

2019-06-18 Clear sky 0.6 13

2019-07-04 Clear sky 0.3 13

2019-07-18 Partly cloudy 0.8 13

2019-08-13 Clear sky 0.9 13

2019-09-03 Clear sky 0.3 13

2019-10-01 Cloudy 0.2 13

2019-10-25 Cloudy 0.8 12

Plant allometry was determined for each station along with radiometric measurements
and vertical photographs for the vegetation percent cover (every time). More specifically,
plant allometry included the length and width of leaves, and it was determined for eelgrass
(EG), the creeping saltbush (CS), and the saltmarsh cordgrass (SC) for every sampling
date. For each harvested site, the number of plants (or shoots) were calculated inside the
quadrat of ∼2500 cm2 Furthermore, the number of leaves by plant and their lengths and
widths for EG and SC were measured on five plants chosen randomly inside the station.
For the CS, the lengths of the stems were measured using five plants, chosen randomly.
The lengths of the leaves and stems were measured using tape directly on the field. Solely
at the end of the season, the vegetation inside the quadrat was harvested for biomass
determination. The leaf area index (LAI) was calculated using a similar method by [37] and
applied for the EG and SC. Three shoots were collected in the field and photographed with
their leaves (flattened out on a white board next to a ruler). The leaf surface area (SLeaf)
was determined using the wand tool of ImageJ software [38]. SLeaf was measured twice
for the photosynthetic leaf surface (using only the green parts of the leaves) and for the
total leaf surface (including the necrotic tissue). The LAI was then calculated based on the
following, by Watson [37]:

LAI =
SLeaf × Dshoot

1000
(1)

where SLeaf is the mean surface area (cm2) measured for the three shoots of a given quadrat
and shoot density (Dshoot) is the density (N shoots m−2) for the original value for the
same quadrat.

2.2.1. In Situ Radiometry

Field radiometry was performed using a VIS-NIR analytical spectral device (ASD)
spectroradiometer (Handheld2-pro model) recording wavelengths from 325 to 1075 nm.
The upwelling radiance (L, Wm−2sr−1nm−1) spectra were measured at nadir. To avoid
any disturbance of the light field, the radiance measurements were collected with a 5 m
bare optical fiber fitted to the ASD, having a field-of-view (FOV) of 25°. The fiber was
attached at the end of a rod fixed to a tripod pointing the surface at nadir from 113 cm
above the surface to obtain a ∼2500 cm2 surface area (Figure 3), similar to the quadrat
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area. For each spectrum recorded, the ASD collects five spectra and computes the average
and standard deviation of the spectra. Before each surface radiance measurement (Lsurf),
a calibrated white reference (Spectralon plate, Lref) with a known reflectance value was
measured (99.57%) at nadir (Rpanel). At least two sets of measurements (replicates) were
made at each site. More measurements were performed under changing illumination due
to the presence of thin clouds or cloudy conditions.

Figure 3. Acquisition of the emerged surface reflectance with the ASD fitted to a tripod (A) and
typical vegetation target photographed at nadir: CS (B), EG (C), SC (D), and MA (E).

The surface reflectance, Rsurf (unit less), was calculated following Equation (2).

Rsurf =
Lsurf × Rpanel

Lref
(2)

Because the Rsurf were not collected on the same day and time of the day, under dif-
ferent sky conditions, sun-view geometry, and instrument settings (i.e., integration time)
(Table 2), variations in magnitude due to illumination differences were present [39]. Sim-
ilar issues were noticed in the literature [17], and a correction was then applied to Rsurf
following [40]. Briefly, the multiplicative scatter correction method (MSC; [40,41]) mini-
mizes the uncertainty in the reflectance spectra due to different measurement conditions
while keeping the main spectral features. MSC applies a simple correction to the raw
reflectance value at each wavelength of the sample spectra based on the reference spectra.
It uses the offset and the slope values estimated by linear least-squares regression of all
the raw spectra collected in the field against a reference spectrum [41]. In MSC, the linear
regressions are fit to a local wavelength region using a moving window of a specified
length. The reference spectra applied in the MSC to the sample spectra were the mean
spectra of each station’s spectra collected during the growing season.

The spectral similarity between the Rsurf spectra was estimated using the spectral
angle mapper (SAM; rad), used [42] as:

SAM = cos−1

⎛⎝ ∑B
k=1 xkyk√

∑B
k=1 x2

k ×
√

∑B
k=1 y2

k

⎞⎠ (3)

where B is the number of spectral bands, k the ith waveband, x and y are two Rsurf spectra
to compare, respectively. The SAM was applied to both raw and MSC-corrected spectra,
but only the latter were used for further analysis. The SAM was used to examine the
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spectra similarities/differences among different species, and for a given species during the
growing season.

2.2.2. Spectral Resampling and Vegetation Indices

For comparison with satellite data, the measured hyperspectral Rsurf were resampled
to the multispectral bands of OLI, MSI, RapidEye, and PlanetScope using the sensor spectral
response function (SRF) provided by the space agencies. For all sensors, only the visible
and the near-infrared bands (400–900 nm) were used for the analysis.

Many different vegetation indices (VIs) have previously been applied to multispectral
remote sensing data [43]. In the present study, VIs suitable for the satellite sensors were
tested (Table 3) to identify which indices respond best to seasonal variability and vegetation
density metrics (i.e., LAI).

Table 3. Vegetation indices applied to the reflectance spectra and the satellite images.

Name Equation Source

Green–Red Vegetation Index (GRVI)
ρgreen − ρred

ρgreen + ρred
Motohka et al., 2010 [44]

Normalize Difference Aquatic Vegetation
Index (NDAVI)

ρnir − ρblue
ρnir + ρblue

Villa et al., 2014 [45]

Normalize Difference Vegetation Index
(NDVI)

ρnir − ρred
ρnir + ρred

Tucker, 1979 [46]

Soil Adjusted Vegetation Index (SAVI)
ρnir − ρred

ρnir + ρred + 1
× (1 + L) Huete, 1988 [47]

Water Adjusted Vegetation Index (WAVI)
ρnir − ρblue

ρnir + ρblue + 1
× (1 + L) Villa et al., 2014 [45]

Note: where L is the magnitude of green vegetation cover.

2.3. Satellite Data

Cloud-free satellite images from OLI, MSI, RapidEye, and PlanetScope captured
between May and October 2019 were downloaded for the data providers (USGS EarthEx-
plorer, earthexplorer.usgs.gov; Copernicus Open Access Hub, scihub.copernicus.eu; and
PlanetExplorer planet.com/explorer/ all accessed on 16 June 2022).

A total of 16 images (Sentinel-2 (6), Landsat-8 (2), RapidEye (2), and PlanetScope (6))
were selected based on the date, the state of the tide, and the cloud cover, i.e., a low tide
under a clear sky (less than 15% of cloud cover) (Table 4).

Level 1 images (top-of-atmosphere radiance) were atmospherically corrected to re-
trieve the surface reflectance using ACOLITE (version Python 20190326.0), which was
adapted for all sensors. To compute the surface reflectance, the dark spectrum fitting
method was adopted using the standard parameters proposed by ACOLITE [48]. Briefly,
after cloud masking and gas transmission correction of top-of-atmosphere reflectance,
ACOLITE found multiple dark pixels in sub-scenes, to define a “dark spectrum” based
on the lowest reflectance values in any spectral bands. The dark spectrum was then used
to estimate the atmospheric path reflectance according to the best fitting aerosol model.
Sky and sun glint components were also estimated over water surfaces, but not for land
surfaces. The images were then projected, and the VIs were calculated. The homogeneous
area of each vegetation species and sediment were delimited based on GPS collected on
the field and from drone images (collected in September) to compare VIs from the images
to the in situ. The VI values were extracted from those areas covering the stations visited
in the field. For MA, due to the small patch size, subpixel fractions were calculated based
on the sensor’s pixel size using a very high spatial resolution drone image. For each area,
the mean values of the VIs were calculated.
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Table 4. List of the images acquired for the study and the water level when the sensor collected
the images.

Sensors OLI MSI RapidEye PlanetScope

Acquisition
dates/Water
level

2019-05-05 (B)/0.6 m 2019-05-18 (DR)/0.4 m

2019-06-04 (B)/0.5 m 2019-06-08 (DC)/0.8 m

2019-06-18 (DC)/0.6 m

2019-07-04 (B)/0.6 m 2019-07-04/0.6 m 2019-07-07 (DC)/0.5 m

2019-08-05 (DC)/0.6 m

2019-08-14/0.9 m 2019-08-15 (DR)/0.8 m

2019-09-12 (B)/1.2 m 2019-09-03/0.3 m 2019-09-03 (DR)/0.3 m

2019-09-30 (A)/0.1 m

2019-10-10/1.5 m 2019-10-20 (A)/1.6 m 2019-10-03 (DC)/0.8 m

Source USGS Copernicus Planet Planet

Note: A and B in the MSI column depict the satellite Sentinel-2A and Sentinel-2B, respectively. For PlanetScope—
DC and DR correspond to Dove Classic and Dove-R sensors, respectively.

2.4. Classification

Image classification was performed using a machine learning algorithm named the
extreme gradient boosted decision tree algorithm (hereafter referred to as XGBoost) [49].
To classify the vegetation, the XGBoost creates decision trees based on the input features
and assigns specific weights to these features based on their significance in identifying
a vegetation species, thereby defining the feature importance for the model. To train the
XGBoost model, the in situ Rsurf spectra associated with each vegetation type and sediment
were used [50]. The in situ dataset was divided into training and testing datasets with a
4:1 ratio to train the model effectively. We first trained the model using the Rsurf of each
vegetation type and sediment collected during the growing season. This model was applied
to the Sentinel-2 image time series (hereafter referred to as XGBoostnoSeason). Six images
were classified from June to October (one per month). To cover all months of the growing
season, an image from August 2020 was used as no clear sky images were available in
August 2019. This process allowed us to identify the most favorable month to distinguish
intertidal vegetation. Furthermore, to identify the best period in the season to classify the
intertidal coastal habitats, XGBoost models were trained using the in situ Rsurf collected
closest to the date of the satellite image acquisition (hereafter referred to as XGBoostSeason).

The classification accuracy was evaluated using 170 different data points for which
the vegetation classes were known based on the information collected from the study
area and photo-interpretation of the drone or aerial photographs (white dots on Figure 1).
A confusion matrix was generated and the overall accuracy, Kappa coefficient (κ), and per-
class F1-score were calculated to assess the performance of the classification. The κ values
ranged between 0 and 1; they are measures of accuracy that account for the random chance
of correct classification [51]. The F1-score (ranging between 0–1) is the harmonic average of
precision and recall for every class to deal with unbalanced validation data [52].

2.5. Satellite Vegetation Index Validation

The VI values from the reflectance spectra (in situ) and the multispectral satellite
images were statistically analyzed for the different vegetation types. It was then possible to
determine whether the VI values between vegetation types differed between in situ and
satellite data. The accuracies of the satellite VI retrievals were evaluated using the root
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mean square error (RMSE), the mean relative difference (Bias), and Pearson’s correlation
coefficient (r), expressed respectively as:

RMSE =

√√√√√ N
∑

i=1
(yi − xi)2

N
(4)

Bias =
1
N

N

∑
i=1

(yi − xi) (5)

r =

N
∑

i=1
(xi − x)(yi − y)√

N
∑

i=1
(xi − x)2

√
N
∑

i=1
(yi − y)2

(6)

where N is the number of samples in the data set, xi the in situ value, and yi the satellite
estimated value of the parameter of interest; x and y are the corresponding mean values of
the samples. We used a significance level of α = 0.05 for all statistical analyses.

3. Results

3.1. Field Observations
3.1.1. Biophysical Parameters

Over the season, the number of leaves per shoot, the leaves, and the stem maximum
length for Zostera marina (EG), Spartina alterniflora (SC), and Atriplex prostrata (CS) were
measured (Figure 4A). For the SC and the CS, the maximum length increased from May
to August, with lengths reaching about 35 cm (except for station S9 that remained shorter
than 20 cm), which was 30 times longer than at the beginning of the season in mid-May.
A sharp decrease in the absolute length of the stem and leaves occurred after the peak reach
in August, with leaf length values at ∼10 cm in October. In contrast, the EG leaf length
at the beginning of the season was much longer (10 to 25 cm) than the other species. It
must be noted that the length of the leaf was inversely proportional to the elevation relative
to the sea level, with longer leaves in deeper waters (S1–S3). More than twice shorter
leaves were observed at station S4 located at the fringe of the meadow in sightly shallower
waters (Figure 2). The maximum lengths of the eelgrass leaves increased until September,
reaching lengths >20 cm with a maximum of 80 cm and the absolute lengths decreased at
all stations thereafter.

Figure 4. Seasonal evolution of (A) the leaves and stem maximal length and (B) the leaf area index
(LAI) of the EG and SC, and the steam length of the CS from 23 May–25 October 2019.
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The leaf area index (LAI), a commonly used proxy to quantify the density of vegetation
canopy, allows the estimation of the plant canopy surface area per m2 of the substrate
(Figure 4B). For the EG, the LAI was somewhat more stable throughout the season and lower
than the SC in the middle of the summer. The seasonal evolution of EG LAI is explained
with tissue growth until August, and thereafter—a decrease (due to the appearance of
necrosis on the leaves, which reduced the LAI based on the green part of the leaves).
As for the SC, the LAI increased from May to July (S11 ad S12) or August (S9 and S10)
reaching values > 1 m2 m−2 (maximum close to 3 m2 m−2), and then decreased to values
of 0.5 to 1 m2 m−2 in October due to the pigment degradation in the tissue caused by the
temperature change.

3.1.2. Spectral Signatures of Vegetation Types and Sediments

Figure 5 presents the average and standard deviation (shaded area) of each vegetation
type calculated on all available raw and MSC-corrected Rsurf, respectively. As expected,
much larger variability was observed in raw spectra compared to the MSC-corrected,
which was due to the seasonal evolution of the spectra, but also, to some extent, due to
the illumination conditions that varied from date-to-date (e.g., a clear sky versus cloudy
or partly cloudy; (Table 2). Despite a marked seasonality in terms of leaf length and LAI
(Figure 4), the standard deviation of raw Rsurf was much lower for Spartina alterniflora
(SC) compared to the other vegetation species. The largest variability was observed in
the NIR for creeping saltbush, followed by macroalgae and eelgrass. A homogeneous
spectral variability was also observed for bare sediments, except a notable trough around
676 nm corresponding to the red peak of absorption because of chlorophyll-a. The MSC
normalization removed most of the variability, including part of the seasonal variability.
Interestingly, the spectral shape of the MSC-corrected spectra for MA in the visible bands
showed virtually no variability, suggesting a very stable pigment composition across the
growing season for this type of vegetation. For comparison, EG and SC showed the largest
variability in the visible bands after the application of the MSC, followed by SD.

Figure 5. Mean reflectance spectra of four vegetation species and sediments and their standard
deviations (shaded area): (A) raw Rsurf; (B) MSC-corrected Rsurf.

The SAM quantifies the spectral similarity and difference between the vegetation species
(Figure 6). Sediment (SD) spectra differed markedly from all vegetation types (SAM > 0.29 rad),
with the largest difference with MA. The spectral differences between the EG and MA, EG
and CS, and MA and SC showed intermediate values (0.23 < SAM < 0.27 rad). Between the
different vegetation types, MA and CS showed the smallest differences (0.1 rad), followed by
SC versus CS (0.17 rad).
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Figure 6. SAM analyses were applied to the MSC-corrected Rsurf of four vegetation species
and sediments.

3.1.3. Spectral Phenology

In general, the spectral shape of vegetation species remained almost the same through-
out the season. However, there can be spectral crossovers between species due to changes in
the absorption strengths and pigment concentrations. Therefore, it is necessary to consider
intra- and inter-species spectral variability throughout the season.

In the visible spectrum, the reflectance peak of the healthy EG was stable over the
season and was located between 555 and 564 nm (Figure 7C). The EG showed a very
low reflectance peak at the beginning of the season (early May) before jumping up to the
highest reflectance for this season at the end of May. Afterward, the spectra remained,
with mid- to low peaks and values observed in the middle and at the end of the season.
Two major absorption bands were visible and located in the blue (489–496 nm) and red
(671–677 nm), respectively. Those absorption bands are typical of the absorption features of
chlorophyll and carotenoids. Note that the spectrum observed on 23 May differed from the
other. The exact reason for this anomaly could not be confirmed due to the unavailability
of supporting data. At any other moment through the season, the EG spectra stayed similar
without a clear seasonal evolution.
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Figure 7. MSC-corrected reflectance spectra collected through the summer for four vegetation
species and sediments collected from 17 May to 25 October 2019 for CS (A), SC (B), EG (C), MA (D),
and SD (E).

The macroalgae spectra remained stable over the season (Figure 7D), with almost no
change in the visible range compared to the NIR. The location of the green reflectance peak
was regular, around 568 to 574 nm. Still, two absorption bands could be located, one in the
green (504–520 nm) and the other in the red (671–678 nm). Secondary reflectance peaks are
found in the red near 650 and 670 nm, respectively (c.f. Figure 7).

The peaks of reflectance of CS and SC were shifted to the longer wavelengths in the
beginning (May to end of June) and at the end (mid-September to November) of the season
(Figure 7A,B), but were almost the same as the EG in the middle of the summer (July to the
middle of September). For the SC, the peak reflectance location shifted from 556 to 648 nm
from the summer to the fall (Figure 7B). As for CS, the reflectance peak was located between
554 nm in the summer and shifted to 648 nm in October (Figure 7A). Both species presented
similar absorption bands in blue (488–499 nm) and in red (672–680 nm) portions of the
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visible. The later corresponds to the red absorption peak of chlorophyll-a. The seasonal
shift in the reflectance peak can be explained by the composition of the dominant pigment
changing at the beginning and end of the season.

SAM was used to assess the seasonal variation in the spectral reflectance for each veg-
etation type and bare sediment (Figure 8). For MA and SC, the spectra did not change over
the season with SAM values constantly below 0.18 and 0.14 rad, respectively (Figure 8B,D).
Even though the SAM values were low for SC, we observed a difference in the spectral shape
between the beginning/end and the middle of the season, but the differences remained
small in terms of SAM. For example, the August spectrum was clearly different relative
to the spectra measured in May, June, and the end of October (0.11 < SAM < 0.14 rad; c.f.
Figure 8B). Among the four vegetation types, the CS showed the clearest seasonal evolution
in terms of reflectance (Figure 8A). The values obtained by the SAM ranged from 0.02 to
0.27 rad. Spectra at the beginning (May and June) and at the end (September and October)
of the season were similar, and different from those from the middle of the season (July
to August). As for EG, the SAM values ranged from 0.04 to 0.38 rad (Figure 8C), with an
anomalous value for the spectra collected on 23 May. The high SAM values for those spectra
may be attributed to a particular moment corresponding to a high EG growth rate, or to the
unstable sky conditions while collecting in situ radiometric data. As mentioned previously,
the exact reason for this anomaly could not be confirmed due to the unavailability of
supporting data. At any moment, the EG spectra stayed remarkably similar without a clear
seasonal evolution.

Figure 8. SAM analyses were applied to the reflectance spectra of four vegetation species and
sediments collected from 17 May to 25 October 2019 for CS (A), SC (B), EG (C), MA (D), and SD (E).

35



Remote Sens. 2022, 14, 3000

Figure 9 shows the SAM calculated for a vegetation type using the spectra at a given
date, against another date. This analysis helps to understand the variations of spectral
changes of a species relative to another during the summer season. The most significant
difference between all vegetation species spectra occurred at the beginning (May and June)
and the season’s end (September and October). For example, Figure 9A compares creeping
saltbush (CS) with the other vegetation types (EG, MA, SC) and sediments (SD). The largest
difference between CS and the other was in May, except for SC, where the SAM remained
stable during the growing season (0.2 rad). In June and July, CS and MA were very similar
and difficult to distinguish spectrally (SAM < 0.1 rad) Figure 9A,D. A similar remark can
be made for EG, where the lowest SAM were generally found in July. It also suggests that
EG differs more from the other vegetation types in the spring (end of May) and in early
October. Saltmarsh cordgrass (SC) is more easily distinguished from EG and MA at the
beginning and end of the season (Figure 9B), but more different from sediment in July.
The sediment spectra are different from all ofthe vegetation spectra (Figure 9E). Overall,
this analysis indicates that it can be difficult to distinguish many vegetation species based
on a single date in the middle of the growing season (June to August).

Figure 9. SAM analyses applied to the reflectance spectra according to the vegetation species and
sediment over time, collected from May to the end of October for CS (A), SC (B), EG (C), MA (D),
and SD (E).

3.2. Classification of Vegetation Type

To examine the implication of spectral and seasonal variability of the vegetation
type for mapping the coastal intertidal zone using multispectral imagery, a classification
algorithm was applied to the Sentinel-2 MSI time-series covering the growing season
(Table 4). This sensor was selected because (i) it provides the best response to seasonal
variability and availability over the critical dates for the vegetation phenology; and (ii) it
has 13 spectral bands, including key bands in the red-edge portion of the spectrum that is
suitable for vegetation mapping.

The XGBoost algorithm was first applied to the image using the in situ spectra associ-
ated with the date closest to the acquired image (XGBoostSeason, Figure 10). By changing
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the input spectra, the algorithm demonstrated a successful identification of the vegetation
species, which confirmed the occurrences and spatial distributions by each species (Table 5).
For the first and last images (May and October), most of the classification mistakes were
due to confusion between saltmarsh cordgrass (Spartina alterniflora, SC) and the sediment
(not shown) due to their similar spectral signatures at this time of the year (Figure 9B,E).
On every image, the algorithm seems to have a problem identifying the macroalgae (MA).
This might have been caused by the spatial resolutions of the images and the sizes of the
MA patches attached to the boulders that were generally smaller than the pixel sizes. Note
that none of the classified images present MA on the rocky shores of the island (west tip
and north east coast of the island). Based on the classification evaluation metrics (overall
accuracy and κ indices; (Table 5), early June and the end of September images were best
suited for the coastal vegetation cover mapping. In other dates, the overall accuracy reached
about 70% with the worst performance obtained in October (accuracy of 65% and κ of 0.56).

Table 5. Model validation statistics (overall accuracy (κ), and mean F1-score) of XGBoostSeason.

Date
Overall

Accuracy (%)
κ Mean F1-Score

2019-05-05 74 0.68 0.25

2019-06-04 71 0.63 0.20

2019-07-04 72 0.65 0.20

2020-08-05 69 0.61 0.24

2019-09-30 87 0.84 0.29

2019-10-20 65 0.56 0.23

Figure 10. Classification of coastal and intertidal vegetation using XGBoostSeason applied to the
Sentinel-2 time series.

Even though XGBoostSeason can classify the intertidal zone with significantly good
accuracy, it is not practical to train separate models for every month of the growing
season. Therefore, we trained a single XGBoost model (XGBoostnoSeason) (Table 6) using
the same set of in situ spectra, without accounting for the seasonality. The goal was to
evaluate the sensitivity of the classification to seasonal variability in the vegetation spectra.
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XGBoostnoSeason yielded marked differences in vegetation mapping (Figure 11) throughout
the season when spectral evolution was not taken into account. More sediment was
identified in May, reflecting the early stage in the vegetation development and/or the low
LAI. Macroalgae occupied a relatively large surface area, which was not consistent with the
field observations. As expected, the classified image from May has the lowest accuracy and
κ index (57% and 0.44, respectively). Between May and June, we see an expansion of the EG
and SC surface areas. The images from July and August have a problem identifying other
vegetation types than EG. In the summertime, the vegetation spectra from all types were
too similar and could not be distinguished by the model trained without accounting for the
seasonality in Rsur f . The best performance of XGBoostnoSeason was obtained in September,
with accuracy and κ values of 87% and 0.85, respectively. At this time, the vegetation
was fully grown and the senescence had just started, yielding spectrally distinguishable
surfaces. The October image yielded the second-best classification metric despite some
senescence within the vegetation. It is interesting to note that the October image did not
perform as well with the in situ spectra associated with the same date. Although the results
of the two classifications for the October image are quite different, the validation results are
almost similar. This can be explained by confusion from the algorithms between different
species. For example, in the XGBoostSeason, the majority of the confusion is with the SD
and the MA, while in the XGBoostnoSeason, the confusion is between SC and SD, resulting
in similar validation statistics.

Table 6. Model validation statistics (overall accuracy (κ), and mean F1-score) of XGBoostnoSeason.

Date
Overall

Accuracy (%)
κ Mean F1-Score

2019-05-05 57 0.44 0.18

2019-06-04 59 0.47 0.17

2019-07-04 63 0.52 0.18

2020-08-05 57 0.45 0.19

2019-09-30 87 0.85 0.29

2019-10-20 65 0.55 0.23

Figure 11. Classification of coastal and intertidal vegetation using XGBoostnoSeason applied to the
Sentinel-2 time series.
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Overall, only the eelgrass meadows were well classified (>85% accuracy) in all images,
although they were over-represented in the middle of the summer. In contrast, confusion
between MA and EG was observed for most images, as observed on the rocky coast of the
island at the western tip and along the northeast coast.

3.3. Remote Sensing of Coastal Vegetation Phenology

We further assessed the potential of recent satellite constellations to monitor the phe-
nology of intertidal vegetation found in the study area. The VI time series were computed
on both in situ and satellite-derived Rsurf from OLI, MSI, RapidEye, and PlanetScope. We
first evaluated the robustness of each VI in terms of its capacity to predict the leaf area
index (Section 3.3.1), a classical proxy for vegetation biomass, as well as its response to
the seasonal variability in the vegetation. It turns out that the NDVI provided the highest
correlation with LAI, which was selected for further analysis. After a comparison of in situ
NDVI (NDVIin situ) with satellite-derived NDVI (NDVIsat) (Section 3.3.2), we examined the
potential of this spectral index to monitor coastal vegetation phenology in our study area
(Section 3.3.3).

3.3.1. Vegetation Indices as Predictor of LAI

Among the VIs listed in Table 3, the NDVI presented the best predictor of the LAI
(highest r and RMSE). Figure 12 shows the linear relationship between LAI and the NDVI
for EG and SC, separately. For both species, we found an important variability in terms
of LAI at some stations at a given NDVI value. This is particularly evident at stations S1
and S2, where a dense EG cover (100% coverage throughout the growing season) produced
almost constant NDVI value, while the LAI varied by a factor of 2. At other stations where
the initial % coverage was lower (Table 1), seasonal variability was more evident, especially
for the SC. Note that the MSC correction of Rsurf tends to reduce the variability in NDVI,
but increases the Pearson correlation with the LAI (Table 7), confirming the relevance for
that correction.

Table 7. Pearson’s correlation coefficient (r) of the LAI versus VI relationships obtained for EG and
SC. The highest (bold) and lowest (italic) values are highlighted.

VIs
Raw Spectra MSC-Corrected Spectra

EG SC EG SC

NDVI 0.59 0.50 0.65 0.51

SAVI 0.38 0.36 0.53 0.41

WAVI 0.31 0.04 0.54 0.01

NDAVI 0.20 0.13 0.21 0.14

GRVI 0.28 0.44 0.33 0.49

3.3.2. Satellite-Derived NDVI Validation

Within a given time frame of two days, 15 match-ups, i.e., co-incident in situ and satel-
lite observations, were obtained considering the four satellite sensors evaluated (Figure 13).
The relatively strong linear relationship (r = 0.76) between the MSC-corrected NDVIin situ
and NDVIsat, and the low bias (−0.054) and RMSD (0.16) indicate good agreement between
the in situ and satellite NDVI. The NDVIin situ values followed were clustered by vegetation
type showing that the MA had the lowest values, followed by SC, EG, and CS. For all sen-
sors, a much larger range of NDVIsat (−0.24 to 0.95) was obtained compared to NDVIin situ
(0.13 to 0.75). This was also true for individual vegetation types (e.g., MA and EG), where
the NDVIin situ varied in a narrow range compared to the satellite retrievals. One explana-
tion for the low range in NDVIin situ was due to the MSC normalization of the in situ spectra
(see below). Sentinel-2 MSI and Landsat-8 OLI presented the best relations between the
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NDVIin situ and satellite values. The RapidEye and PlanetScope sensor provided generally
good results for most of the vegetation species, except for the MA. These sensors had lower
spectral resolutions (i.e., broad spectral bands), yielding outliers, as shown in Figure 13.

Figure 12. Linear relationship between the in situ MSC-corrected NDVI and LAI for (A) EG and
(B) SC. Grey data points represent outliers.

Figure 13. Scatter plot of in situ and satellite-derived NDVI. Different symbols are for sensors and
colors for vegetation types (see legend). Grey data points represent outliers.

3.3.3. NDVI-Based Phenology

Figure 14 shows the seasonal evolution of NDVI for each vegetation type calculated
from the in situ MSC-corrected (solid lines) and raw (dashed lines) reflectance spectra.
Interestingly, there is not much crossover with the NDVI value among species; each has
its specific range (as in Figure 13). The shape and range is similar for both normalized
and raw spectra for SD and MA, but the normalization reduces the range for CS, SC,
and EG. As expected, bare sediment (SD) or mud had the lowest NDVI values (<0.15),
followed by SC, EG, CS, and finally MA. For SD and MA, the NDVI was relatively constant
over the season with values of 0.04 ± 0.11 and 0.82 ± 0.07, respectively. Note that MA
NDVI was for “pure” spectra while satellite-derived MA NDVI values considered the
subpixel coverage (sediment mixed with MA). We can see a clear seasonal evolution for
the CS with NDVI as obtained from MSC-corrected reflectance ranging between 0.44 and
0.76. For SC, the NDVI peaked in August at 0.49 and was minimum in May with a value
of 0.33. For these two vegetation types, in particular, the MSC-correction substantially
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reduced the range of variability Figure 14. EG NDVI constantly increased from May to
early October when computed on MSC-corrected spectra but showed two peaks in early
July and early September when computed on raw spectra. Note that the decrease in NDVI
in mid-summer (July–August) was likely due to the presence of necroses in the leaves. EG
seasonal evolution also varied among stations with more marked evolution at S3 and S4
where the initial coverages were 50% and 20%, respectively (Table 1; Figure 4).

Figure 14. Temporal evolution of the NDVI values from the in situ spectra collected from May to the
end of October of four vegetation species and sediments. Dashed lines are NDVI calculated on raw
reflectance spectra.

Since only two images were available for Landsat-8 OLI and RapidEye sensors, re-
spectively,we assessed the space-based phenology using Sentinel-2 and PlanetScope con-
stellations. Six images were available for the Sentinel-2A and 2B MSI sensor from May
until the end of October 2019, covering most of the critical moments for the coastal and
saltmarsh growing season (Figure 15), but with a more than 2-month gap between 4 July
and 12 September.

Eight images from mid-May to early October 2019 were available for the PlanetScope
sensor (Figure 16). PS images filled the gap of MSI images, but no images beyond October
3 were available for the senescence period.
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Figure 15. Time series of NDVI from the Sentinel-2 MSI acquisition obtained at a low tide. Homoge-
neous regions of interest (ROIs) for the four vegetation types and sediments where the NDVI values
were extracted are also shown.

Figure 16. Time series of NDVI from the PlanetScope sensor acquisition obtained at a low tide and
zoomed in on the region of interest. Homogeneous regions of interest (ROIs) for the four vegetation
types and sediments where the NDVI values were extracted are also shown.

Figure 17 depicts the phenology of NDVI by combining the two satellite sensors for the
pixels extracted from five homogeneous regions of interest (ROI) located in the sampling
area (Figure 16). Steady growth in NDVI for all vegetation types was identifiable from May
to August, while the sediment stayed relatively constant. The agreement between MSI
and PS was very good for CS and SC throughout the season, except in September/October
for SC. The phenology of these two vegetation types agree well with in situ observations
(Figure 14) with peaks in August reaching 0.75 and 0.55 for CS and SC, respectively.
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Figure 17. Satellite-based phenology of coastal vegetation from MSI and PS sensors for the four
vegetation types and sediments. NDVI pixels values were extracted from homogeneous surfaces
depicted in Figure 16. The LOESS fit was applied for each vegetation type to better visualize
the phenology.

A more noisy signal was obtained for EG, which showed higher NDVI relative to
other vegetation types. This result contrasts with in situ observations (Figure 14), but not
with Figures 15 and 16 where dense EG stations (S1 and S2) constantly showed higher
NDVIsat compared to NDVIin situ. EG mapping was more sensitive to tidal differences
among satellite acquisitions as it stood in deeper water (e.g., <0.2 m above sea level) relative
to CS and SC. The phenology of this vegetation type was more evident from space than for
field observations probably due to the percentage coverage of our selected stations.

Macroalgae phenology extracted from satellite images was more pronounced than
expected from the in situ observations. Again, the large difference in MA phenology
between in situ and the satellite was due to the spectral resolution versus the size of the
vegetation patches. The lack of a continuous cover of MA limited our interpretation for
this type of vegetation. The SD showed the lowest values and remained relatively constant
throughout the season for a given sensor, although a small peak was observed in the late
summer. A relatively important discrepancy was obtained between MSI and PS. The later
yielded NDVI within the range of the in situ data with non-seasonal variability. In contrast,
MSI values for the sediments were relatively high (0.25 to 0.4).

In summary, the images from PS and MSI sensors, allowed us to detect the seasonal
evolution of the vegetation. By combining the time series of the two sensors, we can
better see the complementary data, offering a better understanding and monitoring of the
phenology of the vegetation.

4. Discussion

In this study, we showed that spectral seasonal evolution in coastal and intertidal
vegetation types can be detected by in situ and spaceborne sensors. This evolution is
related to the biophysical metric of the vegetation, such as the LAI, but it depends on the
vegetation type and the pigment composition. A better understanding of the vegetation
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phenology provides key insights for the coastal mapping based on spectral classification,
with strengths and limitations discussed in the following sections.

We observed an important evolution of the vegetation biophysical metrics, with a
growth phase from May to September, which was particularly evident for saltmarsh
cordgrass (Spartina alterniflora) and creeping saltbush. This observation was consistent
with other studies [53–55]. For eelgrass, the growth continued until the beginning of
October, while the LAI showed an increase between May and June, remained constant until
September, and was followed by a small decrease at the end of the season. Similar results
were shown in other studies [56–58].

Our vegetation Rsurf spectra measurement is consistent with other studies [17,59–61].
The in situ spectra analyses suggest that the general shapes of Rsurf are similar for all vege-
tation types (EG, MA, SC, and CS), but markedly different from the SD. Even if the shape
is similar, they are different from each other and evolve over the season, as demonstrated
using the SAM and the NDVI. This seasonal evolution is crucial for ecosystem remote
sensing and is rarely mentioned and documented in other studies [62]. The spectra from
mid-June to the beginning of September often overlapped. At that time of the growing
season, the distinction among vegetation types was less obvious. Furthermore, the evalua-
tion of the pure vegetation spectra revealed that MA and EG were stable throughout the
season under 100% cover. In contrast, CS and SC presented more variability during the
growing season with similar spectra at the start (May and June) and at the end (September
and October), but different in the middle of the season (July to August).

Sentinel-2 images were chosen to classify the intertidal and coastal vegetation types
in the study area. Using the identical spectra for all images, the XGBoost algorithm
(XGBoostnoSeason) was not able to distinguish the vegetation types in July and August.
Nevertheless, good results were obtained in June and at the end of the growing season
(September and October). The highest accuracy (κ of 0.85) was obtained with the September
30th image at the onset of the senescence phase, suggesting that fully-grown vegetation
is spectrally distinguishable from each other. We also demonstrate that accounting for
vegetation phenology in the classification training dataset (XGBoostSeason) improved the
classification accuracy by about 15%.

The NDVI was the most suitable proxy for the LAI among different VIs, and it was
selected to evaluate the phenology from remote sensing using in situ spectra and multispec-
tral images from four sensors (Landsat-8 OLI, Sentinel-2 MSI, PlanetScope, and RapidEye).
The NDVI has been widely demonstrated to be a good descriptor of vegetation dynamics
for many types of ecosystems, including wetlands [17,63–66]. It is also widely used in
satellite-based phenology monitoring, as it could be applied to almost any multispectral
sensors on a wide range of platforms (in situ, drone, plane, satellite) [67,68]. Based on
in situ NDVI measurements, SC and CS clearly showed a seasonal evolution, while MA,
EG, and SD were more stable throughout the season. Frequent observations are needed
to quantify the seasonal variability and evolution of the vegetation in a cold temperate
environment due to a relatively short growing season (<6 months). Changes in coastal
vegetation, such as growth, flowering, senescence, and shedding of leaves, take weeks and
even months [68–70]. For this reason, we recommend visiting the field as soon as the ice
starts to melt (i.e., late March or beginning of April) [69,71]. In our study, we started the
fieldwork in mid-May when the EG was already growing, with some stations showing
100% areal coverage.

By combining MSI and PS images, we could also track the vegetation phenology
with a clearer signal for EG compared to the in situ. In general, satellite-derived phenol-
ogy was consistent with the in situ NDVI values shown in this study and as presented
by [17,60,72,73]. For example, Zoffoli et al. [17] also used MSI images to document the
phenology of intertidal seagrass (Zostera noltii) in France. For comparison, these authors
obtained 22 MSI images obtained at a low tide under cloud-free conditions for a ten-month
period (March to December). With only six MSI images in our region, the combination
with the PlanetScope constellation was necessary to fully capture the growing seasons and

44



Remote Sens. 2022, 14, 3000

the following senescence. However, if our result demonstrates the feasibility, differences
in spectral and spatial resolutions between sensors may complicate the combination of
multisensor data for phenology monitoring.

As for Landsat-8 and Sentinel-2—both EO missions are dedicated to land cover moni-
toring and are widely used for phenology assessment. They both acquire images at lower
temporal and spatial resolutions compared to PlanetScope. Even if the images are not
available at a rapid rate due to tidal height and cloud cover restrictions, we can expect
monthly images for the Sentinel-2 sensor, but much less for Landsat (one or two per year).
Sentinel-2 images are easily usable and provide much better spectral resolution compared
to the very-frequency acquisition of PlanetScope. Therefore, Sentinel-2 images allow further
mapping capability by applying a classification algorithm using a high number of bands
( 10 bands). Still, Landsat is a very useful sensor, offering long-term time series for detecting
and relatively good spectral capability for coastal mapping [74–76]. In addition, the tempo-
ral resolution will improve with the recent launch of Landsat-9 in September 2021, opening
the door for data fusion from MSI and OLI [73,77,78]. The fusion of Landsat and Sentinel-2
images has tremendous potential to improve the ability to detect vegetation change and to
cover all key periods of the vegetation phenology. However, in our case, combining the
data was not necessary because the Sentinel-2 time series was already covering all of the
vegetation phenology.

The PlanetScope sensor constellation is relatively new and offers many advantages,
including high temporal resolution obtained at high spatial resolution compared to Landsat
and Sentinel-2. Those images appear to be promising for extracting natural resources infor-
mation, including intertidal ecosystem estimates and potentially even vegetation diversity
estimates [20,79,80]. As seen in our results, the sensor provides many images covering
most of the vegetation key. The spatial resolution of PlanetScope images provides many
details, but it is not without issues. Indeed, the variable radiometric quality, inconsistent
radiometric calibration across multiple platforms, and low spectral resolution are central
challenges for marine and coastal applications, such as vegetation classification and ecosys-
tem monitoring [20,81–83]. The low spectral resolution of the first Dove generation limits
its use for the vegetation type classification. Furthermore, the noise level is high, and the
radiometric quality and inconsistency are low on clusters of pixels, especially in homoge-
neous pixels. This indicates the low signal-to-noise ratio of PlanetScope images [20,84]. This
issue was encountered during the atmospheric correction, and even after the correction,
noise can still be detected in the NDVI images. The next generation of PlanetScope sensors
launched in January 2022 with a greater number of bands (eight bands) and a radiometric
signal that may have helped resolve most of the limitations of the early sensor fleets.

The presence of water overlying the vegetation at the time of in situ data acquisition
or in the images highly affected the spectral reflectance due to its high absorption in the red
and the infrared. With high water levels within the vegetation, the species identification
can be difficult, and further processes will be needed to use the images and spectra [85–88].
For this reason, the state of the tidal level could significantly influence the spatiotemporal
distribution of remotely-sensed parameters, such as vegetation NDVI, which uses red
and infrared wavelengths. For example, the bathymetric map combined with water level
measurements during the data acquisition could be used to correct the water column
interference to retrieve the bottom reflectance [88]. However, estuarine water masses of
the St. Lawrence are characterized by high concentrations of colored dissolved organic
matter (CDOM) and suspended sediments that severely limit the light penetration, even
in the visible bands [89], and impair water column correction. Due to the loss of spectral
information in the NIR, submerged vegetation indices need to be based on visible bands
only [40,88], or located in the red-edge portion of the spectra [59]. In conclusion, we
recommend selecting images at the lowest tides possible to maximize the area to be mapped
and to minimize the effect of water on the vegetation. The maximum tidal height that
allows the vegetation to be mapped using multispectral data requires prior knowledge of
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the area. Furthermore, the mapped area will mainly depend on the area characteristics,
such as the bathymetry/elevation and location of the vegetation.

Many atmospheric correction (AC) algorithms can be applied to multispectral images;
this is a crucial step in the processing of remote sensing data for aquatic and coastal
applications. Ideally, AC aims to separate the top-of-atmosphere observation by the satellite
sensor into the signal from the atmosphere and the signal from the surface to retrieve
surface reflectance [90]. By using PlanetScope and RapidEye sensors, we are limited by the
atmospheric correction algorithm due to a lack of spectral bands (as, for example, in the
SWIR). Even though we can apply different atmospheric corrections, the algorithm applied
to the image needs to be the same to compare the sensors together. Here, we adopted
ACOLITE, as it allows the application of the dark spectrum fitting (DSF) atmospheric
correction method to all imagery evaluated in this study. Furthermore, ACOLITE has
been developed for the coastal environment and is currently widely used for aquatic-
based applications, such as coastal water monitoring [91–94]. The sensitivity of satellite-
derived NDVI phenology to AC could have been quantified, which was out of the scope of
this study.

The area covered by our sampling sites was minimal (472,800 m2) as we focused our
effort on one EG meadow and intertidal vegetation section to maximize our frequent visits
to the sites. This area was selected for its diversity of vegetation cover and easy access but
was nevertheless quite representative of the entire coast of the region. The small size of the
studied area helped us to develop excellent knowledge of the vegetation dynamics and
the ecosystem structure. However, the sites were not optimal for the detection of small
macroalgae patches (e.g., <1–2 m2) with the limited satellite spatial resolution.

5. Conclusions

In this work, we assessed the seasonal dynamics of four typical intertidal vegetation
types encountered in cold temperate coastal littoral, including macroalgae (Ascophyllum
nodosum and Fucus vesiculosus), eelgrass (Z. marina), saltmarsh cordgrass (S. alterniflora),
and creeping saltbush (A. prostrata). The seasonal evolution was determined based on
biophysical characteristics (leaf area index), in situ reflectance spectra, vegetation indices,
and classification of multispectral images. We identified a significant seasonal change in
phenology of saltmarsh cordgrass and creeping saltbush. Even though some seasonal
change could be observed for some vegetation types, no significant changes were observed
in the in situ reflectance spectra for eelgrass and macroalgae. Moreover, we evaluated the
potential of the NDVI to quantify the vegetation phenology from space. We demonstrated
that the NDVI was the best vegetation index proxy to track the phenology that could be
applied to multispectral cameras (including drones). Satellite-based NDVI, which strongly
correlates with in situ values for saltmarsh cordgrass and creeping saltbush, were used to
assess the potential of multispectral instruments to assess the phenology. By combining
Sentinel-2 and planet imagery, we showed that the seasonal evolution of eelgrass NDVI
was more evident than with in situ measures, likely because of the initial coverage of the
quadrats (2500 cm2). The extreme gradient boosted decision tree (XGBoost) algorithm was
applied to a monthly time series of Sentinel-2 using in situ spectra as input spectral classes.
The results indicate September as the best month of the year to classify coastal vegetation
in our cold temperate environment, i.e., when the vegetation is fully grown and spectrally
distinguishable.

Further work is required to monitor the vegetation species from this complex ecosys-
tem located in a cold temperate climate with a relatively short growing season. We intend
to extend the vegetation species mapping, especially for marshes that have a high plant
diversity (Salicornia maritima, Spartina pectinata, Spartina patens, etc.). Satellite remote sens-
ing provides access to spatial scales, enabling the environment to be documented over vast
areas. Widening the study area to cover all the coasts of the St. Lawrence maritime estuary
and Gulf system would be interesting to know their conditions and interannual evolution.
In addition, it will extend our knowledge of vegetated coastal ecosystems and their overall
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importance to the environment. Furthermore, it would be interesting to evaluate the carbon
stock sequestration rates in coastal habitats (seagrass and marshes). Remote sensing tools
are nowadays developed to quantify the extent of seagrasses and marshes, the species
composition of these environments, and the above-ground biomass. In addition, some
authors have demonstrated the possibility of estimating carbon stocks using empirical
algorithms [95–97]. With these types of data, it will be possible to document and monitor
changes in carbon stocks and estimate emissions as functions of ecosystem degradation,
conservation, and restoration. Finally, historical data could be used to assess the history of
carbon stocks and emissions and the spatial distribution and changes of vegetation species.
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NDAVI normalize difference aquatic vegetation index
NDVI normalize difference vegetation index
OLI operational land imagery
PS PlanetScope
RE RapidEye
Rsurf surface reflectance
SAVI soil-adjusted vegetation index
SC saltmarsh cordgrass
SD sediment
WAVI water adjusted vegetation index
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Abstract: The objective assessment of ecological systems forms the basis of solving ecological envi-
ronmental problems. Evaluating the ecosystem status of each county through the gross ecosystem
product (GEP) can reveal the value of each ecosystem. In this study, we used the eco-economic
method to calculate the GEP and the green gold index (GGI) of 13 counties in Hulunbuir City be-
tween 2015 and 2020. The results show that: (1) The GEP of Hulunbuir City in 2020 was 980.025 billion
yuan. The GGI was 8.36, which was much higher than the national average. (2) Forestry and pastoral
regions were the main contributors to the regulation service. (3) Hulunbuir City had the largest forest
value, while the farmland value was the lowest. The most important sources of forest, grassland,
wetland, water, and farmland value were Oroqen, Xin Right Banner, Xin Left Banner, Xin Right
Banner, and Morin Banner, respectively. Based on our analysis, we found significant results through
the transformation of the “Two Mountains” in Erguna, Genhe, and Zhalantun. The other counties in
our study must optimize ecological research with respect to the traditional economic model. Our
results provide a scientific reference for the application of the “Two Mountains” base in each county.

Keywords: gross ecosystem product (GEP); green gold index (GGI); “Two Mountains” transforma-
tion; county territory

1. Introduction

The rapid development of the global economy has negatively affected the ecological
environment. Ecological and environmental crises, such as ecosystem function degra-
dation, excessive natural resource consumption, biodiversity reduction, and pollution,
have adversely affected the well-being of humans [1]. These global concerns have led to
an increased focus on ecological and environmental management and sustainability [2].
Ecological resources not only provide a variety of tangible products but also provide ecosys-
tem services [3]. Assessment of ecosystem status will aid in the sustainable utilization of
ecological resources and help in the development of solutions [4]. Since Constanza [5] and
Daily [6] published their articles on the value of ecosystem services, numerous scholars
have conducted a series of similar studies worldwide [7–11]. As a result of growing re-
search, scholars have proposed the incorporation of ecological benefits into the evaluation
systems of economic and social development [12]. Consequently, countries worldwide
have started accounting and auditing the value of natural resources. Concepts such as
green gross domestic product, system of environmental-economic accounting, and gross
economic-ecological product have emerged [13–15]. Ouyang (2013) proposed the con-
cept of the gross ecosystem product (GEP), corresponding to the gross domestic product
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(GDP) [16]. GEP is the sum of the final material products and service values provided
by ecosystems for human well-being and sustainable economic and social development,
including the ecological product value, ecological regulation service value, and ecological
culture service value [17]. Thus, the GEP forms an independent ecosystem value accounting
system. The evaluation of GEP directly reveals the substantial value of an ecosystem in
the study area [18]. Ma [19], Bai [20], and Dong [21] evaluated GEP in China, Yunnan
Province, and Ordos City, respectively. County region is the basic administrative unit
in China and the micro-subject and key link of ecological civilization construction [22].
Scholars realized the importance of assessing the effectiveness of ecological protection at
the county scale, and GEP research is gradually focusing on that scale. You [22], Yu [23],
and Pema [24,25] evaluated the GEP of China’s Eshan County, the Chenggong District,
and Garzê Tibetan Autonomous Prefecture and Xishui County, respectively. However,
few studies have compared GEP among counties. Not only can county-scale GEP be used
to understand the status of these local ecosystems, but more importantly, the joint effect
of comparing GEP among counties plus environmental protection can help improve the
GEP at a larger scale. Therefore, this study calculated, compared, and analyzed the GEP
of 13 counties in Hulunbuir City and obtained the GEP of Hulunbuir City by summing
the GEP of the counties. Compared with a direct accounting of Hulunbuir City GEP, the
results of this study have more application value and social significance. By focusing
on individual counties, targeted ecological protection measures can be implemented to
ultimately improve the ecosystems of the greater Hulunbuir City area, which is one of the
innovations of this study.

GEP accounting methods mainly include energy-value and quality-value evaluation
methods [26], with the quality-value method being used globally. The GEP accounting pro-
cess comprises two parts: (1) ecosystem service quality and (2) ecosystem service value [16].
The output of ecological products and the quantity of the ecosystem service function,
namely the ecosystem service quality, are calculated through various ecological models.
The units of ecosystem service quality are not the same. Accounting for the ecosystem
services’ value requires transforming the ecosystem service quality into a uniform and
directly linear unit [27]. Then, the values can be summed up to obtain the GEP. In previous
studies, no uniform standard was developed for this calculation. GEP values are different
when different evaluation methods, evaluation indexes, and price parameters are selected
for the same region. Jin [28] and Fan [29] both calculated GEP in Guizhou Province, but
the methods and indicators of evaluation were different, leading to varied results. These
inconsistencies skew our understanding of GEP in a study area. To improve the science,
standardization, and operability of GEP accounting, the National Development and Reform
Commission of China issued the “GEP Accounting Specification (Trial)” in 2022.

While exploring the replicable, extensible, and demonstrable accounting models of
GEP, scholars have promoted the transformation of GEP from an “accounting value” to a
“policy point” [30]. Jin [28] incorporated GEP into the evaluation and analysis of ecological
compensation performance assessment in Guizhou Province. To better understand how
much ecosystem value there is, Dong [21] applied GEP to a comparative analysis of
ecological stock and flow in Ordos City, China. Chen [31] studied the coupling relationship
between GEP and ecological carrying capacity in Changting County, China, to provide a
basis for evaluating the effectiveness of ecological protection. Similarly, Lin [32] applied
GEP to identify ecological protection space in the Yangtze River Delta region, which is
critical for maintaining regional ecological security. In practice, GEP is primarily studied in
combination with GDP, which can provide a theoretical basis for government performance
appraisal. The “clear waters and green mountains are as good as mountains of gold and
silver” theory (referred to as the “Two Mountains” theory) links GEP with GDP [33]. The
“clear waters and green mountains” represent the competitive natural resources and good
ecological environment that provide ecological products and services for people’s lives and
survival. The “gold and silver mountains” represent regional economic conditions and
people’s livelihood related to income level [34]. The “Two Mountains” theory points out
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that the natural ecosystem not only has considerable ecological benefits, but the ecological
value can also be converted into economic benefits and contribute to human well-being [35].
Quantifying the value of “clear waters and green mountains” is the basis for an efficient
transformation from ecological resources to ecological assets and capital, and the GEP can
be used to evaluate this value [36]. Ma [19] first used the green gold index (GGI) to link
“clear waters and green mountains” with “gold and silver mountains,” which is relatively
mature in practical application. Cheng [37] and Chen [38] measured the transformation
relationship between “clear waters and green mountains” and “gold and silver mountains”
in Quzhou City and Ninghai County of Zhejiang Province, respectively, through the GGI,
and discussed the transformation path of these “Two Mountains.” As the basic unit of the
“Two Mountains” theory, the county has the comparative advantages of small size, rapid
transformation, and rapid effect [34]. Since 2017, the Ministry of Ecology and Environment
has named 136 “Two Mountains” bases, of which the county-scale accounts for up to 75%.

Hulunbuir City is an important ecological barrier in China and a world-class eco-
city with unique ecological advantages and capitalization. In recent years, Hulunbuir
City has paid more attention to ecological protection, including controlling pollution and
restoring ecosystems. However, there has been no quantitative analysis of the number
of “ecological properties,” the degree of environmental improvements, or the ecological
differences among each county in Hulunbuir City. Therefore, referencing the 2022 “GEP
Accounting Specification (Trial),” we screened evaluation indicators that best aligned with
the ecosystem characteristics of Hulunbuir City so that the GEP would more truly reflect the
region’s environment and protections. Then, we conducted quantitative GEP analysis of the
13 counties in Hulunbuir City at the end of the 12th Five-Year Plan (2015) and 13th Five-Year
Plan (2020) in accordance with the accounting method in the 2022 document. Then, the
GGI of each county was calculated according to the GEP results. Finally, based on the GEP
and GGI, the transformation path of “Two Mountains” in each county was explored, and
the application of the “Two Mountains” base was further promoted in Hulunbuir City and
surrounding counties. This study fills the gap of GEP comparative research at the county
scale and applies the indicators and methods in the 2022 specification to measure the GEP of
13 counties. This study is an early implementer of the specification and has set an example
for similar accounting in other counties. Furthermore, our study of the transformation path
of “Two Mountains” at the county level can be replicated in the theoretical and practical
research of similar counties in China or even around the world.

2. Materials and Methods

2.1. Study Area

Hulunbuir City (115◦31′–126◦04′ E, 47◦05′–53◦20′ N) is located in the northeastern
Inner Mongolia Autonomous Region, with a total area of 262,000 km2, accounting for
21.4% of the total area of Inner Mongolia. It has rich and diverse land resources and
types and is characterized by abundant resources, such as grasslands, forests, minerals,
water, and biology. Hulunbuir City is famous for “Great Grasslands, Great Forests, Great
Wetlands, Great Lakes, and Great Snow.” It has been dominated by agriculture and animal
husbandry (single-industry areas) and has developed into a regional economy based on the
planting, animal husbandry, coal power, coal chemicals, and processing and manufacturing
industries, with logistics trade and tourism as important components. The city now has
jurisdiction over 14 counties, forming four ecological economic zones according to the
landform, land type, and industrial types [39]. Oroqen Autonomous Banner (Oroqen),
Yakeshi City (Yakeshi), Genhe City (Genhe), and Erguna City (Erguna) belong to the
forestry region. Xin Barag Right Banner (Xin Right Banner), Ewenki Autonomous Banner
(Ewenki), Xin Barag Left Banner (Xin Left Banner), and Prairie Chenbarhu Banner (Chen
Banner) belong to the pastoral region. Zhalantun City (Zhalantun), Arun Banner, and Daur
Autonomous Banner of Morin Dawa (Morin Banner) belong to the agricultural region.
Manzhouli City (Manzhouli) and Hailar Area (Hailar) are collectively referred to as the
central urban region.
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It can be seen in Figure 1 that there are several types of ecosystems in Hulunbuir City,
including forests, shrubland, grassland, wetlands, water bodies (including lakes and rivers),
and farmland. Among these, the forest ecosystem area is the largest, accounting for 54.77%
of Hulunbuir City, mainly distributed in Oroqen, Yakeshi, Erguna, Genhe, Zhalantun,
and Ewenki. The grassland ecosystem accounted for 34.43%, which was concentrated in
Xin Right Banner, Xin Left Banner, Chen Banner, Ewenki, Hailar, and Manzhouli. The
farmland ecosystem is distributed in Morin Banner, Arun Banner, Zhalantun, Oroqen,
Yakeshi, Erguna, and other regions in a pattern of large dispersion and small aggregation.
The water body ecosystem is mainly distributed in Xin Right Banner, Xin Left Banner, and
Morin Banner. The wetland ecosystem is distributed in New Right Banner, Xin Left Banner,
and E Banner.

 

Figure 1. The ecosystem types of the study area (Hulunbuir City, China).

2.2. Methodology
2.2.1. Data Preprocessing

The Land-Use and Land-Cover Change (LUCC) of this study adopted 30 m land-use
data released by the Remote Sensing Institute of the Chinese Academy of Sciences. Digital
elevation models were obtained from the Resource and Environmental Science and Data
Center of the Chinese Academy of Sciences. Meteorological data, such as rainfall, surface
runoff, and evapotranspiration, were obtained from the Global Land Data Assimilation
System and Hulunbuir Meteorological Bureau. Soil data were obtained from the National
Tibetan Plateau/Third Pole Environment Data Center. The Net Primary Productivity and
Normalized Difference Vegetation Index data were obtained from MOD17 and MOD13
products from the National Aeronautics and Space Administration. Data for the reservoir
storage capacity and water resource consumption were obtained from the Hulunbuir Water
Resources Bulletin. Social and economic data were all obtained from the statistical yearbook
for Hulunbuir City and relevant data from the Statistics Bureau. The prices of all types
of products and alternative products were derived from the Forest Ecosystem Service
Function Assessment Specifications [40]. The above raster data were formed by stitching
and cutting. The data year was the end of the 12th Five-Year Plan (2015) and the end of the
13th Five-Year Plan (2020) of Hulunbuir City.

56



Land 2023, 12, 63

2.2.2. Assessment Method for Ecosystem Service Quality

Water conservation is the interception and retention of precipitation by the ecosystem,
thus increasing the available water, improving water quality, and regulating runoff. The
water balance model was used to calculate water conservation:

Qw = ∑n
i=1(P − R − ET)× Ai × 10−3, (1)

where Qw is the water conservation (m3), P is rainfall (mm), R is surface runoff (mm), ET
is evapotranspiration (mm), Ai is the area of the ecosystem i (m2), and i and n are the
ecosystem category and quantity, respectively.

Soil conservation is a function of reducing both the erosion capacity of rainwater and
soil loss due to ecosystem action. The revised universal soil loss equation (RUSLE) was
used to estimate soil conservation:

Qs = ∑n
i=1[R × K × L × S × (1 − C)]× Ai × 10−4, (2)

where Qs is soil conservation (t), R is the rainfall erosivity factor (MJ·mm·hm−2·h−1·a−1),
K is the soil erosivity factor (t·hm2·h·hm−2·MJ−1·mm−1), L is the slope length factor
(dimensionless), S is the slope factor (dimensionless), C is the vegetation cover factor
(dimensionless), and Ai is the area of the ecosystem i (m2).

Carbon fixation and oxygen release occur when ecosystems immobilize carbon in
plants and soil to reduce the concentration of carbon dioxide in the air while releasing
oxygen through photosynthesis. Carbon fixation and oxygen release were calculated via
the carbon sequestration mechanism model:

Qc = ∑n
i=1 1.62NPP × Ai × 10−6 and (3)

Qo = ∑n
i=1 1.2NPP × Ai, (4)

where Qc is carbon fixation (t), Qo is oxygen release (t), and NPP is the net primary
productivity of vegetation (gC·m−2). According to the photosynthesis equation, plants
require 1.62 g of CO2 to produce 1 g of dry matter and release 1.20 g of O2. Finally, Ai is the
area of the ecosystem i (m2).

Climatic regulation is the effect of ecosystem cooling and humidification through veg-
etation transpiration and water surface evaporation. We calculated the climate regulation
function using the evapotranspiration model:

Ept = ∑n
i=1 EPPi × Si × D × 1

3600r
and (5)

Ewe = Wa × Ep × γ × 10−3, (6)

where Ept is the energy consumed by vegetation transpiration (kW·h), Ewe is the energy
consumed by the evaporation of water (kW·h), EPPi is the transpiration consumption
per unit area of the ecosystem i (kJ·m−2·d−1), Si is the area of the ecosystem i (m2), D is
the number of days with air conditioning use (d), r is the energy efficiency ratio of the
air conditioner (value of 3), Wa is the area of wetlands and water (m2), Ep is the annual
evaporation (mm), and γ is the power consumption of the humidifier to convert 1 m3 of
water into steam (kW·h, γ = 120).

Air purification is the absorption and filtration of pollutants in the atmosphere by
vegetation, such as SO2, NOx, and particulate matter, to reduce the concentration of air
pollutants and improve air quality. We used the pollutant purification model to evaluate
the air purification function:

Qap = ∑n
i=1 ∑m

j=1 Qij × Aj × 10−6, (7)
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where Qap is the purification amount of air pollutants (t), Qij is the unit area purification of
class i air pollutants in the class j ecosystem (t·km−2), Aj is the area of the ecosystem j (m2),
i and n are the categories and quantities of the air pollutants, respectively, and j and m are
the categories and quantities of the ecosystems, respectively.

Water purification is the adsorption and degradation of water pollutants by the ecosys-
tem. The main pollutants in the water bodies are the chemical oxygen demand (COD),
total nitrogen (TN), and total phosphorus (TP). The ecosystem reduces the concentration of
COD, TN, and TP, and purifies the water environment. We used the pollutant purification
model to evaluate the air purification function:

Qwp = ∑n
i=1 ∑m

j=1 Pij × Aj × 10−6, (8)

where Qwp is the purification amount of water pollutants (t) and Pij is the unit area purifi-
cation of class i water pollutants in a class j ecosystem (t·km−2).

Windbreak and sand fixation reduce wind erosion and sand damage by increasing the
soil wind resistance. The revised wind erosion equation (RWEQ) was used to quantify the
amount of windbreak and sand fixation:

Qs f = ∑n
i=1

[
0.1699 × (WF × EF × SCF × K′)1.3711 ×

(
1 − C1.3711

)
× Ai × 10−3

]
, (9)

where Qs f is the amount of windbreak and sand fixation (t), WF is the climate erosion
factor (kg·m−1), EF is the soil erosion factor (dimensionless), SCF is the soil crust factor
(dimensionless), K′ is the surface roughness factor (dimensionless), and C is the vegetation
cover factor (dimensionless).

Flood storage is the ability of an ecosystem to reduce flood damage by regulating
storm runoff and reducing flood peaks. Models for reservoir flood control capacity, lake
adjustable storage volume, surface water lag, and vegetation regulation and storage were
adopted to quantify the storage capacity of reservoirs, lakes, swamps, and vegetation,
respectively.

Cr = 0.16Ct, (10)

Cl = e5.653 × A0.680 × T × 104, (11)

Cm = 0.3S × 106, and (12)

Cv = ∑n
i=1

(
P − R f i

)
× Ai × 10−3, (13)

where Cr, Cl , Cm, and Cv are the flood control capacities of the reservoir, lake, swamp, and
vegetation, respectively (m3), Ct is the total reservoir storage capacity (m3), A is the lake
area (km2), S is the swamp area (km2), P is the rainstorm rainfall (mm), and R f i is the
rainstorm runoff of ecosystem i (mm).

For functional quantity accounting, the water balance model, RUSLE, carbon seques-
tration mechanism model, and RWEQ were suitable for the calculation of various ecosystem
functions. The functional coefficients of the evapotranspiration model, pollutant purifi-
cation model, and flood and storage model are different in the application of different
ecosystem types.

2.2.3. Evaluation Method for Ecosystem Service Values

After measuring the ecosystem service functions, the market value, shadow project,
replacement costs, and other methods were used to calculate the various ecosystem service
values (Table 1).
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Table 1. Evaluation method for ecosystem service value.

Category Index Methodology Description

Ecological product value

Value of agricultural, forestry,
animal husbandry, and

fishery products
Market value method

Market price of agriculture,
forestry, animal husbandry, and

fishery, respectively

Water resources value Market value method Market price of water for
different purposes

Ecological regulation
service value

Water conservation value Shadow project method Cost of building the reservoir

Soil conservation value Replacement cost method
Cost of dredging the reservoir,
and cost of non-point source

pollution treatment
Value of carbon fixation and

oxygen release Reforestation cost method Cost of afforestation

Value of climate
regulating function Replacement cost method Price of domestic electricity

Value of air purification function Replacement cost method Cost of air pollutant control
Value of water

purification function Replacement cost method Cost of water pollutant control

Wind-breaking and
sand-fixing value Replacement cost method Cost of sand control projects

Value of flood storage function Shadow project method Cost of building the reservoir
Ecological culture

service value Landscape recreation value Travel cost method Sum of direct tourist costs and
consumer surplus

3. Results

3.1. Accounting for the GEP

The GEP of Hulunbuir City in 2020 was 980.025 billion yuan, showing an increase
of 31.94% compared with that in 2015. In the county, the GEP of the forestry and central
urban region accounted for 53.90% and 3.13%, respectively, and that of the pastoral and
agricultural regions were 257.107 and 163.951 billion yuan, respectively. Compared with
that in 2015, the GEP of the forestry, pastoral, agricultural, and central urban regions in 2020
all increased by different amplitudes. The value of the ecological product in Hulunbuir
City increased by 8.30% from 46.774 billion yuan in 2015 to 50.657 billion yuan in 2020.
Among them, the value of the pastoral and agricultural regions increased by 72.05% and
11.09%, respectively, while the value of the forestry and central urban regions decreased by
different amplitudes. Agricultural regions are the main supply areas of ecosystem products,
with an output value of 26.476 billion yuan in 2020. The ecological regulation service is the
main source of GEP in Hulunbuir City. The value of the ecological regulation service was
852.2 billion yuan in 2020, showing an increase of 219.135 billion yuan compared with that
in 2015. The forestry region was the main contributing area for the regulation service. The
value of regulation services in the forestry region increased from 332.428 billion yuan in
2015 to 484.054 billion yuan in 2020. The contribution of ecological regulation services in
the pastoral region was only inferior to that in the forestry region. The value of regulation
services in the agricultural regions in 2020 was 126.874 billion yuan, with an increase
of 34.96% compared with the value in 2015. The contribution of regulation services in
the central urban regions was the lowest, with a value of 3.851 billion yuan in 2015 and
4.1 billion yuan in 2020. The value of cultural ecosystem services in Hulunbuir City was
77.169 billion yuan in 2020, showing an increase of 22.64% compared with the value in 2015.
The value of culture ecosystem services in the central urban region was only lower than
that of the forestry region, yielding a value of 24.722 billion yuan in 2020 (Table 2).

59



Land 2023, 12, 63

Table 2. Accounting results of GEP on each region in 2015 and 2020 (100 million·a−1).

Region Year
Ecological Product

Service Value

Ecological
Regulation

Service Value

Ecological Culture
Service Value

GEP

Forestry region 2015 146.68 3324.28 230.38 3701.34
2020 122.48 4840.54 319.66 5282.68

Pastoral region 2015 58.44 2027.74 72.18 2158.36
2020 100.55 2371.72 98.79 2571.07

Agricultural region 2015 238.32 940.12 90.70 1269.13
2020 264.76 1268.74 106.02 1639.51

Central urban region 2015 24.29 38.51 235.93 298.74
2020 18.77 41.00 247.22 306.99

Among the three ecological service values, the main service function of the forestry,
pastoral, and agricultural regions was the regulation service, and the main function of the
central urban region was the culture ecosystem service. The cultural service function was
the second largest function in the forestry region, with an increasing proportion. Recently,
the forestry region has explored the cultural attributes of ecological products and continued
to create high-grade ecological tourism. Compared with 2015, the number of tourists
in pastoral regions increased in 2020, resulting in an increase in the proportion of the
cultural service value. However, this also yields problems and hidden dangers to the
ecological environment of pastoral regions. For example, the destruction of grasslands
is common. The proportion of the ecological regulation service value in pastoral regions
slightly decreased. After returning farmland to grassland, the proportion of the product
value provided by pastoral regions has considerably increased according to the balance
of grass storage. Services provided by ecological products are the second largest function
in agricultural regions, but the proportion of ecological products decreased in 2020. The
proportion of regulation services in agricultural regions increased, indicating that the return
of farmland to forest and grassland has been effective. The second major function of the
central urban region is to regulate services. Government offices in the central urban region
attach importance to ecological environmental protection, increases in afforestation efforts,
and improvements in vegetation coverage. The proportion of the ecological regulation
service value in the central urban region has increased compared with that in 2015 (Table 2).

3.2. Calculation of Ecological Regulation Services Value

According to the above analysis, the ecological regulation service is the main value
source of GEP in Hulunbuir City. The value of the eight types of regulation services in
the 13 counties and districts of Hulunbuir City was classified by the natural break point
method, and distribution maps of the eight types of regulation services in 2015 and 2020
were obtained (Figure 2). Oroqen is the main supply area of water conservation. The
level of the water conservation supply area in Erguna and Genhe increased from third in
2015 to fourth in 2020, mainly due to the significant increase in the shrubby land area. As
the ecosystem area in Morin Banner decreased by 15.01% in 2020 compared with that in
2015, the water conservation supply grade of Morin Banner decreased to the first level
(Figure 2a,b). The rainfall erosivity of Oroqen in 2020 was weakening, but the vegetation
coverage of Oroqen decreased, resulting in a reduction in the soil conservation grade in 2020.
The rainfall erosivity of Erguna, Genhe, Yakeshi, Zhalantun, Ewenki, Arun Banner, and
Morin Banner increased in 2020, but the vegetation coverage and ecosystem area increased,
and there was an increase in the overall soil conservation grade. Higher vegetation coverage
can hinder rainfall, with a reduction in the actual soil erosion (Figure 2c,d). Carbon fixation
and oxygen release are the main functions of ecological regulation services in Hulunbuir
City, and their value accounted for more than 30% of the regulation services. Oroqen is the
highest-grade supply area for carbon fixation and oxygen release. The functional levels
of carbon fixation and oxygen release in Genhe, Chen Banner, Xin Left Banner, Xin Right

60



Land 2023, 12, 63

Banner, and Morin Banner decreased in 2020, mainly due to the decrease in the ecosystem
area (Figure 2e,f). The value of climate regulation accounted for more than 40% of the
value of ecological regulation services in Hulunbuir City. The level of the supply area for
the climate regulation function changed negligibly between 2015 and 2020. The service
function of climate regulation is composed of two parts: vegetation transpiration and water
surface evapotranspiration. Areas with high vegetation coverage and a large water area
are the main functional areas for climate regulation. The forest area of Oroqen and Yakeshi
ranked first and second in Hulunbuir City, respectively; therefore, the service level of
climate regulation in these two regions was high. Most of Hulun Lake is located in the
Xin Right Banner, which is also in the top tier of the climate regulation value (Figure 2g,h).
As forests have the strongest ability to remove SO2, NOx, and particulate matter from
air pollutants, Oroqen, with the largest forest area, has the strongest ability to remove
air pollutants. Yakeshi, Erguna, and Genhe are in a Level 4 supply zone. Grasslands can
also purify SO2, NOx, and particulate matter. The air purification of Chen Banner, Xin
Left Banner, Xin Right Banner, Ewenki, and Zhalantun was in the three-level supply area.
The air purification level in Morin Banner was downgraded from Level 2 to 1, mainly
due to a 15.20% reduction in the ecosystem area (woodland, shrubland, and grassland)
in 2020 compared with that in 2015 (Figure 2i,j). Wetlands and water bodies are the main
ecological areas for water quality purification. Xin Left Banner and Xin Right Banner have
large areas of wetlands and water bodies, such that they are the main functional areas for
water quality purification. In 2020, the wetland area in Hailar and Manzhouli decreased
by 17.97% and 35.35%, respectively, compared with that in 2015, such that the grade of the
water purification supply area decreased from Level 2 to 1 (Figure 2k,l). Changes in the
windbreak and sand fixation functions were mainly related to regional meteorological and
vegetation factors. Xin Left Banner and Xin Right Banner were the main functional areas
for windbreak and sand fixation. The windbreak and sand fixation capacity of Oroqen and
Genhe increased by 61.65% and 46.43%, respectively, in 2020, with additional improvements
to the functional grade (Figure 2m,n). The grade of the flood storage function supply area
in Hulunbuir City changed negligibly between 2015 and 2020. The flood storage function is
mainly related to the storage capacity of reservoirs, lakes, marshes, and vegetation. Erguna,
Genhe, Xin Left Banner, Ewenki, and Xin Right Banner have high comprehensive flood
storage capacities and are the main supply areas for flood storage.
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Figure 2. Spatial distribution map of eight regulatory function grades.

