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Preface

Water is a crucial element on Earth for all living and non-living components. Climate change is

an alarming issue for managing and sustaining life on Earth. Given climate change, water resources

worldwide have been under drastically stressed conditions, as is evident from the uneven weather

patterns, droughts, floods, and cloud bursts. Only three percent of the water resources on Earth are

fresh, and two-thirds of the freshwater is locked up in ice caps and glaciers. Of the remaining one

percent, a fifth is in remote, inaccessible areas. Much of the seasonal rainfall in monsoonal deluges

and floods cannot be easily used. Only about 0.08 percent of all the world’s freshwater is exploited

by humankind, with an ever-increasing demand for sanitation, drinking, manufacturing, leisure, and

agriculture. The ever-increasing water exploitation has intensively degraded freshwater ecosystems,

notably rivers.

Furthermore, the climate extremes and water scarcity that are enhanced by climate change

induce additional stress on the freshwater ecosystems and may stimulate conflicts among water users.

In addition, we know that water is needed for several vital human activities, of which agricultural

and industrial activities are the primary water consumers. In the context in which we observe more

frequent droughts and incidences of water scarcity in the world, water systems’ management requires

the most advanced approaches and tools to rigorously address all of the dimensions involved in the

sustainability of its development.

Therefore, this Topic Collection’s main objective is to contribute to the understanding of

water systems’ management, and to provide science-based knowledge, new ideas/approaches, and

solutions for water resources’ management. Water demand for irrigation has been steadily increasing

during in recent decades. However, other water users have simultaneously been competing with

agricultural sectors for water resources. The conservation of freshwater ecosystems also needs special

attention, such as the sufficient allocation of environmental flows. In addition, in terms of the

projected climate change caused by warmer temperatures and shifting precipitation patterns, water

availability is expected to decrease, and water demand to increase, in many areas of the world.

Consequently, soil productivity and, thus, crop production could be drastically reduced.

These trends raise concerns highlighting the role of water and natural resources’ management

and their conservation to ensure the sustainability of irrigated agriculture. How well-irrigated

agriculture adapts to water scarcity scenarios, particularly by increasing water use efficiency and

better-estimating evapotranspiration, will directly affect the future and sustainability of the sector.

The 89 papers published in this Topic Collection encompass a diverse range of critical issues and

potential solutions concerning the sustainable management of water resources. We anticipate that

this collection will serve as a source of inspiration for engineers, scientists, policymakers, and

decision-makers worldwide, helping them to identify appropriate solutions and make informed

decisions regarding their specific water-related challenges.

Alban Kuriqi and Luis Garrote

Editors
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Abstract: Water availability is a crucial factor for the hydrological balance of sub-alpine shallow lakes
and for their ecosystems. This is the first study on water balance and water management of Lake
Candia, a small sub-alpine, shallow morainic lake. The aims of this paper are to better understand
the link between surface water and groundwater. The analyses carried out included: (i) evaluation of
water balance, (ii) identification of trends for each component of water balance, (iii) detection of the
presence of a break point or change in the behavior of each component, and (iv) regression analyses
of the terms of hydrological balance and their relative importance. The analyses revealed a high
variability mainly regarding the groundwater component, and very good correlation between rainfall
and volume variation, between rainfall and the water inflow, and between groundwater source and
outflow. Volume variation is linked with rainfall, outflow, groundwater source, and surface water
inflow. Despite the fact that the groundwater component does not seem to have a great importance
relative to direct rainfall on the lake, it is necessary to study the component with careful resource
management policies that point toward the protection of the water resource, sustainable uses, and
protection of the Lake Candia ecosystem.

Keywords: water balance; regression analyses; hydro-meteorological trend

1. Introduction

Water balance approach is used to evaluate availability of drinking water, recharge,
water storage and to quantify groundwater and evapotranspiration terms [1–3].Water
balance methodology is also used in many water balance studies of lakes to calculate one
or more terms of balance, such as precipitation, whose estimate depends on rain gauge
placement and spacing; evaporation, estimated by using energy budget, which is the most
accurate method; stream discharge and runoff; and the residual of the lake water balance,
which is interpreted as the groundwater term [4]. The groundwater contribution can be
equal to the water budget residual, or understood as the difference between water input
and water output quantity of the lake balance [5]. Groundwater flux into lakes can play an
important role in water balances of lakes, especially for shallow lakes without significant
tributaries and outflows, in which hydrodynamics are controlled primarily by meteorologi-
cal conditions and groundwater fluxes [6]. Furthermore, the regime of shallow lakes reacts
sensitively to changing conditions, such as variation in water level or in response to heavy
storms, which determine changes in lake ecosystems [7]. The turbidity, or transparency,
considered a function of lake nutrient status, represents alternative equilibria in shallow
lakes as a response to disturbances or changes in external factors (level fluctuation, climate
change, water resource management) and to physical and chemical condition (nutrient con-
centration) [8]. Reference [9] investigated if groundwater could be a corresponding cause of
accumulation of phosphorus in the Nørresø lake sediments. They found that groundwater
phosphorus input is the same order of magnitude as the total phosphorus deposited in the

Water 2021, 13, 3124. https://doi.org/10.3390/w13213124 https://www.mdpi.com/journal/water
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shallow lake sediment. The phosphorus concentration in eutrophic lakes is usually thought
to derive from agricultural fertilizers and wastewater treatment plants, and the natural
release of phosphorus by internal processes is rarely considered and recorded, especially if
it is thought to be related to groundwater transport [9]. All of these reasons, the knowledge
of hydrological balance and each of its terms for shallows lakes, if they are eutrophic and if
they are mostly fed by groundwater, are the basis for every action of water management. In
fact, the assessment of the impacts of long-term climate variability on water balance terms
by using time series of meteorological variables is crucial for the management of water
resources, especially for shallow lake systems [10]. Impacts of water resource management
can be particularly marked, but also climate, either on a local or catchment scale, is of great
importance for lake hydrology as it determines both the inputs and outputs of water [11].
In this framework, a comprehensive understanding of the interaction between surface
water and groundwater is largely needed to develop effective policies of water resource
management and protection, especially if we consider that the water level fluctuation may
have an overriding effect on the ecological functioning of ecosystems [11]. If small lakes
are principally fed by groundwater, it is necessary to understand the relationship between
rainfall, level fluctuations, and the aquifer. The hydrogeological catchment is not often well
known, and to understand climate change impacts on small lakes fed by groundwater, it is
important to investigate the origin, direction, water quality and quantity, susceptibility, and
timing of groundwater recharge [12]. Water resource management has to take into account
other variables, including climate change and variation in water demand—industrial and
agricultural—and in water supply that can affect water balance and ecosystems [13].

To analyze the functioning of hydrogeological systems in a shallow lake where ground-
water is the main source of water and to analyze the impact of climate change on the lake,
consequently proposing correct management of the water resource, we considered Lake
Candia, a morainic shallow lake. For analyzing the hydrogeological system, water balance
was calculated using soil water balance and determining the groundwater term as the
difference between water input and output. Additionally, the trends for each term of the
water balance and the climate change of main meteorological parameters were evaluated.
Finally, by using the most significant terms of the water balance, a regression analysis was
developed to define correct water resource management.

2. Materials and Methods

The Ivrea Morainic Amphitheatre (IMA) was defined as the most remarkable am-
phitheater of the Alpine context, due to its clearly expressed morphological arrange-
ment [14]. Its most typical elements are (i) an exceptionally regular and very long (16 km)
lateral moraine, named the Serra d’Ivrea; (ii) a very large fluvial plain occupying the
internal depression; and (iii) a wide sector of rocky reliefs (21 km2) connected to sub-glacial
morphologies, named the Colli d’Ivrea, cropping out above the internal plain [15]. After the
glacier withdrawal, the presence of morphological barriers and low-permeability hydroge-
ological interfaces created optimal conditions for the surface accumulation of meltwater
within the IMA internal depression, with consequent formation of several shallow lakes.
Just north of Ivrea there are the “Six Lakes”, the largest of which is Lake Sirio, the right
lateral moraine hosts lakes Alice and Meugliano, Candia Lake and the smaller Maglione
and Moncrivello lakes lay between the hills that form the front moraine.

A close interaction between this territory and human activities has developed over
time. A good knowledge of resources (water, geological, hydrogeological) and their
vulnerable assets is fundamental for safeguarding and valuing this alpine area [16]; the hy-
drogeological catchment of the Ivrea amphitheater represents an important water resource
for the territory, both for the environment and for human activity.

Lake Candia (Figure 1) is the second largest lake of the IMA and it is likely fed
primarily by groundwater and rainwater, rather than by the small canals running along
the surrounding hillslopes. A small outlet links the lake to the Dora Baltea River. Water
exchange is slow and the concentration of nutrients is consequently high, due to the runoff

2
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from the surrounding agricultural fields and to the natural lake conditions. Since 1995, the
lake and the wetlands have been protected as a natural reserve, the first provincial park
in Italy. Furthermore, the park was declared a site of community importance according
to the European Union “Habitat” directive. Lake Candia will also soon be included in
the list of protected wetlands, according to the Ramsar Convention (http://www.park
s.it/parco.lago.candia/Eindex.php, accessed date: 2 November 2021). The definition of
adequate water management strategies for these particular ecosystems, taking into account
the impact of climate change on these lakes, can offer tools for the protection of ecosystems
and recommendations for sustainable development. The Lake Candia watershed covers
8.91 km2 and has a mean altitude of 266 m a.s.l. Maximum depth of the lake is 7.7 m,
average depth is 4.7 m, and volume is 0.007 km3.

Figure 1. Catchment of Lake Candia.

The Lake Candia catchment is characterized by intense agricultural land use, where
the arable portion is the largest. The surplus water of the agricultural network is discharged
directly into the lake. The lake is fed primarily by groundwater and by rainwater falling
directly on its surface; runoff from the watershed is the third source in order of importance,
with characteristics varying according to the amount of rainfall and the season [17]. The
lake’s outflow, the Fosso Traversaro, with which the watershed comes to an end, is in the
southwestern part of the lake, off-center from the more northerly orientation of the lake.
The discharge is regulated by a weir (Figure 1).

Following Köppen’s classification [18], the lake area has a temperate sub-continental
climate, with daily average air temperatures ranging from −2 ◦C in the coldest month
(January) to 30 ◦C in the hottest (July). The rainfall regime is western sub-littoral, according
to the climate classification reported by [18], and is characterized by two maxima and two
minima, with the highest maximum in spring and the lowest minimum in winter, with
mean annual values around 900 mm.

A large variety of geophysical surveys was conducted on Lake Candia during the last
decade [12,19].

Some equipment was installed in 1987 on the southwestern shore of Lake Candia
(Figure 1) to measure the main meteorological parameters, such as rainfall, air temperature,
wind direction and speed, solar radiation (direct and reflected), humidity, pressure, and
lake level. In April 1987, a trapezoidal Cipoletti weir was built at the outlet (Figure 1)
to regulate the discharge so that water would not flow out of the lake if the water level
fell below 30 cm. The data from the weather station available for climate analyses are
recorded continuously; the station is operated by the Regional Protection Agency (ARPA)
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of Piedmont Region (http://www.arpa.piemonte.it/rischinaturali/accesso-ai-dati/anna
li_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html, accessed date: 2
November 2021). The weir discharge data are in direct relation with the level of the lake, so
that a continuous reading of the levels gives a continuous discharge datum for the outflow.

The analyses were carried out using meteorological and discharge data recorded
at the automatic measuring station and were used for: (i) evaluating water balance to
determine the amount of groundwater; (ii) evaluating the trend of each component of
water balance (rainfall direct on lake; entrance, the component that comprises runoff,
exceeded irrigation, and irrigation runoff; groundwater; discharge from the emissary; and
volume variation); (iii) calculating the presence of break point or changes in the behavior of
each component; and (iv) investigating the regression of water balance terms to understand
their relationship, including possible effects among each other and for improvement of
water research management.

2.1. Water Balance

Using monthly data from 1993 to 2019, a two-step approach was used to calculate the
volume of groundwater and thus evaluate its importance in the Lake Candia hydrological
regime. As the study area contains a water body (Lake Candia), which exercises its
hydraulic action on the magnitudes of the water balance terms, the continuity equation
was applied first to the lake and then to the whole basin.

The continuity equation applied to the lake follows:

PLC + Rs + IRE + RIR + QS = ELC + ΔH + Q (1)

where:

PLC is direct rainfall on the lake surface and on the part of the reed bed connected to it;
RS is the surface runoff;
IRE is the portion of irrigation water that is not used and enters the lake directly;
RIR is the runoff from irrigation;
QS is the underground contribution of groundwater via resurgences plus hyporheic

groundwater flow;
ELC is the evaporation from the lake and evapotranspiration from the reed bed;
ΔH is the variation in the level of the lake, taken with its sign;
Q is the surface discharge measured at the outlet of the lake.

If we look at the whole equation [20], the water entering the lake is made up of total
rainfall P, transformed into rainfall on the lake (PLC) and net rainfall (RS); irrigation water,
which must be taken into account due to the presence of a number of cultivated fields, and
a further addition from groundwater (QS), which is thought to feed the lake due to the
existence of resurgences within the lake and the hyporheic flow [21]. With respect to the
general equation, the outgoing water comprises the evaporation of both water body and
reed bed (ELC); variations in the level of the lake (ΔH), taken as increases and reductions of
its volume; and the discharge measured at the weir (Q) located on the outlet. At this initial
stage, neither evapotranspiration from vegetation in the watershed nor variations in soil
moisture content have been taken into account.

The criteria adopted to obtain each of the terms of the balance are given below.

PLC—Rain falling directly on the lake and the reed bed.

This is the portion of precipitation falling directly on the lake and the reed bed, most
of which grows with its roots in the lake or floating [22], thus without being intercepted by
plants or soil. It was calculated by multiplying the rainfall depth by the lake area and the
reed bed area.

RS—Surface runoff

This portion of precipitation is also called net rainfall or surface discharge, or the
rainfall to the soil that is not infiltrated but reaches the lake directly through surface runoff.

4
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RS was calculated using the United States Soil Conservation Service curve number method
for the study of small rural watersheds [23].

According to this method, the surface discharge is a function of precipitation P and a
parameter S, which represents the quantity of water that can be stored in the watershed (or
in the terrain). The parameter S is a function of the infiltration capacity (characterized by
the minimum infiltration rate observed in soil without vegetation after a long wet period),
the totality of the conditions (soil use, surface treatment, drainage), and the soil moisture
content (or antecedent moisture condition, AMC). The parameter S is linked to another,
non-dimensional parameter called runoff curve number, or simply curve number, CN. The
CN value is determined using two different tables, one developed for agricultural and
wooded areas [24] and the other for urban and kindred areas [25].

Considering the type of soil cover, use, and class, and the CN values for each category,
we calculated the surface runoff for the watershed of Lake Candia. A reduction of 20%
was applied in the category BUILT-UP AREAS and 50% in the category STREETS/ROADS
to the net rainfall value obtained using the CN method [23] considering that a portion
of rainfall in built-up areas and streets can be intercepted by grassland, vegetation, or
drainage system through, for example, manholes [25].

IRE—Excess irrigation water

This is unused irrigation water that is channeled directly into the lake. According to
the irrigation consortium, the period for irrigation is between 15 May and 15 September for
30 h/week with a volume of water around 0.027 m3 × 106 per year. The water extraction is
160 L/s.

RIR—Irrigation runoff

This parameter was calculated with the same method used for runoff from rainfall,
after transforming into mm of rainfall the quantity of irrigation water derived from outside
the basin and distributed weekly over the whole irrigated area from 15 May to 15 September.
In calculating the runoff, only the irrigated surfaces within a band of about 200 m from the
lake shores were taken into consideration, as it was thought that the water used farther
away would all be absorbed by the soil. The size of this parameter was taken as the same
for every year of the study, and equivalent to 0.005 m3 × 106.

QS—Underground contribution

This contribution is an unknown quantity in the balance. It is calculated by Equation (1)
in this form:

Qs = ELC + ΔH − PLC − Rs − IRE − RIR + Q (2)

ELC—Evaporation from the lake and evapotranspiration from the reed bed

Evaporation from the lake (or from the free water) was calculated using the energy
balance method which hypothesizes a regime in which the net solar radiation absorbed
by the water for a certain period of time is partly released as sensible heat to land and
air in contact with the water, and partly used to transform the water into vapor [26].
The calculation was performed using temperature, global solar radiation, and reflected
solar radiation data, measured at the Candia meteorological station. As we mentioned
above, the reed bed grows on the lake and is always saturated with water, so that its
evapotranspiration is linked to the evaporation of the lake. The ETC (evapotranspiration
of the reed bed) was thus given an equal value to that of the lake evaporation multiplied
by 1.7 in the months when the reed bed is growing, i.e., June, July, August, and September,
and exactly equal to the evaporation from the lake in the other months of the year when it
is not growing [27]. The two values obtained, multiplied by the relative area covered by
the reed bed, were added and included into the balance equation together.

ΔH—Variations in the lake level

The daily variations in the level of the lake, obtained from the values registered by
the water gauge of Candia, were calculated to obtain the actual monthly variation of the
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lake volume. The variation is taken with its sign, i.e., if the level falls, there will be a
corresponding decrease in the volume and the value will be negative, while an increase in
volume is calculated as positive.

Q—Surface discharge (outflow)

The last term in the balance Equation (2) is the discharge at the outlet, i.e., the quantity
of water exiting the lake. The discharge is measured using the weir at the closing section
of the lake that regulates its activity, and is connected with the levels of the lake that are
continuously measured through the equation.

By inserting each term of the balance in the Equation (2), we could obtain the value
of the monthly and annual underground contribution for different years, from 1993 to
2019. The underground contribution thus obtained takes account both the contribution
of groundwater via resurgences and any hyporheic flow of infiltration water returning to
the lake underground. These two contributions must be separated if we want to estimate
only the groundwater source. Thus, to identify the groundwater source it is necessary
to use a general hydrological balance equation, applied not only on the lake but on the
whole catchment, so we consider a control volume represented by a volume that has the
base coinciding with the waterproof layer of the aquifers and the upper limit above the
vegetation; the general equation of water balance follows:

P = ET + Q + ΔV (3)

where

P is the precipitation on the whole control volume;
ET is the evapotranspiration of the vegetation within the control volume;
Q is the water flux in and out of the whole control volume;
ΔV is the volume stored within the whole control volume.

Thus, using the general balance equation [20], which also includes evapotranspiration
and the quantity of infiltrated water, and applying Thornthwaite’s method for determining
the annual soil water cycle, we defined the portion of hypodermic discharge, which allowed
us to determine the effective contribution of groundwater source to the lake:

GS = QS − Di = Q + ELC − RS − IRE + ΔV − PLC − RIR + ET + IR (4)

where

GS is the groundwater source;
QS is the underground contribution of groundwater via resurgences plus hyporheic

groundwater flow;
Di is the hyporheic groundwater flow;
Q is the surface discharge measured at the outlet of the lake;
ELC is the evaporation from the lake and evapotranspiration from the reed bed;
RS is the surface runoff, i.e., the rainfall that reaches the lake directly from the

surrounding terrain;
IRE is the portion of irrigation water that is not used and enters the lake directly;
ΔV is the variation in the volume of the lake, taken with its sign;
PLC is direct rainfall on the lake surface and on the part of the reed bed connected to it;
RIR is the runoff from irrigation, i.e., the part of irrigation water that is not absorbed

either by plants or the soil and reaches the lake directly;
IR is the irrigation within the catchment;
ET is the evapotranspiration of vegetation within the whole catchment calculated

with the Thornthwaite’s method:

ETp = 16 ∗ K ∗
⎛⎝10 ∗ −

T
I

⎞⎠a
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where

ETp is the monthly potential evapotranspiration (in cm) relative to a 30-day month
and with duration of insolation of 12 out of 24 h;

T is the monthly average temperature in ◦C;
K is the coefficient of the irradiation of the month, obtained by:

K =
N
12

× d
30

where

N is the observed maximum number of sunny hours for a day, divided by its
maximum expected number depending on the latitude, in our case, 12;

d is the number of day per month, divided by the average number of day per month;
I is the annual heat index, sum of the monthly heat index [28];
a is a coefficient function of I and the latitude [28].

Thornthwaite suggested a method for the simulation of the hydrological phenomenon
in a catchment to evaluate the agricultural deficiency (calculated as the difference of the
water need ETp and the actual crop ET), which is based on a formula of evaporation of
a generic crop [29]. The evaluation of evapotranspiration is necessary for agricultural
issues and, especially, for the definition of water resource balance [30]. Another method
used to evaluate evapotranspiration is Penman–Monteith method [31], considered more
physically realistic but requiring many meteorological variables. The Thornthwaite method
is more easily applied because it requires only monthly mean air temperature and the
maximum amount of sunshine duration, calculated using latitude [32,33]. The results
obtained through these two methods are very similar in terms of correlation, trend, and
regional averages [32,33]. First, the potential evapotranspiration is calculated with the
aforementioned formula, and then the actual evapotranspiration is calculated using the
Turc formula [23].

If the monthly rainfall is more than the potential evapotranspiration, the actual evapo-
transpiration is considered equal to its potential; the rainfall surplus is assigned to the soil
humidity until an assigned limit [20]. The possible precipitation remaining is assigned to
the runoff and to the groundwater flow, with the criterion explained below. If the monthly
rainfall is less than the potential evapotranspiration, the actual evapotranspiration is con-
sidered equal to the total rainfall plus the soil humidity; if the supply is sufficient, the actual
evapotranspiration is equal to its potential value, otherwise it is equal to the sum of the
precipitation and the water storage such as soil humidity. The water excess that is not lost
by evapotranspiration or stored in the soil humidity is assigned half between the monthly
runoff in which there is the excess and half in the following month (underground flow) [34].

The main parameters of the hydrological balance are represented using a box plot that
allows for understanding if the distribution is symmetric or asymmetric, and to identify
the presence of outliers.

These anomalous values were calculated using Tukey fences: the lower threshold
equal to Q1 − 1.5 ∗ IQR and the upper threshold equal to Q3 + 1.5 ∗ IQR, where Q1 is the
lower quartile, Q3 is the upper quartile, and IQR is the interquartile range.

2.2. Trend of Each Component of Water Balance

Monthly time series of the main component of water balance, such as direct rainfall
on lake (PL), the sum of all surface water inflow into the lake (E = RS + RIR + IRE), the
variation of lake volume (ΔV), the lake level (H), the outflow (Q), and the groundwater
source (GS) were analysed for the period from 1993 to 2019 using R software, version
3.6.3 [35]. Decomposition of each water balance component of the time series into its
constituting parts, namely, the observed trend, seasonality, and random parts, was done
for the monthly time series from 1993 to 2019 using the time series functions in R. The
observed part represents the data that were measured or calculated through water balance;
the trend part specifies if there is an increase or a decrease around the mean value; the
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seasonal part represents a cyclical trend; and the random part represents unpredictable
changes in the data without a precise and identifiable cause.

Deseasonality was performed to correctly identify an increasing or decreasing trend in
water balance component and then subtract the seasonal component from the original time
series. Statistical tests to verify the trends and assess their significance were performed
using the Mann–Kendall test [36,37]. This test was selected because of its lower sensitivity
to outliers and its robustness for detecting a trend in rainfall, temperature, and hydrology,
without specifying if the trend is linear or nonlinear [38,39]. In addition, this test identifies
a monotonic trend that defines an increasing or decreasing trend, is simple and robust,
and adapts to missing values and data that do not have any particular distribution for
improving water resource management, detecting a trend in discharge, direct runoff,
precipitation, and evaporation [40,41].