3.3. GEP Assessment in Major Ecological Lands

Overall, the forest ecosystem of Hulunbuir City created the highest value. The GEP of
the forest ecosystem accounted for 62.32% in 2020, showing an increase of 180.535 billion
yuan compared with that in 2015, owing to construction results from key forestry projects,
such as the implementation of the natural forest protection project, returning farmland
to forest, forest tending, and closing mountains for forest cultivation. During the imple-
mentation of the natural forest protection project, the forest resources management and
protection system was implemented, which reduced the consumption of forest resources
and realized the growth of both forest area and forest stock. Forest ecosystem services
have been enhanced, and the capacity of carbon sinks has been improved. Through the
implementation of returning farmland to forest, the forest coverage rate of Hulunbuir City
has increased by 0.5%, and the ecological environment has been significantly improved.
Forest-tending projects improve the growth environment of trees and increase the survival
rate of seedlings. Forest closure is a traditional forest cultivation method in China, which
clearly affects soil and water conservation, increases species diversity, and reduces forest
diseases and pests. The vast grassland ecosystem area played an important role in Hulun-
buir City in 2015, accounting for 25.72% of the GEP. Unfortunately, the role of grassland
ecosystems gradually declined in 2020, mainly due to the inappropriate reclamation of
grassland via human activity, predatory exploitation, overgrazing, and other behaviors,
resulting in an increasing reduction in the grassland area, serious degradation, and even
desertification. Hulunbuir City has diverse wetland types and is an important ecological
region in the cold and arid regions of northern China. The ecological value of wetlands
accounted for 4.77% in 2020, which was 0.69% lower than that in 2015. Natural factors, such
as insufficient water sources, and human factors, such as agricultural reclamation, graz-
ing, and mowing of wetland vegetation, contributed to wetland ecosystem disturbances.
Hulunbuir City has more than 3000 rivers and more than 500 lakes. Water ecosystem
services are equally important. The GEP of the water ecosystem accounted for 7.69% and
6.73% in 2015 and 2020, respectively. The most important sources of forest, grassland,
wetland, water, and farmland value were found to be Oroqen, Xin Right Banner, Xin Left
Banner, Xin Right Banner, and Morin Banner, respectively. The value of the forest ecosystem
was mainly reflected in five aspects: climate regulation, carbon sequestration and oxygen
release, water conservation, flood storage, and forest tourism. The grassland ecosystem
value was mainly concentrated in five categories: carbon sequestration and oxygen release,
climate regulation, water conservation, livestock product supply, and grassland tourism.
Categories with a high contribution to the wetland ecosystem value were flood storage,
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wetland tourism, climate regulation, carbon sequestration, and oxygen release. The value
of the water ecosystem was mainly derived from five categories: climate regulation, water
tourism, flood storage, water resources supply, and fishery product supply (Table 3).

Table 3. Contribution rate of ecosystem functional services value of LUCC.

Ecosystem Products
Value

Water
Resources

Water
Conservation

Soil
Conservation

Carbon
Fixation

and
Oxygen
Release

Climate
Regulating

Air
Purification

Water
Purification

Wind-
Breaking
and Sand-

Fixing

Flood
Storage

Landscape
Recreation

Forest 0.44% 14.41% 0.62% 32.67% 38.38% 0.19% 0.01% 7.40% 5.89%
Grassland 8.95% 15.91% 0.27% 37.64% 29.36% 0.21% 0.04% 2.42% 5.20%
Wetland 0.80% 0.01% 1.87% 28.46% 0.21% 39.23% 29.43%

Water 1.52% 2.91% 61.92% 10.37% 23.28%

Figure 3 shows the proportion of the ecosystem value composition in each region.
The forestry region not only has a large area of forest, but also Heishantou grassland,
Erguna wetland, Genhe wetland, and other important ecosystems. Therefore, the values
of grassland and wetland in the forestry region were 8.97% and 2.86%, respectively. The
pastoral region not only has a vast grassland, but also contains Honghuerji forest, Hulun
Lake, Bier Lake, Huihe wetland, and other important functional areas of the ecosystem.
Therefore, the proportions of the forest and water values in the pastoral region were 15.94%
and 12.86%, respectively. The Chaihe National Forest Park, Yaru River, and Nierji Reservoir
were observed to be important ecological functional areas as agricultural regions. The
values of forests, grasslands, farmland, water bodies, and wetlands in the agricultural
region were 58.41%, 15.90%, 12.26%, 9.61%, and 3.83%, respectively. The proportion of
forest value in Hailar district was the highest, followed by the grassland, water, and
farmland values. The water ecosystem of Manzhouli played the greatest role, mainly
because part of Hulun Lake is located in Manzhouli. The wetland value of Manzhouli was
relatively high where the Erka wetland is located.

 

Figure 3. Proportion composition of ecological-type values of each region in 2015 and 2020.

3.4. GEP Application

The GEP per unit area can reflect the ecosystem supply capacity. A higher GEP per
unit area indicates a stronger ecosystem supply capacity in the region. The GEP per unit
area of Hulunbuir City in 2020 was 3.7736 million yuan, showing an increase of 31.94%
compared with 2015, indicating that the overall ecosystem supply capacity of Hulunbuir
City has been greatly improved. Compared with Hulunbuir City, Manzhouli, Hailar,
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Zhalantun, Genhe, Erguna, and Yakeshi have greater ecosystem supply potentials, while
other regions have lower supply capacities. The GEP per capita refers to the GEP enjoyed
by each person. The GEP per capita could reflect people’s ecological welfare level, with a
higher value indicating more ecological welfare everyone enjoys. The GEP per capita of
Hulunbuir City in 2020 was 438,200 yuan, with an increase of 40.79% compared with 2015,
indicating that the per capita ecological well-being level of Hulunbuir City has significantly
increased. Compared with Hulunbuir City, people in Xin Right Banner, Erguna, Xin Left
Banner, Genhe, Oroqen, Chen Banner, and Arun Banner enjoy more ecological welfare
per capita, while the level of ecological well-being per capita in other regions is low. The
GGI can reflect the quantitative relationship between the “Two Mountains.” The GGI
of Hulunbuir City in 2020 was 8.36, which was considerably higher than the national
average of 1.01, indicating that the resource value of “clear waters and green mountains”
in Hulunbuir City was considerably greater than that of “gold and silver mountains.”
There was significant potential for ecological factors to be transformed into production
factors, and ecological wealth to be transformed into material wealth. Compared with
those in 2015, the growth rates of the GEP, GDP, and GGI of Hulunbuir City in 2020
were 31.94%, 20.84%, and 9.18%, respectively, showing that the ecological protection of
Hulunbuir City has achieved success. The regional economy has sustained development,
and the ability to transform “clear waters and green mountains” into “gold and silver
mountains” is also improving. Additionally, ecological protection achievements have far
exceeded the level of economic growth, laying a solid foundation for the ecological status
of Hulunbuir City, but we must also continue to explore the green-economic development
model. Comparing the GGI of each county in Hulunbuir City, we found that in 2015 and
2020, the GGI values of Erguna, Genhe, Oroqen, Xin Left Banner, Xin Right Banner, and
Yakeshi were higher than the overall level of Hulunbuir City, indicating that these six
regions effectively use ecological advantages to develop the regional economy, while those
of the other regions were lower than the overall level of Hulunbuir City over the five years.
GGI levels at Hailar and Manzhouli were lower than the national average. By comparing
the GGI growth rate of each county in Hulunbuir City, we can conclude that the GGI
growth rate of Erguna, Genhe, and Zhalantun was higher than the overall GGI growth rate
of Hulunbuir City, indicating that the transformation of the “Two Mountains” in these three
regions has achieved remarkable results. The GGI growth rate of Yakeshi, Arun Banner,
Chen Banner, Oroqen, and Morin Banner was lower than the overall GGI growth rate of
Hulunbuir City. The “Two Mountains” in these regions have a large transformation space;
therefore, they must fully rely on advantageous ecological resources to transform them
into economic development power. The transformation capacity of the “Two Mountains”
in Hailar, Manzhouli, Xin Right Banner, Ewenki, and Xin Left Banner was decreasing,
indicating that we must further promote the ecological article based on the traditional
economic model (Figure 4).

 

Index GGI

Figure 4. The index of GEP per unit area, index of GEP per capita, and GGI of each region in 2020.
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3.5. Transformation Path of “Two Mountains”

According to the above analysis, we explored the transformation path of the “Two
Mountains” in each county of Hulunbuir City. Considering the ecosystems and industrial
types of counties included in the four ecological economic zones, and that the transforma-
tion paths of the “Two Mountains” are replicable and transferable, this study selected the
four ecological economies of forestry, pastoral, agricultural, and central urban regions as
the entry point of analysis.

3.5.1. Transformation Path of “Two Mountains” in the Forestry Region

The forestry region is the main contribution area of regulation service, with a regulation
service value accounting for 91.63% of the GEP and a growth rate of 45.62%, ranking first
among the four ecological economic zones. Therefore, the regulation service is the key
point of “Two Mountains” transformation in the forestry region. The eight main types of
regulation services of the forestry region were water conservation, soil conservation, carbon
fixation, oxygen release, climate regulation, air purification, windbreak, and sand fixation.
Among them, carbon fixation and oxygen release function were the most prominent, with a
value of up to 180 billion yuan. The forestry region can directly realize the transformation
of the carbon sequestration and oxygen release values for the “Two Mountains” through
carbon sink trading. The transformation of other regulatory values can also be indirectly
completed through the ecological compensation mechanism, i.e., the principle of “who
uses, who pays.” There was a significant correlation between the increase in the ecosystem
regulation service value and the increase in vegetation coverage. The vegetation coverage
of the forestry region was 84.41% in 2020. Therefore, the forestry region should continue to
implement various ecological protection construction projects and transform the ecological
value of the regulation service into economic value. The second major function of forestry
regions is to provide cultural services, which accounted for 6.05%, and the growth rate is
the first among the four ecological economic zones, indicating that the ecological cultural
function of the forestry region has great potential. The main natural resources in the
forestry region are forests and wetlands. The forestry region continues to explore the
cultural elements of forest and wetland tourism while building a well-known forest and
wetland tourism destination and transforming forest and wetland ecosystem value into
tourism economic value. The ecological products value in the forestry region accounted
for 2.32% in 2020, which decreased by 16.49% compared with 2015, indicating that the
ecological products value needs to be further explored. Forestry regions should focus on
brand agriculture and realize the circular transformation of the “Two Mountains.” The GGI
of the forestry region is 25.37, which is much higher than the average of Hulunbuir City
(8.36), indicating that the ecological level of the forestry region is much higher than the
economic level. The focus of the “Two Mountains” transformation in the forestry region is
the rapid transformation from GEP to GDP.

3.5.2. Transformation Path of “Two Mountains” in the Pastoral Region

The ecological regulation services value in the pastoral region accounts for 92.25%
of GEP, with a growth rate of 16.96%. Therefore, regulation services are also the focus of
“Two Mountains” transformation in the pastoral region. The area of grassland, wetland,
and water bodies in the pastoral region is large. Among the eight regulation services,
climate regulation, water purification, windbreak, sand fixation, and flood storage are the
main ecological functions in the pastoral region. The ecological regulation value should be
transformed into economic value via ecological compensation. Grassland is an ecosystem
with both ecological and production functions. The grassland ecosystem not only has
important ecological functions, but also provides pasture resources for livestock to maintain
metabolism. The ecological products supply value in the pastoral region accounted for
3.91%. The growth rate was 72.05%, which was much higher than that of other ecological
economic zones, indicating that the supply function of ecological products in the pastoral
region had great potential. We must, therefore, extend the industrial chain of pastoral
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products, enhance the brand value of livestock products, and transform the ecological
products value of the pastoral region into economic value. The cultural ecosystem services
value in the pastoral region accounted for 3.84% of the GEP, with a growth rate of 36.87%,
which was slightly lower than that of the forestry region, indicating that the cultural
ecosystem services value of the pastoral region had greater potential. Pastoral regions
should integrate the development of grassland tourism with cultural understudies, actively
promote “driving + experience” grassland tourism, conduct a series of grassland cultural
activities, and create high-end grassland tourism destinations, to improve the ecotourism
value of pastoral regions. The GGI of the pastoral region was 12.55, which was slightly
higher than the average of Hulunbuir City, indicating that the ecological surplus of the
pastoral region was slight. The focus of the transformation of “Two Mountains” in the
pastoral region was to promote the transformation from GEP to GDP while maintaining
ecological balance.

3.5.3. Transformation Path of “Two Mountains” in the Agricultural Region

The ecological regulation service value in the agricultural region accounts for 77.38% of
GEP. Therefore, the regulation service is also the focus of “Two Mountains” transformation
in the agricultural region. The growth rate was 34.96%, indicating that the ecosystem
regulation function in the agricultural region has been greatly improved through ecological
construction projects, such as returning farmland to forest and grassland. The ecological
products supply service is the second largest function of the agricultural region, accounting
for 16.15%, which is the highest in the four ecological economic zones. The growth rate was
11.09%, indicating that the product supply function in the agricultural region continued to
strengthen. It is necessary to continue to develop and innovate green and low-pollution
ecological agricultural products and enhance the brand value of geographical indication
agricultural products. The value of agricultural products can be directly transformed into
industrial economic value. The cultural ecosystem services value in the agricultural region
accounted for 6.47% of GEP, with a growth rate of 16.89%, indicating that the cultural
ecosystem services in the agricultural region need to be explored further. We will deepen
the integration of culture and tourism in the agricultural region. The ecological cultural
value of the agricultural area is transformed into tourism economic value by conducting
agricultural expo activities. The GGI of the agricultural region is 4.70, which is lower than
the average of Hulunbuir City, indicating that the ecological level of the agricultural region
is lower than the economic level. The focus of “Two Mountains” transformation is the
two-way transformation of GEP and GDP.

3.5.4. Transformation Path of “Two Mountains” in the Central Urban Region

The main function of the central urban region was the culture ecosystem service. The
culture ecosystem service value in the central urban region accounts for 80.53% of GEP,
with a growth rate of 4.79%. The transformation of the ecotourism value is the focus of
the transformation of the “Two Mountains” in the central urban regions. As the main
collection and distribution center of tourists in Hulunbuir City, the central urban regions
have many tourists, but negligible ecotourism resources. By adding ecological resources
and cultural elements and performing research and other measures of ecological cultural
activities, tourists will be attracted to the ecotourism products of the region. The proportion
of the central urban regulation service was 13.36%. The regulation function of Hailar
mainly comes from urban greening and Xishan National Park, while the regulation service
of Manzhouli mainly focuses on urban greening and Hulun Lake. Therefore, attention
should be paid to the ecological protection of Xishan National Park and Hulun Lake. The
proportion of the ecological products supply service in the central urban region is 6.11%,
which is 22.75% lower than that in 2015, indicating that the value of ecological products
in the central urban region needs to be further explored. The GGI of the central urban
region is 0.84, which is far lower than the average of Hulunbuir City, indicating that the
ecological level of the central urban region is far lower than the economic level. The focus
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of the transformation of “Two Mountains” in the central urban region is the transformation
of GDP into GEP, and then GEP into GDP.

4. Discussion

4.1. Differences in GEP Results

Evaluation methods, selection of evaluation indicators, and price parameters will all
impact GEP results. If different accounting methods and indexing systems are selected for
the same region regarding different price parameters, the calculated amount of ecosystem
functions and values will vary. Regarding similar ecological niche areas of relevant research
results combined with the practical situation of the ecological resources of Hulunbuir City,
this study determined the index for 11 types of accounting. Accounting methods focus
on references to the 2022 “GEP Accounting Specification (Trial)” issued by the National
Development and Reform Commission of China. The price is widely used in the practical
life parameters and some references. After comparing the calculated research results with
the results of a previously published study on calculating the GEP for the Inner Mongolia
Autonomous Region [41], a report on the first comprehensive evaluation of forest ecosystem
service value in Hulunbuir City [42], and the National County/Municipal District Gross
Ecosystem Product (GEP) Research Report 2021 [43], we can conclude that the evaluation
results of this study were within a reasonable range.

4.2. Research Limitations and Prospects

Owing to the impact of the COVID-19 pandemic, Hulunbuir City tourism data in 2020
cannot reflect the real values of regional cultural services. This study selected tourism
data from 2019 to calculate the values for recreational cultural services in 2020. Due to
difficulties in data acquisition, the functional value of pest and disease control was not
accounted for. There are inevitable errors in the acquisition and processing of remote
sensing data, meteorological data, soil data, and other data. Although there were some
errors in the research results, this study accurately reflects the state and changes in the
ecological environment of each county in Hulunbuir City during the 12th and 13th Five-
Year plans. It also provides a scientific basis for future policy formulation with respect to
ecological protection and construction in each region. In a future study, the GEP accounting
of Hulunbuir City will be calculated every five years as a normalization work. The next
study is to calculate the GEP of 12 cities in Inner Mongolia and verify the importance
of Hulunbuir City’s ecological status through the calculation results. It is important to
promote the further development of ecological civilization construction in Inner Mongolia.

5. Conclusions

We selected 2015 and 2020 as the research nodes to compare and analyze the char-
acteristics of GEP in 13 counties. We verified the value status of “clear waters and green
mountains” in the study area to explore the effects of ecological protection in the 12th
and 13th Five-Year plans of Hulunbuir City. Based on the results of the two stages, we
explored the transformation path of the “Two Mountains” value in 13 counties. The main
conclusions were as follows.

The GEP of Hulunbuir City in 2020 was 980.025 billion yuan, of which the product
value was 50.657 billion yuan, the regulation service value was 852.2 billion yuan, and
the cultural service value was 77.169 billion yuan. The GEP ranking for the counties in
Hulunbuir City was as follows: forestry region > pastoral region > agricultural region
> central urban region. The agricultural region was the main supply area of ecosystem
products, the forestry and pastoral regions were the main contribution areas of regulating
services, and the value of cultural ecosystem services in the central urban region was
second only to the forestry region. Oroqen is the main supply area for water conservation.
The soil conservation capacity improved in Erguna, Genhe, Yakeshi, Zhalantun, Ewenki,
Arun Banner, and Morin Banner. Carbon fixation and oxygen release were the main
functions of the ecological regulation service in Hulunbuir City. Oroqen had the highest
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carbon fixation and oxygen release capacity. Climate regulation was the most important
ecological regulation function of Hulunbuir City. Oroqen, Yakeshi, and Xin Right Banner
were the main source areas for the climate regulation value. Oroqen had the strongest
air purification capacity. Xin Left Banner and Xin Right Banner were the main areas of
the water purification function, as well as of wind-breaking and sand-fixing. The flood
regulation and storage capacity of Erguna, Genhe, Xin Left Banner, Ewenki, and Xin Right
Banner were high. The GEP of major ecological lands was in the order of forest > grassland
> water body > wetland > cropland. By region, the order of the ecosystem value is forest,
grassland, wetland, farmland, and water bodies in forestry regions. The ecosystem value
in pastoral regions was ranked as follows: grassland, forest, water body, wetland, and
farmland. The order of the ecosystem value in agricultural regions is forest, grassland,
farmland, water body, and wetland. The order of the ecosystem value in Hailar is forest,
grassland, water body, and farmland. The order of the ecosystem value in Manzhouli is
water body, wetland, grassland, forest, and farmland. The GGI of Hulunbuir City in 2020
was 8.36. The GEP per unit area and GEP per capita in the forestry region were high, and
the GGI was much higher than 8.36. The GEP per unit area of the pastoral region was low,
while the GEP per capita and the GGI were high. The GEP per unit area and GEP per capita
in the agricultural region were low, and the GGI was slightly lower than 8.36. The GEP
per unit area in the central urban region was high, while the GEP per capita was low, and
the GGI was much lower than 8.36. The growth rate of GGI was high in Erguna, Genhe,
and Zhalantun, somewhat low in Yakeshi, Arun Banner, Chen Banner, Oroqen, and Morin
Banner, and exhibited a downward trend in Hailar, Manzhouli, Xin Right Banner, Ewenki,
and Xin Left Banner.

In this study, the GEP was calculated on the county scale and applied to the transforma-
tion practice of the “Two Mountains.” These research ideas and methods can be extended
to similar regions in China and around the world, with considerable application value and
social significance. Firstly, through comparative evaluation of GEP among counties, more
targeted ecological protection measures can be implemented, and ultimately the overall
ecological protection of cities and counties can be improved. Secondly, GEP was calculated
in accordance with the accounting methods in the specification issued by the national
authority in 2022, so that the accounting results can be traced, verified, and comparable.
For the 13 counties included in this study, the accounting results were determined to be
comparable, which is an innovation of this study. Thirdly, we promoted the transformation
of GEP from an “accounting value” to a “policy point.” The transformation path of “Two
Mountains” in the forestry and pastoral regions can be extended to the counties with good
ecological environments and poor economies. The transformation path of “Two Mountains”
in the agricultural region can be extended to the counties with poor ecological environ-
ments and economies. The transformation path of “Two Mountains” in the central urban
region is suitable for areas with developed economies and poor ecological environments.
In future research, the GEP accounting scope should be expanded to calculate the GEP of
all counties in Inner Mongolia and throughout China. The accounting results are applied
to the transformation practice of “Two Mountains” to actively promote the construction of
ecological civilization at the county scale.
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Abstract: Unmanned aerial vehicles (UAVs) have contributed considerably to forest monitoring.
However, gaps in the knowledge still remain, particularly for natural forests. Species diversity, stand
heterogeneity, and the irregular spatial arrangement of trees provide unique opportunities to improve
our perspective of forest stands and the ecological processes that occur therein. In this study, we
calculated individual tree metrics, including several multispectral indices, in order to discern the
spectral reflectance of a natural stand as a pioneer area in Mexican forests. Using data obtained by
UAV DJI 4, and in the free software environments OpenDroneMap and QGIS, we calculated tree
height, crown area, number of trees and multispectral indices. Digital photogrammetric procedures,
such as the ForestTools, Structure from Motion and Multi-View Stereo algorithms, yielded results
that improved stand mapping and the estimation of stand attributes. Automated tree detection
and quantification were limited by the presence of overlapping crowns but compensated by the
novel stand density mapping and estimates of crown attributes. Height estimation was in line with
expectations (R2 = 0.91, RMSE = 0.36) and is therefore a useful parameter with which to complement
forest inventories. The diverse spectral indices applied yielded differential results regarding the
potential vegetation activity present and were found to be complementary to each other. However,
seasonal monitoring and careful estimation of photosynthetic activity are recommended in order to
determine the seasonality of plant response. This research contributes to the monitoring of natural
forest stands and, coupled with accurate in situ measurements, could refine forest productivity
parameters as a strategy for the validity of results. The metrics are reliable and rapid and could
serve as model inputs in modern inventories. Nevertheless, increased efforts in the configuration of
new technologies and algorithms are required, including full consideration of the costs implied by
their adoption.

Keywords: index vegetation; UAV; natural forest; estimation attributes; forest productivity; crown
delineation; automated tree detection

1. Introduction

Accurate forest ecosystem monitoring has become a constant among the requirements
of large-scale environmental projects [1]. For example, the scientific community seeks
improved inputs for models of monitoring greenhouse gases [2] and estimation of carbon
and biomass storage [3], among others, including reducing emissions from deforestation
and forest degradation (REDD) [4].

Remote sensing technology has become more flexible in recent years and offers a
promising perspective [5]. At present, it is not only possible to obtain a greater spatial
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resolution of attributes that are visible to the naked eye, but also to detect multispectral
attributes beyond the visible spectrum [6–8]. For example, experimentation with radiation
emitted by the multispectral indices is crucial to further our understanding of ecological
mechanisms that remain unclear, particularly in heterogeneous forests [9]. To this end, the
application of drone technology has been rapidly extended at small and medium scales [10],
including in the acquisition of highly accurate estimates at the individual tree level that
serves to improve forest management [11,12]. As a result, direct and destructive estimates,
which are normally so time-consuming, have been substituted by indirect estimates, such
as those obtained by using unmanned aerial vehicles (UAV), with the opportunities offered
by near-real-time monitoring with multiple sensors [13].

The Mexican Sierra Madre Occidental is known to occupy a special place in forest
diversity [14], where different conifer and broadleaf species coexist within a small site.
These areas constitute natural laboratories for gathering scientific knowledge regarding
dendroecological attributes, including the use of multispectral indices since these can reflect
different ecological inter-relationships [15]. For example, the estimation of structural at-
tributes to individual tree levels, such as height and crown area, is of great utility for forest
inventories and the determination of biomass and carbon values [3]. For their part, the
multispectral indices are indicators of crown vigor, phenology, structural characteristics, de-
foliation risk and photosynthesis rates, among other variables of forest productivity [16,17].
Monitoring of these variables in complex, unevenly aged and mixed forests can therefore
offer new elements for decision-making on the part of forest managers [18], considering
that these systems are the greatest reservoirs of carbon and are widely representative of the
Mexican forests.

Although different studies have estimated the structural attributes of heterogeneous
forests [19], few have integrated the evaluation of spectral attributes [20]. Moreover,
estimation of aerial structures in natural forests remains a challenge [11].

For this reason, a complete census of the trees in a pilot site was conducted in order to
evaluate the capacity of a UAV to (1) calculate the metrics of tree height, crown area and the
number of trees, and (2) examine the applicability of multispectral indices for monitoring in
a mixed and heterogeneous stand of conifer and broadleaf species in northern Mexico. We
hypothesized that the UAV will provide reliable information pertaining to the attributes of
individual trees, thus serving to improve our future perspective of the vegetation properties.

2. Materials and Methods

The study site is found in the area known as “El Cordoncito” in Mesa de Pawiranachi,
in the municipality of Guachochi, in the Sierra Madre Occidental mountain range of
northern Mexico (27◦80′5700N, 107◦60′4100W; 2400 masl) (Figure 1).

Located in the region of the Holarctic and Neotropical transition, the zone presents a
great complexity of ecosystems predominated by pine and oak forests, as a consequence
of the variables of physiography and climatic units. This region supplies more than 25%
of the timber production in Mexico, and is one of the most important timber reserves in
the country, provides a wide variety of environmental services and has a predominantly
indigenous population [21]. The vegetation includes forests of pine-oak species, such as
Pinus engelmannii Carr., P. arizonica Engelm., P. leiophylla Schiede ex Schltdl. &; Cham.,
Quercus arizonica Sarg., Q. crassifolia Humb. &; Bonpl. and Q. durifolia Seemen ex Loes.,
as well other broadleaf species including Arbutus arizonica (A. Gray) Sarg.; A. bicolor S.
González, M. González &; P.D. Sørensen; Juniperus deppeana Steud. There are also patches of
tropical montane cloud forest and communities such as chaparral (primary and secondary)
and forest clearing vegetation [14]. The dominant soils are Regosols and Leptosols of
alluvial origins. The predominant climate is semi-cold and semi-humid, with long and cold
summers and monsoon rains accompanied by winter precipitation with an annual mean
value of 779 mm and mean annual temperatures of 5 to 12 ◦C.
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Figure 1. Location and view of Mesa del Pawiranachi (A) and climogram of the Papajichi ejido in
Chihuahua, Mexico (B) and the perspective of site (C).

Workflow

To obtain field data during the month of October; each individual tree within the
study area was labeled by fixing an aluminum plate to the base. A complete census of all
individuals was conducted, recording the following dasometric variables at individual tree
level: diameter at breast height (DBH, cm) and basal diameter (BD, cm), using a diametric
tape; and commercial height (CH, m) and total height (TH, m), which were measured
directly by climbing the trees and using a length meter (Figure 2).

The study area was overflown using a DJI Phantom multispectral (P4M) quadcopter
(Figure 2). The P4M camera has a total of six imaging sensors, five of which are multispectral
(bands: blue = 450 ± 16 nm, green = 560 ± 16 nm, red = 650 ± 16 nm, RedEdge = 730 ± 16 nm,
near-infrared = 840 ± 26 nm) and one RGB sensor, all with a global 2 MP shutter. The UAV
was flown in order to obtain and subsequently process 400 aerial photographs of the study
area, taken from an altitude of 50 m, with overlaps between the images and lines of 80 and
75%, respectively. A subsequent flight was conducted from east to west in order to capture
RGB and spectral images. Both flights were conducted on 16 October 2021, which was a
sunny day, with suitable wind conditions (<25 kph) and a mean temperature of 19 ◦C.
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Figure 2. Workflow of the processing stages of images taken by an unmanned aerial vehicle (DJI
Phantom 4 Multispectral UAV).

The UAV used had a georeferencing system on board during the flight and it was not
necessary to use the real-time-kinematic (RTK) system since the georeferencing system
could attain vertical and horizontal location pressures of ±0.1 and ±0.3 m, respectively [22].
For processing, we used a computer with an AMD Ryzen 3900x processor with 24 cores at
3.8 GHz, with an integrated Nvidia Quadro p620 quad-core 2 GHz video card and 32 GB
of RAM; this was used in a Linux operating system environment based on the ubuntu
distribution Pop!_OS version 22.04 LTS.

The images were processed and analyzed with photogrammetric procedures using
the open-source software OpenDroneMap (ODM version: 2.8.4; Cleveland Metroparks,
Ohio, USA [23]). This software implements the algorithms Structure from Motion and
Multi-View Stereo (SfM and MVS), producing 3D point clouds of 1000–20,000 points m−2.
We used VisualSfM to achieve the 3D reconstruction [12], due to its versatility in terms
of reduced processing time. We then generated the RGB orthomosaic and multispectral
orthomosaic. The digital surface (DSM) was generated considering the maximum elevation
values from the trees in a point cloud. Where two points occurred on top of each other, only
the tallest point was used. Gaps in the point cloud were filled using the dem-gap fill-steps
process with the local gridding method. The digital terrain model (DTM) was obtained by
classifying the point cloud using a simple morphological filter (SMRF).

Using the raster calculator tool of the open-source software QGIS, the canopy height
model (CHM; Equation (1)) was generated in order to predict the potential height of
each tree:

CHM = DSM − DTM (1)

where CHM = canopy height model, DSM = digital surface model and DTM = digital
terrain model.

Analysis of the canopy consisted of detecting and geolocating trees in the study area,
estimating their heights and delimiting their crowns to obtain the values of crown diameter
and area. The package ForestTools [24] of the statistical software R [25] was used as a tool to
geolocate the individual trees and delimit their crowns through the variable window filter
(VWF) algorithm and the algorithm of segmentation controlled by markers. This package
automatically detects the crowns of the trees, obtains the tree height (TH, m), generates
polygons and calculates the area of the crown (Ac, m2).

Using the multispectral orthophoto, the reflectance level was calculated according to
the wavelength of each band. In the QGIS software, the Semi-Automatic Classification
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Plugin was executed; this tool allows us to calculate the reflectance of a chosen area
according to the values of each band.

Given there are studies that have exhaustively verified their adequacy, and some
may be redundant [26,27], we consider it appropriate to analyze them individually in
order to obtain a more profound interpretation. Moreover, it has been documented that
each is affected by sensor type and atmospheric effects, for which reason multi-analysis
provides a rigor that guarantees their replicability and cooperation [28]. The calculation
was performed using the raster calculator of the program QGIS through the following
expressions (Equations (2)–(9)).

NDVI =
NIR − RED
NIR + RED

(2)

LCI =
NIR − RedEdge

NIR + RED
(3)

RVI =
NIR
RED

(4)

GNDVI =
NIR − GREEN
NIR + GREEN

(5)

NDRE =
NIR − RedEdge
NIR + RedEdge

(6)

NDGI =
GREEN − RED
GREEN + RED

(7)

TVI =

√
NIR − RED
NIR + RED

+ 0.05 (8)

OSAVI =
NIR − RED

NIR + RED + 0.16
(9)

where NDVI = normalized difference vegetation index, GNDVI = green NDVI, LCI = leaf
chlorophyll index, NDRE = normalized difference red edge index, OSAVI = optimized soil
adjusted vegetation index, RVI = ratio vegetation index, TVI = transformed vegetation index,
NDGI = normalized difference greenness index, NIR = near infrared band, RED = red band,
RedEdge = red edge band and GREEN = green band.

To evaluate photosynthetic activity within the community, the index values were
extracted for the crown of each tree. In order to obtain the statistics per genus, the zone
statistics tool of the QGIS program was implemented.

With the exception of the crown, which is a novel parameter not geometrically compa-
rable in the field, estimates of the variables at the individual tree level obtained with the
UAV were evaluated with respect to the field measurements. In the case of height, given the
operational difficulty of its measurement, a subsample of n = 57 trees was used to evaluate
the accuracy of the estimates (https://youtu.be/EIkZQX8qI98; accessed on 22 March 2022).
As a validation strategy, we manually digitized 47 trees and compared these with those
values derived from the algorithm (Ac).

3. Results

A total of 400 images were obtained with the RGB sensor on a single flight and used
to generate the RGB orthomosaic (the processing was 4 min), the digital terrain, the surface
models and the canopy height models derived from the photogrammetric process (the
processing was 8 min) with the software OpenDroneMap (Figure 3).
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Figure 3. (A) = orthomosaic RGB, (B) = digital terrain model, (C) = digital surface model and
(D) = canopy height model, derived from the UAV flight.

In the field study, 163 trees in “El Cordoncito” in the Mesa del Pawiranachi were
recorded and measured. Table 1 presents the descriptive statistics of the metrics of the
individuals taken in the field and calculated in the office. This area is a natural forest and
subjected to timber forest management, the individual trees of which present a normal
diameter of 1.8 to 62.3 cm with an average of 9.25 cm, and heights of 0.63 to 20.76 m with
an average of 4.91 m. This indicates that the population present in “El Cordoncito” is in a
state of growth since most of the individuals are juveniles with only a limited number of
dominant trees present.

Table 1. Statistical description of the trees recorded in “El Cordoncito”.

Variable CH TH Hc BD ND

n 163 163 163 163 163
min 1.13 1.91 0.56 4 1.8
q1 1.86 3.495 1.555 9.25 6.2

average 2.211 4.911 2.7 13.064 9.247
median 2.16 4.45 2.18 11.5 8.1

q3 2.41 5.5 3.185 15.05 10.75
max 5.39 15.09 10.41 46.3 37.5
sd 0.664 2.262 1.782 6.446 5.231
se 0.052 0.177 0.14 0.505 0.41

where CH = commercial height (m), TH = total height (m), Hc = height of crown (m), BD = basal diameter
(cm), ND = normal diameter (cm), n = number of trees, q1 = quartile 1, q3 = quartile 3, max = maximum,
min = minimum, sd = standard deviation and se = standard error.

Statistics were also obtained at the genus level (Table 2). The greatest densities per
genus were Pinus, Juniperus, Quercus and Arbutus (109, 43, 9 and 2, respectively), for
which reason the forest in the community is Pinus-Juniperus.

Using the variable window filter algorithm of the package ForestTools, 132 trees were
detected and their crowns delimited (Figure 4). The algorithm had a tree identification
accuracy of 64.4% (163 digitalized–132 detected) with respect to the trees verified in the
field. This can be attributed to the heterogeneity of the canopy structures, where some
trees underlie the dominant individuals, as well as to the irregular spacing among the trees
themselves.
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Figure 5 shows the results of the linear regression applied to determine the relationship
between the height and crown values recorded in the field and those estimated with the
UAV. Furthermore, a graph of dispersion of the residuals of the field data against the
predicted values is presented. Statistical evaluations of the characteristics recorded with
the field data and those estimated with the UAV showed that 90% of the height and 91% of
the crown delineation values are explained by the UAV.

Table 2. Statistical description of the trees recorded in “El Cordoncito”.

Genus Variable n min q1 Average Median q3 max sd se

A
rb

ut
us

CH

2

1.54 1.585 1.63 1.63 1.675 1.72 0.127 0.09
TH 4.05 4.318 4.585 4.585 4.852 5.12 0.757 0.535
Hc 2.51 2.732 2.955 2.955 3.178 3.4 0.629 0.445
BD 12.5 14.125 15.75 15.75 17.375 19 4.596 3.25
ND 8 9.45 10.9 10.9 12.35 13.8 4.101 2.9

Ju
ni

pe
ru

s CH

43

1.13 1.43 1.745 1.71 2.03 2.41 0.365 0.056
TH 1.91 2.58 3.549 3.45 4.47 6.34 1.122 0.171
Hc 0.56 1.005 1.804 1.57 2.32 4.89 0.876 0.134
BD 4 6.55 10.667 8.3 14.15 28.8 5.213 0.795
ND 1.8 3.95 7.174 6.1 10.05 22.6 4.042 0.616

Pi
nu

s

CH

109

1.52 2.02 2.429 2.28 2.53 5.39 0.678 0.065
TH 2.21 3.88 5.33 4.7 6.1 15.09 2.373 0.227
Hc 0.6 1.75 2.901 2.47 3.32 10.41 1.856 0.178
BD 6.3 10 13.504 11.6 14.7 46.3 6.025 0.577
ND 3.9 6.9 9.742 8.2 10.3 37.5 5.141 0.492

Q
ue

rc
us

CH

9

1.66 1.72 1.927 1.92 2.02 2.31 0.208 0.069
TH 3.3 4.91 6.411 5.86 8.81 10.11 2.446 0.815
Hc 1.64 2.99 4.484 3.95 6.83 8.01 2.29 0.763
BD 6.3 11.5 18.6 16.4 19.5 44.7 11.669 3.89
ND 3.5 7.4 12.789 11.4 14.3 31.3 8.264 2.755

where CH = commercial height (m), Hc = height of crown (m), TH = total height (m), BD = basal diameter
(cm), ND = normal diameter (cm), n = number of trees, q1 = quartile 1, q3 = quartile 3, max = maximum,
min = minimum, sd = standard deviation and se = standard error.

Figure 4. Digitalization of trees (top left), digitalization of crowns (top right), trees identified
(bottom left) and crowns detected (bottom right) using the ForestTools algorithm.
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Figure 5. Regression analysis (top) and graph of residual vs. predicted values (bottom) for height
(left) and crown delineation (right), at individual tree level with field data and estimates derived
from the UAV, from 57 trees detected with the ForestTools algorithm.

Three crowns were randomly selected (one of each genus) in order to obtain the
multispectral reflectance (Figure 6).

 

Figure 6. Spectral reflectance at different wavelengths in the crowns of three different genera.

With regard to estimations of the vegetation index, Figure 7 shows the different indices
calculated for “El Cordoncito” in Mesa de Pawiranachi from the multispectral orthomosaic
derived from the photogrammetric process with OpenDroneMap. Moreover, it was possible
to determine the indices NDVI, NDGI, GNDVI, NDRE, OSAVI, LCI, TVI and RVI, obtaining
values from −1 to 1, except for RVI, which presented values greater than 1 (Figure 7).
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Figure 7. Vegetation indices of “El Cordoncito” in Mesa del Pawiranachi, NDVI = normalized
difference vegetation index, GNDVI = green NDVI, LCI = leaf chlorophyll index, NDRE = normalized
difference red edge index, OSAVI = optimized soil adjusted vegetation index, RVI = ratio vegetation
index, TVI = transformed vegetation index, NDGI = normalized difference greenness index.

For evaluation of the indices according to the delimited trees, NDVI ranged from
−0.701 to 0.665, TVI from 0.855 to 0, LCI from 0.48 to −0.95, GNDVI from 0.60 to −0.70,
OSAVI from 0.67 to −0.70, NDRE from 0.47 to −0.55, NDGI from 0.47 to −0.55, and RVI
from 0 to 4.13 (Figure 7).
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The values of the vegetation indices of the crown were visibly higher (green and yellow
colors) than the discriminated indices (herbaceous plant vegetation, bare soil, dead vegetal
material—orange and red colors). However, both low and high values were found within
the tree crowns. These are hypothetically attributable to different levels of photosynthetic
activity, as well as open spaces. Figure 8 shows the distribution range of the maximum
values of the vegetation indices per genus, which are commonly associated with seasonal
extremes in variations of vegetation dynamics [29].

In terms of the distribution of the maximum values of the vegetation indices per genus,
Quercus was highest in the indices TVI, NDVI, OSAVI, and LCI (Figures 8 and 9), while
Arbutus was highest in NDRE and LCI, and Pinus in NDGI. Juniperus was the lowest
across all of the indices (Table 3).

Figure 8. Distribution of the vegetation indices per genus in “El Cordoncito” in Mesa del Pawiranachi,
NDVI = normalized difference vegetation index, GNDVI = green NDVI, LCI = leaf chlorophyll index,
NDRE = normalized difference red edge index, OSAVI = optimized soil adjusted vegetation index,
RVI = ratio vegetation index, TVI = transformed vegetation index, NDGI = normalized difference
greenness index.

Table 3. Statistical description of the maximum values of the vegetation indices of the de-
tected crowns.

Variable GNDVI LCI NDGI NDRE NDVI OSAVI RVI TVI

min −0.024 0 −0.347 0 −0.206 −0.206 0.658 0.455
average 0.307 0.198 0.089 0.212 0.412 0.412 2.508 0.680

max 0.596 0.453 0.520 0.472 0.664 0.664 4.96 0. 845
sd 0.109 0.118 0.117 0.141 0.112 0.112 0.598 0.073

where min = minimum, max = maximum, sd = standard deviation, NDVI = normalized difference vegetation
index, GNDVI = green NDVI, LCI = leaf chlorophyll index, NDRE = normalized difference red edge index,
OSAVI = optimized soil adjusted vegetation index, RVI = ratio vegetation index, TVI = transformed vegetation
index, NDGI = normalized difference greenness index.
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Figure 9. Comparison of the vegetation indices per genus in Mesa del Pawiranachi,
NDVI = normalized difference vegetation index, GNDVI = green NDVI, LCI = leaf chlorophyll
index, NDRE = normalized difference red edge index, OSAVI = optimized soil adjusted vegetation in-
dex, RVI = ratio vegetation index, TVI = transformed vegetation index, NDGI = normalized difference
greenness index.

4. Discussion

Modern silviculture aims to optimize resources in the search for sustainable forest
management [30]. This study developed procedures for the estimation of attributes at
the level of the individual trees that are pioneers in Mexican natural forests. The number
of trees, crown area and total height are the main measurements in the forest inventory
and are critical to the support of appropriate decision-making. Similarly, multispectral
indices were calculated as a strategy with which to improve knowledge of reflectance as an
indicator of the ecological mechanisms faced by these ecosystems [31].

The quantification of such structural variables/traits has implications for the fauna in
the habitat [32] and, in general, for the ecology of the forest stand [33]. For example, the
geometry of the crown and the tree height is directly related to the capacities for carbon
capture, while the photosynthetic rates of the trees can provide indications regarding vigor
and climatic vulnerability [34]. These aerial parts of the tree represent variables of great
ecological interest that merit further investigation in order to contribute to our knowledge.

4.1. Estimation of Attributes of Individual Trees

Regarding estimation of tree-level attributes using UAV technology, our study pro-
vides a perspective of such estimation in natural stands. From a practical point of view,
this strategy enhances the use of individual tree-level attribute measurements, saves time
and improves certainty. In spite of certain shortcomings (addressed below), we demon-
strate that, when traditional measurement procedures are combined with UAV-derived
geospatial information, knowledge of forest stands is enhanced and decision-making in
forest management could be improved as a result. To scale up the potential for application
to larger areas of forest, ideal experimentation sites must be identified. We consider that
the study area was strategic in terms of the potential extrapolation of the application of the
technique to other management scales. For example, the coexistence of four genera within
a relatively limited area, together with the dendroecological structural variations present
(see Table 2), confers advantages over traditional monospecific and contemporary studies
and those of regular spatial arrangement [35].
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In the first instance, quantification of the number of trees produced limited results,
unlike those found in neighboring areas [12]. This could be explained by the difference in
the structural complexity of the stand, as well as in the number of UAV flights performed.
However, our findings can provide forest managers with a spatial perspective regarding the
density of the forest that could be of utility for the purposes of exploration and planning,
and that was previously unavailable or very difficult to achieve at ground level.

Delimitation of the tree crowns using UAV technology constitutes an important metric
in biometry with implications for tree physiological development. In the field, the techni-
cian normally tries to indirectly estimate this parameter by assuming the area of a circle
from the average of the greatest and smallest diameters of the crown. However, the bias
inherent in this technique reduces the reliability of the results. For this reason, the estimates
generated by the UAV present greater certainty since the algorithm acts to more closely
delimit the irregular shape, as seen in [36]. The Structure from Motion (SfM) algorithm has
been successfully used in conifer forests; however, its application in mixed forests with
broadleaf species is still incipient [37]. Our results are favorable since tree density and
distribution can be mapped along with the crown area. These metrics therefore offer an
opportunity to influence estimates of biomass and/or carbon [38].

From an ecological perspective, the crown is a multipurpose ecological indicator, in-
cluding estimates of the potential for carbon capture, aerial biomass storage, forest fire risk,
requirements for cultivation work (pruning, thinning, etc.), density regimes, vegetation
changes, regeneration strategies, classification of species and refuges for fauna [39,40].
Accurate estimation of the crown dimensions is therefore essential for precision silvicul-
ture [41].

One limitation of the detection algorithm is that the segmentation routine is strongly
affected by stand characteristics such as density, species heterogeneity, and tree age [37].
Our strategy consisted of smoothing the canopy height model using filters, as seen in [39].
The result allowed better crown delimitation despite the differences in leaf and branch
shapes among the studied genera. However, it is important to monitor the intensity of the
filters and verify the field data, since small trees may be omitted, as well as those that were
being suppressed by the adult trees. It is therefore advisable to complement the analysis
with hyperspectral and LiDAR tools [42–44], although the financial implications should
also be taken into account. In addition, segmentation techniques need to be refined to
delimit the crowns from the tree tops. We therefore recommend conducting thorough initial
tree top detection for use as an input to the canopy delimitation process

Although our study did not include an exhaustive analysis of the accuracy of auto-
delimitation of the tree crown, we found the estimations to be good (R2 = 0.91; RMSE = 1.83 m2).
Better results were clearly evident in the broadleaf species, supporting [37]. We attributed
this to the fact that this particular leaf foliage gives rise to a homogeneous crown con-
formation, while the needle and branch arrangement in the conifers gives rise to greater
inconsistencies in the segmentation process [44,45]. It is also advisable to differentially eval-
uate the algorithms according to species, given the variation that exists in the configuration
of the irregular geometry that confers differing complexity according to genus.

Accurate height estimation is of crucial importance for both ecological and commercial
reasons. It is a significant indicator of the productive capacity of the site and a fundamental
requirement for subsequent estimates of stand structure [37]. Our methodology produced
acceptable results (R2 = 0.91, RMSE = 0.36) since, compared to previous studies such as those
of [30,45], the statistical values are consistent. Any bias can be attributed to the difficulty in
mapping the vegetation and leaf litter below the tree at the time of generating the digital
surface model, and subsequent corrections are therefore advisable when field data on
leaf litter thickness are available. However, the estimation capabilities of the UAV are
significantly better than those of technician-led efforts, since the occlusion and overlapping
of canopies make it difficult to accurately distinguish the canopy apex. Another limitation
may be the seasonality of the estimations, since some species of the genera Arbutus and
Quercus are devoid of foliage at certain times of the year, making it difficult to distinguish
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the uppermost tip of the tree. In normative terms, the error found is permissible under
current regulations [46].

4.2. Multispectral Indices

Remote sensing is considered one of the most powerful technologies for vegetation
assessment. The rapid and vertiginous development of this technology has proven to be an
effective tool with which to further our understanding of vegetation dynamics [1,11]. In
this study, we extracted the canopy reflectance spectrometry through multispectral indices
using UAV at the individual-tree level.

It is recognized that the photosynthetic capacity of canopies is a crucial parameter
with which to improve our understanding of the eco-physiological processes taking place
between the forest and the atmosphere, i.e., the magnitude of photosynthetic variability in
forest species remains a challenge that merits analysis beyond the leaf level, and its accurate
estimation would reduce uncertainty in terrestrial biosphere models (e.g., carbon fluxes
and others). With no intention of explaining the rates and thresholds of photosynthesis of
the studied species, we discuss the spectral reflectance results calculated with multispectral
vegetation indices (e.g., VI). This is a preliminary step to further exploring their use and
linkage with ground-truth photosynthetic measurements (not measured in this study).

In addition, the spectral reflectance captured by a UAV sensor at canopy level is known
to be associated, to a greater extent, with canopy geometry and dispersion of the foliage,
etc., often producing spurious spectral variation that can be confused with the spectral
signature associated with plant photosynthesis. As discussed below, each index presents
differences in its spectral reflectance, but the best combination of these VI remains to be
explored. Consequently, we discuss them as a potential source that could predict future
photosynthetic productivity [47].

It is noteworthy that, although these VI are not direct measures of actual productivity
rates, they are in line with previous studies that use reflectance as a viable tool with which
to predict photosynthetic variables, or as an indicator of canopy “greenness” [48], although
in this study we only used reflectance spectra and never used leaf-level data or phenological
measurements.

In this sense, the NDVI represented the greenness of the individuals and is used by
some authors as a proxy for relative biomass [49–51], although it is recommended to deter-
mine light use efficiency (LUE). By taking advantage of contrasts between electromagnetic
bands and chlorophyll pigments, this index allowed us to differentially distinguish the
trees in terms of vigor (Figure 8). The genus Quercus presented the highest values of this
index, with advantageous implications for the conservation of this genus in the face of
predicted climatic change [52]. Secondly, Pinus and Arbutus seem to share the same level
of “greenness”, although without very critical conditions. In contrast, the genus Juniperus
seems to be the most heavily impacted by environmental or anthropogenic stressors (not
studied here). Management strategies such as pruning, thinning, controlled burning and
other regimes that could influence site productivity should therefore be considered. The
reliability of NDVI in evergreen forests requires further assessment given that previous
studies demonstrated uncoupling between NDVI magnitude and productivity due to a
change in radiation-use efficiency [48,50,53]

The TVI is sensitive to crown structure [54] and is highly recommended for monitoring
changes in the dynamics of the vegetation due to its property of contrasting the values of
reflectance [55]. Its values confirmed Quercus as the genus with higher spectral reflectance
than the other three genera.

A similar trend was followed by GNDVI, as an indicator of water from soil moisture
and nitrogen consumption attributable to photosynthetic activity. Although our study did
not contemplate chemical analysis of the soil, previous studies in neighboring sites have
reported that nitrogen is not limiting [12]. Consequently, we hypothesized that water will
be the limiting factor, as documented by [56,57]. These sites are of shallow soil depth and
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water from the monsoon rains tends to run off, leaving the trees under water stress and
heavily reliant on winter rains to carry out their physiological processes [58].

The NDRE proved to be a useful complement with which to detect tree anomalies,
since it optimizes the detailed data between the red bands and the NIR, complementing
the benefits of the NDVI [59]. Thus, Arbutus differed markedly from the other three genera
(Figure 8), meaning that this species undergoes marked changes in the properties of its
spectral reflectance with respect to the other species. NDRE has been reported as a potential
indicator of chlorophyll and changes in photosynthetic rate transitions (not measured
here), making it very useful for programming in situ cultural activities that require these
plants [59].

The LCI indicated the level of chlorophyll, where the genus Arbutus differed notably
from the other genera. According to [13], this index is a good indicator of the leaf area
index and is related to the maturity of the individual. For this reason, it merits continuous
monitoring.

Regarding the OSAVI, this index evidenced that the highest chlorophyll values are
presented by the genus Quercus, followed by Arbutus and the pines, whilst the Juniperus
present a small scale. This index considers the soil as a factor of chlorophyll content, such
that it is directly related to the amount of canopy foliage [60]. Coincidentally, [61] reports
that its values are proportional to the robustness of the canopy. This makes sense since the
oaks presented the largest crown dimensions (Table 2). As a consequence, this index could
be appropriate for monitoring photosynthetic activity in closed, high-density canopies.

The RVI reflects the fact that the genus Quercus presents the highest chlorophyll values,
which is attributed to its greater quantity of foliage and higher crown volume (Figure 8).
These results agree with [62], who state that this index is an indicator of chlorophyll content
as a factor that influences photosynthesis and nitrogen content.

The NDGI showed the best values for Juniperus and is an indicator [63] of changes
in the status quo of the vegetation, e.g., post-disturbance. In other words, this greenness
index reflects the reflective characteristics of plants, as determined by their momentary
condition. Juniperus differs from other species in terms of cellular structure and moisture
and chlorophyll content.

Our spectral multi-indices approach produced greater knowledge of the variation in
spectral signatures, as a reflection of the potential photosynthetic activity in the studied trees.
As shown in Figure 6, the wavelengths highlight a significant decrease in the percentage
of genus-differentiated reflectance around 650 nm. These differences can be interpreted
in different ways [63], but it is desirable in the future to take further considerations into
account in order to make these data useful for interpretations of photosynthetic activity
as such. For example, determination of the radiation use efficiency (RUE) from careful
ground measurements would allow a better understanding of the rate of photosynthesis
through NDVI. On the other hand, it is necessary to derive continuous spatial and temporal
information regarding the tree physiology, complement with hyperspectral data, refine
radiometric corrections and calibrate the sensors. This will act to reduce the uncertainty of
monitoring the performance of photosynthesis at canopy level, and eventually at leaf level.

We also do not discount the possibility that our results could allow us to discrimi-
nate species and phenological processes [64–66]. In any case, it is crucial to determine
the behavior of dendroecological variables collected in situ, since multispectral indices
are complementary to the field information, which is essential in order to reach better
conclusions.

As a limitation, the seasonality of image acquisition should be considered, since there
are reports that multispectral indices are also multiseasonal [67]. The dynamics of tree
phenology and physiological processes, therefore, merit further study with a temporal
perspective. Particularly in the case of oaks, for example, there are seasons when the tree
is devoid of foliage while the tree develops other physiological processes, such as root
elongation, radial growth, bud development, etc.
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Despite the promising results in terms of extracting phenotypic information of high
spatial resolution and accurate spectral reflectance for tree-level applications, we highlight
certain limiting factors that merit further research. For instance, a range of phenological
stages, leaf optical properties, soil reflectance, canopy structure, sun directions, saturation
phenomenon, sensor effects, etc. are all important factors governing spectral accuracy [68].
It is therefore advisable to exercise caution with the application of our approach, which is
merely descriptive. Before linking multispectral imagery with vigor or tree productivity,
fresh consideration of the use of UV-based VI is required. The lack of synchrony between
canopy spectrometry and physiological processes means that these indices are not infallible
indicators of instantaneous photosynthetic rates. The major problems include atmospheric
effects, optical properties and canopy structural attributes, which must be measured in
situ. Thus, the combination of VI with environmental and physiological variables requires
the adoption of more innovative approaches. In addition, multispectral data acquisition
and processing techniques imply high technical requirements and the need for specialized
personnel.

5. Conclusions

This research was advantageous for forest monitoring in natural forests and could
complement forest inventories and ecology studies. The long time periods required for
individual field estimations are drastically reduced by the approach followed here. Our
workflow proved to be an effective alternative for characterizing tree attributes. The infor-
mation generated substantially facilitates applications using the knowledge of the studied
species metrics. The accuracy of the metrics is reliable and the multispectral indices are
useful indicators of potential photosynthetic capacity. They represent surrogate variables
that can be used as input for models of forest ecosystem dynamics. The characterization of
VI was a valuable indicator for distinguishing functional genus types. In particular, NDVI
is a dominant and effective index for detecting photosynthetic activity, although this does
not imply that it is infallible. As a result, one may consider the use of other vegetation
indices as generated here.

The quality of the mapping allowed the proposal of new research paradigms, including
the need to adjust the algorithms according to tree age, height and species group, since
the mapping results were influenced by species composition. Likewise, stand density
merits the exploration of additional technologies in order to reduce uncertainty, but the
implications in terms of economic costs must be taken into account.
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Abstract: The southern beech (genus Fuscospora and Lophozonia) forest in New Zealand periodically
has “mast” years, during which very large volumes of seeds are produced. This excessive seed
production results in a population explosion of rodents and mustelids, which then puts pressure
on native birds. To protect the birds, extra pest controls, costing in the order of NZD 20 million,
are required in masting areas. To plan pest control and keep it cost-effective, it would be helpful
to have a map of the masting areas. In this study, we developed a remote sensing method for
the creation of a national beech flowering map. It used a temporal sequence of Sentinel-2 satellite
imagery to determine areas in which a yellow index, which was based on red and green reflectance
(red-green)/(red + green), was higher than normal in spring. The method was used to produce
national maps of heavy beech flowering for the years 2017 to 2021. In 2018, which was a major beech
masting year, of the 4.1 million ha of beech forest in New Zealand, 27.6% was observed to flower
heavily. The overall classification accuracy of the map was 90.8%. The method is fully automated
and could be used to help to identify areas of potentially excessive seed fall across the whole of New
Zealand, several months in advance of when pest control would be required.

Keywords: southern beech; masting; beech flowering; seed fall; Fuscospora; Sentinel-2

1. Introduction

New Zealand southern beech (genus Fuscospora and Lophozonia, formerly Nothofa-
gus [1]) forest dominates over 2 million hectares (ha) of New Zealand forest and features
in almost 2 million ha more [2]. It comprises five species: mountain beech (Fuscospora
cliffortioides); red beech (Fuscospora fusca); silver beech (Lophozonia menziesii); black beech
(Fuscospora solandri); and hard beech (Fuscospora truncata). The trees reproduce almost
yearly, with periodic highly productive seasons known as “mast” years that produce large
volumes of seeds [3]. The seeds are a significant food source for a number of birds and
mammals. During mast years, the rodent population increases significantly [4,5], provid-
ing an abundant food source for mustelids (especially stoats—Mustela erminea) [6]. All
rodent and mustelid species have been introduced to New Zealand and also prey on native
bird species. When seeds begin to run out, increasing pressure is put on native biota as
additional food sources are sought. The control of populations of introduced predators is
essential for preserving populations of native and endemic birds, reptiles, and invertebrates
in New Zealand, especially during beech mast years [6].

The New Zealand Department of Conservation (DOC) is responsible for managing the
forests on public land, preserving native species, and coordinating pest control. The ability
to predict the extent and intensity of significant mast events is a critical component for
planning pest control efforts to limit the explosion of predator populations [4]. A number
of approaches are currently used to plan management interventions: (i) modeling; (ii) field
observations; and (iii) the in situ sampling of developing seed crops in tree canopies. (i) The
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“delta-T” (ΔT) model [7] uses the difference in mean temperature from the previous two
summers (Tn−1 − Tn−2) to predict likely seed fall for the following autumn at a national
scale. However, it relies on temperature data, which are currently only available on a
modeled 5 × 5 km grid, so it misses smaller scale micro-climate effects. While historical
temperature is an important factor in synchronizing mast events [7], other factors, such as
nutrient availability, also play a role [8]. New research suggests that rising temperatures
caused by climate change may alter the mast cycle of beech trees [8,9], increasing the spatial
and temporal complexity of mast patterns [8] and potentially de-synchronizing flowering
and seeding, effectively reducing the impact and predictive power of temperature on the
timing of the reproductive cycle [10]. (ii) Field staff from DOC are well placed to provide
observations of beech flowering in certain areas as part of their normal duties. However,
there are large areas of forest that remain unobserved and spatial extent is often difficult to
define, especially at a regional or national scale. (iii) Extensive sampling campaigns are
conducted during years in which a heavy mast is expected using helicopters so that staff
can reach and clip the upper branches of trees in order to count the seeds. This task is
expensive, labour intensive, and dangerous.

Remote sensing has proven to be an effective tool for monitoring vegetation phenology,
particularly when a rich time series of imagery is available [11–16]. With sensors, such as
Landsat 8 and Sentinel-2, it is possible to map phenology over millions of hectares and
create national maps in great detail [11,17]. Phenological characteristics are usually derived
by first fitting a curve to the time series of remote sensing data and then using either
threshold-based methods, moving averages, inflection points or the time of maximum
increase [18–22]. Seasonality is usually assumed [22]. As mast events are considered a
deviation from the “median” annual cycle, it should be possible to use change detection
techniques [23,24] to identify or even predict mast seasons when identifying features are
visible from above [14,19,21].

Vegetation indices, such as the normalized difference vegetation index (NDVI) and
the enhanced vegetation index (EVI), are often used to differentiate between flowers or
seed pods/cones and to summarize data as one variable for analysis [14,19,22,25]. Often,
multiple indices are combined in an effort to investigate multiple physical properties.
For example, a study by Garcia et al. [21] investigating white spruce mast events found that
vegetation indices targeting moisture were more effective than the traditional color-based
indices, but they still struggled to reliably predict masting. Fernández-Martínez et al. [19]
were more successful and used increasing EVI the winter before, along with weather data
during spring, as an indicator of potential mast seasons for Mediterranean oaks. Neither
study were able to find a usable signature for flowering or seed/cone production to map
the mast events. Dixon et al. [14] and Chen et al. [25] both successfully used multi-scale
imagery to map tree-scale flowering over landscapes: Dixon et al. [14] by training a random
forest model with drone data from known events and Chen et al. [25] by developing an
enhanced bloom index (EBI) from drone data and successfully translating that approach to
CERES, PlanetScope, Sentinel-2, and Landsat data to increase coverage.

In this study, we investigated the use of freely available satellite remote sensing to
identify large areas of significant southern beech flowering in New Zealand. We used
imagery from the European Space Agency (ESA) Sentinel-2 “a” and “b” satellites to obtain
a high rate of repeat passes in order to maximize the chances of multiple cloud-free
observations and to produce detailed coverage at a national scale. Very little ground data
on flowering are available. The irregular nature of the flowering events and the ruggedness
and remoteness of much of the terrain made the planned collection of ground data for this
study difficult. As significant flowering is an irregular phenological event, we modeled the
phenology of beech forest per pixel and identified departures from this image-by-image
during spring seasons to identify heavy beech flowering. Using this method, we produced
national maps of heavy beech flowering for 5 years, 2017–2021, with a minimum mapping
unit of 1 ha. We assessed the accuracy of the method by comparing it to a human operator
at 1000 randomly selected sites. A national map of detectable heavy beech flowering could
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be produced at the end of every spring to assist DOC in identifying potential mast “hot
spots” and thus, aid in the planning of pest control operations.

2. Materials and Methods

2.1. Area of Interest

This study covered the extent of known beech and mixed-beech forest in New Zealand,
according to EcoSat Forests [2,26–28], and covered both North and South Islands from
36.1◦S, 178.0◦E to 46.4◦S, 166.4◦E. The terrain is largely mountainous with slopes of up
to 45◦, as any habitat deemed suitable for agriculture was cleared in the 1800s and early
1900s. Due to the large variations in both the altitude and latitude of the study area, the
mean annual temperatures ranged from 3.8 ◦C to 16.6 ◦C and the mean cumulative annual
rainfall ranged from 465 mm to 9305 mm.

2.2. Data

This study used the Copernicus Sentinel-2 Level-1C calibrated top of atmosphere
(TOA) reflectance values, as downloaded from the ESA archives, with the edges masked
to remove pixels that did not contain data for every band. The Sentinel-2 satellite mission
consists of two satellites (Sentinel-2a and -2b) moving in sun-synchronous orbits that repeat
every 10 days. These orbits are 180◦ out of phase with each other, which produces a 5-day
revisit period. The swath width of each pass is 290 km, with five “passes” required to
cover the mainland of New Zealand, each on a different day. The overlap between passes
means that some areas of the country have a higher revisit rate. Each Sentinel-2 satellite is
equipped with a multi-spectral imaging sensor that captures wavelengths from ultraviolet
to short-wave infrared.

Our analysis used all available Sentinel-2 data over New Zealand from 1 September
2016 to 31 December 2021, with images every 10 days before Sentinel-2b came online 8
July 2017 and images every 5 days thereafter. A “mega-mast” occurred during spring 2018
and autumn 2019 [29,30]. Other years showed some small flowering events or none at all.
Cloudy pixels were excluded from the temporal sequence using the methodology outlined
in Shepherd et al. [31].

2.3. Methods

Southern beech flowers produce a reddening of the forest canopy that is visible from
the ground, especially during a significant mast season. At the 10 m pixel nominal spatial
resolution of Sentinel-2, the reddening of the canopy appears to the human eye as a subtle
yellowing in the “natural color” (RGB) image as the red flowers increase the red component
of a pixel but not to the point of dominating the green. Higher-wavelength image bands
(and the associated indices) do not respond to this flowering, with the exception of Band 5
(red edge); however, this is also associated with the “flushes” of new foliage in late spring.

The yellowing effect of the canopy is subtle in natural color renders of Sentinel-2
imagery, as demonstrated in Figure 1a–d. Sub-figures (e–h) feature an exaggerated “red”
(B4) band, which highlights the effect at the expense of non-forested areas. Figure 1
covers one month of imagery in an area of overlap between orbits 29 and 72 and thus, has
approximately double the number of overpasses compared to other areas of the country. In
that 30-day period, there were 13 overpasses that resulted in 5 usable cloud-free images, 4
of which are displayed. The flowering event was just starting on October 14th (Figure 1a,e),
with the lower western and southern slopes in full flower 7 days later (b,f) and the upper
and eastern slopes in full flower 15 days later (c,g) as the areas in (b,f) gave way to fresh
green foliage. Eight days later, on 13 November (d,h), most of the flowering had vanished.
Generally, there was a two- to three-week period, at most, in which a cloud-free image was
required in order to observe flowering; however, there was no way of reliably knowing
when this window would occur as it varied with season and location.

In order to detect the yellowing that is associated with southern beech flowering, we
applied two approaches: the calculation of a normalized difference yellowing index (NDYI)
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to describe the red–green band relationship and the modeling of this index over the time
series of the image archive to detect variations from the expected (non-flowering) state.
The effect is subtle enough that the technique required was very sensitive to cloud and
shadow contamination. In addition to the cloud masking performed above, “invalid” pixels
from the cloud mask (cloud, shadow, snow or water) were buffered by 30 pixels (300 m) and
patches of “valid” pixels smaller than 100 ha were re-classified as “invalid”. Extra spectral
filtering was then used to mask the remaining pixels that were too bright or dark to be forest
(or useful): B4red < 650, B3green < 900, B2blue < 1000, B8NIR > 1000, B4red − B5red edge <
−1500. The result was then further buffered by 3 pixels.

Figure 1. Sentinel-2 imagery from the Hawdon Valley, South Island, New Zealand, showing a
flowering event during the spring of 2018: (a–d) are natural color; (e–h) are natural color with
an exaggerated stretch to amplify the “red” band (Band 4). The images are organized by column,
e.g., (a,e) are the natural color and stretched color for 14 October 2018, respectively.

The NDYI is similar to the well-known normalized difference vegetation index (NDVI) [32],
using the “red” (Band 4665 ± 15 nm) and “green” (Band 3560 ± 18 nm) Sentinel-2 bands instead
of the “near-infrared” and “red” bands. It is also very similar to the green-red vegetation index
(GRVI) [33,34], with the order of the bands merely reversed:

NDYI =
(B4red − B3green)

(B4red + B3green)
(1)

The NDYI was calculated using the Level-1C TOA reflectance product re-projected to
the New Zealand Transverse Mercator (NZTM) coordinate reference system (EPSG:2193)
and with any invalid pixels masked. As the NDYI represents the ratio of red–green and both
are affected similarly by transient atmospheric conditions, it was negative over most areas
of forest most of the time (i.e., when a pixel was “green”), increasing to near or slightly
above 0 during heavy flowering events.

Substantial annual variation was present in the TOA reflectance observations over
forest due to climatic conditions, vegetation phenology (e.g., new leaves), and sun angle.
The NDYI signal visually observed during flowering was subtle enough within the context
of a year of data that setting simple thresholds was inadequate to produce a reliable result.
Additionally, flowering can occur at different times during the spring season, depending
on latitude and altitude [3,8]. The temporal sequence of NDYI for a pixel in the Hawdon
Valley (South Island, New Zealand) is shown in Figure 2 as an example. The orange line is
a modeled NDYI time series that is unique to that pixel, using an approach similar to that
used in the TMASK methodology developed for cloud detection in Landsat 8 imagery [35].
The model used robust regression to calculate unique per pixel (i, j) coefficients for the sine
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and cosine terms for intra- (a1,i,j, a2,i,j) and inter-annual (a3,i,j, a4,i,j) variability, as well as a
constant term (ci,j). Where x is the number of days since the start of the temporal sequence,
Tyr is the number of days per year, and Tall is the number of days in the sequence:

NDYImod(i, j, x) = ci,j + a1,i,jsin(2π
x

Tyr
) + a2,i,jcos(2π

x
Tyr

) + a3,i,jsin(2π
x

Tall
) + a4,i,jcos(2π

x
Tall

) (2)
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Figure 2. The observed normalized difference yellowing index (NDYI) time series for an example
pixel from Figure 1 in the Hawdon Valley (blue) with superimposed modeled values (orange). The
gray areas indicate austral spring seasons (September–November) where the NDYI is expected to
peak during a mast. The red circle shows the NDYI that was higher than expected during the spring
of 2018 (the “mega-mast” season).

The observed NDYI for each pixel and date were then subtracted from the modeled
value for that pixel and date to produce ΔNDYI and the maximum value was found for
each flowering season (1 September to 10 December) using:

ΔNDYI = NDYI − NDYImod (3)

Finally, ΔNDYI values were converted into a map of “heavy flowering detected” vs.
“heavy flowering not detected” by following a method similar to Shepherd et al. [36]. First,
a high ΔNDYI threshold of 0.08 was chosen by assessing ΔNDYI against seed trap data [4]
during the 2018 “mega-mast”. This threshold was used to create “seed” areas, which were
grown outward by progressively lowering the threshold to 0.04. The resulting “flowering”
pixels were then buffered by 2 pixels, followed by a 5 × 5 majority filter that was then
eroded by 2 pixels. “Heavy flowering not detected” patches that were smaller than 1 ha
(minimum mapping unit) were removed by being re-coded as “heavy flowering detected”
or “no data” (majority of surrounding pixels), then the “heavy flowering detected” patches
that were smaller than 1 ha were re-coded as “heavy flowering not detected” to reduce
small-scale noise.

As no reliable spatial dataset of beech flowering exists beyond occasional field reports
from DOC staff, the national-scale map for the 2018 mast year was accuracy assessed by
a human operator. At 1000 randomly selected sites, 500 in “heavy flowering detected”
and 500 in “heavy flowering not detected”, the operator determined whether heavy flow-
ering was observed in the temporal sequence of 2018 cloud-free imagery in comparison
to a median spring image (excluding 2018). Heavy flowering was easily observed in the
temporal progression of spectral reflectance relative to the median image, especially when
the spatial extent of the flowering moved upward in elevation as the season progressed
(using the exaggerated red band stretch shown in Figure 1). A confusion matrix of propor-
tions was estimated using the method of Card [37], from which precision and recall were
calculated [38].
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3. Results

The austral spring (September–November) of 2017 was a light flowering season for
southern beech in New Zealand. This was followed by a “mega-mast” in 2018, with heavy
flowering observed from the ground during spring and a corresponding heavy seed fall
the following autumn. Maps of the maximum spring ΔNDYI were produced for each
year of data, with the results for the 2018 season shown in Figure 3. The spatial patterns
corresponded with anecdotal reports from DOC staff who were based at field offices around
New Zealand. There was heavy flowering throughout most of the northwestern corner of
the South Island and sporadic heavy flowering in eastern Fiordland. The inset of Figure 3
highlights the level of detail available and shows the heavy flowering on the lower slopes
of the Hawdon and Poulter Valleys, dissipating as altitude increases up the valley walls
(the black areas are not beech forest; they are either alpine or riverbed in this location).

Figure 3. The maximum ΔNDYI (from the model) for spring 2018 in areas of known southern beech
forest in New Zealand. Green denotes areas of low (<0.02) maximum ΔNDYI, while red is high
(>0.08) and indicates heavy beech flowering. The inset shows the Hawdon and Poulter Valleys near
Arthur’s Pass (1:250,000 at 42.95◦S, 171.82◦E; see white box).
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Figure 4 shows the maps of heavy beech flowering as detected by our method for years
2017–2021. In spring 2018, a lot of heavy beech flowering was detected in the north-west of
the South Island, which was synonymous with a “mega-mast” event in that region. In the
North Island and the south-west of the South Island, some pockets of heavy flowering
were detected. The following year, in spring 2019, the flowering was much reduced in
the north-west of the South Island, but in the North Island, a lot of heavy flowering was
detected, which was synonymous with another “mega-mast”. The south-west of the South
Island had pockets of heavy flowering, much the same as in 2018. In years 2020 and 2021,
minimal beech flowering was detected in most areas.

Figure 4. The maps of heavy beech flowering during spring time for four years using Sentinel-2
imagery (2017–2021 inclusive). The classes are “heavy flowering detected” (red), “heavy flowering
not detected” (green), and “no cloud-free imagery” (gray).

In the 2018 map, heavy flowering was detected in 27.6% (1,144,382 ha) of the 4.1 million
ha of beech forest in New Zealand. Heavy flowering was not detected in 51.2% (2,122,201 ha)
of the beech forest. In the remaining 21.2% of the beech forest (878,406 ha), there was no
cloud-free imagery in the spring to enable a decision to be reached. In each of the two
classes for “heavy flowering detected” and “heavy flowering not detected”, we generated
500 random locations at which we compared reference data to map data. The reference data
were determined from the visual interpretation of all cloud-free spring imagery for that
year. Table 1 shows the confusion matrix of proportions. The overall classification accuracy
was 90.8%. The precision (user’s accuracy) scores indicate that 90.4% of the area mapped as
“heavy flowering detected” was actually heavy flowering. The recall (producer’s accuracy)
scores indicate that 84.4% of actual “heavy flowering detected” was successfully mapped
as “heavy flowering detected”. The overall F1-score for “heavy flowering detected” was
0.873 and “heavy flowering not detected” was 0.928. Thus, the ΔNDYI method is likely to
underestimate (slightly), rather than overestimate, areas of heavy flowering; however, the
scores reflect well on the method overall.
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Table 1. A confusion matrix showing detected and not detected heavy flowering (proportion of map)
for the ΔNDYI method (Mapped), assessed against a human operator (Reference). The proportions
were estimated from a random sample of 500 locations in the “heavy flowering detected” class
(weighted by proportion of “heavy flowering detected” in map = 0.35) and a random sample of 500
locations in the “heavy flowering not detected” class (weighted by 0.65).

Reference Flowering

Detected Not Det. Precision

Mapped flowering
Detected 0.316 0.034 0.904
Not Det. 0.059 0.592 0.910

Recall 0.844 0.946
F1-Score 0.873 0.928

4. Discussion

We developed a method that can produce a national map of heavy beech flowering
from a temporal sequence of Copernicus Sentinel-2 imagery (Figure 4). The method detects
elevated values of a yellow index (NDYI) the are above those normally expected in spring.
A ΔNDYI value greater than 0.08 indicates especially heavy flowering; however, these
regions can be “grown” into adjacent pixels where ΔNDYI is greater than 0.04 to better
capture all heavy flowering. The elevated yellow index is caused by the production of red
flowers that obscure the green leaves. The national map of beech flowering can be produced
at the end of spring, several months before the subsequent mast event actually occurs and
seeds drop to the ground. It can then be provided to DOC, which is the national agency
in charge of pest control, to aid with planning additional pest control to be implemented
several months later. In the spring of 2018, a nationwide beech mast event was detected
and mapped using this method. A manual accuracy assessment determined the heavy
flowering map to have an overall accuracy of 90%. The spatial distribution of beech
flowering, as mapped by the method, was also consistent with anecdotal observations from
DOC field staff.

The national map of beech flowering can be used to provide extra detail to augment
the existing ΔT model [7] as it provides a higher spatial resolution of 10 m, as opposed
to 5 km. It is also a map of confirmed flowering, which is one less degree of separation
from the actual seed fall than the ΔT model, as physical factors, such as carbon availability
and soil moisture conditions, also affect flowering and seed productivity [39]. However,
one issue with our method is the requirement for cloud-free satellite imagery at critical
flowering times. This means that flowering may have been missed in some areas, which
effectively makes the map a better indicator of “presence” rather than “absence”.

Not all heavy beech flowering in spring results in heavy seed fall in the following
autumn. Heavy frost or very wet weather can interfere with seed production [3]. Figure 5
shows how well the maximum ΔNDYI compared to seed counts in trays located on the
floor of the beech forest (seed traps are spread throughout beech forests in New Zealand as
part of a long-running monitoring program conducted by DOC [4]). Data were restricted
to locations with at least eight valid observations in order to obtain representation over the
majority of the spring season. There was noise in the data, nevertheless high seed counts
generally corresponded with high maximum ΔNDYI (r2 = 0.397). For reference, the ΔT
model had r2 values between 0.331 and 0.556 for the same species range [7] (although
that study used the older genus name Nothofagus). Reasons for the mismatches between
the ΔNDYI and seed count include: cloud coverage still obscuring the flowering event,
despite the high number of revisits (low ΔNDYI vs. high seed count); inaccurate trap
location (variable impact on relationship); trap location relative to flowering trees combined
with wind direction during seed fall (high ΔNDYI vs. low seed count); different beech
species (different relationship between ΔNDYI and seed count); climate, adverse weather
events, and nutrient availability (lower seed count vs. higher ΔNDYI); and inaccuracies
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in the method (addressed in accuracy assessment). We recommend that the national map
of flowering/not flowering be regarded as a map of potential high seed fall for initial
planning purposes, which is to be confirmed later with additional information, such as
selected field observations.
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Figure 5. The relationship between the maximum ΔNDYI (spring 2018) and the number of
seeds collected from seed traps in the permanent trap network (autumn/winter 2019) for the
2018/2019 masting season. The locations are filtered to exclude those with fewer than eight valid
satellite observations.

One way to address the paucity of valid observations would be to add more data
sources. As the technique developed in this study relies only on red, green, blue, and NIR
(for quality control) wavelengths, it should be possible to include data from commercial
satellite constellations that have higher revisit rates but lower spectral ranges or resolutions,
such as the Planet “Dove” constellation. Adding freely available Landsat 8 data could also
increase the probability of obtaining valid observations at critical times. Targeted aerial
imaging campaigns could also provide valuable information in areas of known data paucity,
particularly when they are informed by observations from field staff. This study has shown
that the resolution requirement is low, by aerial imaging standards, which would allow
for higher flight altitudes and larger image footprints, thereby substantially reducing cost.
Multiple studies have shown that the fusion of these separate data sources is useful in
remote sensing [11,14,16,20,40,41], though the spatial complexity and rugged terrain of the
beech forests in New Zealand is likely to reduce the utility of the coarse resolution MODIS
optical imagery.

This study successfully mapped the presence of heavy flowering in beech trees at a
large scale (greater than 4 million ha) using a visible change in canopy color. A similar study
by Garcia et al. [21] was less successful, but did show that moisture-based indices in the
lead-up to a flowering or seed/cone event could provide additional information. Fernández-
Martínez et al. [19] were also successful in predicting mast events using a combination
of the enhanced vegetation index (EVI) and weather data during spring. A number of
challenges exist in the context of detecting mast events and the ΔNDYI approach attempts
to minimize these. The NDYI index was chosen to specifically target the red and green
image bands, avoiding the red edge and near-infrared bands that also respond to vegetation
conditions and thus, increase noise. The effectiveness of the multi-year sine and cosine
model for modeling the typical behaviour of NDYI, the utilization of extreme ΔNDYI
values as “seeds” for regions that grow into areas of lower ΔNDYI values, and the ability
to tune the spectral value constraints all contribute to the effectiveness of our approach.
To further improve the performance of the ΔNDYI method, it would be worth investigating
the use of supporting indices, such as Garcia et al. [21] and Fernández-Martínez et al. [19],
in addition to adding extra data sources. Further work into distinguishing different beech
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species would also add greater value for DOC as those with larger seeds (red and hard
beech) have a disproportionately larger impact on rodent irruption.

The temporal analysis of Sentinel-2 satellite imagery has proven to be successful at
detecting heavy flowering in New Zealand beech forests. To achieve this, cloud clearing
had to be accurate (because the yellow index is sensitive to missed cloud) and automated
(because many images are required). The automation of the cloud clearing [31] and other
processing means that beech flowering maps can be produced in a timely and cost-effective
way. In future, we plan to produce a national map of heavy beech flowering at the end of
each spring. This would allow for several months of analysis to plan the extra pest control
that would be required in the autumn, thereby improving targeted pest control in masting
areas and leading to better outcomes for native fauna.

5. Conclusions

This study used Sentinel-2 top of atmosphere (TOA) imagery to detect and map atypi-
cal yellowing that was associated with the heavy flowering of southern beech (Fuscospora
and Lophozonia) forests in New Zealand over 4.1 million ha at an unprecedented 10 m
spatial resolution. This was achieved by modeling a normalized difference yellowing index
(NDYI) over 5 years of observation and investigating any deviations from the expected
values during spring months (September–November). A “threshold” ΔNDYI value of 0.08
was used to identify areas of heavy flowering, with connected areas of ΔNDYI > 0.04 also
likely flowering. The method was automated and could be run for all of New Zealand in
less than a day on a cluster of approximately 1000 CPU cores. Using Sentinel-2 imagery,
the method typically provided information on heavy flowering for 80% of the beech forests
in New Zealand with a high overall classification accuracy of 90.8%, resulting in useful
information for the planning of national-scale pest control efforts.
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Abstract: Areas of grassland improvement and degradation were mapped and assessed to identify
the driving forces of change in vegetation cover in the Three Rivers headwater region of Qinghai,
China. Based on linear regression at the pixel level, we analyzed the vegetation dynamics of the
grasslands of this region using MODIS NDVI data sets from 2000 to 2010. Correlation coefficients
were computed to quantitatively characterize the long-term interrelationship between vegetation
NDVI and precipitation/temperature variability during this period. The use of time series residuals
of the NDVI/precipitation linear regression to normalize the effect of precipitation on vegetation
productivity and to identify long-term degradation was extended to the local scale. Results showed
that significant improvements occurred in 26.4% of the grassland area in the Three Rivers Headwater
region between 2000 and 2010. The study area, which represents about 86.4% of the total grassland
area of this headwater region, showed a general trend of improvement with no obvious trend
of degradation.

Keywords: NDVI; grassland; MODIS; precipitation variability; human activities

1. Introduction

The impact of climate change is multi-scale, all-round and multi-level, with both
positive and negative impacts, but its negative impacts are more concerned. After entering
the 21st century, climate change has gradually become a comprehensive problem affecting
the whole world. As a result of climate change, some grasslands around the world are
already experiencing a decline in primary productivity and biodiversity, which is caused
by man-made activities and also caused by the climate. These two causes interact and
produce a superimposed effect. On the one hand, due to the dry climate, which affects
the adaptability of the grassland ecosystem itself, human activities have largely changed
the native grassland, which also leads to the decline of the adaptability of the grassland
ecosystem itself. A large number of new varieties introduced by artificial and semi-artificial
pastures need strict management and protection to create higher pasture yield. Under the
climate change model, frequent pasture management measures exert great pressure on the
grassland ecosystem. On the other hand, climate change makes the grassland ecosystem
itself face more natural disturbances. Climate change affects precipitation and grassland
temperature, which causes instability such as year-round drought, summer floods, and
winter snowfall. For instance, Orusa and Mondino studied climate change effects on
rangelands, and found that phenological and evapotranspiration-related processes and
snowpack melting time have been dramatically changed in the last two decades in Aosta
Valley (Orusa and Mondino, 2021). Located in the hinterland of the Qinghai-Tibet Plateau
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in southern Qinghai, the source area of the three rivers refers to the source areas of the
Yangtze, Yellow, and Lancang Rivers [1]. This headwater area is the highest, largest, and
most concentrated wetland in the world and has the most abundant biodiversity and the
most sensitive ecosystem in China. The three rivers supply about 60 billion m3 of water
each year, and the partial water of the Yangtze River, Yellow River, and Lancang River
comes from the Three Rivers Headwater Region, thus establishing the area as a veritable
“Chinese water tower”. The Three Rivers headwater region is a unique area that affects
the development of the west; once damaged, recovery is difficult because of the harsh
conditions found there and the area’s fragile ecosystems [2].

Grassland is the dominant ecosystem in the Three Rivers headwater region, and
grassland animal husbandry is the leading industry. One of the main supply functions of
this grassland ecosystem is providing herbage allowance for animal husbandry production,
which then provides direct benefits to the people through the production of grass-fed
livestock [3,4]. In recent decades, due to the impact of the uncontrolled exploitation and
overuse by humans, serious grassland degradation has occurred [5]. By the early part of
this century, degraded grassland occupied 26–46% of available grassland, and this has
had severe impacts on the ecological environment, its security, and on the sustainable
development of grassland animal husbandry of the region. To address this problem, the
State Council in 2005 approved the Ecosystem Conservation project in the Three Rivers
headwater region with the aim of implementing ecological restoration [6]. To design a
scientific strategy for the recovery, management, and utilization of the grassland and to
effectively evaluate the project [7], analyzing the dynamic change of grassland productivity
before and after the start of regional restoration work is essential. This allows an assessment
of the trends of the supply function of herbage allowance and the natural and cultural
drivers leading to the changes of the grassland ecosystem [8].

A vegetation index refers to ground vegetation coverage gathered through satellite
remote sensing; it is a comprehensive, abstract, and indirect method [9] that is accomplished
either through empirical modeling or mixed-pixel decomposition [10,11]. An empirical
model is applied to achieve vegetation coverage over a large area through the correspon-
dence between the measured data of vegetation coverage in the sample and the vegetation
index [12]; however, the application of this method is subject to temporal conditions. With
mixed-pixel decomposition, pixel information gathered by remote sensing is simplified into
information or non-information on vegetation, and vegetation coverage is estimated from
the proportion of vegetation information [13,14]. Studies have shown that this method is
not subject to the latest data, and so it is generally applied to dynamic monitoring of remote
sensing of vegetation coverage [15].

In this paper, we integrate various remote sensing analytical techniques (trend analysis,
correlation analysis, and residual analysis with consideration of hysteresis effect of rainfall
on vegetation) to map and assess grassland improvement and degradation areas to identify
the driving forces of change in vegetation cover in the Three Rivers headwater region.

2. Study Area

The Three Rivers headwater region (TRHR) refers to the source areas of the Yangtze
River, the Yellow River, and the Lancang River [16,17]. The TRHR is the highest, the largest,
and the most concentrated wetland in the world, while also being the region with the most
abundant biodiversity and the most sensitive ecosystem owing to its varied topography,
complex hydrographic network, and numerous lakes. Wetland and meadow plants are the
main types of vegetation in the TRHR, and these play a vital role in water conservation,
runoff mitigation, and biodiversity maintenance [18].

Additionally, as the primary water source of the Yangtze, Yellow, and Lancang rivers,
the Three Rivers headwater region, named “China water tower”, is vital for maintaining the
water security of 548 million people on the downstream Yellow River basin, Yangtze River
basin and Lancang River basin. However, since 1990s, the ecosystem of the Three Rivers
headwater region has shown a severe trend of degradation, which seriously threatens
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the production and living of the local residents in the downstream areas. Therefore, the
Chinese government has started to implement a series of ecological policies to curb the
degradation of the ecosystem (Figure 1).

 

Figure 1. Grassland distribution of the Three Rivers headwater region (The gray bold dashed lines
represent the mountains with a name beside it; the blue lines are the rivers; spatial reference: Albers
conical equal area; datum: D WGS 1984).

3. Materials and Methods

3.1. Data Sets and Pre-Processing

MODIS data: The normalized difference vegetation index (NDVI) is a normalized
ratio of red and near-infrared reflectance. It is used as a terrestrial vegetation growth and
conditions proxy, being sensitive to chlorophyll-related plant canopy structural variations
and being closely correlated to the fraction of potential photosynthesis and the physiolog-
ical status of vegetation [19,20]. In this study, we used the moderate resolution imaging
spectroradiometer (MODIS) MOD13Q1 time series data set from 2000 to 2010 obtained
from the Land Processes Distributed Active Archive Center (LP DAAC). This data set has
a spatial resolution of 250 m and temporal resolution of 16 days, an improved sensitivity
to vegetation, and a reduced influence of external factors (such as atmosphere, observa-
tion angle, sun azimuth, and cloud cover), which have been verified using stable desert
control points.

The MODIS data set was geocoded to the universal transverse Mercator (UTM) coor-
dinate system using the MODIS reprojection tool. As these products may be affected by
cloud cover, atmosphere, or ice/snow cover, we first reconstructed the NDVI time series
data set using the asymmetric Gaussian function filter in TIMESAT 2.3 software program to
reduce noise and improve data quality during the data pre-processing procedure [21]. The
16-day MODIS-NDVI was then compiled into monthly NDVI data by applying maximum
value compositing (by overlaying multiple raster maps, the value of each raster cell is then
taken as the largest of the multiple maps), which was processed in the interactive data
language (IDL, https://www.harrisgeospatial.com, 30 November 2022).

Meteorological data: Meteorological data from 2000 to 2010 (including monthly scale
precipitation and temperature) were obtained from the Chinese National Metrological
Information Center/China Meteorological Administration. Monthly meteorological data
derived from station-based information were interpolated to the whole research area at
a spatial resolution of 250 m using the kriging interpolation method. In addition, the
monthly temperature was calibrated using the digital elevation model, and the coefficient
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was reduced by a 0.47 degree/100 m increase in elevation. This coefficient was obtained by
linear regression between elevation and temperature.

Grassland data: Information related to grassland distribution in the study area was
obtained from an ecosystem map of China that was generated and interpreted based
on 1:100,000 Landsat TM satellite remote sensing products from the Data Center for Re-
sources and Environmental Sciences, Chinese Academy of Sciences. (Figure 1). Sources of
cartographic data and statistics are listed in Table 1.

Table 1. Sources of principal data.

Data Name Data Resolution Data Source

MODIS-NDVI 250 m (monthly) Land Processes Distributed Active Archive Center
(https://lpdaac.usgs.gov, 30 November 2022)

SRTM 90 m CGIAR Consortium for Spatial Information
(http://srtm.csi.cgiar.org/, 30 November 2022)

Precipitation, temperature 146 points (monthly) Chinese National Metrological Information Center/China Meteorological
Administration (http://data.cma.cn, 30 November 2022)

Ecosystem map 90 m (yearly) Resource and Environment Science and Data Center, Chinese Academy
of Sciences (https://www.resdc.cn/, 30 November 2022)

3.2. Methods

(1) Trend analysis

To assess variation trends of NDVI and climate (precipitation and temperature)
throughout the 2000–2010 study period, we used a linear least-squares regression model to
obtain the changing trends of every pixel by fitting a linear equation of NDVI or climate
variables as a function of the variable of year to obtain an image of changing slopes [22].
The linear least-squares regression method, which is a commonly used method in trend
analysis [23], was applied as follows:

y = a + b × t + ε (1)

where y represents NDVI or climate variables; t is year; a and b are fitted variables (b is the
slope as a proxy of trend and a is the intercept); and ε is the residual error. If b > 0, there
is an increasing trend of NDVI or climate; conversely, if b < 0, there is a decreasing trend.
p < 0.05 was considered a significant change for both increasing and decreasing trends
(Table 2).

Table 2. Evaluation standard of trend significance.

Variation Trend b Value Range p Value Range

Significant decrease b < 0 p ≤ 0.05
Significant increase b > 0 p ≤ 0.05

No significant change p > 0.05

In addition, the estimation of parameters a and b uses the least square method, εi is a
random error, the fitting value of parameters a and b is expressed as:

b̂ =
∑n

i=1
(
ti − t

)
(yi − y)

∑n
i=1
(
ti − t

)2 (2)

â = y − b̂ × t (3)

The calculation process of changing slopes per pixel was programmed with interactive
data language (IDL).
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(2) Correlation analysis

We used the Pearson correlation coefficient to explore the relationship between trends
of NDVI and climate as follows:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(4)

where r represents the linear correlation coefficient; x is the NDVI variable; y is the precipi-
tation or temperature variable; and n is the number of variables [24].

To evaluate the influence of anthropogenic activities on the trend in NDVI, we used
partial correlation between the slope of the NDVI and anthropogenic factors (i.e., population
growth and a change in livestock numbers). We also employed stepwise regression between
the trend in NDVI and the impact factors (precipitation, temperature, population, and
livestock numbers) to assess their relative contribution in influencing spatial characteristics
of the NDVI trend [25].

(3) Residual analysis

Residual NDVI is the difference between the observed value yi (observed NDVI) of
the dependent variable and the predicted value ŷi (predicted NDVI) calculated according
to the estimated regression equation, denoted by e. It reflects the error caused by using the
estimated regression equation to predict the dependent variable yi. The residual of the ith

observation is:
ei = yi − ŷi (5)

Residual analysis is used to investigate trends in residual differences (residual NDVI)
using a regression model involving. The trends of predicted NDVI were interpreted as
climate-induced changes (rainfall as the explanatory variable [26]), while trends in residual
NDVI (ei) were interpreted as human-induced changes [26].

The residual analysis mainly involved the following steps. First of all, a line regression
model between observed NDVI and precipitation factor was used to calculate the residual
difference (e) between observed NDVI and predicted NDVI (regression result). Then, the
trend analysis of residuals as a function of time was processed to investigate the human-
induced vegetation degradation (Table 3). Pixels exhibiting marginal decreases (i.e., <5%)
in 2000–2010 were excluded or considered as stable because they reflected the potential
uncertainties caused by differences due to image dates within the season/month or image
calibration processes.

Table 3. Indicators and definitions related to residual analysis methods.

Degradation Trends of
Observed NDVI

Trends of
Predicted NDVI

Slope of
Residual

Definition Description

<0 >0 <0 Human-induced vegetation degradation
<0 >0 Climate-induced vegetation degradation
<0 <0 Both climate- and human-induced vegetation degradation
>0 >0 Uncertainty error

Previous studies reported that annual maximum NDVI representing the growth of
grasslands is strongly correlated with climatic variables [26]. Thus, NDVImax as the highest
NDVI value can be used to gauge grassland vegetation growth in this study. Based the
residual analysis, measured NDVImax values showed both positive and negative deviations
from the fitting curve on the NDVImax/rainfall linear regression, suggesting that vegetation
is not only responsive to rainfall, but also influenced by human activities represented
by residuals.

As the rainfall period was most strongly correlated with grassland growth, we calcu-
lated the precipitation accumulation periods and lag periods from September to August
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of next year. And analysis the correlation between the cumulative rainfall and NDVImax,
to identify the optimal relationship between them in the study area [27]. By prolonging
and changing the cumulative period, the process was repeated until all possible combina-
tions were tested, and then the best relevant cumulative period was determined (with the
strongest correlation), which is from 1 September to 1 August of next year.

4. Results

4.1. Spatial and Temporal Characteristics of Grassland Variation

Trend analysis showed overall positive NDVI trends for the grasslands (Figure 2). The
study area, which is about 84.25% area of the total grassland in the Three Rivers headwater
region, showed a continuous trend of improvement from 2000 to 2010.

Figure 2. Spatial distribution of NDVI trends in the grassland ecosystem. (A) NDVI trend from 2000
to 2005; (B) NDVI trend from 2006 to 2010; (C) NDVI trend from 2000 to 2010; the fork symbol in
the figure indicates the significance of NDVI trend, where p value < 0.05. (Spatial reference: Albers
conical equal area; datum: D WGS 1984).

Linear regression analysis of NDVI from 2000 to 2005 indicated that about 37.01% of
the total grassland area experienced a declining trend in vegetation production (Figure 2A).
The declining patches of vegetation were found mainly in the western and southern
pastures; however, this change between 2001 and 2005 was not significant. On the contrary,
the long-term productivity of vegetation shows a positive or stable trend in the northern
high-altitude pastoral areas affected by fog and haze.

Correlation between grassland degradation and triggered factors:
The correlation between NDVI values and accumulated precipitation revealed a strong

positive correlation (r = 0.5 to 0.98) for about 38.41% of the grassland area in the Three
Rivers headwater region (Figure 3A). A negative correlation was found in the densely
populated southern and eastern parts of the study area, which have low vegetation cover
and high levels of human activity.

Moreover, there is little correlation between residual NDVI and rainfall, suggesting
that residual analysis can effectively remove climatic factors (precipitation) and effectively
reflect the impact of human activities on grassland degradation (Figure 3B).
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Figure 3. Correlation results based on person correlation analysis. (A) Person correlation between
NDVI and Rainfall; (B) Person correlation between residual NDVI and Rainfall. (spatial reference:
Albers conical equal area; datum: D WGS 1984).

4.2. Impacts of Human Activities on Grassland Degradation

Analysis showed that approximately 25.85% of the study area did not show an increase
in vegetation growth despite increasing precipitation from 2000 to 2010 (Table 4). The
declining patches of vegetation, which can be attributed to human activities, were found
mainly in the southern and eastern pastures (Figure 4A). When evaluating the first and
second halves of the decade, linear regression analysis of residual NDVI from 2000 to 2005
showed that about 35.72% of the total grassland area experienced a declining trend in
vegetation production (Figure 4B). In contrast, about 17.66% of the total grassland area
showed a declining trend in vegetation production from 2006 to 2010 (Figure 4C).

Table 4. Proportion of area showing non-climate degradation (units %) and the trend of the residual
mean value.

2000–2010 2000–2005 2006–2010

Non-climate degradation area (%) 25.85 35.72 17.66
Mean of residual slope –27.35 –88.51 –62.10

Figure 4. Grassland degradation trend due to human activities (A) residual NDVI from 2000 to 2005;
(B) residual NDVI from 2006 to 2010; (C) residual NDVI from 2000 to 2010. (spatial reference: Albers
conical equal area; datum: D WGS 1984).

5. Discussion

Our findings showed that an increasing NDVI occurred mainly in the northern plains,
while southern and eastern grazing pastures, which are densely populated, showed a small
positive trend in long-term vegetation productivity. Degraded patches of vegetation were
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located on steep slopes (slope > 20◦), supporting the findings of Fan et al. (2010) [16].
In addition, our field observations suggested that high wind erosion and intensive hu-
man activities were impacting vegetation productivity. Grassland is the most important
ecosystem type on the Qinghai Tibet Plateau and the basis of animal husbandry on the
plateau. Though a series of grazing grassland ecological protection subsidy incentives such
as grassland ecological protection in the construction project, the Qinghai Tibet Plateau
grassland conservation effect appeared gradually, but the strength of the human activity
factor is different, we also found that declining patches of vegetation were found mainly in
the pastures [28].

A large proportion of the total grassland area (80.79%) showed an increasing vegetation
trend between 2000 and 2005. Less than 20% of the total grassland showed degradation,
and this was patchy rather than continuous. By 2006, the extent of vegetation coverage
was even higher. We attribute this improvement to the 2005 approval of the Ecosystem
Conservation project in the Three Rivers headwater region [29], which has led to less human
disturbance and a focus on vegetation recovery [6,30]. Whether changes in precipitation
variability or human activities led to this recovery is not yet clear. However, we found only
a limited correlation between precipitation and residual NDVI (Figure 4b), indicating that
the trends in vegetation cover were unlikely to be caused as a result of climatic conditions.

To analyze temporal trends in grassland NDVI, we concentrated on the development
of the annual maximum NDVI, as proposed by Evans and Geerken (2004) [25]. Vegetation
production in a cold alpine environment has been shown to fluctuate strongly according
to interannual precipitation and temperature variability [16,31]. However, temperature is
periodic and takes years for little change. Therefore, we assume that the correlation between
temperature and vegetation growth is unlikely to be used to identify the temporal and
spatial trends of grassland, so we ignore temperature. The NDVImax values are calculated
and correlated with precipitation, as proposed by Evans and Geerken (2004) and Madonsela
et al. (2018) [26,32]. We found that a decreasing NDVI was mainly concentrated in the
western region due to enhancing human activity such as over grazing and an increasing
NDVI was distributed throughout the rest of the study area due to increasing rainfall and
ecological protection policies such as banning grazing [33].

Our findings document the benefits that have occurred since the initiation in 2006 of
the ecological restoration project, which included returning grazing land to grassland, the
ecological migration project, black soil land recovery (grassland with extreme degrada-
tion), and rodent control [16,34]. Non-climatic (human) activities led to serious grassland
degradation of the Three Rivers headwater region up until 2005 (Figure 4B), but since
2006, the grassland degradation caused by these activities has decreased and an increase
in vegetation cover has occurred. This finding combined with the decreasing residual
NDVI indicates that the increasing vegetation cover over time is not related to precipitation
variability but to better land management practices.

6. Conclusions

We found an overall positive NDVI trend between 2000 and 2010 for the grasslands in
our study area, which cover about 84.25% of the total grassland area in the Three Rivers
headwater region. The declining trend in vegetation production between 2000 and 2005,
which affected about 37.01% of the total grassland area, appears to have been reversed
between 2006 and 2010, most likely by the effectiveness of the government-approved
program for ecosystem conservation.

The amount of precipitation in the Three Rivers headwater region has a strong positive
correlation with NDVI in about 38.41% of the grassland area. Negative correlations were
found in the southern and eastern regions, which have dense populations, low vegetation
coverage, and intensive human activity. Our study shows that to promote grassland
recovery in Three Rivers headwater region, a number of factors must be taken into account,
especially human activities. Our findings also support the need for intensive management
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of water resources to enhance vegetation and avoid ecological damage in this important
ecological area.
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Abstract: Revealing the spatial dynamics of vegetation change in Chongqing and their driving
mechanisms is of major value to regional ecological management and conservation. Using several
data sets, including the SPOT Normalized Difference Vegetation Index (NDVI), meteorological, soil,
digital elevation model (DEM), human population density and others, combined with trend analysis,
stability analysis, and geographic detectors, we studied the pattern of temporal and spatial variation
in the NDVI and its stability across Chongqing from 2000 to 2019, and quantitatively analyzed
the relative contribution of 18 drivers (natural or human variables) that could influence vegetation
dynamics. Over the 20-year period, we found that Chongqing region’s NDVI had an annual average
value of 0.78, and is greater than 0.7 for 93.52% of its total area. Overall, the NDVI increased at
a rate of 0.05/10 year, with 81.67% of the areas undergoing significant expansion, primarily in
the metropolitan areas of Chongqing’s Three Gorges Reservoir Area (TGR) and Wuling Mountain
Area (WMA). The main factors influencing vegetation change were human activities, climate, and
topography, for which the most influential variables respectively were night light brightness (NLB,
51.9%), annual average air temperature (TEM, 47%), and elevation (ELE, 44.4%). Furthermore, we
found that interactions between differing types of factors were stronger than those arising between
similar ones; of all pairwise interaction types tested, 92.9% of them were characterized by two-factor
enhancement. The three most powerful interactions detected were those for NLB ∩ TEM (62.7%),
NLB ∩ annual average atmospheric pressure (PRS, 62.7%), and NLB ∩ ELE (61.9%). Further, we
identified the most appropriate kind or range of key elements shaping vegetation development
and dynamics. Altogether, our findings can serve as a timely scientific foundation for developing a
vegetative resource management strategy for the Yangtze River basin that duly takes into account
local climate, terrain, and human activity.

Keywords: normalized difference vegetation index (NDVI); spatial evolution; multi-factor interaction;
geographic detector

1. Introduction

Vegetation is an important component of terrestrial ecosystems and serves as a link
between the atmosphere, water, and soil [1], thus playing a pivotal role in soil conservation,
climate regulation, hydrological processes, the carbon cycle, and ecosystem functioning
and stability [2,3]. The health of a local ecological environment, such as its water quality,
thermal energy, and soil fertility, can also be gauged by its vegetation [4]. Hence, vegetation
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is often used not only as an indicator of an ecosystem’s sensitivity to external disturbances,
such as climate change and human activities [5], but also as a comprehensive indicator
for characterizing the response and adaptation of a terrestrial ecosystem to environmental
change. Accordingly, understanding vegetation’s spatio-temporal evolution and the in-
volved driving mechanisms is critical for the regional development of effective vegetation
restoration measures and ecological protection policies [6].

Monitoring vegetation dynamics has been a major focus of global change research
in recent decades [7]. Because of their unique advantages, namely their large spatial
scale, long time series, and short interval period, remote sensing images have become
the primary data source for monitoring vegetation change at different scales, especially at
multiple spatio-temporal scales [8]. For example, Schultz et al. [9] used a long-time series of
Landsat-derived remote sensing imagery to monitor deforestation throughout the tropics.
With the continued maturation and development of hyperspectral and thermal infrared
remote sensing technologies, the bands of their images are becoming more abundant,
making it feasible to use them to study changing spatio-temporal dynamics of terrestrial
vegetation. To that end, researchers in China and abroad have proposed more than 100 plant
cover indexes, such as the ratio vegetation index (RVI), difference vegetation index (DVI),
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), soil
adjusted vegetation index (SAVI), and so forth [10,11], greatly improving the efficiency and
accuracy of extracting vegetation information. Currently, of those, the NDVI is recognized
as the best indicator of regional vegetation and ecological environment change because its
value can convey real information about vegetation’s growth status and biomass, among
other things; hence, it is widely used in the study of vegetation dynamics [12–14].

The dynamics of vegetation and the involved mechanisms shaping it have drawn
much attention in the context of rapid global change [15,16]. Many studies have shown
that vegetation dynamics are closely related to a broad suite of natural factors, including
climate, terrain, soil, and vegetation types [17,18]. How vegetation responds to climate
change is a very complex process, and climatic factors such as precipitation, temperature,
and evapotranspiration can jointly affect vegetation dynamics. For instance, Na et al. [17]
examined the impact of shifts in extreme air temperature and extreme precipitation in-
dexes on the long-term dynamics of vegetation in inner Mongolia, finding that climate
change may explain 68% of the variation in that vegetation’s development. The effect of
evapotranspiration on vegetation change should not be overlooked either, according to
Shuai et al. [18], given the rapid acceleration of surface change. By analyzing the suitable
growth conditions of vegetation in the Weihe River Basin, Zhang et al. [19] showed that
NDVI is strongly correlated with air temperature, precipitation, evaporation, and soil
moisture, with correlation coefficients as high as 0.89, 0.78, 0.71, and 0.65, respectively. The
Yangtze River Basin is the largest basin in Asia, and its vegetation cover status and dynam-
ics are fundamental to maintaining the ecological balance of China and its neighboring
countries, and perhaps even that of the whole world.

In recent years, great progress has been made in the study of the changing dynamics
of NDVI and its influencing factors in the Yangtze River Basin. According to some studies,
this basin’s NDVI featured an overall upward trend during the years spanning 1982 to 2015,
increasing in extent mainly in its middle while decreasing chiefly in its eastern part [20–22].
Furthermore, Qu et al. [20] found that this NDVI trend was more pronounced after 1994
than before. Temperature is the main climatic factor affecting the growth of vegetation in
the Yangtze River Basin, while precipitation has a weak effect on it [21]. Other work has
reported evidence for lag effects from altered precipitation and temperature regimes on
vegetation growth in the Yangtze River Basin, with more than 50% of this growth (on a
regional scale) predominantly affected by climate change. Because studies of the whole
Yangtze River Basin or portions of it mostly focused on temperature and precipitation, less
is known about the possible influences of other climatic factors, in addition to topographic
factors and human activities, on vegetation growth and dynamics there [23,24].

114



Land 2023, 12, 269

Traditional statistical methods, such as linear regression and residual trend analysis,
can be applied to reveal the relationship between the monotonous trend of vegetation
change and its drivers, but this inference is limited to linear relations [25,26]. However,
we know that vegetation growth is often affected by the joint action of multiple factors,
so how natural and human factors interact to change vegetation dynamics is unlikely to
be a simple linear relationship [27]. Therefore, determining how to accurately quantify
the relative contributions of natural and human factors to regional vegetation change
and the driving mechanisms involved remains a challenging task [28,29]. The geographic
detector model based on spatial stratification heterogeneity theory, introduced by Wang
et al. [30,31], provides a reliable and direct methodology to quantify the respective influence
of driving factors as well as their interactions. It has three notable advantages: (i) it does
not have to strictly follow the assumptions of traditional statistical methods; (ii) it does
detect the interaction of two factors, and (3) it does not require a complex parameter setting
process [15,32,33]. For example, Zhu et al. [29] quantified the impacts of natural and human
factors on changing vegetation dynamics in the middle reaches of the Heihe River by using
geographic exploration methods, which revealed that land use conversion type, average
annual precipitation, and soil type had the greatest impact. Li et al. [34] quantitatively
analyzed the driving factors of grassland vegetation in inner Mongolia from the perspective
of spatial stratification heterogeneity, finding that precipitation, livestock density, wind
speed, and humans population density were the dominant factors, with these accounting
for more than 15% of variation in the data. As such, the geographic detector approach
has been successfully applied to quantify the influence of potential driving factors on
vegetation dynamics, making it an effective tool for understanding the mechanisms of
vegetation change at different spatial scales.

The Chongqing municipality in China is located in the upper reaches of the Yangtze
River and in the central zone of the Three Gorges Reservoir Area. It is the last pass of the
ecological barrier in the upper reaches of the Yangtze River, and its ecological location is
crucial. Therefore, building an important ecological barrier in the upper reaches of the
Yangtze River plays an indispensable role in ensuring the ecological balance and homeland
security of the entire Yangtze River basin. In recent years, with the intensification of
global climate change and human activities, understanding the spatio-temporal dynamic
evolution of vegetation in this region and its driving mechanisms has become imperative
for the development of reasonable ecosystem protection measures and management in this
region. To achieve this aim, based on a time series of SPOT NDVI data, we used trend
analysis, stability analysis, and geographic detector methods to fulfill three objectives:
(1) to reveal the spatial characteristics and regularities of NDVI-based vegetation dynamics
in Chongqing during the years 2000–2019; (2) to quantify the driving mechanisms of
natural factors and human activities and their interactions upon vegetation change; and
(3) to explore the appropriate types or ranges of the main influencing factors that promote
vegetation growth in Chongqing, so as to provide a reference for the implementation of
vegetation restoration projects in the Yangtze River Basin and the formulation of sound
ecological environmental protection policies.

2. Materials and Methods

2.1. Study Region

Chongqing is located in the transitional zone between the Qinghai-Tibet Plateau
and the plain of the middle/lower reaches of the Yangtze River, where it encompasses
an area of 8.24 × 104 km2 (Figure 1a). Aside from being a significant industrial and
commercial center in the southwest, a marine and land transportation hub, and the greatest
economic hub in the upper reaches of the Yangtze River, Chongqing also serves as a
crucial ecological barrier to protect those areas. Implementation of the “one district and
two clusters” coordinated development spatial pattern—the major city metropolitan area
(MCA), the Three Gorges Reservoir Area town cluster in northeast Chongqing (TGR),
and the Wuling Mountain Area town cluster in southeast Chongqing (WMA)—is being
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accelerated (Figure 1b). In going from south and north to the middle valley area, the
topography gradually flattens out, with elevations spanning 63 to 2624 m. The geography
varies greatly and is complex, with low mountains and hills in the northwest and center,
and Daba Mountain and Wuling Mountain in the southeast (Figure 1c). The Yangtze River,
Jialing River, Wujiang River, Fujiang River, Qijiang River, Daning River, and other major
rivers flow through this region, which is endowed with abundant surface water resources.
Here, a subtropical humid monsoon climate prevails, with annual averages ranging from
4.7–19.7 ◦C for air temperature, 7.3–21.7 ◦C for ground temperature, 989–1682 mm for
precipitation, 640–1015 mm for evapotranspiration, 79–1646 h for sunshine duration, and
0.8%–84.5% for relative humidity. Leaching soil, primary soil, man-made soil, and iron-
bauxite are the main soil types. There are many different types of vegetation, and the
vegetation that exists in this region is mostly cultivated crops, shrubs, and other plants
(Figure A1).

 

Figure 1. Overview of the study region. (a) Its location in the Yangtze River Basin in China; (b) the
“one district and two clusters” coordinated development spatial pattern; (c) original remote sensing
image. Notes: MCA, the major city metropolitan area; TGR, Three Gorges Reservoir Area town cluster
in northeast Chongqing; and WMA, the Wuling Mountain Area town cluster in southeast Chongqing.

2.2. Data Source and Preprocessing
2.2.1. NDVI Data

The growing status of vegetation on the land surface can be accurately expressed by a
vegetation index. In this study, we chose the SPOT NDVI dataset based on the following
considerations. (1) Currently, the monitoring of changing vegetation dynamics at various
scales has made extensive use of the NDVI time series data derived from SPOT satellite
remote sensing imagery [12,35]. (2) The SPOT NDVI dataset with a time span of 2000 to
2019 can be obtained directly from the Resource and Environmental Science Data Center
of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 18 June 2022)
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and is free. (3) This data, with a spatial resolution of 1000 m, is consistent with the spatial
resolution of mostly other research data (Table 1), and can avoid the influence of data
pre-processing processes, such as resampling, on the research results. (4) Since the general
quality of this data set is very high based on the maximum value composite (MVC) method,
it can accurately reflect the amount and distribution of vegetation in different regions at
various geographical and temporal scales; it is now widely used in monitoring regional
vegetation change [29,36].

Table 1. The 18 factors considered in this study for their influence on changing vegetation dynamics.

Category Variable Time Series Pixel Resolution Units Abbrev.

Climate Annual average precipitation 2000s/2010s 1000 m mm PRE
Annual average evaporation 2000s/2010s 1000 m mm EVP

Annual average relative humidity 2000s/2010s 1000 m % RHU
Annual average air temperature 2000s/2010s 1000 m ◦C TEM

Annual average ground temperature 2000s/2010s 1000 m ◦C GST
Annual sunshine hours 2000s/2010s 1000 m hour SSD

Annual average atmospheric pressure 2000s/2010s 1000 m hPa PRS
Soil Soil type 1995 1000 m - SOT

Soil sand content 2000s 1000 m % SSAC
Soil silt content 2000s 1000 m % SSIC
Soil clay content 2000s 1000 m % SCLC

Vegetation Vegetation type 2000 1000 m - VET
Topography Elevation 2000 250 m m ELE

Slope degree 2000 250 m ◦ SLD
Human activity Land use type 2000/2010/2020 1000 m - LUT

Gross domestic product density 2000/2010/2019 1000 m 104 Yuan/km2 GDP
Population density 2000/2010/2019 1000 m persons/km2 POP

Night light brightness 2000–2019 1000 m DN NLB

2.2.2. Influence Factor Data

Numerous studies have demonstrated that a broad range of factors influence vege-
tation dynamics [33,37,38]. We concentrated on five components and 18 variables related
to climate, soil, vegetation, topography, and human activities (Table 1). The climatic data
come from the spatial interpolation data set of the average state of meteorological elements
in China [39]. The ANUSPLIN meteorological interpolation software’s smoothing spline
function was primarily used to obtain the climatic data, which included seven meteoro-
logical variables: annual average precipitation (PRE), annual average evaporation (EVP),
annual average relative humidity (RHU), annual average air temperature (TEM), annual
average ground temperature (GST), annual sunshine hours (SSD), and annual average at-
mospheric pressure (PRS). Data for soil types was obtained from the 1:1 million Soil Map of
the People’s Republic of China—created and published by the National Soil Survey Office
in 1995—while that for soil sand, silt, and clay content was generated by that soil type map
and soil profile information from the second soil survey. Most of the vegetation information
came from the “1:1 million Vegetation Atlas of China”. The elevation in the terrain data was
derived from a 90-m digital elevation model (DEM) and slope data in ArcGIS 10.7 software.
Human activities include land use data generated by artificial visual interpretation, this
based on American Landsat TM images, and spatial distribution data sets for China’s
GDP [40] and population [41], which are constantly updated by data producers. All the
above data are from the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/, accessed on 8 October 2022). Additionally,
the National Qinghai-Tibet Plateau Science Data Center (https://data.tpdc.ac.cn, accessed
on 19 June 2022) in China provided the long time series data for remote sensing of night
light as one indicator of human activity [42].

To meet the input requirements of the geographic detector model, we divided veg-
etation type into seven categories: coniferous forest, broad-leaved forest, shrub, grass,
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meadow, cultivated vegetation, and other vegetation. Similarly, we divided land use type
into nine categories: cultivated land, woods, shrubs, sparse woodland, other woodland,
grassland, water, urban and rural residential land, and unused land. Six categories of
soil type data were distinguished: leaching soil, primary soil, hemihydrate soil, artificial
soil, iron bauxite, and non-soil type. Additionally, by applying the natural discontinuity
approach [43], the remaining 15 continuous variables were classified into 10 groups. Using
ArcGIS 10.7, we cast a 2-km fishnet, to extract the NDVI and the effect variables to the
point, and then applied the geographic detector’s calculation after removing null values.

2.3. Methods
2.3.1. Trend Analysis

To explore the spatial distribution characteristics of the multi-year vegetation NDVI
in Chongqing, its yearly average NDVI was calculated from 2000 to 2019. We used linear
regression analysis to examine the temporal trend change of NDVI in Chongqing from 2000
to 2019, using pixels as the fundamental unit. Its mathematical equation is:

slope =
n ∑n

i=1 NDVIi − (∑n
i=1 i)(∑n

i=1 NDVIi)

n ∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where slope is the magnitude and direction of vegetation change, n is the number of years
of studied (n = 20 in this study), i denotes a given year from 2000 onward, and NDVIi
denotes the NDVI value for ith year of a pixel.

2.3.2. Stability Analysis

Each observation’s level of variation was measured and evaluated statistically using
the coefficient of variation (CV). In this time series, CV can indicate the stability of the
NDVI data for Chongqing: stronger stability is inferred by a smaller CV value, and weaker
stability by a larger CV value [44]. The CV is calculated this way:

CV =

√
∑n

i=1
(

NDVIi − NDVI
)2/(n − 1)

NDVI
(2)

where NDVIi denotes the NDVI value for ith year of a pixel, and NDVI is the overall
average value of NDVI for the whole study period (2000–2019). To more easily compare and
convey the variation in vegetation inferred from NDVI across Chongqing, we separated
the CV values into four grades, corresponding to extremely stable vegetation (CV ≤ 0.1),
general stable vegetation (0.1 < CV ≤ 0.2), general unstable vegetation (0.2 < CV ≤ 0.3),
and extremely unstable vegetation (CV > 0.3).

2.3.3. Geodetector Model

Geographic detector is a relatively new spatial statistical technique developed by Wang
Jinfeng and colleagues that was introduced in 2010 [30,31]. It is typically used to investigate
the regional variability of vegetation change and its drivers, and to quantify how potential
interactions of these factors may affect the response variables [15,37,38]. It is based on four
modules: factor detector, interaction detector, risk detector, and ecological detector.

(1) Factor detector
Its purpose is to detect the spatial heterogeneity of a dependent variable, in this case

vegetation NDVI, and to explore the degree to which candidate influencing factors (i.e., the
18 variables in Table 1) could explain that, this expressed as:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (3)

where q can reflect the degree of interpretation of vegetation dynamics by detection factors;
h = 1, 2, . . . , L is the strata of the dependent variable (vegetation NDVI) or of each influenc-
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ing factor investigated; Nh and N are respectively the number of samples units in layer h
and for the whole region; and σ2

h and σ2 denote the variance of the layer h and the NDVI
value of the whole region, respectively. The q statistic can take a value in the range of 0 to 1;
the higher its value, the greater the power of its corresponding influencing factor to explain
vegetation change.

(2) Interaction detector
This may be used to analyze whether the interaction of any two factors will increase or

decrease their respective explanatory power for vegetation change, or whether the effects
of either factor upon NDVI are independent of each other. The following five categories
can be used to illustrate how the two factors could interact (Table 2).

Table 2. Interaction types of factors that affect changing vegetation dynamics.

Number Judgments Based Type of Interaction

1 q(X1∩X2) < Min(q(X1), q(X2)) Non-linear reduction

2 Min(q(X1), q(X2)) < q(X1∩X2) <
Max(q(X1), q(X2)) Single-factor non-linear reduction

3 q(X1∩X2) > Max(q(X1), q(X2)) Two-factor enhancement
4 q(X1∩X2) = q(X1) + q(X2) Independent
5 q(X1∩X2) > q(X1) + q(X2) Non-linear enhancement

(3) Ecological detector
This module is primarily used to assess whether there is a statistical difference between

the two factors in relation to the spatial distribution of the attribute of interest, here NDVI,
which is often tested using the F-ratio statistic:

F =
Nx1(Nx2 − 1)SSWx1

Nx2(Nx1 − 1)SSWx2
(4)

where Nx1 and Nx2 are the total sample size of each of the two factors; and SSWx1 and
SSWx2 denote the summed intra-layer variance formed by x1 and x2, respectively. If the
null hypothesis of H0 : SSWx1 = SSWx2 is rejected at the alpha level of significance, then a
significant difference between the two factors is inferred for how they influence the spatial
distribution of NDVI.

(4) Risk detector
It is frequently used to determine whether there is a statistically significant difference

in the mean value of attributes between the two subregions. To test this, the Student’s t-test
is typically used.

The Geodetector Software in Excel was used as the geographic probe in this study. It is
freely available for download online. For more details about Geodetector modeling, please
see http://geodetector.cn/, accessed on 10 June 2022.

3. Results

3.1. NDVI’s Interannual Variation

As Figure 2 shows, Chongqing’s vegetation tended to increase over time, but some
regional differences at various geographical scales were evident. From 2000 to 2019, the
NDVI increased strongly, at a rate of 0.05/10 year, reaching its maximum value (0.83) in
2017 and its minimum value (0.71) in 2000. Examining the interannual dynamics, we see
that the rate of NDVI increase for 2011–2019 was 1.80, 1.33, and 1.43 times greater than
that for the 2000–2010 period in the MCA, WMA, and TGR subregions, respectively. This
revealed that vegetation restoration was considerably more effective during 2011 to 2019
than 2000 to 2010. Spatially, the NDVI increased at a faster rate in the WMA (0.07/10 year)
and TGR (0.06/10 year) than in the MCA (0.03/10 year).
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Figure 2. Interannual dynamics of vegetation NDVI in different regions of Chongqing, China, from
2000 to 2019. (a) The major city metropolitan area (MCA); (b) the Three Gorges Reservoir Area
town cluster in northeast Chongqing (TGR); (c) the Wuling Mountain Area town cluster in southeast
Chongqing (WMA); (d) all of Chongqing.

3.2. NDVI’s Spatial Distribution

The regional distribution characteristics of NDVI in Chongqing from 2000 to 2019 are
depicted in Figure 3 and Table 3. In 2000, 2010, and 2019, the values for NDVI were mainly
in the range of 0.6–0.8, >0.7, and >0.7, respectively, with these respectively accounting for
92.21%, 96.91%, and 93.39% of Chongqing’s total area. Only 3.35%, 0.63%, and 3.42% of
the Chongqing area had NDVI values below 0.6. The percentage of its land area with an
NDVI > 0.8 expanded substantially, from 4.45% in 2000 to 75.88% in 2019, a net increase
of 71.43%. Chongqing’s average NDVI over the entire 20-year period (2000 to 2019) was
0.78, with values primarily distributed between 0.70 and 0.80 that characterized 59.6% of
its entire area. The multi-year average of NDVI in the WMA, TGR, and MCA was 0.80, 0.79,
and 0.75, respectively.

The regional distribution of trends in the NDVI’s change over time in Chongqing
is depicted in Figure 4a and Table 4. Those areas distinguished by obvious vegetation
restoration (i.e., NDVI rate of increase > 0.07/10 year) together accounted for 28.37% of
Chongqing’s territory, being mainly distributed in the TGR (42.8%) and WMA (31.05%).
Roughly 1.49% of Chongqing’s total area consisted of declining NDVI (i.e., a changing
slope of less than −0.01/year), this primarily concentrated in the MCA. We found areas
with an extremely significant recovery of NDVI as high as 75.19%; these were chiefly
concentrated in the WMA and TGR. The parts of Chongqing featuring extremely significant
and significant degradation areas, respectively, amounted to just 1.94% and 0.85% of its
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total area, being mainly concentrated in the MCA (Figure 4b and Table 4). Overall, 52.19%
of the study area’s vegetation dynamics are in an extremely stable state. Where extremely
unstable and general unstable vegetation dynamics did occur, this only affected 1.38% and
3.61% of the total area, principally in the MCA and along either side of the Yangtze River
(Figure 4c and Table 4).

 

Figure 3. Spatial distribution of vegetation NDVI in Chongqing, China: (a) in 2000, (b) in 2010, (c) in
2019, and (d) for the entire 20-year study period of 2000–2019.

Table 3. Spatial distribution characteristics of vegetation NDVI in Chongqing, China, from 2000
to 2019.

Year 2000 2010 2019 2000–2019

NDVI Area (km2)
Proportion

(%)
Area (km2)

Proportion
(%)

Area (km2)
Proportion

(%)
Area (km2)

Proportion
(%)

<0.4 214 0.26 49 0.06 575 0.7 361 0.44
0.4–0.5 634 0.77 140 0.17 1008 1.22 374 0.45
0.5–0.6 1912 2.32 326 0.40 1239 1.5 −672 −0.82
0.6–0.7 26,547 32.22 2032 2.47 2619 3.18 −23,928 −29.04
0.7–0.8 49,430 59.99 42,332 51.37 14,431 17.51 −34,999 −42.48

>0.8 3665 4.45 37,523 45.54 62,530 75.88 58,865 71.43
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Figure 4. Spatial distributions for (a) slope in changing vegetation NDVI dynamics, and their
(b) significance testing and (c) stability analysis, in Chongqing, China, over the entire study period
of 2000 to 2019. Notes: we define the significance level as follows: p < 0.01 represents extremely
significant; p < 0.05 represents significant.

Table 4. The slope, significance, and stability of vegetation NDVI in Chongqing, China, from 2000
to 2019.

Type Range MCA TRG WMA Chongqing

Slope −0.034 to −0.010 3.36% 0.62% 0.31% 1.49%
−0.010 to −0.001 7.93% 2.26% 1.44% 4.03%
−0.001 to 0.004 35.88% 16.84% 8.36% 21.40%
0.004 to 0.007 37.67% 49.23% 47.08% 44.71%
0.007 to 0.027 15.17% 31.05% 42.80% 28.37%

Significance Extremely significant decrease 4.40% 0.76% 0.43% 1.94%
Significant decrease 1.65% 0.49% 0.32% 0.85%
Non-significant decrease 8.29% 2.37% 1.52% 4.22%
Non-significant increase 22.26% 6.67% 3.56% 11.32%
Significant increase 10.74% 4.80% 3.23% 6.48%
Extremely significant increase 52.65% 84.90% 90.95% 75.19%

Stability Extremely stable 52.54% 57.37% 42.74% 52.19%
Generally stable 38.03% 39.12% 56.10% 42.82%
Generally unstable 6.65% 2.59% 0.99% 3.61%
Extremely unstable 2.78% 0.92% 0.17% 1.38%

Notes: MCA, the major city metropolitan area; TGR, the Three Gorges Reservoir Area town cluster in northeast
Chongqing; WMA, the Wuling Mountain Area town cluster in southeast Chongqing. We define the significance
level as follows: p < 0.01 represents extremely significant; p < 0.05 represents significant.
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3.3. Single-factor driven analysis

By using the factor detection module, each factor’s q statistic was generated to uncover
its relative impact on changing vegetation dynamics (Table 5). These results revealed
differential impacts of numerous factors among Chongqing as a whole and its three sub-
regions, MCA, WMA, and TGR. In the MCA, vegetation change was most influenced by
night light brightness (NLB, 0.406), population density (POP, 0.302), atmospheric pressure
(PRS, 0.263), and elevation (ELE, 0.258); accordingly, this implied it was mainly affected
by human activities and topography. In the TGR, vegetation change was best explained
by air temperature (TEM, 0.544), atmospheric pressure (PRS, 0.536), ground temperature
(GST, 0.529), and elevation (ELE, 0.511), suggesting it was mainly affected by climate and
topography. In the WMA, vegetation change was mainly affected by air temperature (TEM,
0.330), ground temperature (GST, 0.330), PRS (atmospheric pressure, 0.328), and relative
humidity (RHU, 0.308), indicating climate was largely responsible.

Table 5. The q statistics value of driving factors of changing vegetation NDVI dynamics in Chongqing,
China, at different scales.

Category Variable Abbrev. MCA TRG WMA Chongqing

Climate Annual average precipitation PRE 0.121 ** 0.363 ** 0.102 0.303 **
Annual average evaporation EVP 0.104 ** 0.453 ** 0.220 ** 0.297 **

Annual average relative humidity RHU 0.188 ** 0.171 ** 0.308 ** 0.168 **
Annual average air temperature TEM 0.258 ** 0.544 ** 0.33 ** 0.470 **

Annual average ground temperature GST 0.243 ** 0.529 ** 0.33 ** 0.457 **
Annual sunshine hours SSD 0.013 0.255 ** 0.121 ** 0.150 **

Annual average atmospheric pressure PRS 0.263 ** 0.536 ** 0.328 ** 0.458 **
Soil Soil type SOT 0.089 ** 0.260 ** 0.090 0.227 **

Soil sand content SSAC 0.053 ** 0.200 ** 0.043 0.152 **
Soil silt content SSIC 0.092 ** 0.099 ** 0.084 0.092 **
Soil clay content SCLC 0.071 0.163 ** 0.101 0.153 **

Vegetation Vegetation type VET 0.059 * 0.109 ** 0.061 0.148 **
Topography Elevation ELE 0.258 ** 0.511 ** 0.287 ** 0.444 **

Slope degree SLD 0.148 ** 0.135 ** 0.069 0.214 **
Human activity Land use type LUT 0.215 ** 0.206 ** 0.101 0.234 **

Gross domestic product GDP 0.186 ** 0.096 0.092 0.197 **
Population density POP 0.302 ** 0.296 ** 0.270 * 0.370 **

Night light brightness NLB 0.406 ** 0.187 ** 0.139 0.519 **

Notes: * and ** indicate significant coefficients at p < 0.05 and p < 0.01, respectively. MCA, the major city
metropolitan area; TGR, the Three Gorges Reservoir Area town cluster in northeast Chongqing; WMA, the Wuling
Mountain Area town cluster in southeast Chongqing.

For Chongqing’s territory, each factor’s level (q value) of influence upon the NDVI
weakened in this descending rank order: NLB (0.519), TEM (0.470), PRS (0.458), GST (0.457),
ELE (0.444), POP (0.370), PRE (0.303), EVP (0.297), land use type (LUT, 0.234), soil type
(SOT, 0.227), slope degree (SLD, 0.214), GDP (0.197), RHU (0.168), soil clay content (SCLC,
0.153), soil sand content (SSAC, 0.152), SSD (0.150), vegetation type (VET, 0.148), and soil
silt content (SSIC, 0.092). Evidently, a mix of human activities, climate, and topography
were the key factor variables that drove the changing vegetation dynamics of Chongqing,
whereas the influence of soil and vegetation factors was relatively weak.

3.4. Two-Factor Driven Analysis

By using the interaction detector module, it was possible to calculate how all paired
variables could affect changing vegetation dynamics (Table 6). We discovered that the
factors influencing vegetation in Chongqing interacted in three different ways: via single-
factor nonlinear weakening, nonlinear enhancement, and two-factor enhancement. Among
all pairwise interactions, 159 pairs (92.9%) showed two-factor enhancement, indicating this
form predominantly drove spatio-temporal changes in vegetation in a complex manner,
being affected by the interaction of many factors.
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Table 6. Interaction detector results for 18 influencing factors (variables) of changing vegetation
NDVI dynamics in Chongqing, China.

Factors PRE EVP RHU TEM GST SSD PRS SOT SSAC SSIC SCLC VET ELE SLD LUT GDP POP NLB

PRE 0.303
EVP 0.400 0.297
RHU 0.403 0.412 0.168
TEM 0.492 0.490 0.488 0.470
GST 0.478 0.483 0.480 0.472 0.457
SSD 0.367 0.381 0.447 0.484 0.473 0.150
PRS 0.489 0.484 0.478 0.477 0.472 0.476 0.458
SOT 0.365 0.382 0.322 0.478 0.464 0.292 0.472 0.227

SSAC 0.353 0.350 0.285 0.480 0.469 0.247 0.470 0.259 0.152
SSIC 0.355 0.359 0.256 0.486 0.474 0.261 0.473 0.275 0.232 0.091
SCLC 0.348 0.351 0.282 0.483 0.469 0.260 0.470 0.249 0.232 0.180 0.153
VET 0.342 0.364 0.265 0.476 0.463 0.277 0.471 0.277 0.229 0.224 0.233 0.148
ELE 0.478 0.473 0.471 0.486 0.479 0.463 0.475 0.460 0.458 0.463 0.459 0.459 0.444
SLD 0.387 0.400 0.366 0.491 0.479 0.288 0.481 0.316 0.273 0.273 0.280 0.284 0.472 0.214
LUT 0.430 0.441 0.369 0.545 0.532 0.347 0.532 0.362 0.323 0.317 0.320 0.306 0.526 0.351 0.234
GDP 0.424 0.419 0.337 0.551 0.539 0.310 0.541 0.357 0.320 0.271 0.314 0.296 0.529 0.340 0.333 0.197
POP 0.496 0.498 0.447 0.558 0.546 0.444 0.549 0.423 0.412 0.409 0.404 0.395 0.542 0.414 0.416 0.408 0.370
NLB 0.551 0.536 0.473 0.627 0.619 0.452 0.627 0.495 0.463 0.429 0.458 0.434 0.619 0.484 0.478 0.419 0.530 0.519

Notes: Blue represents a two-factor enhancement, green represents a non-linear enhancement, and orange
represents a single-factor non-linear reduction. More information can be found in Table 2. For details about the
factor abbreviations, please see Table 1.

The average value of each interacting factor was next examined. The factor’s level
(q value) of influence on the NDVI weakened in this descending rank order: ELE (0.522),
NLB (0.519), TEM (0.504), PRS (0.502), GST (0.495), POP (0.450), EVP (0.419), PRE (0.415),
RHU (0.371), LUT (0.365), SLD (0.361), GDP (0.341), SOT (0.336), VET (0.332), SSD (0.328),
SCLC (0.328), SSAC (0.309), and SSIC (0.295). This demonstrated that although soil type
and vegetation type can exert some influence, it was still minor compared to human
activities, climatic variables, and topographic conditions. Within these similar categories,
the strongest prevailing interactions were found for the paired variables: POP ∩ NLB
(0.530), TEM ∩ PRE (0.492), SLD ∩ ELE (0.472). Overall, however, between differing
types of factors, the strongest dominant interaction factors were the TEM ∩ NLB (0.627),
PRS ∩ NLB (0.627), and ELE ∩ NLB (0.619). We found that interactions between differing
types of factors were stronger than those arising between similar ones.

3.5. Ecological Detector Analysis

Whether the effects of interactions between two factors on vegetation NDVI differ
significantly can be evaluated using the ecological detector module. As seen in Table 7,
there were significant differences (p < 0.05) in the explanatory power of nearly half (46.4%)
of the factor combinations for NDVI. The following scenarios exhibited notable variation
in how two factors affected the geographical differentiation of changing vegetation NDVI
dynamics in Chongqing: among all climatic variables, TEM ∩ factors (PRE, EVP, RHU), GST
∩ factors (PRE, EVP, RHU), PRS ∩ factors (PRE, EVP, RHU, SSD); among all soil variables,
SOT ∩ factors (RHU, SSD), SCLC ∩ SSIC; in the vegetation variables, VET and SSIC; among
all human activities variables, LUT ∩ factors (RHU, SSD, SSAC, SSIC, SCLC, VET, SLD),
GDP ∩ factors (RHU, SSD, SSAC, SSIC, SCLC, VET), POP ∩ factors (PRE, EVP, RHU, SSD,
SOT, SSAC, SSIC, SCLC, VET, SLD, LUT, GDP), NLB and all factors. Additionally, there
was no discernible difference between the impacts of the other interactions between two
factors on the NDVI’s regional differentiation across Chongqing.
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Table 7. Statistical tests of 18 influencing factors of changing vegetation NDVI dynamics in
Chongqing, China, based on the ecological detector module (significant at p < 0.05).

Factors PRE EVP RHU TEM GST SSD PRS SOT SSAC SSIC SCLC VET ELE SLD LUT GDP POP NLB

PRE
EVP N
RHU N N
TEM Y Y Y
GST Y Y Y N
SSD N N N N N
PRS Y Y Y N N Y
SOT N N Y N N Y N

SSAC N N N N N N N N
SSIC N N N N N N N N N
SCLC N N N N N N N N N Y
VET N N N N N N N N N Y N
ELE Y Y Y N N Y N Y Y Y Y Y
SLD N N Y N N Y N N Y Y Y Y N
LUT N N Y N N Y N N Y Y Y Y N Y
GDP N N Y N N Y N N Y Y Y Y N N N
POP Y Y Y N N Y N Y Y Y Y Y N Y Y Y
NLB Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Notes: The ‘Y’ indicates significant difference in the effects of the two factors on changed vegetation NDVI,
whereas the ‘N’ denotes no significant difference detected. For information about the factor abbreviations, please
refer to Table 1.

3.6. Types or Range of Suitable Influencing Factors

We presumed that the factor of type or range with a higher NDVI would be better
suited for vegetation growth when the risk detector assesses how vegetation changes in
response to various factors. As seen in Table 8, in terms of meteorological conditions, PRE,
RHU, and SSD tended to increase as the interval increased, whose most suitable ranges
were 1538~1682 mm, 81.9%~84.5% and 1526~1646 h, respectively. Conversely, EVP, TEM,
GST, and PRS tended to decrease as the interval increased, for which the most suitable
range was 640~715mm, 4.7~7.8 ◦C, 7.3~10.4 ◦C, 742~802 hPa.

Table 8. The suitable range or type of 18 factors influencing the changing vegetation NDVI dynamics
in Chongqing, China.

Category Variable Abbrev. Units
Suitable Range

or Type
NDVI Mean

Climate Annual average precipitation PRE mm 1538 to 1682 0.851
Annual average evaporation EVP mm 640 to 715 0.847

Annual average relative humidity RHU % 81.9 to 84.5 0.833
Annual average air temperature TEM ◦C 4.7 to 7.8 0.856

Annual average ground temperature GST ◦C 7.3 to 10.4 0.855
Annual sunshine hours SSD hour 1526 to 1646 0.855

Annual average atmospheric pressure PRS hPa 742 to 802 0.854
Soil Soil type SOT - Semi-leached soil 0.842

Soil sand content SSAC % 33 to 34 0.85
Soil silt content SSIC % 38 to 42 0.835
Soil clay content SCLC % 12 to 16 0.84

Vegetation Vegetation type VET - Broad-leaved forest 0.828
Topography Elevation ELE m 2000 to 2624 0.854

Slope degree SLD ◦ 39.2 to 56.2 0.824
Human activity Land use type LUT - Woodland 0.808

Gross domestic product density GDP 104 Yuan/km2 0 to 1954 0.788
Population density POP persons/km2 0 to 143 0.809

Night light brightness NLB DN 0 to 1.6 0.793
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In terms of soil conditions, the most suitable SOT was semi-leached soil, and the
most suitable ranges for SSAC, SSIC and SCLC were 33%~34%, 38%~42%, and 12%~16%,
respectively. In terms of vegetation types, it was most suitable to grow broad-leaved forest.
Regarding topography, across Chongqing, NDVI increased with the SLD and ELE, these
being most suitable in the range of 39.2~56.2◦ and 2000~2624 m, respectively.

In terms of human activities, woodlands were the most conducive land use type
for vegetation growth, and the NDVI was highest in areas with low GDP, POP, and
NLB, meaning that these were most suitable when in the range 0~1954 × 104 Yuan/km2,
0~143 person/km2, and 0~1.6 DN.

4. Discussion

4.1. NDVI’s Spatio-Temporal Changes

The results of this study demonstrated an upward trend in the vegetation NDVI in
Chongqing between 2000 and 2019 (Figure 2), with its vegetation conditions found greatly
improved at various temporal and geographical scales (Figure 4). These recovery areas,
mainly situated in the southeast and northeast parts of Chongqing, together expanded
to 75.19% of its territory from 2000 to 2019, a result consistent with the findings of Xiao
et al. [45] and Zhang et al. [23]. This may be attributed to the ecological conservation
projects implemented by the government. For example, based on Landsat and MODIS
data, Li et al. [46] showed that ecological engineering measures in the Three Gorges
Reservoir area, such as the ecological migration project, the ecological protection and
restoration project, and Grain for Green, played a positive role in ecological restoration and
effectively improved local vegetation coverage. Li Z. and Li X. [47] reported that human
activities, such as agricultural production, cultivated land protection, and vegetation
ecological construction, were the primary factors responsible for vegetation growth and
expansion in Chongqing. Work by Liu et al. [48] quantified the relative contribution rates
of human activities and climate to vegetation change in Chongqing as 90.96% and 9.04%,
respectively, revealing the overwhelmingly dominant role of human activities. Those areas
with significant degradation and instability of vegetation NDVI are mainly concentrated in
the major metropolitan area, near water, and some surrounding areas (Figure 4), a pattern
basically consistent with the findings of Zhu et al. [49]. According to Li et al., the expansion
of human urban construction land across the world’s cities is the main reason for the
downward trend of regional vegetation NDVI, and the process of urbanization is directly
and indirectly having adverse impacts on global urban vegetation growth [50,51].

4.2. NDVI Response to Driving Factors

Previous research has demonstrated that both natural and human activities can distort
and modulate the temporal and spatial variation in vegetation dynamics [15,38], making
it difficult to investigate the mechanisms underlying the spatial heterogeneity of vegeta-
tion [34]. We found that the interaction of most dual-factor variables increased their degree
of influence on vegetation change, the latter often affected by the interaction of multiple
factors (Table 6). In short, the interaction of two factors is more important to vegetation
change than each factor alone, an outcome consistent with previous studies [15,38,52].
Therefore, when considering the change of NDVI, we need to fully consider the interaction
between factors. For example, we found that the suitable range of annual mean temperature
for vegetation growth in the Chongqing area is 4.7–7.8 ◦C (Table 8), which was located at
higher altitudes (Figure A1, TEM and ELE). Therefore, it is actually a trade-off considering
multiple factors, rather than the most suitable temperature for plant physiology. This may
be closely related to our hypothesis that the range of factors affecting the maximum NDVI
value was the range of the most suitable growth factors.

Our results suggest that the effects of human activity on vegetation change should
not be disregarded (Table 5). The explanatory power of nocturnal light brightness (NLB)
for vegetation change reached as high as 51.9% (Table 5), confirming that human activities
heavily impact changing vegetation dynamics in Chongqing and are of paramount concern.
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These findings are in line with those of Liu et al. [48], who estimated that human activities
contributed as much as 90.96% to vegetation change in Chongqing. In general, there is
a positive correlation between NLB and socio-economic factors, meaning that NLB can
effectively express the intensity of human activities such as urbanization level, population
density, and GDP [53,54]. Indeed, human driving factors, both population density and
GDP, often emerge as the dominant ones affecting regional vegetation change. For example,
Sun et al. [55] found that agricultural vegetation NDVI is very sensitive to economic as
well as population growth, which may lead to changes in vegetation NDVI in Chongqing
given its extensive distribution of cultivated land (Figure 2). Herrero et al. [56] reported a
significant negative correlation between population density and NDVI around Southern
African national parks during the 21st century (2000–2016). We found that NDVI tends to
be augmented in woodland, and by a lower GDP, POP, and NLB (Table 8). This may be
due to sparse and small populations and small-scale economies in certain areas, which are
less apt to incur damage to vegetation from humans. This suggests trade-offs likely loom
between future ecological and economic development, but devising sustainable human
interventions may contribute to promoting vegetation recovery and diversity, thereby
restoring the ecological balance in the study area.

Climatic factors are generally considered critical to the growth and distribution of
vegetation [57,58]. Among these, we found that the explanatory power of annual mean
temperature, annual mean pressure, annual mean ground temperature and annual mean
precipitation for vegetation change weakened in that order (Table 5). Hence, the influence
of air temperature on changing vegetation dynamics in the studied region was greater
than that of precipitation. These results are consistent with those of Zhang et al. [59] and
Liu et al. [60], and can be explained by Chongqing’s location in the upper reaches of the
Yangtze River and the central zone of the Three Gorges Reservoir Area. The water needed
for vegetation growth here is sufficient, so temperature probably becomes a more perti-
nent factor than precipitation in modulating vegetation growth and dynamics. Under the
premise of sufficient rainfall, a rising temperature can enhance plant photosynthesis, which
should favor the growth of most plant species. However, the influence of climatic factors on
the changing dynamics of vegetation growth often harbors a threshold effect [61–63]. For
example, in Chongqing, the area with sufficient precipitation and annual sunshine duration
will most favor the growth of its vegetation, while the area with higher temperature and
increased evaporation is more likely to limit that growth in vegetation (Table 8). This
may be attributed to the humid subtropical monsoon climate of Chongqing, which has
hydrothermal conditions suitable for growing vegetation. When at a low level, temper-
ature often becomes a limiting factor for the plant’s physiological processes; hence, an
appropriate temperature rise can promote photosynthesis and accelerate the absorption of
soil nutrients, thus promoting the growth of vegetation [64]. However, once temperatures
exceed the tolerable range of plant species, extreme heat increases transpiration and res-
piration rates, which accelerate dry matter consumption and soil water losses, leading to
reduced photosynthesis and nutrient uptake and transport, which is clearly detrimental to
vegetation growth [65].

In terms of topography, with an increase in elevation or slope, the vegetation NDVI
in Chongqing gradually increased as well in tandem (Table 8), a trend consistent with the
study by Zhu et al. [66], who found that Chongqing had a high vegetation coverage in
those areas at high elevations (>1200 m) and with steeper slopes (>15◦). Our study showed
that ELE explained 44.4% of the vegetation change, likely because it determines the flow
and stability of surface materials, modulates the spatial distribution of air temperature
and water, and alters vegetation dynamics via temperature, precipitation, soil moisture,
soil nutrients, and other factors [67–69]. In fact, temperature tends to have a greater
effect on vegetation growth at higher elevations than at lower elevations. For example,
Pan et al. [70] used Landsat NDVI and climate data from 1992 to 2020 to explore the impact
of topography on vegetation change on the Qinghai-Tibet Plateau. Their results showed
that precipitation had a greater impact than air temperature upon vegetation growth in
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the region lying below 3000 m, and vice versa in the region above 3000 m. Thus, in high-
elevation areas, temperature may be the main factor limiting the growth of vegetation [71];
low temperatures often limit the growth of plants by reducing their photosynthesis, soil
nutrient absorption rate, and delaying key phenological events, among other impacts [72].
In addition, with rising elevation, the corresponding reduced water availability may also
limit vegetation recruitment and growth.