2.3. Break Point

The statistical problem of break point or tipping point in a trend has been addressed in
many fields of research, such as medical, images analyses, and human activity [42] but espe-
cially on meteorological and climate parameters [43], hydro-meteorological variables [44],
and on time series data [45]. Methods in change detection or change point detection in
time series data try to identify the times when the probability distribution of a stochastic
process such as a time series changes.

Detection of break points, in this study, was done using the algorithm of analyses
on change point present in the R library strucchange [46,47] applied to water balance
parameters seasonally adjusted in the previous step. The approach we followed was
to use least squares regression to estimate the locations of the changes. The function
selects an optimal model (choosing the number of change points) using the Bayesian
information criterion (BIC) by default [48]. The assessment of changing point was carried
out by checking the changes in the average and variance of each variable of water balance,
returning the point in time, year or month, in which one or more turning points were
highlighted. Furthermore, recent studies in Piedmont Region where Lake Candia is located,
highlight a break point in the water table level in 2008, due to a different agricultural
technique of rice cultivation; the dry direct-seeded rice technique replaced the traditional
techniques in some areas of the Piedmont Plain, affecting water use in the study area [49].
It is therefore interesting and useful to verify any climate break point, to compare with the
changes in groundwater level and analyze the trend and behavior of meteorological data
before and after 2008.

2.4. Understanding the Drivers of Water Balance

After investigating the trend of main water balance terms and looking for potential
break points, we wanted to evaluate the relative importance of each term (ΔV, PL, Q,
GS, E) to determine the main driver of water resource management of Lake Candia. We
considered that PL is the direct rainfall on the lake and represents an important entrance
that depends only on meteorological factors; Q is the discharge of the outflow and depends
on the form of the weir placed on the outflow; GS is the groundwater entrance and depends
on the rainfall within the whole hydrogeological catchment and on the water use (water
supply and agricultural); E is the other surface entrance, depending on rainfall, land use,
and irrigation; ΔV is the variation of the lake volume that depends on rainfall, discharge,
runoff, and groundwater supply. The variation of lake level (ΔH) is incorporated into the
ΔV term.

Then to avoid various types of noise (e.g., small sample efficiency, outliers, high
breakdown point, time complexity) we adopted robust linear regression [50,51] LTS, with
the lqs package, Huber function, and bisquare estimate using the R package MASS [52] for
Formula (3).

In any multiple regression analysis, it is necessary to highlight multicollinearity,
recognizing regressor variables affected by linear dependencies [53], because this issue may
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cause serious complication with the reliability of the regression parameter evaluation [54].
The selection of predictors depends on many factors and particular attention must be given;
nevertheless, it happens that standard error of the coefficient will increase or that some
statistically insignificant variables should be significant; this is due to multicollinearity [55].
In cases of pairs of predictors with Spearman correlation values greater than 0.8, only one
predictor was kept. The R package performance [56] was then used to check regression
model fit, to its defined quality and goodness, and to check the model’s various assumptions
(i.e., normality of residuals, normality of random effects, heteroscedasticity, homogeneity
of variance, and multicollinearity), and that it includes R2, root mean squared error (RMSE),
and intraclass correlation coefficient (ICC) [56].

Finally, we assessed the relative importance of an individual regressor’s contribution
to the multiple regression model in explaining ΔV by using the R package relaimpo [57].

3. Results

3.1. Water Balance

The box plot (Figure 2) shows the distribution of the main water balance terms, their
symmetry, and the presence of outliers. The outflow (Q) and the groundwater contribution
(GS) have a higher variability than the other terms considering the distance between the
quartiles. Moreover, runoff (RS) and the groundwater contribution (GS) highlight the
presence of outliers.

Figure 2. Boxplot distribution of the main water balance terms.

The mean contribution of the groundwater source is around 41% of the entrance of
the hydrological balance, with a minimum around −1% and a maximum around 79%.
From the annual water balance analyses, we can highlight the negative contribution of the
groundwater resource in 2008.

The tendency of percentage of groundwater (%Gs) is reported in Figure 3. The
tendency was an increase starting in 2008 and a decrease starting in 2014.
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Figure 3. Temporal trend of groundwater source percentage (red line) and the polyline (black line).

3.2. Trend of Each Component of Water Balance

Analyzing the trend part of the time series for each term of the water balance, only
the outflow (Q), lake level (H), and the groundwater source (GS) seem to have a clear trend
from around 2010, whereas rainfall (PL), water inflow (E), and the lake volume variation
(ΔV) seem to fluctuate around the average with no trend (Figure 4). Therefore, subtracting
the seasonal component from the original time series (Figure 4), the time series adjusted
for seasonality supported that only outflow (Q), lake level (H), and groundwater (GS) had
a significant trend (Table 2).

Table 1. Results of break point analysis on monthly main water balance terms adjusted for seasonality.

Water Balance Terms Break Points Data

PL no -
E no -

ΔV no -
Q yes 1997 and 2010
GS yes 2003 and 2013
H yes 2003, 2008, and 2013

Table 2. Results of Mann–Kendall test applied on the main water balance terms.

Water Balance Terms Tau p-Value

PL 0.034 0.3618
E 0.017 0.6512

ΔV 0.024 0.5238
Q 0.158 <0.0001
GS 0.081 0.0287
H 0.149 0.0002
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(b) (a) 

 

(c) (d) 

(e) (f) 

Figure 4. Main water balance terms adjusted for seasonality: (a) direct rainfall on lake PL, (b) water inflow E, (c) lake level
variation ΔV, (d) outflow from the lake Q, (e) groundwater source GS, and (f) lake level H. In addition, (d–f) report the
break point indicated in Table 1.
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3.3. Break Point

As already highlighted in the analysis of trends in the time series, not all of the terms
analyzed for the assessment of the hydrological balance of Lake Candia revealed trends.
The additional tests to identify break points verified that there were no significant changes
in the volume variation of the lake (ΔV) and no turning points in the rainfall (PL) and in
the overall lake water inflow (E) (Table 1 and Figure 4). Groundwater (GS), lake level (H),
and surface discharge at the outlet (Q) revealed significant breaks (Table 1 and Figure 4);
two of the timing of changes for GS and H overlap in 2003 and 2013. Only H seems to be
affected by the change in different cultivation of rice, with a break point in 2008.

3.4. Drivers of Water Balance

The first estimate on the correlation among different predictors is reported in Figure 5;
QS (underground component of the groundwater term) has a high correlation value (0.88)
with only GS (groundwater source) retained in the regression model.

Figure 5. Correlogram of multicollinearity between the main water balance components adjusted
for seasonality. Graphs in the diagonal, plots below the diagonal, and numerical values above
the diagonal.

No multicollinearity was found by using the performance model, and non-normality
of residual and homoscedasticity was not a problem (Figure 6).

The robust linear regression model comparing lqs (method = “lqs” and “lts”), and rlm
(method = psi.huber, psi.bisquare) suggested that the most appropriate model was rlm
with Huber psi. Model check supported the reliability of model fit.
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Figure 6. Verification of model assumptions (multicollinearity, non-normality of residuals, and
homoscedasticity).

The selected model of robust regression (Table 3) provides the formula:

ΔV = 0.77PL − 0.37Q + 0.30GS + 0.52E − 103820.06

Table 3. Coefficient and standard error of robust regression model, where ΔV is the dependent
variable explained by PL, Q, GS, and E, and relative importance metrics of regressors PL, Q, GS, and
E with response variable ΔV.

Value Std. Error T Value R2

Intercept −103,820.06 6749.28 −15.38
PL 0.77 0.05 14.47 0.58
Q −0.37 0.04 −9.30 0.07
GS 0.30 0.04 7.46 0.05
E 0.52 0.07 7.36 0.30

The analyses of the relative importance of the four regressors indicates that direct
rainfall on lake (PL) has more importance than the other regressors with R2 equal to 0.58
and the groundwater sources (GS) has the lowest R2 value, equal to 0.05.

4. Discussion

The analyses conducted on the complex hydrogeological system that characterizes
Lake Candia show that the direct rainfall on lake (PL) and the entrances (E) to lake as, for
example, runoff, have an importance greater than the groundwater resource (GS), even if a
reliable inference was not possible without further validation and in situ measurements [6].
Groundwater seems to have less importance than surface water entrance on lake level
variation, probably because the exchange between groundwater and lake water is slow,
even when prolonged in time. Direct rainfall and runoff have more impact on lake level
because they carry more water in a short time. With direct measurement of groundwater,
it would be possible to define which inflow determines the permanence of a certain level
in the lake rather than that its high variation, thus defining the actual importance of
groundwater. The response of groundwater source to rainfall was highly variable in our
system and it is known that it depends on physical characteristics of soil and aquifer, size
of lakes, and their catchments [58,59]. The analyses of the main water balance components
during the period 1993–2019 revealed that only the outflow, the groundwater source, and
the lake level had a significance and positive trend. The variability in rainfall, water inflow,
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and the consequent variability in lake volume were likely too high, masking potential
temporal trends.

The analyses on break points, to verify if water balance components could change
their behavior in particular circumstance or for particular events, revealed that no changes
could be detected for water inflow and for volume variation, probably due to the high
variability of their behavior and to the variables that affect them. Rainfall varies greatly
through time and no trend or changing points were identified. Entrance has a behavior
depending on rainfall and on agricultural need, which depend, in turn, on temperature
and cultivation. Lake volume is more stable and for this reason its behavior is not subject
to particular trend or change points. Break points in the outflow were found in 1997 and
2010; in the groundwater source in 2003 and 2013 but not in 2008; and in the lake level in
2003, 2008, and 2013. Regarding the outflow, the two years detected as changing points are
linked with an unexpected decrease (in 1997) in comparison to previous years, and with an
increase (in 2010) after a series of years with low values.

Between 2003 and 2008, lake levels were characterized by low values whereas since
2008 and even more since 2013, an increase of their values occurred. Probably the flooding
of the marsh (located in the northeastern part of the lake) during 2008–2009 by a LIFE project
(http://www.life.trelaghi.it/eng/tasks5.htm, accessed date 2 November 2021) increased
minimum lake level, in addition to allowing more water quantity into the lake catchment.
This greater water quantity since 2013 was also pointed out by a groundwater source break
point, which showed an increase of groundwater. This increase is in contrast with [49], who
considered a reduction in groundwater source because of changes in water use owing to
increasing cultivation, but it is in line with unpublished results of a study on Lake Viverone,
from the same morainic amphitheater, showing an increase of groundwater level since
2008 measured from a well into the catchment of the lake. An explanation for the increase
could be related to a greater contribution by the alpine glaciers from which it is fed, due to
warmer and longer summers melting more glacial mass [60,61].

The evaluation of temporal variability of different climatic variables related to climate
change is surely relevant for water resource management, to allow knowledge-based
planning uses and to understand the effect of human disturbance, and the application of
break point detection can be a key tool to achieve the goal [43]. Yet, the problem of break
point is not often included in climate change studies, which are more interested on the
magnitude of changes in temperature, rainfall, or solar radiation, instead of detecting when
such changes occurred. The field of analysis of sudden changes and tipping points in the
behavior of environmental variables represents a rising scenario in ecological studies [62,63]
and will surely provide new insights in the understanding of the effects of climate change.

To better understand relationships among the different components of water balance,
the regression analysis provides a model that can be used to improve water management.

The groundwater resource can be followed by monitoring water table levels, and
management policies implemented to respond in advance to changes in water table consid-
ering that it is the most important reservoir of the Piedmont Region [64]. Furthermore, the
preservation groundwater quantity and quality are extremely important topics to protect
groundwater from pollution and exploitation [65]. Such an approach, combining man-
agement of outfall and water table monitoring, can be adopted for the protection of the
water resource together with the sustainable uses and protection of the ecosystem of Lake
Candia. Rainfall is a meteorological parameter, which has direct influence on agricultural
production and on water resources and water availability; a decrease in rainfall will prompt
greater extraction of groundwater for irrigation and will result in a decline of groundwater
level, with consequences on water balance. The scenario of changing water availability in
the future needs to be properly taken into account for long-term water management at the
catchment scale [41], as needed for Lake Candia.
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5. Conclusions

The water balance of Lake Candia revealed a very important influence of direct rainfall
on the lake and subsequently of different typologies of entrance (runoff from rainfall and
irrigation), whereas the groundwater resource seems to have minor importance even if
with a significant increasing trend of its importance. Although the variation of lake volume
was affected by direct rainfall and surface water inflow, the effect of groundwater has to be
carefully considered to support predictive management of the water resource.

The relationship between meteorological variables and the hydrogeological cycle are
clear and their trends also known. On the contrary, the actual trends in groundwater are
difficult to determine, especially regarding quantities and timing of events, particularly in
the absence of measures of permeability, porosity, storage coefficient, and the effective value
of exchanges between the different aquifers present in the catchment. Furthermore, the fact
that the territory surrounding the lake is used for agriculture increases the need for surface
water and groundwater. For these reasons, a more detailed evaluation of the dynamics
of the groundwater is a priority, both for the correct management of water resources in
general, and for greater protection of the Lake Candia ecosystem.
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Abbreviations

IMA Ivrea Morainic Amphitheatre
ARPA Regional Protection Agency
AMC Antecedent Moisture Condition
CN Curve Number
ETC Evapotranspiration of the reed bed
IQR Interquartile Range.
BIC Bayesian Information Criterion
LTS Least-Trimmed Squares
RMSE Root Mean Squared Error
ICC Intraclass Correlation Coefficient
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Abstract: Future streamflow in California is evaluated based on eight climate projections models and
the effects on water availability. The unimpaired projected streamflow for eleven California rivers,
collected from Cal-Adapt, are compared with unimpaired historical flows (1950–2015) using eight
climate model projections (2020–2099) identified as representative as possible future scenarios; Warm
Dry RCP 4.5, Average RCP 4.5, Cool Wet RCP 4.5, Other RCP 4.5, Warm Dry RCP 8.5, Average RCP
8.5, Cool Wet RCP 8.5, and Other RCP 8.5. Projected drought deficits (or magnitudes), durations, and
intensities are statistically tested against historical values to determine significance of differences
between past streamflow and future streamflow. The models show significant differences between
historical and projected streamflow with all three drought categories (deficit, duration, intensity),
using difference in means t-tests. Warm Dry and Other simulations are projected to have larger
droughts (2–3 times larger) than the historical record. Average and Cool Wet simulations are projected
to have fewer droughts than the historical period. Results are consistent for 4.5 and 8.5 RCP scenarios
that represent two different greenhouse gas emission levels. Potential impacts of such streamflow
variations are discussed.

Keywords: drought; climate; water; hydrology; streamflow

1. Introduction

Southwestern United States drought persistence increases competition among various
sectors of water use, affecting economic security. Continued dryness in the area is resulting
in water level decline in various basins since 2000. Sustained dryness will result in water
shortages not only for the immediate affected area, but other areas reliant on the basins for
water. Local and state governments are implementing water conservation plans to allocate
water usage [1]. For instance, the Colorado River basin will experience Tier 1 shortage
in late 2021 and must implement drought contingency plans with lower basin states. As
climate change continues, precipitation and temperature levels will be affected [2], thus
there is a need to completely understand how water availability will be impacted.

Drought scenarios under climate change conditions at specific locations (Shasta Dam)
have found changes in the drought frequency curves [3]. Expanded studies have looked
at streamflow conditions at seven (7) locations in California under conditions forced
from the coupled model intercomparison project (CMIP) in 2005 and highlighted changes
in the seasonality of flows [4]. The distribution of streamflow under changing climate
conditions was further evaluated in 2018 and identified a potential new normal of wetter
winters and drier summers [5]. Pierce et al. predicted potential effects such as average
annual temperature, precipitation, top level soil moisture, annual runoff, and snow water
equivalent [6]. Piechota et al. studied water supply and drought duration, deficit (or
magnitude) and severity in the Colorado River Basin to assess the deficit in relation to
past paleo records [7]. However, there is a lack of information on the broad changes in
California for water supply drought scenarios (e.g., duration, deficit and severity) under
change climates.

Water 2021, 13, 3211. https://doi.org/10.3390/w13223211 https://www.mdpi.com/journal/water
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The specific objectives of the current study are to first evaluate water supply drought
scenarios (duration, deficit, severity) for various river basins in California. Secondly, we
evaluate the changes in water supply drought scenarios under climate change scenarios
commonly used in assessment studies. The study provides novel contributions to the
understanding of how climate change will impact water supply drought scenarios under
changing climate conditions. Previous studies have not focused on understanding the
impacts that climate change will have on drought (in the form of water supply) for multiple
California streamflow stations. Analysis of streamflow and water supply under changing
climates, regarding these three drought related categories will be a significant contribution.

2. Materials and Methods

2.1. Data Used for Analysis

Historical yearly streamflow data (1950–2015) for eleven California rivers (Sacra-
mento River, Feather River, Yuba River, Bear River, American River, Mokelumne River,
Calaveras River, Stanislaus River, Tuolumne River, Merced River, and San Joaquin River)
were collected from Cal-Adapt which is an online system to access data and informa-
tion on climate impacts in California [8]. These eleven river stations were selected by
Pierce et al. [6] who conducted climate impact assessment and identified these stations as
locations in the variable infiltration capacity (VIC) hydrologic model as bias corrected to
unimpaired flows that are common to the eleven stations used by California Department
of Water Resources. These stations represent flows in the absence of human activities.

Future scenarios of climate (e.g., temperature and precipitation) have been downscaled
from 100 km to 6 km resolution using the LOCA statistical downscaling method for
California and Nevada to be used in climate assessments [9]. Pierce et al. [6] evaluated
the possible effects of the changing climate on the eleven unimpaired streamflow under
eight climate simulations representing four different climate models and two different
climate scenarios. The eight projections include four generalized circulation model (GCM)
simulations/models at two emission levels as representative concentration pathways (RCP)
4.5 and 8.5. The emission level of RCP 4.5 is an intermediate climate change scenario,
which will occur if policy makers enact mitigative policies that will minimize greenhouse
gas emissions [6]. The RCP 8.5 pathway incorporates the highest level of greenhouse gas
emissions resulting from a large population with high energy needs devoid of climate
change policies [10]. There is no greater likelihood of occurrence for RCP 4.5 or 8.5 [11]. The
four simulations are from models representing different future conditions-HadGEM2-ES
(Warm Dry), CNRM-CM5 (Cool Wet), CanESM2 (Average), MIROC5 (Other). The MIROC5
(Other) simulation is a model most unlike the first three to provide inclusion of as many
different possibilities. These four models were identified in the Cal-Adapt study to best
represent the climate in California. [6]. Eight future projected water flows (2020–2099) were
collected from Cal-Adapt for each of the eleven streamflow stations (see Figure 1). Yearly
streamflow data were transformed from ft3/sec to million-acre feet of water per year (MAF)
(Note: 1 MAF = 1233 million cubic meters MCM) to be used in the drought analysis.
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Figure 1. Map of California streamflow station locations used in this study. Map generated from
ArcGIS Hub and station coordinate obtained from National Water Information System [12].

2.2. Description of Analyses

Various statistical analyses were conducted on three drought categories: deficit, dura-
tion, and intensity. As previously used for drought studies in the western United States [7],
a drought is defined as two or more years in which the streamflow is below the historical
average streamflow. To determine when a streamflow station experienced drought, histori-
cal volumetric values were averaged and each yearly streamflow value of the eight future
projections was subtracted from the average historical streamflow. Yearly droughts were
explored as this is appropriate for analysis of changes in water supply which is generated
over a water year (October 1 to September 30 of next year) and meets various demands
throughout the year. A positive difference between the long-term average and the yearly
streamflow represents a deficit in the given year. If a streamflow deficit occurred in two
or more consecutive years, a drought occurred. Three drought categories were used to
conduct data analysis for all eleven streamflow stations: (1) drought deficit, (2) duration,
and (3) intensity. Overall drought deficit was calculated by summing the deficit for each of
the years in which the drought occurred. Drought duration was found by adding the years
in which consecutive streamflow deficits occurred. Drought intensity was determined by
dividing drought deficit by the drought duration.

The variability in streamflow across California rivers only permits analysis against
the corresponding historical data. To accurately compare data among the rivers, drought
deficit, duration, and intensity were standardized with a z-score based on the mean
(u) and standard deviation (σ) for each streamflow station (both for the historical and
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projected drought quantities). Each drought measure (deficit, duration, and intensity) was
transformed into a standardized z-score. The two tailed difference in means t-tests were
conducted on the standardized data of aggregated streamflow drought measures, at a
significance level of 0.05, comparing the projected values to historical values.

The variability for individual streamflow stations was also evaluated using a similar t-
test analysis on the non-standardized streamflow values for all the three drought measures
(deficit, duration and intensity) and presented for as box plots and as extreme values
(largest drought).

3. Results

3.1. Aggregate Analysis of California Streamflow Stations

Table 1 represents the two tailed t-test results for each of the drought categories with
the highlighted boxes significant at a level of 0.05. This summary is for all eleven stations
aggregated into one composite standardized time series. The largest impacts are seen in
the deficit and duration drought quantities. The Warm Dry model (for both RCP 4.5 and
8.5) produces larger drought deficits and duration. For RCP 4.5, the Average and Cool Wet
scenarios produce lower drought conditions for deficit, intensity and duration. The largest
impacts are seen in drought deficits and durations.

Table 1. Aggregated streamflow analysis using two tailed difference in means t-tests with a significant
difference in drought categories. Highlighted boxes indicate a significant difference (at a 0.05 level)
between historical (1950–2015) and model (2020–2099) projected means. Red represents a higher
projected mean than historical. Blue represents a lower projected mean than historical.

Deficit (MAF)
Intensity

(MAF/Year)
Duration (Years)

Historical vs. Warm Dry RPC 4.5
Historical vs. Average RPC 4.5
Historical vs. Cool Wet RPC 4.5
Historical vs. Other RPC 4.5
Historical vs. Warm Dry RPC 8.5
Historical vs. Average RPC 8.5
Historical vs. Cool Wet RPC 8.5
Historical vs. Other RPC 8.5

3.2. Analysis of Individual California Streamflow Stations

Table 2 uses the same statistical significance test as Table 1 except the analysis is
performed for each individual streamflow station and the non-standardized data (raw
streamflow data). Results are shown for the drought duration and deficit. The patterns
of having significantly different Warm Dry and Other projected means (higher) from the
historical mean, and Average and Cool Wet projected means lower than historical, still
occur in the individual stations. For instance, the Warm Dry scenario produced higher
drought durations and quantities at the Feather, Yuba, Mokelumne and American River
stations. There were some instances where the Cool Wet and Average scenarios produced
lower drought duration and deficit (i.e., wetter conditions). This occurred in the Feather,
Tuolumne, Merced and San Joaquin River stations. This demonstrates some of the spatial
variability (Figure 1) in the response to climate change and the sensitivity to local conditions
that can change how a watershed may respond.
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Fewer significant differences occurred in the data analysis when drought deficit is
evaluated by individual stations as when aggregated by climate model projection (Table 1),
due to the nature of t-testing and fewer observations in the Table 2 analysis reducing
degrees of freedom. Regardless of more restrictive criteria for significance, the individual
streamflow data followed the patterns found in Table 1, further suggesting they were not
due to chance.

Figure 2 depicts yearly streamflow deficit for the historical period (1950–2015) and
under the Warm Dry RCP 8.5 projection model (2020–2099) at one station, Yuba River. The
height of the bar represents the drought deficit in MAF. The width of the bars represents
the length of the drought period. Streamflow deficits are highlighted as becoming more
frequent in the projected time period 2020–2099. For instance, the projected drought from
2060–2070 has a particularly large deficit and is 3–4 times larger in comparison with the
historical record. The longest historical (from 1950–2015) drought was four years, while the
largest future drought (2060–2070) is 11 years. The largest deficit historically was 24 MAF
(29,592 MCM), while the projection is 73 MAF (90,009 MCM) for the 2060–2070 drought.