4.3. Caveat and Future Work

Vegetation dynamics are closely related to a variety of factors [37,38,70]. Although
this work fully considered the impact of 18 influencing factors, including climate, soil,
vegetation, topography, and human activities, upon vegetation change, which helps to
further improve our understanding of its driving mechanism, some limitations and un-
certainties persist. In terms of method, these are as follows. (1) We found that elucidating
the driving mechanisms of vegetation dynamics depends on spatial scale, so we need to
consider further the main vegetation drivers involved at multi-scale spatial scales to further
reduce the uncertainty concerning how they impact vegetation dynamics. (2) Although
Geodetector has realized the measurement, significance test, and attribute analysis of
spatial differentiation, it also has limitations in discussing the interactions with temporal
vegetation dynamics. (3) The most significant of these is that it cannot simultaneously
evaluate the joint influence of multiple variables on changing dynamics of vegetation.
Therefore, in future work, we plan to explore the nonlinear driving mechanism of multiple
factors on vegetation dynamics. In terms of method, among the 18 variables, the non-time
variable data (vegetation type, soil type, soil sand content, soil silt content, soil clay con-
tent, elevation, slope degree, etc.) is often difficult to change in a certain period of time,
which makes it difficult to understand the driving mechanism of NDVI change from the
perspective of time change.

5. Conclusions

This study illustrated the dynamic trends in NDVI’s temporal and geographical
variability in Chongqing from 2000 through 2019. We discovered that whereas the majority
of Chongqing’s vegetation recovery area—75.19%—was located in the WMA and TRG, the
majority area of the vegetation degradation and lower stability was located within the MCA.
As a result, in the future, we need to concentrate on and increase vegetation management
and restoration in the MCA. The influencing factors associated with human activities,
climate, and topography upon changing vegetation dynamics cannot be ignored. Among
all 18 factors considered, NLB (51.9%), TEM (47%), PRS (45.8%), GST (45.7%), ELE (44.4%),
POP (37%), and PRE (30.3%) were the main single factors affecting vegetation change,
and the relative impacts on vegetation change gradually lessened. We discovered that it
was most often (92.9% of all cases) achieved by synergetic interactions between factors
(two-factor enhancement)—that is, the combination of two factors has a greater impact
on vegetation change than either single component has, and the interaction of differing
factors has a greater impact than that of similar factors. For Chongqing, we were able to
discern the range of favorable meteorological conditions, adequate precipitation, and yearly
sunshine hours that promote vegetation growth there, whereas increased evaporation and
rising temperature were more likely to hinder it. In terms of terrain, the Chongqing
area’s NDVI steadily rises with increasing elevation and slope. In terms of human activity,
those areas in the woods and with lower GDP, POP, and NLB were more favorable for
sustaining vegetation growth and dynamics. These results could serve as a foundation
for improving the management and regeneration of vegetation in the upper parts of the
Yangtze River Basin.
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Figure A1. Spatial distributions of all 18 influencing factors (variables) in Chongqing, China. Their
abbreviations are detailed in Table 1.
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Abstract: The middle and lower reaches of the Yangtze River are the most important areas for geese to
overwinter in the East Asian–Australasian Flyway, where about 180,000 geese fly to overwinter each
year. Over the past 20 years, the region has experienced extensive and rapid land cover changes that
may have exceeded the adaptability of geese, and have led to suitable goose habitat area loss, thereby,
reducing the stability of the geese population. In order to identify the suitable goose habitat areas in
this region, based on ensemble modeling and satellite tracking data, in this study, we simulated the
spatial distribution changes in the suitable goose habitat areas over the past 20 years. The results
showed that the suitable goose habitat areas had suffered varying degrees of loss, among which, the
lesser white-fronted goose had the greatest suitable goose habitat area loss of over 50%. Moreover,
we found that wetlands, lakes, and floodplains were the key components of suitable goose habitat
areas, and the categories (land use) showed significant differences in different periods (p < 0.01). This
may be one of the main reasons for the decrease in suitable goose habitat areas. The results of this
study provide an important reference for the adaptive management and protection of geese in the
middle and lower reaches of the Yangtze River.

Keywords: habitat loss; geese; species distribution models (SDMs); land use change; middle and
lower reaches of the Yangtze River

1. Introduction

Habitat loss and degradation has been a major cause of wildlife population decline [1–5].
In the nonbreeding season (overwintering period), goose habitat areas mainly consist of
floodplains [1,6–9]. While floodplains are highly complex and dynamic ecosystems, they
are also among the most threatened ecosystems because they are often dominated by
humans and may experience a high intensity of anthropogenic activity [10–14].

The middle and lower reaches of the Yangtze River (MLYR) is one of the most im-
portant freshwater ecoregions in the world [15,16]. The numerous lakes connected to the
Yangtze River (such as Poyang Lake and Dongting Lake in this region) form a complex river-
lake relationship with the Yangtze River, creating extremely rich wetland ecosystem types
(nine Ramsar sites of international importance, http://www.ramsar.org/pdf/sitelist.pdf,
accessed on 11 October 2021) and providing a habitat for many important and endangered
waterbirds [17–19]. The population of geese accounts for about 35% of the total number of
waterbirds in the MLYR. This area constitutes the most important overwintering site for
geese in the East Asian–Australasian Flyway (EAAF), with nearly 180,000 geese overwinter-
ing there every year according to a 2004 survey of birds by [20]. The geese that overwinter

Remote Sens. 2022, 14, 1883. https://doi.org/10.3390/rs14081883 https://www.mdpi.com/journal/remotesensing
135



Remote Sens. 2022, 14, 1883

in this area include the lesser white-fronted goose (LWFG, Anser erythropus), the greater
white-fronted goose (GWFG, Anser albifrons), the bean goose (BG, Anser fabalis), the swan
goose (SG, Anser cygnoides), and the greylag goose (GG, Anser anser), among which
the LWFG and SG have been recognized as vulnerable by the International Union for
Conservation of Nature (IUCN). The LWFG, SG, and GG in the EAAF generally overwinter
in this region [21–23], while 20% of GWFGs and 70% of BGs overwinter in this area, and the
other geese overwinter in Japan and Korea [24,25]. The population of these five species of
geese accounts for more than 99% of the total number of geese in the MLYR (unpublished
data from the Center for East Asian–Australasian Flyway Studies).

Waterbirds represent an important environmental indicator group, especially for the
status of wetland ecosystems in the MLYR [26]. Over the past 20 years, the MLYR has
become one of the regions with the fastest economic growth in China. Human activities in
the region have strongly disturbed the hydrological rhythm, especially the unreasonable
development and utilization of lakes, wetlands, and floodplains, as well as the cascade
development of hydropower stations in the Yangtze River Basin, such as the Three Gorges
Dam. As a result, the loss and degradation of goose habitat areas have resulted in a sharp
decline in the population of geese in the region [7].

Over the past two decades, species distribution models (SDMs) have been widely
used to study species spatial distribution patterns and guide conservation planning [27,28].
SDMs can be adapted to different spatial resolutions, and the available data sources can
help researchers to understand the population distribution of species and can provide
valuable insights even for species that are rarely studied [29]. Currently, common SDMs
include the generalized linear model (GLM) [30], random forest (RF) [31], and maximum
entropy (MAXENT) [21]. Each SDM has different characteristics and advantages. Therefore,
an increasing number of studies have used ensemble modeling to integrate the advantages
of various SDMs to study the spatial distribution of species [27,32]. By combining models
with different assumptions and algorithms, the integrated model can provide more robust
results than a single model [33].

In this study, SDMs combined with GPS satellite tracking data were used, for the first
time, to study the large-scale biogeography of five species of geese in the MLYR, aiming to
determine the main environmental variables affecting their habitat areas, and to evaluate
their habitat conditions in different periods and the change trends of their habitat areas,
which is of great scientific significance to the protection of geese in the research area.

2. Data and Methods

2.1. Study Area

The Yangtze River, the longest river in Asia and the third longest river in the world [34],
is unique in its extensive transitory basin wetlands. The wetlands are replenished by
summer monsoon rains, bringing nutrient-rich and sediment-rich water, followed by
falling water levels in autumn and winter [34]. The MLYR, from the Three Gorges Dam to
the estuary, mainly covers most of Hubei, Hunan, Jiangxi, Anhui, Jiangsu, Zhejiang, and
Shanghai, as well as some regions of Guangxi and Henan, with a watershed area of about
800,000 km2 (Figure 1) [35].

2.2. Data and Model

For comparative analysis, we divided the 20 years from 2000 to 2019 into four periods,
namely, Period 1 from 2000 to 2004, Period 2 from 2005 to 2009, Period 3 from 2010 to 2014,
and Period 4 from 2015 to 2019.

The calculation results of geese in Period 4 were used as the current distribution, and
then, the final ensemble model was projected to the past by using the occurrence and
environment data of other periods.
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Figure 1. Geographical location of the study area.

2.2.1. Goose Occurrence Data

Since 2015, GPS trackers have been applied to 141 geese, and by 2019, 403,811 goose
occurrence data were obtained. Because the MLYR is the overwintering grounds for geese,
we only selected the occurrence data from October to December and from January to March.
In order to avoid interference with the model due to differences in sites during the migration
of geese, we eliminated all sites with velocities greater than 1 [1]. In order to reduce
the error of occurrence data in geographical coordinates and reduce the sampling bias
effect of the occurrence dataset, the occurrence data were compiled at a spatial resolution
of 1 × 1 km [27]. After removing duplicate records within each grid cell, we obtained
2664 presence records to simulate the habitat areas of these five goose species (Table 1).

Table 1. Number of occurrence data points for five species of geese (lesser white-fronted goose
(LWFG), greater white-fronted goose (GWFG), bean goose (BG), swan goose (SG), and greylag
goose (GG)).

Species Number of Occurrence Data Points

LWFG 419
GWFG 752

BG 852
SG 487
GG 154

Total 2692

2.2.2. Climate Data

The data of climate variables are important for predicting species distribution, es-
pecially for analyses over long time spans [36,37]. The climate variables used in this
study were derived from CHELSA (http://chelsa-climate.org, accessed on 5 September
2021) [38,39], mainly using the three variables of monthly rainfall (PRE), monthly average
maximum temperature (TMAX), and monthly average minimum temperature (TMIN). The
time period was 2000–2018, although the precipitation data for 2018 were missing, and the
climate data accuracy was 30 arc seconds (about 1 km2). In order to effectively assess the
goose habitat in the MLYR, only the data during the overwintering period were selected in
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this study. For example, the averages of October to December of the first year and January
to March of the next year were taken as one data point (the rainfall in 2000 was the average
of the rainfall from October to December of 1999 and January to March of 2000).

2.2.3. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water
Index (NDWI)

The NDVI and NDWI have been widely used to evaluate the distribution of geese [7,8,40].
Our NDVI and NDWI data were derived from the “Landsat 7 Collection 1 Tier 1 1 8-Day
NDVI/NDWI Composite” database in the Earth Engine Data Catalog. At the same time, we
used the Google Earth Engine platform (https://code.earthengine.google.com/, accessed
on 15 August 2021) to download directly for the period 2000–2019. These data have a
resolution of 30 m. In order to ensure the consistency of the data time, we adopted the
same processing method as that used for climate data.

2.2.4. Land Use

The use of land use data plays an important role in predicting species distribution
at large landscape scales [41–43]. The land use data used in this study were obtained
from the Data Center for Resources and Environment of the Chinese Academy of Sciences
(http://www.resdc.cn/, accessed on 20 August 2021) and included cultivated land, forest
land, grassland, water areas, residential land, and unused land as six primary types, with
20 secondary types. These data have a resolution of 1 km2. Based on the needs of this
study, we selected four primary types and 12 secondary types (Table 2). In this study,
the land use data of the first year of each period were selected as the land use data of
the period, that is, the land use date of Period 1 was 2000 (it contains 4 years of land use
data, 2000, 2005, 2010, and 2015, respectively, Appendix A, Figure A1). Because the land
use data were the classification variable and the partial SDM model was not conducive to
the classification variable, in order to conduct the quantitative analysis, in this study, we
transformed 12 types of land use into a continuous variable using Euclidean distance. For
example, wetlands were transformed into the distance to wetland (dis_wl).

Table 2. Land use classification.

Level 1 Level 2 Meaning

Cropland

Paddy Field (dis_pf)
Cropland with a guaranteed water source and irrigation facilities
that can be irrigated normally in normal years and used to grow

rice, lotus root, and other aquatic crops.

Upland Field (dis_uf)

Cropland without an irrigation water source or facilities that
depends on natural water to grow crops; dry-crop-cultivated land
with a water source and irrigation facilities that can be irrigated

normally in normal years; cultivated land mainly used for
vegetable cultivation.

Water

River (dis_ri)
Land below the perennial water level of rivers and main rivers
formed by natural or artificial excavation. Artificial channels

include an embankment.

Lake (dis_la) Land below the perennial water level in a natural water
accumulation area.

Reservoir (dis_re) Land below the perennial water level in an artificial water
storage area.

Mudflat (dis_mf) The tidal zone between the high tide level and the low tide level
of the coastal spring tide.

Floodplain (dis_fp) Land between the water levels of rivers and lakes in normal
seasons and those in flood seasons.
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Table 2. Cont.

Level 1 Level 2 Meaning

Construction land

Urban Land (dis_ul) Land used in large, medium, and small cities and built-up areas
above the county level.

Rural Land (dis_rl) Rural settlements that are independent of cities and towns.

Other Construction Land (dis_ocl)
Land used for factories and mines, large industrial areas, oil
fields, salt fields, quarries, traffic roads, airports, and other

construction land uses.

Unused Land

Wetland (dis_wl)
Land with flat and low-lying terrain, poor drainage, long-term

moisture, seasonal water accumulation or perennial water
accumulation, and surface growth of hygrophytes.

Bare Land (dis_bl) Land covered by surface soil where the vegetation coverage is
less than 5%.

2.2.5. Elevation Data

The elevation data were obtained from a digital elevation model (DEM) with a 30 m
resolution and downloaded from the International Scientific and Technical Data Mirror
Site, Computer Network Information Center, Chinese Academy of Sciences (http://www.
gscloud.cn, accessed on 15 August 2021) [44]. To match the resolution of climate variables,
the DEM data were resampled at 1 km2 resolution using a bilinear interpolation

2.2.6. Model

We used the stacked species distribution model (SSDM) software package in R software
to simulate the suitable goose habitats [45,46]. For this purpose, we used seven species
distribution models for the calculations: the GLM, RF, support vector machines (SVM) [47],
artificial neural network (ANN) [48], generalized additive model (GAM) [49], classification
tree analysis (CTA) [50], and generalized boosting model (GBM) [51].

To evaluate the accuracy of each algorithm, we performed 10 cross-validations for
each algorithm; 70% of each dataset was used as training data and the remainder was used
to test algorithm performance. The area under the receiver operating characteristic curve
(AUC) [27,29,46] was used to evaluate the goodness-of-fit of each model. When the AUC
value of the model was greater than 0.9, it was considered to be an excellent fit; when the
AUC was 0.9–0.8, it was considered to be a good fit; when the AUC was 0.8–0.7, it was
regarded as an acceptable fit; and when the AUC was less than 0.7, the model was regarded
as a poor fit [28]. The habitat suitability maps were converted to binary presence absence
maps using a threshold that maximums model sensitivity plus specificity [27].

To avoid possible multicollinearity leading to biased model estimates, we tested
Pearson correlations between environmental factors and defined the absolute value of the
correlation coefficient R > 0.7 as a threshold [27]. Finally, we selected 18 variables, such
as land use and climate, among which the correlation between TMAX and TMIN was 0.9.
Because these were important indicators for predicting suitable goose habitat, they were
also included in the analysis (Appendix A, Figure A2).

All environmental variables for this study were processed using ArcGis 10.6 in order
to obtain a uniform resolution and coordinate system. The comparative analysis of all
results was completed in R (version 4.1.1) software.

3. Results

3.1. Model Performance and Variable Contribution

It was found that the seven algorithms used for species distribution models had
excellent recognition abilities for the five species of geese, and the average AUC values
of LWFG, GWEG, SG, and BG were higher than 0.9. The results showed that the models
had excellent fits, with AUC values of 0.944 ± 0.002, 0.938 ± 0.002, 0.930 ± 0.002, and
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0.920 ± 0.002 for the LWFG, GWEG, SG, and BG models, respectively. The average AUC
value of GG was 0.886 ± 0.004, indicating that the model fit was good (Figure 2). Overall,
among the seven model algorithms, SVM had the lowest AUC value (0.916 ± 0.031), while
GAM had the highest AUC value (0.934 ± 0.028).

Figure 2. Box plots of interquartile range (IQR), range, and median model performance of the seven
modeling algorithms used to predict the habitat suitability of five goose species. The dots are potential
outliers which are greater than the 75th percentile + 1.5 IQR or less than the 25th percentile − 1.5 IQR.
The medians are represented by thick black lines. Generalized linear model (GLM); random forest
(RF); support vector machines (SVM); artificial neural network (ANN); generalized additive model
(GAM); classification tree analysis (CTA); generalized boosting model (GBM); lesser white-fronted
goose (LWFG); greater white-fronted goose (GWFG); bean goose (BG); swan goose (SG); and greylag
goose (GG).

The results showed that land use data contributed the most to the simulation of suitable
goose habitat areas, with an average contribution rate of 0.781 ± 0.009, followed by climate
data, with a contribution rate of 0.097 ± 0.009. Altitude, NDVI, and NDWI contributed
less at 0.053 ± 0.008, 0.045 ± 0.011, and 0.023 ± 0.004, respectively (Appendix B, Table A1).
Specifically for each variable, among all 18 variables, the contributions of dis_la, dis_fp,
dis_wl, altitude, NDVI, and TMIN were more than 0.05, and the contributions of dis_la,
dis_fp, and dis_wl to all the goose habitat areas were more than 0.05 (Figure 3). Although
all geese have a high demand for dis_la, dis_fp, and dis_wl, the degree of their specific
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needs varies. The contributions of dis_wl to the suitable habitat of LWFG, GWFG, and SG
geese were 0.294 ± 0.022, 0.238 ± 0.019, and 0.225 ± 0.017, respectively. The contributions
of dis_la to the suitable habitat of BG and GG were the highest, at 0.219 ± 0.015 and
0.268 ± 0.018, respectively (Appendix B, Table A1).

Figure 3. Box plots of interquartile range (IQR), range, and median model performance of algorithms
used to predict the variable contribution to the model. The dots are potential outliers which are
greater than the 75th percentile + 1.5 IQR or less than the 25th percentile − 1.5 IQR. The medians are
represented by thick black lines. Lesser white-fronted goose (LWFG); greater white-fronted goose
(GWFG); bean goose (BG); swan goose (SG); and greylag goose (GG).

Because dis_la, dis_fp, and dis_wl are important for predicting suitable goose habitat
areas, we compared the differences in these three variables in different periods. This study
found that dis_fp and dis_la showed a downward trend from Period 1 to Period 4, while
dis_wl showed an upward trend (Appendix B, Table A2). The results showed that the
three variables exhibited significant differences in the four periods (ANOVA test, p < 0.01,
Figure 4).
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Figure 4. The differences of the three variables in the four periods: (a) dis_fp; (b) dis_la; (c) dis_wl.
Period 1 is 2000–2004, Period 2 is 2005–2009, Period 3 is 2010–2014, and Period 4 is 2015–2019. The
asterisks indicate a significant difference.

3.2. Suitable Habitat

Using the habitat classification thresholds (LWFG 0.48, GWFG 0.41, BG 0.44, SG 0.43,
and GG 0.39) calculated by the SSMD model, we classified the suitable and unsuitable
goose habitat areas (Figure 5). The results showed that the largest suitable goose habitat
area for all geese was found during Period 1, and the suitable goose habitat areas for all
geese were mainly distributed in the Dongting Lake and Poyang Lake areas, as well as the
areas near the mainstream of the Yangtze River between the two lakes. In the same period,
the suitable goose habitat area of GG was the largest among the five species of geese, while
the suitable goose habitat area of LWFG was the smallest. In terms of suitable goose habitat
area loss, the suitable goose habitat area of all geese has declined over the past 20 years,
with the LWFG losing the most suitable goose habitat area and GG losing the least suitable
goose habitat area. Specifically, LWFG and GFWG decreased the most from Period 3 to
Period 4, with a loss of 15,905 km2 (45.85%) and 9217 km2 (23.26%) of suitable habitat area,
respectively; BG and GG lost 7191 km2 (14.97%) and 2550 km2 (3.88%) of suitable habitat
area from Period 2 to Period 3, respectively. SG lost the most suitable habitat area from
Period 1 to Period 2 (3926 km2, 9.75%, Table 3).

Table 3. The suitable habitat area (km2) loss and the relative change ratio (%) of suitable habitat
between two consecutive periods. Lesser white-fronted goose (LWFG); greater white-fronted goose
(GWFG); bean goose (BG); swan goose (SG); and greylag goose (GG).

Species
Suitable Habitat

Area/Change
Period 1 Period 1 vs. Period 2 Period 2 vs. Period 3 Period 3 vs. Period 4

LFWG Suitable habitat 37,872
Lost suitable habitat −2922 −260 −15905
Relative change ratio −7.72% −0.74% −45.85%

GFWG Suitable habitat 46,067
Lost suitable habitat −2747 −3699 −9217
Relative change ratio −5.96% −8.54% −23.26%

BG Suitable habitat 52,613
Lost suitable habitat −4576 −7191 −4441
Relative change ratio −8.70% −14.97% −10.87%

SG Suitable habitat 40,253
Lost suitable habitat −3926 −1591 −2757
Relative change ratio −9.75% −4.38% −7.94%

GG Suitable habitat 67,697
Lost suitable habitat −1972 −2550 −1554
Relative change ratio −2.91% −3.88% −2.46%
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Figure 5. Suitable and unsuitable goose habitat areas in the MLYR for the four periods. Period
1 is 2000–2004, Period 2 is 2005–2009, Period 3 is 2010–2014, and Period 4 is 2015–2019. Lesser
white-fronted goose (LWFG); greater white-fronted goose (GWFG); bean goose (BG); swan goose
(SG); and greylag goose (GG).

In order to elucidate the overall situation of suitable goose habitat loss, we compared
suitable goose habitat areas in two periods: Period 1 and Period 4. The results showed that
during the 20 years from 2000 to 2019, the suitable goose habitat area of LWFG increased
by 486 km2 in some areas and decreased by 19,573 km2 in other areas, with a total suitable
habitat area loss of 50.40%, which was the greatest suitable goose habitat area loss among
the five species; the suitable goose habitat area of GWFG increased by 1163 km2 and
decreased by 16,826 km2, with a total suitable habitat area loss of 34.00%; the suitable goose
habitat area of BG increased by 817 km2 and decreased by 17,025 km2, with a total suitable
habitat area loss of 30.81%; the new suitable goose habitat area of SG was 3076 km2, while
it decreased by 8593 km2, with a total suitable goose habitat area loss of 13.71%; the new
suitable goose habitat area of GG was 4688 km2, while it decreased by 8792 km2, with a
total suitable habitat area loss of 6.24%. GG was the species with the least suitable goose
habitat area loss among the five species of geese (Figure 6).

From 2000 to 2019, the peripheries of the suitable goose habitat area for all geese were
lost to varying degrees, and the greatest suitable goose habitat area loss was in the marginal
areas. The LWFG lost most of its habitat area, except for the Dongting Lake and Poyang
Lake areas, especially the suitable habitat area in the northwest of Dongting Lake. Most
of the suitable GWFG habitat in the Tai Lake area was lost, and the GWFG habitat in the
periphery of the two lakes was also lost. Similar to the GWFG, the BG lost suitable habitat
in the Tai Lake area. Moreover, most of the suitable habitat in the peripheries of the two
lakes were also lost. Much of the suitable SG habitat in the peripheries of the two lakes was
lost as well, but it had also increased in some areas, especially in the lower reaches of the
Yangtze River. Among all the geese, the GG had the least suitable goose habitat area loss,
which was mainly concentrated in the peripheries of the two lakes, while it had a large
increase in suitable goose habitat area in the lower reaches of the Yangtze River (Figure 7).
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Figure 6. The suitable goose habitat loss over the past 20 years. From inside to outside, lesser
white-fronted goose (LWFG); greater white-fronted goose (GWFG); bean goose (BG); swan goose
(SG); greylag goose (GG).

Figure 7. Change in suitable goose habitat during Period 1 and Period 4. Lesser white-fronted
goose (LWFG); greater white-fronted goose (GWFG); bean goose (BG); swan goose (SG); and greylag
goose (GG).
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4. Discussion

SDMs are widely used to address a variety of ecological problems, including pre-
dicting the geographic range of species, assessing the impact of biological invasions, and
developing conservation strategies [52–54]. However, some studies have shown that a
single-species distribution model has greater uncertainty, while an ensemble model can
provide more accurate results [55–57]. In this study, seven SDMs (ANN, GAM, GLM,
RF, CAT, GBM, and SVM) were used to combine the individual SDMs with the SSDM
model, combined with GPS tracking data and environmental data of five goose species
from 2015 to 2019. The habitat adaptability and spatial distribution of these geese in the
MLYR over the past 20 years were mapped. These findings were basically in line with the
scientific consensus on the habitats of these five species, and a large number of areas lost in
previous surveys were also found. These results are of great significance for supporting the
protection of goose habitats in the MLYR.

The study area is the most important overwintering site for geese on the EAAF. The
goose habitat loss in this area means a decrease in food availability and energy reserves,
which lead to a series of problems, such as an increase in intraspecific and interspecific
competition pressure, a decrease in the subadult survival rate, and an increase in mortality
during migration. Over the past 20 years, the suitable goose habitat areas in the MLYR
have been reduced to different degrees. Among the five species studied, LWFG, GWFG,
and BG lost more than 16,000 km2 of suitable habitat area (accounting for 50.40%, 34.00%,
and 30.81% of their original habitat areas, respectively). However, the suitable habitat areas
of SG and GG only decreased by about 8000 km2 (13.71% and 6.24%, respectively). As
compared with LWFG, GWFG, and BG, the suitable habitat area losses for SG and GG
have had less impact on these species. Zhang et al. [7] found that large geese showed
better adaptability to environmental changes, while small geese had a smaller range of
feeding habits due to the length and hardness of their beaks, which made small geese more
sensitive to environmental changes. This may be one of the reasons why the LWFG had
the greatest suitable habitat area loss and GG had the least suitable habitat area loss. The
most direct manifestation of habitat loss is a decline in population size, which has declined
significantly for LWFG, GWFG, and BG over the past 20 years. In particular, the eastern
population of the LWFG (all of which overwinter in the MLYR) decreased from 65,000 geese
in the 1980s to 4020 geese in 2020 [58], and its suitable habitat was the most reduced of all
five species. The suitable habitat area losses of SG and GG were less, and their populations
were relatively stable in the MLYR. This also reflects that habitat area plays an extremely
important role in the stability of goose population.

Our results show that the suitable goose habitat areas in the MLYR are shrinking to
the area around the two lakes (Figure 7). Many reports in the literature have also reflected
this finding [7,22,23,26]. The reason for this phenomenon may be that the two lakes are
the two largest freshwater lakes in China and provide abundant food resources for geese.
In addition, there are many nature reserves in the region, with large, protected areas and
low human disturbance, which makes the habitat of this region better than that of other
regions. The vast waters and floodplains in the two lakes areas are also the largest and
most complete natural wetlands in the MLYR, and geese overwintering in China prefer
natural wetlands [59,60].

A large number of research results have shown that wetlands, floodplains, and lakes
were the main components of goose habitat areas in the MLYR [22,23,25,26,59]. In the
present study, it was found that dis_wl, dis_fp, and dis_la were very important for predict-
ing the suitable habitat areas of the five species of geese. However, these three variables
have changed dramatically over the past two decades, and there were significant differences
in the four periods (Figure 4). These changes have posed significant challenges for geese
and have led to the loss of suitable habitat areas for geese with poor adaptability. These
three variables are closely related to the hydrological rhythm of the Yangtze River [35,61],
and the MLYR is a typical case [7]. During the first 20 years of the 20th century, the economy
of the MLYR developed rapidly. To satisfy the high demand for electricity, the Yangtze
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River was used for hydropower generation. As of 2019, there were 159 hydropower stations
with an annual power generation of more than 300 thousand kilowatts in the Yangtze River
Basin [62]. This high quantity of hydropower stations has significantly changed the hy-
drological rhythm of the Yangtze River Basin, leading to changes in wetlands, floodplains,
and lakes [35] that have been disastrous for geese. Some studies have concluded that
the construction of hydropower stations has destroyed the natural hydrological rhythm,
resulting in early or delayed recession of floodplains in the MLYR, thus, affecting the timing
and trends of food growth. These phenological changes no longer match the time when
geese arrive at overwintering sites, and therefore geese are unable to obtain food in their
original habitat areas [7]. The MLYR is the main grain-producing area in China, with well-
developed agriculture; the lake areas in the region are shrinking due to reclamation and the
demand for agricultural irrigation. The region also exhibits rapid economic development,
a large population, rapid expansion of urban areas, rapid growth of tourism and other
tertiary industries, and a large number of natural wetlands that have been exploited, which
may be one of the reasons for the greater loss of suitable habitat margins for geese [63,64].

This study found that the use of land use data played an important role in simu-
lating suitable goose habitat in the MLYR, with an average contribution rate as high as
0.781 ± 0.009 (Appendix B, Table A1). The contributions of climate (PRE, TMAX, and
TMIN), DEM, NDVI, and NDWI were relatively small at 0.032 ± 0.004, 0.053 ± 0.008, and
0.045 ± 0.011, and 0.023 ± 0.004, respectively (Appendix B, Table A1). This was different
from the results of many studies on goose habitat areas, some of which found that hy-
drological changes were the key factors in changes in goose distribution [65], and some
scholars have indicated that food resources were important limiting factors [66,67]. These
contrasting results are due to the differences in the scale of the study areas, and the use of
land use data plays an extremely important role in predicting the distribution of species at
a large landscape scale [41–43]. Studies that have suggested food resources or hydrological
changes were the key factors affecting the distribution of geese have mostly been based on
small spatial scales, and our research area covers the whole middle and lower reaches of
the Yangtze River. Therefore, the difference in spatial scales is an important reason for the
differences between our results and those of other studies.

Over the past 20 years, the habitat of wild geese overwintering in the MLYR has
experienced different degrees of loss, and suitable goose habitat area has been significantly
reduced, resulting in a significant decline in their population. This decline has mainly
been caused by human activities. The MLYR is among the areas with the fastest economic
development in China, but this rapid economic growth has led to environmental deteri-
oration, especially excessive utilization and development of water resources, which has
led to shrinkage of lakes, a reduction in floodplains, and loss of wetlands and other factors
that are crucial to goose habitat [14,17,18,35]. The Chinese government has taken many
measures to protect and restore the environment in recent years, such as returning farmland
to wetlands and the Yangtze River protection strategy, and although the environment in
some areas has been improved, the geese in the MLYR still face enormous challenges.

5. Conclusions

Based on SSDM and GPS tracking data, in this study, we analyzed the changes in the
suitable goose habitat areas in the MLYR from 2000 to 2019. The results showed that the
suitable goose habitat areas in this region had experienced varying degrees of loss, and
that the suitable goose habitat area was significantly reduced. The LWFG had the greatest
suitable habitat area loss (over 50%), while the GG had the least suitable habitat area loss
(6.24%). GWFG, BG, and SG suitable habitat areas were reduced by 34.00%, 30.81% and
13.71%, respectively. The widespread and rapid changes in land use were one of the main
reasons, especially the changes in floodplains, lakes, and wetlands. These analyses show
that land use is an important factor in studying the spatial and temporal changes of suitable
goose habitat areas on a large scale, which is of great significance to the protection and
management of goose habitats.
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Appendix A

Figure A1. Land use in four periods. Period 1 is 2000; Period 2 is 2005; Period 3 is 2010; Period 4
is 2015.
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Figure A2. Correlation of 18 variables. (BL, bare land; DEM, altitude; FP, floodplains; LA, lake;
MF, mudflat; NDVI, normalized difference vegetation index; NDWI, normalized difference water
index; OCL, other construction land; PF, paddy field; PRE: monthly precipitation; RE, reservoir;
RI, river; RL, rural land; TMAX, monthly mean maximum temperature; TMIN, monthly mean
minimum temperature; UF, upland field; UL, urban land; WL, wetland). Red points represent
negative correlations and blue points represent positive correlations.

Appendix B

Table A1. Variable importance of 18 environmental variables of the GAM algorithm.

Variables LWFG GWFG BG SG GG

Dis_pf 0.012 ± 0.009 0.020 ± 0.010 0.011 ± 0.012 0.017 ± 0.007 0.008 ± 0.009
Dis_uf 0.015 ± 0.010 0.014 ± 0.016 0.019 ± 0.008 0.026 ± 0.011 0.018 ± 0.004
Dis_ri 0.032 ± 0.013 0.029 ± 0.006 0.020 ± 0.010 0.012 ± 0.012 0.022 ± 0.013
Dis_la 0.065 ± 0.021 0.156 ± 0.051 0.158 ± 0.028 0.167 ± 0.051 0.277 ± 0.097
Dis_re 0.015 ± 0.011 0.036 ± 0.016 0.014 ± 0.013 0.037 ± 0.017 0.032 ± 0.031
Dis_mf 0.086 ± 0.026 0.109 ± 0.025 0.066 ± 0.021 0.062 ± 0.023 0.046 ± 0.022
Dis_fp 0.125 ± 0.036 0.116 ± 0.044 0.137 ± 0.031 0.144 ± 0.046 0.131 ± 0.060
Dis_ul 0.014 ± 0.009 0.012 ± 0.012 0.025 ± 0.013 0.027 ± 0.014 0.013 ± 0.011
Dis_rl 0.016 ± 0.007 0.026 ± 0.012 0.021 ± 0.007 0.025 ± 0.013 0.032 ± 0.029

Dis_ocl 0.013 ± 0.010 0.022 ± 0.013 0.016 ± 0.013 0.017 ± 0.008 0.010 ± 0.011
Dis_wl 0.259 ± 0.045 0.188 ± 0.053 0.088 ± 0.031 0.217 ± 0.079 0.175 ± 0.065
Dis_bl 0.069 ± 0.018 0.078 ± 0.015 0.044 ± 0.015 0.044 ± 0.025 0.024 ± 0.015
DEM 0.019 ± 0.026 0.036 ± 0.047 0.041 ± 0.037 0.036 ± 0.050 0.021 ± 0.026
NDVI 0.022 ± 0.007 0.040 ± 0.014 0.060 ± 0.010 0.059 ± 0.028 0.112 ± 0.035
NDWI 0.020 ± 0.008 0.021 ± 0.012 0.041 ± 0.019 0.024 ± 0.017 0.027 ± 0.025

PRE 0.014 ± 0.011 0.019 ± 0.010 0.038 ± 0.015 0.010 ± 0.008 0.010 ± 0.010
TMAX 0.082 ± 0.032 0.042 ± 0.021 0.094 ± 0.036 0.037 ± 0.021 0.023 ± 0.017
TMIN 0.123 ± 0.031 0.035 ± 0.028 0.108 ± 0.041 0.040 ± 0.017 0.019 ± 0.011
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Table A2. The average of the three variables in the four periods.

Period Distance to Wetland Distance to Lake Distance to Floodplain

Period 1 128,104.553 ± 125.594 88,059.992 ± 101.239 18,951.819 ± 20.392
Period 2 137,343.562 ± 128.758 83,960.312 ± 99.655 17,731.429 ± 18.043
Period 3 156,412.35 ± 139.942 69,673.015 ± 74.446 17,362.222 ± 16.905
Period 4 156,595.611 ± 140.027 61,968.91 ± 63.665 17,159.595 ± 16.493
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Abstract: Industrial and other human activities in Canada’s oil sands region (OSR) influence the
environment. However, these impacts can be challenging to separate from natural stresses in flowing
waters by comparing upstream reference sites to downstream exposure locations. For example, health
indicators of lake chub (Couesius plumbeus) compared between locations in the Ells River (Upper and
Lower) in 2013 to 2015 and 2018 demonstrated statistical differences. To further examine the potential
sources of variation in fish, we also analyzed data at sites over time. When fish captured in 2018 were
compared to pooled reference years (2013–2015), results indicated multiple differences in fish, but
most of the differences disappeared when environmental covariates were included in the Elastic Net
(EN) regularized regression models. However, when industrial covariates were included separately
in the EN, the large differences in 2018 also disappeared, also suggesting the potential influence of
these covariables on the health of fish. Further ENs incorporating both environmental and industrial
covariates along with other variables which may describe industrial and natural influences, such as
spring or summer precipitation and summer wind speeds and distance-based penalty factors, also
support some of the suspected and potential mechanisms of impact. Further exploratory analyses
simulating changes from zero and the mean (industrial) activity levels using the regression equations
respectively suggest effects exceeding established critical effect sizes (CES) for fish measurements
may already be present or effects may occur with small future changes in some industrial activities.
Additional simulations also suggest that changing regional hydrological and thermal regimes in
the future may also cause changes in fish measurements exceeding the CESs. The results of this
study suggest the wide applicability of the approach for monitoring the health of fish in the OSR
and beyond. The results also suggest follow-up work required to further evaluate the veracity of the
suggested relationships identified in this analysis.

Keywords: oil sands; fish; Ells River; elastic net; industry; climate; environmental health

1. Introduction

Documenting and assessing the status of biological populations and communities and
identifying sources of variation is a priority for ecological monitoring and management
programs [1–4], including those in Canada’s Oil Sands Region (OSR) [5]. Among the studies
performed in the OSR to understand the effects of industrial developments, analyses of
fish health indicators have been undertaken in streams in the minable sub-region since the
late 1990s [6–8]. Using designs inspired by the Federal Environmental Effects Monitoring
program (EEM; [9,10]), these fish studies typically collected sentinel species from an ex-
posed site and statistically evaluate anatomical measurements relative to an upstream or
local reference site not exposed to the stressor of interest e.g., [11]. This design has also
been used for other indicators and has routinely identified differences at the downstream
exposure locations, suggesting the potential influence of industrial activities [12–18].
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Although differences in environmental indicators measured at downstream sites com-
pared to upstream references are commonly observed in the OSR, isolating the potential
effects of industrial development is often a substantial challenge for monitoring in flowing
waters in the region [19,20]. More specifically, while industrial developments have known
physical impacts on the landscape and hydrological processes [6,21,22], oil sands mines
are preferentially constructed where the bitumen deposits are thickest and the overburden
is thinnest [23]. Streams in the areas targeted for development are often influenced by
natural exposure to bituminous compounds eroded from the McMurray Formation and
other substances derived from other geological strata, including other hydrocarbon-bearing
formations present between the study locations [12,15,16,24,25]. Substances originating
from deeper rock layers may also be transported to the surface in groundwater in the
OSR [26–31]. Although some of the observed changes in environmental indicators in these
areas may be associated with facilities, other phenomena may also affect the efficacy of
spatial comparisons in the OSR. Contaminants of concern (CoCs) are emitted to the atmo-
sphere from stacks and fugitive sources and many are deposited to the landscape [20,32–36].
While the most intense deposition of materials often occurs within 10–20 km of the sources,
e.g., [35], the deposition varies annually [20,32,37,38] and may also occur in areas used as
references for studies in streams [39–41]. Additionally, in situ oil sand facilities may also be
present upstream of reference sites [16,18], further altering the sensitivity of spatial designs
to industrial influences.

The potential overlap of stressors from multiple sources and the confounding of
spatial designs often constrains the unequivocal identification of industrial influence in the
OSR [19,20]. These challenges of spatial designs in streams from the OSR coupled with the
desire to quantify any industrial influence on organisms suggests alternative approaches
are required. Although many options are available [18,42], analyses of data collected at
individual sites over time may be used to identify industrial influences. These temporal
and site-specific analyses can account for natural differences between locations, have been
routinely used in the OSR, and have identified likely effects of industrial developments,
including some potential influences in streams [13–16,19,25,36,41,43–51].

Although a site-specific approach has been useful in many studies, the design also has
challenges. For example, the chosen ecological indicators often vary naturally over time
and this may interfere with the identification of any industrial influences. Additionally, pre-
industrial baselines may be absent. Whereas some measurement types, such as chemical
indicators in lake sediments and peat cores [47,52], may be less sensitive to these challenges,
studies in streams require deliberate solutions. To overcome these challenges in flowing
waters, generic covariates available from meteorological and hydrological stations can be
incorporated to remove their influence on environmental indicators [32,39,53]. Although
any residual variation could be qualitatively associated with extraneous sources, descriptors
of industrial performance for individual facilities can also be included to identify any
potential associations between the indicators and the local development. Although not
definitive, this approach may improve the utility of monitoring in the OSR, including
identifying industrial influence without a pre-industrial baseline [20,32,39,54–56]

The purpose of this work is to evaluate the status of fish (lake chub; Couesius plumbeus)
residing in the Ells River relative to industrial activity. To examine the potential effects of
industrial influence, several approaches were used and were compared. First, the typical
EEM approach was used to identify statistical differences both spatially and temporally us-
ing ordinary least squares (OLS) and generalized linear models (GLM) and were compared
to the use of regression diagnostics. Second, the effect of including various sets of covariates
on the temporal analyses was examined and the elastic net regularized regression (EN).
This study suggests the analysis of the ecological data in exposure environments such as
the Athabasca tributaries in the OSR may need to integrate environmental and industrial
covariates to better account for variability in the data set and to enhance the sensitivity of
the analysis to local human activities.
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2. Materials and Methods

2.1. Study Area

This study was performed in the Ells River, a tributary of the Athabasca River in
Canada’s OSR. Two sites, Upper and Lower, along the Ells River were sampled consec-
utively between 2013 and 2015 and again in 2018 (Figure 1A). The Lower site is in the
midst of oil sands development, and the Upper site is located approximately 35 river-km
upstream of the Lower site. The Upper site is underlain by the Clearwater Formation,
while the Lower site is underlain by the McMurray Formation (Figure 1B). During the
initiation of this study (2013), site preparation and construction of the (Total) Joslyn North
mine was underway, and the sites were selected to straddle this development (Figure 1C).
However, the development of the Joslyn North mine was suspended in May 2014 [57,58].
Most of the development and site preparation in the Ells basin occurred upstream of the
Lower location and downstream of the Upper site before the initiation of fish collections
(Figure 1C; Supplemental Figure S1).

Figure 1. Area of study in Canada’s Oil Sands Region; (A): fishing locations in the Ells basin (Upper
and Lower), project boundaries of facilities operating in 2018 (blue outlines; Fort Hills began production
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in 2017 and its data were not included in the current analysis), facilities paused in 2018 (red dashed
outlines), 25 km distances from Ells locations (white dashing); orange outline = Ells basin; black
outlines show upslope areas for fishing locations; dark red dot shows Mildred Lake meteorological
station (3064528); ESRI World Imagery basemap ~ 2019; (B): bedrock formations of the Mannville
group (Grand Rapids, Clearwater, McMurray) and the Devonian basement (Waterways); all other
geological strata not shown; pink diamonds = stream gauges (S45 and S14A); purple star = stream
gauge for Upper location in 2018 (07DA039); (C): land disturbances in and around the Ells basin
by year.

Lake chub were selected as the sentinel species for work in the Ells River. Following the
Canadian EEM protocols, ~20 adult female and 20 adult male lake chub were targeted using
backpack electrofishers (Smith-Root Type LR-24; Alberta Environment and Parks Fisheries
Research Licenses: 13-0445, 14-0456, 15-0456, and 18-0408). September is the typical period
of recrudescence for the spring spawning lake chub [59], and fish were collected during this
period (22–24 September 2013; 24–26 September 2014; 6–8 October 2015; 19–21 September
2018). The collected fish were euthanized by spinal severance following the Animal
Use Protocols approved by Environment and Climate Change Canada’s Animal Care
Committee (1315, 1415, 1515 and 1815). Sex, body length (BL; ±1 mm), body weight (BW;
±0.001 g), gonad weight (GW; ±0.001 g) and liver weight (LW; ±0.001 g) were recorded.
Actual sample sizes range from 12 to 21.

2.2. Analysis of Data
2.2.1. Conventional Statistics and Regression Diagnostics

Conventional analyses of fish health (downstream exposure relative to upstream
references) were performed in this study. Site differences in fish health endpoints (GW,
LW, BW) were analyzed using the ‘lm()’ and ‘glm()’ functions in R to assess differences
in slope and intercepts. Ordinary least squares (OLS) analyses used log10-transformed
data. Generalized linear models (GLM) were applied using a gamma distribution and a
log-link function; visual examination of residuals suggested no substantial deviation from
normality, and this technique was used for the remainder of the analyses. All other fish
health endpoints were assessed using 1-factor ANOVA followed by Tukey’s post hoc test
(normality of all data was confirmed using a Shapiro–Wilk test before subsequent statistical
analysis; if data were not normally distributed, the data were log10-transformed). An α

level of 0.05 was used to determine statistical significance for all tests. These analyses were
performed both spatially (within years) and temporally (within sites). To correspond with
the regression diagnostics approach, GLMs testing the statistical differences at sites in 2018
compared to a pooled group of fish from 2013 to 2015 were also applied at each location.
The results of these analyses are described in detail in the Supplementary Information and
Appendix A but are also summarized in the main text.

Additional analyses based on regression diagnostics [60] were also performed in this
study. First, GLMs were used to calculate regression equations for GW and LW relative to
BW and BW relative to BL at sites over time. From these models, the fish collected from
2013 to 2015 were used to estimate the expected ranges of residuals for fish captured in
2018. Additional regression diagnostics were conducted spatially using the fish captured at
the Upper site to predict the GW, LW, and BW of fish for the Lower site.

Bootstrapping was used to calculate both the observed and expected ranges of residu-
als per year for the fish measurements evaluated here. For the observed residuals, a single
bootstrap was used to calculate the central 95% confidence intervals of means. In contrast,
a double bootstrap was used to estimate the expected ranges of fish in 2018 compared
to the previous 3 years. Details of the single and double bootstrap techniques are found
elsewhere [55,61].
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2.2.2. Elastic Net Regularized Regressions

The temporal analyses described immediately above examining the health metrics of
fish over time identified potentially large differences in several measurements of fish health
in 2018 compared to previous years (e.g., Figure 2). In addition, variability within the
baseline period of 2013 to 2015 was also apparent among the fish health metrics, including
model errors (e.g., Figure 2). Using environmental (ENV) and industrial (IND) covariates,
the observed variability and potentially relevant differences prompted additional analyses
using the elastic net regularized regression (EN; [62]) to identify potentially relevant drivers
of the variability in the fish health metrics. The ENs were applied using the glmnet
package in R [63] using penalty ratio (α) of 0.5 and a Gamma distribution with a log-link
function. The minimum λ penalty was selected using leave-one-out-cross validation using
the ‘cv.glmnet()’ function in the glmnet package.

Figure 2. Mean residuals of female endpoints measured at the Upper Ells (A) and Lower Ells
(B) locations; 2013:2015 (gray symbols) are reference years; 2018 is the test year; red horizontal
dashed and solid lines show expected ranges of mean residuals in 2018 given the reference data; open
symbols suggest no difference in mean residuals; closed symbols suggest a difference in 2018; ‘Fish’
panes include no environmental or industrial covariates; ‘ENV’ includes environmental covariates
only; ‘IND’ includes industrial covariates only (with no limits and no penalty factors); ENV+IND
with no limits and no penalty factors (‘NL-NPF’); ENV+IND with no limits and penalty factors
(‘NL-PF’); ENV+IND with upper limits and no penalty factors (‘UL-NPF’); ENV+IND with upper
limits and penalty factors (‘UL-PF’); blue shading of panes indicates the most parsimonious models
selected by AIC; yellow shading indicates marginally relevant models selected by AIC.
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First, ENs were conducted using environmental covariates only. To capture potential
natural contributions to indicators of fish health, three environmental covariates were used
in this analysis: water temperature (WT), air temperature (AT), and stream discharge (SD;
Supplemental Table S1; Supplemental Figure S2). Among these covariates, we included four
periods: August 5 until the start of fish sampling, 60 days before fish sampling, summer
(June, July, August), and June, July, August, and September until the date of fish capture.
Each of these periods corresponds with the numerical descriptors 1–4, with greater values
indicating longer periods. Additionally, we also used both means (x) and medians (

∼
x) for

each of these periods. For example, ‘AT3-x’ represents the mean air temperature from
1 June to 31 August for each respective year of study (Supplemental Table S1; Supplemental
Figure S2). Hobo Tidbit temperature recorders were deployed at each Ells River station
in each sampling year. In 2015, deployment of the probes did not occur until August 4,
and only two estimates of WT were used in this analysis. To compensate for the limited
availability of WT, AT data were also obtained and used to calculate possible physical
descriptors of environmental conditions in the Ells River. These AT data were obtained
from the Mildred Lake meteorological station (Climate ID: 3064528). Stream discharge
data were also obtained for the Ells River (2013–2015: S45 and 2018: 07DA039). Given
the potential influence of industrial activities at the Joslyn North project, only discharge
data from the upstream gauging locations (S45 and 07DA039) were used to approximate
natural and unimpeded flows in the Ells River (e.g., [6,64]) for the initial analyses using
only the environmental covariates (ENV models); as described below, discharge data from
the station near the Lower Ells, S14A, were used in the ENV+IND EN models for the fish
captured at that site. Although not an environmental covariate, Julian Day (JD) was also
included as a selectable covariate to account for slight differences in the collection of fish
among sampling years.

Next, an EN using only industrial covariates was also used. Industrial covariates
from eleven facilities (mines: Horizon Mine (HM), Jackpine Mine (JPM), Kearl Mine (KM),
Muskeg River Mine (MRM), Syncrude Aurora North (SAN), Suncor Basemine (SBM), and
Syncrude Mildred Lake (SML); in situ: Suncor Firebag (SFB), Suncor MacKay River (SMR),
Husky Sunrise (HS), and West Ells Sunshine (WES); Figure 1) were obtained from the
Alberta Energy Regulator (Supplemental Figure S3; [65,66]). Although they varied by
facility, the covariates included fuels combusted (e.g., process (PG-F) and natural gases
(NG-F) and petroleum coke (PC-F)), products produced (e.g., crude bitumen (CB-P) and
synthetic crude (SC-P)), the mass of mined bitumen (OS-M), stockpiling rate of petroleum
coke (PC-SP), and materials flared/wasted (e.g., sulphur (S-FW), diluent naphtha (DN-FW),
and crude bitumen (CB-FW)). Steam injection rates (ST) and bitumen production rates
(BP) were also obtained for the in situ facilities (HS, SMR, SFB, WES). Data were obtained
from mines and in situ facilities with at least two years of operation by 2018 (Figure 1).
Summer sums for the industrial facilities were calculated using the reported values from
June, July, August, and September. The full list of initial industrial variables is available in
the Supplemental Information (Supplemental Table S2).

Land disturbance data was also used. Land disturbance data were obtained from
the Alberta Biodiversity Monitoring Institute’s 2018 Human footprint data ([67]; Figure 1;
Supplemental Figure S1). Not all features in this data layer are dated, but the data serve as
a proxy for the proportional increase in land disturbance per year in the watershed areas
draining to each sampling location. The sub-watersheds for each stream location were
calculated using the ‘Upslope Area’ function in Quantum GIS (QGIS version 3.16).

Finally, analyses using both environmental and industrial covariates were performed.
These analyses used the covariates described above, but also included additional ‘mixture’
variables to account for the potential cumulative industrial influence, the physical transport
processes linking facilities with streams, and other seasonal effects
(Supplemental Figure S4; [39,55]). These mixture variables included estimates of mean
spring discharge (SP-SD) and air temperature (SP-MT; from Mildred Lake). Spring was
estimated as April, May, and June to capture the freshet period. Spring precipitation
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estimates, mean precipitation per day (SP-MP), number of rain days (SP-RD), and the cu-
mulative total precipitation (SP-TP) were also included. Additional metrics in the summer
were also obtained, including mean (e.g., WS4-x) and upper percentile wind speeds (e.g.,
WS4-99) from the Bertha Ganter station in the Wood Buffalo Environmental Association
air monitoring network and precipitation from the Mildred Lake meteorological station
(e.g., P1-x) for the same periods outlined above. In total, the number of potential envi-
ronmental, industrial, and mixture covariates included in the ENV+IND models was 147
(Supplemental Tables S1 and S2; Supplemental Figures S1–S3).

In addition to the expanded list of covariates, the ENs were further configured using
arguments in the glmnet() function in R [63]. More specifically, an ‘upper.limit = 0′ argu-
ment was used for industrial variables to return only negative coefficients. Secondly, the
‘penalty.factor’ argument was used to account for the proximity of projects to the sampling
locations (Supplemental Table S3). For example, the project boundaries of three operational
mines, Horizon, Muskeg River, and Aurora North, are within 10 km of the Lower Ells
location, but are physically outside the Ells basin (Figure 1; Supplemental Table S3). A
penalty factor (PF) of ((distance (km)/100) + 1) was explored here. The scaled PF was
selected during preliminary analyses in which km/10 was likely too punitive, whereas
km/1000 had no effect. An exploratory analysis of the effect of varying PFs was also
undertaken but showed little effect on the mean squared error (MSE) of the final models
(Supplemental Figure S5). However, this preliminary analysis is further considered below
(Section 3.3)

Based on the inclusion or exclusion of upper limits and PFs, four ENs were performed
when environmental, industrial, and mixture variables were included. These analyses
included no limits and no penalty factors (NL-NPF), upper limits of zero and no penalty
factors (UL-NPF), no limits and (distance-based) penalty factors (NL-PF), and upper limits
of zero and the distance-based penalty factors (UL-PF). To compare the performance of
various EN models, the deviance ratio (DR), MSE, and Akaike’s Information Criterion
(AIC) were calculated [53]. Criteria to evaluate AICs followed generic guidance from the
literature [68].

2.2.3. Retrospective and Prospective Model Predictions

Most ENs selected industrial variables, and the regression formulae were also used to
estimate the potential current or future effects of these industrial influences and projected
climatic and hydrological changes. Among the industrial variables, two sets of predictive
models were used. The mean of each industrial variable selected in the best-fit ENs
from 2013 to 2015 and 2018 was used to estimate the magnitude of differences causing a
change equivalent to the fish Critical Effect Size (CES) used for the morphological ratios of
gonado-somatic, liver-somatic, and condition indices and applied to the GW, LW, and BW
measurements examined here (±25% for GW and LW and ±10% for BW; [69]). These CESs
are used in the EEM program and indicate a potentially high risk to the environment [69].
The same approach was also used to estimate the magnitude of change in the absence of
an industrial variable (by setting initial conditions to zero) eliciting a response in a fish
endpoint exceeding the established CESs. In addition, potential (and predicted) changes in
air temperature (1 to 4 ◦C) and stream discharge (up to 20% decline; [70,71]) were used to
estimate potential future effects of these changes on GW, LW, and BW of lake chub captured
in the Ells basin predicted by the various EN models selected by AIC.

3. Results and Discussion

3.1. Analyses without Environmental or Industrial Covariates

As described in detail in the Appendix A, statistical comparisons of fish captured at
the Lower Ells compared to fish from the Upper Ells using OLS and GLMs often showed
significant differences between sites, and many were larger than the stipulated CESs
(Supplemental Tables S3–S6; Supplemental Figures S6–S13). Although the statistical dif-
ferences between sites were not always present, and the directions or magnitudes of
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observed differences are not always consistent, two large consecutive differences were
observed in GW of females in 2015 and 2018 (Supplemental Table S6) and the GW of
males at the Lower Ells was consistently below the value precited from the Upper location
(Supplemental Figure S7). These differences parallel other studies in the Ells River showing
some differences between upstream and downstream locations [8,14,16,24], but as in some
of the previous studies, the role of industrial influences above any differences driven by
habitat e.g., [56] are not clear. However, the results would prompt follow-up work in a
standard EEM study, including site-specific analyses e.g., [9,72].

As described in the Appendix A, site-specific analyses were performed using tra-
ditional EEM statistics (OLS), GLMs, and regression diagnostics. Results from both
the traditional EEM OLS analyses and the GLMs generally suggest no consistent dif-
ferences within sites over time (Supplemental Tables S7 and S8), but some distinctions
were also apparent. Among the largest was the common detection of significantly different
slopes in GW of female lake chub captured at both sites in GLMs, but not in the OLS
(Supplemental Tables S7 and S8). Although the detection of differences in the slope using
the GLM, but not the OLS, may be related to the transformation of data before the OLS,
overall, there are few temporally persistent patterns suggesting a potential influence of
annually variable factors, such as temperature or industrial activity. However, the GW of
females captured at the Lower Ells site was statistically greater and larger than the CES of
25% in 2013 compared to all other years (Supplemental Tables S7 and S8).

In this study, we used site-specific analyses over time to determine the health of fish
in the Ells River to address the known interpretative limitations of comparing downstream
exposure locations to upstream reference sites in the OSR. Corresponding with the remain-
der of the results described below (Section 3.2), site-specific analyses were also performed
using GLMs and regression diagnostics using a pooled reference group of years (2013
to 2015) to determine the potential differences in 2018. The results from the regression
(residual) diagnostics mirrored those from the Gamma GLMs performed using the pooled
2013–2015 group compared to 2018 (Figures 2 and 3; Supplemental Table S9). Differences
in 2018 compared to 2013–2015 were observed in multiple endpoints, including LW of
females from the Upper site and in GW, LW, and BW of females collected at the Lower site
(Figure 2). Only one difference identified by the Gamma GLM, the slope of GW of males at
the Lower site, was not also identified by regression diagnostics (Figure 3; Supplemental
Table S9). However, as described in the Appendix A, tests of intercept may be robust to
statistical differences in slope between 0.01 and 0.05 (p = 0.043). Some of the temporal
differences at sites may be attributable to industrial development, including large declines
in GW of females at the Upper site and declines in LW of females at the Upper site in 2018
compared to 2013–2015 (Supplemental Table S9), but the analytical approach used in this
portion of the analysis also incorporates temporal variability which may be associated with
environmental and/or industrial drivers, suggesting (along with the results of the spatial
analyses described above) additional data, analyses, and interpretation are required.

3.2. Site-Specific Analyses with Covariates
3.2.1. Which EN Models Performed the Best?

Analyses to include covariates in this study used the EN and included models with
only environmental covariates (ENV), only industrial covariates (IND), and those which
used both ENV and IND covariates along with various constraints, including ULs of zero
for coefficients and PFs for industrial parameters based on the distance of a sampling site
to a facility. Among the 12 fish measurements among sites and sexes, the fish-only models
for LW and GW of males and females at both sites suggested these models performed
the best and as expected that most of the variation in these measurements is influenced
by BW of fish ([54]; Supplemental Figures S14 and S15). However, the MSE of the GLM
‘fish’ models (those including no ENV or IND covariates) were also occasionally the high-
est, especially in females (Supplemental Figures S14 and S15). In contrast, the BW (vs.
BL) models suggested other ENs including ENV and/or IND covariates were preferred
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(Supplemental Figures S14 and S15). Irrespective of the AICs suggesting the relative impor-
tance of the GLMs including only fish data, the occurrence of large differences in residual
variation in 2018 compared to the baseline years (2013 to 2015; Figures 2 and 3) suggested
the potential influence of drivers other than BW and BL on lake chub in the Ells River and
the potential need for more complex explanatory models [55].

Figure 3. Mean residuals of male endpoints measured at the Upper Ells (A) and Lower Ells (B) loca-
tions; 2013–2015 (gray symbols) are reference years; 2018 is test year; red horizontal dashed and solid
lines show expected ranges of mean residuals in 2018 given the reference data; open symbols suggest
no difference in mean residuals; closed symbols suggest a difference in 2018; ‘Fish’ panes include
models with no environmental or industrial covariates; ‘ENV’ includes environmental covariates
only; IND includes industrial covariates only (with no limits and no penalty factors); ENV+IND with
no limits and no penalty factors (NL-NPF); ENV+IND with no limits and penalty factors (NL-PF);
ENV+IND with upper limits and no penalty factors (UL-NPF); ENV+IND with upper limits and
penalty factors (UL-PF); blue shading of panes shows the most parsimonious models identified by
AIC; yellow shading indicates marginally relevant models selected by AIC.

When only the more complex models with larger sets of initial predictors (i.e., those
including environmental and/or industrial covariates) are considered, among the 12 fish
measurements among sites and sexes, the ENV model was either the best or among the
best explanatory models in 10 and was marginal in an 11th (LW of males at the Upper site;
Figures 2 and 3; Supplemental Figures S16 and S17). In the 12th endpoint, BW of females at
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the Upper site, the AIC of the ENV model was the highest suggesting this model performed
the worst (Supplemental Figure S16). Although not always the minimum AIC, the IND
models were also commonly selected. For example, the IND models were identified by AIC
for GW, LW, and BW of males at the Upper site, BW of females at the Lower site, and GW of
females at the Upper site (Supplemental Figures S16 and S17). Other ENs combining ENV
and IND variables were also selected by AIC. For example, the UL-PF, NL-PF, and UL-NPF
ENV+IND ENs (and the IND model) were among the best for the LW of males at the Upper
site (Supplemental Figure S17). Similarly, the UL-PF and the NL-PF ENV+IND models
for BW of females at the Upper site had the lowest AIC value (Supplemental Figure S16).
The UL-PF and NL-PF models were also selected at the Lower site for the LW of males
(Supplemental Figure S17) and GW and LW of females (Supplemental Figure S16). In
contrast, the AICs for GW of males and females at the Upper site suggested all models
performed similarly (Figures 2 and 3; Supplemental Figures S16 and S17). Finally, although
not included in the best set of models, some were deemed marginally relevant by the
AIC criteria [68], including several at the Lower site: IND for BW of males, NL-NPF
for LW of females and GW of males, and UL-NPF for GW of females and LW of males
(Supplemental Figures S16 and S17).

These results suggest some of these more complex models may include variables
affecting fish health and may contribute to the declines in GW of females at the Lower
site exceeding the CES compared to the Upper site (Supplemental Table S6). The selected
models suggest the importance of including environmental covariates, but also the potential
for industrial variables to explain the residual variation in the health indicators of lake
chub to better focus on stressors of interest [54,55]. However, the analyses also suggested
penalty factors may also be useful and are deserving of additional attention.

Although the remainder of this study focuses on the models selected by AIC, the
selection of multiple models explaining the reducible error also suggests other criteria may
be necessary for implementing the approach used here. For example, while the UL-PF
models may represent the most realistic scenario examined in this study, there may be
advantages to using the IND models by accounting for the greater likelihood of false
positives, including defining testable hypotheses and follow-up studies [72]. Including
covariates within the initial analyses and using multiple model forms may also accelerate
the development of focused studies to quickly hone the monitoring approaches by further
establishing testable and specific hypotheses [73,74].

3.2.2. Are Large Differences Apparent When Environmental and Industrial Covariates Are
Included?

All estimates of fish health measured in lake chub captured in the Ells River in 2018
were within the ranges expected from baseline fish collected at each site from 2013 to 2015
when environmental and industrial covariates were included in the models, except LW
of males from the Upper site (e.g., Figures 2 and 3). Although the tails of the estimated
95% CIs of the mean annual residuals were occasionally beyond the estimated outer
tolerance limits, such as GW of females at the Upper site (Figure 2), these results typically
suggest the environmental and industrial factors may be driving some of the variability
in the measurements of fish health. In contrast, the mean residual difference in the LW
of males from the Upper site was never inside the range of mean residuals irrespective
of the covariates and the constraints used (e.g., Figure 3), suggesting that a correlated or
causal factor was not included in the set of selectable variables. Despite this result, the
correspondence of the GLM and regression diagnostic approach for evaluating sites over
time and the common detection of spatial differences (e.g., Figure 3) suggests the utility
of this approach. The correspondence between the GLMs and the regression diagnostics
further supports the utility of the latter to identify large differences and prompting follow-
up analyses or future field studies [72]. Additionally, the approach also highlights the
potential sensitivity of these techniques to small influences and the likely utility of the
temporal analyses irrespective of the results of spatial comparisons [39]. As discussed
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below, the site-specific approach also identified the potential influence of industrial activity
at both locations, further supporting site-specific analyses.

3.2.3. Variables Selected by Elastic Net Regularized Regression
Influence of Environmental Variation

The results presented already suggest the potential influence of environmental and
industrial covariates on the health indicators of lake chub captured in the Ells River, but
which variables were selected also provides additional information on the potential drivers
of ecological conditions. Among the ENs selected by AIC, all except the GW of males
from the Upper site selected additional covariates compared to the independent variables
included in the OLS and GLMs (Tables 1 and 2). This result suggests the GW of males at
the Upper site is the least sensitive endpoint measured in this study. In contrast, the GW of
males at the Lower site suggested the influence of recent AT (Table 2).

Table 1. Environmental and industrial covariates selected by EN for gonad weight (GW), liver
wight (LW), and body weight (BW) of female fish captured at the Upper and Lower Ells locations;
NL = no limits; UL = upper limits; NPF = no penalty factors; PF = penalty factors; bolded white text
with saturated fill color in cells comprise best-fit judged by AIC values; red = positive coefficients;
blue = negative coefficients; marginal models indicated as unsaturated fill and black text.

Site Measure ENV IND
ENV+IND

NL-NPF
ENV+IND

NL-PF
ENV+IND

UL-NPF
ENV+IND

UL-PF

Upper

GW

AT1-
∼
x

MRM-CB-
FW

P2-75 P2-75 P2-75 P2-75

AT3-
∼
x SBM-PG-FW

MRM-CB-
FW

P3-RD
MRM-CB-

FW
P3-RD

SD3-x MRM-DN-F SBM-PG-FW JD MRM-NG-F JD
BW BW BW BW BW BW

LW

AT1-
∼
x

MRM-CB-
FW P3-RD P2-75 P2-75 P2-75

AT3-
∼
x HM-PG-FW SP-TP P3-RD P3-RD P3-RD

JD SBM-PG-FW MRM-CB-
FW SP-MP SP-MP SP-MP

SD3-x SML-PC-F HM-PG-FW SP-TP SP-TP SP-TP

BW MRM-NG-F SBM-PG-FW AT1-
∼
x

MRM-CB-
FW AT1-

∼
x

SAN-CB-P MRM-NG-F JD MRM-DN-
FW JD

SBM-PG-P SAN-CB-P SD4-x MRM-NG-F SD4-x
BW JD BW JD BW

BW BW

BW

JD HM-PG-FW P3-RD P3-RD P3-RD P3-RD

SD1-
∼
x MRM-OS-M P4-RD SP-MP P4-RD SP-MP

SD2-x SBM-OS-M SP-MP SP-TP SP-MP SP-TP

SD2-
∼
x SAN-CB-P SBM-OS-M BL SD3-

∼
x BL

SD3-x SBM-PG-P SAN-CB-P SD4-x
SD3-

∼
x BL SBM-PG-P BL

SD4-x SD4-x
BL BL

GW

AT2-x SBM-PC-SP P1-99 P1-99 P1-99 P1-99

AT2-
∼
x SBM-CB-FW P2-99 P2-99 P2-99 P2-99

SD3-
∼
x KM-DN-FW SBM-PC-SP SAN-SC-F SBM-PC-SP SAN-SC-F

WT1-
∼
x SBM-PG-F SBM-CB-FW AT2-x SAN-NG-F AT2-x

BW SAN-NG-F SBM-PG-F BW SAN-SC-F BW
SML-NG-F SAN-NG-F SBM-PC-P
SAN-SC-F SML-NG-F BW
SBM-PC-P SAN-SC-F
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Table 1. Cont.

Site Measure ENV IND
ENV+IND

NL-NPF
ENV+IND

NL-PF
ENV+IND

UL-NPF
ENV+IND

UL-PF

Lower

SBM-CB-P SBM-PC-P
BW WT1-

∼
x

BW

LW

AT1-x SBM-CB-FW SBM-PC-F MRM-CB-P SML-PG-FW MRM-CB-P

AT1-
∼
x SBM-PC-F SML-PG-F AT1-x SBM-PC-F AT1-x

AT2-x JPM-NG-F SBM-NG-F AT1-
∼
x HM-DN-F AT1-

∼
x

AT2-
∼
x SBM-NG-F SML-OS-M AT2-x JPM-NG-F AT2-x

WT1-x SML-OS-M JPM-CB-P AT2-
∼
x JPM-CB-P AT2-

∼
x

BW JPM-CB-P MRM-CB-P BW MRM-CB-P BW
MRM-CB-P AT2-x AT1-x
SML-PG-P AT2-

∼
x AT1-

∼
x

BW BW BW

BW

AT1-x HM-DN-FW WS1-x WS1-x WS1-x WS1-x
AT3-x KM-DN-F WS2-x WS2-x WS2-x WS2-x
AT4-x HM-OS-M WS2-

∼
x WS2-

∼
x WS2-

∼
x WS2-

∼
x

AT4-
∼
x SFB-ST WS3-x WS3-x WS3-x WS3-x

BL BL WS3-
∼
x WS3-

∼
x WS3-

∼
x WS3-

∼
x

WS4-
∼
x WS4-

∼
x WS4-

∼
x WS4-

∼
x

WG3-99 WG3-99 WG3-99 WG3-99
WG4-75 WG4-75 WG4-75 WG4-75

BL BL BL BL

Among the ENV+IND ENs, the environmental or mixture variables tended to be se-
lected more often than the industrial variables (Tables 1 and 2). Across sites, the parameters
selected for males and females at the Lower site tended to be more consistent compared
to the Upper site (Tables 1 and 2). For example, AT was commonly selected in models for
both males and females at the Lower site (Tables 1 and 2), but AT was rarely identified by
EN at the Upper site (Table 2).

Among the models of GW and LW for males at the Lower site, only median ATs from
the shorter periods were selected: August 4 to the start of fishing (AT1-

∼
x) and 60 days

before the collection of fish (AT2-
∼
x; Table 2). Although not definitive, there are also some

data from female lake chub, suggesting that shorter periods of air temperature are more
closely associated with GW and LW and BW with longer periods (Table 2) matching with
the environmental biology of fishes [59].

Other spatial patterns among the selected parameters for the metrics of fish health
were also identified. For example, estimates of stream discharge (SD) were more commonly
selected at the Upper location compared to the Lower site (Tables 1 and 2). When metrics
of SD were selected, greater SD tended to reduce fish health measurements, but the single
SD measurement selected at the Lower site (female GW; SD3-

∼
x; Tables 1 and 2), had a

positive effect. Although constrained by the late deployment of probes in 2015, the potential
influence of water temperature (WT1-x) was identified by EN in GW and LW of females
captured at the Lower site, and, similar to AT and consistent with expectations, higher
WT was associated with increases in fish metrics (e.g., Table 1). Although not strictly an
‘environmental’ covariate, the later collection of fish estimated by the Julian Day (JD) was
also associated with increases in some metrics of fish health, including GW and LW of
females and BW of males at the Upper site (Tables 1 and 2).
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Table 2. Environmental and industrial covariates selected by EN for gonad weight (GW), liver
wight (LW), and body weight (BW) of male fish captured at the Upper and Lower Ells locations;
NL = no limits; UL = upper limits; NPF = no penalty factors; PF = penalty factors; bolded white text
with saturated fill color in cells comprise best-fit judged by AIC values; red = positive coefficients;
blue = negative coefficients; marginal models indicated as unsaturated fill and black text.