Figure 2. Yuba River drought deficit quantities for historical (1950–2015) and Warm Dry RCP 8.5
(2020–2099). The width of each bar represents the length of drought and the height of each bar
represents the deficit (or magnitude) of the drought. (Note: 1 MAF = 1233 million cubic meters).

Figure 3 depicts yearly historical (1950–2015) and Cool Wet RCP 4.5 (2020–2099)
streamflow deficit at San Joaquin River. It appears that the streamflow deficit during
droughts becomes less frequent and intense in the future under this scenario. Drought
frequency declines from eight historical droughts in the historical period to only six shorter
and lower deficit droughts in the future period. The largest drought deficit in the historical
record was 22 MAF and in the future period (2020–2099) it is 7 MAF.

24



Water 2021, 13, 3211

Figure 3. San Joaquin drought deficit quantities historical (1950–2015) and Cool Wet RCP 4.5
(2020–2099). The width of each bar represents the length of drought and the height of each bar
represents the deficit (or magnitude) of the drought. (Note: 1 MAF = 1233 million cubic meters).

3.3. Analysis of Distributions for Individual California Streamflow Stations (Historical
and Future)

Figures 4 and 5 depict the distribution of historical and projected drought deficit
quantities for select stations (Yuba and San Juaquin), as compared to Figures 2 and 3 which
show drought deficits over time. The median of Warm Dry and Other projection models
at RCP 4.5 and 8.5, appear higher than historical. The median of Average and Cool Wet
projections at RCP 4.5 and 8.5, appear to vary from being far above historical to slightly
below. Outliers tend to be more extreme with Warm Dry and Other projection models than
for Average and Cool Wet projection models. The ranges of drought deficit quantities vary
across all projection models. For the Yuba River (Figure 4), only the Warm Dry RPC 4.5
and 8.5 scenarios have drought scenarios that are significantly different (i.e., larger deficits)
from the historical distribution (as determined from the two tailed t-test at p = 0.05). For
the San Joaquin River (Figure 5), only the Cool Wet RPC 4.5 scenario had a significantly
different (i.e., smaller deficit) from the historical distribution.

Tables 3–5 display the largest deficit, longest duration, and highest intensity of each
drought under historical conditions and under model scenarios. Out of all the droughts
that were historically recorded or projected, this table displays the highest values of the
three drought categories. Streamflow deficit (Table 3) increases by as much as three times
larger than historical in the worst-case future scenario. For instance, in the American River,
the largest drought deficit in the historical record is 30 MAF and the in the future scenario
Warm Dry RCP 8.5 the drought deficit is 89 MAF.

Table 4 displays the duration (length) of droughts for each station and scenario. It is
noteworthy that future droughts may increase in duration two to three times larger than
historical. For instance, in the American River the largest drought duration in the historical
record is 4 years and the in the future scenario Warm Dry RCP 8.5 the drought duration is
11 years.

Table 5 displays the intensity (deficit divided by duration) of droughts for each station
and scenario. In general, there are fewer differences in drought intensity between the
historical record and future period. This could be a result of droughts being longer in
duration (see Table 4) and this would lead to less intense droughts in a given year. This is a
limitation of the analysis as we are not evaluating the individual yearly deficits as isolated
droughts and intensity is defined based on extended drought periods.
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Figure 4. Box plot of Yuba River’s drought deficit quantities historical (1950–2015) under all projected models (2020–2099).
Bottom bar and top bars extended from the box represent the lowest and highest usable values. The line in the middle
represents the median value in the data. Bottom half of the box represents the lower quartile, and the top half represents the
upper quartile. The highlighted boxes are significant (p = 0.05) in terms of different from the historical distribution based on
the t-test. (Note: 1 MAF = 1233 million cubic meters).

Figure 5. Box plot of San Joaquin River’s drought deficit quantities historical (1950–2015) under all projected models
(2020–2099). Bottom bar and top bars extended from the box represent the lowest and highest usable values. The line
in the middle represents the median value in the data. Bottom half of the box represents the lower quartile, and the top
half represents the upper quartile. The highlighted boxes are significant (p = 0.05) in terms of different from the historical
distribution based on the t-test. (Note: 1 MAF = 1233 million cubic meters).
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4. Discussion

Climate change will likely result in greater precipitation and runoff, but also more
years of drought [2], as reflected by the climate models used in this study. The results of
this drought analysis indicate that under three of the four climate change model scenarios,
there are increased streamflow deficits, greater intensity, and longer duration of droughts
with both RCP conditions (4.5 and 8.5). Warm Dry and Other simulations are projected to
have larger droughts (2–3 times larger) than the historical record. Recent studies propose
that longer droughts may become more prevalent in future years [13], and the study
presented here suggests this is most likely to occur under the Warm Dry or Other RCP 4.5 or
8.5 scenarios. A limitation in this analysis is the aggregation of the streamflow into a water
year value which does not allow for the analysis of changes in seasonality of flows as
was show might lead to higher winter flows and lower summer values [4]. This was also
shown in monthly drought analyses at Shasta Dam [5]. Regardless, from a water supply
and planning perspective, the analyses presented here allows for enhanced planning of
drought scenarios. Based on this analysis of the eight projection models, future scenarios
may be used for improved water management, including drought impacts on groundwater
usage and flood potential.

5. Conclusions

It is commonly understood that with climate change, climate related events will
become more extreme. Californians will need to adapt appropriately if this happens. In
times of prolonged drought, the western United States tends to use groundwater reserves
to fulfill water needs [14]. If drought deficit, duration, and intensity increase as the
Warm Dry and Other models project, groundwater may become a more prevalent water
source, resulting in potentially negative consequences. As groundwater is consumed, the
level drops and wells must be dug deeper, consequently raising the cost of groundwater
access [15]. Socio-economic issues, due to unequal groundwater access and the associated
costs needed to dig deeper wells and purify lower quality water frequently found deeper
in aquifers [14]. Aside from economic effects, seawater intrusion, wetland devastation,
land surface abatement, spring bereavement [15], regional climate feedback-loops, and
other unintended consequences [14] may occur. Appropriate investments in infrastructure
may be needed to mitigate changes in future water availability. Analyses conducted in
this paper intend to help California resource managers understand the implication of
the projected climate models on future California river streamflow, allowing policy for
preparation of the worst-case scenarios.
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List of Acronyms

CanESM2 CCCma climate model from the Canadian Centre for Climate Modelling and
Analysis, Victoria, BC, Canada

CMIP Coupled Model Intercomparison Project
CNRM-CM5 CNRM climate model from the Centre National de Recherches Meteorologiques,

Meteo-France
GCM generalized circulation model
HadGEM2-ES climate model from the Met Office Hadley Centre
LOCA localized constructed analogues
MAF million-acre-ft
MCM million cubic meters
MIROC5 JAMSTEC climate model from the Japan Agency for Marine-Earth Science

and Technology
RCP representative concentration pathway
VIC variable infiltration model

References

1. USGCRP Fourth National Climate Assessment. Available online: https://nca2018.globalchange.govhttps://nca2018.
globalchange.gov/chapter/25 (accessed on 21 April 2021).

2. Berg, N.; Hall, A. Increased Interannual Precipitation Extremes over California under Climate Change. J. Clim. 2015, 28, 6324–6334.
[CrossRef]

3. Trinh, T.; Ishida, K.; Kavvas, M.L.; Ercan, A.; Carr, K. Assessment of 21st Century Drought Conditions at Shasta Dam based on
Dynamically Projected Water Supply Conditions by a Regional Climate Model Coupled with a Physically-based Hydrology
Model. Sci. Environ. 2017, 586, 197–205. [CrossRef] [PubMed]

4. Maurer, E.P.; Duffy, P.B. Uncertainty in Projections of Streamflow Changes due to Climate Change in California. Geophys. Res.
Lett. 2005, 32, L03704. [CrossRef]

5. Mallakpour, I.; Sadegh, M.; AgahKouchak, A. A New Normal for Streamflow in California in a Warming Climate: Wetter Wet
Seasons and Drier Dry Seasons. J. Hydrol. 2018, 567, 203–211. [CrossRef]

6. Pierce, D.; Kalansky, J.; Cayan, D. Climate, Drought, and Sea Level Rise Scenarios for California’s Fourth Climate Change Assessment;
Scripps Institution of Oceanography: La Jolla, CA, USA, 2018; pp. 52–56. Available online: https://www.energy.ca.gov/sites/
default/files/2019-11/Projections_CCCA4-CEC-2018-006_ADA.pdf (accessed on 6 November 2021).

7. Piechota, T.; Timilsena, J.; Tootle, G.; Hidalgo, H. The Western U.S. Drought: How Bad Is It? Eos Trans. AGU 2004, 85, 301.
[CrossRef]

8. Cal-Adapt. Available online: https://cal-adapt.org/tools/streamflow/ (accessed on 12 May 2021).
9. Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical Downscaling Using Localized Constructed Analogs (LOCA). J. Hydrometeorol.

2014, 15, 2558. [CrossRef]
10. Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A Scenario of

Comparatively High Greenhouse Gas Emissions. Clim. Chang. 2011, 109, 33. [CrossRef]
11. van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.;

et al. The Representative Concentration Pathways: An Overview. Clim. Chang. 2011, 109, 5–31. [CrossRef]
12. States Shapefile. Available online: https://hub.arcgis.com/datasets/1b02c87f62d24508970dc1a6df80c98e_0 (accessed on

12 May 2021).
13. Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st Century Drought Risk in the American Southwest and Central Plains.

Sci. Adv. 2015, 1, e1400082. [CrossRef] [PubMed]
14. Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Chang. 2014, 4, 945–948. [CrossRef]
15. Konikow, L.F.; Kendy, E. Groundwater Depletion: A Global Problem. Hydrogeol. J. 2005, 13, 317–320. [CrossRef]

31





sustainability

Article

Integrated Surface-Groundwater Modelling of Nitrate
Concentration in Mediterranean Rivers, the Júcar River Basin
District, Spain

Diana Yaritza Dorado-Guerra 1,*, Javier Paredes-Arquiola 1, Miguel Ángel Pérez-Martín 1 and

Harold Tafur Hermann 2

Citation: Dorado-Guerra, D.Y.;

Paredes-Arquiola, J.; Pérez-Martín,

M.Á.; Tafur Hermann, H. Integrated

Surface-Groundwater Modelling of

Nitrate Concentration in

Mediterranean Rivers, the Júcar River

Basin District, Spain. Sustainability

2021, 13, 12835. https://doi.org/

10.3390/su132212835

Academic Editors: Alban Kuriqi and

Luis Garrote

Received: 29 September 2021

Accepted: 16 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València,
46022 Valencia, Spain; jparedea@upv.es (J.P.-A.); mperezm@upv.es (M.Á.P.-M.)

2 Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira 111321, Colombia;
htafurh@unal.edu.co

* Correspondence: diadogue@doctor.upv.es

Abstract: High nutrient discharge from groundwater (GW) into surface water (SW) have multiple
undesirable effects on river water quality. With the aim to estimate the impact of anthropic pres-
sures and river–aquifer interactions on nitrate status in SW, this study integrates two hydrological
simulation and water quality models. PATRICAL models SW–GW interactions and RREA models
streamflow changes due to human activity. The models were applied to the Júcar River Basin District
(RBD), where 33% of the aquifers have a concentration above 50 mg NO3

−/L. As a result, there is
a direct linear correlation between the nitrate concentration in rivers and aquifers (Júcar r2 = 0.9,
and Turia r2 = 0.8), since in these Mediterranean basins, the main amount of river flows comes from
groundwater discharge. The concentration of nitrates in rivers and GW tends to increase downstream
of the district, where artificial surfaces and agriculture are concentrated. The total NO3

− load to
Júcar RBD rivers was estimated at 10,202 tN/year (239 kg/km2/year), from which 99% is generated
by diffuse pollution, and 3378 tN/year (79 kg/km2/year) is discharged into the Mediterranean Sea.
Changes in nitrate concentration in the RBD rivers are strongly related to the source of irrigation
water, river–aquifer interactions, and flow regulation. The models used in this paper allow the identi-
fication of pollution sources, the forecasting of nitrate concentration in surface and groundwater, and
the evaluation of the efficiency of measures to prevent water degradation, among other applications.

Keywords: aquifer-river interactions; diffuse pollution; point sources; surface water; water quality
models

1. Introduction

Water crises are not only caused by droughts and shortages of the resource, but also by
pollution and water quality deterioration, which reduce the quantity of safe water in many
regions of the world [1]. As a result, a challenge faced by all countries is a reduction in the
concentrations of pollutants in surface water (SW) and groundwater (GW) [2–4]. Several
measures have been implemented to decrease the concentration of nitrates in water bodies
around the world. The European Union has implemented some legislative instruments
designed to protect water quality [5], such as the Nitrate Directive (1991), Urban Waste
Water Treatment Directive (1991), and Water Framework Directive (WFD) in 2000. Despite
the measures that were taken, in many areas, the water quality did not reach a good
status [6,7].

The most important source of nitrate is the agriculture, which generates diffuse
pollution followed by point pollution with urban and industrial discharge [8–10]. The
nitrogen accumulated in soil leaches to water bodies through runoff or percolation, and
then, hydrology is the means of transport until it is seen as a pollutant [11]. Nitrate

Sustainability 2021, 13, 12835. https://doi.org/10.3390/su132212835 https://www.mdpi.com/journal/sustainability
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transport in water is influenced by the interaction between SW and GW, as this interaction
forms the link between land activities and aquatic ecosystems [12–14].

Monitoring pollution sources and nitrate loading with a high spatial and temporal
resolution is challenging, and as a result, integration of large-scale hydrological models
of rainfall runoff and water quality have been widely used. Among these are SWAT [15],
MODFLOW [16], SHETRAN [17], QUAL2E & QUAL2K [18], STICS-MODCOU [19], and
PRZM-GW [20]. A complete review of models used in pollution estimation in Europe
was conducted by the Ref. [5]. Many of the hydrological models only consider the base
flow component of the aquifers, or river–aquifer interactions are not represented. This
introduces further uncertainty in the runoff calculation. However, the discharge of GW
into the rivers is considered important in arid and semi-arid areas, as it is part of the
non-stationarity of the rain–runoff relationship, and it influences the quality of SW and the
well-being of aquatic ecosystems [11,21,22].

Several studies have evaluated the SW–GW interactions in watershed management
and their impact on water quantity and quality. As a result, GW discharges with high
nutrient levels are considered as a source of SW pollution and ecosystem damage [23,24].
Understanding the effects of SW–GW interactions is a key factor in the management of
water resources in GW-dependent areas to supply the demands; however, it is not always
considered in decision-making [25,26]. For this reason, it is a challenge to determine how
GW discharges can impact the nitrate concentration in SW bodies.

Hydrological variability and water scarcity in the Júcar River Basin District (RBD)
in Spain have made necessary the joint use of GW and SW to satisfy water demands, in
some cases leading to the overexploitation of water resources [27]. In general, the total
contribution of the Júcar RBD fluvial network comes mostly from GW runoff. Although
nitrate concentration in GW bodies is stabilized without upward trends except for some
deep aquifers [28], 33% of the aquifers have a nitrate concentration above the threshold of
good status (NO3

− < 50 mg/L) [29]. As a consequence, Júcar RBD has water quantity and
quality problems.

Accordingly, the main objective of this study was to estimate the influence of the SW–
GW interactions on nitrate concentration and to determine the sources of nitrate pollution
in the Júcar RBD SW bodies. The following research questions were covered: (1) How
nitrate transfer from the aquifer affects spatial–temporal variation of the concentration
of nitrates in the rivers, and (2) what the sources of pollution in the Júcar RBD are. To
answer the above research questions, two models that integrate the SW–GW interactions
and water quality were linked together. With the combination of the models, it is expected
that the contrast of results will provide less uncertainty. First, the PATRICAL model
(Spanish acronym for “Precipitation Input in Network Sections Integrated with Water
Quality; [28,30]) integrates river–aquifer interaction for a medium-large watershed. The
PATRICAL output is the starting point for the second large-scale surface water quality
model, RREA (Spanish acronym for “Rapid Response to the Ambient State”; [31]). The RBD
authorities in Spain have extensively employed PATRICAL and RREA in the construction
of the hydrological plans and in the implementation of the WFD. Additionally, it has
been used to evaluate climate change impacts on water resources [32], to improve the
drought’s indicators in the Júcar RBD [33], and to observe changes in the hydrology in
the Mediterranean side of Spain [27]. In previous works, RREA was used to quantify the
effects of the main existing pressures on the receiving waters in the Middle Tagus Basin
in Spain [34]. Among the multiple benefits of these models, they can be used to identify
pollution sources, simulate nitrate concentration in surface and groundwater, and assess
the efficiency of management measures to prevent water degradation.

In the calibration of the models, the database of nitrate concentration and the evalua-
tion of the status of the water bodies carried out by the Júcar RBD were used. To evaluate
the simulated capacity of the nitrate status, an analysis was made from the perspective of
detection of the water bodies that do not comply with a good status, using a 2 × 2 contin-
gency table for dichotomous events [35]. The median variation of nitrate concentration in
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the main fluvial course of the Júcar and Turia rivers is presented, and the pollution sources
are identified. This study provides a comprehensive analysis considering most of the ele-
ments that affect the contribution of nitrates to SW bodies in the Júcar RBD. Understanding
how the SW–GW interactions influence the nitrates concentration is critical to manage the
conjunctive water use of SW and GW. In addition, the results will allow the identification
of key points to focus on mitigation measures and will be used in hydrological planning
for the 2022–2027 cycle.

2. Materials and Methods

2.1. Study Location

The Júcar RBD is located in the east of the Iberian Peninsula (Spain) on the Mediter-
ranean side, with an area of 42,735 km2. The hydrographic network is made up of nine
water resource systems (WRS or system) that drain into the Mediterranean Sea, and are
divided into 303 river water bodies (SW-river) (Figure 1a). The WRS of the Júcar and Turia
rivers cover nearly 69% of the total area of the district. The climate varies from humid to
semi-arid, with the presence of droughts and a concentration of approximately half of the
annual rainfall in autumn on the coastal strip [33]. The average annual pluvial precipitation
is 485 mm/year, with a spatial range of 339 mm/year in the Vinalopó-Alacantí (hereafter
Vinalopó), and 743 mm/year in Marina Alta.

The total contribution (4070 hm3/year) of the Júcar RBD fluvial network comes mostly
from GW runoff (2983 hm3/year), hence the importance of GW in this district [27]. This
can be explained due to the surface area covered by GW bodies (40,822 km2), 72% of which
are permeable. The predominant material in 90% of the district geological formations
is carbonated, with substantial subterranean drainage. However, quaternary detrital
formations predominate in the coastal plains of the area, which contributes to pollution
problems due to the lower rate of transportation [36]. SW–GW interaction in the SW rivers
is classified as follows: 78% receives discharges from the aquifer, considered as gaining
stream; 18% are SW rivers where the river infiltrates resources into the aquifer, considered
as losing; the remaining are considered as variable, where one situation or another occurs
depending on the time of the year. A detailed description of the SW–GW interaction in the
Jícar RBD can be found in the Ref. [37].

The land in the Júcar RBD is occupied by 49% of forest areas and open spaces, and
agriculture represents 36% of land use, where 3% are artificial surfaces and 12% are wetland
and water bodies (Figure 1b) [38]. Agriculture is the activity with the highest water resource
requirement (80% of total demand) and the third most important economic activity in the
district [39].

The Pressure Inventory of the Júcar Hydrological Plan (HP) [40] reports that 63% of
the SW rivers are under significant pressure from organic, urban, and landfill discharges.
The pressure of diffuse pollution by land use in which large areas are found in irrigation
crops, urban areas, and also livestock, affect 60% of SW bodies. On the other hand, aquifers
with good nitrate status (NO3

− < 50 mg/L) represent 77% of all GW bodies, while 33% are
impacted GW bodies. Pollution problems in the rivers and aquifers are located along the
coastline and of the adjacent inland strip [29].

Characteristics of the Júcar RBD were collected from the following sources: land use
(CORINE Land Cover System 2018); geology map (Spanish Geological Survey lithographic
map); 100 × 100 m2 digital elevation model (Spanish Army Geographic Centre); water
hydrographic network and water demands (Water Information System for the Júcar RBD,
“SIA Júcar” in Spanish, Available online: aps.chj.es/siajucar/, accessed on 26 March 2021);
and identification of losing and gaining rivers in the Júcar RBD (Geological and Mining
Institute of Spain; [37,41]).
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Figure 1. Water resource systems in the Júcar RBD, surface water bodies and water quality gauging stations (a) and land
use map (b). SW rivers: surface water bodies with river category; SW-QGS: surface water quality gauging stations.

2.2. Water Quality Models

PATRICAL [28,30] is a large-scale, conceptual model, with a monthly time step, that
discretizes the territory with a resolution of 1 km × 1 km. The water quality component
simulates nitrate transport through the hydrological cycle in the entire basin. This model
includes the SW–GW interaction as it takes into account irrigation returns that recharge
aquifers, lateral transfers among aquifers, and water movement through the river net-
work. However, PATRICAL only reproduces part of the altered hydrological cycle, as
it does not include the management of infrastructure or the modifications produced in
the flow regime. Inputs to PATRICAL are monthly pluvial precipitation; air temperature;
urban and industrial discharges to the GW bodies; nitrogen surplus in the soil; and GW
withdrawals [39]. The data set employed in the PATRICAL model are shown in Table 1.
Outputs of PATRICAL are streamflow-accumulated time series, GW levels, and total nitrate
loads from diffuse pollution in rivers and aquifers. The schematic with the steps carried
out by the model is shown in Figure 2a and detailed in the Appendix A. A more extensive
description of PATRICAL model and the parameters used is provided by the Refs. [28,30].
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Table 1. Data set employed in the PATRICAL and RREA models. NO3
−-SW: nitrate concentration in surface water (mg/L);

NO3
−-GW: nitrate concentration in groundwater; Q: streamflow (m3/s); P: pluvial precipitation (mm); T: temperature (◦C);

N-soil: nitrogen surplus in soil (KgN/ha); V discharge: point discharge volume (m3/year); PE: population equivalent.

Data Provider Data Type Time Step Monitoring Points Period Extent

Water Information System for the Júcar RBD
(“SIA Júcar” in Spanish, Available online:

aps.chj.es/siajucar/, accessed on 23 March 2021)

NO3
−-SW

NO3
−-GW
Q

Monthly
Monthly
Monthly

514
1874
121

2000–2018
2000–2018
2000–2018

SAIH Precipitation stations (saih.chj.es, accessed
on March 26 2021) and Temperature stations
from and National Meteorological Agency
(Aemet, Available online: www.aemet.es,

accessed on 26 March 2021)

PT Monthly
Monthly

976
456

1980–2018
1980–2018

Spanish Ministry for Agriculture, Fisheries and
Food (“MAPA” in Spanish; (MAPA, 2018 [42]) N-soil Annually - 2000–2015

National census of discharges (MITECO,
Available online: www.miteco.gob.es, accessed

on 26 March 2021)

V discharge
PE

Annually
Annually 884 2016–2018

2016–2018

Figure 2. PATRICAL (a) and RREA (b) models’ structure and variables. Evaluation of simulation performance metrics (c).
Rectangles with smoothed edges are the input variables to the model, the rectangles represent storages, and the document
flowchart symbol represents the outputs of the process. DP: diffuse pollution; GW: groundwater; K: pollutant degradation
constant N-water: nitrogen in the water resources; SW: surface water; t: time of residence of nitrate.