Site Measure ENV IND
ENV+IND

NL-NPF
ENV+IND

NL-PF
ENV+IND

UL-NPF
ENV+IND

UL-PF

Upper

GW BW BW BW BW BW BW

LW

AT1-
∼
x SML-PC-F SP-RD SP-RD SP-RD SP-RD

JD MRM-OS-M SML-PC-F SD1-x SD1-x SD1-x
SD1-x SML-PC-P SML-PC-P SD4-

∼
x SD4-

∼
x SD4-

∼
x

SD4-
∼
x SML-SC-P SML-SC-P BW BW BW

BW BW SD1-x
SD4-

∼
x

BW

BW

AT1-
∼
x SML-PC-F SP-RD SP-RD SP-RD SP-RD

JD MRM-OS-M SML-PC-F JD MRM-NG-F JD
SD1-x SML-PC-P MRM-OS-M SD1-x MRM-OS-M SD1-x

BL BL JD SD1-
∼
x JD SD4-x

SD1-x SD2-x SD1-x SD4-
∼
x

SD2-x SD4-
∼
x SD2-x BL

SD4-x BL SD4-x
SD4-

∼
x SD4-

∼
x

BL BL

Lower

GW

AT1-
∼
x SBM-CB-FW SBM-CB-FW P2-RD P2-RD P2-RD

AT2-
∼
x SBM-DN-FW SBM-DN-FW MRM-DN-F MRM-CB-

FW AT2-
∼
x

BW MRM-DN-F SBM-PG-FW HM-PG-F SBM-DN-FW WT1-
∼
x

HM-PG-F MRM-DN-F AT2-
∼
x JPM-NG-F BW

JPM-NG-F JPM-NG-F BW SAN-NG-F
SAN-NG-F BW KM-SC-F

BW AT2-
∼
x

BW

LW

AT1-
∼
x SBM-CB-FW SBM-CB-FW AT1-

∼
x SBM-PC-F AT1-

∼
x

AT2-
∼
x SBM-PC-F SBM-PC-F AT2-

∼
x JPM-NG-F AT2-

∼
x

BW JPM-NG-F JPM-NG-F BW JPM-CB-P BW

SAN-NG-F SAN-NG-F AT2-
∼
x

KM-SC-F JPM-CB-P BW
JPM-CB-P AT2-

∼
x

BW BW

BW

AT3-x KM-DN-F WS2-
∼
x WS2-

∼
x WS2-

∼
x WS2-

∼
x

BL SFB-ST WS4-
∼
x WS4-

∼
x WS4-

∼
x WS4-

∼
x

BL P4-x P4-x P4-x P4-x
WG2-75 WG2-75 WG2-75 WG2-75
WG3-99 WG3-99 WG3-99 WG3-99
P3-TP P3-TP P3-TP P3-TP
P4-TP P4-TP P4-TP P4-TP

KM-DN-F AT3-x KM-DN-F AT3-x
AT3-x BL AT3-x BL

BL BL

This study identified potential drivers of annual variability often reflecting known or
expected relationships with environmental predictors. For example, sampling of fish later
in the year, estimated by Julian Day, tended to increase fish measurements, e.g., [59] as did
warmer air and water temperatures [54,55]. In contrast, greater SD tended to reduce the fish
health metrics, especially at the Upper site, and may be associated with greater energetic
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costs of higher flows [54,55]. Although similar results are also reported elsewhere [24,39,56],
relationships with natural drivers suggest that effects in fish may occur in the future via
expected changes in thermal and hydrological regimes in northeastern Alberta [70,71]
and are explored below (See Section 3.2.4). Overall, the analyses reinforce the importance
of accounting for background drivers of variability in temporal analyses of fish health
(e.g., [53,54]) and how identifying these potential relationships improves on previous
approaches [20]. There may, however, also be a role of temperature in greater emissions
from some sources, such as tailings ponds and mine faces [75,76], suggesting that other
studies may be needed to further improve the monitoring results.

Influence of Industrial Activity

The potential influence of industrial activity on the health indicators of lake chub
residing in the Ells River were also identified in this study. The industrial influences were
suggested in the IND models, including factors such as HM-DN-FW, HM-OS-M, MRM-
DN-F, and SBM-PG-FW (Table 1) and others in the ENV+IND models (Tables 1 and 2). For
example, the best fit ENV+IND models for GW of females at the Upper site suggested
a negative influence of MRM-CB-FW and MRM-NG-F (Table 1). In contrast, female GW
at the Lower site may be negatively influenced by SAN-SC-F (Table 1). Many of these
potential relationships occurred only in the NPF ENs, but the potential effects of CB-P
at MRM and SC-F at SAN were, respectively, identified in PF models for LW and GW of
females at the Lower location (Table 2). Some of the results from the marginal AIC models,
such as a negative influence of SBM-PC-F on LW of males (Table 2; UL-NPF) and females
(Table 1; NL-NPF, UL-NPF, and IND) at the Lower site and increases in LW of females with
greater SBM-NG-F at the Lower site (Table 2; NL-NPF) were also identified.

Although no estimates of relative land disturbance were selected as a relevant factor
in any of the ENs (Tables 1 and 2), the selected models did identify the potential roles of
multiple types of industrial practices, including flaring and wasting of materials (FW), the
combustion of fuels (F), and the production of substances, such as crude bitumen (CB-P)
and synthetic crude (SC-P), on indicators of fish health at both locations (Tables 1 and 2).
The results also highlight the potential influence of mechanically generated dust, com-
bustion products, and other normal operations along with operational inefficiencies or
upsets on ecosystem conditions either suggested, supported, or shown in other studies,
e.g., [35,77,78].

While there could be effects of local stressors on fish in the Ells, such as road traffic
related to production at HM, all of the industrial facilities identified in the best-fit ENs
are physically outside the Ells basin. The potential influence of extrabasin facilities on
both sites in the Ells watershed, coupled with no effects of land disturbance, suggests that
the primary exposure mechanism is via atmospheric emissions and subsequent deposi-
tion of CoCs [20,32,34–38,47,78–80]. These results reinforce findings elsewhere, e.g., [32],
including additional analyses suggesting the potential influence of the MRM on benthic
invertebrates in the Ells basin [39] and data suggest CoCs are depositing throughout the
watershed [37,41,81–83]. Contaminants of concern may be accumulating in headwater
lakes in the Ells basin and may originate from oil sands industrial activity [20,41], but
additional work on sediments in lakes throughout the region, such as lake SE22 in the
Steepbank basin [32,41,47] also suggests that some reference sites may be influenced by
industrial activity, albeit to a lesser degree than the downstream locations. Whereas some
studies may still detect differences over time despite the potential influence of atmospheric
emissions and deposition from industrial development in reference areas [51], accounting
for industrial activity at all locations may enhance the sensitivity of monitoring to the
stressors of interest. However, industrial emissions may also be associated with enrichment
effects [39,84,85], and more work is likely required to determine the veracity of these poten-
tially meaningful associations. The implications of associations between aquatic ecosystems
and industrial emissions for future monitoring in Canada’s OSR e.g., [32], such as the need
to incorporate the results of deposition models [82,86], more detailed records of industrial
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performance, and/or investigations of more specific effect pathways into an integrated
design [87] also likely requires additional work.

The analyses also highlight the likely importance of proximity of facilities to exposure
locations. Among facilities identified by AIC in the IND and ENV+IND models, the
influence of SML (14 km), MRM (16 km), and SBM (30 km) on fish captured at the Upper site
was suggested in the AIC-selected models (Tables 1 and 2). At the Lower site, the influence
of HM (5 km), MRM (6 km), SAN (7 km), KM (28 km), and SFB (36 km) were identified
in the AIC-selected models (Tables 1 and 2; Supplemental Table S3). The identification of
potential relationships between industrial features and indicators of fish health suggests
study sites adjacent to industrial facilities may also be influenced by activity from multiple,
and potentially remote, operations. However, while the amount of active land disturbance
during the study period was low and was not associated with annual variability of fish
health metrics, study sites adjacent to facilities may also influenced by activities at those
local operations. The influence of land disturbance was apparent in other studies on benthic
invertebrates [39] and may be partially responsible for slight temperature differences
between sites in 2013 compared to the other study years (Supplemental Figure S18). Greater
local land disturbance in watersheds may also lead to a greater influence of atmospherically
deposited materials [64], suggesting the potential importance of activity levels or types of
land disturbances and the potential need for additional analyses.

Additionally, some results also suggest that background environmental effects may
mask industrial influences. The positive effects of AT and negative effects of MRM-CB-FW
were concurrently identified in the LW of females from the Lower site (Table 1). This pattern
also occurs with the additional ‘mixture’ variables, and its implications are discussed in the
next section.

Influence of ‘Mixture’ Variables

Assessing the impacts of atmospheric deposition on the health of biota living in
streams is also affected by the transport mechanisms linking industrial facilities and ex-
posure environments. For example, the emission and deposition rates of materials from
some sources may also be affected by climatic conditions, including wind speeds and
precipitation [32,75,76], while these same processes may also affect their post-deposition
mobilization and transport to waterbodies [88]. To account for this possibility, additional
‘mixture’ variables (along with an expanded list of environmental covariates), such as
spring and summer precipitation, was also included in this analysis and the ENV+IND
models. Among the ENs, these additional environmental covariates were commonly
selected (Tables 1 and 2). Among the spring precipitation metrics, SP-MP, SP-TP, and
SP-RD were only identified in EN models for lake chub captured at the Upper location
(Tables 1 and 2). More specifically, increases in SP-MP and SP-TP were associated with
reduced BW in females at the Upper site (Table 1), while greater rain days in the spring
(SP-RD) may have reduced the LW of males from the same site (Table 2). In contrast, neither
mean spring air temperature (SP-MT) nor mean spring discharge (SP-SD) were selected by
any of the ENV+IND ENs (Tables 1 and 2).

Summer wind metrics and summer precipitation were also included as selectable
variables in the ENV+IND ENs. The potential effects of summer wind, such as upper
percentiles (e.g., WS3-99) and measures of central tendency over various periods, were
not included in the best-fit models (Tables 1 and 2). However, both positive and negative
effects of greater summer rain were identified in the metrics of fish health. Among females,
increases in the P1-99 and P2-99 variables were associated with greater GW of females from
the Lower site (Table 1). Increases in the number of rain days from June 1 to August 31 (P3-
RD) was associated with increases in GW and BW of females at the Upper site (Table 1), but
greater P2-75 was associated with smaller GW of females from the same location (Table 1).

These results suggest the potential influence of summer and spring precipitation on
lake chub in the Ells basin supporting earlier hypotheses [64,88]. Although a plausible
mechanism linking emissions from industrial facilities and effects on stream biota, the
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parsing of metrics such as precipitation to ‘natural’ or ‘anthropogenic’ causes is not clear.
For example, while CoCs deposited on the landscape may migrate to surface water bodies,
greater flows in rivers may also increase the natural scouring of the substrate [14,88–92],
and, similar to potential interactions of some anthropogenic activities and AT mentioned
already, the co-occurrence of drivers may obscure, mask, or counteract some industrial
influences [14,88,89,91]. However, the results in this study also suggest that inputs of
industrial CoCs in the spring, while they may be difficult to detect, may be more apparent
at sites higher in watersheds.

The results also have further implications for how industrial activity may affect the
environment. Along with pulses of CoCs during expected freshet, which are often difficult
to disentangle from the accompanying in-stream scouring effects [64,89,93], additional
complexity may also be present. The results of this study further suggest effects on fish
metrics, such as GW of females at the Upper site (Table 1), may be associated with the
magnitude (e.g., P2-75) and frequency (e.g., P3-RD) of rain events over slightly differing
periods. Furthermore, the selection of precipitation metrics without industrial metrics (e.g.,
female BW at the Upper site; Table 1) and with industrial predictors showing opposite
effects (GW of Lower females; Table 1), such as P1-99, P2-99, and SAN-SC-F suggest the
potential for antagonistic effects of multiple factors, including mediating effects of addi-
tional transport mechanics, such as landscape retention [88]. However, there is also some
evidence in GW of females from the Upper site suggesting synergistic associations between
large precipitation events (P2-75) and metrics of industrial activity (MRM-CB-FW; Table 1).
Although the effects of precipitation on stream chemistry are well-established [64,94], the
data here and elsewhere [55] further suggest potential associations with the status of biolog-
ical indicators [39]. However, as mentioned already, similar interactions between industrial
activity and environmental variables may also extend to air temperature [75,76].

3.2.4. Predicting Exceedances of Critical Effect Sizes
Potential Effects of Industrial Activity

The final portion of this study used the effect sizes of industrial predictors across the
ENs to estimate the degree of change in those industrial predictors which may already be
associated with effects on fish equal to or exceeding the standard CES used in studies of fish
health indicators [69]. When predicting the potential existing effects of industrial activity by
setting initial conditions to zero, increases in the mass of mined oil sands at MRM (MRM-
OS-M) may currently be associated with declines in BW of males at the Upper site ranging
from ~12% to 17%. Similarly, increases in the volume of crude bitumen produced at MRM
(MRM-CB-P) may be associated with declines in LW in females from the Lower site ranging
from 26% to 38% (Figure 4). In contrast, increases in BW of males at the Upper site ranging
from ~41 to 73% may also be associated with greater SML-PC-F (Figure 4). Other effects
exceeding the CES may also be occasionally or commonly observed in response to other
industrial features, such as a potential influence of SFB-ST on BW of females from the Lower
site, declines in GW of females at the Upper site with greater MRM-CB-FW, and increases in
LW of males at the Upper site with greater SML-PC-P (Figure 4). In contrast, other effects on
fish among the models estimating the onset of industrial activity are typically below the CES,
including HM-DN-FW and SBM-PG-FW (Supplemental Figure S19). Although challenging
to confirm with existing data, these results suggest the possibility of the existing influence
of industrial development on the physiology of sentinel fish beyond the relevant CESs, but
also highlight potential counteracting effects of activities and/or climatic conditions.
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Figure 4. Effect size plots from zero industrial activity (horizontal blue lines) with greater or lesser
industrial activities; purple lines = females; dark gray = males; solid lines = gonad weight; dashed
lines = liver weight; dotted lines = body weight; L = Lower site; U = Upper site; D = decrease in
fish measurement; I = increase in fish measurement; black lines = mean daily industrial metrics
from 2010-2020; blue dotes = June, July, August, September; Red lines = mean summer values for
industrial endpoints.

Change from the 2013 to 2015 and 2018 mean activity levels of various industrial
facilities can also be estimated (Figure 5). When estimates from the mean values of indus-
trial parameters from the summers of 2013–2015 and 2018 are calculated, many models
suggested no differences would be expected in fish endpoints with known changes in
industrial factors, even when those features are part of the best performing models selected
by AIC, such as increases in LW in males from the Upper site in response to changes in
SML-SC-P and decreases in GW of females at the Upper site with greater MRM-NG-F
(Supplemental Figure S20) or with decreases in female LW at the Lower site with greater
MRM-CB-P (Figure 5). Although activity levels at some facilities would need to increase
by large degrees to affect fish relative to their status in 2013–2018, such as 53 to 373 times
greater oil sand production at HM (HM-OS-M; Supplemental Figure S20), other current
activity levels may require smaller increases in activity to potentially affect fish, such as
1.01 times the level of SML-PC-F in 2010 and 6.7 times the level of SML-PC-P in 2018 to
increase BW of males at the Upper site (Figure 5) and may occur in the future. However,
other predictions also suggest some exceedances may have already occurred. For example,
the models predicted changes in BW and LW of males captured at the Upper site in 2019
(and BW in 2020) may have been larger than the CES compared to fish captured earlier in
response to the estimated effect of SML-PC-F calculated using the AIC-selected IND model
(Figure 5).
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Figure 5. Effect size plots from mean (horizontal blue lines) with greater or lesser industrial activities;
purple lines = females; dark gray = males; solid lines = gonad weight; dashed lines = liver weight;
dotted lines = body weight; L = Lower site; U = Upper site; D = decrease in fish measurement;
I = increase in fish measurement; black lines = monthly industrial values from 2010–2020;
blue dotes = June, July, August, September; Red lines = mean summer values for industrial endpoints.

Predicting the impacts of industrial facilities is a goal of the Oil Sands Monitoring
program [5]. Although the initial and ongoing influence of industrial development has
been demonstrated in some chemical indicators [35,41,47], research in flowing waters
has not been performed using undisturbed baseline data, although some potential im-
pacts of industrial development have been identified despite this [50,51]. Although ad-
ditional data suggest catch rates of lake chub in the Ells basin are increasing over time
(Supplemental Figure S21), the analyses here suggest that some impacts of industrial devel-
opment may be present and may be identified without measured pre-disturbance baselines.
These analyses may also be used elsewhere to further simulate pre-disturbance baselines
and expected ranges of fish health indicators in the absence of some or all industrial facilities.

Potential Effects of Future Changes in Air Temperature and Stream Discharge

Although industrial impacts may already be present or may occur in the future with
changes in activity at the local facilities, physical conditions in water bodies also affects
the health status of fish populations, e.g., [95]. Future changes in both air temperature and
stream discharge are projected in northern Alberta and these drivers may affect fish [70,71].
When potential changes in summer stream discharge and summer air temperature are
used to project future changes in fish health, some effects approaching or exceeding the
CESs for GW, LW, and BW may occur in lake chub residing in the Ells River. For example,
differences exceeding the CESs may occur in LW and BW of females captured at the Lower
site with increases in mean air temperature exceeding ~2 to 3 ◦C when estimated using the
ENV models (Figure 6). Increases approaching 25% are also predicted for GW of female
lake chub captured at the Lower site with mean increases of 4 ◦C in AT, but could be
reduced with concurrent and progressively larger declines in SD (Figure 6). Potential
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effects exceeding the 25% CES for LW of females at the Lower site are also predicted in
the UL-PF and NL-PF models if the mean AT increases by ~4 ◦C (Figure 6). Increases in
LW of females at the Upper site and BW of males at the Lower site are also suggested with
increases in temperature and/or declines in SD if the ENV models are correct (Figure 6).
Similar to the current observations and the results of other studies showing potential
responses to warming occurring over decades [41,96], these results suggest background
environmental variables are necessary to account for the effects climate change on fish
health measurements, especially in long-term monitoring programs [72]. However, as
mentioned already, there may also be consequential relationships between greater air
temperature and industrial emissions [75,76] or indirect effects of industry embedded in
stream discharge measurements, including less mobilization of CoCs from the landscape.

Figure 6. Potential effects of projected future changes in mean air temperature (MT; 1 to 4 ◦C; vertical
scale) and stream discharge (SD; −5% to −20%) in Alberta on male and female lake chub captured in
the Ells River basin, 2013–2015 and 2018 only among the best-fit models selected by AIC.

3.3. Challenges with the Analytical Approach

Although these analyses suggest some compelling relationships between natural and
anthropogenic factors and echo other results [20,32,39,97], many uncertainties remain.
First, the magnitude and occurrence of an effect depended on the EN configuration, such
as the inclusion of upper limits and/or PFs and the utility of using an upper limit of
zero is not clear. Although negative impacts of oil sands industrial activity are often
expected and emphasized in reporting [90], some enriching effects of industrial processes
are also possible [39,85]. Additionally, zones of exposure from one facility to another may
be especially challenging to approximate. Whereas a single PF was used for the main
analyses here, additional exploratory analyses used a range (Supplemental Figure S5).
The exploratory simulations of varying the PFs suggest different influences of different
PFs on the MSE of selected models (Supplemental Figure S5). For example, some suggest
PFs which remove all industrial features have the lowest MSE (e.g., female Lower LW),
whereas some suggest the opposite (e.g., female Lower GW), and others suggest some
other mid-point is optimal (e.g., male Lower GW).

Other uncertainties also remain. Although additional covariates account for some
variability in fish endpoints, some residual variation remains suggesting additional factors
may be influencing the health measurements of fish. Additionally, some proxies, such as air
temperatures from Mildred Lake, may not precisely or accurately describe the conditions
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affecting study sites in the Ells basin, e.g., [31]. Although identifying natural influences
may be used to isolate the impacts of industrial or other anthropogenic drivers [54,55],
these analyses are also retrospective and limited to data recorded for parallel purposes.
Consequently, any of the established relationships may be causal, and while correlations
are relevant for an adaptive monitoring program [72], their explicitness and directness
cannot be established with the existing retrospective and exploratory analyses; the results
of this study cannot be used to prove the occurrence of industrial impacts on fish in the
OSR but may be used to determine the necessity of future monitoring and importantly may
direct its form.

3.4. Future Work

The results of this study suggest several patterns that may be relevant to managers,
scientists, and or others. A potentially relevant observation in this study was the sensitivity
of fish BW to both environmental and industrial covariates (e.g., Figures 2 and 3), echoing
other work [39,55]. Among the fish health endpoints examined here, BW can be measured
non-lethally [98] and can be used to identify the effects of human activity [99]. These
results suggest studies could couple any lethal collections done every 3–4 years with more
frequent non-lethal collections of adults to rapidly augment a dataset. Additional data
from other species or lake chub from other sites sampled in the Ells River may also be
available [8,14,56], but would require techniques suitable for random effects.

In addition to the predictions made using the data from 2010 to 2020, future industrial
scheduling may be used to design programs. The Joslyn North project was acquired by
Canadian Natural in 2018 and has been incorporated into the mine planning for Hori-
zon [58]. Other changes in operations are also either planned or underway, such as the
Mildred Lake expansion in the MacKay basin [100] and the replacement of the coke-fueled
boilers at Suncor [101].

Finally, the analyses suggest some potential impacts on lake chub in the Ells River
may already be present, diminishing the relevance of identifying differences over time.
The potential for existing impacts at the Ells locations, the challenges of comparisons to
a spatial reference (although there is some evidence suggesting the GW of females are
commonly smaller at the Lower location relative to the upstream site), and the known
issues of observational studies [102] suggest manipulative experiments, such as stream-side
mesocosms [103] or other analytical approaches, such as structural equation modeling [104]
or the more specific use of test and training data may be required to more clearly establish
the influence of industrial activity.

4. Conclusions

Oil sands industrial development influences the environment. This study examined
health indicators of lake chub captured in the Ells River between 2013 and 2018 and found
differences at downstream sites compared to upstream reference locations. The study also
identified the potential influence of environmental and industrial variables at both of the
Upper and Lower locations. Overall, the analyses suggest environmental and industrial
covariates may explain some of the residual variation in fish health metrics. These results
suggest these environmental and industrial covariates may be required in future monitoring
studies in the OSR to account for background climate signals and to identify potential
industrial influence in the absence of pre-disturbance baselines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/environments9060073/s1, Supplemental Table S1: Environmen-
tal covariates; WT = water temperature; AT = air temperature; SD = stream discharge; P = pre-
cipitation; WS = wind speed; WG = wind gusts; x = mean;

∼
x = median; values of environmental

covariates by site shown in Supplemental Figures S1–S3; Supplemental Table S2 Industrial vari-
able names and codes; Supplemental Table S3 Distances from oil sands project boundaries to
fish sampling locations; arranged by distance from Lower Ells; Supplemental Table S4 Female
Lake Chub metrics (mean ± SD(n)); * denote significant difference at Lower site compared to
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Upper site (p < 0.05).; Supplemental Table S5 Male Lake Chub metrics (mean ± SD(n)); * denote
significant difference at Lower site compared to Upper site (p < 0.05).; Supplemental Table S6
p-values for OLS and GLM spatial comparisons (Lower Ells vs. Upper Ells) of male and female
lake chub collected in the Ells River in 2013–2015, and 2018; Int = intercept; yellow highlighting
= slope with p-value < 0.05; red highlighting = intercept with p-value < 0.05; Supplemental Ta-
ble S7 p-values for OLS temporal comparisons of male and female lake chub collected in the Ells
River in 2013–2015, and 2018; Int = intercept; yellow highlighting = slope with p-value < 0.05;
red highlighting = intercept with p-value < 0.05; Supplemental Table S8 p-values for GLM tempo-
ral comparisons of male and female lake chub collected in the Ells River in 2013–2015, and 2018;
Int = intercept; yellow highlighting = slope with p-value < 0.05; red highlighting = intercept with
p-value < 0.05; Supplemental Table S9 GLM p-values for grouped Reference years (2013–2015) com-
pared to 2018; yellow highlighting = slope with p-value < 0.05; red highlighting = intercept with
p-value < 0.05; Supplemental Figure S1 Relative land disturbance (%) in watershed above Upper
site (grey), above the Lower site (red) and area of lower watershed below the Upper location (blue)
over time.; Supplemental Figure S2 Plots of environmental covariates for the Upper and Lower Ells
locations; SD values are from the Upper Location; WT = water temperature; AT = air temperature;
SD = stream discharge; Supplemental Figure S3 Industrial covariates; values within each pane are
the 2013–2015 + 2018 (monthly) means; values standardized to 0–1; Supplemental Figure S4 Extra
covariates included in ENV+IND models (and land disturbance), which may capture some industrial
influence; Supplemental Figure S5 Mean squared error for 1000 Elastic net model runs using penalty
factors based on distance in km divided by 1 to 1000 of Upper and Lower sites to industrial facilities;
Supplemental Figure S6 Mean residual gonad weight (GW), liver weight (LW), and body weight (BW)
of females (with central 95% confidence interval) at the Upper and Lower Ells locations; residual
GW, LW, and BW at the Lower site calculated using models estimated using fish from the Upper
location; red lines showing expected range of mean residuals at the Lower site given the sample
size for the Lower site; Supplemental Figure S7 Mean residual gonad weight (GW), liver weight
(LW), and body weight (BW) of males (with central 95% confidence interval) at the Upper and Lower
Ells locations; residual GW, LW, and BW at the Lower site calculated using models estimated using
fish from the Upper location; red lines showing expected range of mean residuals at the Lower
site given the sample size for the Lower site; Supplemental Figure S8 Gonad weight, liver weight,
and body weight of female lake chub relative to anatomical covariates at the Lower and Upper
Ells locations in 2013–2015, 2018; Supplemental Figure S9 Gonad weight, liver weight, and body
weight of male lake chub relative to anatomical covariates at the Lower and Upper Ells locations by
year 2013:2015, 2018; Supplemental Figure S10 Histograms of female lake chub gonad weight, liver
weight, and body weight; Supplemental Figure S11 Histograms of male lake chub gonad weight,
liver weight, and body weight; Supplemental Figure S12 Gonad weight, liver weight, and body
weight of female lake chub relative to anatomical covariates in 2013, 2014, 2015, and 2018 by location
(Lower and Upper Ells) Supplemental Figure S13 Gonad weight, liver weight, and body weight of
male lake chub relative to anatomical covariates in 2013, 2014, 2015, and 2018 by location (Lower and
Upper Ells); Supplemental Figure S14 Akaike’s Information Criterion (AIC)s, Mean Squared Errors
(MSE), and Deviance Ratios (DR) for female lake chub including fish GLM; Supplemental Figure S15
Akaike’s Information Criterion (AIC)s, Mean Squared Errors (MSE), and Deviance Ratios (DR) for
male lake chub including fish GLM; Supplemental Figure S16 AICs, MSEs, and deviance ratios for
model scenarios among female lake chub at the Upper and Lower locations; Supplemental Figure
S17 Akaike’s Information Criterion (AIC)s, Mean Squared Errors (MSE), and Deviance Ratios (DR)
for model scenarios among male lake chub at the Upper and Lower locations; Supplemental Figure
S18 Mean water temperature per day in 2013–2015 and 2018 at the Upper and Lower Ells fishing
locations; diagonal black line is 1:1 line; Supplemental Figure S19 Effect Size plots from zero (horizon-
tal blue lines) with greater or lesser industrial activities; purple lines = females; dark gray = males;
solid = gonad weight; dashed = liver weight; dotted = body weight; L = Lower site; U = Upper site;
D = decrease in fish measurement; I = increase in fish measurement; black lines = monthly industrial
values from 2010 to 2020; blue dotes = June, July, August, September; red lines = mean summer values
for industrial endpoints; Supplemental Figure S20 Effect Size plots from mean 2013–2015 and 2018
activity levels (horizontal blue lines) with greater or lesser industrial activities; purple lines = females;
dark gray = males; solid = gonad weight; dashed = liver weight; dotted = body weight; L = Lower
site; U = Upper site; D = decrease in fish measurement; I = increase in fish measurement; black lines =
monthly industrial values from 2010–2020; blue dotes = June, July, August, September; red lines =
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mean summer values for industrial endpoints; Supplemental Figure S21 Catch-per-unit-effort (CPUE;
fish per 100 s of electrofishing) for sites in the Ells Basin (data obtained from the Alberta Fish and
Wildlife Management Information System; FWMIS; https://www.alberta.ca/access-fwmis-data.aspx,
accessed on 7 March 2022).
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Additional results and discussion describing the results of traditional Environmental
Effects Monitoring study analyses, including ANOVAs and ANCOVAs for exposed fish
(Lower Ells) relative to the reference (Upper Ells) fish.
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Abstract: The Sierra Nevada region has experienced substantial wildfire impacts. Uncertainty
pertaining to fire risk may be reduced by better understanding how air temperature (Ta: ◦C) influences
wildfire ignitions independently of other factors. We linked lightning-ignited wildfires to Ta patterns
across the region from 1992 to 2015 and compared monthly high- and low-air-temperature patterns
between ignition and non-ignition locations at local scales (4 km). Regionally, more ignitions occurred
in springs with a greater number of high-Ta months and fewer cool Ta months (analyzed separately)
and in summers with fewer cool Ta months. Locally, summer ignition locations experienced warmer
summer months on a normalized scale than non-ignition locations. The probability of a wildfire
ignition was positively associated with a greater number of high-Ta months during and prior to fire
seasons. Regionally, springs with a greater number of high-Ta months had more wildfire ignitions.
Locally, as individual locations in the region experienced a greater number of high-Ta months
preceding and including the fire season, they exhibited substantial increases in spring (+1446%),
summer (+365%), and fall (+248%) ignitions. Thus, the frequent occurrence of high-Ta months is
positively associated with lightning-ignited wildfires in the Sierra Nevada region.

Keywords: fire risk; forest; climate; California; Nevada

1. Introduction

Measures of wildfire activity, including the number of large wildfires, burned area extent,
and wildfire severity, have been increasing in many locations across the western United States
since the 1980s [1–4]. These increases have largely been attributed to the interactive effects of
climate warming and the legacy of human wildfire and forest management [1,3]. The average
annual burned area in the western US increased at a rate of 355 km2 per year from 1984
to 2011 [5], and wildfires have caused considerable damage to ecosystems, human health,
and human communities in the wildland–urban interface [6,7]. As conditions supporting
wildfire—and especially very large wildfires—increase across the western US as a result of
climate change, wildfire affected areas are expected to also increase considerably within
this region [8–11]. The Sierra Nevada region of California and Nevada is one of the largest
wildfire-affected areas of the western US and has experienced a greater than six-fold
increase in average annual burned area since 1972 [2,12]. Yet, while wildfire increases are
anticipated, fire risk assessments remain difficult to quantify across the diverse causative
agents—human actions, climates, landscape and topographic conditions, and over- and
understory characteristics of ecosystems—that comprise the Sierra Nevada region [13–16].

Many wildfire ignitions in the western US—including the Sierra Nevada region—are
initiated by lightning strikes (e.g., natural wildfire ignitions; Short [17]). The fire risk associ-
ated with lightning-ignited wildfires is influenced by multiple factors. Short-term weather
patterns influence the frequency and timing of lightning strikes, and lightning strikes vary
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geographically and topographically [18–21]. At seasonal to interannual timescales, precipi-
tation and temperature influence the ignition probability component of fire risk through
their interactive effects on understory vegetation and fuel moisture [19,22], and wildfire has
been found to coincide with dry periods and lightning strikes [23]. In the Sierra Nevada
region, vegetation composition and structure vary at fine spatial scales, and over interan-
nual to decadal time periods [24,25]. Thus, the components of natural fire risk—lightning
occurrence and ignition probability—may often exhibit considerable spatial and temporal
variation, and their interaction may in some instances enhance risk and in other instances
lessen it [19]. Considerable research suggests that climate change will increase lightning
occurrence and ignition probability [8,26,27], although Finney et al. [28] suggest that global
lightning density may actually decline in coming decades. Increasing temperatures and
earlier spring snowmelt are already lengthening and intensifying ecosystem drying and
wildfire activity periods [29,30], and the associated occurrence of extreme climate events,
including drought and heat waves, have been linked to regional patterns of wildfire extent
and severity [31,32]. These studies point to a future where enhanced lightning occurrence
and ignition probability could lead to enhanced fire risk across both space and time.

Wildfire characteristics—ignition, extent, and severity, for example—are enhanced by hot
and dry conditions [20] but through different pathways. Once hot and dry conditions have
been realized, wildfire ignition is strongly influenced by weather patterns and the favorability
of ignition agents [19,27], wildfire severity is strongly influenced by topography, vegetation
composition, and vegetation structural characteristics [33,34], and wildfire extent is strongly
influenced by wind speed, topography, and the occurrence of precipitation [22,33,35]. Com-
plex and interactive processes such as these may be simplified—if not fully resolved—by
compartmentalizing their components independently. To this end, we propose that air tem-
perature (Ta: ◦C) may have utility for quantifying fire risk. Ta is positively associated with
lightning strikes, heat waves, and meteorological drought, such that warmer temperatures
may capture variation in both lightning occurrence and ignition probability [20,26]. Recent
research suggests that properties of extreme events may capture conditions exceeding normal
environmental variation and help to identify changes in fire risk [32]. We therefore postulate
that Ta may indirectly capture ignition probability through its strong negative association
with fuel moisture (indicating enhanced ignition probability; Abatzoglou and Kolden [36],
Flannigan et al. [37]) and through its positive association with dry atmospheric events and
meteorological conditions supporting lightning strikes [20,26]. That is, Ta variation—and
especially the occurrence of high-Ta periods—is associated with the meteorological and en-
vironmental conditions supporting natural wildfire ignition and may be a useful way to
compartmentalize and simplify one component of fire risk.

Although considerable research has linked Ta to lightning strikes and wildfire ignitions,
it is not clear if analyses of Ta can be used to quantify change to fire risk and at what
spatial and temporal scales these changes may be anticipated. If Ta patterns are related to
the probability of wildfire ignition, this determination can help to identify how ignition
probabilities will change in a warming regional climate and indicate locations where
management interventions should be prioritized. In this study, we explored relationships
between Ta change, the properties of high (warm) and low (cool) Ta months, and the
occurrence of lightning-ignited wildfires in the Sierra Nevada region from 1992 to 2015.
During a similar timeframe (1992–2012), this region experienced the most lightning-ignited
wildfires in the contiguous US [38]. The objectives of this research were to: (1) determine
if regional temperature patterns from 1992 to 2015 in the Sierra Nevada region were
related to the number of regional wildfire ignitions in spring, summer, and fall fire seasons;
(2) contrast the frequency of occurrence and magnitude of high- and low-Ta months in
spring, summer, and fall fire seasons between locations that experienced a wildfire ignition
and locations that did not (fire ignition vs. non-ignition locations); and (3) explore to what
degree the frequency of high- and low-Ta months prior to spring, summer, and fall fire
seasons are related to ignition probability. Our analyses explore Ta–ignition relationships
averaged across the region and for individual locations through time. Our analyses also
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evaluate the magnitude and occurrence of high- and low-Ta months within individual
wildfire seasons and also evaluate high- and low-Ta months in preceding seasons, which
may indicate sustained conditions (or lack thereof) that amplify wildfire ignition probability.
Because wildfires have been strongly tied to hot and dry conditions in this region [14,32], we
hypothesized that regional analyses focusing on high Ta would show a greater association
with wildfire ignition compared to analyses of low Ta. Similarly, we hypothesized that the
magnitude of high-Ta months would have a greater association with wildfire ignitions (due
to their general indication of drier conditions and favorable weather for lightning strikes)
compared to the frequency of high-Ta months.

2. Site Description

The Sierra Nevada region encompasses an area of 64,544 km2 ([39]; Figure 1a). This
ecologically diverse region is comprised of forest, woodland, and shrubland vegetation,
with a plant species composition that is influenced by the surrounding ecoregions: the
Cascade–Sierra Mountains to the north, the Great Basin to the east, the Mojave Desert to
the south, and the Central Valley to the west [24]. The Sierra Nevada has a Mediterranean
climate, with the majority of annual precipitation (∼500–2030 mm total) falling between fall
and spring, and with dry summers [24]. Average daily temperatures vary across seasons,
topography, and elevation (∼100–3900 m; United States Forest Service [24], PRISM Climate
Group [40]). Vegetation composition also varies across topography and elevation, often
at relatively fine spatial scales [14,41]. Frequent, small fires that maintained ecosystem
health and structure in this region were reduced due to human fire suppression in the 20th
century, which resulted in increasing fuels and vegetation density and contributed to the
occurrence of large wildfires over the past 40 years [42]. Vegetation mortality and die-offs
are also increasing across the region due to the interplay of and altered fire regime, drought,
and pathogen outbreaks, which portend to an uncertain future for the region’s ecosystems
and the services they provide [21,32].

Figure 1. Study area map of the Sierra Nevada region, including the number of fire ignitions in each
4 km grid cell from 1992 to 2015 (Panel a), and a barplot illustrating the timeseries of wildfire ignitions
in spring, summer, and fall from 1992 to 2015 (Panel b). The black line in Panel (b) illustrates total
wildfire ignitions in each year.
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3. Methods

3.1. Weather Estimates and Spatial Wildfire Data

We obtained daily maximum (Tamax) and minimum (Tamin) air temperature estimates
at 4 km resolution from 1990 to 2016 from the Parameter-elevation Regressions on In-
dependent Slopes Model (PRISM; PRISM Climate Group [40]), which has been used in
other, recent wildfire-focused research [43,44]. We clipped PRISM raster files to the Sierra
Nevada region (4034 total 4 km resolution cells). Weather estimates, including PRISM, may
experience autocorrelation due to both naturally occurring patterns as well as interpola-
tion procedures, and we found a moderate degree of autocorrelation of Tamax and Tamin
for our study area (Figure S1). Fortin and Dale [45] recommend the use of small blocks
when autocorrelation is present, and we minimized potential autocorrelation effects by
analyzing Ta in each grid cell independently of surrounding cells. We conducted spatial
data harmonization using QGIS [46], and we compiled and analyzed all data using R [47].

We obtained point-based wildfire ignition data for the Sierra Nevada region from
1992 to 2015 from the Fire Program Analysis Fire-Occurrence Database [17]. Our analyses
included only lightning-ignited wildfires and included fire size classes from >0.10 to
≥2023.43 ha (Class B to Class G), the characteristics of which are provided in the attribute
data of the Fire Program Analysis Fire-Occurrence Database [17,48]. We did not include
fires ≤ 0.10 ha (Class A; 7897 of 10,788 total fires; 73%), which may occur following lightning
strikes even when ignition agents are unfavorable for wildfire spread. These small fires
may include ignitions with greater wildfire potential that were quickly contained and
suppressed, and there is therefore some uncertainty in whether the fires removed from our
analysis were of lower or higher risk.

We assigned point-based wildfire occurrence data to the centroid of the nearest 4 km
cell. In our analyses, we compared ignition and non-ignition cells, evaluated seasonally
at discrete time steps. For example, a single 4 km cell was designated to be an ignition
location in any season when it experienced a wildfire ignition (summer 2010, for example)
and was designated a non-ignition location in seasons when it did not. We evaluated 3 fire
seasons (spring: March–May; summer: June–August; fall: September–November). Only
10 ignitions during winter met the Class B to Class G criteria of this study, and we therefore
did not analyze winter ignitions.

3.2. High- and Low-Temperature Months

We used a peak-over-threshold approach from Coelho et al. [49] to calculate the
occurrence and properties of high- and low-Ta months. This is a nonstationary approach
that is used to identify anomalous and extreme values at the monthly time step from the
distribution of daily values, across a moving time window. This technique is especially
useful for identifying unique features in climatic data that have a positive or negative
trend in their mean or variance through time (due to climate change, for example). Using
this technique, analysis can focus on the properties of daily values occurring above a
time-varying threshold, or on variation in the threshold values (see Petrie et al. [50] for
an example using temperature simulations and a focus on statistically extreme events).
For each 4 km cell in each month, our analyses focused on determining the temperature
threshold value designating a high- or low-Ta month. On average, 20–30% of all months
in our analyses were high- or low-Ta months. Our reported high- and low-Ta months are
therefore best understood as the occurrence and magnitude of the top 20–30% of warm or
cool months, instead of extreme events in the top 5% of all values.

To determine the occurrence and threshold magnitude of high-Ta months, we first
calculated a 3-year floating mean of daily Tamax values in each month. For example, the
3-year floating mean for a single cell in August 1995 was the mean of 93 daily Tamax values
from August, 1994, 1995, and 1996. In this analysis, we found that window length had
minimal influence on monthly floating mean values and chose a 3-year window length to
maximize the number of observations. After calculating the 3-year floating mean, we then
determined the daily Tamax values in the analysis month (August, 1995, in this example)
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that were greater than the 3-year floating mean value and ranked these daily values from
the highest daily value to the lowest. A month with ≥20 daily Tamax values in this category
therefore experienced at least 1 day with a Tamax value that exceeded the top 5% of days
and was therefore a statistical extreme event for daily values. The observed daily Tamax
value ranked sequentially below the top 5% of values (e.g., 1–2 values below the highest
daily value) was the threshold value, which designated the boundary air temperature
between extreme and non-extreme daily values. Although this threshold value indicates a
month with an extreme Ta day, we clarify that this is best viewed as a month located in the
top 27% of observed daily temperature values. We calculated high- and low-Ta months
separately. To determine the occurrence of low-Ta months, we used the same procedure
but evaluated daily values of Tamin below the 3-year floating mean.

Because the distribution of average Ta differed among the cells in our study region,
we normalized the magnitude of high- and low-Ta months as an anomaly ((observed–long-
term mean)/standard deviation of long-term mean). To allow for analysis of these anomaly
values across cells with significant and insignificant trends in Ta magnitude, we detrended
the magnitude of high and low Ta for cells that experienced a statistically significant linear
trend in the threshold value over the 1991–2015 study period (at least 7 high- or low-Ta
months observed; p < 0.05).

3.3. Analysis

Our regional analyses explored relationships between temperatures and wildfire
ignitions from 1991 to 2015 and relationships between the frequency of occurrence and
the magnitude of high- and low-Ta months and the occurrence of wildfire ignitions. Our
analyses of individual locations (e.g., 4 km cells) focused on contrasting the frequency of
occurrence and the magnitude of high- and low-Ta months between ignition locations and
non-ignition locations in spring, summer, and fall fire seasons. We determined significant
relationships between the number of high- and low-Ta months and wildfire ignitions using
linear correlations (R2 coefficient of determination; p < 0.05), and we determined significant
differences in the average magnitude of high- and low-Ta months between ignition and
non-ignition locations using ANOVA and Tukey’s honest significant differences (p < 0.05).

We determined to what degree the occurrence and magnitude of high- and low-Ta
months in seasons preceding the fire season were related to differences between ignition and
non-ignition locations. To determine if ignition locations experienced a differing magnitude
of high- or low-Ta months compared to non-ignition locations, we contrasted the magnitude
of high- and low-Ta months between ignition and non-ignition locations in the seasons
preceding each fire season, as well as in spring, summer, and fall fire seasons. To determine
if ignition locations experienced a greater frequency of high- and low-Ta months compared
to non-ignition locations, we counted the total number of high- or low-Ta months (separate
analyses for high versus low) in seasons preceding each fire season. Our counts included
the 3 seasons prior to each fire season (0 months minimum, 9 months maximum) as well
as the 3 prior seasons up to and including spring, summer, and fall fire seasons (0 months
minimum, 12 months maximum). We interpreted a positive relationship between the
proportion of locations experiencing a wildfire ignition and a higher number of Ta months
(either high or low) as evidence that Ta and wildfire ignitions were positively associated.
To evaluate these relationships, we grouped all locations experiencing the same number
of high- or low-Ta months into discrete categories (0 months, 1 month, 2 months, etc.)
and calculated the ignition proportion of each category independently from the number
of locations experiencing a wildfire ignition divided by the number not experiencing an
ignition. We required at least 8 locations in each category, and we combined observations
when necessary (for example, combining 9 and 10 month locations to reach the required
number of 8 observations, resulting in a 9–10 category).
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4. Results

4.1. Regional Change from 1992 to 2015

The number of wildfire ignitions was lower in the later third of our 1992–2015 study
period (2008–2015) compared to the first two-thirds (1992–2007), and summer and fall
accounted for 87.8% of the total ignitions (Figure 1b, Table 1b). The magnitude of the high-
Ta months was generally lower in the first 8 years of our 24-year study period (1992–1999)
compared to the last 16 years, but significant differences between study period intervals
were inconsistent and were strongly influenced by a large number of observations (Table 1a,
Figure 2). The magnitude of high-Ta months was generally greater in the last 8 years of
our study period (2008–2015) compared to the first 16 years (ANOVA and Tukey’s honest
significant differences, p < 0.05; Table 1b). We observed a slight decline in the frequency
of high-Ta months in spring and summer in the later third of our 1992–2015 study period
(2008–2015) compared to the first two-thirds (1992–2007; Table 1a).

Table 1. Seasonal air temperature (Ta: ◦C) differences between 8-year time periods from 1992 to 2015
in the Sierra Nevada region. Ta differences were analyzed for high-Ta months (Section a) and locations
with high-Ta months that experienced a concurrent wildfire ignition (Section b). The number of
observations in each category is indicated in the table, and significance is indicated by differing letters
(determined at p < 0.05).

(a) High-Ta months.

Time Period Spring Summer Fall Winter

# obs. (◦C) # obs. (◦C) # obs. (◦C) # obs. (◦C)

1992:1999 29,541 22.8 c 33,485 31.6 b 27,878 24.9 c 20,147 17.1 b

2000:2007 32,926 24.1 a 29,990 31.1 c 29,625 25.6 b 19,751 17.2 a

2008:2015 18,027 23.7 b 19,826 32.5 a 27,667 28.1 a 20,828 16.7 c

(b) High-Ta months, fire ignition locations.

Time period Spring Summer Fall Winter

# obs. (◦C) # obs. (◦C) # obs. (◦C) # obs. (◦C)

1992:1999 83 25.6 b 318 31.9 ab 89 28.5 ab 5 21.4
2000:2007 23 27.6 a 213 31.2 b 84 27.4 b 5 18.4
2008:2015 15 29.3 a 175 32.1 a 58 29.9 a 0 -

Figure 2. Timeseries of the magnitude of high-air-temperature months (Ta: ◦C) across the Sierra
Nevada region from 1992 to 2015, and the magnitude of high-Ta months for fire ignition locations in
the month when ignition occurred. Lines were loess smoothed for illustration.
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4.2. The Magnitude of High and Low Temperatures and Wildfire Ignitions

Across the Sierra Nevada region, there was no relationship between the normalized
magnitude of high- or low-Ta months and the percentage of locations that experienced
a wildfire ignition in the spring, summer, or fall fire seasons (Figures 3a and S2a). At
local scales, the ignition locations in summer experienced (on a normalized scale) warmer
high-Ta summer months (Figure 4b), and the ignition locations in fall experienced less cool
low-Ta fall months (Figure S3c). The differences in the magnitude of high and low Ta in
months preceding the fire seasons were inconclusive (Figures 3 and S2).

4.3. The Frequency of High- and Low-Temperature Months and Wildfire Ignitions

Regionally, a greater number of ignitions occurred in springs that experienced a
greater proportion of locations experiencing one or more high-Ta months (0.003% ignition
percentage at a proportion of 0.0% of locations; 0.4% ignition percentage at 100% of locations;
Figure 3b), a lower proportion of the locations experiencing one or more low-Ta months
(0.0% ignition percentage at a proportion of 100% of locations; 0.4% ignition percentage
at 0.0% of locations; Figure S2b), and in summers with a lower proportion of locations
experiencing one or more low-Ta months (1.3% ignition percentage at a proportion of 100%
of locations; 3.0% ignition percentage at 0.0% of locations; Figure S2b). At local scales, the
ignition locations in spring, summer, and fall experienced a greater number of high-Ta
months, both in the fire season and in the previous seasons (Figure 5). In spring and
summer, the ignition locations generally experienced fewer low-Ta months (Figure S4).

Figure 3. Relationships between the average anomaly of high-air-temperature months (anomaly =
observed − long-term mean/standard deviation of long-term mean) and the percentage of locations in
the Sierra Nevada region experiencing a wildfire ignition in spring, summer, and fall seasons (Panel a),
and relationships between the percentage of locations in the Sierra Nevada region experiencing a
high-air-temperature month and the percentage of locations in the Sierra Nevada region experiencing
a wildfire ignition in spring, summer, and fall seasons (Panel b). Significant relationships are shown
in each panel (R2 coefficient of determination; p < 0.05).
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Figure 4. Boxplots illustrating differences in the anomaly of high-air-temperature months (anomaly
= observed − long-term mean/standard deviation of long-term mean) between ignition (red) and
non-ignition (gray) locations in the 3 seasons previous to and including the spring (Panel a), summer
(Panel b), and fall (Panel c) fire seasons. Significant differences and the direction of difference are
indicated for each boxplot pair (one-tailed t-tests; p < 0.05).

The number of high-Ta months occurring prior to and during fire seasons was posi-
tively correlated to the percentage of locations experiencing a wildfire ignition (Figure 6).
In spring, wildfire ignitions occurred in ∼0.08% of the locations that did not experience a
high-Ta month, and increased to ∼0.5% for the locations experiencing 5–6 of these months
in the prior three seasons (of nine possible; Figure 6c), and to ∼0.9% of the locations
experiencing 7–8 of these months in the prior 3 seasons plus the spring fire season (of
12 possible; Figure 6b). In summer, wildfire ignitions occurred in ∼1.2% of the locations
that did not experience a high-Ta month, and increased to ∼4.2% for locations experiencing
7–8 of these months in the prior three seasons (of nine possible; Figure 6c), and to ∼4.4%
for locations experiencing 9–10 of these months in the prior 3 seasons plus the summer
fire season (of 12 possible; Figure 6d). In fall, wildfire ignitions occurred in ∼0.7% of the
locations that did not experience a high-Ta month, and increased to ∼1.5% for the locations
experiencing seven of these months in the prior three seasons (of nine possible), and to
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∼1.7% for locations experiencing 8 of these months in the prior 3 seasons plus the fall fire
season (of 12 possible; Figure 6e,f). We were not able to assess ignition increases for the
three preceding seasons in spring due to too few observations (Figure 6a). We did not
observe significant relationships between the number of low-Ta months and the percentage
of locations experiencing a wildfire ignition (not shown).

Figure 5. Pie charts illustrating differences in the proportion of ignition and non-ignition locations
experiencing a high-air-temperature month in the 3 seasons previous to and including the spring
(Panel a), summer (Panel b), and fall (Panel c) fire seasons. The average proportion of non-ignition
locations experiencing a high-Ta month in each season is illustrated in gray, and the proportional
increase in ignition locations experiencing a high-Ta month in each season is shown in red.
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Figure 6. Fire ignition probability for locations experiencing differing numbers of high-air-temperature
months during and prior to the fire season, summarized across 1992–2015. Panels (a,c,e) illustrate fire
ignition probability in the spring (Panel a), summer (Panel c), and fall (Panel e) fire season in response to
high-Ta month occurrence during the 3 prior seasons (3 seasons, 9 months maximum). Panels (b,d,f)
illustrate fire ignition probability in the spring (Panel b), summer (Panel d), and fall (Panel f) fire season
in response to high-Ta month occurrence during the 3 prior seasons and also the fire season (4 seasons,
12 months maximum). In cases where too few events were observed in a single category, these events
were merged with the next lowest category. Because multiple observations were combined in some
categories, linear correlations were developed for category number instead of observation number (Panel
(a) example: 0 observations = category 0; 5–6 observations = category 4).

5. Discussion

The slightly increasing magnitude of Ta across the Sierra Nevada region did not corre-
spond to increased wildfire ignitions, which have been declining across the western US
in recent decades [51]. In refutation of our first hypothesis, we did not find associations
between the magnitude of high- and/or low-Ta months with wildfire ignitions at the re-
gional scale. That is, the Sierra Nevada region as a whole did not experience variation in
wildfire ignitions that can be tied to regionally warmer or cooler months. At the 4 km local
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scale, however, ignition locations in summer had relatively warmer high-Ta months com-
pared to non-ignition locations, and ignition locations in fall had less cool low-Ta months.
This corroborates other work linking high air temperatures to the dry environmental and
high-pressure systems that support lightning strikes and wildfire ignition [20,52].

In refutation of our second hypothesis, we found that the frequency of high- and
low-Ta months was closely associated with wildfire ignitions. Regionally, more ignitions
occurred in springs with a greater number of high and fewer cool Ta months, and in
summers with fewer cool Ta months. Locally, ignition locations consistently experienced a
greater number of high-Ta months in fire seasons and in the three preceding seasons. As
the number of high-Ta months increased from 0 to a maximum of ∼7–10, we found a 1446%
increase in spring ignitions, a 365% increase in summer ignitions, and a 248% increase in
fall ignitions. This considerable increase in wildfire ignition probability suggests that fire
risk in the Sierra Nevada region is enhanced by the more frequent occurrence of warm
temperatures over multiple months. In summer and fall, an observation of high-Ta months
prior to the fire season suggested ignition percentages that were similar to percentages
observed in analyses that included observations during the fire season (summer: 4.2% prior,
4.4% prior + fire season; fall: 1.5%, 1.7%). This suggests that the variation in the probability
of fire ignitions in summer and fall may in many cases be strongly influenced by the legacy
effects of prior seasons.

Spring ignitions were notably emergent under a greater frequency of warm condi-
tions and were enhanced by additional high-Ta months in spring (0.5% prior, 0.9% prior
+ fire season). Spring ignition locations experienced a greater number of high-Ta months
and fewer low-Ta months in the spring and preceding winter, which corroborates previ-
ous research linking winter weather to spring temperatures, moisture patterns, and fire
activity [29,30]. A higher Ta also decreases snowpack, resulting in more lightning strikes
reaching surface fuels [53]. Although our analyses of spring ignitions were limited by
relatively low ignition occurrence, our results suggest that consistent movement toward
warmer and less cool winter conditions—and not change to episodic periods of the very
coldest or warmest winter temperatures—may support the emergence of spring wildfire
ignitions in this region.

5.1. How Broadly Is Air Temperature Associated with Wildfire?

Ta patterns have been previously linked to wildfire ignition [54,55], and our results
show that observation of the frequency of high-Ta months has utility for the assessment of
fire risk. It remains unclear, however, if Ta variation can help to understand wildfire extent
and severity, which are underrepresented components of wildfire that differ from more
commonly focused on components, such as fire risk and fire hazard [19]. Ta variation may
capture conditions shaping wildfire severity and extent due to the influence of weather
on wildfire activity [56] and climate on vegetation characteristics [27,57]. Understory fuel
moisture influences both wildfire ignition and wildfire spread, and periods of low humidity
associated with higher temperatures can increase dry fuel loads [37]. Thus, wildfire extent
and severity may in some cases be associated with Ta, but these components are influenced
more directly by over- and understory vegetation characteristics, such as tree stand health
and density [34,36]. Additionally, Ta variation may have indirect effects on wildfire through
other physical processes, including the potential for relatively cool and wet periods to
increase wildfire severity by supporting the growth of understory vegetation [41]. Thus,
although our results point to one pathway by which high temperatures may be associated
with an increase in wildfire ignitions, there are many factors and mechanisms shaping
ignitions and other wildfire components, especially over multiyear and decadal timescales.

We note a few caveats associated with the datasets we used in our study that should
be considered when evaluating our reported Ta–ignition relationships. First, the accuracy
of wildfire ignition coordinates may differ from the actual ignition location [58]. Second,
spatial datasets such as PRISM provide an estimate of Ta patterns and do not fully resolve
Ta in heterogeneous mountain landscapes [59]. Third, our analyses did not account for
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multiple ignitions in the same month or season in a single location, for the effect of previous
fires on future ignitions [60], and our study area includes locations with limited causative
agents (such as low vegetation cover) that may limit ignition.

5.2. Managing for Wildfire

Climate change is increasing the occurrence and extent of large wildfires, and over
4 million hectares of burned area in the western US has been linked to Ta-associated
increases in vapor-pressure deficit in recent decades [43]. The frequency and magnitude
of high-Ta months will likely increase throughout the western US in coming decades [50].
When vapor-pressure deficit is high, sustained high Ta enables the drying of fuels and
may be associated with weeks to months of severe fire weather, and these conditions may
often be clustered spatially [23,37]. In our analyses, we used a nonstationary method
to calculate high- and low-Ta months, which minimizes the effect of changing mean
temperatures through time [49], and we detrended their magnitude when appropriate. It
follows that the methodology we employed could provide consistent indication of wildfire
ignition probability in a warmer future climate, but we caution that climate change may
alter some or many of the physical processes that influence wildfire in ways that do not
have a contemporary analog. It is not yet fully clear if the associations between Ta and
wildfire ignition that we observed over a 24-year period in the Sierra Nevada region will
be consistent in a changing climate and to what degree they may be extended to other
semiarid regions that differ in regional climate, topography, and ecosystem characteristics.

The use of Ta in wildfire research is bolstered by the variable’s accessibility and
predictability, and relationships between Ta and wildfire ignitions can provide practical
utility for fire season planning. Specifically, consistent observations of high monthly
temperatures preceding spring, summer, and fall fire seasons indicate elevated wildfire
ignition probability for locations in the Sierra Nevada region. Future work could improve
these results by determining to what degree spatial clustering of high Ta may indicate higher
ignition probabilities (see Podschwit and Cullen [23] for a similar focus over very broad
spatial areas), although the determination of natural versus artificial spatial autocorrelation
across topographically complex areas may complicate this determination. We recommend
that the findings of the present study can help land managers efficiently deploy actions
that minimize the potential for wildfire ignitions and spread, including vegetation thinning
and using natural fires to reduce fuels [61,62]. Specifically, locations that are regularly
experiencing high-Ta months and also have high vegetation density and/or high understory
fuels should be prioritized for thinning and fuel reduction treatments, especially when these
locations are experiencing abnormal high summer temperatures. Locations experiencing
an increase in high-Ta months and/or a decline in low-Ta months in spring may be more
likely to experience an emergence of spring wildfire ignitions. That is, better anticipation of
ignitions can be achieved through analyses of Ta and can be a useful tool to direct resources
that help to protect regional ecosystems.

6. Conclusions

In this work, we sought to improve the understanding and anticipation of fire risk in
the Sierra Nevada region, USA, by linking wildfire ignitions at regional and local scales to
high and low air temperatures (Ta: ◦C) and the properties of high and low Ta evaluated
at the monthly time step. Regionally, more ignitions occurred in springs with a greater
number of high-Ta months and fewer low-Ta months, and in summers with fewer low-Ta
months. We found that wildfire ignitions were most strongly associated with the frequency
of high-Ta months, and wildfire ignition probability increased substantially when a greater
number of these months occurred both prior to and during the fire season. Summer
ignitions experienced the highest percentage increases (up to 4.4% of the locations) and
were enhanced by both the frequency and the magnitude of high-Ta months in summer.
Spring ignitions became emergent when they experienced an increase in the occurrence of
high-Ta months or a decline in low-Ta months. Thus, the more frequent occurrence of high-
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Ta months is positively associated with lightning-ignited wildfires in the Sierra Nevada
region. Although there remains some uncertainty pertaining to the physical mechanisms
and pathways that underlie these findings, Ta increases have the potential to enhance fire
risk by increasing ignition probability and possibly by increasing lightning occurrence.
The identification of change to the properties of Ta can help to identify locations and time
periods experiencing enhanced fire risk and prioritize management interventions.
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Abstract: Runoff complexity is an important indicator reflecting the sustainability of a watershed
ecosystem. In order to explore the multiscale characteristics of runoff complexity and analyze its
variation and influencing factors in the Yanhe watershed in China during the period 1991–2020, we
established a new analysis method for watershed runoff complexity based on the complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) method for the decomposition of
multiscale characteristics and the refined composite multiscale entropy (RCMSE) method for the
quantification of the system complexity. The results show that runoff and its components all present
multiscale complexity characteristics that are different from random signals, and the intermediate
frequency modes contribute the most to runoff complexity. The runoff complexity of the Yanhe
watershed has decreased gradually since 1991, and 2010 was a turning point of runoff complexity,
when it changed from a decline to an increase, indicating that the ecological sustainability of this
basin has improved since 2010, which was mainly related to the ecological restoration measures of
the Grain for Green Project. This study expands the research perspective for analyzing the variation
characteristics of runoff at the multiscale, and provides a reference for the study of watershed
ecological sustainability and ecological management.

Keywords: runoff complexity; RCMSE; CEEMDAN; Yanhe watershed; multiscale

1. Introduction

A watershed is a topographically delineated area formed under the internal forces
of the earth and modified by external forces and human activities [1]. Watersheds are
hydrological response units, biophysical units, and holistic ecosystems, possessing all the
complexities of land surface systems, thereby making them excellent candidates for the
practice of earth system science [2–4]. The natural flow regime is considered the primary
driving force behind the formation of habitats and distribution, diversity, and abundance
of biota, and it is extremely important for maintaining and sustaining riverine ecosystem
integrity and its biodiversity [5]. Climate change and human activities are the two main
driving factors that affect water cycles and the evolution of water resources. Frequent and
intense human activities, such as afforestation and deforestation, grassland conversion, ur-
banization, and dam construction, determine rainfall redistribution and alter surface runoff,
infiltration, groundwater recharge, instream flow, and evapotranspiration processes [6,7].
Runoff, the key component of the hydrological cycle, is directly or indirectly influenced
by numerous types of positive and negative feedbacks at various scales, such as rainfall,
climate change, human activities, and other surface factors [8,9], so that the runoff of a
watershed is a complex system that is nonlinear, nonstationary, and uncertain [10,11]. Com-
plexity is an essential and core feature of a hydrological system [12]. In-depth exploration
of the inherent complexity of runoff is of theoretical and practical significance for revealing
the instability of hydrological cycle dynamic processes and the self-organization ability of
watershed systems.
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Complex system science provides a valuable reference for complexity research into
runoff systems. Entropy methods derived from information theory are simple algorithms
with high sensitivity, strong robustness against noise, and no assumption of the statistical
characteristics of the data [13,14]. By regarding the watershed system as a living organism,
the concept that ‘life feeds on negative entropy’ has a profound impact on the study of nat-
ural systems [15]. Entropy methods have been widely used in evaluating the complexity of
nonlinear and overall hydrological dynamics [11,16,17]. Sample entropy (SE) [18] quantifies
the degree of regularity of a time series by evaluating the appearance of repetitive patterns,
and has excellent stability and reliability in detecting the randomness and complexity of
runoff [19,20]. Complexity is associated with ‘meaningful structural richness’ [21], but SE
essentially comprises the statistical analysis of regularity, without detecting the nonlinear
characteristics or quantifying the fractal behaviors of signals [22]. Therefore, an increase
in SE is related to an increase in irregularity, but does not necessarily mean an increase in
system complexity.

Costa et al. [23] introduced multiscale entropy (MSE) analysis to quantify the complex-
ity of biological systems in cardiology. MSE takes into account the multiple temporal scales
by the estimation of SE depending on the coarse-graining time series. MSE is based on the
observation that the state of a complex system is far from perfect regularity and complete
randomness [21] and reveals the structure of long-range correlation on multiple scales by
quantifying the multiscale variability of signals [24]. The complexity is usually related to the
ability of life systems to adapt to changing environments, which requires integrated multi-
scale functions. The results of MSE have been proven to be consistent with the ‘complex
loss’ of ill-conditioned systems [21,24–26]. Similarly, the runoff structure in hydrology also
has its own complexity. The more complex the structure, the stronger the self-regulation
and restoration ability, which usually means that the watershed is healthier [17]. In general,
the original complexity of a hydrological system is close to the maximum that can occur
with a long-term evolution of natural conditions, but it may lose its complexity and be-
come an unhealthy watershed system because of human activities, such as soil and water
conservation and construction of water conservancy projects [27,28]. Therefore, MSE is also
applicable to the complexity study of a runoff system for the measurement of multiscale
characteristics of runoff and the system’s adaptability to the environment.

However, since coarse-graining procedures greatly shorten the length of time series,
MSE may produce inaccurate entropy estimates or induce undefined entropy [29]. Com-
posite multiscale entropy (CMSE) [30] was proposed to improve the accuracy of MSE, but it
does not resolve undefined entropy. Wu et al. [29] proposed a refined composite multiscale
entropy (RCMSE) to improve CMSE, which improves the accuracy of entropy estimation
and reduces the probability of generating undefined entropy, making it more suitable for
the analysis of runoff data with a limited sequence length.

Due to the interaction between various dynamic mechanisms, runoff time series
contain various scales of fluctuations and possess complexity of different time scales.
Empirical mode decomposition (EMD) is an adaptive signal decomposition method that
was proposed by Huang et al. [31]. It assumes that the data may have many different
coexisting modes of oscillations in various scales at the same time, and decompose the
original series into these intrinsic modes based on the local characteristic scales of data
themselves; these components are called intrinsic mode functions (IMFs). The complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [32] is an
important improvement on EMD. Compared with most EMD improvement methods,
CEEMDAN effectively solves the mode mixing problem and generates complete and
noise-free reconstruction. Currently, the CEEMDAN method has been widely used in the
signal processing field [33–35], but it has insufficient applications in hydrology. Combining
RCMSE with CEEMDAN, the characteristics of runoff time series can be understood
sufficiently at the micro and macro levels.

The Yanhe watershed is located in the middle of the Loess Plateau in China, which
is a landscape that has been significantly affected by climate change and anthropogenic
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activities [36,37]. There is an urgent need to evaluate the ecosystem sustainability of this
region. The overall aim of this paper was to propose a new research method for watershed
runoff complexity based on RCMSE and CEEMDAN. The mechanism of multiscale runoff
complexity and the variation and influencing factors of complexity in the Yanhe water-
shed over the last 30 years were studied to provide references for the implementation of
ecological conservation and watershed management.

2. Materials and Methods

2.1. Study Area

As a primary tributary of the Yellow River, the Yanhe River has a total length of 286.9 km.
The Yanhe watershed (36◦27′–37◦58′ N, 108◦41′–110◦29′ E) is located in the hinterland of
the Loess Plateau, with a total area of 7687 km2 and an altitude of 491–1787 m, as illustrated
in Figure 1. The Yanhe watershed has a typical loess landform with crisscross ravines,
loose soil, and poor antierosion ability. This region is a semiarid continental climate zone,
with a mean annual precipitation of about 520 mm and a multiyear mean temperature
ranging from 8.8 to 10.2 ◦C. The seasonal distribution of precipitation is quite uneven;
more than 75% occurs between June and September as rainstorms. In the past, due to the
influence of unreasonable anthropogenic activities and natural factors, the ecosystem in
this region was significantly degraded, with a sharp decrease in natural vegetation and
severe soil erosion, resulting in serious impacts on regional sustainable development [36].
Consequently, the Grain for Green Project, which includes a series of ecological construction
policies, has been carried out in this region since 1999 [37].

Figure 1. Basic information map of the Yanhe watershed.

2.2. Data Sources

The data used in this study included the following: (1) daily runoff data for the period
of 1991–2020 were collected from the Ganguyi hydrological station, which is the control
hydrographic station and the hydrological calibration outlet in the research basin with
a control area of 5891 km2, accounting for about 76.6% of the basin area [38,39]. All the
runoff data came from the hydrological yearbook of the Yellow River Basin provided
by the Yellow River Conservancy Commission of the Ministry of Water Resources [40];
(2) digital elevation model (DEM) data with 30 m resolution, obtained from the Geospatial
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Data Cloud [41]; and (3) Yan’an Statistical Yearbook data for 2020, obtained from the Yan’an
Bureau of Statistics [42].

2.3. Methods
2.3.1. Refined Composite Multiscale Entropy

Multiscale entropy is an effective method used to measure the complexity of a time
series and has been applied in many fields successfully [21,23–26], but as the time scale
factor increases, MSE may yield an inaccurate estimation of entropy or induce undefined
entropy. Composite multiscale entropy (CMSE) [30] was proposed to improve the accuracy
of entropy estimation, but CMSE increases the probability of inducing undefined entropy.
In 2014, Wu et al. [29] proposed refined composite multiscale entropy (RCMSE) to improve
MSE and CMSE for the undefined entropy problem of short time series. The RCMSE
algorithm consists of the following three procedures:

(1) For a discrete time series x = {x1, x2, . . . , xN}, after the initial normalization
of the original series, consecutive coarse-graining procedures are performed at differ-
ent scales, and the coarse-grained sequence represents the system dynamics at differ-
ent time scales. For a scale factor τ, the k-th coarse-grained time series is defined as
y(τ)

k =
{

y(τ)k,1 , y(τ)k,2 , . . . , y(τ)k,p

}
, where:

y(τ)k,j =
1
τ ∑jτ+k−1

i=(j−1)τ+k xi, 1 ≤ j ≤ N
τ

, 1 ≤ k ≤ τ. (1)

(2) For all coarse-grained time series of each scale factor τ, the numbers of similar
vector pairs nm+1

k,τ and nm
k,τ are computed, where nm

k,τ represents the total number of m-
dimensional vector pairs from the k-th coarse-grained time series for a scale factor τ for
which the distance between the two vectors is smaller than a predefined tolerance r [18].
Referring to the relevant literature [21], for larger m, both the SE and the coefficient of
variation increase dramatically due to the finite number of data points, and for larger r,
fewer vectors are distinguishable, so we used m = 2 and r = 0.15σ, where σ denotes the
standard deviation (SD) of the original time series, and m and r both remain constant for
all scales.

(3) Let nm+1
k, τ and nm

k, τ represent the mean of nm+1
k,τ and nm

k,τ , respectively, for 1 ≤ k ≤ τ.
At a scale factor τ, the RCMSE value is defined as the logarithm of the ratio of nm+1

k, τ to nm
k, τ ,

which is provided as Equation (2):

RCMSE(x, τ, m, r) = − ln

(
nm+1

k, τ

nm
k, τ

)
(2)

where nm+1
k, τ = 1

τ ∑τ
k=1 nm+1

k,τ and nm
k, τ = 1

τ ∑τ
k=1 nm

k,τ . Equation (2) can be simplified as:

RCMSE(x, τ, m, r) = − ln

(
∑τ

k=1 nm+1
k,τ

∑τ
k=1 nm

k,τ

)
(3)

The RCMSE is used to compare the relative complexity based on the following guide-
lines [21]: (1) If for most scales the entropy measures are higher for one time series than for
another, the former is considered more complex than the latter; (2) a monotonic decrease in
entropy measures indicates that the original signal only contains information at the smaller
scales. Therefore, in the analysis of the complexity of the runoff system, not only the specific
entropy values but also their dependence on scales needs to be considered, such as the
areas under the RCMSE curves and the morphological characteristics of RCMSE curves.

2.3.2. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Huang et al. [31] proposed the empirical mode decomposition (EMD) to decompose
the complex time series into intrinsic mode functions (IMFs). The EMD has great advan-
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tages in dealing with nonstationary and nonlinear signals, but it still has a ‘mode mixing’
problem, which refers to the presence of similar oscillations in different modes or disparate
amplitudes in a mode [43]. Therefore, the ensemble EMD (EEMD) [44] adds the Gaussian
white noise to eliminate the mode mixing in the EMD. However, along with introducing the
Gaussian white noise, the EEMD algorithm cannot completely eliminate Gaussian white
noise after signal reconstruction, and it probably generates a different number of IMFs after
adding different noise. Consequently, the complete ensemble empirical mode decomposi-
tion with adaptive noise (CEEMDAN) [32] was proposed as an improved version of EEMD.
The CEEMDAN adds Gaussian white noise to each stage of the decomposition process, and
each IMF is calculated by averaging the results, obtaining decomposed components with
less noise and more physical meaning [33,34]. The CEEMDAN process proceeds as follows:

(1) Add Gaussian white noise to the original data x(t) to create new time series and
use the EMD method [31] to obtain the first IMF, IMF1, and the first residue, r1.

(2) The following k-th IMF (k ≥ 2) IMFk and residue rk can be obtained by:

IMFk (t) =
1
N ∑N

i=1 E1

(
rk−1(t) + εk−1Ek−1

(
Gi(t)

))
(4)

rk(t) = rk−1(t)− IMFk(t) (5)

where N is the number of ensemble members, that is, the number of different realizations
of white Gaussian noise; Gi is the i-th Gaussian white noise to be added; and εk−1 is the
signal-to-noise ratio between the additional noise and original signal. Define the operator
Ej(·) that produces the jth mode obtained by EMD.

(3) Iterate Step 2 until the obtained residue can no longer be decomposed. The original
sequence can be computed as:

x(t) = ∑K
k=1 IMFk(t) + R(t) (6)

where K is the total number of IMFs, which comprise the characteristics of the original
signal at different time scales, and R is the final residue, which clearly shows the trend in
the original sequence.

The noise standard deviation was set to 0.2, the number of ensemble members N
was 100, and the maximum number of sifting iterations was 500 in this paper, which were
typically used in practice.

3. Results

3.1. Multiscale Complexity Characteristics of Runoff

The RCMSE under scale factors from 1 to 365 d for the daily runoff data during the
period of 1991–2020 for the Ganguyi hydrological station were calculated, as shown in
Figure 2. When τ < 90 d, the entropy measure gradually increased, with an increase in τ
until it reached the maximum among all 365 scales at about τ = 90 d, and it remained stable
when τ ∈ [90, 110] d. Then, it decreased rapidly until τ = 170 d, and there was a sudden
drop near τ = 120 d. When τ ∈ [170, 210] d, it showed a slight increase; in that period, a
minimum point of sudden drop appeared again near τ = 180 d. Entropy then decreased
gradually after τ = 210 d.
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Figure 2. The refined composite multiscale entropy (RCMSE) curve for the daily runoff data during
the period 1991–2020 for the Ganguyi hydrological station in the Yanhe watershed.