The information obtained from PATRICAL is the starting point for the second large-
scale surface-water-quality model, RREA. The two models complement each other, as RREA
allows to include reservoir management and measurement regulation, agricultural and
urban demands, and changes in the streamflow regime effects. A series of algorithms were
developed using Python software [43] to automate decumulation loads and streamflow
processes (PATRICAL output).

RREA estimates concentrations of pollutants in surface water bodies considering the
load contributed to each SW rivers, the pollution coming from upstream and the possible
degradation occurring in the water body itself. Input variables to RREA are: physical
characteristics of the hydrographic network; water demands [39]; streamflow records of
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rivers and reservoirs; diffuse nitrate load (output PATRICAL); streamflow time series
(output PATRICAL); point discharge; and degradation constant by pollutant. The data set
employed in the RREA model is shown in Table 1. Point sources of nitrate were entered
into the model by linking the authorized discharge location of wastewater treatment plants
(WWTP) and the SW rivers into which they discharge. Output variables are the time
series of streamflow and nitrate concentration circulating through the SW rivers under
conditions altered by human activities. The general scheme of RREA is shown in Figure 2b
and detailed in the Appendix A.

2.3. Calibration

The parameters were calibrated by an iterative process taking into account the follow-
ing: (1). To assess the skill of the models to simulate the nitrate status of the water bodies;
(2). to estimate the statistical error in order to obtain a greater number of SW rivers with
satisfactory performance in the simulation of streamflow and nitrate concentration; and (3).
to represent nitrate load generated by point and diffuse pollution.

In previous works, the hydrological component of PATRICAL was calibrated and
validated by Pérez-Martín et al. [30], who reported satisfactory behaviour of the model for
all evaluated water bodies. In addition, improvements have been made to the groundwater
component and the SW–GW interactions, finding better fits between the simulated and
observed flows with respect to the previous calibration [28].

The results of the model under an altered regime were compared with the observed
streamflow and nitrate concentration (SIA Júcár, Available online: ps.chj.es/siajucar/,
accessed on 26 March 2021) in the calibration process. The Python software [43] was
used to calculate the main descriptive statistics (25%, 50%, and 75% quantiles, mean and
standard deviation). The evaluations used the median of observed and simulated data in
the SW rivers for greater robustness and to avoid outliers. To check the consistency of the
data, automatic graphs were generated with the time series of the nitrate concentrations
and streamflow in each SW river.

The statistical error was calculated using three indicators. First, the relative bias
(PBIAS) shows the simulation deviation expressed as a percentage. In addition, it differs
from other indicators because it has a specific classification for streamflow and water
quality components. The second is the Nash-Sutcliffe efficiency (NSE), which determines
the relationship between the error variance of the simulated data and the variance of the
observed data [44]. The NSE ranges from −∞ to 1 and the optimal value is 1. Finally, the
indicator Modified Kling-Gupta Efficiency (KGEM) (Equation (1)) decomposes the bias into
three different terms, r represents the correlation coefficient between the simulated and
observed time series, β is the ratio between the simulated and observed means (μ) (Equa-
tion (2)), and γ is the ratio of the coefficients of variation of both time series (Equation (3)).
The optimal value for each of the three components of the KGEM is 1 [45,46].

KGEM = 1 −
√
(r − 1)2 + (β − 1)2 + (γ − 1)2 (1)

β =
μsim
μobs

(2)

γ =
CVsim
CVobs

(3)

2.4. Nitrate Status Classification Performance

To assess the skill of the models to simulate the nitrate status, a 2 × 2 contingency
table for dichotomous events was used [35]. This table allows assessing the performance of
the models to evaluate the status of water bodies based on the nitrate concentration values.
For this purpose, nitrate status was classified in the complete time series of simulated and
observed data for each SW river, considering the threshold value of 25 mg NO3

−/L [47],
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and using the same length of data in both series. In this way, a matrix of discrete non-
probabilistic values was obtained as shown in Table 2.

Table 2. Contingency table to assess nitrate status classification performance of PATRICAL/RREA
models.

Simulated Data
Observed Data

Good Status
(NO3

− ≤ 25 mg/L)
Poor Status
(NO3

− > 25 mg/L)

PATRICAL/RREA
Good status True Positive (TP) False Positive (FP)
Poor status False Negative (FN) True Negative (TN)

Four different measures were used to assess the skill of the models to simulate nitrate
status: the Accuracy (ACC) assesses the model performance to reproduce an event correctly
and was calculated using Equation (4), ACC ranges from 0 to 1, and 1 is the best value;
the bias measured is the ratio of the simulated mean and observed mean Equation (5).
Bias ranges from 0 to infinite, and 1 is the best value; the Success Ratio (SR) provides
information on the proportion of TP in the whole time series (Equation (6)) [35,48]; and in
contrast, specificity (SP) which is the proportion of TN correctly classified in the simulation
(Equation (7) [49]. For the indicators SR and SP, the best value is 1 and the worst is 0.

ACC =
TP + TN

TP + FN + FP + TN
(4)

IAS(TC) =
TP + FP
TP + FN

(5)

SR =
TP

TP + FP
(6)

SP =
TN

TN + FP
(7)

3. Results and Discussion

3.1. Calibration

Streamflows and nitrate concentrations were jointly calibrated in the six main water
resource systems of the Júcar RBD. The values obtained for the three statistical indicators
are shown in Figure 3. According to the PBIAS indicator, the streamflow calibration
provided a good fit between simulated and observed values in the Mijares, Turia, Júcar,
and Vinalopó; and satisfactory fit in Palancia and Serpis. For nitrate concentration, a very
good fit was obtained in Turia, Júcar, Serpis; a good fit in Palancia, and a satisfactory fit in
Mijares and Vinalopó.

Based on the NSE values for the monthly streamflow, the fit was satisfactory in
Mijares, Turia, and Júcar, whereas in Palancia, Serpis, and Vinalopó the performance was
unsatisfactory. NSE values for the nitrate concentration in Mijares, Palancia, and Vinalopó
were below zero; whereas in Júcar, Turia, and Serpis, positive values were obtained, which
indicates better behaviour of the model in the simulation of nitrate concentration.

The KGEM indicator and the three components in the streamflow performance was
close to the optimum in most of the systems evaluated, except in Vinalopó (Figure 3c),
which also presented a ratio between coefficients of variation (γ) close to zero.
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Figure 3. Evaluation parameters of the calibration process of the streamflow (altered regime) (a) and nitrate concentration
(b). The KGEM components for streamflow (c) and nitrate concentration (d) in the main systems of the Júcar RBD. r =
correlation coefficient; β = bias ratio; γ = ratio of the coefficients of variation; KGEM = Modified Kling-Gupta Efficiency.

KGEM values for nitrate concentration were between 0.3 and 0.7 in the Júcar, Mijares,
Palancia, Turia, and Serpis (Figure 3d); whereas in Vinalopó, a value close to zero was
obtained, with similar behaviour to that found in the streamflow. Analysing KGEM
components (Figure 3d), the correlation coefficient (r) was 0.81 for Mijares and 0.28 for
Vinalopó, meaning that simulated and observed data series are more correlated in Mijares
than in Vinalopó. The bias ratio (β) was 1.59 in Mijares and 0.40 in Vinalopó, so nitrate
concentrations are overestimated in Mijares, while it is underestimated in Vinalopó. Júcar,
Palancia, Turia, and Serpis have a bias relation close to the optimum. The ratio between
the coefficients of variation (γ) are close to optimal in Júcar, Palancia, and Serpis, and
presented values between 0.6 and 0.52 in Mijares and Vinalopó, respectively. The NSE
index for Mijares was not satisfactory but there was a high correlation between simulated
and observed data as a satisfactory KGEM value was obtained.

The models performed well in the simulation of water resources in basins with large
surface areas (such as Júcar and the Turia), but in small basins, with less surface area and
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less flow (such as the Vinalopó), the fit was less satisfactory. This is influenced by the
greater number of gauging stations and measurements in the basins with a larger area.

3.2. Nitrate Status Classification Performance

According to the contingency table shown in Section 2.4 (Table 2), 85% of the assessed
SW rivers are classified as True Positive (TP), indicating that simulated and observed values
match in a good nitrate status; whereas 4% are classified as True Negative (TN), which
indicate river sections with poor status in observations and simulations. The remaining SW
rivers do not coincide in the classification of nitrate status in the simulated and observed
data series (Figure 4).

Figure 4. Classification of the median nitrate concentration in surface water bodies in the Júcar RBD
using the contingency table.

The indices obtained using the contingency table are summarized in Table 3. The
Accuracy (ACC) ranged from 0.70 to 0.99 and was close to the optimal, indicating that the
model can reliably represent the nitrate status. The BIAS indicator showed that the nitrate
status in 78% of the systems is unbiased or slightly biased. The greatest BIAS was obtained
in Vinalopó. The Success Ratio (SR) shows the proportion of TP and ranged from 0.90 to
1.0 for all systems, except for Vinalopó. According to the calibration in this system, the
models tend to underestimate nitrate concentration, therefore, the FP rate is high and there
is a low TP rate. In contrast, the highest TP rates were obtained in Mijares and Palancia.
This indicates that SW rivers in these systems are properly classified in good status in the
simulation.
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Table 3. Indexes obtained from the 2 × 2 contingency table for the water resource systems (ACC:
Accuracy; SR: Success Ratio; SP: Specificity).

Water Resource Systems ACC BIAS SR SP

Mijares-Plana Castellón 0.97 1.00 1.00 0.22
Palancia-Los Valles 0.97 1.01 1.00 0.00

Turia 0.94 1.03 0.98 0.23
Júcar 0.81 1.04 0.90 0.32
Serpis 0.84 0.90 0.91 0.46

Vinalopó-Alacantí 0.78 1.28 0.78 0.00
Global Júcar RBD 0.86 1.06 0.90 0.26

Optimal Value 1.00 1.00 1.00 1.00

The SP indicator shows the rate of SW rivers correctly simulated as poor status (TN).
Values of SP between 0.22 and 0.46 were obtained in Mijares, Turia, Júcar, and Serpis;
whereas this indicator was zero (the worst value) in the Palancia and Vinalopó. In the case
of Palancia, this is attributable to the fact that there are no SW rivers in poor status, whereas
in Vinalopó 15% of the SW rivers are impacted in the observed data series, which were not
properly represented in the simulation.

Integration of the PATRICAL and RREA models accurately simulated the SW rivers
with good and poor nitrate status in Mijares, Palancia, Turia, Júcar, and Serpis. In Vinalopó,
the simulation did not represent the SW rivers in poor status, meaning that the simulated
skill of the models must be improved to increase the TN rate. The difference between
simulated and observed data may correspond to unassigned discharges to water bodies,
since the simulations are influenced by the number of associated water bodies and the
availability of data in small basins.

These results highlight that the contingency table is a useful method to evaluate the
behaviour of the models in the classification of the pollutant status in a catchment, since an
appropriate classification is more important than an accurate simulation of the pollutant
concentration. If the indicators obtained from the contingency table are far from the optimal
values, the simulation is not representing the real status of the water bodies.

3.3. Nitrate Transfer from GW into Rivers

The contribution of nitrate transfer from GW into the rivers network (Figure 5c) was
characterized by the GW discharge into the river (Figure 5a) and the nitrate concentration in
GW (Figure 5b). Modelling the interception behaviour of streams, aquifers, lakes, wetlands,
and springs allowed identifying aquifers that discharged or not to the surface. As a result,
it was found that 9% of the district aquifers provided a high nitrate transfer to the rivers.
The Júcar and Turia are affected by the presence of aquifers with concentrations above
25 mg NO3

−/L and discharges to rivers from aquifers over 5 hm3/year. The areas with
the highest nitrate transfer in the district are in the middle zone of Júcar (Mancha oriental
aquifer); lower zone of Júcar (Caroch Sur and Plana Valencia aquifers); and upper and
middle zones of Turia (Alpuente aquifers). The coastal strip of the Júcar RBD is one of the
most affected, due to high volume (20 hm3/year) and heavily polluted (NO3

− > 50 mg/L)
discharges from aquifers.
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Figure 5. Groundwater discharge into surface water (SW) (a), nitrate concentration in groundwater (b), classification of the
contribution of groundwater (GW) nitrate to surface water flows, and nitrate concentration status in surface water (c).

Nitrate transfer to rivers was classified as medium in 7% of the aquifers. The middle
and downstream part of the Vinalopó River presented discharges lower than 5 hm3/year
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with a concentration in the aquifer above 25 mg NO3
−/L. Discharge from GW can be up

to 25% of the total flow per year due to low streamflow in the river. More than half of the
aquifers (63%) provided a low nitrate transfer to rivers, although the discharge volume
to the river is high, the concentration is below 25 mg NO3

−/L. The remaining 21% of the
aquifers provide extremely low or no nitrate transfer to rivers. The influence of GW on
nitrate concentration varies from low to none in Marina Baja and Marina Alta because
many SW rivers are considered losers.

The monthly mean nitrate concentration in the SW rivers and GW along the main axes
in the Júcar and Turia rivers are shown in Figure 6a,b, respectively. The Júcar River has
the largest catchment area and the greatest flow contribution of the whole district, with
a total length of 509 km for the main axis (Figure 6a). In the upstream and midstream
(headwaters—438 km), the nitrate concentrations in aquifers and rivers (observed and sim-
ulated data) are below the threshold for good status. In the downstream (454 km—mouth
in the Mediterranean Sea), the median nitrate concentration in the river increases near the
threshold and is exceeded in some SW rivers. Simulated and observed concentrations in
the third and fourth quartiles are above the threshold in the SW rivers. Simultaneously,
there is a sharp increase in the median nitrate concentrations in the aquifer (Plana Valencia),
reaching a poor nitrate status.

The Turia River is the second with the largest area and flow contributions of the Júcar
RBD. In the upstream and midstream, the nitrate concentration is below the threshold
of good status in the SW rivers and aquifers. In the downstream, the mean nitrate con-
centration in SW rivers rises abruptly without exceeding the threshold of good status.
However, the concentrations obtained in the third and fourth quartiles do exceed them
in some sections. Concurrently, a sharp increase in the median nitrate concentration in
the aquifers Plana of Valencia and Liria-Casinos reached a poor status (Figure 5b). This
behaviour is similar to the Júcar River. In Júcar and Turia, a simple linear regression
between nitrate concentration in SW and GW was performed (Figure 6c,d), considering
that the two variables are measured independently. For this purpose, the median of these
variables was obtained for each SW-river with a gaining relationship between river and
aquifer in the main river axis. This regression was useful to adjust parameters and improve
the suitability between observed and simulated indicators.

A direct correlation was found between nitrate concentration in the river and aquifers
in Júcar (r2 = 0.9; Figure 6c) and Turia (r2 = 0.8; Figure 6d). This finding supported the
classification of the contribution of GW nitrate to SW presented in Figure 5c. The median
nitrate concentration in the main course of the Júcar and Turia rivers is considerably higher
in the aquifer (29.7 mg NO3

−/L and 23.3 mg NO3
−/L, respectively) than in the river

(5.8 mg NO3
−/L, and 7.8 mg NO3

−/L, respectively).
Most of the SW−rivers in poor status (NO3

− > 25 mg/L) have a high to medium
nitrate transfer from aquifers. Therefore, in these areas of the Júcar RBD, there is a direct
correlation between nitrate transfer from GW and poor nitrate status in rivers. However,
the proportion of this correlation depends on the GW discharge into the river, the nitrate
concentration in GW, and the relationship between SW-GW. The effects of the nitrate
transfer from the aquifer to the rivers have been previously analysed in Mediterranean
areas [50] and other parts of the world [24,51], where an increase of nitrates was found
in rivers located in areas with high discharge from polluted aquifers. This demonstrates
the need to use simulation models that include SW−GW interactions, what is particularly
important in arid and semi−arid areas, such as the Júcar RBD.

Simulation suitability adequately represented changes in the median nitrate concen-
tration along the river length in both simulated and observed datasets. However, the
first and third quartiles did not always fit, suggesting a change in the model parameters
to adjust the minimum and maximum for the representation of extreme events. Finally,
nitrate concentrations in the rivers and aquifers displayed a tendency to increase from the
upstream to the downstream, except with the Júcar system midstream (also polluted), as
presented by the authors in the Refs. [36,52,53].
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Figure 6. Monthly nitrate mean concentration observed in Júcar and Turia rivers (box squares without including outliers),
simulated in rivers (continuous line, first and third lower and upper shaded quartiles, respectively), and observed in
aquifers (continuous line with dot markers) in the main river course of the Júcar (a), and Turia (b) rivers. Linear regression
for variables NO3_SW and NO3_GW in the gaining SW rivers in the Júcar (c) and Turia systems (d).
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3.4. Point and Diffuse Pollution Sources

The spatial analysis of pollution sources showed that intensive agriculture down-
stream of the district generates a high diffuse load and pollution in rivers and aquifers
(Figure 7b). In general, citrus orchards and rice crops with irrigation are the main sources
of diffuse pollution, as irrigated agriculture generates the most leaching compared to
non-irrigated crops [36,50]. Nitrate surplus in soil for citrus orchards remains constant at
an average of 217 KgN/ha/year from the years 2007–2015 [42]; however, nitrate pollution
has been intensifying. The highest point loads are generated in the WWTP of urban areas of
Almassora (10,000–50,000 inhabitants), Albacete, Valencia, Alcoi, and Elche (50,000–100,000
inhabitants) (Figure 7a), most of them located downstream of the district, where it is most
overexploited. Nevertheless, the average load generated by the diffuse source is about 100
times greater than the point source, so the impact of the point sources on the district is
comparatively low.

Figure 7. Diffuse (DP) and point (PP) pollution load (a). Nitrate status in the river-type surface water bodies (SW rivers)
and spatial distribution of land uses (b).

Agricultural returns represent an important recharge in the water balance in the Júcar
RBD [30]. The use of polluted aquifers to supply the main demands of the agricultural
sector and the large amount of load discharged into rivers from irrigated crops explain
the fact that locations with the highest nitrate pollution in the SW and GW are in irrigated
agricultural areas. This is in agreement with previous studies in arid regions [54].

Different research papers in the Júcar RBD indicate that even if the rate of nitro-
gen fertilizers is reduced, leachate production remains high in areas irrigated with high
nutrient concentration water [55–57]. However, the combined effect of the reduction in
irrigation and nitrogen fertilization decreases nitrate leaching [58]. The source, quantity,
and method of irrigation in conjunction with the fertilization plan have a major influence
on the accumulation of nitrogen in the soil and the leachate generated [59–61].
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SW rivers total loads are estimated at 2.39 KgN/ha/year (Table 4). Although the
agricultural area covers 31% of the land use in the district, the pollution caused by diffuse
load corresponds to 99% of the total load to rivers. Nevertheless, the total load obtained is
lower compared to other basins in Europe with a similar percentage of agricultural land.
For instance, in Portuguese basins with 44% of agricultural land, the estimated annual
nitrate load average is 7.0 kgN/ha/year [10]; in the Sabor river basin (a tributary of the
Duero River Basin, in the Iberian Peninsula), with 35% of the area occupied by agriculture,
the nitrate load in the most critical areas is 4.26 kgN/ha/year [62]; and in the Danube
River Basin, with 42% of agricultural land, the estimated average annual nitrate load is
6.14 kgN/ha/year [63].

Table 4. Nitrate balance in surface water bodies with river category in the Júcar RBD.

Components Description
Volume Load Concentration

(hm3/year) tN/year kgN/km2/year mgNO3
−/L

Inputs
Natural flow 2247.3 10101.7 236.4 19.9
Urban discharges 171.6 100.0 2.3 2.6
Total Inputs 2418.9 10201.7 238.7 18.7

Outputs
Urban and industrial 278.5 1124.9
Irrigation 1410.9 5698.8
Total Gross Demand 1689.4 6823.7 17.9

Net outputs

Net plant uptake: Gross
demands—agricultural returns 672.5

Discharge to the sea 1746.5 3378.0 79.1 8.6
Total Outputs 2418.9 10201.7 18.7

A nitrate load of 79 kgN/km2/year reaches the Mediterranean Sea. This load is lower
than those obtained by Ludwig et al. [64] and Romero et al. [65] (233 kgN/km2/year
between 1975 and 2000, and 100–200 kgN/km2/year between 2000 and 2010, respectively).
Other studies around the world have assessed the discharge of nitrate into the sea. As
representative examples: (i) Mitsch et al. [66] reported that in the Mississippi RB a load
of 21.000 tN/year is generated, and about 1.600 tN/year (8%) reaches the Gulf (1990–
2000 period); (ii) the delivery from Danube RB to Black Sea was around 540–570 kg
NO3

−/km2/year in the period 1995–2009 [63]; and (iii) nitrate loads delivered by the Po
River to the Adriatic Sea in the period 2003–2007 were estimated at 86,295 tN/year [67].

Although several regulations have been implemented to reduce water resources
nitrate pollution, the annual variation of the nitrate load in the SW rivers and nitrate
discharges into the Mediterranean Sea in the Júcar RBD has remained constant from
1992 to 2017 (Figure 8a), which is in agreement with previous results obtained in other
Mediterranean basins [64]. Nitrate loads have a similar behaviour to the streamflow in the
basin (Figure 8a). This is because the most significant nitrate leaching events occur after
periods of high rainfall, decreasing the mineral N in the soil, which is leached out [56,68].

Regarding seasonal variability in the SW rivers (Figure 8b), mean nitrate concentra-
tions are low in the upstream and midstream without major differences between seasons. In
contrast, a strong change in nitrate concentration was detected downstream. For instance,
in winter, spring, and autumn 75% and 95% percentiles are in poor status. Compared
to summer, the nitrate concentration increases 35%, 17%, and 16% in winter, spring, and
autumn, respectively. As nitrate inputs are mainly from diffuse sources, rise of pollution
takes place mainly in winter and spring, when water flows are high. This finding is consis-
tent with the relationship between nitrate concentration and the rainfall reported by the
Refs. [69,70], who studied the coastal region of the Júcar River, and also with other results
previously reported in different basins [54,71–73]. The lower concentration in summer is
influenced by the large number of dams that significantly modify river flows. Consequently,
the main water sources in summer are dams and small channel discharges [74].
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Figure 8. Annual load (tN/year), and discharge into the Mediterranean Sea in the Júcar RBD, and streamflow (hm3/year)
(a). Seasonal nitrate concentration in the Júcar river Basin (b).

The integration of the SW–GW interactions in the hydrological planning of the river
basins is of vital importance, since it allows for the identification of the main pressures,
focuses actions to improve the status of water resources, and identifies sensitive areas to
prioritize, in order to reach the environmental objectives of the WFD. Critical points were
identified where further research is needed. For example, to support decision-making in
the coastal zones of the basins where the most pollution is found, it is possible to measure
the amount of groundwater used for irrigation and include in the fertilization plan the
contribution of nutrients from the irrigation water, optimize soil management, and convert
agricultural land to protection zones around the most critical rivers seeking to increase
the buffer capacity of vegetation. On the other hand, in the smaller basins with a high
contribution of pollution to Júcar RBD, it is possible to strengthen the monitoring network
for nitrate concentrations, as well as to increase the nutrient gauging stations.

4. Conclusions

This paper integrated two numerical models (PATRICAL and RREA) to assess nitrate
concentration in surface and groundwater of the Júcar River Basin District (RBD) and to
determine the main drivers of pollution and the effects of nitrate transfers from the aquifer
on the nitrate status of the rivers.

It was found that there is a direct linear correlation between the nitrate concentration
in the river and aquifer along the main course of the Júcar and Turia rivers. Changes
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of nitrate concentration in rivers of the Júcar RBD are strongly related to the source of
irrigation water, river–aquifer interaction, and the regulation of water flow produced by
the dams. The models properly represent the effects of the SW–GW interaction in the
nitrate status on the rivers in 87% of the Júcar RBD.