To further analyze the runoff at different temporal scales, the CEEMDAN method was
applied to the daily runoff data during the period 1991–2020 for the Ganguyi hydrological
station, and 14 IMFs and 1 residual term (RES) were obtained, as shown in Figure 3. To
find the statistical characteristics of each IMF, the mean periods were calculated, which
were derived by dividing the total number of points by the number of peaks (see Table 1).
The fluctuation characteristics of all IMFs were different, and as the IMF number increased,
both frequency and amplitude reduced. The mean periods of IMF1–IMF4 were lower
than 10 d as high-frequency modes, and most of short-term strong runoff was decomposed
into these IMFs. The mean periods of IMF5–IMF10 were between 10 d and 1 year as the
intermediate-frequency modes. The periods of IMF11–IMF14 were longer than 1 year
as the low-frequency modes, representing the influence of long-term factors. The RES
presented a pattern of slow change around the long-term average, which shows that the
runoff gradually decreased from 1991 to 2009, and the decline was faster after 1994; then it
slowly increased after 2009.

Table 1. Mean periods of intrinsic mode functions (IMFs) for the daily runoff data from 1991 to 2020
for the Ganguyi hydrological station through CEEMDAN.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 IMF14

Mean
Period/d 2.91 3.62 3.59 6.45 12.2 22.69 41.67 89.09 171.22 342.44 576.74 1095.80 2191.60 3652.67

The RCMSE was calculated for all IMFs, as shown in Figure 4. The scales were
from 1 d to 90 d because the entropy measures of the original runoff series reached the
maximum around τ = 90 d (see Figure 2). Figure 4 shows that the high-frequency modes
(IMF1–IMF4) have low entropy values and fluctuations at almost all scales, with low com-
plexity. The entropy values of IMF5–IMF9 gradually increased within a certain range, and
then decreased after reaching the maximum. The RCMSE curves of IMF10–IMF14 gradually
increased under scales 1–90 d due to their large periods and long-range correlations. IMF9
and IMF10 had larger summations of the entropy values over research scales than the
others (see Table 2), and maintained a growth trend over a wide range so that they made
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the greatest contribution to runoff complexity. At small scales, intermediate-frequency
and high-frequency modes are the dominant modes of runoff complexity. The contribu-
tion of low-frequency modes to runoff complexity increased gradually with increasing
temporal scales.

Figure 3. The intrinsic mode functions (IMFs) and residue (RES) for the daily runoff data during the
period 1991–2020 for the Ganguyi hydrological station, through complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN).

Table 2. The summations of the entropy values over the scales 1–90 d of RCMSE (RCMSE∑) of IMFs
of the daily runoff data during the period 1991–2020 for the Ganguyi hydrological station through
CEEMDAN.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 IMF14

RCMSE∑ 6.09 4.23 6.96 8.76 15.18 25.61 38.82 55.38 73.10 72.91 40.67 35.66 40.96 18.40
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Figure 4. RCMSE for IMFs of the daily runoff data during the period 1991–2020 for the Ganguyi
hydrological station through CEEMDAN.

We next tested the hypothesis that due to the complexity of runoff series, they cannot
be generated by uncorrelated random processes. The complexity of the original runoff
series and its IMFs was compared with that of the randomized time series obtained by
shuffling the order of original data points. Because, by construction, both the hydrological
and the shuffled time series had the same mean, variance, and distribution, any differences
in the complexity indexes were caused by differences in the temporal order of the data
points and their correlation properties.

The comparison results for the RCMSE curves of the original series with the average
curves obtained by randomly shuffling 30 times are shown in Figure 5. The RCMSE
curves of the original and shuffled series all have large differences in numerical size and
trend. The RCMSE curves of disordered time series should be expressed as entropy values
monotonically decreasing with scale factors [21], just like those of the shuffled series of
IMF8–IMF14. However, the RCMSE curves of the shuffled series of IMF1–IMF7 showed a
rapid increase in the initial stage, and then decreased gradually, like those of uncorrelated
noise, resulting in a short ‘fake complexity’ phenomenon. This was mainly due to the
seasonal heavy rainfall in the Yanhe watershed, which often leads to an explosion of
runoff, and these extreme values were mainly decomposed into the high-frequency modes
by the CEEMDAN method, leading to a large fluctuation in these IMFs. The shuffling
treatment distributes these extreme values relatively evenly throughout the sequence,
resulting in an increase in entropy at small scales, but in the long run, entropy still conforms
to the characteristics of uncorrelated noise. Moreover, the shuffled series present smoother
RCMSE curves without small fluctuations, while those of the original sequences often
fluctuate with the scale change, such as IMF10 under scales 60–110 d and IMF5 under
scales 1–20 d. The above results show that the original runoff series and IMFs all have
unique and high complexity.
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Figure 5. Comparison of the RCMSE of the original runoff and IMF series with the corresponding
shuffled series.

3.2. Trend Analysis of Runoff Complexity

In order to analyze the temporal evolution of runoff complexity in the Yanhe watershed
over the past 30 years, considering that the mean period of the slowest fluctuation, IMF14,
is about a decade (see Table 1), the RCMSE of the runoff series in sliding windows of 10
years, shifting the window by 1 year, was calculated, and the summations of the entropy
values over the scales 1–90 d were taken as complexity, and the fifth year of each time
period was set to represent the sequence in Figure 6. This shows that the runoff complexity
in the Yanhe watershed presented a downward trend from 1995 to 2010. After 2010, the
runoff complexity changed from a decline to an increase.

Figure 6. The complexity of runoff in the Yanhe watershed, as shown by sliding windows of 10 years,
shifting the window by 1 year.

In order to explore the variation in runoff complexity under different temporal scales,
the complexity of each IMF was calculated through RCMSE curves in sliding windows
of 10 years, shifting the window by 1 year. It should be noted that although the complexity
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performance at different temporal scales has different characteristics in terms of RCMSE
curves, when analyzing the variation in each IMF, the summations of the entropy values
over the same scale range of 1–90 d can be used as a measure of complexity. To make the
results more comparable, we divided the complexity of each sequence by the complexity of
the first 10 years, as shown in Figure 7. It can be seen that the complexity of high-frequency
modes (IMF1–IMF4) and intermediate-frequency modes (IMF5–IMF10) showed a flat or
slightly upward trend before 1997, and gradually decreased from 1997 to 2010. After 2010,
the variations in the complexity of high-frequency modes were relatively flat, while those of
medium-frequency modes gradually increased, similar to the change trend for the original
runoff complexity (see Figure 6). The changes in complexity of the low-frequency modes
(IMF11–IMF14) did not show a uniform and obvious varying regularity, and presented
little correlation with the variation in runoff complexity. Therefore, it can be concluded
that the change in runoff complexity was mainly due to the intermediate-frequency and
high-frequency components, and the influence of low-frequency components was slight.

Figure 7. The complexity of IMFs with sliding windows of 10 years and shifting the window
by 1 year. (a) High-frequency modes (IMF1–IMF4), (b) intermediate-frequency modes (IMF5–IMF10),
(c) low-frequency modes (IMF11–IMF14).

4. Discussion

4.1. Characteristics of Runoff Complexity

In this paper, the watershed system was considered a complex system, assuming the
following: (1) the watershed system has complexity characteristics across multiple temporal
scales, (2) the complexity reflects its ability of adaptation and regulation in changing
environments, and (3) a ‘sick’ watershed will have reduced adaptability and information
carried by output variables. The multiscale entropy method was used to characterize the
complexity of the watershed system, and the complexity characteristics of different scale
components were studied by empirical mode decomposition. The uncertainty characteristic
of runoff had two peak areas within 1 year around the scales of 100 and 210 d, and it reached
the maximum at the 90-day scale, which was probably related to the correlation time and
the period of possible nonlinear oscillations of runoff series. The runoff was decomposed
into 14 IMFs with temporal scales from 3 d to 10 years by CEEMDAN. Each component had
separate physical meanings and complexity characteristics that were completely different
from random signals. The high-frequency IMFs with short periods and large amplitudes
represent short-term fluctuation of runoff, which have the minimum multiscale complexity.
The low-frequency IMFs with long periods and small amplitudes signify the components
of slow variation, which may be mainly affected by atmospheric circulation or celestial
activities. The intermediate-frequency IMFs, especially IMF9 of the half-year scale and
IMF10 of the annual scale, made the greatest contribution to runoff complexity. This also
indicates that the complexity research based on the RCMSE method should refer to not only
the specific numerical size of RCMSE curves, but also the trend changes and the difference
with those of the corresponding random shuffled series.
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4.2. Factors Impacting Runoff Complexity

Runoff variation in the hydrological system is affected by multiple factors. Climate
change and human activities are two main driving factors that affect water cycles and the
evolution of runoff in a watershed [17]. Studies have shown that meteorological factors have
affected the runoff complexity of the Yellow River Basin, and precipitation has the greatest
impact, followed by evaporation and temperature [17,45]. However, the literature and
actual meteorological data do not indicate that meteorological factors underwent abrupt
changes around 2010, which was the turning point of runoff complexity (see Figure 6).
Therefore, meteorological factors may affect runoff complexity to a certain extent, but are
not the main factors.

Human activities in the Yanhe watershed mainly include the Grain for Green Project
and urbanization. The impacts of the Grain for Green Project on watershed runoff can
be explained based on two aspects. On the one hand, since 1999, a series of ecological
construction projects have been carried out in this area. Research shows that the Yanhe
watershed has had increases in areas of woodland and grassland and significant decreases in
the amount of soil and water loss, and the quality and service function of the ecosystem have
improved [36]. Following the ecosystem undergoing a growth period, the improvement
effect on runoff complexity may have lagged behind, so the runoff complexity changed
from a decline to an increase after 2010. On the other hand, the Grain for Green Project had
two phases: 2000–2010 and 2010–2020. In the early stage of the project, rapid progress of
returning farmland to forest and grassland was carried out with a lack of scientific planning
and demonstration, resulting in low vegetation survival rate and damaged plots [46,47],
which may lead to further reduction of runoff complexity. Based on in-depth field research
and scientific planning, a series of improvement policies of the Grain for Green Project
were issued, such as the ‘Notice on Improving the Policy of Grain for Green Project from
the State Council’ [48], so that these ecological managements in the latter period may
have significantly improved the ecological sustainability of the watershed. The annual
afforestation area of Yan’an City is shown in Figure 8, which shows that large-range
disorderly afforestation in this area has improved significantly since 2004. Moreover,
with the increase in the range of afforestation, runoff ecological status is not necessarily
improved. Studies have reported that the growth and development of a large number of
artificial vegetations have led to an increase in evapotranspiration and a decrease in surface
water resources in the Loess Plateau [49]. The complexity of runoff is a comprehensive
variable reflecting the ecological status of the basin, which is expected to be an important
reference index for ecological sustainability. In addition, Yan’an City has undergone
accelerated urbanization in recent years, which may also have affected the runoff complexity
to some extent.

Figure 8. The annual afforestation area of Yan’an City in the period 1991–2020.
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5. Conclusions

Complexity has always been the focus and difficulty of watershed system science
research, which is closely related to the sustainability of a watershed. Regarding the
watershed system as a complex system with multiscale characteristics, in this paper, we
established a complexity analysis framework for watershed runoff based on CEEMDAN
for the decomposition of multiscale characteristics and RCMSE for the quantification of
system complexity. The results show that the runoff and each temporal-scale component
present completely different complexity characteristics exhibited in the numerical size and
trend changes of RCMSE curves, which verifies that the runoff sequence has multiscale
complexity. The high-frequency components with short periods and large amplitudes
represent short-term fluctuation of runoff, which may contribute to understanding the
response of runoff to short-term interference, such as rainstorms. The low-frequency
components with long periods and small amplitudes signify the components of slow
variations, which may be mainly affected by atmospheric circulation or celestial activities.
The intermediate-frequency components, especially the components with mean periods of
half-year and annual scales, make the greatest contribution to runoff complexity, which are
the key components in the study of runoff complexity variation. The runoff complexity
of the Yanhe watershed has shown a downward trend since 1991, but with a gradual
increase after 2010, indicating that the ecological sustainability of this basin improved
after 2010, which was probably related to the ecological restoration measures of the Grain
for Green Project, showing that the measures in the past decade have effectively improved
the degradation phenomenon of runoff complexity. This study has expanded the research
perspective in relation to multiscale runoff complexity and the variation characteristics
of runoff systems. It also provides a reference for the evaluation of watershed ecological
sustainability and ecological management.

The following issues require attention in the future. In this paper, only runoff data for
the Ganguyi hydrological station in the Yanhe watershed were considered; future research
should introduce data from more hydrological stations to analyze the spatial multiscale
characteristics of runoff complexity. In addition, we only analyzed the causes of runoff
complexity change qualitatively; the quantitative contributions of climate change and
human activities to runoff changes need to be combined in the future.
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Abstract: To facilitate better implementation of flood control and risk mitigation strategies, a model
for evaluating the flood defense capability of China is proposed in this study. First, nine indicators
such as slope and precipitation intensity are extracted from four aspects: objective inclusiveness,
subjective prevention, etc. Secondly, the entropy weight method in the multi-attribute decision
making (MADM) model and the improved three-dimensional technique for order preference by
similarity to ideal solution (3D-TOPSIS) method were combined to construct a flood defense capacity
index evaluation system. Finally, the receiver operating characteristic (ROC) curve and the Taylor plot
method were innovatively used to test the model and indicators. The results show that nationwide,
there is fine flood defense performance in Shandong, Jiangsu and room for improvement in Guangxi,
Chongqing, Tibet and Qinghai. The good representativity of nine indicators selected by the model
was verified by the Taylor plot. Simultaneously, the ROC calculated area under the curve (AUC)
was 70%, which proved the good problem-solving ability of the MADM-GIS model. An accurate
assessment of the sensitivity of flood control capacity in China was achieved, and it is suitable
for situations where data is scarce or discontinuous. It provided scientific reference value for the
planning and implementation of China’s flood defense and disaster reduction projects and emergency
safety strategies.

Keywords: MADM-GIS model; 3D-TOPSIS method; ROC curve; visualization of flood control
capacity; entropy weight method

1. Introduction

Promoted by the need for economic development, the global water cycle has acceler-
ated substantially, causing a series of abnormal climate changes [1,2]. According to data
released by the Ministry of Water Resources of China, the areas affected by flood disasters
in southern China in 2020 included 198 rivers in 27 districts across the country, with a
total of 30.2 million people involved, and a loss of CNY 61.79 billion as of 14:00 on 9 July
2020. The healthy and stable development of China’s economy and society [3,4] has been
hindered by the expansion in the scope and degree of extreme climate events. Therefore,
the establishment of a flood control capability evaluation model is crucial for maintaining
infrastructure such as reservoirs, reasonably managing and controlling water resources,
and effectively protecting the lives and properties of the Chinese people. It is increasingly
necessary to assess the flood disaster defense capability in urban hydrology.

As a common natural disaster, urban floods generate multitudes of negative impacts
on people across the country. Multi-level studies on the evaluation of flood defense capacity
have been carried out worldwide. The main reasons for flood disasters are unreasonable
urban planning and uncoordinated flood management systems. The emergence of excess
runoff is caused by short-term intense rainfall that exceeds the capacity of the drainage
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system [5,6], which reflects the deep relationship between flood disasters and geographical,
social and other factors. Studies reveal that urban waterlogging is mainly attributable to
dual aspects [7], including (1) a natural perspective: global warming indirectly increases
the probability of urban rainstorms, and (2) a social standpoint: it reflects the impact
on urbanization and the urban water cycle. There are many approaches that have been
developed for the evaluation of pluvial flooding. The related research [8] mainly revolves
around the above two aspects, including six factors, such as meteorological factors and
urbanization factors. Additionally, Elmer, F. et al. [9] showed that the increase in direct
flood damage observed over the last decades may have been caused by changes in the
meteorological drivers of floods, or by socioeconomic development. At the same time,
varieties of urban waterlogging caused by climate change have a significant influence on
economic growth worldwide [10]. Economic factors are not only one of the causes of urban
floods, but also passively affected by the occurrence of disasters. So, the forecasting task
for urban development in flood-prone areas will be further complicated because of the
interaction between the two factors [11]. Basically, the most general type of forecasting
method is based on GIS and remote sensing (RS) technology to draw flood maps [12–20].
The flood disasters are monitored based on the information from different RS platforms
and bands, and the possibility of applying composite information to monitor potential
flooding is analyzed. The disadvantage of this method is that the investment in building
and maintaining a platform is heavier than that in the theoretical research method. Another
approach is a comprehensive weighting method [21–24] that can more comprehensively
solve the problem by constructing an index system. However, there is no fixed system;
if the indicators of different zoning systems vary, there will be extreme contradictions
between the results of the risk assessment and the conclusions drawn. Research studies
have reportedly evaluated the flood defense capacity of a specific area [25] by using a
combination of the entropy weight method and the analytic hierarchy process (AHP)
method [26–30] or the individual TOPSIS method [31]. As a hierarchical multi-objective
comprehensive evaluation method, AHP plays a good evaluation role when the evaluated
object’s attributes are difficult to quantify. However, it is incredibly subjective to rely on the
weight of expert scoring. The problem is that there are too many decision-making layers for
evaluation, and the gap between the judgment matrix and the consensus matrix is too large
to use AHP. This is well solved by TOPSIS. The weight is wholly derived from the data,
and the objectivity is better than that of AHP. However, the degree of data dependence is
deep, and some of the indicators are not always adaptable to the information, which will
harm the model’s accuracy.

Various research studies have been carried out by scientists in other parts of the
world to approach the topic. Zhengzhou, a city in southern China, was selected as the
study area by Lin, Lin et al. to build a flood-susceptibility map, which was generated by
using GIS spatial analysis tools and the analytic hierarchy process method [32]. Wang,
Yamei et al. used a semi-quantitative model and fuzzy analytic hierarchy process (FAHP)
weighting approach to assessing flood risk in the Dongting Lake region of Hunan Province,
which is in central China [33]. The results of this article were compared with the above
two articles, expanding the study area. Additionally, some articles published by Chun,
Xiang et al. [34–37] combined the theoretical method of analysis with actual flood control
capacity evaluations, and analyzed the relevant influencing factors. They presented relevant
theoretical frameworks, but many lacked accurate data support, were not experimentally
validated, and could only be used as theoretical references.

This study presents a regional flood defense capacity evaluation model, called MADM-
GIS, to facilitate the development of flood mitigation strategies and better flood control. It is
the first attempt to treat all regions of China as the research area in the field and over a time
range that is more extended than other papers for a more comprehensive study. According
to a survey of the existing literature, a richer indicator evaluation system than that of
Shuqi, Wu et al. [38,39] was created, and the single indicator problem in the traditional
2D-TOPSIS was avoided by using the improved 3D-TOPSIS method in this paper [40]. The
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entropy weight method was also creatively combined with multiple spatial analysis tools
in the ArcGIS platform [41–43] to evaluate the flood control capability comprehensively
and realize the visualization of data. The ROC curve [44] was firstly used to test the flood
defense capability evaluation model, and the Taylor diagram [45–47] was innovatively
applied to test the degree of representation of the nine indicators. The obtained verification
results were satisfactory.

2. Study Area and Data Resources

2.1. Study Area

China is hit by heavy precipitation and flood disasters almost every year, so this
paper targets the whole of China as the research area for the first time in the flood defense
capability assessment. China’s longitude ranges from 73◦33′ E to 135◦05′ E, and its latitude
ranges from 3◦51′ N to 53◦33′ N. The terrain is high in the west and low in the east,
forming three steps from west to east. The land area is about 9.6 million square kilometers,
of which mountains, plateaus and hills account for about 67%. At present, China has
34 provincial-level administrative regions, including 23 provinces, 5 autonomous territories,
4 municipalities directly under the Central Government, and 2 particular administrative
regions. Due to the lack of data on Hong Kong, Macau and Taiwan, this article will not
discuss them.

China’s climate is complex and diverse, spanning five climatic zones from south to
north. According to the 2020 “China Climate Bulletin”, a total of 37 nationwide regional
rainstorms occurred in 2020, and the annual number of rainstorm days since 1961 was
second only to 2016. The Yangtze River is the longest in Asia, and the Yellow River
is the second longest river in China. In the summer of 2020, they received the highest
precipitation since 1961, while the second-highest was recorded in the Huaihe River and
Lake Taihu during the same period. In 2020, the country’s total annual precipitation
resources measured 6592.65 billion cubic meters, 616.33 billion more than average.

2.2. Data Resources

Among the evaluation indicators related to flood defense capability that were selected
in this paper, the regional green area, the population density, the number of medical
institutions, GDP, and related data on the flood control area were obtained from the annual
data for each province in China’s National Statistical Yearbook.

DEM, the spatial resolution of the precipitation intensity data, is 1:1,000,000 from
the National Basic Geographic Information Center in China. The fragmented data were
implemented in accordance with the GB/T 13989-2012 “National Basic Scale Topographic
Map Framing and Numbering”. The space storage unit was 6◦ (longitude difference) × 4◦
(latitude difference). The slope data was obtained by surface analysis in the spatial analysis
tool of ArcGIS based on DEM data. The main river data’s spatial resolution was 1:4,000,000,
which came from the National Basic Geographic Information System Vector Data. It needed
to be converted into raster format by using the conversion tool in ArcGIS. The raster data
on river network density could be obtained through the line density analysis in the spatial
analysis tool. They were converted into a scale of 1:1,000,000 through the resampling
extension module in ArcGIS to ensure that the raster calculation was performed based on
the same spatial resolution. Otherwise, the subsequent algebraic calculation of raster data
would be meaningless. The objective flood data in the final inspection process were from
the Global Disaster Data Platform. The return period for a general flood is 10 years; for a
large flood, 10–20 years; and for a major flood, 20–50 years. Thus, in this paper, we selected
the data for various indicators in China from 2001 to 2020. Abbreviations for every Chinese
region are shown in Table 1.
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Table 1. Abbreviations for every Chinese region.

Number Area Name Abbreviation Number Area Name Abbreviation

0 Heilongjiang HL 16 Guangxi GX
1 Xinjiang XJ 17 Guangdong GD
2 Shanxi SX 18 Hainan HI
3 Ningxia NX 19 Jilin JL
4 Tibet XZ 20 Liaoning LN
5 Shandong SD 21 Tianjin TJ
6 Henan HA 22 Qinghai QH
7 Jiangsu JS 23 Gansu GS
8 Anhui AH 24 Shaanxi SN
9 Hubei HB 25 Inner Mongolia NM

10 Zhejiang ZJ 26 Chongqing CQ
11 Jiangxi JX 27 Hebei HE
12 Hunan HN 28 Shanghai SH
13 Yunnan YN 29 Beijing BJ
14 Guizhou GZ 33 Sichuan SC
15 Fujian FJ

3. Methodology

3.1. Analysis Framework

The new flood control capability analysis framework is mainly divided into four parts.
The detailed content will be introduced in terms of the following points:

(1) Data collection and processing;
(2) Flood control capability evaluation index system;
(3) Flood control capability evaluation and calculation;
(4) Model validation.

There is a progressive relationship between the above four parts, forming a complete
evaluation system. As long as the relevant required data are input, a systematic evaluation
of the flood control capacity of any region can be realized. At the same time, the corre-
sponding parameters can be collectively analyzed and adjusted according to the specific
situation, and the comparative experiments can be carried out.

Every five years is regarded as one research period; the 20 years span was divided
into a total of four periods: 2001–2005, 2006–1010, 2011–2015, and 2016–2020. Each stage
generated an evaluation map, in line with the speed of the strategic policy of China’s
five-year plan and social development. Then, this paper compared the changes in flood
sensitivity indicators in each period to profoundly and systematically explore the impact of
each indicator on the flood defense capabilities in various regions. It was shown a brief
overview of the article writing process by Figure 1.
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Figure 1. Flow chart for building the model for evaluation of China’s flood defense capability.

3.2. Flood Control Capability Evaluation Index System

Appropriate parameter indicators play a decisive role in accurately assessing the scale
of floods and implementing universal defense measures. Based on a reading of the existing
literature [48,49], this paper divided the indicators into four aspects:

FCS = f (OIF, SPF, FMP, FHD) (1)

where FCS denotes the evaluation results of the MADM-GIS model regarding flood defense
capability. OIF refers to the region’s geographical and meteorological conditions and other
natural environmental aspects that can tolerate rainstorms and floods and maintain a stable
state; it can reflect the macro self-regulation ability of the natural environment, thereby
reducing the frequency of extreme disasters. SPF refers to the ability of humans to forecast,
prevent and defend against the disasters; it reflects the nature of the ability of the Chinese
government and relevant departments in various regions to respond to flood disasters
promptly, protect the safety of people’s lives and their properties across the country, and
minimize the loss.FMP refers to the ability of human beings to participate in economic,
medical, social, and other activities to reduce the negative impact of disasters under the
condition that natural conditions cannot change. FHD refers to the nature of the intensity
of the direct factors leading to floods. Nine indicators, including DEM, slope, precipitation
intensity, gross regional product, number of medical institutions, urban population density,
urban green space area, and flood control area [50,51], were extracted from four aspects to
form a flood defense capacity evaluation system. Table 2 is the list of factor abbreviations
and acronyms.

215



Entropy 2022, 24, 772

Table 2. List of factor abbreviations and acronyms.

Abbreviation Parameters Abbreviation Parameters

OIF The objective and inclusive factor U Urban green area
C Channel density

SPF The subjective preventive factor W Waterlogging prevention
area

P Population density

FMP The flood mitigation prominence M Medical institution
G GDP

FHD The flood hazard degree
R Rainfall intensity
D DEM
S Slope

3.3. MADM-GIS Model

Multi-criteria decision-making (MCDM) is a decision to choose among a finite (infinite)
set of conflicting and incommensurable schemes. Its origins [52] can be traced back to
the concept of Pareto optimization (1896), and it was brought into the decision-making
field as a normative decision-making method in the 1960s, represented by the research on
objective planning by Charnes and Cooper. MCDM methods are based on the principle
of proposing the best solution among the schemes under certain criteria, so they have
been used more widely recently [53]. There was a Monte Carlo Simulation used in a
multicriteria decision model [54] aiming to prioritize flood risks in urban areas under
climate effects. They also have been applied in many specific fields to solve some selection
and ranking problems, such as information technology [55], design and development [56],
civil engineering and management [57], renewable energy [58] and medical diagnosis [59].
There are more than 100 MCDM methods, and each of them has its own performance
capacity and characteristics, which are often associated with the model’s computational
process and methodology.

MCDM is mainly divided into two categories: multi-attribute decision-making (MADM)
and multiple objective decision-making (MODM), according to whether the decision-
making scheme is limited or unlimited. The MCDM model has been used to evaluate flood
defense capacity in the existing literature [33,60]. Compared with MADM, the scope of
application of MCDM is broader, but inaccurate evaluation results are usually generated.
The difficulty associated with ineffective flood control capability evaluation caused by an
extensive data range processed by MCDM has been solved.

In this paper, the evaluation method for the index system was innovatively combined
with the flood control capability evaluation; the two methods, including the TOPSIS method
and the entropy weight method under MADM, were chosen, and MATLAB was utilized for
the calculations. GIS was used to generate the distribution map of the corresponding period
and location of each indicator proposed by the MADM-GIS model. As it is the first of its
kind built in this field, with efficient and accurate assessment simultaneously completed,
this model represents a relatively new attempt with a certain degree of practical value.
Figure 2 is the MCDM logic diagram that shows the classification and content of MCDM.
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Figure 2. MCDM logic diagram.

3.3.1. The Entropy Weight Method

The entropy weight method is an objective weighting method based on the degree of
variation in the index. The lower the amount of information reflected by the index, the lower
the corresponding weight will be. Table 3 is the key math symbols and their meanings.

Table 3. Key math symbols and their meanings.

Symbol Description

i The number of evaluation objects
j The number of evaluation indicators
P The forward matrix
aij The elements in a forward matrix
F Probability matrix
Fij Corresponding probability of aij
Sij Information entropy
mij Information utility value
Wj Weight of each indicator

A positive matrix is established according to the data, which is convenient for subse-
quent data preprocessing:

P =

⎡⎢⎣ a1,1 · · · a1,9
...

. . .
...

a31,1 · · · a31,1

⎤⎥⎦ (2)

The most common standardization method, known as the dispersion standardiza-
tion method, was used in this paper to transform the original data linearly. The results
were mapped to the [0, 1] interval, eliminating the interference of different units and
incomparability between indicators.

Z̃ij =
aij − min

{
a1j, a2j . . . anj

}
max

{
a1j, a2j . . . anj

}− min
{

a1j, a2j . . . anj
} (3)

The proportion of the i-th sample under the j-th index is calculated, and it is regarded
as the probability calculation probability matrix F used in the relative entropy calculation,
where the calculation formula of Fij is:

Fij =
aij

∑n
i=1 aij

(4)

The greater the information entropy of the event is, the smaller the amount of existing
information will be. Furthermore, the amount of information that can be supplemented
will be larger.
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For the j-th index, the calculation formula of its information entropy is:

sij = − 1
ln n

31

∑
i=1

Fij log(Fij) (5)

The information utility value is defined as:

mj = 1 − sj (6)

The weight of each indicator can be obtained by normalizing the information utility value:

Wj =
mj

∑m
j=1 mj

(7)

In the process of solving the MADM problem, the weight of the attribute is used
to reflect the relative importance of the attribute, which plays a pivotal role. In this
paper, the entropy weight method was used to calculate the respective weights of the nine
indicators on the impact of flood defense capacity. Figure 3 shows that the weight of P
changed abruptly from the first period to the second period and was relatively stable in the
following 15 years, following a downward trend. However, the process of change in M and
P was precisely the opposite. There was a sudden increase in the transition from the first
five years to the second, and then there was a slight increase. Only the weight of urban
green space decreased gradually and uniformly over time; the corresponding graphs of the
six indicators W, D, C, S, R, and G in the radar chart all transitioned from inside to outside,
which gradually increased over time.

Figure 3. Nine indicator weight radar diagram.

3.3.2. 3D-TOPSIS Model

The traditional TOPSIS is based on two-dimensional indicators. Only a score for
each indicator individually can be obtained, which is inconvenient for visualization. The
two-dimensional model was improved to three-dimensional in this paper, and the total
score for flood defense capacity in every region was obtained by superimposition. Table 4
is the key math symbols and their meanings.

218



Entropy 2022, 24, 772

Table 4. Key math symbols and their meanings.

Symbol Description
.

qij Indicator raw data
qij The index data after forwarding
Tij Normalized indicator data
Z Weighted normalization matrix

ωij Indicator corresponding weight
Q+ Maximum value in qij
Q− Minimum value in qij
Di

+ The distance between the evaluation object and Q+

Di
− The distance between the evaluation object and Q−

Si Relative proximity

The negative indicators need to be converted into positive indicators, including R, D,
S, C, and the transformed data matrix is still recorded as P.

qij = qmax − .
qij (8)

The original data should be normalized to avoid large network prediction errors due
to the large magnitude difference between input and output data:

Tij =
qij√

∑n
i=1 qij

2
(9)

Based on the weights obtained above, a standardization matrix is constructed:

Z =

⎡⎢⎣ q1 1·ω1 · · · q1 9·ω1
...

. . .
...

q31 1·ω31 · · · q31 9·ω31

⎤⎥⎦ (10)

The maximum and minimum values are defined as:

Q+ = (max{a1 1, a2 1 . . . an 1}, max{a1 2, a2 2 . . . an 2}, . . . , max{a1 9, a2 9 . . . an 9})
Q− = (min{a1 1, a2 1 . . . an 1}, min{a1 2, a2 2 . . . an 2}, . . . , min{a1 9, a2 9 . . . an 9})# (11)

The distances between the maximum and minimum values of the evaluation object
i-th (i = 1, 2, . . . , 31) are respectively defined as:

Di
+ =

√
m
∑

j=1
(Qj

+ − qij)
2

Di
− =

√
m
∑

j=1
(Qj

− − qij)
2#

(12)

3.4. Taylor Diagram

The Taylor plots in the existing literature were used to test extreme air temperature,
the meteorological conditions in different models, or the correlation analysis of correlation
coefficients (CC). It is a new type of ternary diagram that was firstly introduced in the
studied field, which is about the evaluation of flood defense capability. In the figure, the
model is represented by scattering points, the correlation coefficient (CC) is shown by the
radial line, the standard deviation (SD) is represented by the horizontal and vertical axes,
and the root mean square error (RMSE) is indicated by the dotted line. The CC refers to
similarity between the simulation results of different indicators and the observed values.
The differences between the spatial uniformity of simulation results of the models and the

219



Entropy 2022, 24, 772

observations are respectively reflected by RMSE and SD. The smaller the SD is, the more
stable the model is.

The results are as follows. The SD is 0.2–0.4, which is in line with the characteristics
of the heterogeneous coverage of the nine indicators, and the points of data are clustered
around the mean to a small degree. The correlation between the nine indicators is weak,
which is shown by the CC as 0.1–0.9. The combination of the two axes shows that the
nine indicators are highly representative of the research problem, and the problem of
the high degree of index coincidence reducing the model’s accuracy can be solved. The
deviation between the observed and actual values measured by the RMSE is 0.2–0.5,
which indicates that the departure of the data in this paper was slight and the applicable
standard was met. The test results show that the established MADM-GIS model and the
weights corresponding to the indicators are close to the research problem and have practical
significance and scientific and objective persuasion. Figure 4 is the Taylor plot of nine
indicators from 2001 to 2020.

Figure 4. Taylor plot of nine indicators from 2001 to 2020.

4. Results and Discussion

4.1. Analysis and Validation

The time interval of the data is from 2001 to 2020, which is divided into four stages,
showing the trend of influencing factors over time in detail. Nine indicators extracted from
four aspects were shown in Table 1; from the perspective of time series, they are divided
into two parts including six indicators from a timing perspective that change significantly
with time U, W, P, R, G, M and D, S, C that almost don’t change. The data is imported into
ArcGIS, and divided into 8 categories by the natural breakpoint method. The higher the
level of the region is, the better the performance of the corresponding index is, and the
corresponding province shows a darker color.

4.2. 3D-TOPSIS Model Parameter Analysis
4.2.1. Urban Green Area

Figure 5 is the spatial-temporal distribution of urban green space in China. From
Figure 5a, the regional differences in urban green space area from 2001 to 2005 are the
most obvious. The urban green areas of the regions such as Sichuan, Guangdong, Jiangsu,
Shanghai are outstanding in China. Comparison of the four maps shows that the growth
rate of the value in Qinghai and Tibet was relatively slow because western China had
a higher altitude, which is not conducive to vegetation growth. From Figure 5a–d, the
differences of the regions were gradually decreasing. The value in Inner Mongolia and
northeast China increased significantly and then tend to be stable, which indicates that the
green engineering in China has been better developed with significant results under the
advancement of China’s five-year plan.
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Figure 5. Spatial and temporal distribution of urban green space in China.

4.2.2. Waterlogging Prevention Area

The area of waterlogging removal refers to an area where waterlogging-prone farm-
land is rescued from flooding due to the construction of waterlogging control projects or
other water conservancy facilities, and the standard is reached more than once in three
years. It reflects the protection and utilization of water resources in China. Figure 6 is the
spatial-temporal distribution of waterlogging prevention and control areas in China. From
Figure 6a, the flood defense in Inner Mongolia, Tibet, Sichuan and Shandong increased
significantly from 2001 to 2005. In Figure 6b, flood defense in southeastern China continued
to increase within a small range. The work performed by Guangdong, Shandong, Henan,
and Sichuan was excellent. To sum up, as shown in Figure 6d, the efficiency of releasing
policies for flood defense and disaster reduction across the country gradually accelerated.
The area of waterlogging prevention reached a balanced level, and rational water resources
management was comprehensively promoted.

Figure 6. Cont.
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Figure 6. Spatial and temporal distribution of waterlogging prevention and control areas in China.

4.2.3. Population Density

Urban population density refers to the number of people per unit area. Figure 7
is the spatial-temporal distribution of population density in China. As vividly shown
in Figure 7a, owing to the inferior backdrop of development, the population density in
Xinjiang, Heilongjiang, Inner Mongolia, Sichuan, Yunnan and Guangxi is very sparse. It
shows that the period of 2006–2010 was at the peak of regional differences in Figure 7b,c
with the implementation of the five-year plan. In Figure 7b, population density in Xinjiang
and Heilongjiang increased significantly, and also increased widely in southern China.
With the continuous development of China’s economy and society, the population problem
had been solved, and the density of the urban population was increasing nationwide. The
regional differences in terms of population density across the country were becoming
increasingly slim, which is graphically depicted by Figure 7d. Due to the inception of the
two-child policy, the population density across the country has basically become saturated.

  

  

Figure 7. Spatial and temporal distribution of population density in China.

4.2.4. Medical Institutions

The number of medical institutions refers to the total number of health institutions
established in accordance with legal procedures that engage in disease diagnosis and
treatment activities. Figure 8 is the spatial-temporal changes in the number of medical
institutions in China from 2001 to 2020. It represents the number of medical and health
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resources and reflects the ability of a region to provide medical services when floods come.
The higher the flood control ability score climbs, the better the medical configuration is.
There will be more medical resources that can be used to ensure the safety of people’s
lives and property. During 2001–2005, Sichuan, Hunan, and Guangdong’s numbers of
medical institutions were among the top three nationwide. In the second period, Beijing,
Hebei, and Henan performed more outstandingly in this regard, and the number of medical
institutions increased significantly.

Figure 8. Spatial and temporal changes in the number of medical institutions in China from 2001
to 2020.

4.2.5. GDP

Gross domestic product (GDP) is the core indicator of national economic accounting,
which can measure the financial status and development level of a country or region
and represents the financial ability to deal with floods. Figure 9 is the chart of temporal
and spatial changes in China’s GDP. The higher GDP is, the more investment that can
be allocated to flood recovery. Meanwhile, the damage caused by a flood can be quickly
mitigated to a great extent. From 2001 to2005, Jiangsu, Shandong, Guangdong, Zhejiang,
and Shanghai were in the leading position in China. Due to the impact of China’s five-
year plan on the economy, economic development improved steadily in Beijing, Hebei,
Henan and Sichuan from 2006 to 2010. The northern regions also responded to the call,
which made a big difference. From the graph, the southern region’s GDP improved in an
all-around way. People’s living standards and social development levels were promoted
under the economic drive.

Figure 9. Chart of temporal and spatial changes in China’s GDP.

4.2.6. Rainfall Intensity

Rainfall intensity refers to the amount of rainfall in a unit of time. Figure 10 is the
spatial-temporal distribution of rainfall intensity in China from 2001 to 2020. It can be
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seen from the four figures that the spatial distribution of rainfall intensity in China is
strong in the south and weak in the north, and there is an apparent planar aggregation
phenomenon in the rainfall in the south. In Figure 10a, the rainfall intensity was the
strongest in the four periods. The rainfall intensity was lower than the previous five years
in Figure 10b. Yunnan, Sichuan, Guangxi, Hunan, Jiangxi and Chongqing are prominent
gathering centers. The transition process from the four figures shows that the aggregation
phenomenon was becoming more and more apparent, and a point-like aggregation can
be seen in Figure 10c. Hunan, Guangxi, Jiangxi, Guangdong, and Fujian were the main
centers of the point aggregation phenomenon. Close attention to each gathering center
should be encouraged, and the management of extreme precipitation events should be
strengthened. The efficiency of monitoring and forecasting needs to be improved. The
government should provide exceptional policy support, and the surrounding provinces
should also provide assistance.

Figure 10. Spatiotemporal distribution of rainfall intensity in China from 2001 to 2020.

4.2.7. DEM, Slope and Drainage Density

The steeper the slope is, the more serious the soil erosion phenomenon will be. The
surface runoff and infiltration will be affected. Floods will be caused by the surface runoff
to a certain extent, and the DEM determines the slope. Due to the regulation and storage of
the basin, the floods are in the form of fluctuations. According to the law of conservation
of energy, the higher the DEM is, the greater the potential energy of the water flow. In
the process of downward flow, part of the potential energy of the flood is converted into
kinetic energy, and the flow velocity is accelerated, increasing the risk that the resulting
severe shock will cause harm downstream. Figure 11 is the spatial distribution map of
DEM. Figure 12 is the spatial distribution map of slope. Figure 13 is the spatial distribution
map of major river networks.
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Figure 11. Spatial distribution map of DEM.

Figure 12. Spatial distribution map of slope.

Figure 13. Spatial distribution map of major river networks.

4.3. MADM-GIS Model
4.3.1. Analysis of Results of Entropy Weight Method

The results show that the weight of P changed abruptly from the first period to the
second period and was relatively stable in the following 15 years, showing a downward
trend. However, the process of change in M and P is precisely the opposite. There is a
sudden increase in the transition from the first five years to the second, and then there is a
slight increase. Only the weight of urban green space decreases gradually and uniformly
over time; the corresponding graphs of the six indicators W, D, C, S, R, and G in the radar
chart all transition from inside to outside, which gradually increases over time.
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4.3.2. Analysis of Results of D-TOPSIS Model

Si is defined as the relative proximity, and the calculation formula is:

Si =
Di

−

Di
+ + Di

− (13)

The larger the obtained evaluation matrix Si is, the greater the degree of closeness to
the optimal solution, and the flood defense capability of the area is more robust. When
Si = 0, it is the lowest flood control capability; Si = 1 is the highest. Finally, sort according
to the size of the proximity. The larger the value is, the closer the evaluation object to the
optimal solution is.

The weights in 2001–2005 are taken as an example:

OIF =
2
∑

i=1
xiωi = 0.15063 × U + 0.03942 × C

FMP =
2
∑

i=1
xiωi = 0.06064 × M + 0.09591 × G

SPF =
2
∑

i=1
xiωi = 0.21922 × W + 0.11295 × P

FHD =
2
∑

i=1
xiωi = 0.07479 × R + 0.17401 × D + 0.17143 × S

FCS = OIF + FMP + SPF + FHD

(14)

To obtain the flood defense capacity index for each period, the linear weighted sum
method (LWSM) was used to perform statistical processing on the data. The LWSM is an
evaluation function method, which can solve multi-objective programming problems by
assigning corresponding weight coefficients to each objective and then optimizing its linear
combination. Each basic indicator was multiplied by the corresponding weight and then
summed up. Multiple base metrics were converted into a single numerical index that was
regarded as the final score. Through the value of the final score, it was possible to quantify
and compare the flood defense capability of each city.

From Figure 14, it can be seen that the evaluation scores and absolute values of the
direct economic losses in the 31 provinces show roughly the same trend. As is shown, the
results of the model solution are in line with objective reality, which verifies the validity of
the model. However, the evaluation score does not match the absolute value of the direct
economic loss in Sichuan, Shaanxi, Jiangxi and Hunan. It was found that the occurrence
of this phenomenon is strongly related with social factors outside the model that did not
belong within the scope of the research through actual investigation. There was no effect
on the analysis result, namely, that the higher the score of the MADM-GIS model is, the
lower the value of the direct loss rate caused by the flood is. The evaluation results for
regional flood defense capacity are only related to the actual data, and the government staff
in the relevant regions need to formulate policies and implement various adjustments.
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Figure 14. Combination graph of the final score and direct loss.

Figure 15a is about the flood defense capability assessment scores in China obtained
with the MADM-GIS model. Figure 15b is about the direct losses that are caused by floods
and is based on actual data in China. The stronger the flood defense capability of a region
is, the less the direct loss is, which is in line with objective reality. The two variables
of flood defense capacity and direct loss in Xinjiang, Gansu, and Inner Mongolia are all
at the middle level in China. There is little difference in the comparison of two figures,
whose colors are roughly the same. Tibet, Yunnan, Guizhou, Chongqing, and Guangxi are
mainly located in western China, where flood defense capacity is lower, and direct losses
are heavier than in other regions. The eastern regions, including Hebei, Henan, Jiangsu,
Shanghai, Guangdong, and Zhejiang, played an exemplary role with higher evaluation
scores in coping with severe floods.

 
Figure 15. 3D-TOPSIS score results in spatial distribution map.

4.4. MADM-GIS Model Validation

Analysis of ROC Curve Results
Figure 16 is the ROC curve of the flood control capacity score to the MADM-GIS

model. The sensitivity and specificity of variables are reflected by the ROC curve [61,62],
and intuitive comparison of different test methods is provided under the same scale. It was
drawn by SPSS software to test the accuracy and feasibility of the model. There are two
advantages of this method. First, there is a broader application range to indirectly analyze
various types of raw data. Secondly, the systematic analysis of multiple covariates can be
carried out, which is more advanced than the ROC curve in analyzing univariate raw data
described in the current literature [50,51,63].
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Figure 16. The ROC curve of the flood control capacity score to the MADM-GIS model.

The closer the inflection point is to the upper left corner of the figure, the greater the
diagnostic value of the model is. The accuracy of test objects was indicated by the AUC
of 0.7 to 0.9; the closer the AUC is to 1, the better the diagnostic effect of the model. As
is shown, the AUC was 70%, and the accuracy and feasibility of the MADM-GIS model
were meaningful.

5. Conclusions

MADM-GIS, a flood defense capability evaluation model with strong inclusiveness
and adaptability, was highlighted in this paper. It is the first attempt to evaluate the flood
defense capability in every region of China, and the problem of China’s poor response to
flooding disasters in the past was resolved. First, the data visualization platform based
on ArcGIS was assisted by MATLAB and SPSS software. It was established to display
the time-space pattern of the calculation results of the indicators and analyze the process
of change in the nine indicators during the past 20 years. Combined with the entropy
weight method and the improved 3D-TOPSIS method, the defense capability scores of
various regions were obtained, and the corresponding spatiotemporal distribution map
was generated. Then, the ROC curve was utilized as the model to test the method. As
to the AUC = 70%, it was a satisfactory result, and the Taylor diagram was combined to
intuitively represent enough adaptation of each index. Finally, the evaluation ability under
different index modes was compared, and the usability and accuracy of the MADM-GIS
model were verified.

The results of analysis show that the main influencing factors in the evaluation of
flood defense capacity were W, U, and D, and that their weights hardly changed with
time, which indicated they were the top three of the nine indicators. From 2001 to 2020,
the differences in urban green space between regions were gradually narrowing, and
there were upstanding effects in waterlogging control displayed in Guangdong, Shandong,
Henan, and Sichuan. GDP in the southern region increased significantly, and the capacity
of medical resources support for rainstorm and flood disasters was strengthened. From
2016 to 2020, the regional differences in overall population density across the country
gradually decreased, and the population density was nearly saturated. The most obvious
point-like aggregation phenomenon in regional rainfall intensity was shown from 2011 to
2015, and Hunan, Guangxi, Jiangxi, Guangdong, and Fujian were mainly at the center of the
point-like aggregation. The final evaluation results show that the flood control capacity of
Tibet, Yunnan, Guizhou, Chongqing and Guangxi needs to be improved significantly, and
there is a plenty of room for improvement. Hebei, Henan, Jiangsu, Shanghai, Guangdong,
and Zhejiang are in the leading positions in China.
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The spatial situation for flood defense capabilities in China was described in this
paper and will contribute to enriching the system for evaluation of urban flood control
capabilities. An objective and scientific reference plan was provided for the measures taken
by the Ministry of Water Resources and related departments to deal with flood control and
disaster mitigation.

Since the research scope covered the whole area of China, only the main factors were
selected for the evaluation indicators to prevent interference from secondary factors with
the research conclusions of the model. Therefore, there were regional limitations in the
promotion and application of the model. For the evaluation of flood defense capacity in
smaller areas, the application of the model needs to be combined with the actual situation
in each region to obtain more accurate and reliable research results with detailed evalua-
tion indicators. This paper selected the data from 2001 to 2020, which were acquired in
combination with data on China’s political development and economic development. For
more targeted research, the time range can be expanded and the database can be enriched
to analyze more factors that contribute to the results. More indicators were selected in
this paper than for ordinary evaluation models; hence, there was no detailed analysis of
the sensitivity between indicators. Follow-up data and further experiments are needed to
enrich the contents of the model and improve its efficiency.
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Abstract: Mapping the spatial and temporal dynamics of species distributions is necessary for
biodiversity conservation land-use planning decisions. Recent advances in remote sensing and
machine learning have allowed for high-resolution species distribution modeling that can inform
landscape-level decision-making. Here we compare the performance of three popular Sentinel-2
(10-m) land cover maps, including dynamic world (DW), European land cover (ELC10), and world
cover (WC), in predicting wild bee species richness over southern Norway. The proportion of
grassland habitat within 250 m (derived from the land cover maps), along with temperature and
distance to sandy soils, were used as predictors in both Bayesian regularized neural network and
random forest models. Models using grassland habitat from DW performed best (RMSE = 2.8 ± 0.03;
average ± standard deviation across models), followed by ELC10 (RMSE = 2.85 ± 0.03) and WC
(RMSE = 2.87 ± 0.02). All satellite-derived maps outperformed a manually mapped Norwegian land
cover dataset called AR5 (RMSE = 3.02 ± 0.02). When validating the model predictions of bee species
richness against citizen science data on solitary bee occurrences using generalized linear models,
we found that ELC10 performed best (AIC = 2278 ± 4), followed by WC (AIC = 2367 ± 3), and DW
(AIC = 2376 ± 3). While the differences in RMSE we observed between models were small, they
may be significant when such models are used to prioritize grassland patches within a landscape for
conservation subsidies or management policies. Partial dependencies in our models showed that
increasing the proportion of grassland habitat is positively associated with wild bee species richness,
thereby justifying bee conservation schemes that aim to enhance semi-natural grassland habitat. Our
results confirm the utility of satellite-derived land cover maps in supporting high-resolution species
distribution modeling and suggest there is scope to monitor changes in species distributions over
time given the dense time series provided by products such as DW.

Keywords: pollinators; grassland; wild bees; management; conservation; spatial modeling

1. Introduction

The Anthropocene has heralded an unprecedented loss of biodiversity, primarily
due to changes in land use and land cover, climate change, pollution, (over-)exploitation,
and biological invasions [1]. In response, governments have established frameworks that
address biodiversity loss, including the United Nations’ (UN) Sustainable Development
Goals (SDGs, 2030 Agenda) as well as the Aichi biodiversity targets (Strategic Plan for Bio-
diversity 2011–2020) and the Post-2020 Global Biodiversity Framework of the Convention
on Biological Diversity. Recently, the UN established the statistical standards for ecosystem
accounting (EA) under the System of Environmental–Economic Accounting (SEEA), which
require countries to account for changes in ecosystems over time [2]. To achieve the SDGs,
meet biodiversity conservation targets, and to account for ecosystem changes, we require
monitoring and evaluation tools that are both globally available and locally relevant [3].
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One such tool is species distribution modeling, also known as ecological niche or habi-
tat modeling, which has been widely used to inform decision-making in conservation
planning [4].

By modeling and mapping the distribution of species over space and time, we are
able to make data-driven decisions about which areas to prioritize for restoration or
conservation [5]. The predictive and explanatory power of species distribution models also
allows for identifying critical environmental variables (e.g., precipitation, habitat availabil-
ity) that drive species communities [6]. Insect conservation strategies are a good case in
point, whereby mapping and monitoring of insect species richness are prioritized both at
the international [7,8] and national levels [9,10]. In Norway, field surveys of bee diversity
have been combined with habitat and climate models to create prediction maps that can
help determine where wild bee habitat enhancement schemes can be most efficient [11].
However, such priority maps and many species distribution models are currently based on
static environmental predictor variables such as land cover maps, whereas management
requires more flexible solutions that can detect temporal dynamics in ecosystem conditions
and species distributions over time [12].

Recent advances in satellite remote sensing and earth observation have filled data gaps
and improved the spatio-temporal transferability of species distribution models [13]. As
such, satellite-derived products can capture the environmental processes that underlie the
distribution of biodiversity, such as vegetation productivity, water availability, temperature,
and perhaps most importantly, land use and land cover. The Sentinel satellites under the
Copernicus Programme have been used to produce annually updatable regional and global
land cover maps at 10 m resolution, including ELC10 [14], Dynamic World (DW) [15], and
World Cover 2020 (WC) [16]. All three products have the capacity to be multi-temporal,
but only DW is operationally delivering near real-time land cover maps as new Sentinel-2
scenes become available (every 2–5 days). Due to the novelty of freely available, medium-
resolution, high-frequency land cover maps, their use in species distribution modeling is
still in its infancy. It is also not clear whether global Sentinel-based land cover maps can
replace or improve upon the contribution of regional land cover datasets [17], given that
regional maps produced by national mapping agencies through manual methods such as
photogrammetry are often more precise and tailored to local conditions.

The aim of this study was to compare Sentinel-based, 10-meter-resolution land cover
maps in their ability to predict wild bee species richness distributions across gradients in
temperature and habitat availability. To do so, we use a Norwegian land cover dataset
called AR5 [18] as a benchmark to evaluate three satellite-based maps, including DW, WC,
and ELC10, that are annually updatable. The proportion of semi-natural grassland habitat
within 250 m derived from the land cover maps is used as a predictor variable in species
distribution models that predict the richness of solitary bee species in southern Norway.

2. Methods

To compare the utility of Sentinel-based land cover maps in species distribution
modeling, we chose wild bee species as a model system. We do this for three main reasons,
which are elaborated on below: (1) bees are keystone species in grassy ecosystems globally
that are good indicators for ecosystem condition; (2) they are experiencing significant local
declines in population numbers; and (3) they have a limited home range and are dependent
on local resources for survival, so we expect their distribution to respond strongly to
landscape-scale land use gradients in the Sentinel-based land cover maps.

Insects in general and wild bees in particular are key components of many ecosystems
and provide important contributions to people [19,20]. For example, the economic value of
pollinating insects is considerable, estimated at EUR 153 billion globally [21]. Although
pollination is often associated with domestic insects such as the honey bee (Apis mellifera), a
large and diverse community of wild bee species contributes significantly to the pollination
of wild plants and crops [22,23]. Insect abundance, biomass [24], and diversity [25] are
declining in some regions due to urbanization, deforestation, climate change, pesticide use,
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and invasive species [26]. The same is true for bee species [27]. Although the diversity of
wild bees is predominantly driven by temperature at global and regional scales, habitat and
landscape characteristics are important drivers at local scales [28,29]. Bees are central place
foragers that travel back and forth from a nesting site to collect resources [30], and therefore,
the abundance and diversity of wild bees correlate to the diversity and abundance of floral
resources (vascular plants) in the landscape [28,31]. Land cover types such as semi-natural
grasslands, including hay and flower meadows, provide ample floral [32] and non-floral
resources to wild bees [33]. Non-floral resources include nesting sites, and although some
wild bee species nest in dead wood, the majority use sandy soil sediments as nest sites [34].
Consequently, wild bee diversity can be predicted by the availability of suitable land
cover types for resources (i.e., semi-natural grasslands) and for nests (i.e., sandy soils), in
combination with climatic variables [29].

2.1. Solitary Bee Surveys

We surveyed solitary bee communities in 72 traditionally managed (mowed) semi-
natural grasslands distributed along a climatic gradient from south-eastern Norway to
mid-Norway (Figure 1A). In 2019, we sampled 32 semi-natural grasslands in south-eastern
Norway [11], adding another 20 study sites in 2020 [29]. To capture potential influences of
climatic conditions on solitary bee diversity at regional scales, solitary bee communities
were sampled in another set of 20 semi-natural grasslands in mid-Norway in 2021. All
surveys were conducted using pan traps, which are an efficient method for surveying wild
bee communities [35], in particular when the aim is to survey the solitary as opposed to
social bee species [36]. Each pan trap consisted of three white plastic soup bowls, coated
with fluorescent yellow or blue, or left white, mounted on a fence pole at the height of the
surrounding vegetation [11,29]. We deployed 3 traps per site in 2019 and 2 traps per site
for sites sampled in 2020 and 2021. The number of traps per site was reduced from 3 to 2
after 2019 to allow more sites to be sampled. This resulted in 176 samples (the sum of traps
across all sites) distributed across 72 study sites. Within sites, traps were always placed at
least 20 m apart to avoid inter-trap competition [37].

Figure 1. Extent of study area with solitary bee sampling locations and individual survey extents
(A). Location of study sites in Trøndelag County, sampled in 2021 (B). Location of study sites in Oslo,
Viken, and Innlandet counties, sampled in 2020 (C). Locations of study sites in Oslo, Viken, and
Innlandet, sampled in 2019 (D).
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In all years, sites were sampled in May, June, and July at similar times of day and
on days with weather conditions that are optimal for bee activity (i.e., low wind and
temperatures above 15 ◦C). For each sampling period, we activated the pan traps at a site
by mounting the bowls and filling them with water and a drop of detergent. Sampled bee
specimens were collected after 48 h. In 2019, sampling was initiated on 13 May, 21 June,
9 July, and 23 July [11]. In 2020, sampling was initiated on 13 May, 25 May, 14 June, and
16 July [29]. In 2021, sampling began on 29 May, 22 June, and 24 July. Collected bees were
stored in 96% laboratory ethanol prior to pinning and identification. Voucher specimens
are stored in the entomological collections at the Norwegian Institute for Nature Research.
We tallied the number of solitary bee species sampled per trap across the season.

2.2. Land Cover Maps

Data pre-processing and extraction of land cover maps took place in the Google
Earth Engine [38]. The AR5 map obtained from the Norwegian Institute of Bioeconomy
Research [18] is provided as a vector map at 1:5000 scale, which we rasterized at 5 m
resolution. AR5 is updated every 5–8 years and therefore represents a mosaic of years
across the country. WC and ELC10 are available in Google Earth Engine for the years 2020
and 2018, respectively. However, DW is provided as a collection of classified Sentinel-2
images with less than 35% cloud cover. To generate an annual land cover composite for 2020
comparable with WC and ELC10, we calculated the mode predicted land cover class in the
image band named “label” across all DW images during June, July, and August. For all land
cover maps, we used a focal mean function to calculate the proportion of grassland habitat
within 250 m of each pixel in the study area (Figure 1) at 10 m resolution. We used the
250-m radius because solitary bee diversity has been shown to respond strongly to habitat
availability at this spatial scale [39]. To isolate grassland pixels, we used the “grassland”
class from WC and ELC10 and the “grass” class from DW, which are both defined as
areas dominated by natural herbaceous vegetation, including grasslands, prairies, steppes,
savannahs, and pastures. For AR5, we used the “innmarksbeite” and “åpent fastmark”
classes, which are defined as open ecosystems dominated by herbaceous vegetation and
often used for extensive grazing [18]. We used a radius of 250 m as solitary bee species
richness has previously been shown to respond to habitat area at this spatial scale [39].

2.3. Modeling

Data modeling and visualization were performed in R [40]. As in [29], we included
predictor variables related to climatic conditions, habitat availability, and distances to
high-quality nesting substrates for below ground nesting bees, which account for the vast
majority of solitary bees. In [29], the spatial variation in climatic conditions was estimated
using a digital elevation model (DEM) together with latitude. Here, we used the average
temperature for the warmest quarter (June, July, and August), during the current 30-year
climate reference period (1990–2021), calculated from daily estimates and interpolated
station measurements at a 1 km resolution from the Norwegian Meteorological Institute’s
database [41]. We used the average temperature during the warmest quarter instead of
the annual mean temperature because high winter temperatures along the coast result in
annual mean temperatures not reflecting the gradient in ambient temperature experienced
by bees during their main activity periods in Norway (spring to autumn). Using modeled
climate data instead of DEMs to estimate the effects of temperature on bee diversity enables
one to project changes in bee diversity as a function of future climate scenarios. In [29]
we used a habitat suitability model to estimate the potential habitat area surrounding
each pan trap at a 60-m radius. In contrast, in the current study, we use the proportion
of pixels identified as “grassland” by satellite-derived land cover maps as estimates of
habitat availability within a 250-m radius surrounding each trap. A benefit of using satellite-
derived grassland classifications instead of estimates of habitat suitability maps that may
partly rely on existing land cover products is that one reduces the number of modeling steps
required to produce maps of pollinator diversity from remote sensing data. In addition, we
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used the geographic distance to areas with soils mapped as having a high water infiltration
capacity by the Norwegian geological survey [42], as such areas are typically located on
sandy soils, which is the preferred nesting substrate for the majority of Norwegian soil
nesting bees.

We ran and compared eight models of solitary bee species richness that all followed
the general formula:

Solitary bee species richness (survey year + average temperature during the warmest
quarter + Distance to sandy soils + proportion of grassland within a 250-m radius).

The eight models differed in terms of the data source (map) used to estimate the
proportion of grassland around each pan trap and the type of model used to predict
solitary bee species richness. The survey year was included as a categorical variable to
account for inter-annual variation in bee species richness as well as for annual differences
in climatic conditions, which could influence the number of species sampled in a trap.
For each land cover map, we trained a Random Forest (RF) regression model [43] and
a Bayesian Regularized Neural Network (BRNN) model [44] in Caret [45] in R. BRNN
models were tuned by selecting the number of neurons (1, 2, or 3) that resulted in the lowest
root mean square error (RMSE) following 25 bootstrap resamples of the training data. RF
models were tuned by selecting the mtry (number of parameters tested at each node) and
split-rule variance or extra trees that resulted in the lowest RMSE, following 25 bootstrap
resamples. We adopted leave-one-out cross-validation (LOOCV) to assess model predictive
performance due to the small number of study sites. Small training datasets can result
in large variances in model performance when using traditional training-testing splits
(e.g., 70% training and 30% testing) before model fitting, compared to LOOCV [46]. In
LOOCV, each model was iteratively trained and tuned on data from 71 study sites and
then used to predict solitary bee species richness in pan traps from the one held-out site.
Predictive performance is calculated across all LOOCV iterations. Following this nested
cross-validation procedure ensures independence between the data used for tuning the
models and the data used for final validations.

For each land cover-map model prediction, we evaluated the predictive power in terms
of the Pearson correlation coefficient (Cor), the root-mean-square deviation (RMSE), and
the mean absolute error (MAE) between observed values of solitary bee species richness
and the solitary bee species richness predicted by the model. As an alternative form of
model validation, we also tested the ability of model predictions of bee species richness
to predict the variance in occurrence of solidary bee records obtained from citizen science
data. We first downloaded all post-2015 solitary bee species observations from the Global
Information Biodiversity Facility (GBIF) that intersected our study area (xmin: 9.836, xmax:
12.719, ymin: 58.909, ymax: 63.962) and had a GPS error of less than 50 m (n = 2111). To
reduce spatial bias in the data—i.e., that some areas have been surveyed more frequently
or intensively than others—we only included one occurrence per square kilometer. We
randomly sampled 10,000 pseudo-absences from within our study area and used binomial
generalized linear models to quantify how well the predicted species richness scores
explained the variance in the GBIF presence-absence data. We used the Akaike information
criterion (AIC) to compare the explanatory capacity of the different models (δAIC > 2).
Finally, we used partial dependency plots through the R-package pdp [47] as a means to
visualize the estimated marginal effect of the proportion of grassland, using the different
land cover maps, on solitary bee species richness.

In summary, our modeling workflow included 16 unique models for combinations
of reference data (survey, GBIF), model type (RF, BRNN), and land cover dataset (AR5,
DW, ELC10, WC). Each model was iterated 100 times in order to estimate the mean and
standard deviation in model performance metrics.
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3. Results

We did not find that models using the proportion of grassland estimated from the
vector-based Norwegian land cover map (AR5) outperformed models where grassland had
been estimated from satellite-derived land use models with 10 m resolution. Specifically,
satellite-derived maps exhibited an average RMSE of 2.87 ± 0.03 (±standard deviation),
whereas the Norwegian AR5 map produced models with a RMSE of 3.02 ± 0.02 (Figure 2).
Similarly, for the AR5-based BRNN models, the correlation coefficient between observed
and predicted solitary bee species richness (SR) was slightly lower (Figure 2A) than for the
satellite-based models (Figure 2B–D). This was also the case for the Random Forest (RF)
models (Figure 2E–H).

Figure 2. Performance of Bayesian regularized neural network (BRNN) and random forest (RF)
models for predicting solitary bee species richness (SR). Data points represent model predictions
against observed SR following a leave-one-out cross-validation procedure. The average and standard
deviation of correlation coefficients (Cor), root-mean and mean-absolute error (RMSE, MAE) from
100 iterations of each leave-one-out cross validation are reported for models trained with land cover
data from (A,E) a Norwegian map (AR5), (B,F) dynamic world (DW), (C,G) European land cover
(ELC10), and (D,H) world cover (WC). Red and blue points show the predicted and observed solitary
bee species richness for each pan trap across the 100 leave-one-out iterations, and black points show
the average predicted bee species richness and the associated observed species richness for each
specific trap.

Among the satellite-derived models (Figure 2B–D,F–H), there were only marginal
differences in their performances as predictors of solitary bee SR. Models using grassland
habitat from DW performed best (RMSE = 2.8 ± 0.03; averaged across RF and BRNN
models), followed by ELC10 (RMSE = 2.85 ± 0.03) and WC (RMSE = 2.87 ± 0.02). Grassland
habitat was ranked the third most important predictor variable in BRNN and RF models
(Figure 3). The mean summer temperature and sampling year were the most important
predictors in the models. All models, independent of data source or model type, produced
partial dependence plots that corroborated a positive association between grassland habitat
and solitary bee SR (Figure 4). The association was less distinct in the AR5 model (Figure 4A)
compared to the satellite-based models (Figure 4B–D).
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Figure 3. Variable importance plots showing the scaled relative importance of sampling year (3 levels),
summer mean temperature, distance to sandy soils, and grassland proportion within 250 m for
predicting solitary bee species richness. For the sampling year, the year 2019 was used as the reference
year and does therefore not appear in the figures. Variable importance is derived from Bayesian
regularized neural network (BRNN; A–D) and random forest (RF; E–H) models for predicting solitary
bee species richness (SR). Models were trained with land cover data from (A,E) a Norwegian map
(AR5), (B,F) dynamic world (DW), (C,G) European land cover (ELC10), and (D,H) world cover (WC).

When validating the model predictions of bee SR against citizen science data on solitary
bee occurrences using generalized linear models (Figure 5), we found that the order of
performance was changed. We found that ELC10 performed best (AIC = 2278 ± 4), followed
by WC (AIC = 2367 ± 3), and DW (AIC = 2376 ± 3). The BRNN models performed slightly
better than RF models, both in terms of leave-one-out cross-validation (Figure 2) and in
terms of explaining the occurrence of solitary bees from GBIF (Figure 5). Therefore, we used
the BRNN models to generate wall-to-wall prediction maps of bee SR over the study region
(Figure 6). A qualitative visual comparison shows that the broad-scale spatial patterns of
bee SR predictions are similar between models, with bee SR increasing with north-south
temperature gradients and along populated valleys where extensive grazing practices
have established semi-natural grassland patches. At the landscape scale (Figure 7), AR5
predictions show less spatial variation than the satellite-derived maps. All models appear
to pick up the grassland habitat adjacent to the runways at Gardermoen International
Airport; however, ELC10 appears to pick up the most habitat in the agricultural landscapes
southwest of the airport (Figure 7C).
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Figure 4. Partial dependence plots from Bayesian regularized neural network (BRNN) and random
forest (RF) models of bee species richness. Partial dependencies are shown for the spatial predictors:
proportion of grassland habitat within 250 m, derived from (A) a Norwegian map (AR5), (B) dynamic
world (DW), (C) European land cover (ELC), and (D) world cover (WC); (E–H) distance to sandy
soils; and (I–L) mean temperature during the summer months.

Figure 5. Explanatory power of bee species richness (SR) predictions from Bayesian regularized
neural network (BRNN) and random forest (RF) models. Effects plots are shown along with AIC
scores from binomial generalized linear models of solitary bee species occurrence data from GBIF as
a function of predicted bee SR from models trained with land cover data from (A,E) a Norwegian
map (AR5), (B,F) dynamic world (DW), (C,G) European land cover (ELC10), and (D,H) world cover
(WC). Points in the figures show the mean occurrence of solitary bee records calculated within bins of
one decimal. Individual GLMs were run for each of the 100 spatially filtered datasets of solitary bee
records in order to calculate the average AIC and its standard deviation.
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Figure 6. Solitary bee species richness (SR) prediction maps for Trøndelag county (A–E) and Oslo and
Innlandet county (F–J) from Bayesian regularized neural network (BRNN) models trained on grass-
land habitat data from (B,G) a Norwegian map (AR5), (C,H) dynamic world (DW), (D,I) European
land cover (ELC10), and (E,J) world cover (WC). Each map is overlaid with the bee survey sites.

Figure 7. Solitary bee species richness (SR) prediction maps over the landscape surrounding Garder-
moen international airport (left panel) from Bayesian regularized neural network (BRNN) models
trained on grassland habitat data from (A) a Norwegian map (AR5), (B) dynamic world (DW),
(C) European land cover (ELC10), and (D) world cover (WC).
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4. Discussion

Species distribution modeling that incorporates high-resolution satellite data is still in
its infancy [13], yet the application to solitary bee species richness presented in this study
confirms its potential. Our results show that the Sentinel satellite-based land cover maps
outperformed a regional manually digitized land cover map over southern Norway (AR5)
in predicting solitary bee species richness (Figure 2). While the use of satellite imagery to
map vegetation types or individual forest species is common [48], using derived products
to predict habitat suitability for animal or plant species that are not directly visible in
satellite images is far less common [11,49]. Here we show that the availability of grassland
habitat within 250 m, measured from satellite data, is positively associated with solitary
bee species richness (Figure 4) and is therefore predictive of solitary bee occurrences at
regional scales (Figure 5).

We found larger differences in the predictive capacity of grassland habitat derived
from manually mapped versus satellite-derived land cover maps than differences between
the satellite-based maps themselves (Figure 2). The AR5 map uses a minimum mapping
unit of 2000 m2, which results in very small grassland fragments being subsumed into
a broader land cover class [18]. For example, road verges or small urban parks will be
classified as “built” in the AR5 maps. However, such small grassland patches can harbor
significant floral resources for bees, and the fact that AR5 does not map these areas may
therefore be why AR5 was less predictive of species richness than satellite-based maps.
Furthermore, AR5 is not as up-to-date as the satellite-based maps and may misrepresent
the conditions on the ground during 2019, 2020, and 2021, when the field surveys were
conducted. In contrast, ELC10 and WC use a minimum mapping unit of 100 m2, while DW
uses 2500 m2. At the landscape scale, it is evident that predictions of bee species richness
with ELC10 were more spatially heterogeneous than AR5 or DW (Figure 6), probably
due to its smaller minimum mapping unit and ability to detect smaller grassland patches.
This may have contributed to its greater predictive capacity compared to AR5. This also
explains why, when validating our models using citizen science data from GBIF, ELC10
outperformed DW. In contrast to the survey dataset, GBIF data are spatially clustered
and biased toward urban landscapes, which are easily accessible but also have complex
landscapes. Due to ELC10’s small minimum mapping unit, it captures the landscape
complexity more than DW does and is able to predict the GBIF bee SR better.

The accuracies of the solitary bee species richness models presented here are arguably
high enough to make data-driven management decisions at the landscape scale. The aver-
age RMSE of 2.87 means that one can at least distinguish very species-rich areas (maximum
species richness of 16 in our study) from species-poor areas (zero species). The differences
in model accuracy between satellite-based grassland maps were marginal (RMSE difference
of 0.04); however, when visualized at a landscape scale (Figure 6), small nuances may have
important implications for management and decision-making. For instance, a ranking
or prioritization of grassland patches for receiving conservation subsidies based on the
maps in Figure 6 may yield different results depending on the data source used. Therefore,
post-stratified accuracy assessment of species distribution models in specific landscapes
may be necessary before they can be adopted in practice [50].

Based on several limitations identified in our study, we outline avenues for further
research on the integration of high-resolution satellite data in species distribution modeling.
Firstly, it is not necessary to use derived products such as land cover maps, as we have
carried out here. Instead, one can use the spectral signatures themselves from a satellite
image to calibrate distribution models [13], although this would not allow ecologists
or policymakers to relate species-rich areas to specific land use types. Secondly, maps
with a higher thematic resolution than those used in this study would produce more
detailed species distribution maps [51]. For example, all four maps tested here contained a
single broad category for grassland, without distinguishing between intensively managed
grasslands and extensively managed grasslands, such as the mowed meadows from which
we sampled solitary bees [11,29]. Therefore, measuring aspects of ecosystem condition or
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use, such as grassland use intensity [52], might further improve the accuracy of species
distribution models. Thirdly, we did not explore how accurately satellite-based prediction
models can detect real changes in species distributions over time because we did not
implement a field survey design that was comprehensive enough to capture changes in
species ranges over time. However, we know from earlier studies that changes in land
cover that are detectable from space are direct drivers of species range shifts [53]. To this
end, DW is probably the most suitable Sentinel-based land cover dataset to quantify land
cover and use dynamics [54] because of its continuous updates and delivery and would
be well-suited to such dynamic species distribution modeling. This also strengthens the
call for investment in long-term biodiversity monitoring programs so that satellite-based
distribution models can be calibrated and validated with in situ data [55].