Therefore, this paper proves that PATRICAL and RREA models, after a proper calibra-
tion and validation process, allow for assessment of the concentration of nitrates in surface-
and ground-water. This is particularly relevant in in arid and semi-arid areas, such as the
Mediterranean basins.

The models may also be used to identify pollution sources, evaluate the efficiency of
management strategies to prevent water degradation, and analyze the effects of natural or
human-induced changes on the nitrate concentration in the water bodies, among a wide
range of applications. Thus, future research could be focused on analysing how climate
and land use variations affect nitrate concentration in rivers and aquifers.
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Appendix A

• PATRICAL

PATRICAL in the hydrological component includes, in addition to the variables
mentioned above, GW extractions (agricultural and urban) and the evolution of the average
piezometry of the aquifers. Considering the previous human activities that affect the
hydrological cycle, the model compares circulating flows and piezometric levels. In this
way, it obtains the modifications that take place in the GW bodies and how they affect the
surface flows (Figure 2a).

The temporal variability of water resources and the historical evolution of water use
and pollution sources are determining factors for the physical-chemical situation of water
bodies. PATRICAL is operated in the following steps (Figure 2a):

(1) Share of liquid water and snow on the land;
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(2) Water and nitrogen balance in the soil and excesses (water and nitrates);
(3) Excesses are decomposed into surface runoff and infiltration into aquifers.
(4) GW module;
(5) Groundwater runoff is added to surface runoff forming total runoff, allowing to know

the water volume and nitrate load in each section of the drainage network.

The modelled basin is divided into three zones: (1) the surface soil zone; (2) the
unsaturated medium, between the aquifer and the root zone, it varies according to the
piezometric level in the aquifer; and (3) the aquifer (Figure 2a).

• RREA

The total loads of nitrogen from point sources (kg/month) were calculated according
to the concentration and volume of the discharge associated with a SW rivers. When
the SW-river did not have a census of discharges, it was calculated with the number of
population equivalent and the treatment of wastewater purification associated with the
treatment plant of the area. The procedure to obtain the number of population equivalent
is similar to that already used in other RB, it was calculated based on the annual volume
of discharge and the supply of drinking water per population of each municipality [75].
Reused water was considered since it decreases the amount of load brought to the water
bodies.

The program performs a mass and flow balance for each river-type water body on a
monthly scale. The mass balance is defined by the following variables: amount of mass that
enters (Me,i) to the water body i, pollutant mass (Mgen,i) that is generated in the basin of the
mass i, and the mass of pollutant that leaves the water body j and discharges to the mass
i (Ms,j(j→i)). The mass balance is defined by the following equation (Paredes-Arquiola
2015):

Me,i = Mgen,i + ∑n
j=1

(
Ms,j j → i

)
(A1)

The flow extracted is taken into account in the two balances to extract the mass of
pollutant that carries the flow extracted.

Ms,i = Me,i × e−KL (A2)
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Abstract: Remote sensing is a powerful tool that provides flexibility and scalability for monitoring
and investigating glacial lakes in High Mountain Asia (HMA). However, existing methods for map-
ping glacial lakes are designed based on a combination of several spectral features and ancillary data
(such as the digital elevation model, DEM) to highlight the lake extent and suppress background in-
formation. These methods, however, suffer from either the inevitable requirement of post-processing
work or the high costs of additional data acquisition. Signifying a key advancement in the deep
learning models, a generative adversarial network (GAN) can capture multi-level features and learn
the mapping rules in source and target domains using a minimax game between a generator and
discriminator. This provides a new and feasible way to conduct large-scale glacial lake mapping. In
this work, a complete glacial lake dataset was first created, containing approximately 4600 patches
of Landsat-8 OLI images edited in three ways—random cropping, density cropping, and uniform
cropping. Then, a GAN model for glacial lake mapping (GAN-GL) was constructed. The GAN-
GL consists of two parts—a generator that incorporates a water attention module and an image
segmentation module to produce the glacial lake masks, and a discriminator which employs the
ResNet-152 backbone to ascertain whether a given pixel belonged to a glacial lake. The model was
evaluated using the created glacial lake dataset, delivering a good performance, with an F1 score of
92.17% and IoU of 86.34%. Moreover, compared to the mapping results derived from the global–local
iterative segmentation algorithm and random forest for the entire Eastern Himalayas, our proposed
model was superior regarding the segmentation of glacial lakes under complex and diverse envi-
ronmental conditions, in terms of accuracy (precision = 93.19%) and segmentation efficiency. Our
model was also very good at detecting small glacial lakes without assistance from ancillary data or
human intervention.

Keywords: generative adversarial networks; attention mechanism; glacial lake mapping; Landsat-8 OLI

1. Introduction

During the last several decades, glacial lakes have increased dramatically in area and
number in High Mountain Asia (HMA) due to the ongoing impact of global warming and
glacier melting [1]. This has considerably increased the risk of flood outburst hazards and,
therefore, monitoring and evaluating the dynamics of glacial lakes is of great significance for
the understanding of ecosystem stability and preventing outburst hazards in downstream
areas. Fast and accurate mapping of glacial lakes is a prerequisite for the comprehensive
investigation of these lakes.

As a unique water resource, glacial lakes have several remarkable characteristics.
(1) Small size: small glacial lakes (<0.1 km2) make up the majority of the glacial lakes in
HMA. For example, more than 72.7% of the glacial lakes were small in size in 2016 [2,3].
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Although these small lakes pose a limited threat to downstream regions, they are still a
key factor in exhibiting the dynamic of climate change and giving larger uncertainties
in glacial lake mapping [4]. (2) Various physical properties: affected by environmental
components such as soil, geology, vegetation, and glaciers, glacial lakes show varying
degrees of turbidity and coloring in remote sensing imagery. Moreover, some objects, such
as mountain shadows and clouds [1], have a spectrum similar to that of glacial lakes. Thus,
the spectral characteristics of glacial lakes vary in complexity with diverse environmental
conditions. (3) Wide distribution: glacial lakes of different types, sizes, and shapes are
widely distributed around glaciers in the alpine regions of Central and South Asia [5],
including the Altai Mountains [6], Himalayas [7,8], Tianshan Mountains [9], and Kunlun
Mountains [10], as well as the Karakoram-Pamir Plateau [11,12]. All of these unique
characteristics provide great challenges for the automatic and accurate mapping of glacial
lakes over a very large-scale glaciated area.

Although much progress has been made in mapping glacial lakes, the mapping
methods involved require significant post-processing work and the use of other ancillary
data, such as the digital elevation model (DEM) and feature maps. One fundamental
problem in glacial lake mapping is that all the features used to highlight glacial lake
information are manually designed. This means that while certain spectral or handcrafted
features are used, other useful high-level and complex features are ignored. For instance,
water indexes [13] are the most commonly used spectral features for the detection of glacial
lakes, and they are designed as band ratios that involve green/blue (G/B) bands and
near-infrared/short wave infrared (NIR/SWIR) bands. However, many phenomena (such
as mountain shadows, melting glaciers, and clouds) generate spectral responses similar to
those of glacial lakes, resulting in low mapping accuracy and inevitable manual correction.
To alleviate the effects of these factors, most semi-automatic methods use auxiliary data
to minimize the amount of less post-processing required. Song et al. [4] presented a
hierarchical image segmentation method to explore the distribution and evolution of
glacial lakes in the Southeastern Tibetan Plateau. The method combined the normalized
difference water index (NDWI) derived from Landsat TM/ETM+/OLI imagery with
DEM-based terrain analysis results to extract glacial lake areas. Li et al. [14] proposed a
global–local iterative segmentation algorithm to delineate glacial lake extent using Landsat
TM/ETM+ and DEM data. Shen et al. [15] applied an object-oriented classification method
to extract glacial lake information using a water extraction decision ruleset. This method,
however, requires many experiments to determine which features should be considered
and how to set parameter values, such as the segmentation scale, shape index, and NDWI.
Bhardwaj et al. [16] designed a lake detection algorithm (LDA), which comprised inputs
from the moisture index, vegetation index, and NDWI to detect lake pixels and filter out
noise pixels based on the DEM and thermal information. Gao et al. [17] established a lake
hydrological network to identify the attributes of each lake in the Third Pole using Landsat
images, topographic maps, and DEM data. Wangchuk et al. [1] employed a random forest
classifier to map glacial lakes using multi-source optical and radar data, including Sentinel-
1 synthetic aperture radar, Sentinel-2 multispectral instrument, and DEM. Zhao et al. [18]
integrated the advantages of the threshold segmentation method and the active contour
model to improve the efficient extraction of glacial lakes and the removal of mountain
shadows with the help of DEM. Li et al. [19] created a two-stage segmentation workflow
for mapping glacial lakes. First, the object-oriented method was used to segment the target
image into the lake, potential lake, and unknown region. Then the potential lake zone was
refined using the watershed algorithm. All of these methods depend on auxiliary data
to some extent, and checking and editing the mapping results requires great effort. This
significantly limits the use of the mapping methods for the fast and accurate extraction of
large-scale glacial lake distribution information. Developing a more automatic and less
data-dependent method for mapping glacial lakes suitable for large, glaciated regions, is
clearly essential to explore the relationship between the changes from climate and glacial
lakes, and give forewarning of the glacial lakes that have high outburst risk.
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With the explosive growth in remote sensing imaging data, many effective data
processing methods have been proposed. Among these, deep learning models have
attracted considerable attention and shown great potential in the extraction of high-level
information of objects in terms of classification [20], segmentation [21], and generation [22].
To date, there has been scant research that uses deep learning models for glacial lake
mapping. Qayyum et al. [23] attempted to map glacial lakes using four-band PlanetScope
imagery of the Hindu Kush, Karakoram, and Himalaya (HKKH) region using U-Net
architecture. Wu et al. [24] employed a U-Net-based model to extract the contours of
glacial lakes in Southeastern Tibet, with the input from Landsat-8 OLI and Sentinal-1A
SAR images. Although the pooling operations in the U-Net model can reduce the number
of model parameters without changing the image features, they omit some details of the
lake boundaries. This is not conducive to the extraction of complex-shaped and small
glacial lakes. Considering that the Landsat series of satellites provides the most extensive
and longest records for glacial lake mapping, this paper proposes a new solution for
glacial lake extraction. We used a deep learning model and Landsat images to facilitate the
development of a glacial lake inventory and disaster management in HMA.

As an artistic designation in the deep learning model, the generative adversarial
network (GAN) has achieved much in image generation [22], classification [25], object
detection [26], image super-resolution [27], and image deblurring [28]. GAN is rarely
used as a domain transfer task for image segmentation. Compared to other segmentation
models, GAN defines a generator and discriminator to learn the distribution of real data
and generates segmentation masks without distribution assumptions [29]. Using GAN,
Xue et al. [30] proposed a SegAN model, which uses a fully convolutional neural construc-
tion in the generator to segment the mask of a brain tumor in an MRI image at the pixel
level. Their model had better precision and sensitivity than other state-of-the-art models
when testing it against the BRATS 2013 and 2015 datasets. Son et al. [31] used a GAN-based
model to precisely map a vessel in a retinal image and obtained good results on the DRIVE
and STARE datasets. To improve mapping accuracy and avoid human-interactive pro-
cessing, in this paper, we propose a novel end-to-end GAN-based architecture for glacial
lake mapping (GAN-GL), in which the only input data are remote sensing images. The
water attention module and image segmentation module are cascaded in the generator of
GAN-GL to focus on lake information. A ResNet backbone is used in the discriminator.
To the best of our knowledge, this is the first time that water attention has been used in a
deep learning method for glacial lake mapping. Moreover, we built a large-scale glacial
lake dataset for the training and evaluation of the performance of GAN-GL. This dataset
contains about 4600 Landsat image patches, each cropped around the glacial lake and
with 256 × 256 × 7 pixels. We further divided the dataset into three subsets according
to the collection methods, including random cropping, uniform cropping, and density
cropping. This model greatly improves the segmentation of glacial lakes over a large-scale
area with low data dependence. The robustness and relative accuracy of the proposed
method was also tested under different environmental conditions using a global–local
iterative segmentation algorithm and random forest classification as a benchmark.

The rest of this paper is organized as follows. Section 2 introduces the collection
and statistical analysis of the dataset. In Section 3, we describe the methodology and the
architecture of the proposed GAN-GL model. The evaluation metrics and experimental
results are given in Section 4. The factors that may influence the mapping performance are
discussed in Section 5. Finally, we conclude this work in Section 6.

2. Dataset

While many achievements and publications have been conducted on the glacial lake
inventory [5,10], the inventory data cannot be directly used as training samples for deep
learning models due to inconsistent data properties between inventory data and glacial
lakes in images. In addition, format transformation and region cropping are needed to
comply with the input form of the GAN network. In this section, we describe the details of
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the collection and production of a complete glacial lake dataset. Such a dataset can be used
to drive deep learning models for automatic glacial lake mapping as well as to evaluate the
performance of the deep learning model.

2.1. Collection of Dataset

Owing to its moderate spatial resolution (30 m) and continuous record, Landsat
imagery has become one of the most extensively used data resources to retrieve glacial lake
information. In this study, Landsat-8 OLI imagery was employed as basic data to create
the GAN-GL dataset, as shown in Table 1. To minimize the interference from seasonal
snow/ice cover and clouds in glacial lake detection, the acquisition times of the images
were all between July and early November. During this period, the boundaries of glacial
lakes are very clear and stable because of the balanced state of glacier mass gains and
losses [32,33]. The High Mountain Asia Glacial Lake Inventory (Hi-MAG) database [10],
which mapped the annual glacial lake coverage from 2008 to 2017 at a 30 m resolution
using Landsat series satellite imagery, was used to assist in the creation of ground truth
labels for each element (glacial lake or non-glacial lake).

Table 1. Details of Landsat-8 OLI images used in this study.

Path/Row
Cloud Cover

(%)
Acquisition Data Sub-Region

Lake Number
in the Tile

133/039 0.17 2 November 2016 Hengduan Shan 97
150/033 1.35 20 July 2016 E. Pamir 9
146/029 1.54 25 August 2016 E. Tianshan 32
146/030 1.66 9 August 2016 C. Tianshan 62
140/039 0.18 3 November 2016 Gangdise Shan 21
145/038 0.34 21 October 2016 Gangdise Shan 68
146/038 0.92 28 October 2016 W. Himalaya 36
149/030 0.68 15 September 2016 W. Tianshan 53
142/030 1.01 30 September 2016 E. Tianshan 27
131/039 1.38 3 October 2016 Hengduan Shan 36

133/040 1.56 2 November 2016 Hengduan Shan,
Nyainqentanglha 388

143/039 1.80 23 October 2016 C. Himalaya,
Gangdise Shan 308

148/029 0.88 24 September 2016 Alataw Shan 197
144/039 2.34 14 October 2016 C. Himalaya 154
150/034 3.36 20 July 2016 W. Pamir 31
147/030 1.01 10 September 2016 C. Tianshan 44
139/040 0.72 27 October 2016 Gangdise Shan 16

138/040 3.40 20 October 2016 Nyainqentanglha, E.
Himalaya 253

140/040 1.66 20 October 2016 C. Himalaya,
Gangdise Shan 207

137/040 1.07 29 October 2016 Nyainqentanglha, E.
Himalaya 133

131/037 0.01 15 July 2016 Hengduan Shan 24
135/034 2.95 15 October 2016 Qilian 17
142/040 1.58 1 November 2016 C. Himalaya 114
131/040 1.45 4 November 2016 Hengduan Shan 61
143/030 0.75 4 August 2016 E. Tianshan 8
144/038 0.50 30 October 2016 Gangdise Shan 141
137/041 2.59 29 October 2016 E. Himalaya 240
145/039 1.40 6 November 2016 C. Himalaya 24

Note: E.: East; W.: West; C.: Central.

2.2. Production of the GAN-GL Dataset

Glacial lakes are generally gathered around glaciers, and their areas are extremely
small compared to backgrounds, for example, there are considerable spatial extents of
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non-glacial lakes in a Landsat scene. Therefore, 103 tiles, comprising 1024 × 1024 pixels
and containing glacial lakes, were firstly cropped from original Landsat-8 OLI images
and used as the basis for the subsequent production of the GAN-GL dataset. The spatial
distribution of these tiles is shown in Figure 1.

Figure 1. Spatial location of High Mountain Asia and the distribution of 103 image tiles (red
rectangles), which cover the main mountain ranges.

Glacial lakes are unevenly distributed and vary greatly in size. Many glacial lakes in
HMA are too small (<0.1 km2) to be identified, but they account for a large proportion of
the total lake area (in Nyainqêntanglha, the area of small glacial lakes accounts for 69.47%
of the total area [10]). These small lakes are quite sensitive indicators to exhibit the trends
of global climate changes and are easily overlooked in lake evolution in HMA. Moreover,
the density distribution of glacial lakes has high spatial heterogeneity in the glaciated
regions. The density of glacial lakes is relatively high in the ranges of Southwestern Pamir
as well as in the Himalayas; few glacial lakes exist in parts of Western Pamir. All this
indicates that the scale and density of glacial lakes vary significantly in the HMA region,
and should, therefore, be fully considered in the production of a glacial lake dataset. In this
study, three forms of image cropping—uniform cropping, density cropping, and random
cropping—were used to build a complete glacial lake dataset, as shown in Figure 2. Notably,
the density map-based cropping method was proposed for the first time to fully utilize
the spatial and contextual information from glacial lakes and to improve the detection
performance of the model.

The following are the detailed steps in the production of the three glacial lake subsets:
GAN-GL-U: Uniform cropping was used for each image tile from the original GAN-GL

dataset into 16 patches, each with a 256 × 256 pixel size. This subset consists of 683 patches
and each lake appears only once. Some patches without any lakes were discarded.

GAN-GL-D: We cropped 256 × 256 pixels of the patches covering the glacial lakes
in each image tile, and then counted the number of glacial lakes and their pixels in each
patch. Only patches with more than five lakes and a total area greater than 1% of a patch
area were reserved. Finally, 1540 density-cropped patches were acquired.

GAN-GL-R: To create this subset, 50 image patches, each with a size of 256 × 256 pixels,
were randomly cropped from each image tile, and only image patches containing glacial
lakes were retained. In this way, this subset has a total of 2382 patches, and some glacial
lakes may appear more than once.
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Figure 2. Schematic diagram showing the three methods of creating the glacial lake subsets from
the image tiles. (a) Uniform cropping: Image tiles were cropped evenly, and image patches without
glacial lakes were discarded. (b) Density cropping: Image tiles were cropped according to glacial
lake density. (c) Random cropping: Image tiles were cropped randomly and image patches without
glacial lakes were discarded.

Table 2 lists the statistical results associated with these three subsets. GAN-GL-R and
GAN-GL-U have similar values for the average number, the average area of glacial lakes in
each patch, and the size of glacial lakes. GAN-GL-D has the highest density of glacial lakes.

Table 2. Properties of three glacial lake subsets.

GAN-GL-R GAN-GL-D GAN-GL-U

Number of image patches 2382 1540 683
Average number of glacial lakes in each patch 3.84 9.75 3.81
Average area of glacial lakes in each patch (pixel) 329.48 1225.39 332.54
Average area of each glacial lake (pixel) 85.80 125.68 87.28

3. Methods

The architecture of our proposed GAN-GL model for the segmentation of glacial
lakes is shown in Figure 3. In GAN-GL, we incorporated a water attention module and
image segmentation module into the generator. The discriminator was designed based
on ResNet-152 to encode the lake area as vectors and determine their categories. Given
a remotely sensed image input, the generator attempts to produce glacial lake masks.
Then, the generated masks and true labeled masks are both fed into the discriminator for
training until they can correctly predict whether the input data are generated or real. In the
following subsections, we describe each process in more detail.

60



Remote Sens. 2021, 13, 4728

Figure 3. Architecture of the proposed GAN-GL model, which mainly consists of three parts—A water attention module
and an image segmentation module in the generator, and the ResNet-152-based discriminator.

3.1. Generator
3.1.1. Water Attention Module

Attention mechanisms have been successfully applied in the field of image segmen-
tation, highlighting the features that need attention based on the context of the network.
Fu et al. [34] proposed a dual attention network to capture rich contextual dependencies for
scene segmentation by combining local features with their global dependencies. Li et al. [35]
designed a pyramid attention network, which combined an attention mechanism with a
spatial pyramid to extract precise, dense object features for semantic segmentation. To
optimize and stabilize the segmentation model in terms of memory and computation, an
expectation–maximization attention module was developed and encapsulated into a neural
network [36]. In our GAN-GL, a water index is used in the water attention module to
obtain the initial glacial lake extent. Combined with convolution features, the possible lake
pixels are highlighted, and potential water areas are given a relatively high weight. The
structure of this module is shown in Figure 4.

Given an input Landsat-8 OLI image I ∈ R
H×W×C, features F1 and F2 are calculated

through the convolution operation, with a 1 × 1 kernel size {F1, F2} ∈ R
H×W×1. Feature

F3 refers to the water index. Due to the simplicity of the expression and relatively stable
thresholds used for the classification of lakes [13,37], NDWI was selected in this study,
as follows:

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(1)

where ρgreen and ρNIR represent top-of-atmosphere (TOA) reflectance values in the green
and NIR bands measured by the Landsat-8 OLI sensor, respectively.

After the calculation of all the feature maps, F1 and F2 are both reshaped to R
N×1,

where N = H × W. Then, matrix multiplication is performed on the reshaped F1 and
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transpose of reshaped F2, and a softmax layer is used for the normalization of the input to
obtain the feature map A ∈ R

N×N .

Aji =
exp
(

F1i ⊗ F2j
)

∑N
i=1 exp

(
F1i ⊗ F2j

) (2)

The operator ⊗ is the ordinary matrix multiplication. Similarly, feature F3 is also
reshaped to R

N×1, and matrix multiplication is operated on the transpose of reshaped F3
and feature A to enhance the water information in the water attention map W:

Wj =
N

∑
i=1

(Aji ⊗ F3i) (3)

Note that here, W ∈ R
1×N should be reshaped to R

H×W .

Figure 4. Structure of our water attention module.

3.1.2. Image Segmentation Module

The attention results give the weight information of a pixel that belongs to a glacial
lake. To fully utilize this information and further segment glacial lakes, a U-Net-based
segmentation module was incorporated into the generator. Figure 3 shows that the input
of this module is the element-wise product between the water attention map and Landsat
imagery. We exploited five down-sampling operations to capture the lake information at
different scales, each of which contains two convolution layers with a rectified linear unit
(ReLU) active function and one convolution layer with a stride of 2. The ReLU function
activates the input data x and extends the nonlinear applications in deep learning models,
which is defined as f (x) = max(0, x). An input image with a size of H × W × C is
down-sampled to (H/16)× (W/16)× C′. Because some small glacial lakes can only be
extracted from shallow layers, the feature maps of the same size during down-sampling
and up-sampling are concatenated, namely as skip connections, to integrate features at
different scales. Finally, lake binary masks are produced by processing connection features
in the last two convolution layers.

3.2. Discriminator

The inputs of the discriminator are the generated binary masks from the previous
stage and the true labels of glacial lakes. Firstly, lake information is enhanced by the
element-wise product between the input masks and the Landsat imagery. ResNet-152
is used as a backbone for the extraction of features from the results of the element-wise
product. The corresponding output is a 2048 dimensional feature vector of a glacial lake—
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this is then processed by two fully convolutional layers, and fed into a single sigmoid layer
to determine whether each pixel is that of a glacial lake.

3.3. Loss Function

GAN defines a competitive game between a generator and discriminator, and the final
stable state of this game is evaluated by an adversarial loss function, as follows:

min
G

max
D

EM∼plabel [log(D(M))]

+EI∼plake [log(1 − D(G(I)))]
(4)

where G and D are the generator and discriminator, respectively, I is the input Landsat
image, and M is the input mask.

However, the action of using this loss function to train the GAN model directly is
unstable because it may lead to mode collapse or convergence failure [38]. Under these
conditions, a loss function in WGAN-GP is employed, which places a Lipschitz constraint
on the adversarial loss and penalizes the gradient norm of the adversarial loss with respect
to the input binary masks. The penalty term is defined as follows:

Ex̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(5)

where Px̂ is the uniform sampling along the lines between the pairs of points sampled from
the label distribution Plabel and lake distribution Plake.

In order to verify whether the glacial lake information can be effectively discriminated,
we used an L2 loss function to represent the content loss in the discriminator to measure
the similarity between image features derived from generated masks and those derived
from ground truth, as follows:

lcontent(G) =
1
N

N

∑
i=1

‖G(I)i − Bi‖
2

(6)

where B is the binary masks of ground truth. Finally, combining the WGAN-GP adversarial
loss and content loss, our loss function can be expressed as:

l(G, D) = ladversarial(G, D) + lcontent(G) (7)

4. Results and Discussion

4.1. Implementation Details and Evaluation Metrics

Segmentation experiments were conducted using Tensorflow 1.14 on the Python 3.7
platform. The GAN-GL dataset was split into 70% for training and 30% for validation.
In the training stage, ResNet-152 in the discriminator was pre-trained on ImageNet. The
training of the model was configured with a batch size of 1 for 100 epochs, and the optimizer
used was AdamOptimizer, with a learning rate of 0.0001. To quantitatively evaluate the
glacial lake mapping accuracy, the number of glacial lake pixels was counted using the
predicted mask and the true labeled mask, and five performance indicators, Precision (P),
Recall (R), Overall Accuracy (OA), F1 Score (F1), and Intersection over Union (IoU) were
used. The corresponding formulations are as follows:

P = all correctly predicted water pixels/all predicted pixels;
R = all correctly predicted water pixels/all water pixels;
OA = all correctly predicted pixels/all pixels;
F1 = 2 × P × R/(P + R);
IoU = (predicted water pixels ∩ true water pixels)/(predicted water pixels ∪ true water pixels).
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4.2. Ablation Study

To investigate the effectiveness of each module in GAN-GL and its influence on the
final glacial lake mapping results, an ablation study was performed. Several specific
combinations of individual modules are as follows:

• ISeg: The image segmentation module in the generator (see Figure 4); the loss function
is L2 loss.

• Attn + ISeg: Combines the water attention module with the image segmentation
module; the loss function is L2 loss.

• ISeg + ResNet-50: Combines the image segmentation module in the generator with
ResNet-50 in the discriminator; the loss function is the same as in Equation (7).

• ISeg + ResNet-101: Combines the image segmentation module with ResNet-101; the
loss function is the same as in Equation (7).

• ISeg + ResNet-152: Combines the image segmentation module with ResNet-152; the
loss function is the same as in Equation (7).

• Attn + ISeg + ResNet-50: Combines the water attention and the image segmentation
module in the generator, with ResNet-50 in discriminator; the loss function is the same
as in Equation (7).

• Attn + ISeg + ResNet-101: Combines the water attention and the image segmentation
module in the generator, with ResNet-101 in discriminator; the loss function is the
same as in Equation (7).

• Attn + ISeg + ResNet-152: Combines the water attention and the image segmentation
module in the generator, with ResNet-152 in discriminator; the loss function is the
same as in Equation (7).

The results of the ablation study are shown in Table 3 and are based on the three GAN-
GL datasets. The water attention module combined with the GAN-based structure
(Attn + ISeg + ResNet-152) obtained the highest values of Precision (93.34%), Recall (92.01%),
F1 score (92.17%), and IoU (86.34%).

Table 3. Experimental results of ablation study for the three glacial lake subsets.

Dataset Indicators 1© 2© 3© 4© 5© 6© 7© 8©

GAN-
GL-R

P (%) 70.36 73.48 72.73 72.32 76.53 75.29 78.26 80.87
R (%) 71.15 72.95 80.01 87.45 85.34 84.97 86.98 90.29

OA (%) 99.86 99.21 99.44 99.83 99.75 99.70 99.75 99.81
F1 (%) 71.25 72.72 75.69 78.67 76.80 79.34 81.89 84.83

IoU (%) 54.52 57.74 61.54 65.51 66.56 66.43 70.05 74.40

GAN-
GL-D

P (%) 86.69 89.14 87.01 90.11 91.85 91.29 92.93 93.34
R (%) 80.60 86.69 87.26 88.87 89.17 87.16 89.33 92.01

OA (%) 99.56 99.57 99.47 99.33 99.64 99.66 99.39 99.28
F1 (%) 83.53 87.90 86.63 88.98 89.99 87.81 90.60 92.17

IoU (%) 71.73 78.41 77.20 80.97 82.63 80.29 83.64 86.34

GAN-
GL-U

P (%) 63.16 66.99 66.67 73.97 74.14 74.43 75.86 77.78
R (%) 70.59 82.52 82.61 76.32 72.88 78.02 78.57 91.30

OA (%) 99.20 99.78 99.88 99.85 99.83 99.89 99.89 99.89
F1 (%) 66.17 73.46 73.30 74.63 73.01 71.62 76.70 83.50

IoU (%) 50.58 58.67 58.46 60.16 58.11 60.59 62.86 72.41

Note: 1© ISeg. 2© Attn + ISeg. 3© ISeg + ResNet-50. 4© ISeg + ResNet-101. 5© ISeg + ResNet-152. 6© Attn + ISeg +
ResNet-50. 7© Attn + ISeg + ResNet-101. 8© Attn + ISeg + ResNet-152.

Comparison for attention module: Because the water attention mechanism enables the
model to focus on the identification of lake pixels, the water attention module markedly
improves the segmentation performance of the glacial lakes (with an increase of 2~3%
in accuracy).

Comparison for ResNet backbone: We tested the effects of different ResNet backbones
in the discriminator, including ResNet-50, ResNet-101, and ResNet-152. Table 3 shows
that the deeper the layers of the ResNet backbone, the better its performance. This can be
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explained by the fact that ResNet-152 records more details about glacial lakes by using
deeper convolution layers compared to ResNet-101 and ResNet-50. This facilitates the
accurate extraction of the complex edges of glacial lakes.

Comparison for the discriminator: Clear improvements were observed in the evalua-
tion results when the discriminator was used (e.g., the ISeg and ISeg + ResNet backbone,
the Attn + ISeg and Attn + ISeg + ResNet backbone). This is because the discriminator can
guide the generator to learn the real distribution of the data.

Furthermore, it should be noted that accuracies were the highest for the density-
cropped dataset, which contains sufficient glacial lake information in each patch to improve
the training level of the model. This shows that the density of glacial lakes in the training
data is an easily overlooked but important factor that affects the overall segmentation results.

4.3. Tests of Different Attention Modules

The purpose of the water attention module is to provide the weight information of
each pixel that belongs to the glacial lake. Currently, there are many simple but effective
water indexes that can extract lake areas, such as NDWI, modified normalized difference
water index (MNDWI) [39], and enhanced water index (EWI) [40]. To test whether these
water indexes could locate a glacial lake area accurately and be adept at computing the
water attention, they were incorporated into our attention module to obtain the pixel
weight; then, their ability and importance with regard to mapping glacial lakes were
measured. Here, MNDWI and EWI were calculated according to the following formulas:

MNDWI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(8)

EWI =
ρC − ρNIR − ρSWIR2

ρC + ρNIR + ρSWIR2
(9)

where ρgreen, ρC, ρNIR, ρSWIR1, and ρSWIR2 represent the TOA reflectance values in the green,
cirrus, NIR, SWIR1, and SWIR2 bands measured by the Landsat-8 OLI sensor, respectively.

According to the analysis in Section 4.2, we chose the Attn + ISeg + ResNet-152
structure and used GAN-GL-D as our evaluation data. The accuracy statistical results using
different attention modules are listed in Table 4. Using the water index alone achieved low
accuracies for mapping glacial lakes, in particular, Recall and IoU. This means that without
convolution operations, the water index can misclassify objects when pixels have feature
values similar to glacial lakes. Lake areas extracted by NDWI had fewer commission errors
and exhibited the highest mapping accuracy when coupled with convolution operations.

Table 4. Accuracy evaluation of glacial lake mapping using different attention modules.

Attention Module P (%) R (%) OA (%) F1 (%) IoU (%)

NDWI 89.57 72.24 99.47 79.98 66.63
MNDWI 90.35 56.57 99.15 69.58 53.35

EWI 85.29 60.58 99.13 70.84 54.84
Attn_NDWI 93.34 92.01 99.28 92.17 86.34

Attn_MNDWI 91.99 86.89 99.48 88.87 80.78
Attn_EWI 91.19 85.29 99.76 87.64 78.80

Figure 5 shows the visual evaluation of the image weight for the glacial lakes under
various environmental conditions using the different water attention modules. Obviously,
the use of the water index provided a high weight not only to glacial lakes, but also to
melting glaciers and mountain shadows (denoted by the white ellipses in the first and
third rows). With added convolution operations in the water attention module, effects
from these interferences can be largely avoided. The second row in Figure 5 shows that the
weight obtained by EWI is very conservative because its attention tends to the interior of a
glacial lake. MNDWI obtained relatively extreme estimates, with attention tending to the
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exterior of a lake. Only the NDWI-derived attention was uniform and close to the glacial
lake boundary.

Figure 5. Weight results using different water attention modules. Input data are from Landsat-8 OLI images (first column,
false color composites of bands 7/5/2), covering glacial lakes of various environmental components. Melting glaciers (white
ellipses in the first row) and mountain shadows (white ellipses in the third row) also showed high weights using the water
index alone.

4.4. Impact of Different Training Scales

In this section, we discuss experiments conducted to survey the influence of different
training scales on mapping performance. We trained the Attn+ISeg+ResNet-152 structure
on progressively smaller subsets of training data and evaluated the test data from the
GAN-GL-D dataset, as shown in Figure 6. Owing to slight variations in the OA, the
accuracy statistics of the other four indicators with the changes of sample scale were plotted.
Generally, the extraction accuracy of glacial lakes can be continuously improved with
increased amounts of training data, and is particularly sensitive to the sample scale within
a range of 60% of the training set. This means that a sufficient number of training samples
is conducive to reliable mapping. However, when the ratio of the training set exceeds 60%,
the associated accuracy increases slowly and almost reaches the saturation point.

4.5. Comparison with Other State-of-the-Art Mapping Methods
4.5.1. Experimental Materials

For a comprehensive evaluation of the robustness of the proposed model (Attn +
ISeg + ResNet-152), two state-of-the-art mapping methods, the widely used global–local
iterative segmentation algorithm [14] and the classical random forest classification [1],
were employed for mapping performance comparison in the mapping of glacial lakes over
the Eastern Himalayas. The Eastern Himalayas was chosen as our test site because this
region has a high density of glacial lakes [1] and a high probability to outburst hazards [41].
Ten Landsat-8 OLI images from the year 2017 covering the entire Eastern Himalayas were
used for the experiments.
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Figure 6. Accuracy for the proposed Attn+ISeg+ResNet-152 structure using different ratios of the
training sets as input.

The global–local iterative segmentation algorithm has been successfully used before
for glacial lake mapping in mountainous areas. Implementation of the algorithm mainly
consists of two steps. Firstly, potential glacial lake pixels are delineated using a global-
level thresholding segmentation of NDWI coupled with NIR and SWIR bands to filter
out backgrounds and noise pixels, with a spectral reflectance similar to that of glacial
lakes. Secondly, a buffer zone is established for each potential lake, and then a local
threshold of NDWI is used to determine the final lake extent within this buffer zone. Here,
the local threshold is calculated based on the rule that the NDWI of glacial lakes and
backgrounds conforms to a bimodal distribution. In our experiments, the global thresholds
of NDWI (≥ 0.10), NIR (< 0.15), and SWIR (< 0.05) were set according to those of the
literature [4,14,17,42]. The local-level threshold in each buffer zone is computed as follows:

Threshold =
μbackground · σwater + μwater · σbackground

σwater + σbackground
(10)

where μwater and μbackground are the mean NDWIs of the water and background region, re-
spectively. σwater and σbackground are the variances of the NDWI of the water and background
region, respectively.

The random forest is a classical ensemble learning method that employs many indi-
vidual decision trees to vote for the best decision. The method has better robustness and
generalization ability than methods that use an individual decision tree due to the random
sampling of input data and the random subset of features. Random forest has been widely
applied in the field of lake mapping [1,43]. In this study, we grew 100 trees and randomly
selected 1000 pixels from the NDWI, NIR, and SWIR for glacial lakes and non-glacial lakes
to train the classifier. Note that to alleviate the effects from terrain conditions, additional
experiments were undertaken by introducing auxiliary ASTER DEM data (with a spatial
resolution of 30 m) for the two methods. Topographic shadows were masked using slopes
larger than 15◦ [4,33].

4.5.2. Results and Analysis

Mapping glacial lakes at a large scale is a challenging task due to the influence of vari-
ous and complex climatic, geological, and terrain conditions. Figure 7 presents the spatial
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distribution of glacial lakes in the Eastern Himalayas. The results of GAN-GL (without
DEM) and the other two methods (with DEM) are shown in the three enlarged images.
In Region A, some small glacial lakes are formed around the glaciers, and the proposed
GAN-GL model can extract almost all the lakes without misclassified objects. However,
the lake areas obtained by the global–local iterative segmentation algorithm and random
forest are affected by a high degree of noise from melting glaciers and parts of shadows,
as shown in the blue ellipse. The images in Regions B and C are largely contaminated
by mountain shadows, clouds, and cloud shadows, but interference from these factors
was effectively eliminated by GAN-GL, meaning lakes could be easily detected, and their
details preserved. However, lake areas detected by the other two methods mistakenly
contained vast non-glacial lake regions, most of the glacial lakes were not precisely de-
lineated (indicated as the blue ellipses in Region B—a lake was divided into many small
parts), and the complex structure of the lake boundary was lost. Such structure comprising,
for example, undulating topography, as shown in the blue ellipses in Region C. All these
performances can be attributed to the fact that our GAN-GL model automatically computes
numerous mid- and high-level features through convolutional operations, and employs an
effective training strategy under the two constraints of content loss and adversarial loss to
distinguish between different objects. Regarding the pixel-based approach, the global–local
iterative segmentation algorithm is not able to effectively deal with noise pixels that have
spectral values similar to those of lakes and regional heterogeneity. Random forest may
have several similar decision trees that mask true results and easily overfit strong noise;
this eventually leads to incomplete and noise-polluted extraction results. Table 5 shows
the accuracy assessment of mapping results over the whole Eastern Himalayas. Except for
Recall, other indicators obtained using the GAN-GL model are extremely high (P = 93.19%;
OA = 99.85%; F1 = 73.31%; IoU = 58.46%). This means that most glacial lake pixels can be
accurately extracted with only a few commission errors. Although a high Recall indicates
that some lakes confused with the background are also not detected, the GAN-GL balances
the effects of high accuracy and less noise and gives a good performance from other in-
dicators. The global–local iterative segmentation algorithm achieved the highest Recall
(88.47%) but the lowest Precision (44.81%) since large quantities of background pixels
were also mapped. Random forest outperformed the global–local iterative segmentation
algorithm for all of the indicators. However, the performance of these two methods was
significantly improved with the assistance of DEM, meaning many small glacial lakes were
not identified in mountainous regions.

Table 5. Accuracy assessment of the three mapping methods in the Eastern Himalayas.

Method P (%) R (%) OA (%) F1 (%) IoU (%)

GAN-GL 93.19 61.07 99.85 73.31 58.46
G-L Seg

(without DEM) 22.63 98.64 87.95 36.81 22.66

Random Forest
(without DEM) 38.83 86.62 93.68 53.63 35.84

G-L Seg
(with DEM) 44.81 88.47 96.53 59.49 42.34

Random Forest
(with DEM) 57.17 74.29 96.92 64.62 47.72
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Figure 7. Distribution of glacial lakes (marked in red contours) overlaid on Landsat-8 imagery of the Eastern Himalayas,
and the compared results of the three methods. Note that the results of G-L Seg and random forest were computed using
Landsat-8 imagery and DEM. Region A shows some small glacial lakes around the melting glaciers. Region B shows glacial
lakes and extensive mountain shadows. Region C shows image interference from clouds and cloud shadows.
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5. Discussion

5.1. Exploration of the Improvement of the Effects of our GAN-GL Model

To obtain the accurate large-scale glacial lake mapping results in HMA, we designed
this GAN-based model. As a deep learning model, there are still some possible limitations
and tips to improve the generalization performance. (1) Sufficient and various data: In
our study, we collected the glacial lake patches from part of HMA in a single year, and
some special glacial lakes may not be sampled in our dataset. A sufficient dataset that
contains lakes that vary in size, color, type, and shape can give more lake features to model
to further improve the lake mapping results. (2) Adaptive input image setting: We used a
Landsat series as the data source, including MSS/TM/ETM+/OLI imagery. These images
give a long time series recording of glacial lakes, which is advantageous to mine the lake
information. Our model only considered the inputting Landsat OLI imagery, and therefore,
an adaptive input image setting would enhance the scalability for applications in other
Landsat data. (3) Hierarchical structure for detecting lakes under scale variation: Scale
variation in lake areas hampers the model efficiency when mapping glacial lakes in large-
scale regions. The multi-level feature concatenation is an instrumental design for small
object detection, but it has a huge computation cost. A hierarchical structure that detects
both small lakes and large lakes has great potential for large-scale glacial lake mapping.

5.2. Performance for Different Lake Sizes

Small lakes account for a large part of the composition of glacial lakes in HMA.
Statistically, in the mapping results in HMA, there are 15,456 glacial lakes (72.73%) less
than 0.1 km2 in 2016 [9]. These lakes are highly variable and sensitive to climate change,
but are hard to identify since they are easily confused with the background.

To explore the extraction effects of our model (Attn + ISeg + ResNet-152) for different
lake sizes, we counted the numbers provided with the accuracy assessment results of the
glacial lakes of various sizes detected with our GAN-GL dataset and GAN-GL-D dataset,
and the results can be found in Table 6.

Table 6. Statistic results for different size lakes using proposed model.

Dataset Area (km2) <0.01 * <0.05 <0.1 <0.2 <0.4 <0.8 ≥0.8

GAN-GL-R
Count in GAN-GL 1979 1877 403 229 73 23 5

Proportion (%) 43.12 40.90 8.78 4.99 1.59 0.50 0.11

GAN-GL-D
Count in GAN-GL 3378 1828 638 491 268 77 42

Proportion (%) 50.26 27.19 9.49 7.31 3.99 1.15 0.61

GAN-GL-U
Count in GAN-GL 337 297 60 46 14 2 2

Proportion (%) 44.46 39.18 7.92 6.07 1.85 0.26 0.26

Accuracy in
GAN-GL-D

P (%) - 94.12 95.85 94.96 91.47 96.68 90.70
R (%) - 94.07 87.61 91.10 95.31 95.93 96.34

OA (%) - 99.69 99.62 99.55 99.58 99.63 99.52
F1 (%) - 94.09 91.54 92.99 93.35 96.30 93.43

IoU (%) - 88.05 86.19 87.44 87.99 89.32 86.33

* Note: The accuracies of lakes less than 0.01 km2 were not computed since the Hi-MAG only considered lakes
greater than nine pixels (>0.0081 km2).

The smallest lake detected by the GAN-GL is only one pixel (area = 0.0009 km2), far
smaller than the lakes in the Hi-MAG (nine pixels). This also indicates why the proportion
of small lakes (<0.1 km2) is greater than that in Hi-MAG. Considering that some isolated
lake pixels may be produced when splitting the lake area in the edge of cropped image
patches, we kept these small lakes without conducting accuracy assessments. From Table 6,
our glacial lake mapping results are almost consistent with ground truth when the lake
area is greater than 0.01 km2.
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6. Conclusions

In this work, we proposed a generated adversarial network (GAN) for mapping
glacial lakes (GAN-GL) using Landsat-8 OLI imagery. This allowed for the extraction
of glacial lake information quickly and effectively with less data dependency and post-
processing work. A complete glacial lake dataset was first created using random cropping,
density cropping, and uniform cropping. We found that the density of glacial lakes in the
training data was a factor that greatly impacted the final mapping accuracy. Then, we
constructed a GAN-GL model for glacial lake mapping, which adaptively enhanced the
potential lake information in a new water attention module. This module integrated the
NDWI feature and spatial lake feature computed from two paralleled convolutional layers.
The results of the ablation study show that our method, GAN-GL, could significantly
improve the capacity to map glacial lakes, with an F1 score of 92.17% and an IoU of 86.34%.
Moreover, by comparing our mapping results to those of classical global–local iterative
segmentation algorithm and random forest for the entire Eastern Himalayas, the GAN-GL,
with high evaluation scores, indicated that it could eliminate effects arising from mountain
shadows, clouds, and melting glaciers, and automatically and precisely delineate glacial
lakes. This delineation was eminently possible for many small glacial lakes under diverse
environmental conditions. Our work provides a feasible way to systematically monitor
and map glacial lakes over a large-scale area.