5. Conclusions

The proliferation of high-resolution earth observation data and derived land cover
products provides scope for mapping biodiversity distributions with models that are
both locally relevant for decision making and scalable to the globe. Here we found that
globally available Sentinel-based land cover maps can improve upon manually digitized
regional land cover maps for predicting the richness of solitary bee species in southern
Norway. The differences in predictive performance between DW, WC, and ELC10 were
marginal; however, at the landscape scale, the smaller minimum mapping units of WC and
ELC10 allow them to resolve smaller habitat patches, which are reflected in the landscape
variations in predicted species richness. Furthermore, the rich time series provided by
maps such as DW (from 2015 to present) offer unique opportunities to model short-term
changes in species distributions in response to land use changes if paired with in-situ
temporal monitoring data. We conclude that the use of satellite-derived land cover maps
can facilitate high-resolution species distribution models that can guide decision-making
relevant to landscape ecology. To this end, future modeling efforts should be aimed at
those species that perform key roles in ecosystems, are indicators of ecosystem status, and
support nature’s contribution to people.
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Abstract: Habitat suitability (HS) describes the ability of the habitat to support living organisms.
There are several approaches to estimate habitat suitability. These approaches are specific to a species
or habitat or estimate general HS broadly across multiple species or habitats. The objectives of the
study were to compare the approaches for estimating HS and to provide guidelines for choosing
an appropriate HS method for conservation. Three HS estimation methods were used. Method 1
scores the suitability based on the naturality of the habitat. Method 2 uses the average of HS values
found in the literature. Method 3 uses the species richness as an indicator for HS. The methods were
applied to a case study in the Choctawhatchee River Watershed. GIS applications were used to model
the suitability of the watershed. The advantages and disadvantages of the HS methods were then
summarized. The multiple HS maps created using the three methods display the suitability of the
watershed. The highest suitability occurred in the southern parts of the region. Finally, a decision
support tool was developed to help determine which approach to select based on the available data
and research goals.

Keywords: conservation; ecology; GIS; habitat suitability; indicators; land use/cover; spatial
data; watershed

1. Introduction

Habitat suitability (HS) describes a habitat’s ability to support a particular fish or
wildlife species [1,2]. HS relates to environmental variables such as vegetation to the
probability of a species’ occurrence [3,4]. A simple way to describe HS is to determine how
natural a habitat is [5]. The more a habitat resembles its natural state, the more suitable it is
for the species to live in it. It is important to study HS as it is used to characterize how ideal
a habitat is. Anthropogenic pressures on biodiversity such as urban growth and agriculture
are key factors that cause HS decline [6,7]. Efforts to limit anthropogenic impacts on
species and habitats can be strengthened by using tools for biodiversity monitoring. These
include the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, the
ecological niche model (ENM), and the habitat suitability index model (HSIM) [8,9].

Understanding of the interactions between species and their environment is needed to
determine the optimum habitat conditions. Indicators are powerful tools to represent the
complex interactions between multiple components of the environment in simple terms [10].
Living and nonliving components such as plant/organism growth or climate are important
in categorizing suitability [11]. Resources that a species needs to survive are often used as
indicators. Parameters such as vegetation density, the abundance of water, and sediment
characteristics also serve as indicators [12,13]. Other parameters such as road density [14]
and the shell dissolution of mollusks [15] can be used as indicators in HS. Sometimes, the
presence of a species can also be used as an indicator. For example, the presence of bird
species has been used as indicators of habitat structural components and complexity [16].
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Since HS is a measure of species–habitat interactions, mapping HS is useful in conservation
efforts. The consistent estimation of HS is necessary to create reliable maps [17].

In the past, approaches for estimating HS were either species-focused or habitat-
focused. HS is calculated based on the needs of individual species or species group in
the species-focused approach [3]. The habitat-focused approach considers the presence of
habitat components that may either be biotic or abiotic [18,19]. The different approaches
are chosen based on the research goals [20,21].

A habitat-focused approach is common for estimating suitability [22]. With the habitat-
focused approach, the HS index is calculated by dividing the current habitat conditions by
the optimum habitat conditions. This results in a value between 0 and 1. When a simulation
modeling framework is used, the index is the ratio of a model’s output compared to an
established standard of comparison or an optimum habitat condition. The comparison
standard is either (1) an assigned numerical value that corresponds with the qualitative
rankings (excellent = 4, average = 2, etc.); (2) a maximum regional value for models that
use defined units (productivity, population density, etc.); or (3) the maximum rank for
models that classify habitats hierarchically [1]. The denominators in all of these methods
are related to the optimum habitat conditions. Factors affecting the optimum habitat
conditions can be biotic (i.e., vegetation density and predation [2,23,24]) or abiotic (i.e.,
topography, water availability, soil characteristics, and temperature for soil systems and
sediment concentration, and dissolved oxygen for aquatic environments [12,25–28]). The
habitat is completely unsuitable when HS is characterized with a value of 0, while a value
of 1 represents the optimum conditions [29].

A species-focused approach is used when the goal is to conserve a certain species. An
example is the evaluation of habitat suitability based on the ability of each landscape to
provide the needs of song birds [19]. Alternatively, a habitat-focused approach is taken to
conserve a specific land use or land cover. For instance, water parameters such as water
presence frequency and water depth re used to estimate HS for the wetlands. Description
of lad use/land cover can be obtained in [30]. However, these approaches are very specific.
It is important to compare the results of different methods in any region.

Objective

The objective of this paper was to compare three methods for estimating the habitat
suitability and to develop a way to choose a method for estimating HS based on the
available data and research goals.

These methods were then applied in a case study in the Choctawhatchee River Water-
shed. The study watershed is a biodiversity hotspot that houses more species of trees than
any other forests in temperate North America [31].

2. Study Region, Materials, and Methods

2.1. Study Region

Figure 1 shows a map of the study region created using ArcMap® 10.4.1. The
Choctawhatchee River and Bay Watershed is an important location in the Southeast of the
United States. It is a biodiversity hotspot containing an abundance of native plant and
wildlife species as well as being a critical habitat for gulf sturgeon and Choctawhatchee
beach mice. Over 60% of the watershed is in Alabama, where there is a significant agricul-
ture component [32].

As of 2019, the land use in Choctawhatchee River Watershed is provided in
Figure 1 [33]. The region has high species richness when compared to the rest of the
United States [34].

2.2. Methodology

ArcMap 10.4.1 was used to analyze the datasets. Python programming was also used.
The libraries used were the Geospatial Data Abstraction Library (GDAL) 3.2.0 developed
by the Open Source Geospatial Foundation in Chicago, IL, USA; NumPy 1.19.2 created by
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Travis Oliphant in Provo, UT, USA; and Pandas 1.2.1 created by Wes McKinney in New
York City, NY, USA. Three methods of modeling HS were used. Spatial data were obtained
for LULC, species richness, and region extents. Table 1 lists the data and their sources.

 

Figure 1. Location of the Choctawhatchee River Watershed. (a) The species richness index of the
United States is shown as are where the watershed is in the United States, higher richness index
values are shown as red and lower values in blue. (b) A pie chart of the proportion of each LULC.
(c) The full extent of the watershed and the locations of the Choctawhatchee and Pea Rivers.

Table 1. The details of the spatial data used in the study.

Data Year Source Reference

National Land Cover Dataset
(NLCD) 2019 USGS [33]

Species Richness 2018 Florida International
University [34]

Choctawhatchee River
Watershed Extents 2016 USGS [35]

Southeast Plains Ecoregion extents 2017 EPA [36]

Eastern Temperate Forest
Ecoregion Extents 2018 EPA [37]

Method 1—Binary Method: Step 1: Download the Multi-Resolution Land Characteris-
tics Consortium (MRLC) LULC data [38]; the land use/land cover data from the National
Land Cover Dataset (NLCD) for the year 2019 and its legend were obtained [33]. Step 2:
Classify the natural and unnatural groups and assign index; agriculture and developed
land use classes were deemed unnatural, and the land cover classes open water, wetland,
grassland, shrubland, and forests were considered as natural. Step 3: Obtain the binary
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HS index; Unnatural LULC classes were assigned an HS index value of 0 and natural
LULC classes were given an HS index value of 1. Step 4: Create an index map (natural
and unnatural) where the LULC values were replaced with the corresponding HS index
values (0/1) to create an index map. The analysis involved using the following software:
ArcMap 10.4.1 (Clip tool from Raster Processing toolbox) and Python codes (Geospatial
Data Abstraction Library with Jupyter notebook).

Method 2—Literature Review: Step 1 was the same as in method 2. Step 2: A doc-
ument search was performed using Google Scholar (e.g., habitat suitability), which gave
500,000 plus results, and a more focused search using words in quotes, additional words
(e.g., “habitat suitability”, “InVEST”), and selected time-period (2010–2020) was carried out.
Priority was given to articles based on the following three criteria: (1) the full articles were
accessible; (2) the articles used a similar definition for habitat suitability; and (3) the articles
provided the numerical habitat suitability values for LULCs comparable to those found in
the study region. A total of 21 articles were retrieved. In Scholar search, InVEST, as an addi-
tional search term, was used in the search to narrow down the results in a systematic way.
Step 3: Obtaining HS index (between 0 and 1). The results of the search were summarized in
a table and graphs provided in the Results section. Habitat suitability values were organized
by the specific LULC. The LULC were further grouped into broad classifications according
to the LULC descriptions provided by the MRLC [39], for example, rivers, lakes, reservoirs,
and glaciers were grouped as simply “water”, while open forests, orchards, and native
forests were grouped as simply “forest”. When multiple values for a group were obtained
from the literature, the average values for suitability were calculated and used to create
the table. The box plot was created using Python. The HS vales were placed into single
column arrays for each LULC group. A box plot was then created for each LULC group and
displayed in the same figure. Step 4: Create an index map (natural and unnatural). The
LULC values between 0 and 1 were replaced with corresponding HS index values (0/1) to
create an index map. The analysis was carried out using the software described in Method 1.
A table (Table 2) lists the references for each land use/cover type along with the number
of data points obtained for them. The LULC values in the map clipped to the watershed’s
extents were replaced with the mean values obtained in the literature review.

Method 3—Species Richness Method: Step 1: Bring the datasets to uniform scales and
obtain the species richness data [34]. National Land Cover Data (NLCD) land use/land
cover map’s resolution (30 m × 30 m) were rescaled to species richness maps with a
10 km × 10 km resolution. ArcMap 10.4.1 software with the Resample tool using the
MAJORITY technique was used [40]. Step 2: Average the richness/land use. The major
LULC from ~111 pixels (30 m) now represent the LULC for the 10 km map. The richness
and LULC data were merged into one raster file by using the Combine ArcMap Spatial
Analysist tool to observe both the number of species and LULC for each pixel. Step 3:
Clip the watershed area. Shapefiles for the Choctawhatchee watershed (HUC 031402) and
the Southeast Plains and Eastern Temperate Forest ecoregions were obtained [35–37]. The
combined richness raster was clipped to the extent of each shapefile. Step 4: Estimate the
average richness value. The average species richness for each LULC was then calculated
for each region as well as the entire contiguous United States. Habitat suitability indices
were normalized using the species richness results by dividing the species richness of each
LULC by the highest species richness value for each region. If a 10 km grid cell for a forest
within the Southeast Plains has a richness value of 300 and the highest richness value in
that region is 600, the HS index would be 0.5 (300 divided by 600). Step 5: Mapping HS.
The LULC values in the original 30 m map were replaced with the corresponding habitat
suitability index values.

A table (Table 3) listing the total species richness, standard deviation, and count of
grid cells was created by importing the attribute tables of the species richness raster images
clipped to the extents of the Choctawhatchee River Watershed, Southeast Plains Ecoregion,
Eastern Temperate Forest Ecoregion, and the contiguous United States.
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3. Results

3.1. Method 1—Binary Method

A hypothesis map was created using the binary method where it was assumed that
developed lands such as urban and agriculture have a suitability index score of 0, and every
other landscape was assumed to have an index score of 1. The number of grid cells with a
value of 0 were counted and compared to the number of grid cells that had a value of 1.
Approximately 27.33% of the watershed had low suitability. The areas with low suitability
appeared near the middle and northern parts of the watershed. Most grid cells with zero
suitability occurred on the Alabama side of the watershed. Figure 2 displays the resulting
HS index map of the watershed.

 
Figure 2. The habitat suitability map of the Choctawhatchee Watershed using the binary method
(Method 1).

3.2. Method 2—Literature Review Method

A total of 21 studies were analyzed. Of the 21, 15 studies originated in China [9,41–54],
two studies were from Ethiopia [29,55], and only one study each originated in India [56],
Indonesia [57], Spain [58], and the United States [19]. A total of 36 values were used to
calculate the average suitability for water, 17 were used for bare lands, 30 were used for
grasslands, ten were used for shrub lands, 36 values were used for forests, 18 were used for
wetlands, 24 were used for agricultural, and 15 were used for developed lands. The habitat
with the highest mean value was forest land. Next was shrubland, followed by water and
wetlands that had nearly the same average suitability. Developed lands predictably had
the lowest mean suitability.

Table 2 breaks down the broad land use/cover classes into specific types and lists the
references that site each LULC. The number of values obtained for each LULC type is listed,
along with the average suitability. Different LULC within the same class sometimes had
very different suitability values. For instance, raw land and beaches were both considered
bare land, but had an HS of 0.05 and 0.9, respectively. The overall average HS for each
broad LULC class is also listed.
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Table 2. The average habitat suitability for each land use/cover type obtained from the literature review.

LULC Class Types References Data Points Average HS

Water

Water [19,29,41,42,51,53–56] 10 0.75
Rivers [9,44,46–48] 6 0.88
Lakes [9,44–47,50,54] 6 0.98
Pond [9] 1 0.9

Reservoirs [44,45,47,50,58] 6 0.83
Shallows [44] 1 0.6
Streams [58] 4 0.73

Channels [45] 1 1
Canals [50] 1 0

Overall 0.807

Bare Land

Bare Land [19,29,50,56] 4 0.125
Dry Land [43,44,47] 7 0.243

Desert [49] 1 0.1
Raw [54] 2 0.05

Unused Land [41,48] 2 0.255
Beach [9] 1 0.9

Overall 0.224

Grassland

Grass [9,19,42–45,47–49,51,53–
55,58] 29 0.727

Meadow [41] 1 1

Overall 0.736

Shrub Land

Shrub [9,29,43–45,50,51,54,58] 9 0.84

Bush [48] 1 0.8

Overall 0.837

Forest

Forest [9,19,29,41–
43,45,47,49,51–53,57,58] 25 0.931

Woodland [9,29,44,47,50] 8 0.844

Orchard [43,52] 2 0.25

Forestry [48] 1 0.9

Overall 0.873

Wetland

Wetland [9,19,45,49,51,54,56] 9 0.844

Marsh [43,46,47] 5 0.74

Mudflat [46] 1 0.8

Bottom Land [44] 1 0.6

Mangrove [57] 1 0.8

Swampy Bush [57] 1 1

Overall 0.806

Agriculture

Agricultural
land [19,41,58] 6 0.375

Farmland [42,53,55,57] 5 0.4

Cropland [29,45,48,54] 4 0.363

Pasture [29] 1 0.5

Irrigable Land [43,54] 2 0.35

Paddy Field [9,43,44,47,50] 6 0.267

Overall 0.354
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Table 2. Cont.

LULC Class Types References Data Points Average HS

Developed Land

Built-up Land [29,42,53] 3 0

Urban [19,41,48,58] 5 0.03

Suburban [54] 1 0

Construction [54] 1 0

Rural
Residence [53] 1 0

Roads [46,54] 2 0

Infrastructure [54] 1 0

Transportation [54] 1 0

Overall 0.01

The landscapes with the largest range of suitability values were water habitats, which
had values ranging from 0 to 1. This was followed by forest habitats with values ranging
from 0.1 to 1. The land use with the lowest variability was developed land, which ranged
from 0 to 0.15, with most studies reporting the suitability to be 0. The median and average
values were similar for grasslands, shrub lands, wetlands, and developed lands. Median
and average values for the remaining landscapes were not as close with averages falling
well below the median value, except for bare lands, where the average was higher than the
median. This is displayed in the box plots of Figure 3. The bold line represents the median,
the diamond marker represents the mean, and the circles represent the outliers.

Figure 3. The suitability box plots for each LULC class. The whiskers indicate 1.5 times the interquar-
tile range values. The bold line represents the median and the diamond shaped markers represent
the mean. The circles are the outliers.

Figure 4 displays a HS map of the watershed based on the average values derived
from the literature. The Alabama side of the watershed in the North generally had a lower
HS when compared to the Florida side in the South. Urban areas had the lowest HS at
0.012. Urban land uses made up 6.80% of the watershed. Bare land had the second lowest
HS at 0.224 and made up 0.12% of the watershed. The habitat with the third lowest HS
was agriculture, having a HS near the median at 0.354. Agriculture made up 21.26% of the
watershed. Overall, about 28% of the watershed had a relatively low HS.
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Figure 4. The habitat suitability map of the Choctawhatchee Watershed created using the results of
the literature review.

3.3. Method 3—Species Richness Method

The area of interest was the Choctawhatchee River and Bay Watershed located in the
Southeast United States. The watershed was within the boundaries of the Southeastern Plains
ecoregion, which was in the Eastern Temperate Forest ecoregion that encompassed most of
the Eastern United States. A visual representation of these regions is shown in Figure 5.

 

Figure 5. A location map with boundaries of the Choctawhatchee River Watershed, Southeastern
Plains Ecoregion, and Eastern Temperate Forest Ecoregion overlaid in the United States.

254



Land 2022, 11, 1754

Table 3 lists the average total richness and standard deviation values for each LULC.
The number of pixels is also listed. Each pixel represents 100 square kilometers. The
watershed had higher values than the averages at broader levels. Since the LULC raster
was resampled from 30 m to 10,000 m, there were no pixels where high intensity developed
land, barren land, or herbaceous wetland were the majority LULC. The values for these
LULCs were estimated based on the most similar region (Southeast Plains). The trends
also did not match across levels. Richness was high in the medium intensity developed
land within the watershed, but richness generally decreased as the intensity (amount
of impervious surface) increased. Broad generalizations might not be accurate when
assessing a watershed. A visual representation of Table 3 can be seen in Figure S3 in the
Supplementary Materials.

Table 3. The average and standard deviation of the species richness for each land use/cover type.

Contiguous USA
Eastern Temperate

Forest
Southeastern Plains

Choctawhatchee River
Watershed

LULC Mean Std Pixels Mean Std Pixels Mean Std Pixels Mean Std Pixels

Open Water 316.84 52.56 2246 345.1 40.324 1105 383.96 25.846 94 417.56 19.90 9

Developed,
Open Space 335.01 46.072 2427 353.91 34.221 1671 390.16 28.627 247 414.72 18.34 19

Developed,
Low Intensity 333.75 40.63 1126 348.23 31.222 753 381.41 23.211 79 415.75 14.66 4

Developed,
Medium
Intensity

331.57 41.125 402 349.55 34.137 212 377.25 22.493 24 432 0 1

Developed,
High Intensity 339.32 40.082 95 350.31 33.576 52 384.75 22.833 8 ND ND ND

Barren Land 262.92 37.884 768 355.89 36.131 53 391.5 26.588 10 ND ND ND

Deciduous
Forest 329.65 30.388 9441 340.77 24.622 6931 373.61 20.356 389 404.31 7.11 16

Evergreen
Forest 311.82 54.033 10,764 384.92 34.983 2999 401.53 26.248 1069 424.55 18.76 126

Mixed Forest 328.44 40.853 1976 345.5 35.622 1358 385.3 22.14 247 403.06 3.84 16

Shrub Land 274.71 40.996 17,894 375.09 37.557 244 404.89 28.416 76 428.77 22.30 13

Grassland 251.83 38.533 10,275 368.41 44.047 146 399.43 31.225 40 450.33 3.21 3

Pasture 331.45 40.55 4099 346.19 28.541 2682 389.56 25.549 192 408.1 6.97 21

Cropland 279.5 50.227 13,052 327.76 32.584 4941 392.03 22.139 393 425.3 9.71 20

Woody
Wetlands 352.32 54.173 2463 377.99 43.896 1707 397.48 24.934 441 431.61 17.34 33

Herbaceous
Wetland 305.69 49.801 429 333.04 50.352 135 402.2 29.072 5 ND ND ND

Figure 6 shows the resulting maps. The lowest index value when using the average
species index for the Southeast Plains ecoregion was close to 1, meaning that there was
very little variability in the values. The variability increased as the sample size used to
calculate the average increased. The lowest HS values occurred the most in the northern
parts of the watershed in the Southeastern Plains and Eastern Temperate Forest maps. The
map derived from using the entire contiguous United States did not seem to have a pattern
aside from the highest suitability occurring in wetlands along the streams of the watershed.

255



Land 2022, 11, 1754

Figure 6. The habitat suitability maps of the Choctawhatchee Watershed based on species richness
derived from averaging the values within regions of varying sizes. Maps created using the average
values from grid cells in the (a) Southeastern Plains ecoregion; (b) Eastern Temperate Forest ecoregion;
(c) contiguous USA.

3.4. Comparison of the Methods

The average HS values of each LULC is shown in Figure 7. The landscapes with
consistently high HS values, regardless of method, are open water, forests, and wetlands.
The most apparent differences in HS were seen with agriculture and urbanization. These
two land uses were low when using the binary and literature review methods. However,
HS was high for these land uses when using the species richness data.

 

Figure 7. The habitat suitability index for the various land use/cover obtained.
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The binary method is the simplest method. It only requires a list of the habitats present in
a region and an understanding of which ones are natural or unnatural. The literature review
method requires more research than the other methods. This method is also heavily reliant
on values from previous works. The obtained values are assumed to be correct. The species
richness methods require species count data. The completeness of the data has a large impact
on the outcome, so the values will be inaccurate if many species are not accounted for.

3.5. Choosing a Method

Assessing what data are available is vital when deciding on a method. The natu-
ral/unnatural binary method is used when minimum data are available. If the habitats
are known, it is possible to determine whether the habitat is natural or unnatural. A list
of habitats is derived from the literature or datasets. Mapping HS requires spatial data.
Research goals may require the HS values to be more exact. Using 0 and 1 for unnatural
and natural, respectively, would be too broad. Expressing variation between the HS of
different habitats requires expert knowledge of the target region. The literature review
method is used when there is no access to expert knowledge. A literature review is used to
synthesize the results of multiple studies [59]. Existing literature is needed to perform a
literature review and gathering results from similar studies is preferred [60]. HS indicators
such as species richness are used in a data driven approach. Using an indicator requires
available data for the study region or a similar region. Indicators that are used for this are
biophysical, socio-economic, or management attributes [61]. The characteristics of each
landscape were studied to determine an indicator that could be used to model the suitabil-
ity across all landscapes, which included the biotic and abiotic components of deciduous
forests [62], evergreen forests [63], mixed forests [64,65], wetlands [66,67], shrub lands [68],
grasslands [69,70], and bare lands [71,72]. Species richness was used as an indicator to
estimate the overall health of any habitat and to identify priority conservation areas [73–75].

Figure 8 summarizes when to use each method and lists the information required
to perform them. The figure indicates the specificity and complexity of the methods in
relation to each other. The binary method is the simplest and least specific of the methods.
Next is the literature review method, followed by the species richness method, the most
complex and specific method of the three.

Figure 8. A comparison of the three methods. Method selection depends on the available data,
complexity level, and research goals.

4. Discussion

The results revealed that there were significant differences in the habitat suitability
scores when using the different methods. However, the Florida side of the watershed
consistently had a higher average suitability than the Alabama side.

4.1. Assumptions and Limitations in the Case Study

The three methods to estimate habitat suitability are the natural/unnatural binary
method, a literature review of published works, and the indicator method using species
richness. The binary method is the simplest method since calculations are not required. This
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method requires the knowledge of the landscapes present in the area of interest. Some land
covers such as forests and wetlands could be managed and therefore considered unnatural.
It was assumed that the only unnatural LULC were urban areas, cropland, and pastures. The
literature review resulted in a map that was similar to the binary map. The key difference
was the absence of 0 or 1 values in the map based on the literature review. Bare land also
had an index value that was less than agriculture. There was also some variability between
the index values of the urban and agricultural lands instead of both being assumed to be
equally unsuitable. Generally, the areas that had the lowest suitability were nearly the same.

The map of species richness (Figure 1a) showed that the index values were all close
to one. This is likely due to the region being a biodiversity hotspot [31,76]. During the
development of the three maps using the species richness data in conjunction with LULC,
the species richness values were higher in the Choctawhatchee River Watershed than in
the rest of the United States due to (1) the watershed being more diverse than average or
(2) there was a smaller sample size, which resulted in higher average values. Furthermore,
there were not enough data points within the Choctawhatchee River Watershed to calculate
the average species richness for every LULC. Using the average richness values resulted in
maps dissimilar to each other, aside from the values having low variability compared to
the results of the literature review. These maps also did not resemble the hypothesis binary
map. Developed land was among the land uses with the highest suitability when using
the average based on the contiguous United States. However, developed land is usually
thought to be 0 or very close to it [29,41,42,46,48,53,54,58]. This could either mean that the
species richness is a more accurate indicator of HS than averaging the results from past
studies, or that the species richness was not adequate on its own to estimate HS. It could
also mean that the species richness dataset is too limited.

A study in another region would use the species richness data available in that region.
If no data are available, the values from a nearby region are useable. A literature review can
also be used to estimate the values. The number of species in an area could also be counted
manually when working in a small area. It is also possible to use the presence of one
species as an indicator of the species richness of another species based on how important
the indicator species is to the diversity of a habitat [77–79].

4.2. Advantages and Limitations of the Methods Used

The advantage of the binary method (Method 1) is that it can be applied in the absence
of data or expert knowledge. Its limitation is that it is broad and does not account for
the differences between LULCs. Agriculture (both cropland and pastures) and all other
different types of developed lands are assumed to have the same suitability. It is possible
that agricultural lands are more suitable than developed lands because they are not entirely
unnatural. Open space also may be more suitable than high intensity developed lands.

The advantage of obtaining HS values from literature (Method 2) is that this method
does not require expert knowledge. The more variable values are more descriptive than
the simple binary method. The assumption is that the values used in the literature are
accurate. However, the accuracy of the values changes when using an average of the values.
This method is limited by the publications available, which requires other scientists and
researchers to have conducted studies beforehand. These HS values come from the literature
originating in various regions due to the lack of studies conducted in the Choctawhatchee
River Watershed. This may be a potential advantage as HS can be estimated in a region
where no previous studies are available. Studies based on regions that are unlike the area of
interest cause this method to have the same disadvantage as the binary method (i.e., LULCs
are given the same suitability values despite being different). This is because the values for
all types of similar habitats are used to calculate an average. Every type of developed land,
agricultural land, forest, and wetland is assumed to have the same suitability, which may
not be accurate. There are also habitats that have a wide range of values. Both beaches and
deserts are bare land. Beaches have high HS and deserts have low HS. In this case, using
the average may not be adequate to account for the range in values.
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Furthermore, the HS values were the average value from 23 articles. The limitation of
this method is that the average value is subjective to the literature used.

The species richness method (Method 3) presents a way to estimate the general habitat
suitability, whereas other methods estimate the suitability for a single species, a species
group, or a specific habitat. This method does not require knowledge of the individual
species, the present, or optimum habitat conditions. The binary method where natural is
suitable, and unnatural is not suitable, is currently how HS is modeled in cases where there
is no specific habitat data or when the goal is to estimate HS in general [5].

The main disadvantage is that the results of these methods are sensitive to the amount
of data that is present. There is currently a lack of wildlife population data in most locations.
The database used in this study only presented the species richness for the vertebrates
(mammals, birds, reptiles, amphibians, and fish) and trees. The available data did not
cover all macro-organisms. There was no species richness data for invertebrates such as
arthropods and mollusks, non-tree plant species such as grasses and shrubs, or fungi. The
total population of each species group was also unavailable. The details found in Table S3
in the Supplementary Materials cannot be utilized given the obtainable data.

The resolution of the spatial data also influences the accuracy. Accuracy decreases as
the grid cell size increases because it becomes harder to account for the evenness of a species.
For instance, a grid cell can represent a hectare. Most of the species might live in a section
that is a tenth of a hectare. However, all of the species were counted to obtain a total value
for the entire hectare. Smaller grid cell sizes allowed for more precise species mapping.

Using species richness by itself is not adequate when estimating the habitat suitability.
When looking at suitability maps made from individual species group richness

(Figure 9), tree richness had the highest range of index values. Despite the index val-
ues, the range of bird species was the highest, with the lowest being three species and
the highest being 249 species. The distribution of values in the total richness index map
(Figure 1a) was most influenced by the number of trees and birds. This means that areas
in the Southeast United States and along the coasts had the highest biodiversity. The
distribution of species did not seem to be driven by general land use types, but rather a
combination of climate, terrain, and other factors.

Figure 9. The national HS maps based on 1. tree richness, 2. mammal richness, 3. bird richness,
4. reptile richness, and 5. amphibian richness. Higher species richness values are shown as red and
lower values in blue.
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The advantage of relating the species richness to specific land uses is that it gives an
extra dimension to maps in comparison to the existing methods that estimate HS using
LULC alone. This method also grants the ability to determine the typical suitability of a
habitat based on data. As new data become available, HS can be adjusted to reflect the
changes in biodiversity [80–82]. Being based on observable data can be an advantage and a
disadvantage for the method.

The HS estimation methods are based entirely on the number of species, assuming
that the species are distributed independently of spatial evenness. Doing so increased the
possibility of the inaccuracy in the results. In addition, functional species such as predators,
raptors, or primary productivity as indicators of HS could be used as relevant factors for
the study. Validating theoretical concepts is a challenge because there are not observations
to validate the model [83,84]. These apply to HS, also a theoretical concept.

4.3. Implications for Conservation

The spatial representation of HS is a good tool for supplementing conservation strate-
gies. Biodiversity maps are used to protect biodiversity in many conservation programs [85].
Studies have shown a link between habitat suitability and wildlife population viability for
a variety of species [86–89]. The binary method of estimating HS may not be a good tool for
biodiversity conservation as it is not a function of biodiversity or habitat conditions directly,
but it does show where human land uses occur [5]. The results of the literature review
provide a good idea of which habitats are the most suitable. The most suitable habitats can
then be studied to determine the species viability [90]. The HS maps where suitability is an
index of species richness are direct estimations of biodiversity. These maps can be used to
rank habitats in an area to determine which habitats are the most viable and which habitats
potentially need conservation attention.

HS are linked both directly and indirectly to almost all the 17 Sustainability Develop-
ment Goals (SDGs). For example, HS is important for water and land resource conservation,
which are related to SDG-14 (life below water) and SDG-15 (life on land). HS is indirectly
related to SDG-6 (clean water and sanitation) because it is an integral part of water integrity,
which is influenced by the physical characteristics of the waterbodies (physical integrity)
and impacts the life below water (biological integrity) [91,92].

5. Conclusions

The objective was to compare the three approaches for estimating habitat suitability,
summarize the advantages and disadvantages of these methods, and provide guidelines
for selecting a HS method for conservation. The study focuses on the Choctawhatchee
River Watershed (in Alabama and Florida, USA). The three habitat suitability estimation
methods were as follows. Method 1 provides a suitability score based on the naturality of
the habitat. Method 2 uses the average values from the literature with similar definitions
for habitat suitability. Method 3 uses species richness. HS estimation is approachable from
the perspective of a single species or species group, from a habitat-focused standpoint, or
with the goal of estimating the suitability for wildlife in general. These approaches can
be too specific or too broad. Estimating HS using species richness data is more specific
than the existing binary method while being broad enough to use when modeling large
multi-habitat areas such as a watershed. If complete species richness data are available, this
method is advantageous. Using a more complete dataset may reveal that natural habitats
are more suitable than developed lands. It is therefore important to gather more data before
using species richness as an indicator.

In choosing a method, approaches can be chosen after determining what types of data
are feasibly obtainable and based on the research goals. Things to consider are the specificity
of the method, the accuracy of the data, and the assumptions made. Different methods
change how conservation strategies are chosen. Broad methods assist in identifying how
natural each habitat is. Specific methods assist in identifying the species or resource
distribution in each habitat [74]. It is important to consider conservation goals when
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choosing a method. Using a method that includes one or multiple HS indicators such as
species diversity, the presence of invasive species, and/or water quality makes it easier to
decide on which conservation measures to take [75,93].

Steps should be taken in the future to improve HS mapping. This includes using
models and techniques such as machine learning to predict species richness based on
inventory data for terrestrial species [94,95] and aquatic species [96]. Modeling the change
in HS in real-time is also a possibility [97]. These methods are currently not being used
to produce maps for habitat conservation or the general public. Using functional species
or primary productivity as indicators of HS could be used as relevant factors for study
in the future. Habitat suitability modeling will become accessible and more evidence-
based when accurate and complete species maps become obtainable. This will make it
possible to consistently identify habitats to apply conservation actions. Currently, it is
best to have expert knowledge of the region to estimate the suitability of the habitats
or use the literature review carried out in this study. If this is not an option, using the
natural/unnatural approach is the next best method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11101754/s1, Figure S1: Venn diagram comparing decid-
uous forest, evergreen forest, and wetland habitats; Figure S2: Venn diagram comparing shrub
land, grassland, and bare land habitats. 1 Steppe grasslands have very fertile soils. 2 Savannah
grasslands have sandy/stony soil; Figure S3: Average terrestrial species richness for each LULC
class.; Figure S4: Venn diagram that compares the Brillouin, Shannon–Wiener, and Hurlbert biodi-
versity index equations.; Table S1: Potential habitat conditions and components: A—all; B—bare
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Abstract: The evaluation and monitoring of the ecological environment quality of heritage sites can
help provide sustainable and healthy development strategies for heritage management organizations.
In this study, an ecological evaluation model based on the remote sensing ecological index (RSEI) was
used to measure the ecological environment of the Shibing Karst World Heritage Site and its buffer
zone and the Moran index and geographic probe model were combined to quantify the ecological
environment. The results show that, (1) from 2013 to 2020, the ecological environment quality of the
heritage site and buffer zone was moderate to high and the mean RSEI values in the three periods
studied were 0.720, 0.723 and 0.742, showing an overall upward and improving trend; (2) ecological
environment quality grades of moderate and good accounted for more than 70% of the area, the
distribution pattern of ecological environment quality is significantly better at the heritage site than
in the buffer zone and the southwest is better than the northeast; (3) the Moran index increased from
0.600 in 2013 to 0.661 in 2020, residing in the first and third quadrants, respectively, with significantly
spatial aggregation; and (4) greenness and humidity were shown to play a positive feedback role
on the ecological environment quality and the spatial influence ability of humidity and dryness
was greater. Overall, the RSEI is an effective method of evaluating and monitoring the ecological
environment quality of heritage sites, the ecological environment quality of the Karst heritage site in
Shibing is in a steady state of improvement and the relevant departments of heritage conservation
need to further coordinate the relationship between conservation and development to promote the
sustainable development of the heritage site and provide effective solutions for the monitoring of
other Karst World Heritage sites.

Keywords: remote sensing; ecological environment; world natural neritage; Shibing Karst; South
China Karst

1. Introduction

To protect the common natural and cultural heritage of mankind, UNESCO adopted
the Convention Concerning the Protection of the World Culture and Natural Heritage at its
17th General Conference, held at its headquarters in Paris, in November 1972 and initiated
the organization of the World Heritage Organization in 1976 [1]. World Heritage refers to
cultural and natural heritage with outstanding value that is a precious treasure of nature
and a symbol of human history, culture and civilization, representing the most valuable
cultural and natural landscapes and the common wealth of mankind [2]. In many countries
around the world, World Heritage Sites have been considered representatives of national
culture and even as symbols of the country [3,4]; however, in recent years, World Natural
Heritage Sites (WNHs) have suffered extensive damage due to earthquakes, tsunamis, soil
erosion, human activities, etc. [5,6]. To date, 17 World Natural Heritage (WNH) properties
have been inscribed on the List of World Heritage in Danger.
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Karst is one of the most remarkable landscapes in the world, mainly consisting of spe-
cial topography and associated ecosystems developed on carbonate rocks, characterized by
vadose flows, caves, dark rivers, canyons, depressions and conical and towering peaks [7].
China is one of the countries with the most extensive karst distribution in the world, with
1.25 million km2 of carbonate rock outcrops [8] accounting for 13% of the total land area of
China. The “South China Karst” is a series of heritage sites, the first phase of which consists
of three constituent sites: Shilin Karst (Yunnan), Libo Karst (Guizhou) and Wulong Karst
(Chongqing), which were inscribed on the World Heritage List in 2007 for meeting World
Heritage criteria (vii) and (viii) [9]. The second phase of heritage sites consists of Guilin
Karst (Guangxi), Shibing Karst (Guizhou) and Jinfo Mountain Karst (Chongqing), which
were inscribed on the World Heritage List in 2014 for meeting World Heritage criteria (vii)
and (viii). As karst areas are characterized by soil vulnerability, hydrological vulnerability,
vegetation vulnerability and human vulnerability [10], it is necessary to monitor them
regularly and to protect the sustainability of karst WNHs.

To protect World Heritage properties, the World Heritage Centre developed a program
of periodic monitoring reports, conservation status reports, etc., in the 1970s to investigate
and track the health of natural World Heritage properties [11]. Monitoring is the process
of collecting information, analyzing data [12] and subsequently using the information to
assess the status, threat factors and severity of resources [13]. Current research applications
to monitor ecological quality through integrated survey data by remote sensing [14], PSR
models [15], urbanization factors [16] and natural succession of the landscape [17] are
also common. However, in the process of monitoring heritage sites, it is important to
consider human and financial constraints and to choose an appropriate strategy. With
the development of remote sensing science, multi-source remote sensing technology is
frequently applied in the monitoring of WNHs [18], especially the combination of GIS
and remote sensing technology, which enables researchers and managers of heritage sites
to effectively and reliably monitor the ecological environment quality [19,20]. Currently,
one method for measuring ecological quality is single-factor change analysis, including
analysis of land use change [21,22], NPP [23] and eco-efficiency change [24], as well as other
factor changes closely related to the ecological environment. Another method is integrated
multi-factor change analysis, which is more comprehensive and accurate compared with
single-factor analysis, and scholars have proposed various evaluation index systems for
this purpose [25,26]. Xu Hanqiu et al. [27] proposed a pure remote sensing-driven Remote
Sensing based Ecological Index (RSEI) to reflect the ecological status comprehensively,
which was normalized and subjected to principal component analysis from four aspects:
greenness NDVI, heat LST, humidity WET and dryness NDISI, to achieve remote sensing
ecological status evaluation. Subsequently, several scholars have conducted practical
studies in areas such as Bayinbrook WNHs and Karajun-Kurdening WNHs in Xinjiang,
China [28]. Although this method has been successfully applied in different regions, no
remote sensing ecological evaluation study on karst WNHs have been conducted.

As a typical representative of dolomite karst landscapes, this study uses Landsat
remote sensing images as the data source, explores the characteristics of ecological en-
vironment quality changes in the heritage site by constructing a RSEI model and using
principal component analysis, Moran index [29] and geographic probe, further analyzes the
driving factors of its ecological environment changes and provides a reference basis for the
ecological environmental protection and sustainable development of karst heritage sites.

2. Materials and Methods

2.1. Study Area

Shibing Karst WNHs is located at 108◦01′36′′–108◦10′52′′ E, 27◦13′56′′–27◦04′51′′ N
in Shibing County, Guizhou Province. The average elevation is 912 m (ranging from 600
to 1250 m). It is located on the slope of the overlap between the mountains of Qianzhong
and the hills of western Hunan (Figure 1). It has a typical and complete dolomite karst
landscape, which is deeply cut by rivers and has a surface form of crested canyons and
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crested valleys. The heritage site represents continental tropical–subtropical dolomite karst
geological evolution and bio-ecological processes and is an ideal place and natural test site
for the study of dolomite karst forest vegetation.

Figure 1. Location of the study area.

2.2. Data Source and Pre-Processing

The image data used for this study were Landsat 8 OLI remote sensing images
of the Shibing Karst WNHs from 2013 to 2020, which are available through the USGS
(https://earthexplorer.usgs.gov/; last accessed on 12 October 2022) and Geospatial Data
Cloud (http://www.gscloud.cn/; last accessed on 12 October 2022). The image data are
available for free. The acquired images were all in the third quarter of the year and cloud-
free in the study area and the image quality was good. The data are preprocessed with
radiometric calibration, atmospheric correction, geometric correction, image mosaic, image
alignment, etc.

2.3. Methodology
2.3.1. Ecological Indicators Extracted

RSEI is a new ecological index that uses multi-source remote sensing data and in-
tegrates several natural factors as the main driving factors to monitor and evaluate the
ecological environment quality of a certain area, which has the characteristics of short cycle
time and wide application when compared with the code EI index and complements the
EI index well. The index couples four quantifiable indexes, namely, greenness, humidity,
dryness and heat, and is constructed using a principal component analysis (PCA), which
can quickly evaluate the ecological environment quality for a certain study area.

Greenness. The Normalized Difference Vegetation Index (NDVI) is one of the best
indicators of healthy vegetation growth, vegetation distribution and vegetation density
distribution and has the following formula [30,31]:

NDVI =
ρ4 − ρ3

ρ4 + ρ3
(1)
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Humidity. The wetness component of the tasseled cap transformation (WET) com-
ponent reflects the moisture content of water bodies, soil and vegetation and is mainly
obtained from the remote sensing tassel cap transformation.

WETOLT = 0.1511ρ1 + 0.1973ρ2 + 0.3283ρ3 + 0.3407ρ4 − 0.7117ρ5 − 0.4559ρ6 (2)

Dryness. The degree of soil drying is an important factor that affects the ecological
environment and is positively related to it [32]. However, in practice, the presence of certain
building sites in the area is also an important factor affecting the ecological environment.
Therefore, the Normalized Difference Imperviousness and Soil Index (NDISI) is synthesized
using both the bare soil index (SI) and the Impervious Built-up Index (IBI).

NDISI =
SI + IBI

2
(3)

SI =
(ρ3 + ρ5)− (ρ1 + ρ4)

(ρ3 + ρ5) + (ρ1 + ρ4)
(4)

IBI =
2ρ5/(ρ5 + ρ4)− [ρ4/(ρ4 + ρ3) + ρ2/(ρ2 + ρ5)]

2ρ5/(ρ5 + ρ4) + [ρ4/(ρ4 + ρ3) + ρ2/(ρ2 + ρ5)]
(5)

Heat. Land surface temperatures (LST) were calculated using the Landsat user manual
model [33] and the surface temperature was chosen to represent the heat index.

Lρ =
[
εP(Ts) + (1 − ε)L↓

]
τ + L↑ (6)

P(Ts) =
Lρ − L↑ − τ(1 − ε)L↓

τε
(7)

Ts =
K2

Ln[K1/P(TS) + 1]
(8)

In the equation, Lρ is the thermal infrared radiance brightness value; ε is the surface-
specific emissivity; Ts is the real surface temperature; and k is the calibration parameter.

Construction of RSEI. The above four indicators were standardized in order to facilitate
comparisons under the same system and the standardization formula was as follows:

NIi =
(Ii − Imin)

(Imax − Imin)
(9)

where NIi is the index value after the normalization of an image element; Ii is the DN value
of the index at an image element i; Imax is the maximum value of the index; and Imin is the
minimum value of the index.

The four standardized images were then synthesized and the four indicators were
coupled using principal component analysis (PCA), a multidimensional data compression
technique that selects a few important variables via the orthogonal linear transformation
of multiple variables that has the advantages of integrating the weights of each indicator,
avoiding human determination and automatically and objectively determining each indica-
tor based on the nature of the data themselves and the contribution of each indicator to
each principal component. The following equation was used for the initial RSEI calculation:

RSEI = 1 − PCA[ f (NDVI, WET, NDBSI, LST)] (10)

Similarly, the calculated RSEI values were standardized to obtain the final RSEI.

2.3.2. Exploratory Spatial Data Analysis

The first law of geography states that the correlation between features is related to
distance and, in general, the closer the distance, the greater the correlation between features;
the farther the distance, the greater the dissimilarity between features [34]; therefore, the

270



Land 2023, 12, 184

law of spatial correlation is often used in spatiotemporal evolution studies [35] and the
global Moran’s I index is used to express the global spatial autocorrelation.

I =

n
∑

i=1

n
∑

i=1
ωij(xi − x)

(
xj − x

)
S2

n
∑

i=1

n
∑

j=1
ωij

(11)

S2 =
1
n∑(xi − x)2 (12)

where I is the global Moran’s I index with a value range of (−1, 1), I < 0 indicates a negative
correlation and I > 0 indicates a positive correlation; ωij is the weighting coefficient; and Xi
and Xj are the remotely sensed ecological indices at i and j in the study area, respectively.

Local spatial autocorrelation in terms of local Moran’s I index:

Ii =
(xi − x)

s2 ∑
j

ωij
(
xj − x

)
(13)

2.3.3. Geographical Detector

A geographic detector is a statistical method that detects spatial differentiation and
reveal the driving forces behind it. It is mainly used to analyze the interaction between
multiple factors [36] and the analysis of spatial differences in regional variables, such as
changes in spatial patterns. A model consists of four main detectors: the divergence and
factor detector, interaction, risk and ecological detector.

Divergence and factor detection. This is mainly used to detect the spatial heterogeneity
of the attributes and the ability of the drivers to explain the RSEI attributes.

q = 1 − 1
Nσ2

L

∑
h=1

Nhσ2
h (14)

where q is the explanatory power of an influencing factor on RSEI, which takes values in the
range [0, 1]—the larger the value, the stronger the explanatory power; h is the sub-region
of the image factor; L is the number of grades and classifications of RSEI and the influence
factor; Nh and N are the numbers of units in different grades of the region and the whole
region, respectively; σ2

h and σ2 is the variance of RSEI in different grades of the region and
the whole region.

Risk Area Detection. This is mainly used to determine whether there is a significant
difference in the mean values of attributes between two sub-regions using the t-statistic test.

tyh=1−yh=2
=

Yh=1 − Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

]1/2 (15)

where Yh=i denotes the mean value of the attributes in subregion h, nh denotes the number
of samples in subregion h and Var indicates the variance. If H0 is rejected at the confidence
level, there is a significant difference in the mean values of the attributes between the two
sub-regions.

2.3.4. Processing Flow

A flow chart of the ecological environment dynamic monitoring and driver analysis is
shown in Figure 2.
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Figure 2. Methodological framework for the ecological quality analysis of the Shibing Karst.

3. Results

3.1. Characteristics of the Ecological Environment

In a principal component analysis, the principal component is a linear combination of
individual indicators and the weights of the indicators are the eigenvectors. These indicate
the contribution of each indicator to the principal component and determine the actual
significance of the principal component. The four normalized indicators were analyzed
using the principal component analysis module in ENVI. The eigenvalues and contribution
rates of the principal components were obtained to demonstrate the applicability of RSEI
in karst heritage sites (Table 1). The results showed that PC1 had the largest eigenvalues
among the four PCs in the study years, with a proportion of 80–87%, indicating that PC1
collected the most information on the variability of the four indicators compared to PC2,
PC3 and PC4. Therefore, all four indicator variables are represented by PC1.

Table 1. Results of principal component analysis.

Year PC1 PC2 PC3 PC4

2013
Eigenvalues/λ 0.012 0.002 0.001 0.000

Contribution Ratio/% 80.21% 11.51% 7.81% 0.47%

2016
Eigenvalues/λ 0.660 0.001 0.001 0.0001

Contribution Ratio/% 87.42% 7.9% 3.46% 1.22%

2020
Eigenvalues/λ 0.008 0.002 0.001 0.000

Contribution Ratio/% 80.56% 10.94% 6.17% 2.33%

Table 2 provides the mean values of RSEI, which range from 0.720 to 0.742 (correspond-
ing to level 4). This indicates that the overall ecological quality of Shibing karst improved
during the study period. The mean values of the four indicators during the study period
are also provided. Over all four study years, WET, which contributed the most to PC1,
increased by 18.8%, from 0.753 to 0.895 and NDVI increased by 0.056 (7.2%). Of the other
two indicators, NDISI decreased by 60.7% and LST increased by 7.5%. The increases in
NDVI and WET and the decreases in NDISI and LST can be offset by an increase in RSEI by
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3.1% over the study period. Together, the four indicators of RSEI produce a quantitative
signal of response to ecological stressors. The strength of RSEI lies not only in its ability to
provide a specific area final score but also in its interpretation of the scores of four indica-
tors representing specific spatial characteristics of ecological states. Thus, as an ecological
quality evaluation indicator, RSEI is more comprehensive than other individual indicators.

Table 2. RSEI and mean value of each index.

Year
Index

RSEI
NDVI WET NDISI LST

2013 0.773 0.753 0.880 0.469 0.720
2016 0.782 0.776 0.509 0.570 0.723
2020 0.829 0.895 0.345 0.436 0.742

3.2. Analysis of Spatial and Temporal Variation in RSEI

In order to more accurately reflect the characteristics of ecological environment quality
changes at the Shibing Karst WNHs, the RSEI was divided into five levels of parity, with
Level 1 0–0.2 (very poor), Level 2 0.2–0.4 (poor), Level 3 0.4–0.6 (moderate), Level 4 0.6–0.8
(good) and Level 5 0.8–1 (excellent). In the RSEI grade images of the study years (Figure 3),
the changes in the ecological environment quality of the Shibing Karst WNHs from 2013
before the inscription to 2020 after the inscription are comprehensively illustrated. The
red patches representing areas with poor to very poor ecological conditions are mainly
concentrated in the southern part of the buffer zone, near the urban area of Shibing County,
and have been developed intensively. The green patches, ranging from good to excellent,
are widely distributed over the site, which is dominated by dolomite karst with good forest
and shrub cover. The overall greening trend indicates that the ecological condition within
the site is very good, while the eastern and southern areas of the buffer zone near the urban
area need to be improved.

Figure 3. Spatial and temporal evolution of the RSEI grades at the Shibing Karst.

The area of each ecological status class was calculated and the data are shown
in Figure 4. The area of the five areas in 2013 was 0.167 km2, 3.124 km2, 30.012 km2,
189.774 km2 and 60.222 km2, respectively. From 2013 to 2020, the fifth level increased to
84.861 km2 and the first, second, third and fourth levels decreased to 0.002 km2, 0.0981 km2,
23.076 km2 and 175.262 km2, respectively. The area of the region with poor and worse
RSEI levels decreases period by period and the regional transition mainly occurs between
adjacent layers, which is manifested as a transition from lower to higher levels. The main
transition types are level 1 to level 2, level 2 to level 3, level 3 to level 4 and level 4 to level 5.
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Figure 4. Area and proportion of each ecological class from 2013 to 2020.

We counted the area of the three RSEI grades. Combined with Table 3, the area of good
and excellent regions in the third RSEI classification of the Shibing Karst WNHs increased
from 88.24% in 2013 to 91.82% in 2020, indicating that the overall ecological environment
quality within the site is good. The area of the medium region decreased from 10.6% in
2013 to 8% in 2020, indicating that the medium region is more stable. The areas with poor
and worse RSEI grades decreased period by period, from 1.15% in 2013 to 0.04% in 2020
and the degree of decrease was more obvious.

Table 3. RSEI and mean value of each index.

Area (km2) 2020

2013 I II III IV V Total

I 0 0.019 0.095 0.051 0 0.165
II 0 0.027 1.980 1.109 0.005 3.121
III 0.001 0.041 13.095 16.797 0.077 30.011
IV 0.001 0.006 7.869 144.407 37.489 189.772
V 0 0.002 0.035 12.895 47.288 60.220

Total 0.002 0.095 23.074 175.259 84.859 283.289

As can be seen from Table 4, from 2013 to 2020, 37 km2 of the Shibing Karst WNHs
were converted from good to excellent, accounting for 13.23% of the total area. The area of
excellent turned to poor is 0% and the area of good and medium turned to poor is less than
0.1%. In general, the ecological environment quality of Shibing Karst WNHs is in a better
state after its inscription.

Table 4. Single-factor detection q-value.

Factors 2013 2016 2020

NDVI 0.418 0.611 0.364
NDISI 0.823 0.900 0.798
WET 0.907 0.750 0.834
LST 0.279 0.271 0.531

DEM 0.011 0.033 0.129
LUCC 0.612 0.341 0.655
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To further indicate the spatial and temporal changes in the ecological environmental
quality of the heritage site, this paper analyzes the changes in RSEI values between 2013
and 2020 (Figure 5) and divides the results into five conversion levels: significantly lower,
slightly lower, basically unchanged, slightly higher and significantly higher, for a compre-
hensive analysis of the data of the three phases of the Shibing Karst WNHs. It can be seen
that, from 2013 to 2016, the ecological environment quality within the heritage site basically
remained unchanged. Between 2016 and 2020, the ecological environment quality of the
heritage site significantly improved and the parts that showed a decreased index were
almost all within the buffer zone. Through on-site investigations and by understanding
the relevant local areas, we found that both the buffer zone and the heritage site were
developing tourism during this period and human activities were more obvious, which
caused damage to the ecological environment in the buffer zone. In general, the ecological
environment quality of the heritage site and buffer zone is improving and only in the buffer
zone are there scattered areas with a decreasing trend.

Figure 5. Analysis of RSEI changes from 2013 to 2020.

3.3. Characteristics of Ecological and Environmental Quality Changes
3.3.1. Spatial Characterization Based on Global Moran’s I Index

The RSEI maps for 2013–2020 were used to examine the global Moran’s I index, which
can describe the overall correlation (Figure 6). The global Moran’s I indices all passed the
significance test (0.02 significance level), indicating that the ecological and environmental
quality of Shibing Karst WNHs has significant spatial autocorrelation characteristics. In
terms of evolutionary trends, the global Moran’s I index showed an increasing characteristic
from 2007 to 2018, the degree of spatial clustering of the ecological environment in the
study area was continuously strengthened and the level of clustering was improved.
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Figure 6. Moran’s I scatter plot.

3.3.2. Spatial Characterization Based on Local Moran’s I Index

The local Moran index was used to assess the spatial dependence between samples.
The following four types of spatial association were proposed. High–high cluster value
type, high–low outlier type, low–high outlier type and low–low cluster type. High–high
and low–low clusters correspond to positive spatial autocorrelation, while high–low and
low–high outliers correspond to negative spatial autocorrelation. The characteristics of local
spatial clustering are summarized in Figure 7. 1. High–high clustering type. The spatial
differences of the high–high clustering type are small. The values of neighboring samples
are highly sampled and show significant positive correlations. Most of the high-clustering
samples are distributed in the middle, i.e., within the heritage site. 2. High–low outlier
type. The sample itself has high ecological quality, while its neighboring samples have low
ecological quality, showing a negative correlation of “high itself, low surrounding”. The
high–low outlier samples were scattered at the edge of the study area, showing a point-like
distribution structure. 3. Low–high outlier type. The value of this sample is very low,
while the value of the neighboring samples is high. The low–high outlier type shows a
negative correlation of “low itself, high surrounding”. They are mainly distributed in parts
of the buffer zone. 4. The spatial variation of the low–low clustering type is small. These
samples and their neighboring samples are of low ecological quality and show a significant
positive correlation. The number of low–low clustering type samples gradually decreased
and showed a blocky distribution, mainly in the buffer area.

Figure 7. Distribution of spatial association types.
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3.4. Detection and Analysis of Factors Influencing Ecological Environment Quality
3.4.1. Single-Factor Analysis

In this study, the remote sensing ecological index was used as the dependent variable
in geo-detector and land use type, elevation, NDVI, NDISI, WET and LST in the study area
were selected as independent variables. Data integration of dependent and independent
variables was performed before model construction. Geographic detectors generally use a
grid to represent spatial statistical units. Therefore, in this study, the natural interruption
method was used to classify the independent variables into five classes and a 300*300 image
element grid was created in the study area to obtain the grid center points as sample
points, of which there were 3135 in total. Additionally, the values of the dependent and
independent variables in the three periods were factor-probed. The q value represents
the degree of influence of the independent variable on the dependent variable, i.e., the
explanatory power of the spatially divergent characteristics of the RSEI (Table 4). The results
showed that the q-statistics of the factors detected in 2007 were ranked as follows: WET
(0.970) > NDISI (0.823) > LUCC (0.612) > NDVI (0.418) > LST (0.279) > DEM (0.011).The
q-statistics in 2016 were ranked as follows: NDISI (0.900) > WET (0.750) > NDVI (0.611) >
LUCC (0.341) > LST (0.271) > DEM (0.033). The q-statistic ranking in 2020 was as follows:
WET (0.834) > NDISI (0.798) > LUCC (0.655) > LST (0.531) > NDVI (0.364) > DEM (0.129).
WET and NDISI have a greater ability to spatially influence the quality of the ecological
environment, while elevation has a smaller ability to influence the quality of the ecological
environment.

3.4.2. Risk Detection

Risk area detection refers to the degree of influence of each factor on RSEI at different
levels and the results indicate that NDVI and WET positively affect ecological environment
quality, indicating that areas with higher vegetation cover and higher humidity have a
greater influence on the ecological environment quality. Additionally, NDISI and LST have
a negative feedback effect on the ecological environment quality, indicating that the higher
the dryness value and the higher the surface temperature, the higher the ecological pressure
and the poorer the area’s quality. The risk area detection of land use shows that shrubs,
grasslands, water bodies and woodlands play a positive feedback role in ecological quality
and building land plays a negative feedback role. Altitude-specific risk zone detection
shows that areas at sufficiently high or low elevations negatively affect ecological quality.
Conversely, areas at intermediate elevations have a positive feedback effect.

4. Discussion

There are numerous methods for monitoring and evaluating the ecological environ-
ment quality. Li Hailong et al. established an urban evaluation index system from five
target layers: resource conservation, environmental friendliness, economic sustainability,
social harmony, economic sustainability and social harmony [37]; Peng Tao et al. established
an ecological evaluation system for coastal wetlands including 17 specific indicators such as
population density, degree of eutrophication of water bodies, biodiversity and awareness
of wetland protection [38]. In recent years, national and regional government agencies
have also established some ecological evaluation index systems, such as the ecological
environment status index (EI) proposed by the Chinese Ministry of Environmental Pro-
tection in 2006. Remote sensing images are used to select indicators as well as to evaluate
the ecological environment quality of heritage sites so as to visualize and analyze them
spatially. With the development of remote sensing data, the development of large-scale
remote sensing satellites, medium-scale UAV monitoring and small-scale ground moni-
toring stations provides a multi-scale, multi-data source approach for the monitoring of
the ecological environment quality of heritage sites. Many scholars also obtained spatial
data of ecological environment in cities, economic circles and mining areas by remote
sensing technology, selected indicators of natural environmental conditions, environmental
quality, natural landscape pattern and urbanization impact and assimilated environmental
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pollution monitoring data and socioeconomic statistics by using GIS spatial analysis tech-
nology to make a comprehensive evaluation of the ecological environment status [39–41].
Currently, the RSEI is mainly applied to the evaluation of ecological environment quality
in urban and mining areas. There are fewer applications in karst areas. It is challenging
to apply RSEI to monitor and evaluate the ecological quality of karst areas with a fragile
ecological background, unique hydrogeological dichotomy development and particularly
contradictory human-land relationship.

In this study, the monitoring and evaluation of the ecological environment quality of
Shibing Karst WNHs was carried out using the RSEI index model, the indicators of heat,
humidity, dryness and greenness were selected as evaluation indicators and the weight was
determined by the contribution rate of each indicator to the first principal component, which
was found to be above 80% by measurement. This indicates that PC1 concentrates most of
the information of the four indicators. The selection of indicators and the determination
of weights are more reasonable. An analysis of Table 4 reveals that the greenness index
and humidity index are the preferred factors affecting the ecological environment quality
of the heritage site, which is strongly related to the vegetation cover and precipitation
of the Shibing Karst WNHs and increases in temperature and precipitation are favorable
to the growth of vegetation. This finding is also consistent with the relevant studies of
Wangguo-Qing et al. [42] and Chen-Juan et al. [43]. In this paper, satellite images were
used to invert surface temperature instead of air temperature and humidity to represent
precipitation, which were used to analyze the effects of changes in air temperature and
precipitation on ecological environment quality.

The Shibing Karst has the properties of a WNHs and a Scenic Area for conservation
and heritage display as one of the important functions [44] and is mainly concentrated in
the heritage showcase area, including the Sugimu River and Yuntai Mountain scenic areas
in the southern part of the nominated site. The ecological environment in this area is well
maintained, the geological and geomorphological features are outstanding, the Science and
Research development is in its early stages and the conditions for carrying out science and
education tourism are relatively mature. As Shibing belongs to a karst region, its fragile
ecological environment is vulnerable to the natural environment and human activities.
However, this study reveals that since the listing of Shibing Karst as a World Heritage
Site, the heritage management departments at all levels of government have protected
and managed the site in accordance with the law and the local aboriginal village rules
and regulations and the ecological quality of the site has been well preserved, in line with
the sustainable heritage tourism advocated by UNESCO. Karst is mainly composed of a
special topography developed in carbonate rocks and related ecosystems [45]. In this study,
lithological data were not used as the main evaluation index due to the high vegetation
cover in the Shibing Karst WNHs and the surface morphology of the peak canyon and
peak valley in the Shibing Karst WNHs and thus elevation was used as an important index
to study its spatial differentiation. In this paper, we considered that there are only a few
human activities in the heritage site, all of them are at the junction of the heritage site
and the buffer zone and most of them involve tourists and tourism employees, Because
the study year was 2020, the development of the tourism industry was suspended due to
the impact of the COVID-19 epidemic and thus the population and economic data were
not used as evaluation indexes [46]. Unlike other regions, there is not only surface loss
but also subsurface leakage of soil and water in karst areas [47]. Therefore, in the future
environmental monitoring of the Karst World Natural Heritage, we should focus on the
above-ground and below-ground monitoring in the field, in order to protect the ecological
environment of the heritage sites more comprehensively. Remote sensing images were
used to select indicators as well as to evaluate the ecological and environmental quality
of heritage sites so as to visualize and analyze them spatially. With the development of
remote sensing data, large-scale remote sensing satellites, medium-scale UAV monitoring
and small-scale ground monitoring stations have been developed to provide a multi-scale,
multi-data source approach to monitoring the ecological and environmental quality of
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heritage sites. In future ecological environment quality monitoring, full consideration
should be given to UAV monitoring as well as ground monitoring stations to give full play
to the synergy of sky–ground integration [48,49] and provide effective solutions for the
conservation and sustainable development of WNHs.

5. Conclusions

The proposed method for karst-like heritage sites using RSEI and the geo-detector
model, combined with GIS spatial analysis and statistical methods, provides a quantifiable
and visualized method with large temporal and spatial scales for assessing and monitoring
the ecological environment quality, which can be used for monitoring the ecological envi-
ronment quality of WNHs, especially karst-like WNHs with a more fragile ecology. The
evaluation of ecological environment quality is important for the management, conserva-
tion and sustainable development of heritage sites. This study uses remote sensing data
and geospatial analysis methods to evaluate the ecological environment quality of karst
heritage sites, taking the pre-application, post-application and current conditions of the
heritage sites as the temporal research scale. The study found that:

(1) In the evaluation of the ecological environment quality of the three phases of the
Karst Heritage Site in Shibing, the contribution of the PC1 principal component eigenvalues
reached more than 80% and the RSEI was applicable to the ecological environment quality
assessment of the karst WNHs.

(2) The proportion of the areas with good and excellent ecological quality rose from
88.24% in 2013 to 91.82% in 2020, while the proportion of areas with poor RSEI grades de-
clined period by period, from 1.15% in 2013 to 0.04% in 2020, showing a significant decline.

(3) The ecological environment quality shows a positive spatial correlation and the
Moran index value is steadily increasing. The ecological environment quality has significant
spatial aggregation characteristics, generally showing that the west side of the heritage site
is more aggregated than the east side of the heritage site. The high–high aggregation is
mainly distributed in the heritage site and low–low aggregation is mainly distributed in
the buffer zone.

(4) The results based on the geo-detectors model show that WET and NDISI have
greater explanatory power for the spatially divergent features of ecological environmental
quality in single-factor detection and are the dominant factors of environmental quality in
Shibing WNHs. NDVI and WET were found to play a positive feedback role in ecological
environmental quality in terms of risk area detection and NDISI and LST play a negative
feedback role in terms of ecological environmental quality.
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Abstract: Sustainable land management (SLM) practices are key for achieving land degradation
neutrality, but their continued implementation lag behind the progression of various forms of land
degradation. While many scholars have assessed the drivers of SLM uptake for restoring land
affected by desertification, drought, and floods (SDG 15.3 and partly SDG 2.4), little is known about
the implication of SLM implementation on invasive alien species (IAS) management. This study
aimed at understanding the challenges and proposing solutions for the uptake of SLMs with respect to
the management of the invasive tree, Prosopis juliflora, in Baringo County, Kenya. Data were collected
with semi-structured questionnaires, the responses were coded into themes, and c-coefficient tables
were used to determine code linkages. Our results show that the availability of incentives is the
main motivation for invasion management. Thus, management efforts have often focused on private
parcels, while communally shared lands tended to be neglected despite their vulnerability to invasion.
We conclude that sustainable IAS management lies at a landscape scale, and thus the national IAS
management strategies should adopt a collective approach by empowering local actors to engage in
SLM implementation.

Keywords: drivers; sustainable land management; invasive alien species; Prosopis juliflora

1. Introduction

Land degradation is a global challenge that is caused by climate change-induced
disasters and anthropogenic activities such as urbanization, unsustainable agricultural
activities, deforestation as well as loss of native biodiversity [1]. Sustainable Land Man-
agement (SLM) practices are seen as a solution for mitigating land degradation [2]. SLM
is the rational utilization of land and its related resources to produce goods and services
that enhance human life without jeopardizing the land’s long-term productive potential
and environmental functions [3]. However, no matter how effective SLM practices are,
land users’ decisions to ultimately adopt and continuously implement them or not will
determine their success in combating land degradation. In this regard, it is evident that the
slow uptake of SLM practices as compared to the fast progression of land degradation has
so far hindered the achievement of degradation neutrality in many places [4].
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Invasion by alien plant species such as Prosopis juliflora (Sw.) DC. (hereafter referred
to as Prosopis) is a particular form of land degradation—one with severe adverse impacts,
including the loss of biodiversity [5], encroachment of agricultural and pasture lands [6],
and depletion of ground and surface water [7,8]. Recent studies have stressed the urgency
to sustainably manage Prosopis invasion following its steady increase in cover and its
adverse impacts on ecosystems and human livelihoods [8,9]. Even though the threat of
invasive alien species (IAS) is explicitly addressed in the 2030 Agenda (Target 15.8), it does
not seem to get the same attention as other forms of land degradation such as soil erosion,
deforestation, or desertification [10]. Studies on the adoption and continued use of SLM
practices [11,12] focus on the management of these other forms of degradation by single
land users on isolated or individualized parcels of land. This makes them ineffective for
managing IAS, which have complex invasion processes, spreading over large tracks of land
within short periods of time.

Owing to the complexity, speed, and extent of invasion processes, the management of
IAS often demands a coordinated strategy beyond an individual land user’s plot and reach.
Such a strategy must combine various approaches in a spatially differentiated manner:
prevention, early detection and rapid response, control of invasive species as well as the
rehabilitation of cleared land. This requires coordination at the community or landscape
level rather than at the farm or household level [13]. For example, communities in the
invaded area and neighboring communities in areas that have not yet been invaded must
consensually agree on a management approach that addresses the spatial differences of
invasion levels among or between the communities [14]. This is attributed to variations
in the spread and density of Prosopis, necessitating different management objectives and
different investments in management. Strategies for managing IAS such as Prosopis also
require collective decisions on whether to invest or not in the adoption and continued use
of IAS management practices [1,15].

The need to understand drivers that influence land users’ management decisions and
their mutual linkages is widely acknowledged as vital for informing sustainable invasion
management strategies. Thus, previous studies [14,16,17] have identified governance
decisions, environmental conditions, and social and economic dynamics as the key drivers
of invasion management. These drivers are multi-dimensional and have complex systemic
interactions, making it necessary to adopt a holistic approach to addressing them [11,16].
However, to inform spatially explicit management approaches at a landscape level, there is
a need to contextualize these drivers based on their spatiotemporal extent.

To address the above-mentioned challenges, this paper aimed to assess the drivers
of land users’ management decisions with respect to IAS management. Based on the
spatiotemporal trajectories of Prosopis cover in a case study area—Marigat Sub-County,
Baringo County in Kenya—we assess the drivers of land users’ uptake and continued use
of SLM practices aimed at managing Prosopis invasion. We also identify promising entry
points for the uptake and continued use of SLMs in the context of IAS management. Finally,
we derive key lessons from a successful implementation of national and sub-national IAS
management strategies such as the recently launched Kenya National Prosopis Strategy.
Owing to the associated high costs of managing invasive species, this paper presumes
that land users are likely to engage in invasion management only if the benefits derived
substantially exceed the cost of management. Likewise, considering the complex invasion
pattern of IAS, we predict that sustainable management may be attained through a joint
communal action at the landscape level rather than at the individual farm level.

2. Materials and Methods

2.1. Study Area

The study was conducted in Marigat Sub-County (Figure 1), in the eastern lowlands of
Baringo County, Kenya (11,075 km2). Marigat was selected because it is representative of a
densely invaded agro-pastoral area that has experienced a substantial impact on local rural
livelihoods. Since the 1980s, the native vegetation—trees such as Vachellia tortillis, Boscia
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spp., and Balanites aegyptiae as well as native grass species and shrubs such as Salvadora
spp.—has been severely invaded and displaced by Prosopis [9,18]. Prosopis stands in Baringo
County are mainly confined to Marigat sub-county [19].

Figure 1. Map of the study area showing different land-use categories in 2016. Adapted from [9].

The annual rainfall in Baringo ranges between 600 mm and 650 mm, with annual
average temperatures of 30–35 ◦C; the area is dominated by andosols (young volcanic
soils) [20–22]. The population of Marigat Sub-County is just above 100,000, with nine out
of ten inhabitants being rural dwellers [23]. While pastoralism is the primary source of
livelihood, furrow irrigation agriculture is prominent and is practiced in areas adjacent
to water bodies [19]. The area is dominated by rangelands, which cover 47.25%, while
farming, a major form of livelihood diversification, constitutes 21.7% of the land cover.
Water bodies, settlements, forests, and bare land cover 9.7%, 9.6%, 8.4%, and 3.3% of the
area, respectively [21]. De jure, most of the land in Marigat is strictly communal, but de
facto, a large percentage is privately claimed [24].
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2.2. Conceptual Framework

We have adopted a systemic conceptual approach to identify and evaluate the in-
teraction among drivers of land users’ decisions on whether to adopt and continually
use SLM practices or not in the context of Prosopis management. We consider drivers as
positive when they promote the implementation of SLMs, while negative drivers limit SLM
implementation by land users. This approach is informed by the human actors’ model [25],
which emphasizes the crucial role of actors in development outcomes. The conceptual
framework is founded on the acknowledgment of actors such as land users, who are the
key agents of transformation in any form of development. Thus, the human actors’ model
is structured based on three main ideologies—that actors’ decisions to create change are an
interplay of three factors: (1) their prioritized activities, (2) their understanding of the effects
of those activities on their desired outcomes, and (3) the availability of means needed for
them to implement their prioritized activities. This actors’ strategy of actions is non-linear
and dynamic. For instance, an undesired outcome of actors’ activities may change the
meanings of such activities, leading to modifications of the activities or the re-assignment
of their available means to other activities.

The model also considers external and dynamic conditions (environmental, political,
economic, and social) as being important in determining actors’ actions and in influencing
their activities and stock of means—finances, technology, knowledge, and skills. Similar to
the strategy of actions explained above, the effect of these dynamic conditions depends
on actors’ perceptions, beliefs, and values. Their outcome leads to either the adaptation or
modification of activities to fit into, improve, or stabilize the dynamic conditions.

The actors’ model, therefore, illustrates that actors’ strategies of actions are strongly
embedded in their social and cultural institutions as defined by their beliefs, rules, and
regulations as well as by the enforcement of such institutions. This is because such institu-
tions define their perceptions, valuations, and meaning of actions. We adapted the model
to assist in identifying relevant entry points to address the effect of negative drivers and to
evaluate possible pathways for attaining sustainable management strategies.

2.3. Data Collection and Analysis
2.3.1. Data Collection

We spatially structured data collection based on the occurrence of three different
temporal patterns of Prosopis invasion:

1. Areas that were cleared of Prosopis and never re-invaded, indicating land users’
willingness and efforts to continuously implement SLM practices.