Author Contributions: Methodology, H.Z.; validation, H.Z. and M.Z.; formal analysis, M.Z.; writing,
H.Z., M.Z. and F.C.; visualization, H.Z.; project administration, F.C.; funding acquisition, M.Z. and
F.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the International Partnership Program of the Chinese
Academy of Sciences (131551KYSB20160002/131211KYSB20170046) and the National Natural Science
Foundation of China (41871345).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wangchuk, S.; Bolch, T. Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: Strengths
and challenges. Sci. Remote Sens. 2020, 2, 100008. [CrossRef]

2. Khadka, N.; Zhang, G.Q.; Thakuri, S. Glacial lakes in the Nepal Himalaya: Inventory and decadal dynamics (1977–2017). Remote
Sens. 2018, 10, 1913. [CrossRef]

3. Chand, M.B.; Watanabe, T. Development of supraglacial ponds in the Everest Region, Nepal, between 1989 and 2018. Remote Sens.
2019, 11, 1058. [CrossRef]

4. Song, C.; Sheng, Y.; Ke, L.; Nie, Y.; Wang, J. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid
expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. J. Hydrol. 2016, 540, 504–514. [CrossRef]

5. Wang, X.; Guo, X.Y.; Yang, C.D.; Liu, Q.H.; Wei, J.F.; Zhang, Y.; Liu, S.Y.; Zhang, Y.L.; Jiang, Z.L.; Tang, Z.G. Glacial lake inventory
of High Mountain Asia (1990–2018) derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 1–23. [CrossRef]

6. Bohorqueza, P.; Jimenez, P.J.; Carling, P.A. Revisiting the dynamics of catastrophic late Pleistocene glacial-lake drainage, Altai
Mountains, central Asia. Earth Sci. Rev. 2019, 197, 102892. [CrossRef]

7. Prakash, S.; Rai, S.C.; Thakur, P.K.; Emmer, A. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim,
Eastern Himalaya. Geomorphology 2017, 295, 39–54. [CrossRef]

8. Prakash, C.; Nagarajan, R. Glacial lake changes and outburst flood hazard in Chandra basin, North-Western Indian Himalaya.
Geomat. Nat. Hazards Risk 2018, 9, 337–355. [CrossRef]

9. Petro, M.A.; Sabitov, T.Y.; Tomashevskaya, I.G.; Glazirin, G.E.; Chernomorets, S.S.; Savernyuk, E.A.; Tutubalina, O.V.;
Patrokov, D.A.; Sokolov, L.S.; Dokukin, M.D.; et al. Glacial lake inventory and lake outburst potential in Uzbekistan. Sci. Total
Environ. 2017, 592, 228–242. [CrossRef]

10. Chen, F.; Zhang, M.; Guo, H.; Allen, S.; Kargel, J.S.; Haritashya, U.K.; Watson, C.S. Annual 30 m dataset for glacial lakes in High
Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [CrossRef]

11. Arshad, A.; Rozina, N.; Muhammad, B.I. Altitudinal dynamics of glacial lakes under changing climate in the Hindu Kush,
Karakoram, and Himalaya ranges. Geomorphology 2017, 283, 72–79. [CrossRef]

12. Bazai, N.A.; Cui, P.; Carling, P.A.; Wang, H.; Hassan, J.; Liu, D.; Zhang, G.; Jin, W. Increasing glacial lake outburst flood hazard in
response to surge glaciers in the Karakoram. Earth Sci. Rev. 2021, 212, 103432. [CrossRef]

13. McFeeters, S.K. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote
Sens. 1996, 17, 1425–1432. [CrossRef]

71



Remote Sens. 2021, 13, 4728

14. Li, J.L.; Sheng, Y.W. An automated scheme for glacial lake dynamics mapping using Landsat imagery and Digital Elevation
Models: A Case Study in the Himalayas. Int. J. Remote Sens. 2012, 33, 5194–5213. [CrossRef]

15. Shen, J.X.; Yang, L.; Chen, X.; Li, J.L.; Peng, Q.; Ju, H. A Method for Object—Oriented Automatic Extraction of Lakes in the
Mountain Area from Remote Sensing Image. Remote Sens. Land Resour. 2012, 3, 84–91. [CrossRef]

16. Bhardwaj, A.; Singh, M.K.; Joshi, P.K.; Snehmani; Singh, S.; Sam, L.; Gupta, R.D.; Kumar, R. A lake detection algorithm (LDA)
using Landsat 8 data: A comparative approach in glacial environment. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 150–163. [CrossRef]

17. Gao, Y.; Wang, W.; Yao, T.; Lu, N.; Lu, A. Hydrological network and classification of lakes on the Third Pole. J. Hydrol. 2018, 560,
582–594. [CrossRef]

18. Zhao, H.; Chen, F.; Zhang, M. A Systematic Extraction Approach for Mapping Glacial lakes in High Mountain Regions of Asia.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2788–2799. [CrossRef]

19. Li, W.; Wang, W.; Gao, X.; Wu, Y.; Wang, X.; Liu, Q. A lake extraction method in mountainous regions based on the integration of
object-oriented approach and watershed algorithm. J. Geo-Inf. Sci. 2021, 23, 1272–1285. [CrossRef]

20. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of the
Conference and Workshop on Neural Information Processing System (NIPS), Lake Tahoe, NE, USA, 3–6 December 2012.

21. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Models for Semantic Segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Hynes Convention Center, Boston, MA, USA, 8–10 June 2015.

22. Goodfellow, I.J.; Abadie, J.P.; Mirza, M.; Xu, B.; Farley, D.W.; Ozair, S.; Courvile, A.; Bengio, Y. Generative Adversarial Nets. arXiv
2014, arXiv:1406.2661.

23. Qayyum, N.; Ghuffar, S.; Ahmad, H.M.; Yousaf, A.; Shahid, I. Glacial Lakes Mapping Using Multi Satellite PlanetScope Imagery
and Deep Learning. ISPRS Int. J. Geo-Inf. 2020, 9, 560. [CrossRef]

24. Wu, R.; Liu, G.; Zhang, R.; Wang, X.; Li, Y.; Zhang, B.; Cai, J.; Xiang, W. A Deep Learning Method for Mapping Glacial Lakes from
the Combined Use of Synthetic-Aperture Radar and Optical Satellite Images. Remote Sens. 2020, 12, 4020. [CrossRef]

25. Donahue, J.; Simonyan, K. Large Scale Adversarial Representation Learning. arXiv 2019, arXiv:1907.02544.
26. Liu, L.; Muelly, M.; Deng, J.; Pfister, T.; Li, L. Generative Modeling for Small-Data Object Detection. In Proceedings of the

International Conference on Computer Vision (ICCV), COEX Convention Center, Seoul, Korea, 27 October–2 November 2019.
27. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al.

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXiv 2016, arXiv:1609.04802.
28. Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. DeblurGAN: Blind Motion Deblurring Using Conditional

Adversarial Networks. arXiv 2017, arXiv:1711.07064.
29. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning:

A Survey. arXiv 2020, arXiv:2001.05566. [CrossRef] [PubMed]
30. Xue, Y.; Xu, T.; Zhang, H.; Long, R.; Huang, X. SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image

Segmentation. arXiv 2017, arXiv:1706.01805. [CrossRef] [PubMed]
31. Son, J.; Park, S.J.; Jung, K.H. Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks. arXiv

2017, arXiv:1706.09318v1.
32. Zhang, G.Q.; Bolch, T.; Allen, S.; Linsbauer, A.; Chen, W.; Wang, W. Glacial lake evolution and glacier–lake interactions in the

Poiqu River basin, central Himalaya, 1964–2017. J. Glaciol. 2019, 65, 347–365. [CrossRef]
33. Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental

scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2015, 185, 129–141. [CrossRef]
34. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. arXiv 2018, arXiv:1809.02983.
35. Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid Attention Network for Semantic Segmentation. arXiv 2018, arXiv:1805.10180v1.
36. Li, X.; Zhong, Z.; Wu, J.; Yang, Y.; Liu, Y. Expectation-Maximization Attention Networks for Semantic Segmentation. In

Proceedings of the International Conference on Computer Vision (ICCV), COEX Convention Center, Seoul, Korea, 27 October–2
November 2019.

37. Zhang, M.; Zhao, H.; Chen, F.; Zeng, J. Evaluation of effective spectral features for glacial lake mapping by using Landsat-8 OLI
imagery. J. Mt. Sci. 2020, 17, 2707–2723. [CrossRef]

38. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, W.; Radford, A.; Chen, X. Improved Techniques for Training GANs. arXiv
2016, arXiv:1606.03498.

39. Xu, H.Q. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sense imagery.
Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

40. Pei, Y.; Zhang, Y.J.; Zhang, Y. A study on information extraction of water system in semi-arid regions with the Enhanced Water
Index (EWI) and GIS based noise remove techniques. Remote Sens. Inf. 2007, 6, 62–67.

41. Zheng, G.; Bao, A.; Allen, S.; Cánovas, J.A.B.; Yuan, Y.; Jiapaer, G.; Stoffel, M. Numerous unreported glacial lake outburst floods in
the Third Pole revealed by high-resolution satellite data and geomorphological evidence. Sci. Bull. 2021, 66, 1270–1273. [CrossRef]

42. Jiang, H.; Feng, M.; Zhu, Y.Q.; Lu, N.; Huang, J.; Xiao, T. An automated method for extracting rivers and lakes from Landsat
imagery. Remote Sens. 2014, 6, 5067–5089. [CrossRef]

43. Veh, G.; Korup, O.; Roessner, S.; Walz, A. Detecting Himalayan glacial lake outburst floods from 16 Landsat time series. Remote
Sens. Environ. 2017, 207, 84–97. [CrossRef]

72



sustainability

Article

Quantifying Recycled Moisture in Precipitation
in Qilian Mountains

Zhuanxia Zhang 1,2, Guofeng Zhu 1,2,*, Hanxiong Pan 3, Zhigang Sun 1,2, Liyuan Sang 1,2 and Yuwei Liu 1,2

Citation: Zhang, Z.; Zhu, G.; Pan, H.;

Sun, Z.; Sang, L.; Liu, Y. Quantifying

Recycled Moisture in Precipitation in

Qilian Mountains. Sustainability 2021,

13, 12943. https://doi.org/10.3390/

su132312943

Academic Editors: Alban Kuriqi and

Luis Garrote

Received: 15 October 2021

Accepted: 20 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China;
zzx_nwnu@163.com (Z.Z.); zachsuen@163.com (Z.S.); nwnusly@163.com (L.S.);
liuyuweinwnu@163.com (Y.L.)

2 Shiyang River Ecological Environment Observation Station, Northwest Normal University,
Lanzhou 730070, China

3 School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China;
Panhxnwnu@163.com

* Correspondence: zhugf@nwnu.edu.cn

Abstract: Studies about the hydrological cycle based on basin or regional scales often ignore the
uniqueness of recycling moisture in mountain areas, and little effort has been made to understand
the impact of the local recycled moisture on precipitation in mountain areas. We collected and
analyzed a series of samples (stable isotope of precipitation, soil water, plant water, runoff, and
groundwater) in the Qilian Mountains, northwest of China. Based on the isotopic mixing model, the
characteristics of recycled moisture in the Qilian Mountains were evaluated. The results showed that
lateral advection moisture is the primary source of precipitation (83.5~98.38%). The contribution rate
of recycled moisture to precipitation was higher in the spring, summer, and autumn (2.05~16.5%),
and lower in the winter (1.62~3.32%). The contribution of recycled moisture to precipitation in
the high-elevation areas (>2400 m) was higher than that in the foothills area (2100~2400 m). The
contribution of vegetation transpiration (fTr) to precipitation in the east of Qilian Mountain was
higher than that of the land surface evaporation (fEv). These proved that in the eastern part of Qilian
Mountain, the arge-scale water cycle has a greater impact on precipitation in the area. The influence
of local circulating water on precipitation dominated in the summer half of the year. Understanding
the contribution of local circulating water to precipitation in the eastern part of Qilian Mountain will
help us to understand the local hydrothermal conditions better and provide a basis for rationally
arranging local agricultural production activities.

Keywords: Qilian Mountains; stable isotope of precipitation; contribution of recycled moisture;
three-component mixing model

1. Introduction

Precipitation comes from the antecedent atmospheric moisture, lateral advection,
and local evapotranspiration [1,2]. Research has shown that lateral advection is the ma-
jor moisture source of precipitation globally, with fTr (proportion of plant transpiration
water vapor in precipitation) and fEv (proportion of surface evaporation water vapor in
precipitation) being the second and third. However, there is considerable spatiotemporal
variation among the three types of moisture in the world [3,4], which profoundly affects
the global and local water cycle [5]. Stable hydrogen and oxygen isotopes can play an
important role in the quantitative research of the hydrologic cycle [6,7]. The contribution
of different sources of moisture to precipitation has been a hot topic in isotope hydrology.
In general, it is feasible to observe and calculate the antecedent atmospheric water vapor
and lateral advection directly. The difficulty is to determine the contribution of recycled
moisture. Recycled moisture mainly comes from fTr (proportion of plant transpiration
water vapor in precipitation) and fEv (proportion of surface evaporation water vapor in
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precipitation) [8–11]. The linear mixing model for isotopes is an effective method to study
the contribution of recycling moisture in different regions. Linear mixing model has been
applied around the world [12], such as the Great Lakes region in North America [13], the
Slave River Delta of Canada [14], the Amazon Basin of South America [15], the Nam Co
Basin in the Qinghai-Tibetan Plateau [16], the Lake Shorty in Madagascar [17] and Lake
Kasumiguara [18].

Most research on the moisture cycle focuses on the source of advected water vapor
and its transport in different regions [8,19]. Recently, more studies have considered the
transport and conversion of basin recycled moisture [4,6]. Research showed that the
contribution of recycled moisture to precipitation varies greatly in time and space. In
arid inland river basins, the contribution of recycled moisture is less than 30% [6,20], In
some small oases, the recycled moisture contribution is less than 5% [21,22]. However,
the contribution of recycled moisture can reach 62% in the Tibetan Plateau, but is much
lower in winter than that in summer [6,23]. Some studies have focused on the causes of the
spatial and temporal differences in recycled moisture, such as relative air humidity [19],
soil water content [24], land use types and land cover changes [25].

Many studies have estimated the contribution rate of recycled moisture and its in-
fluencing factors in the watershed or regional scale [4,6,21,22,26]. Due to the obvious
difference between climate and environment in the mountainous-oasis-desert regions in
arid areas, studies based on basins or regional scales tend to overlook the uniqueness of
recycling moisture in mountain areas. The upper Shiyang River in the northeast of Qilian
Mountain is the transition zone between the Qinghai-Tibet Plateau and the arid zone. Pre-
cipitation affects the development of the oasis and desert in the middle and lower reaches.
Clarifying the characteristics and influencing factors of upstream water resources changes
will contribute to a reasonable solution to the demands of the middle and lower reaches
of the water resources. Therefore, this study used the stable isotope data of precipitation,
soil water, plant water, surface water, and groundwater from 2016 to 2018 in the upper
Shiyang River in the eastern part of the Qilian Mountains to calculate the proportion of
plant transpiration water vapor (fTr), surface evaporation water vapor (fEv) and advection
water vapor (fAdv) in precipitation. We try to explore the source of moisture in precipitation
in the mountain areas of the arid inland river basin, and to reveal the characteristics of the
mountain water cycle, reasonable assessment of regional water resources.

2. Study Area and Observation Network

2.1. Study Area

The study area is located in the Xiying River (XYR) basin in the Qilian Mountains
(Figure 1). XYR is the main tributary of the Shiyang River. It originates below the glaciers
in the northern slopes of the Qilian Mountains and eventually disappears into the desert.
The elevation of the XYR basin ranges from 1510 to 4874 m above sea level. The average
annual temperature is 6.3 ◦C and the average annual precipitation ranges from 200 to
700 mm [8,27]. The upper reaches of the Shiyang River basin are located in the East Asian
monsoon crisscross zone, controlled by the East Asian monsoon and plateau monsoon.
Cold high pressure appears on the plateau in winter, and the air flows from the plateau
to the surroundings. In summer, hot low air pressure appears on the plateau, and the air
flows from all directions to the plateau [6], which is a typical continental alpine climate.
Vegetation is mainly distributed in areas between 2000 m and 3600 m above sea level; the
basin is affected by multiple sources of moisture [6,27].
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Figure 1. The distribution of all sampling sites. A: Xiyingwugou (Foothill), B: Huajian (Arbor belt),
C: Ningchan (Shrub belt), D: Lenglongling (River source).

2.2. Observation Network, Sampling, and Analysis

From April 2016 to October 2018, four sampling sites were established in the XYR Basin
(Figure 1). A total of 867 samples were collected from the upstream mountain areas (Table 1).
Two-hundred forty-five precipitation samples at sampling sites were collected immediately
after the end of each precipitation process using a rain gauge. The precipitation samples
were put into a 50 mL polyethylene sampling bottle. The bottle cap was tightened, and the
bottle mouth was sealed with a sealing film and stored in cold storage until analysis. Surface
water samples were sealed and stored in cold storage after each collection. Meanwhile,
automatic meteorological observation instruments recorded meteorological elements such
as temperature, precipitation, relative humidity and atmospheric pressure [6]. All samples
were analyzed for δ2H and δ18O using liquid water. For runoff, the bottle was placed under
the water surface until the container was filled. A total of 82 runoff samples were collected
at different elevations (Table 1). For soil water, soil samples were collected from 10 cm to
100 cm, using soil spirals every 10 cm. All samples were placed in 100 mL polyethylene
vials. A total of 450 soil samples were collected (Table 1). For plant water, typical vegetation
at each sampling site was selected, and scissors were used to cut the xylem or branches of
the same vegetation. A total of 90 plant samples were collected (Table 1). All samples were
stored in a mobile freezer (−5 ◦C) and transferred to a freezer laboratory (−15 ◦C) within a
week after collection.

The samples were melted at room temperature (20~25 ◦C) before further analyses. The
plant and soil water were extracted using a cryogenic vacuum distillation apparatus (LI-
2100, LICA United Technology Limited, China). All samples were analyzed using a liquid
water isotope analyzer DLT-100 (Los Gatos Research, Inc.) in the Stable Isotope Laboratory,
College of Geography and Environmental Science, Northwest Normal University. The
isotope ratios of samples are expressed as parts per mil (‰) relative to the Vienna Standard
Mean Ocean Water (V-SMOW) using δ notation: δ(‰) = (RS/RV-SMOW−1) × 1000, where
δs is the isotope ratio of the samples relative to V-SMOW and Rs is the ratio of D/H or
18O/16O in the samples. The precision of the measurements was ±0.6% for δ2H and ±0.2%
for δ18O, respectively.
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Table 1. Basic information for each sampling site.

Sampling Site Abbreviation
Lon
(◦E)

Lat
(◦N)

Alt
(m)

Number and Species of Sample

Precipitation Surface Soil Plant Vegetation Species

Xiyingwugou A 102.18 37.89 2097 47 30 130 24 Forests
(Populus L.)

Huajian B 102.01 37.83 2323 47 24 140 26 Shrubs (Caragana
sinica Rehder)

Ningchan C 101.89 37.7 2721 56 16 100 20 Forests (Picea
asperata Mast.)

Lenglongling D 101.86 37.56 3647 95 12 80 20 ——

Meteorological data were obtained from four weather stations of the XYR basin. These
weather stations record meteorological data such as temperature, precipitation, wind speed,
evaporation, relative humidity, and soil moisture every 15 min.

3. Method

3.1. Three-Component Mixing Model

Moisture from precipitation is derived from local evapotranspiration and advec-
tion [28,29]. The linear mixing model can be used to calculate the contribution rate of each
water source. The three-component mixing model based on δ18O and δ2H values can be
expressed as follows.

δ18OPv = δ18OTr × fTr + δ18OEv × fEv + δ18OAdv × fAdv (1)

δDPv = δDTr × fTr + δDEv × fEv + δDAdv × fAdv (2)

1 = fTr + fEv + fAdv (3)

In formula (1)–(3), the contribution rate of each moisture source is expressed in
terms of f while the subscript indicates the source of moisture. Subscript Pv indicates the
local atmospheric moisture. Subscripts Tr, Ev, Adv, indicate moisture from transpiration,
evaporation, and advection, respectively.

The contributions of fTr, fEv, and fAdv can be calculated as follows.

fTr =
δ18OPv × δDEv − δ18OPv × δDAdv + δ18OEv × δDAdv − δ18OEv × δDPv + δ18OAdv × δDPv − δ18OAdv × δDEv

δ18OTr × δDEv − δ18OTr × δDAdv + δ18OEv × δDAdv − δ18OEv × δDTr + δ18OAdv × δDTr − δ18OAdv × δDEv
(4)

fEv =
δ18OPv × δDAdv − δ18OPv × δDTr + δ18OTr × δDPv − δ18OTr × δDAdv + δ18OAdv × δDTr − δ18OAdv × δDPv

δ18OTr × δDEv − δ18OTr × δDAdv + δ18OEv × δDAdv − δ18OEv × δDTr + δ18OAdv × δDTr − δ18OAdv × δDEv
(5)

fAdv =
δ18OPv × δDTr − δ18OPv × δDEv + δ18OTr × δDEv − δ18OTr × δDPv + δ18OEv × δDPv − δ18OEv × δDTr

δ18OTr × δDEv − δ18OTr × δDAdv + δ18OEv × δDAdv − δ18OEv × δDTr + δ18OAdv × δDTr − δ18OAdv × δDEv
(6)

The δ18Opv and δDpv value can also be derived from the value of the stable isotope
from local precipitation and the equilibrium fractionation factor:

δ18OPv ∼= δ18OP − 103× (α18
W−V − 1) (7)

δDPv ∼= δDP − 103× (α2
W−V − 1) (8)

The specific formula is as follows [30,31]:

103Inα18
W−V = 1.137 × (

106

T2 )− 0.4156 × (
103

T
)− 2.0667 (9)
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103Inα2
W−V = 24.844 × (

106

T2 )− 76.248 × (
103

T
)− 52.612 (10)

The δ18OEv and δDev can be expressed by the value of the stable isotope from advection
(δ18OAdv and δDAdv) and local the surface water (δ18Os or δDs), mean relative humidity (h),
the sum of equilibrium (εeq) and kinetic (Δε):

δ18OEv=
δ18OS − h × δ18OAdv − ε18

1 − h
(11)

δDEv=
δDS − h × δDAdv − ε2

1 − h
(12)

ε18 = ε18
eq + Δε18 (13)

ε2 = ε2
eq + Δε2 (14)

ε18
eq= 1000 × (1 − 1

α18
W−V

) (15)

ε2
eq= 1000 × (1 − 1

α2
W−V

) (16)

Δε18 = 14.2 × (1 − h) (17)

Δε2 = 12.5 × (1 − h) (18)

Based on previous studies on δ18OAdv and δDAdv, we used the following formula to
investigate the characteristics in the XYR Basin.

δ18OAdv
∼= δ18Opv + (a18

w−v − 1)× lnF (19)

δDAdv
∼= δDpv + (a2

w−v − 1)× lnF (20)

In the above formulas, the F indicates the ratio between the initial and the final vapor,
which is estimated by the precipitable water amount in the two sites. Previous research
in the Tianshan Mountains concluded that precipitable water correlates with moisture
pressure (c = 1.657e, where c indicates atmospheric moisture content in mm and e indicates
surface moisture pressure in hPa, r2 = 0.94) [32]. Hence, the surface moisture pressure
ratio between the two sampling sites is equal to the value of F. Since the isotope ratios in
precipitating vapor at the sampling sites are much more depleted than the upwind station,
the Rayleigh distillation equation was also applied. In this research, formula 6 was used to
calculate the stable isotope ratios in advection vapor. If there is no significant depletion
of isotopes between the sampling site and the upwind station, then the stable isotope
ratios in advection vapor at the sampling site are considered to be the same as that in the
precipitating vapor at the upwind station.

Because there is no fractionation during the transport of moisture from fTr to the
atmosphere [33], the value of δ18OTr and δDTr is the same as that of local water used by
plants (δ18Ow and δDw). This research calculated the average value of δ18O (δ2H) from the
soil surface to a depth of 40cm below and xylem, to obtain δ18OTr and δDTr. The results for
each sampling site in this study area are shown in Table 2.
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Table 2. The data needed to calculate the recycled water vapor contribution rate and the calculation results.

Season Site e(hPa) T(K) h (%)
δ18OP
(‰)

δ18OPv
(‰)

δ18OTr
(‰)

δ18OEv
(‰)

δ18OAdv
(‰)

δ2Hp
(‰)

δ2Hpv
(‰)

δ2HTr
(‰)

δ2HEv
(‰)

δ2HAdv
(‰)

fTr
(%)

fEv
(%)

fAdv
(%)

Spring

A 17.47 288.52 41.1 −7.58 −17.79 −6.63 —— —— −49 −139.66 −58.1 —— —— —— —— ——
B 15.94 287.11 38.7 −5.00 −15.33 14.64 −28.49 −17.79 −34.91 −127.37 −18.39 −133.36 −139.66 9.8 6.7 83.5
C 12.3 283.17 51.1 −6.92 −17.63 −2.39 −33.17 −18.11 −46.12 −143.78 −45.25 −147.18 −152.75 8.1 5.2 86.7
D 8.194 277.26 60.3 −9.59 −20.88 —— −34.59 −22.21 −57.2 −163.25 —— −155.43 −186.81 9.9 90.1

Sum
m

er

A 20.48 291.03 69.66 −4.449 −14.43 −4.735 —— —— −23.87 −111.4 −63.29 —— —— —— —— ——
B 20.45 291 62.23 −4.53 −14.51 −1.123 −30.01 −14.45 −23.21 −110.8 −50.42 −158.5 −111.4 3.96 3.81 92.23
C 16.87 287.98 70.64 −6.225 −16.48 −4.014 −35.87 −16.48 −35.64 −127 −40.24 −166.2 −128.4 2.16 1.36 96.48
D 11.33 281.95 78.42 −9.109 −19.93 2.6452 −24.3 −20.79 −52.19 −151.5 −12.14 −72.34 −166.6 4.86 7.99 87.15

A
utum

n

A 16.52 287.66 65.77 −4.232 −14.51 −4.869 —— —— −27.57 −119.3 −63.2 —— —— —— —— ——
B 15.99 287.15 60.85 −4.34 −14.67 −0.359 −30.32 −14.85 −28.79 −121.2 −47.12 −148.2 −122.3 1.67 0.38 97.95
C 12.10 282.93 71.88 −6.049 −16.77 −4.035 −33.18 −17.66 −41.31 −139.3 −40.24 −122.6 −148.5 8.17 1.46 90.37
D 8.816 278.3 76.29 −8.976 −20.16 —— −28.25 −20.31 −56.62 −161.1 —— −80.9 −172.4 —— 6.45 93.55

— It cannot be calculated because the data are missing.