2. Areas that were cleared but later re-invaded, denoting the uptake and subsequent
abandonment of SLM practices by land users.

3. Areas that were never cleared since they were first invaded, suggesting that land
users never implemented or tried but failed to implement SLM practices that would
help to manage invasion.

Based on the data from [9], five spatial “hotspot areas” were identified with visual
evidence of all three invasion patterns above. The five hotspot areas were distributed over
eight sub-locations, which are the lowest of the administrative units in Kenya. In total,
eighty land users from these eight sub-locations were interviewed, with the number of
interviewees proportional to the population size in each of the sub-locations (Figure 2).
Details of the distribution of sample size proportionate to the population of respective
sub-locations are found in Appendix A.

Three large-scale maps, each illustrating one of the three Prosopis invasion patterns,
were produced for each of the five hotspot areas (see Figures S1–S15, Supplementary
Material) and used during the interviews. The three patterns of Prosopis presence/absence
were explained, and each interviewee was asked to respond to open-ended questions
relating to drivers contributing to these patterns in the hotspot areas falling within his/her
sub-location. This was to assist in assessing differences in responses from different sub-
locations, which were associated with different invasion levels. The level of invasion
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per sub-location was derived from [9]’s fractional cover dataset. A 40% fractional cover,
beyond which it is often perceived impossible to sustainably control invasion, was used
as a cut-off point for densely and sparsely invaded areas. Advanced invasion is used in
this paper to refer to a perceived invasion level beyond which respondents considered
SLM implementation to be impossible or meaningless as the associated management costs
would exceed the benefits to be derived from management efforts. The main guiding
questions for the interviews were as follows:

1. Do you agree that the general pattern of Prosopis cover in your sub-location is ac-
curately represented on the map? This question was to confirm the occurrence of
the three spatial-temporal patterns that reflect different scenarios of adoption and
continued use of SLM practices. Any contradicting opinion was noted and clarifica-
tion/revision of patterns was sought.

2. What are the factors that could have contributed to the occurrence of the respective
patterns? Respondents were expected to reflect on all factors they could think of while
answering this open-ended question.

Figure 2. A map showing hotspot areas (red ellipses) that were selected for the study due to a visual
representation of invasion patterns. The numbers of respondents per hotspot area (A–E) are indicated
within the hotspots.
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In addition to the questions on drivers, we obtained details regarding the parcels
that the land users owned, such as the previous and current land cover/use and the
approximate distance of the farms from their homesteads. We later validated the findings
by interviewing all the area chiefs using the same questionnaires in order to clarify aspects
that seemed ambiguous.

2.3.2. Data Analysis

Responses to the open-ended questions and the corresponding socio-demographic
data from the survey were entered into MS Excel, combined to form a single string ID, and
converted into a text format before being exported to ATLAS.ti for analysis (Appendix B).
Responses were then coded and categorized into related thematic codes falling within four
distinct categories of drivers that influence the uptake and continued use of SLM practices:
socio-cultural, environmental, economic, and political drivers. The process of assigning a
code to each response was limited to the interviewer’s understanding of the subject matter
and the context under which each response was given. To avoid a misinterpretation of the
responses and thus the assignment of the wrong codes, the researcher was present at each
interview to seek clarification for the responses that might have been unclear.

The dataset was then entered into c-coefficient tables to analyze the association be-
tween codes, depending on whether the codes would co-occur whenever they were as-
signed to a quotation or response. The c-coefficients range from 0, for codes that do not
co-occur, to 1, for codes that are always assigned to the same quotation or response. The
c-coefficient (c), also known as the c-index, is calculated as follows:

c = n1,2/(n1 + n2 − n1,2)

where n1 and n2 are the occurrence frequency of two co-occurring codes—c1 and c2—while
n1,2 is the co-occurrence frequency of the two codes.

The output was displayed in network views that visualized the relationship between
and among the codes. The codes in the network view were organized depending on their
groundedness—the number of quotations/responses assigned to them—to illustrate their
hierarchical significance. Some quotations/responses had multiple meanings and were
hence assigned to more than one code. For instance, a decision to seek an alternative
source of income due to drought was assigned two codes: livelihood diversification and
natural disasters. In such a case, the two codes were linked to the same quotation/response.
The number of linkages to a code is denoted as its density (D) and is displayed in the
network view. According to [26], only the values of a code’s groundedness are relevant in
determining the significance of a code; the higher the value, the more number of times that
code was mentioned.

The application of c-indices is instrumental in depicting the association between codes
in that it performs a quantitative analysis of qualitative data [26]. However, their values
may not reflect the actual strength of association, especially if the codes are distorted by
unequal frequencies [27]. Therefore, while c-index values close to one indicate a strong
association, two codes varying greatly in frequency (usually if the ratio between the two
frequencies is greater than five) may also reveal a strong association at a considerably lower
value. This is indicated by c-indices highlighted in the co-occurrence coefficient tables
(Appendix B). Our data were distorted by variations in frequencies since each respondent
was free to mention as many drivers of a particular invasion trend as he or she wished.
To enable a comparison between and among the codes, the c-indices were multiplied
by a system-generated factor to normalize them. The ATLAS.ti software automatically
highlights significant c-indices if their low values are associated with such distortions [27].
This simplified the selection of codes, whose co-occurrence was significant for our analyses.
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3. Results

3.1. Categories of Drivers Influencing Land Management Decisions

The results revealed a broad range of drivers of land users’ decisions to adopt and
continuously implement SLM practices for the control of the spread of Prosopis. These were
grouped into four broad categories, including socio-cultural, environmental, economic, and
political drivers, in the order of their importance (Figure 3). Socio-cultural drivers were the
most often mentioned, while political drivers were the least often mentioned. Below, we
present the findings on how drivers assigned to these four categories influenced land users’
management decisions to adopt and continuously implement SLM practices.

 

Socio-cultural Environmental Economic Political

%
 o

f r
es

po
ns

e

Driver Category

Cleared
Cleared and re-invaded
Never cleared

Figure 3. Influence of socio-cultural, environmental, economic, and political drivers on the adoption,
abandonment, and continued use of SLMs.

3.2. Drivers for Adoption and Continuous Implementation of SLMs
3.2.1. Intensive Land Management Practices

Intensive land management practices such as irrigation, cultivation, the planting of
perennial plants such as fruit trees, and crop rotation (Figure 4), all of which ensure that land
is constantly managed and not left idle, are perceived to be the key drivers in promoting
the continuous implementation of SLM practices.

Continuous cultivation was reported to lower the risk of (re-)invasion as communities
were keen on retaining their farms, from which they derived their livelihoods. Despite this,
the implementation of these practices is only possible with the availability of means such as
labor, financial resources, water for irrigation as well as knowledge of the potential impacts
of Prosopis and the skills to manage it.

Proximity to settlements was perceived to contribute to continuous Prosopis clearance.
This is because land users are committed to maintaining the safety of their residential areas
by constantly clearing Prosopis thickets, which often harbor thieves and wild animals, or by
cultivating parcels close to their homesteads. Although it was difficult to map settlement
areas due to the pastoralist nature of the study area, physical visits to areas and responses
from interviewees confirmed that settlements are a factor that drives constant clearance
within homesteads. This is supported by the fact that the proximity to settlements and
continuous cultivation are co-occurring in our findings (c-index = 0.05).
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Figure 4. Drivers of continuous clearance (yellow = socio-cultural; green = environmental; pur-
ple = economic). Arrows indicate the nature and direction of relations (dotted = “indicates”;
solid = “promotes”). G is the groundedness, referring to the number of linked quotations. D is
the density, referring to the number of linked codes. The length of bars within each box indicates the
frequency of G and D. The significance of a code is determined by its groundedness (G): The G-value
increases with an increasing number of respondents who mentioned it.

3.2.2. Availability of Resources and Incentives

Respondents reported that incentives are significant in enabling the sustainable man-
agement of IAS. Land users are unlikely to invest in SLM practices on parcels for which
management is not incentivized or where benefits are not guaranteed. Credit facilities,
access to market, and better pricing of farm produce (Figure 3) help farmers in availing the
means needed for the implementation of practices on cropland. For example, the National
Irrigation Board (NIB) engages community members through the contractual farming of
maize seeds (personal interviews with area chiefs). This arrangement helps land users to
access a ready market for their produce. The NIB also extends credit facilities and extension
services to farmers through irrigation schemes—factors that promote the clearance of land
for cultivation purposes. This is perceived to be the reason why land users consistently
clear land within established croplands, especially along the shorelines of lakes and rivers,
where constant water supply sustains year-round irrigation. This finding is supported by
the fact that 51.5 hectares (62%) of parcels that were cleared of Prosopis were converted into
irrigated farms, while 106 ha (88%) of irrigated farms have never been converted to other
uses (Figure 5).

3.2.3. Knowledge of Impacts and Associated High Cost of Clearance

Land users’ knowledge of the impacts of invasion, benefits of management, and
effective implementation of SLM practices was perceived as a key driver of successful IAS
management. The understanding of the implications of adopting and implementing (or not)
a land management practice is shaped by land users’ past experiences. Land users who bear
the costs of clearing Prosopis continue to clear it to prevent re-invasion for fear of incurring
similar expenses. Similarly, respondents from densely invaded areas who understand
the implication of delaying management were keen to engage in managing Prosopis, the
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perceived possible benefits from direct utilization notwithstanding. Knowledge about high
clearance costs, which is gained from first-hand experience, was also reported to contribute
to the continuous implementation of SLM practices. However, only 9% of the interviewees
responded that knowledge of the impacts had motivated land users to clear their land from
Prosopis; in contrast, continuous cultivation was mentioned by more than half (56%) of
the respondents.

Figure 5. Changes in land use and land cover within respondents’ parcels of land (n values indicate
the size of land in hectares). Source: Survey data.

3.3. Drivers of Non-Adoption or Abandonment of Adopted SLM Practices

Failure to adopt and the abandonment of adopted SLM practices were mainly at-
tributed to socio-cultural factors (Figure 3) and were perceived to dominate on communally
owned lands by 87% of the respondents. The diversification of local livelihoods, the
prevailing land tenure system, and unreliable knowledge about invasive alien species
are perceived to be the main contributors to the non-adoption or abandonment of land
management practices (Figure 6).

3.3.1. Diversification of Livelihoods

The transformation of the traditional way of life from pastoralism—due to the loss of
grazing land—to cultivation and charcoal production is perceived to reduce land users’ de-
pendence on land. This, in turn, leads to less engagement in management and maintenance,
thus facilitating the invasion by Prosopis. Respondents also argued that apart from the
emergence of new opportunities, the occurrence of natural disasters such as droughts and
floods and the associated degradation of grasslands were some of the main causes of this
livelihood transformation. Indeed, data show the co-occurrence of livelihood diversifica-
tion with the above-the-ground cutting of Prosopis for charcoal production (c-index = 0.36)
and the natural disasters caused by drought (c-index = 0.29).
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Figure 6. Drivers of continuous invasion and re-invasion (yellow = socio-cultural; green = environ-
mental; purple = economic; blue = political). Arrows indicate which drivers promote another. G
(Groundedness) refers to the number of linked quotations. D (Density) refers to the number of linked
codes. The length of bars in each box indicates the frequency of G and D.

Respondents perceived that severe drought, especially in 1995, prompted communities
to find alternative income sources by engaging in charcoal production, an activity that
later facilitated the coppicing of Prosopis. The degradation of pasturelands due to either
drought or heavy invasion was believed to have accelerated the loss of livestock that
pastoral communities depended on, thus forcing them to seek alternative means of survival.
Charcoal licensing by the government and the high market demand (c-index = 0.25),
together with the widespread availability of Prosopis trees, were considered to be a strong
incentive that promoted charcoal production as a source of livelihood. This vicious circle
further reduced their dependence on and motivation to manage communal grazing lands,
thus exposing them to invasion (personal interviews, area chiefs, October 2019).

3.3.2. Ineffective Land Governance

Ineffective land governance was perceived to hinder the uptake and continued use
of SLM practices. According to a total of 48 respondents, ineffective land governance was
associated with the fragmentation of parcels, unresolved land disputes, and the neglected
management of communally shared lands. Under the customary land tenure system,
the traditional land acquisition process guided access to land for private use such as
farmlands and homesteads. According to the respondents, this approach bestowed upon
men absolute freedom to own unlimited parcels of land as long as they had a history of
utilizing such parcels in the past. Consequently, the aged community members own many
fragmented parcels, most of which they are not capable of managing due to limited labor
and financial resources. Fully invaded parcels of cropland were found to be the furthest
from their owners’ homesteads (Figure 7). This supports the respondents’ views that land
users with many fragmented parcels prioritize managing Prosopis on the farms closest
to their homesteads while leaving the distant parcels to be invaded. Therefore, the two
explanatory factors of ‘ownership of many parcels’ and ‘distance from home’ co-occurred
(c-index = 0.09).
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Figure 7. Relationship between the level of Prosopis invasion and the distance of farms from the
homesteads. The boxes indicate the median (the thick line separating the box into two) and the lower
and upper quartiles (lower and upper border of the boxes); the whiskers extending from the lower
and upper quartile marks indicate the scores falling outside 50% of the total scores, while the dots
represent outliers.

In addition to distance from homesteads, unresolved land disputes associated with
the weak enforcement of tenure rights by responsible institutions were perceived to be
a reason for land abandonment and subsequent Prosopis invasion. Such disputes can
remain unresolved for a long time, owing to the failure of concerned parties to respect
decisions by local authorities. Land disputes that had dragged on for years led to a stop of
all maintenance activities—a free pass for Prosopis invasion. Conflicts over communally
owned resources are most prominent in areas of low invasion levels (c-index = 0.02). Based
on interviews with the area chiefs, the migration of livestock from densely invaded to
sparsely invaded communal grazing areas contributed to the invasion of the latter, leading
to conflicts over the diminishing grazing lands.

3.3.3. Unreliable Knowledge about the Impacts of IAS and the Benefits of Timely Management

Late and unreliable information about the nature and potential impacts of Prosopis was
considered by 34% of the respondents as a key driver of the non-adoption of SLM practices
as it delays the onset of management efforts. Delayed management was reported to cause
invasion to progress to a level where taking action would require more labor and finances.
This has discouraged land users from taking any action. The situation was perceived to
be worsened by inappropriate information about suitable approaches for Prosopis control
and removal; initial efforts to cut the trees above the ground were believed to have favored
rapid spread as land users were initially not aware of the ability of Prosopis to coppice.

Delays in knowing the impacts of Prosopis had a stronger co-occurrence with re-
spondents from densely invaded areas (c-index = 0.14) as compared to respondents from
sparsely invaded areas (c-index = 0.01). It also co-occurred with perceived advanced inva-
sion (c-index = 0.22), an indication that it contributed to the advanced invasion in densely
invaded areas. Inversely, respondents in sparsely invaded areas did not consider late
and unreliable knowledge to be a hindrance to the management of IAS. However, they
considered the perceived benefits of Prosopis (c-index = 0.05) to have a negative impact
on the willingness of land users to adopt SLM practices as they feared the loss of these
benefits. Some of the benefits include a source of income from charcoal production and the
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provision of shade. Respondents from heavily invaded areas have a similar opinion but
with a lower co-occurrence (c-index = 0.02).

As already mentioned, inadequate knowledge of effective land management practices
was seen to limit their implementation. This was evident in the Perkerra area, the main
irrigation scheme in Marigat, where many agricultural lands have been invaded by Prosopis
following the loss of their initial productive potential. Respondents attributed this to
poor farming methods that resulted in waterlogging and salinization. This perception by
interviewees was confirmed by the National Irrigation Board’s officer during an interview.
Respondents reported that such parcels were abandoned by their owners as they were
unwilling to invest in them due to their low production potential. Findings from interviews
with community members show that 10% of the irrigated farms owned by the respondents
have been lost to the invasion (Figure 4).

4. Discussion

This study has shown that land users’ decisions to implement SLM practices to man-
age Prosopis in Baringo County are reflected in patterns of invasion, and that such decisions
are influenced by socio-cultural, economic, environmental, and political drivers. Contin-
uous cultivation was found to be the main factor contributing to invasion management.
Even so, this depends on land users’ motivation and ability to access resources for SLM
implementation [17]. Thus, the key drivers of continuous SLM implementation are timely
access to appropriate information on the need to manage invasion as well as the provision
of incentives, financial resources, and favorable market dynamics [28,29].

Unlike the positive drivers, the negative drivers are numerous, diverse, and limit the
performance of the positive drivers. Addressing the negative drivers should therefore be
prioritized to achieve sustainability in the management of invasive species. Hence, we will
first discuss the causal linkages among negative drivers and their association with critical
socio-ecological factors that limit SLM adoption and continued implementation (Figure 8).
The study applied the local actors’ model as an explanatory framework for relating how
linkages among different drivers provide a rationale for land users’ management decisions.

Figure 8. Socio-ecological factors and their associated causal links with drivers influencing the
adoption and abandonment of SLM practices.
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4.1. Critical Socio-Ecological Factors Associated with Non-Adoption and Abandonment of
SLM Practices

The four main factors associated with non-adoption and abandonment of SLMs are:
livelihood adaptation, market uncertainties, environmental disruptions, and the disconnect
between research and land governance. These factors are important in informing manage-
ment strategies as the failure to address them may limit SLM implementation and hinder
the successful management of invasive species. We hereby describe each of them in relation
to their causal drivers.

4.1.1. Environmental Disruptions

These include natural disasters such as drought and floods, which result in low pro-
ductivity or crop failures. Such events tend to increase in the wake of global climate
change [30]. They result in low returns compared to the cost of SLM implementation [31],
thus leading to the abandonment of affected parcels as land users are unwilling to continue
implementing SLM practices on them. This exposes initially managed parcels to invasion
or re-invasion. Based on the land users’ experience, they believe that environmental shocks
adversely impact the outcome of their SLM implementation. These beliefs and perceptions
of the impact of external drivers on land users’ expected returns inform their land manage-
ment decisions, as indicated in the human actors’ model [25]. In this case, the land users’
perceptions discourage the implementation of SLMs, hence limiting invasion management.

4.1.2. Market Uncertainty

Under contractual farming, which is dominant in the irrigation zone of the study area,
land users sell their produce to the contracting companies, the NIB, who were reported to
dictate the prices and sometimes purchase below market price. A decrease in demand for
agricultural products and its effect on prices are also a disincentive to SLM implementation.

As explained in the actors’ model, the land users’ rationale for assigning their stock
of means to alternative activities is exposed to dynamic factors, including the economic
drivers [25]. Thus, land users perceive that market dynamics result in low returns despite
their implementation of SLMs. Consequently, they adapt by re-assigning their available
stock of resources to other promising economic activities [32]. This is illustrated by the
fact that land users opt to discontinue farming activities and channel their resources to
alternative means of survival when they perceive that their returns will be lower than the
costs of farm inputs. This also exposes the abandoned parcels to re-invasion.

4.1.3. Livelihood Adaptation

Contrary to the initial purpose of its introduction as, among other things, a source of
fodder for livestock [33], Prosopis has led to the loss of herbaceous biomass, resulting in the
decline of livestock numbers [34]. Coupled with high invasion management costs and the
impacts of prevailing environmental disruptions such as drought and floods, land users
gradually adapt and transition to alternative sources of livelihood such as trade, charcoal
production, or employment. Land users’ motivation to implement SLM practices on their
lands therefore declines [31], leaving affected parcels exposed to invasion. This indicates
that the exposure of land users’ actions to external conditions such as environmental
disturbances influences them to adapt their activities to the prevailing conditions [25,35].
According to [6], the income from alternative livelihoods such as charcoal production
may not replace the cultural value bestowed upon pastoralism. Thus, the main reason
for community members’ diversification to other livelihood sources may be due to the
degradation of their initial grazing field upon which their livestock depended. This implies
that the restoration of grazing fields presents the possibility of promoting the engagement
of land users in communal land management.
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4.1.4. The Disconnect between Research and Land Governance

In the absence of an effective science-policy interface, evidence from science does not
or only slowly finds its way into land governance decisions. This results in two main factors
that limit land management, specifically within communal tenure systems: dysfunctional
extension services and ineffective land governance practices. Reliance on extension services
that are not guided by credible research findings misleads land users’ actions. Likewise,
the delay of extension services limits timely response actions [32], which then enhances the
progression of invasion to advanced levels, during which it will be impossible to manage
invasion [13].

The land governance systems in place were perceived to be ineffective in addressing
the prevailing tenure issues. The customary land acquisition process was associated with
land fragmentation, which has been associated with technical inefficiencies in croplands [36].
In addition, weak land governance institutions have led to unresolved land disputes. This,
in turn, has discouraged community members from holding themselves accountable for
managing land due to a lack of incentives. As demonstrated in the human actors’ model,
community perceptions and practices are strongly embedded within their social and
cultural institutions. This requires that interventions aimed at addressing land management
issues should focus on reinforcing these institutional frameworks or modifying them in
order to support sustainable environmental management [25].

Based on the four factors above that hinder SLM implementation, we compare our
findings with a South African study, which is among studies that explicitly focus on
barriers to the management of Prosopis [16]. Both studies found that land users’ decisions
are shaped by drivers of multiple dimensions ranging from economic, social, political, and
environmental, with the social drivers being the most dominant. The main difference is
that the current findings are contextualized on specific patterns of invasion as determined
by successive presence /absence of Prosopis. Therefore, ours advances the previous study
by offering context-based drivers of invasion management by land users. In addition to the
institutional and knowledge gaps identified by [16], our findings focused on ineffective
land governance, environmental disruptions, livelihood adaptations, and the science-policy
gap as key challenges to IAS management.

In contrast to [16]’s study, our respondents did not mention a lack of technical knowl-
edge about the effectiveness and cost implications of alternative control options such as
biological and chemical control methods. This shows that respondents in South Africa
were better acquainted with different options for IAS management as compared to those in
our Kenyan study. According to [17], successful management strategies involve a combina-
tion of practices. However, the land users’ rationale for applying multiple alternatives in
managing invasion is determined by their knowledge and experience with such diverse
practices [28]. This is because land users tend to adopt practices whose success rates they
are well-acquainted with. However, to date, measures for managing Prosopis by chemical
and biological means have not yet been made available in Baringo County. This is despite
reports from previous studies explaining that biological control has the benefit that it is
a “natural” management approach and does not require continuous implementation by
individual land users [13,37]. Therefore, there is a need for land users to benchmark their
own practice against that of implementers of alternative management practices as this may
widen their knowledge and encourage them to take initiatives in their implementation.

Both studies also observed that benefits from Prosopis have been associated with the
reluctance of land users to manage it. In this study, this challenge was majorly associated
with the sparsely invaded areas, where respondents had limited experience with the high
clearance costs associated with advanced invasion [17]. The failure of these land users to
learn from the experiences of those coming from heavily invaded areas was mentioned as a
challenge that hindered timely invasion control in the South African study.
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4.2. Potential Entry Points for Sustainable IAS Management

The management of IAS such as Prosopis cannot be accomplished at the plot level. To
be successful, it must be jointly implemented by multiple stakeholders on both privately
and communally owned land and at the landscape scale [13,17]. Therefore, to promote the
implementation of SLM practices and hence sustainably manage IAS, there is a need to
address the main barriers captured in the four underlying factors mentioned above. This
will allow for a better performance of the positive drivers towards the higher adoption
and continuous implementation of SLM practices for sustainable IAS management. We
therefore propose the following entry points for a successful IAS management strategy:

4.2.1. Enhancing Community Resilience to Environmental Disruptions

Based on our findings, the most viable entry point to address environmental disrup-
tions should aim at convincing land users that the outcome of environmental disruptions
does not necessarily have to render their management efforts futile. This calls for en-
hanced community resilience to environmental disturbances, which are associated with
far-reaching impacts, often beyond the capacity of the local community to respond effec-
tively. Building local capacity and strengthening community resilience need to depart from
the traditional practice of targeting external support and should instead explore the options
of adapting activities in order to minimize uncertainty or modify the dynamic conditions
within which the actors operate. The latter is likely to yield more effective outcomes [25].
Thus, external support from governments and institutions in establishing infrastructures
and building capacity to enhance resilience to natural disasters is a key aspect of early
preparedness. However, modifying the conditions within which land users operate is
likely to enhance their resilience. For instance, since resilience to natural disasters can
be better attained through collective rather than individual actions [29], well-established
social networks at the community level are likely to reinforce community capacity to or-
ganize themselves, learn from experiences with disturbances, and adopt the appropriate
mechanisms to recover and adapt to shocks [38].

In the response to extreme events, especially in croplands where losses may be in-
evitable despite improved infrastructure, robust insurance schemes and effective programs
for the compensation of losses are also necessary. Such measures enhance resilience against
shocks, which foster land users’ continued engagement in the implementation of SLM
practices [11,38]. Apart from enhancing resilience, the establishment and enforcement of
appropriate land use plans are necessary for restricting human activities in disaster-prone
zones. This is particularly relevant to areas along rivers and in other flood-prone areas,
which are often selected for farming due to water availability. Therefore, strengthening
community-based institutions may be pivotal in enforcing land-use plans [14]. This is
because land users’ actions and behaviors are embedded within their socially-defined
institutions [17].

4.2.2. Price Control and Regulation of Market Actors

Price control and the regulation of market actors are required to create a fair envi-
ronment and to guarantee sufficient returns to smallholders, which is a key condition for
them to sustainably implement SLM practices. The enforcement of an adequate regulatory
framework for community members that strives to minimize the risk of their exploitation
is central. The formulation of policies that uniformly regulate market prices and enhance
equitable access to available markets may minimize monopolization by contracting institu-
tions, hence checking the exploitation of land users [36]. To achieve this, it is important to
integrate land users—through farmers’ cooperatives which advocate for enhanced farmers’
rights in terms of price control—and their access to markets. Such cooperatives should
focus on creating an environment that favors a competitive market for farmers’ produce
rather than restricting them to a single market outlet. This way, land users may be sure of
benefiting from their efforts and thus continue with SLM implementation.
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4.2.3. Integrating Environmental Management with Poverty Alleviation

The findings of our study confirm the need to integrate environmental management
with poverty alleviation [39] as communities tend to modernize their livelihoods with new
and attractive income opportunities. A promising entry point in this regard would be to
prioritize livelihood activities that are dependent on SLM implementation; for example, by
taking farming as a primary rather than a supplementary source of livelihood, as indicated
in the County Development Plan [19]. However, the promotion of such land-dependent
economic activities would require access to land and water resources. Consequently, there
would be a need to establish flexible land markets that promote the re-distribution of parcels
to people who would convert their purpose to meaningful uses and prevent (re-)invasion.
This approach, however, does not address the management of communally shared parcels
such as roadsides and rangelands, which are prone to abandonment and invasion.

Land subdivision, although useful in managing individual parcels in the face of in-
creasing population, adversely affects IAS management at a landscape level. This was
illustrated in California, where only some landowners managed the invasive yellow starthis-
tle (Centaurea solstitialis) on their parcels; the parcels whose owners opted not to manage
the weed acted as a source of invader propagules [14]. This shows that the management
of communally shared resources such as rangelands requires collective action that incor-
porates all users. Indeed, it has been reported that land users tend to adopt practices
in solidarity with community collective action within which their actions and beliefs are
embedded [17] as long as social relationships and trust are built among the concerned land
managers [28]. As such, a probable solution may be to replant communally shared lands
with native tree and grass species under the stewardship of assigned community members.
Their engagement may be secured if their efforts are rewarded through a compensation
scheme and village development programs such as the establishment of infrastructure
as well as by securing and enforcing land use rights. This ensures that environmental
management is integrated with social and economic development and with benefits that
contribute to poverty reduction among the affected communities. To enhance collective
participation, social sanctions on non-participating members have been reported to yield
effective cooperation among community members [17].

Likewise, the harmonization of policies across sectors (from agricultural and envi-
ronmental to trade) and scales (from local to national levels) is needed. For instance, the
simultaneous occurrence of a market opportunity (for charcoal), policy provisions for the
easier licensing of charcoal trade, and the need to diversify livelihoods away from farming
activities all lead to a positive perception of Prosopis, thus promoting its utilization rather
than control. The harmonization of such diverse policy instruments is necessary for de-
signing effective management strategies. This is consistent with the logic that meaningful
outcomes of actors’ actions should holistically integrate their activities, their means for
achieving such activities, and the meanings or interpretations of the outcomes of their
actions [25]. Therefore, enhancing access to land (means), coupled with the perceived
outcome of alleviating poverty (meaning of actions) through farming activities (actors’
activity) provides a sound entry point for sustainable environmental management.

4.2.4. Community Mobilization and Awareness Creation

The findings of this study indicate that scientific evidence is fundamental for informing
land governance concerning IAS management as it helps in identifying factors that influence
land users’ adoption of SLM practices as well as the areas where management should be
prioritized. For instance, we found that communally owned land and irrigation schemes
are vulnerable to invasion, thus necessitating robust management measures in order to
prevent further spread in these areas.

Even though efforts have been made to disseminate research findings to community
members, we propose that innovative extension service approaches be used to help promote
communal actions—through the engagement of the community members in reflecting on
the benefits and nuisances of ecosystem services generated by different land management
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practices and how to integrate stakeholder needs with sustainable environmental manage-
ment at the landscape scale. Likewise, the use of demonstration plots, the introduction of
attractive community field days, and the appreciation of SLM champions may not only
motivate community participation in SLM practices but also provide an interactive plat-
form for the widespread dissemination and exchange of research innovations [40]. These
concur with a study in Mongolia that found that integrating diverse sources of information
enhances knowledge exchange, which then promotes rangeland management [41].

4.2.5. Effective Land Governance Solutions

Apart from awareness creation, the enforcement of tenure rights may provide land
governance solutions and support invasion management. According to [12], a consolidated
land ownership approach is indispensable for improving access to land and simplifying
land management. This may be achieved if flexible land markets are established to encour-
age transactions in parcels that are vulnerable to abandonment by their owners. However,
this approach is only applicable to individual lands or parcels under customary rights
of occupancy, as provided for in the Kenyan Community Land Act, 2016. Nevertheless,
managing the often neglected communally shared parcels, which are prone to disputes and
neglect, is complex [42]. Therefore, IAS management at the landscape level is hindered by
land subdivisions as land users disregard the management of parcels jointly owned due to a
lack of incentives [14]. Addressing the challenge of joint registration of communally shared
resources, as provided for in Kenya’s new Community Land Act, 2016, may yield a positive
outcome. Such an approach is likely to promote the collective utilization and management
of communal resources by legitimate community members [43]. This is because it helps
in recognizing the legitimate beneficiaries of communally owned resources, thus holding
them accountable for their management. A participatory formulation and enforcement
of by-laws guiding the use and management of the Simanjiro rangeland in Tanzania is a
practical example of successful collective action in integrating IAS control within rangeland
management [44]. As identified in our research, the benefits achieved thereof are a great
incentive that determines whether land users will manage invasion or not. This means that
for communally shared lands to be effectively managed, coordinated management has to
be integrated with shared benefits for land users [13,14].

The above-mentioned interventions may significantly contribute to invasion manage-
ment if jointly implemented and enforced by community members, who are the agents of
change. This requires an effective institutional framework to promote the timely resolution
of land-related disputes as well as communal engagement in management measures. To
achieve this, efforts should be made to promote coordinated and community-based tenure
rights enforcement procedures in order to enhance the legitimacy of enforcement officers in
the community where change is needed and for invasion management to be sustainable.
The establishment of empowering institutional frameworks and powers at communal levels
is likely to enhance the solidarity and collective involvement of community members [45]
in managing the invasion. In this regard, the establishment of communally managed
conservancies has proved to be effective in attaining collective communal action in the
management of invasive species [44].

4.3. Lessons Learned and Recommendations to the NPS

The continuous implementation of SLMs is central to the successful management
of Prosopis, and this may be sustainable if it is centered around effective communal par-
ticipation. Despite this, land users’ continued participation depends on whether their
efforts will be compensated by benefits derived from management efforts. To enhance
anticipated benefits and promote land users’ contribution to managing invasion through
the implementation of SLMs, the NPS should incorporate programs aimed at enhancing
the resilience of community members to adverse external drivers. Integrating management
strategies with the enhancement of land users’ livelihood such as through the increase of
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access to the market for farm produce is likely to promote land users’ participation in the
associated SLM implementation.

This study observed that land management efforts primarily focus on privately owned
lands, while the management of communally shared resources is often neglected despite
their vulnerability to invasion. The implementation of SLMs to manage invasion therefore
depends on the enforcement of tenure rights, whose solutions vary with the nature of
the tenure system. Access to the land market is likely to enhance land re-distribution
and promote the implementation of SLMs on individual parcels. However, the same
challenge on communally shared resources may be best resolved through the collective
registration, utilization, and management of land. In both cases, strengthening communal
land management institutions plays a pivotal role in effective land governance and invasion
management. Nonetheless, such institutions have to be informed by credible research
output for them to offer viable solutions to challenges that face the prevailing tenure
systems. Thus, the NPS should adopt means of ensuring that land management institutions
operate within the guidelines of scientific research output.

5. Conclusions

We conclude that while benefits derived from management efforts are key determi-
nants of land users’ decisions to engage in invasion management at any spatial scale,
sustainable management strategies lie at a landscape scale. Communally shared parcels
where benefits of management efforts are not guaranteed are therefore vulnerable to neglect
and subsequent invasion. Therefore, strengthening institutional capacity at a communal
level may promote effective community participation in providing sustainable land gov-
ernance solutions. Furthermore, drivers of land users’ decisions in managing IAS are
multi-dimensional with complex systemic interactions. This implies that management
strategies should adopt a holistic approach that integrates all potential drivers in designing
management interventions for invasive species.
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Appendix A. Distribution of Respondents per Hotspot Area

Hotspot Area Sub-Location Name/s
No. of

Households
Population

No. of

Respondents

1 Salabani 277 1316 7
2 Ngambo and Sintaan 777 4060 19
3 Perkerra 1276 4911 32
4 Sandai/Loboi 458 2055 11
5 Eldume and Kailer 440 2155 11

Total 3228 14497 80

Appendix B. Text Format of the First Five Respondents on the Drivers of Constant

invasion. Responses Are in Black Font, While Respondent Characteristics Are in Red

Font. Information about One Respondent Is Separated from the Next Respondent by

the Spaces between Them
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Abstract: A specific set of environmental conditions characterizes plant species patterns and distribu-
tion on Earth. Similarly, riparian vegetation can be impacted by anthropogenic activities like mining
practices involving the removal of vegetation cover, which destroys the structure and diversity of
the habitat, adversely affecting the ecosystem services. In this study, we explored the role of envi-
ronmental variables and biotic intervention in deriving spatial patterns and distribution of riparian
vegetation at mining and non-mining sites along the most depleted Panjkora River basin in NW
Pakistan. Vegetation data and its determining factors at 28 mining and non-mining sites (14 each)
were sampled using 10 m × 10 m (100 m2) systematic plots at 50 m intervals along transects in a
downstream direction from the upper catchments to the bottom junction with the Swat River. We
recorded 186 species in both mining and non-mining sites, belonging to 70 families comprising 174 an-
giosperms, 3 gymnosperms, and 9 Pteridophytes. Results show that annual or perennial therophytic
life forms predominated in the Panjkora River system, indicating anthropogenic disturbances. At the
same time, the aggressively invasive species, such as Xanthium strumarium and Cannabis sativa, further
heightened plant community disturbances. Generally, the species diversity was higher in non-mining
sites and may be attributed to habitat fragmentation. Likewise, the Canonical Correspondence Analy-
sis (CCA-ordination) revealed that geographic coordinate (i.e., latitude r = 0.80; longitude r = 0.75)
and elevation (r = 0.95) were more meaningful predictors than soil texture (i.e., silt%, r = −0.30),
nutrients (i.e., potassium, r = −0.35; phosphorus, r = 0.38) and soil pH (r = −0.50) in shaping the
spatial pattern and vegetation structure. Our result implies that the present vegetation composition
and spatial assemblages are due to heavy anthropogenic interventions, especially mining activities.
Therefore, the heavily degraded fragile riparian system of the Panjkora River and its tributaries
needed to be conserved and restored by predicting the composition of communities in response to
changing climatic conditions.

Keywords: Panjkora River basin; Canonical Correspondence Analysis; mining activities; socioeco-
nomic aspects

1. Introduction

Plant species are not evenly or randomly distributed throughout the world; instead,
they are distributed along distinct geographical units due to specific climatic and environ-
mental factors [1,2]. Plant species distribution is influenced by biotic and abiotic variables,
including environmental changes, soil types, species migration, habitat characteristics,
terrain, hydrology, geology, tectonic plate movement, etc. Due to all of these dynamics,
ancient habitat topography and climate are drastically altered, mountains are raised, and
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as a result, ecological factors (competition, hybridization, and pollination) significantly
impact the patterns of phytogeographical distribution [3]. Its phytogeographic analysis
traces specific plant species allocation, diversification, evolution, and origin [4].

Because riparian vegetation is regarded as one of the indicators to be used in man-
agement practices, ecologists and land managers are aware of the variety of ecosystem
services it provides [5]. Variations in the riparian environment substantially influence
the composition and diversity of plant species [6]. Plant species variety has increased
significantly due to variations in the riparian ecosystem’s soil physicochemical character-
istics and microclimate [7]. Natural and artificial calamities drastically destroy an area’s
vegetation [8,9]. Over-exploitation is the primary factor causing the observed reduction
in an area’s vegetation, which often progresses more rapidly than the pace of species
regeneration and natural restoration. Numerous reasons, such as the removal of trees for
use as lumber and wood, the expansion of agricultural land, the rapid spread of invasive
species, and grazing pressure, contribute to the ongoing loss of species diversity in these
environments [7].

The health of the local ecosystems and the protection of the streams and accompanying
fauna depend on the riparian vegetation [10]. Despite their significance, anthropoid activi-
ties have fragmented these forest corridors lowering biodiversity and several ecological
processes, making riparian forests one of the most degraded ecosystems in the world [10,11].
Floristic and structural studies are necessary to understand a given community better and
track the profile of habitats with unique environmental features in response to human
stresses [11]. When addressing abiotic elements such as edaphic attributes, these studies
allow the comprehension of how these abiotic factors, in addition to floristic composition,
environmental quality, vegetation structure, and history, might impact the vegetation of
these sites [12]. Moreover, the formation of subgroups in vegetative forms with specific
affinities and edaphic factors influences vegetation significantly at the local scale [13].

Similarly, local elements such as soil, topography, and vegetation in the region signifi-
cantly influence riparian vegetation, resulting in a varied floristic composition with species
characteristic of river banks and distinct phytophysiognomies [14]. Additionally, due to
regular changes, mostly brought on by variations in the inundating regime and natural
and human instabilities, riparian vegetation often displays substantial variety in its species
structure and geographic distribution [15]. Because of the abundance of forest species,
these forests are often better off in terms of vegetation than non-riparian habitats [16].

Sand mining has become a significant source of employment for a substantial number
of people worldwide and has brought about harmful anthropogenic alterations in the
river basins where this activity takes place [17]. River sand and gravel have long been
utilized as aggregate for building and road construction, and demand for these resources
is still growing. Sand is primarily obtained in Indonesia via river or stream mining [18].
The natural balance of a stream channel may be drastically altered by excessive sand
removal [19]. By disrupting the subterranean bed, the procedure impacts the land, causing
water imbalances and harmful environmental issues in the affected regions [20,21]. A drop
in the groundwater level reduces the amount of water accessible for home and agricultural
use. People relying on agricultural land for living also lose their jobs due to mining
operations destroying their farmland [22]. Sand mining negatively impacts the vegetation’s
structure and content and causes societal unrest [23].

Management and successful restoration efforts in susceptible areas affected by mining
depend on an understanding of species composition, vegetation structure, and interactions
between vegetation and edaphic components [24]. Past sand mining studies have focused
on the advantages and disadvantages of sand mining methods on the environment and
local people’s means of subsistence in various places. For example, the studies conducted
by [20–24] have focused on the mining activities and their socioeconomic importance.
However, these studies lack vegetation characteristics and their relationship with the corre-
sponding environmental factors. Therefore, a detailed study was conducted to compare
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the riparian vegetation diversity between mining and non-mining communities along the
Panjkora River basin, Khyber Pakhtunkhwa, Pakistan.

The significant environmental factors that operate in riparian vegetation were also
evaluated using multivariate analysis. We hypothesized that mining had resulted in a
deliberate change in habitat structure that is well evident from the floristic composition and
vegetation structure of communities and its diversity and can be assessed by comparing
it with control sites (non-mining sites). This research will add to our understanding of
the region’s mining communities and will provide insight into how we can better manage
these communities for socioeconomic benefit and conservation.

2. Materials and Methods

2.1. Study Area

The Panjkora River basin in Khyber Pakhtunkhwa, Pakistan, originates from trib-
utaries of the eastern Hindu Kush Mountains and was the site of the current research
(Figure 1) [25]. The Panjkora River begins as a torrent from the Hindukush Mountain’s
enormous icecaps. It regenerates at the intersection of Barawal and Jandool streams to the
east and Ushirai and Niag streams to the west. It originates in District Dir Lower, its flow
travels 113 kilometres, has a catchment area of 5905 km2, and enters the Chakdara Valley
before joining the Swat River near Qalangi [26]. Alternatively, it is separated from Kabul,
and the Swat River basins by western and eastern mountain ranges and the extension of
these mountain ranges then forms the Panjkora River basin. Geographically, the region
stretches from 71◦13′8′ ′ to 72◦22′13′ ′ E longitude and 34◦39′30′ ′ to 35◦47′17′ ′ N latitude.
These mountains are covered with snow and have numerous glaciers in valleys that reach
above 4000 m above sea level (a.s.l.) climatically; the area under the present work has a
cool to warm summer with temperatures ranging from 16 ◦C to 32 ◦C. There is a significant
drop in the temperature between December and February, and is characterized by snowfall.
Rainfall is reported annually and varies from 823 to 2149 mm [27].

 
Figure 1. Study area map showing sampling points across the River Panjkora in Khyber Pakhtunkhwa,
Pakistan.

2.2. Vegetation Sampling and Diversity Indices

The phytosociological vegetation attributes were assessed in mining (Experimental)
and non-mining (Control) sites during the field survey for two years starting in 2020 to
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2021, along the Panjkora river basin by using the quadrat method following [24]. Vegetation
was recorded using a 10 × 10 m quadrat for trees, 5 × 5 m for shrubs, and 1 × 1 m for herbs
in the selected stands. A total of 60 stands and 600 quadrates, which include 30 mining and
30 non-mining sites, were selected for data collection and assessment. Various quantitative
variables were used including density, frequency, height, cover, importance value (IV), and
importance value index (IVI), employing techniques as described by [28], were recorded
in each quadrate. Herb and shrub height and cover were recorded using a forestry tap,
while tree diameter was recorded at breast height (dbh). The IV was calculated as the sum
of the relative frequency, relative density, and relative cover [28]. A 10-m buffer zone was
removed from the stand borders, as recommended by [29], to lessen the impact of edge
effects. The plants recorded were identified using Flora of Pakistan [30,31] plant taxonomic
nomenclature.

Floristic characteristics were evaluated following the Flora of Pakistan, and an inven-
tory was compiled to record species details [30]. Dried plant specimens were stored on
Herbarium vouchers at the Department of Botany at Malakand Khyber Pakhtunkhwa
University in Pakistan. Following [32], species density was used to compute three main
diversity indices: species richness (S), evenness index (E), and Shannon-Wiener diversity
index (H′). The number of species present determines the species richness of a stand. The
H′ and E indices were calculated using the following formulas:

E =
H′

ln S
(1)

H′ = −
S

∑
i=1

pi ln pi (2)

where pi = proportion of the species (i) to a total number of species, ln = natural logarithm
of pi, and lnS = natural logarithm of species richness.

2.3. Environmental Variables and Soil Analysis

A 3 kg sample was taken from two opposing corners and the middle of each site
using auger borings to define the soil parameters in each location. In general, the top
layer of soil is nutrient-rich. As a result, samples were collected between 0 and 30 cm
deep [33], bagged, and carefully mixed to minimize variability [28,34]. A digital pH meter
and an EC meter were used in the field to measure electrical conductivity and soil pH in a
soil-water solution (1:5). By air-drying the samples and running them through a 2 mm filter
following USDA guidelines, the physiochemical makeup and textural characteristics of the
soil were ascertained [35]. The Walkley–Black technique was employed to estimate organic
matter, and wet combustion with chromic acid digestion followed by dry combustion was
utilized to quantify Total and Organic Carbon [36]. Micro-Kjeldahl was used to measure
total nitrogen, while Yadav et al. [37] methods were used to assess accessible phosphorus
(P2+) and exchangeable potassium (K+). The geometric approach was used to determine
lime (calcium carbonate; percent), and geometric measurement of CO2 evolution was
done following [38]. Using an online calculator (https://www.nrcs.usda.gov (accessed
on 20 November 2021)), we evaluated other soil properties, including field capacity (FC),
available water (AW), conductivity (s/cm), wilting and saturation point (WSP), bulk density
(BD), following [39]. The soil analysis was performed at the Swat Agriculture Research
Institute (SARI).

2.4. Data Analysis

From the 28 stands, floral and phytosociological data and relevant environmental
factors, i.e., geographic attributes, soil texture, and nutrients, were data-banked for analysis
and interpretation. Following the flowchart in Figure 2, various floristic attributes, i.e., life
form, leaf form, status in Pakistan, and Rainkiaer life form, were assigned to species fol-
lowing already published literature conducted in areas that resemble the study area [40,41].
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The relative phytosociological qualities were converted into an importance value index
(IVI). After numerically classifying mining and non-mining sites, each stand’s species was
allocated to a phytosociological category, either mining or non-mining sites. Recent litera-
ture was consulted to determine whether a particular species may indicate a group [31,42].
The means of the environmental and topographical factors were determined using a paired
t-test to identify variances.
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Figure 2. Flow chart of the methodology.

Using canonical correspondence analysis (CCA) of species IVI, the link between
mining and non-mining vegetation and environmental factors was investigated. In the
ordination graph, the vectors of the significant variables were also shown. All quantitative
vegetation and environmental data analyses were conducted using Graph Pad Version 7.0
and Microsoft Excel [43].

3. Results

3.1. Floristic and Phytosociological Diversity

A total of 186 plants, representing 70 families of angiosperms, gymnosperms, and
pteridophytes, were identified in mining and non-mining sites. The families with the high-
est species were Asteraceae (20), Poaceae (19), Lamiaceae (9), Amaranthaceae (8), Rosaceae
(6), Brassicaceae (5 each of Cyperaceae, Cucurbitaceae, Polygonaceae, and Solanaceae),
and Moraceae (4 species) (Table S1). One hundred seventy-four of the total plant species
reported were angiosperms, compared to 9 pteridophytes and three gymnosperms. Based
on life form, the flora was dominated by herbs 134 (72%), followed by shrubs 32 (17%),
while the rest were tree species, and one was a climber (Figure 3). Based on life span
(LS), perennials (P) made up the majority of the flora, accounting for 116 (62%), followed
by annuals (A), 63 (34%), biennials (B), 1 (>1%), annual/perennials (A/P), 4 (2%), and
annual/biennial/perennial (A/B/P), 1 (>1%).
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Figure 3. Life form (A) and Habit based spectrum (B) of the flora recorded in the mining and
non-mining sites along the River Panjkora basin.

Results revealed that in the study area, dicots dominated with 140 (75.26%), followed
by monocots 34 (18.27%), while the rest were either gymnosperms or Pteridophytes. The
spectrum of flora was diverse based on Status in Pakistan (SP) ranging from native to exotic:
Casual (CA) 1 (>1%), Cosmopolitan (CO) 1 (>1%), Cultivated (CU) 18 (10%), Exotic (EX) 1
(>1%), Invasive (I) are 14 (8%), Indigenous (ID) 2 (1%), Introduced (IN) 2 (1%), Naturalized
(N) are 21 (11%), Native (NV) 109 (59%), and Weed (W) 17 (8%) as indicated in Figure 4.

Figure 4. Spectrum based (A) on seed and status in Pakistan (B) of the flora recorded in the mining
and non-mining sites along the River Panjkora basin.

Based on Raunkiaer’s life form (Figure 5), 87 (47%) of the species were therophytes
(Th), 31 (17%) were hemicryptophytes (H), 18 (10%) were megaphanerophytes (Megp),
17 (9%) were nanophanerophytes (Np), 14 (7%) were geophytes (G), 8 (4%) were meso-
phanerophytes (Mesp), 6 (3%) were chamaephytes (Ch), 4 (2%) were microphanerophyte
(Micp) and 1 was parasite (P). The leaf size spectrum was similarly diverse, ranging from
microphyllous to aphyllous, including microphyll 67 (36.02%), nanophyll 50 (26.88%),
mesophyll 47 (25.26%), leptophyll 10 (5.37%), macrophyll 3 (4.30%), megaphyll 3 (1.61%),
and aphyllous 1 (0.53%).
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Figure 5. Raunkiaer life form (A) and leaf size class spectrum (B) of the flora recorded in the mining
and non-mining sites along the River Panjkora basin.

In the mining sites (Group I), the IVI means value ranges from 4.52 ± 0.70–1.02 ± 0.48
representing Cynodon dactylon and Maytenus royleanus, respectively. In mining sites, the
dominant plants were Cynodon dactylon (4.52 ± 0.70), having co-dominance of invasive
Xanthium strumarium (4.23 ± 1.12) and Cannabis sativa (2.7 ± 0.87), exotic Populus nigra with
IVI of 3.41 ± 0.98), and native Mentha longifolia having IVI of 3.12 ± 0.91. In addition, some
of the species have IVI between 3–1, like Calotropis procera, Centaurea cyanus, Chrozophora
tinctoria, Citrus limon, Cirsium arvense, Corynephorus canescens, Punica granatum, Ricinus
communis, Solanum surattense, Marsilea quadrifolia, Ranunculus sceleratus, Maytenus royleanus,
Tagetes minuta, Withania somnifera. The IVI mean values of most plant species were less than
1, as presented in Table S2.

The non-mining sites (Group II) were diverse, with more plant species than the mining
sites in Group I. The mean IVI of species ranges from 4.65 ± 1.28–0.09 ± 0.09 representing
Cannabis sativa and Zea mays. At the same time, co-dominated by Pinus roxburghii with
IVI of 2.86 ± 1.23, Cynodon dactylon having 2.8 ± 0.94 IVI, Dodonaea viscosa with IVI of
2.1 ± 1.43 and Olea ferruginea with IVI of 2.21 ± 1.12, belonging to native species (Table 1).
Similarly, the mean IVI of most plant species was less than 1.

Table 1. Mean importance value index of dominant plant species in Group I (mining sites) and
(Group II) non-mining sites.

Group I (Mining Sites) Group II (Non-mining Sites)

Plant Binomial Mean ± SE Plant Binomial Mean ± SE

Cynodon dactylon (L.) 4.52 ± 0.70 Cannabis sativa L. 4.65 ± 1.28
Cannabis sativa L. 2.7 ± 0.87 Cirsium arvense (L.) Scop. 1.88 ± 0.67

Cirsium arvense (L.) Scop. 2.4 ± 0.73 Corynephorus canescens (L.) P
Beauv. 2.13 ± 1.18

Corynephorus canescens (L.) P. Beauv. 2.52 ± 1.22 Cynodon dactylon (L.) 2.8 ± 0.94
Datura metal L. 2.07 ± 0.86 Dodonaea viscosa (L.) Jacq. 2.1 ± 1.43
Helianthus annus L. 2.22 ± 1.01 Duchesnea indica (Andr.) Focke 1.79 ± 1.01
Mentha longifolia (L.) Huds 3.12 ± 0.91 Ficus carica L. 1.62 ± 0.71
Persicaria hydropiper (L.) Delarbre. 2.06 ± 0.74 Monotheca buxifolia (Falc.) A. DC. 1.86 ± 1.15
Populus nigra L. 3.41 ± 0.98 Olea ferruginea Royle. 2.21 ± 1.12
Ricinus communis L. 2.24 ± 0.94 Pinus roxburghii Sargent. 2.86 ± 1.23
Tagetes minuta L. 2.61 ± 0.72 Rumex dentatus L. 1.68 ± 0.49
Xanthium strumarium L. 4.23 ± 1.12 Ficus carica L. 1.62 ± 0.71

Note: Only twelve major dominant species having an importance value (IVI) higher than 1 are selected, and their
IVI is presented as Mean ± SE.

3.2. Environmental Variables and Its Influence

Table 2 shows the various environmental factors impacting non-mining and mining
areas. Non-mining sites have flat to moderately sloping topography, reasonably deep soil
(up to 90 cm in depth), and typically well-drained soil. The usual soil type was sandy-
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loam, with minor variations. All vegetation had somewhat acidic soil, likely since their
parental material is comparable (igneous rocks). From species-poor (mining) to species-rich
(non-mining) plant types, the value of nitrogen and phosphorus rises while that of lime,
potassium, and organic matter declines. According to [1], for Dodonaea viscosa in the same
location, the available phosphorus was quite high. It was never over the 2.5 mg/kg detec-
tion level in other plant natural communities. Numerous soil characteristics, such as wilting
point, electric conductivity, bulk density, field capacity, and saturation point, decreased
with species-rich to species-poor vegetation types and showed statistically insignificant
differences (Table 2). Still, they did not affect these or other vegetation physiognomies
significantly.

Table 2. Descriptive value (Mean ± SD) of environmental variables affecting the vegetation sites of
mining and non-mining sites.

Factor Code Mining Sites Non-Mining Sites t-Value p-Value

Aspect Angle (◦) AA 257.5 ± 24.13 237.21 ± 21.21 0.68 0.25
Elevation (m) ELE 1189.4 ± 179.68 1081.5 ± 111.02 1.13 0.13
Latitude (◦) Lat. 35.04 ± 0.08 35.00 ± 0.05 1.1 0.14
Longitude (◦) Long 71.95 ± 0.04 71.94 ± 0.02 0.17 0.43
Sand (%age) Sand 47.41 ± 2.10 43.17 ± 2.27 1.2 0.12
Silt (%age) Silt 29.82 ± 2.58 32.51 ± 2.87 0.79 0.22
Clay (%age) Clay 22.75 ± 1.90 23.93 ± 2.19 0.66 0.33
Nitrogen (%age) N 0.15 ± 0.05 0.34 ± 0.07 2.66 0.009
Phosphorus (mg/Kg) P 5.12 ± 0.51 6.34 ± 0.54 1.76 0.05
Potassium (mg/Kg) K 137.35 ± 18.06 110.92 ± 7.17 1.63 0.06
Lime (%age) L 13.09 ± 1.02 11.17 ± 0.70 1.9 0.033
Organic matter (%age) OM 0.86 ± 0.11 0.84 ± 0.09 0.14 0.44
pH (1:5) pH 6.84 ± 0.14 6.47 ± 0.21 1.39 0.09
Electrical conductivity EC 36.42 ± 2.61 37.5 ± 2.5 0.55 0.29
Wilting point WP 0.13 ± 0.00 0.14 ± 0.01 0.65 0.22
Bulk density (g/cm) BD 1.41 ± 0.01 1.42 ± 0.01 1.09 0.14
Available water AW 0.12 ± 0.00 0.13 ± 0.00 −1.04 0.16
Saturation point SP 0.46 ± 0.00 0.47 ± 0.00 −1.07 0.15

Elevation and latitude have a strong, significant association (p < 0.01; r = 0.93), eleva-
tion and longitude (p < 0.01; r = 0.84), whereas potassium has a weak, statistically significant
relationship (p < 0.05; r = −0.41) with elevation as depicted from Figure 6. However, a
weak negative correlation was shown between latitude and potassium (p < 0.05; r = −0.43),
sand and silt (p < 0.01; r = −0.68), and latitude and longitude (p < 0.01; r = 0.87). In con-
trast, a positive association between saturation point and clay particles (p < 0.01; r = 0.94),
while a significant negative correlation between clay particles and bulk density (p < 0.01;
r = −0.94). The soil nutrients like potassium and nitrogen significantly correlated with elec-
trical conductivity having p < 0.05; r = −0.36 and p < 0.05; r = −0.42, respectively. Likewise,
potassium was found correlated with pH and lime, having p < 0.05; r = 0.41, and p < 0.05;
r = 0.36, respectively. In addition, organic matter and electrical conductivity negatively
correlated with r = −0.47; p > 0.01. Moreover, an important soil hydraulic property, i.e.,
wilting point, was significantly correlated with electrical conductivity (p < 0.05; r = 0.36). A
negative correlation between available water and bulk density, electrical conductivity, and
wilting point (p < 0.01, r = −0.69; p < 0.01, r = −0.90).
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AA Elev. Lat. Long. Sand Silt Clay N P K L OM pH EC WP BD AW SP
AA 1.0 -0.2 -0.3 -0.2 -0.1 0.3 -0.2 0.0 -0.2 0.2 0.2 0.0 0.1 -0.1 -0.2 0.2 0.2 -0.2
Elev. -0.2 1.0 0.9 0.8 0.0 -0.2 0.2 0.1 -0.2 -0.4 -0.2 -0.1 0.1 0.0 0.2 -0.2 -0.1 0.2
Lat. -0.3 0.9 1.0 0.9 0.1 -0.3 0.3 0.1 -0.1 -0.4 -0.3 -0.1 -0.2 0.0 0.2 -0.2 -0.2 0.2
Long. -0.2 0.8 0.9 1.0 0.1 -0.3 0.2 0.1 0.0 -0.3 -0.2 -0.2 -0.1 0.1 0.2 -0.2 -0.3 0.2
Sand -0.1 0.0 0.1 0.1 1.0 -0.7 -0.2 -0.3 0.2 0.2 -0.1 0.1 -0.3 0.5 -0.2 0.5 -0.9 -0.5
Silt 0.3 -0.2 -0.3 -0.3 -0.7 1.0 -0.6 0.3 -0.1 -0.1 0.3 0.2 0.3 -0.7 -0.6 0.3 1.0 -0.3
Clay -0.2 0.2 0.3 0.2 -0.2 -0.6 1.0 -0.2 -0.1 0.0 -0.3 -0.3 -0.1 0.3 1.0 -0.9 -0.3 0.9
N 0.0 0.1 0.1 0.1 -0.3 0.3 -0.2 1.0 -0.2 -0.4 0.0 0.3 0.0 -0.4 -0.2 0.1 0.3 -0.1
P -0.2 -0.2 -0.1 0.0 0.2 -0.1 -0.1 -0.2 1.0 0.3 0.1 -0.1 -0.3 0.3 -0.1 0.1 -0.2 -0.1
K 0.2 -0.4 -0.4 -0.3 0.2 -0.1 0.0 -0.4 0.3 1.0 0.4 -0.3 -0.1 0.3 0.0 0.1 -0.1 -0.1
L 0.2 -0.2 -0.3 -0.2 -0.1 0.3 -0.3 0.0 0.1 0.4 1.0 -0.1 0.4 -0.1 -0.3 0.3 0.3 -0.3
OM 0.0 -0.1 -0.1 -0.2 0.1 0.2 -0.3 0.3 -0.1 -0.3 -0.1 1.0 0.1 -0.5 -0.3 0.3 0.1 -0.3
pH 0.1 0.1 -0.2 -0.1 -0.3 0.3 -0.1 0.0 -0.3 -0.1 0.4 0.1 1.0 -0.3 -0.1 0.0 0.3 0.0
EC -0.1 0.0 0.0 0.1 0.5 -0.7 0.3 -0.4 0.3 0.3 -0.1 -0.5 -0.3 1.0 0.4 -0.2 -0.7 0.2
WP -0.2 0.2 0.2 0.2 -0.2 -0.6 1.0 -0.2 -0.1 0.0 -0.3 -0.3 -0.1 0.4 1.0 -0.9 -0.3 0.9
BD 0.2 -0.2 -0.2 -0.2 0.5 0.3 -0.9 0.1 0.1 0.1 0.3 0.3 0.0 -0.2 -0.9 1.0 0.1 -1.0
AW 0.2 -0.1 -0.2 -0.3 -0.9 1.0 -0.3 0.3 -0.2 -0.1 0.3 0.1 0.3 -0.7 -0.3 0.1 1.0 -0.1
SP -0.2 0.2 0.2 0.2 -0.5 -0.3 0.9 -0.1 -0.1 -0.1 -0.3 -0.3 0.0 0.2 0.9 -1.0 -0.1 1.0

Figure 6. Correlation heat map showing the relationship among the environmental variables of
mining and non-mining sites. Note: Legends are same as that of Table 2.

3.3. Species-Environment Correlation

Canonical correspondence analysis explains the total variance of 20.9% on the ordina-
tion axes having the highest variance on axis 1 (8.9%). Similarly, the Pearson correlation on
axis 1 (0.99) is higher than on axis 2 and 3. In contrast, the Kendall correlation is greater on
axis three than on axis 2 and 1 (Table 3). In the axis’s correlation, geographic variable i.e.,
elevation, latitude and longitude on axis 1 shows significant negative correlation (r = −0.95,
r = −0.80, r = −0.75 respectively, at p < 0.01). Similarly, aspect angle, and pH shows
significant negative correlation on axis 3 with p < 0.05; r = −0.33, and p < 0.01; r = −0.54,
respectively. Similarly, soil nutrient i.e., Potassium (p < 0.05; r = −0.35) on axis 1 and Lime
on axis 3 (p < 0.05; r = −0.25) shows significant correlation indicating that these factors
plays important role in shaping the communities.

Table 3. Canonical correspondence analysis axes summary, correlation and biplot scores of the
environmental variables.

Axes Axis 1 Axis 2 Axis 3

Eigenvalue 0.701 0.504 0.438

Species data variance

Variance explained (%) 8.9 6.4 5.6
Cumulative variance (%) 8.9 15.3 20.9
Correlation (Pearson). Spp-Envt 0.995 0.969 0.989
Correlation (Kendall). Spp-Envt 0.825 0.847 0.899

Variable
Correlation Biplot scores
Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

1 AA −0.188 0.02 −0.331 −0.157 0.014 −0.224
2 ELE 0.955 −0.192 −0.034 0.795 −0.133 −0.023
3 Lat. 0.803 −0.436 0.066 0.669 −0.302 0.045
4 Long 0.752 −0.417 0.199 0.626 −0.289 0.134
5 Sand −0.003 0.03 0.07 −0.003 0.021 0.047
6 Silt −0.111 −0.024 −0.302 −0.092 −0.017 −0.204
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Table 3. Cont.

Variable
Correlation Biplot scores
Axis 1 Axis 2 Axis 3 Axis 1 Axis 2 Axis 3

7 Clay 0.145 −0.016 0.291 0.121 −0.011 0.196
8 N 0.146 0.125 0.268 0.122 0.087 0.181
9 P −0.188 0.076 0.383 −0.156 0.053 0.258
10 K −0.351 0.262 −0.03 −0.292 0.181 −0.02
11 L −0.188 0.032 −0.255 −0.156 0.022 −0.172
12 OM −0.003 −0.063 −0.11 −0.002 −0.043 −0.074
13 pH 0.147 0.207 −0.538 0.122 0.143 −0.363
14 EC −0.04 −0.036 0.352 −0.034 −0.025 0.238
15 WP 0.115 −0.025 0.265 0.095 −0.017 0.179
16 BD −0.184 −0.001 −0.316 −0.153 0 −0.213
17 AW −0.091 −0.029 −0.252 −0.076 −0.02 −0.17
18 SP 0.176 0 0.313 0.147 0 0.211

Note: Legends are the same as that in Table 2.

Elevation, latitude, and longitude in axis 1 have negative biplot scores of −0.521,
−0.464, and −0.433, respectively. The biplot shows that critical factors influencing the
community structure and composition are potassium, electrical conductivity, aspect angle,
pH, and silt (Figure 7).

Figure 7. CCA-ordination and biplot showing vegetation distribution in 30 stands along the Panjkora
river basin. Note: St. (Stand number); Environmental variables legends are same as that in Table 2;
Species codes are same as that in Table S2.
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4. Discussion

The present research analyzed the vegetation of riparian locations throughout the
Panjkora River basin and compared mining and non-mining vegetation to determine the
impacts of mining on the vegetation. The qualitative analysis of flora and its composition
provides an important source of information on the dynamics of ecological changes on
a geographical and temporal scale [44]. The biological spectrums of flora depict the
climatic conditions and possible environmental influences that might alter the structure
and composition of the community [45]. The vegetation was diversified with 186 plant
species and a broad floristic spectrum. Similarly, 215 species in the riparian vegetation
throughout the Hindu Kush Mountains Range was recorded by [4].

In contrast, 105 species from mining sites in four districts of Khyber Pakhtunkhwa,
Pakistan was reported by [46]. The overall sum of species included in the study was greater
than the sum of species listed by other studies; including [47] recorded 92 species from a
mid-elevation forest in the Central Himalayas of India, while [48] reported 123 species from
a tropical forest in Manipur, north India. Similarly, 85 species from Dulahazara Garjan,
Bangladesh by [49], and investigators in tropical forests in various regions of the globe, for
example, 89 species were reported by [50], 52 species were recorded by [51], and 94 species
was reported by [52]. Most plant species in this research demonstrate the transmissible
distribution of vegetation, which is thought to be the fundamental characteristic of natural
vegetation [53].

Native species such C. dactylon, Mentha longifolia (L.) Huds, and Dodonaea viscosa
(L.) Jacq predominates in the communities, whereas invasive species with greater IVI
include Xanthium strumarium L. and Cannabis sativa L. The species that dominated were
mostly therophytes, which make up 37.5 percent of the flora, and may damage the native
plants, as revealed by [54]. The communities were also dominated by perennial and
annual plant species, which is in contrast to opposing views expressed in the literature that
(1) annuals, in particular, have strong effects on community homogenization [55] and
(2) perennials promote community disturbance and favour alien [56,57] species, which are
found in riparian communities. Smaller herb species like X. strumarium, M. longifolia, D.
viscosa, and C. sativa may be at a disadvantage versus tree plant species like Populus nigra L.
and Pinus roxburghii Sargent, which will eventually displace those smaller herbs [58]. This
displacement eventually results in disturbed communities and will pose a risk to vegetation
diversity in the future.

Understanding the ecological basis of vegetation is aided by the spectrum of diverse
life forms, which depicts the physiognomy of the flora and vegetation, which is the final
product of all living activities coupled with the environment [59]. According to Figure 1,
therophytes, with 87 species (37.5%), predominated in the region, followed by hemicrypto-
phytes, with 16 species (10%). The prevalence of therophytes suggests that this landform
experiences frequent, minor flood disturbances and terrain modification, which has limited
the occurrence of woody vegetation (phanerophytes) and forced them to relocate to riparian
slopes and uplands with minimal flood disturbance. Most therophytes are annual plants
that reproduce in the floodplain and marshes in the next season after surviving through
the adverse season via seeds or spores. The relatively high proportion of therophytes in
the riparian vegetation demonstrated that the landscape was often changed by human and
natural disturbances, which encourages therophytic types of vegetation [60].

Similarly, a phytosociological study of the vegetation of Hayatabad, Peshawar con-
ducted by [61], stated that therophytes were the leading class over others, supporting our
findings. We reported therophytes followed by hemicryptophytes from the area. Because
they are intimately tied to the succession pattern and life forms to the geomorphology of
the river, riparian plant life forms and life history strategies are crucial to preserving these
ecosystems [40]. Documenting functional vegetation’s life cycle methods is also important
for the ecosystem’s non-native vegetation.

The area’s leaf size spectrum was dominated by microphyll (36.02%), followed by
manophylls, and progressed gradually with a declining percentage, with only one aphyl-
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lous species. A key indicator of climate change is leaf physiology, which is strongly affected
by temperature and precipitation [62]. Nanophyll was listed as the area’s major leaf size
class by [63], which virtually supports our conclusion. Following our results, [64] reported
that nanophylls were the dominant leaf size class, followed by Microphyll, leptophylls,
and mesophyll at the University of Peshawar Botanical Garden in Azhakhel, Nowshehra.
Leaf size spectra of different altitudinal zones indicated that microphylls steadily expand
from lower to higher zones [65]. Similar to findings when microphylls dominate the zone
at greater altitudes, nanophylls were somewhat higher in the lower zone. Microphylls
were the predominant leaf size, followed by nanophylls in springs and monsoon, according
to [40], who studied the leaf size spectra of Ganga Chotti and Bedori Hills. This informa-
tion strengthens our current analysis since it considers the same altitudinal fluctuation.
Our current results are supported by [41] study of the biological properties of plants in
Tehsil Takht-e-Nasrati, which noted that microphylls were the predominant leaf size with
52.8 percent of species, followed by nanophylls (19.88 percent). The floral variety of the
Frontier Region was recently explained by [66] and agreed with our results.

Species richness, which is identified as the total of various species in a particular
region, is considered an important characteristic of a plant community [67]. In the mining
site community in this study, the Shannon–Wiener index (H’) ranged from 2.14 to 2.87,
while in the non-mining community, its value ranged from 2.72 to 3.39. In mining site
communities, the equitability or evenness index (J) varied from 0.86 to 0.95, but in non-
mining site communities, it ranged from 0.83 to 0.96. If the value of (H’) is high, the
community should be more diverse. The H value of a community containing only one
species should be zero (0) because the value of Pi should be equal to 1 and multiplied by
Pi, which should equal zero (0). When the evenness is high, the H value will also be high.
So, the H value not only indicates the number of species but also shows us the abundance
of the species distributions in the total number of species among the whole community.
Hence, the diversity index value of this study falls within the range reported for tropical
forests [48,68]. Species richness along the river basin is influenced by edaphic, biotic and
climatic factors [69]. Moreover, riparian forests connect different types of vegetation and
adjacent flora, and soil and hydromorphic conditions create a spatial heterogeneity that
favours species richness in these environments [11,70].

The link between the different vegetation indicators and the measured environmental
variables was then ascertained using CCA. A permutation approach was used to assess the
correlations between the canonical axes and the explanatory matrix and the importance
of each species. The proposed associations between the response and explanatory factors
were evaluated by normalizing the axis scores, focusing on the unit variance, and using
axes scaled to best reflect each species. The findings indicate that the elements that support
these communities include soil texture, potassium, aspect angle, and electrical conductivity.
In both sites, the content and organization of the community were greatly influenced by the
soils. The site soils were rich in organic matter, which is associated with high soil fertility.
These soils also enable water and air to pass through them, allowing roots to penetrate more
easily and supplying plants with nutrients and clay aggregation stability [71] revealing that
the properties of the soil might explain the distribution of vegetation at local scales. The
communities were found to be dominated by certain invasive generalist species, including
C. sativa, X. strumarium, P. nigra, and C. dactylon, pioneer species of disturbed vegetation [72].

5. Conclusions

Riparian vegetation is considered the health indicator of aquatic vegetation along
riparian corridors. The floristic diversity was dominated by perennials and therophytes
that indicated the anthropogenic pressure, which mainly contributed to mining activities in
the area. These floristic indicators provide baseline information for designing strategies
for conserving and managing the riparian vegetation affected by the mining activities.
Additionally, identifying plant communities’ particular to the various mineral zones may
serve as a foundation for phytoremediation strategies for mine waste rehabilitation. The
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mechanisms underlying these vegetation variations would benefit from further investiga-
tion. These mechanisms may be related to the preferential uptake or tolerance of specific
soil minerals, such as heavy metals, as well as variations in other soil properties such
as pH, water-holding capacity, and the availability of macronutrient elements. The cur-
rent research results also show that soil characteristics affect species richness, structure,
dominance, and establishment patterns and that ecological character can also affect the
composition. In these study regions, soil fertility and physical attributes may be limiting
element that serves as an environmental filter for establishing species. To fully comprehend
the relationship between riparian vegetation and its socioeconomic effect, we recommend
comparing riparian vegetation’s socioeconomic impact at mining and non-mining sites
with livelihood assessments of residents.

6. Limitations

The current study focuses on floristic compositions, vegetation characteristics, and
their relationships with the environmental factors that play a vital role in shaping plant
communities and provide baseline information for conservation and preservation. Despite
the importance of the study, there are still some limitations to the current research, which
can be beneficial for the development of future research in the study area. The present
study lacks information about the socioeconomic impacts of the mining operations on the
livelihoods of the local people, which is important aspect and, most of the time, creates
hurdles in the restoration of mining vegetation. In addition, the possible restoration
process and mechanism need further comprehensive evaluation for better utilization of the
information in rehabilitating vegetation on the mining sites. Moreover, riparian vegetation
can promote the growth of stress-resistant plants. Identifying such plants and their possible
stress-resistance potential can better provide information about the utilization of mining
flora for the possible remediation and accumulation of toxic pollutants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11101801/s1, Table S1: Check List of plant species along
with taxonomic attributes (Status in Pakistan, family, Raunkier life form and Leaf size classes); Table
S2: Showing the IVI and Mean Standard error of 186 plant species found in both mining (Group I)
and non-mining sites (Group II).
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