3.2. Hysplit Model and the Upper Wind Direction

We applied the HYSPLIT model to simulate the moisture sources in the Qilan Moun-
tains [34–37]. We found that westerly winds, southeast monsoons, and plateau monsoons
all affect the Qilian Mountains in summer. In winter, westerly winds mainly affect the
Qilian Mountains.

According to the clustering of air mass in different seasons, the air mass gathered at the
northern foot of Qilian Mountain and then moved from a low elevation to a high elevation
along the valley. Therefore, sampling site A was used as an upwind station for spring,
summer, and autumn. In winter, the study area was dominated by a westerly wind, and
Urumqi and Hotan (GNIP) in Central Asia were regarded as the upwind direction stations.

3.3. Method of Reducing Experimental Error

The isotope mixture model is an effective method for specific regional moisture
recirculation research, but the inherent uncertainty of the model still needs to be considered.
In this study, we focused on the correction of experimental errors in plant xylem moisture.

The water obtained in plant Xylem contained organic pollutants such as methanol and
ethanol by the low-temperature vacuum distillation extraction technology, which caused
deviations in the measurement of the laser isotope analyzer. This error has led to significant
differences in the estimation of the amount of vegetation evapotranspiration. In different
studies, some unreasonable calculation results of negative fTr value will appear.

In this study, deionized water was mixed with methanol and ethanol (pure chromato-
graphical) of different concentrations. The spectral software (LWIA-Spectral Contamination
Identifier v1.0, Los Gatos company) was used to determine the spectral measurement of the
pollution degree of methanol (NB), and ethanol (BB), the δD and δ18O spectral pollution
correction methods were established [38–40]. The configuration of the concentration of
methanol and ethanol solutions during the calibration process is the same as the related
experiments by Meng et al. (2012). For the calibration result of methanol, the logarithm
of the broadband metric NB metric and Δδ2H and Δδ18O have significant quadratic curve
relationships:

Δδ2H = 0.018 (ln.NB)3 + 0.092 (ln.NB)2 + 0.388ln.NB + 0.785 (R2 = 0.991, p < 0.0001) (21)

Δδ18O = 0.017 (ln.NB)3 + 0.017 (ln.NB)2 + 0.545ln.NB + 1.356 (R2 = 0.998, p < 0.0001) (22)

For the calibration results, the broadband metric BB metric has a quadratic curve and
linear relationship with Δδ2H and Δδ18O, respectively:

Δδ2H = −85.67BB + 93.664 (R2 = 0.7447, p = 0.026) (23)

Δδ18O = −21.421BB2 + 39.935BB−19.089 (R2 = 0.769, p = 0.012) (24)

After correction, the calculation result of negative fTr value was eliminated. Of
course, there are also other uncertainties in model research, such as driving data sam-
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pling and experimental errors, structural errors in the physical mechanism of the model,
and parameter errors.

4. Results and Analysis

4.1. Isotopic Composition of Different Water Bodies

The differences in the Local Meteoric Water Line (LMWL) are explained by the dif-
ferences in topography, underlying surface, climate, and other natural environmental
factors. From sampling points A to D, both the temperature and the evaporation decrease
because of the increasing elevation. The slope of the LMWL gradually increases, and
the extent of soil water and plant water deviating from the LMWL also increases. These
factors indicate that as the elevation increases, the evapotranspiration of soil and vegetation
gradually decreases.

In sampling point D (River source), the δ2H and δ18O in different water bodies are
similar. The δ2H and δ18O of soil moisture, vegetation moisture, and surface runoff of each
sampling site fall to the lower right of the LMWL, indicating that different water bodies
are all recharged by precipitation in the source areas, which is significantly different from
sampling point A, B, and C.

The characteristics of δ2H and δ18O are similar in the different water bodies in the
mountain area in sampling points A, B, and C. The δ2H and δ18O of the surface water
samples plot near or above the LMWL (Figure 2), and the soil and vegetation water plot to
the lower right of the LMWL (Figure 2). The distribution of samples indicates that the land
surface water in the mountain area is mainly recharged by precipitation, while soil water
and plant water experience different degrees of evaporation during water body migration
and transformation.

Figure 2. The relationship between δ2H and δ18O in different water bodies in the Xiying River. Basin.

4.2. The Path of Moisture Transport

In spring, there are two main air mass movement paths moving from the western
section of the study area: (1) The air mass originating from Central Asia moves along
the edge of the Qinghai-Tibetan Plateau after entering the Tarim Basin; (2) The air mass
originating from the West Siberian Plain, which travels the western arid region of China
and then arrives at the XYR basin. In summer, the air mass mainly comes from the east
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of the study area, and the air mass moves from the east of the study area, similar to the
pathway in spring. However, as air mass from the west of the study area decreased in
occurrence, the air mass from the southeast increased and the air mass from Central Asia
affects the study area along the northwest edge of the Qinghai-Tibetan plateau. In autumn,
there are two main air mass movement paths in the west of the study area: (1) Air mass
originating in Central Asia and the air mass originating in the Xinjiang move along the edge
of the Qinghai-Tibetan Plateau; (2) The other is the air mass arises in Central Asia, crosses
the Kunlun Mountains and the Qinghai-Tibetan Plateau, moves through the Qaidam basin
and then reaches the study area. In winter, the air mass in the study area is controlled
by the westerly wind, while the east wind of the study area has little effect on the region
(Figure 3).

Figure 3. Movement path and cluster of the Xiying River basin sampling station (A, B, C, D from
April 2016 to October 2018).

4.3. Spatial and Temporal Differences of Recycled Moisture

In spring (Figure 4a), the calculated contribution of recycled moisture in different
sampling points was 9.9% and 16.5%, higher than that in other seasons. The contribution
was largest in sampling point B (Arbor belt), and lowest in sampling point D (river source
area). The melting of snow leads to higher soil moisture content in spring, which leads to
higher evaporation of the soil. Plants at low elevations region begin to grow first in spring,
which increases the vegetation evapotranspiration in the low elevation region. The portion
of recycled moisture decreased with elevation increased (Table 2).

In summer (Figure 4b), the contribution of recycled moisture for different sampling
points varied between 3.52% and 12.87%. The contribution was highest for sampling point
D (River source) and the lowest for sampling point B (Arbor belt). At the sampling point
D (River source), where the plant begins to grow first in July, the contribution of local
transpiration fTr was 4.86%, and the contribution of evaporation fEv was 7.99%. The soil
moisture content is high in the river source area, and the frozen soil has thawed in summer,
so that the evapotranspiration increases rapidly, which leads to a larger fraction of recycled
moisture in precipitation in the river source area. Since there is less precipitation and
soil water in the low-elevation regions, the contribution of recycled moisture is higher in
high-elevation areas than in low-elevation areas in summer.

In autumn (Figure 4c), the contribution of recycled moisture in the study area varied
between 2.05% and 9.63%, which is lower than in spring and summer. The contribution
was highest at sampling point C (Shrub belt) and lowest at sampling point B (Arbor belt)
the vegetation growth in the river source stagnated, and the soil began to freeze. The
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sampling point C (Shrub belt) has high evapotranspiration, and the evapotranspiration
was reduced due to the lack of soil moisture in sampling points A and B.

Figure 4. Schematic diagram of recycled water vapor contribution rates for each season.

In winter, due to the influence of the cold westerly air mass, the rate of evapotran-
spiration weakened. The external air mass exerts a dominant influence on the moisture
in winter.

Overall, the contribution rate of recycled moisture is subject to local vegetation cover,
soil moisture content, and other climatic and hydrological conditions. At all sampling
points, the contribution fTr moisture was higher than that of fEv moisture (Figure 4).

5. Discussion

5.1. Recycled Moisture in Inland River Basins
5.1.1. Differences between Mountainous Areas in Inland River Basins

The XYR Basin is located in the east of the Qilian Mountains and is a marginal area
of the summer monsoon. Its moisture source is significantly different from that in most
arid regions. The portion of moisture from the southeast and southwest in the monsoon
period (June to September) is higher than in most inland river basins [6]. The sum of fTr
and fEv recirculated moisture in the XYR Basin is about 10.34%, which is lower than that in
Yeniugou, Hulugou, and Pailigou, which are located in the central Qilian Mountains [4],
and higher than the Tianshan Mountains [21]. The main reason for the difference in the
contribution of recirculated moisture in different regions is fTr. The fTr values calculated
in various studies vary greatly, while the proportion of fEv is close to other stations. For
XYR basin fEv is 4.81%, for bison ditch 3.6%, for Hulu ditch 5.9%, and for the dew ditch
0.9%. Controlled by meteorological factors, there are also obvious differences in recycled
moisture at different elevations in the same watershed. In high elevation areas, fTr and fEv
will be higher due to summer plant growth and frozen soil melting. At sampling point A
(Foothill), fTr is relatively higher in spring and autumn, but soil moisture is lower due to
less precipitation, resulting in a lower fEv.
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In terms of spatial distribution, the vegetation cover is higher in site B and C than
D. However, the recycling ratio in D is the highest in all four seasons. A possible reason
accounting for this spatial pattern is that recycling ratio is scale-dependence [41]. We used
site A as the unique upwind site for all sites B–D. As a result, the recycling ratio in D is
the accumulated recycled moisture from site A to D and accumulated from site A to B for
recycling ratio in site B. That is why recycling ratio increases with elevation rise, while
vegetation and evapotranspiration are actually low in high-elevation regions due to the
low air temperature. Scale-dependence is an important issue in recycling research but often
is overlooked in isotope-based studies. This is also the reason why the isotope-based result
is much smaller than model-based results.

5.1.2. Recycled Moisture Contribution in Mountainous, Oasis, and Desert Areas

The average contribution of fTr, fEv, and fAdv to precipitation was 5.53%, 4.8%, 90.89%
in the mountains area, 21.9%, 7%, and 72% in the oasis region and 10%, 5% and 85% in the
desert and gobi region [6]. In Heihe River Basin, the average contributions of fTr, fEv, and
fAdv vapor to precipitation were 24.15%, 26.9%, and 51.05% in the oasis region, 15.1%, 6.3%,
and 21.4% in the desert region [4]. In the Urumqi River Basin, the average contribution
of oasis fTr and fEv to precipitation was 15.09% [21]. Our study mainly studies the Xiying
River Basin in the eastern part of the Qilian Mountains, this area is mountainous, the fTr
(proportion of plant transpiration water vapor in precipitation) and fEv (proportion of
surface evaporation water vapor in precipitation) is less than 10% throughout the year. It is
in line with the local water cycle characteristics of the mountain areas in arid inland river
basins. In general, the proportion of recycled water in the mountain areas of arid inland
river basins are lower than those in the oasis and desert areas.

With the increase in population and utilization of the oasis area, the land use has
changed. The cultivated land and ecological land must be maintained by artificial irrigation
in the oasis area. Since canals and flooding can affect local evaporation, the growth of crops
and forests can affect fTr, which will change the contribution of recycled moisture rates in
oasis areas, and this is different from the characteristics of moisture recirculation in the
mountainous area.

5.2. Recycled Moisture in Precipitation in Different Regions

The contribution of recycled moisture is lowest in the North and South poles, while
the highest values are found in the Tibetan Plateau, the Patagonia Plateau, and the Andes
Mountains. The vast ocean provides a large amount of moisture for the moisture cycle
in various regions in the world. At the same time, the latent heat from condensation
absorbed and released by the vapor phase transition also promotes the flow of global
energy. There is a continuous high-value area in the mid-latitudes regions [42]. In tropical
coastal areas, the contribution of recirculating moisture in different landscapes is only
marginally different, with a contribution around 31~37% [19]. In the marginal zone of the
temperate monsoon, the source of water is complex, and the climate is changeable. The
contribution of circulating water in mountainous areas, oasis and deserts, and its temporal
and spatial changes are quite large [6]. In addition, lakes have a significant impact on
recycled moisture, contributing 5–16% in temperate continental monsoon climate zones [13],
and 10–20% in temperate marine climate zones [43], 16–50% in tropical islands [17], and
3~37.9% are in the Qinghai-Tibet Plateau [16]. Our study area is the eastern part of the
Qilian Mountains. This area is on the edge of the East Asian monsoon. The temporal and
spatial changes of the local water cycle are complex. The proportion of local circulating
water in precipitation is smaller than that in mid-latitude regions and tropical coastal
regions. However, for small areas, the circulating water in mountain areas is greater than
in oasis and desert areas.

The δ2H was used in the ice core to estimate that the contribution of recycled moisture
in the Qinghai-Tibet Plateau has increased in the past few decades [44,45]. It is believed that
the increase in the global temperature leads to strong local surface moisture evaporation
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and local moisture recycling [46]. Secondly, any increase in the vegetation coverage on the
land surface and the evapotranspiration associated with this increase also has a particularly
strengthening effect on local moisture recycling [6]. When we study the local water cycle,
we should also consider the effects of long-term climate change and local human activities.

6. Conclusions

The contribution of recycled moisture to precipitation was estimated using the linear
mixing model in different seasons for different elevations. The results showed that the
contribution rate of recycled moisture to precipitation was higher in the spring, summer,
and autumn (2.05~16.5%) and low in winter (1.62~3.32%). In the high-elevation areas
(>2400 m), the contribution rate of recycled moisture to precipitation was higher than the
foothills area (2100~2400 m). The contribution of the fTr moisture was higher than that
of the fEv to precipitation in the mountain areas. The contribution of recycled moisture
increased with the elevation in the Qilian mountains. The water obtained from the xylem
of plants contains organic pollutants (methanol and ethanol) that may cause of greater
uncertainty in fTr in different studies. The quantification of the contribution rate of recycled
moisture requires the cooperation of multi-source data, but the high-elevation regions often
lack systematic mufti-element observation data. To better understand the contribution
mechanism and influencing factors of recycled moisture, a long-term field monitoring
system should be established to obtain comprehensive first-hand data. This study can
provide a reference for the study of recycled moisture in other mountain areas.

Author Contributions: Conceptualization, G.Z., Z.Z. and H.P.; methodology, Z.Z. and H.P.; software,
Z.Z. and H.P.; validation, Z.Z., G.Z. and H.P.; formal analysis, Z.Z.; investigation, H.P.; resources, G.Z.;
data curation, H.P.; writing—original draft preparation, Z.Z., G.Z. and H.P.; writing—review and
editing, Z.Z., G.Z. and H.P.; visualization, Z.S., L.S. and Y.L.; supervision, Z.Z., G.Z. and H.P.; project
administration, G.Z.; funding acquisition, G.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (41867030,
41661005, 41971036).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: We have made public the stable isotope data of precipitation that
support the results of this study (Zhu, Guofeng, 2020. Data sets of isotopes of different water bodies
at different altitudes in Qilian Mountains, Mendeley Data, V2, doi:10.17632/bhxp9mjtv4.2) and
Meteorological datasets can be found at http://data.cma.cn.

Acknowledgments: The work was supported by the National Natural Science Foundation of China
(41867030, 41661005, 41971036). We thank Hanxiong Pan, Xinggang Ma, Dongdong Chen, Kai Wang,
Yang Shi, Zhiyuan Zhang, Leilei Yong for assistance during fieldwork. We sincerely thank Marit
Greenwood for the writing suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Balagizi, C.M.; Kasereka, M.M.; Cuoco, E.; Liotta, M. Influence of moisture source dynamics and weather patterns on stable
isotopes ratios of precipitation in Central-Eastern Africa. Sci. Total Environ. 2018, 628, 1058–1078. [CrossRef]

2. Zannoni, D.; Steen-Larsen, H.C.; Rampazzo, G.; Dreossi, G.; Stenni, B.; Bergamasco, A. The atmospheric water cycle of a coastal
lagoon: An isotope study of the interactions between water vapor, precipitation and surface waters. J. Hydrol. 2019, 572, 630–644.
[CrossRef]

3. Gibson, J.J.; Reid, R. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. J. Hydrol. 2014, 519, 2148–2164.
[CrossRef]

4. Zhao, L.; Liu, X.; Wang, N.; Kong, Y.; Wang, L. Contribution of recycled moisture to local precipitation in the inland Heihe River
Basin. Agric. For. Meteorol. 2019, 271, 316–335. [CrossRef]

5. Zemp, D.C.; Schleussner, C.F.; Barbosa, H.M.J.; Van der Ent, R.J.; Donges, J.F.; Heinke1, J.; Sampaio, G.; Rammig, A. On the
importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 2014, 14, 13337–13359. [CrossRef]

83



Sustainability 2021, 13, 12943

6. Zhu, G.F.; Guo, H.W.; Qin, D.H.; Pan, H.Q.; Zhang, Y.; Jia, W.X.; Ma, X.G. Contribution of recycled moisture to precipitation in the
monsoon marginal zone: Estimate based on stable isotope data. J. Hydrol. 2019, 569, 423–435. [CrossRef]

7. Cui, J.; Tian, L.; Biggs, T.W.; Wen, R. Deuterium-excess determination of evaporation to inflow ratios of an alpine lake: Implications
for water balance and modeling. Hydrol. Process. 2017, 31, 1034–1046. [CrossRef]

8. Zhu, G.F.; Zhang, Z.X.; Guo, H.W.; Zhang, Y.; Yong, L.L.; Wan, Q.Z.; Sun, Z.G.; Ma, H.Y. Below-Cloud Evaporation of Precipitation
Isotope over Mountain-oasis-desert in Arid Area. J. Hydrometeorol. 2021, 22, 2533–2545. [CrossRef]

9. Attar, A. Global environment: Water, air and geochemical cycles. Int. J. Environ. Stud. 2013, 70, 155–156. [CrossRef]
10. Pokam, W.M.; Djiotang, L.A.T.; Mkankam, F.K. Atmospheric water vapor transport and recycling in Equatorial Central Africa

through NCEP/NCAR reanalysis data. Clim. Dyn. 2014, 38, 553. [CrossRef]
11. Trzeciak, T.M.; Garcia Carreras, L.; Marsham, J.H. Cross-Saharan transport of water vapor via recycled cold pool outflows from

moist convection. Geophys. Res. Lett. 2017, 44, 1554–1563. [CrossRef]
12. An, W.L.; Hou, S.G.; Zhang, Q.; Wu, W.B.; Xu, S.Y.; Pang, H.X.; Wang, Y.T.; Liu, Y.P. Enhanced recent local moisture recycling on

the northwestern Tibetan Plateau deduced from ice core deuterium excess records. J. Geophys. Res. Atmos. 2017, 122, 12541–12556.
[CrossRef]

13. Gat, J.R.; Bowser, C.J.; Kendall, C. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate
based on stable isotope data. Geophys. Res. Lett. 1994, 21, 557–560. [CrossRef]

14. Brock, B.E.; Yi, Y.; Clogg-Wright, K.P.; Edwards, T.W.D.; Wolfe, B.B. Multi-year landscape-scale assessment of lakewater balances
in the Slave River Delta, NWT, using water isotope tracers. J. Hydrol. 2009, 379, 81–91. [CrossRef]

15. Gat, J.R.; Matsui, E. Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. J. Geophys. Res.
1991, 96, 13179. [CrossRef]

16. Xu, Y.; Kang, S.; Zhang, Y.; Zhang, Y. A method for estimating the contribution of evaporative vapor from Nam Co to local
atmospheric vapor based on stable isotopes of water bodies. China Sci. Bull. 2011, 56, 1511–1517. [CrossRef]

17. Vallet-Coulomb, C.; Gasse, F.; Sonzogni, C. Seasonal evolution of the isotopic composition of atmospheric water vapour above a
tropical lake: Deuterium excess and implication for water recycling. Geochim. Et Cosmochim. Acta 2008, 72, 4661–4674. [CrossRef]

18. Yamanaka, T.; Ma, W. Runoff prediction in a poorly gauged basin using isotope-calibrated models. J. Hydrol. 2017, 544, 567–574.
[CrossRef]

19. Peng, T.R.; Liu, K.K.; Wang, C.H.; Chuang, K.H. A water isotope approach to assessing moisture recycling in the island-based
precipitation of Taiwan: A case study in the western Pacific. Water Resour. Res. 2011, 47, 2168–2174. [CrossRef]

20. Li, Z.X.; Feng, Q.; Wang, Q.J.; Kong, Y.L.; Cheng, A.F.; Yong, S.; Li, Y.G.; Li, J.G.; Guo, X.Y. Contributions of local terrestrial
evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China. Glob.
Planet. Chang. 2016, 146, 140–151.

21. Kong, Y.L.; Pang, Z.H.; Froehlich, K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium
excess. Tellus B Chem. Phys. Meteorol. 2013, 65, 19251. [CrossRef]

22. Wang, S.J.; Zhang, M.J.; Che, Y.J.; Chen, F.L.; Qiang, F. Contribution of recycled moisture to precipitation in oases of arid central
Asia: A stable isotope approach. Water Resour. Res. 2016, 52, 3246–3257. [CrossRef]

23. Gao, J.; Masson-Delmotte, V.; Yao, T.D.; Tian, L.D.; Risi, C.; Hoffmann, G. Precipitation Water Stable Isotopes in the South Tibetan
Plateau: Observations and Modeling. J. Clim. 2011, 24, 3161–3178. [CrossRef]

24. Deng, H.J.; Chen, Y.N.; Wang, H.J.; Zhang, S.H. Climate change with elevation and its potential impact on water resources in the
Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2015, 135, 28–37. [CrossRef]

25. Yao, T.C.; Zhang, X.P.; Guan, H.D.; Zhou, H.; Hua, M.Q.; Wang, X.J. Climatic and environmental controls on stable isotopes in
atmospheric water vapor near the surface observed in Changsha, China. Atmos. Environ. 2018, 189, 252–263. [CrossRef]

26. Sugimoto, A.; Numaguti, A.; Tsujimura, M.; Fujita, K.; Nakawo, M. Water vapor transport to the Tibetan Plateau revealed with
stable isotopes of precipitation: A new hypothesis for unusual isotope signals. In Proceedings of the AGU Fall Meeting Abstracts,
San Francisco, CA, USA, 8–12 December 2003.

27. Sun, Z.G.; Zhu, G.F.; Zhang, Z.X.; Xu, Y.X.; Yong, L.L.; Wan, Q.Z.; Ma, H.Y.; Sang, L.Y.; Liu, Y.W. Identifying surface water
evaporation loss of inland river basin based on evaporation enrichment model. Hydrol. Process. 2021, 35, e14093. [CrossRef]

28. Brubaker, K.L.; Entekhabi, D.; Eagleson, P.S. Estimation of Continental Precipitation Recycling. J. Clim. 1993, 6, 1077–1089.
[CrossRef]

29. Stechmann, S.N.; Hottovy, S. A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos.
Sci. 2015, 72, 4721–4738.

30. Friedman, I. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry; United States
Government Printing Office: Washington, DC, USA, 1977; Volume 440kk, pp. KK1–KK2.

31. Criss, R.E. Principles of Stable Isotope Distribution; Oxford University Press: Oxford, MS, USA, 1999.
32. Hu, W.F.; Yao, J.Q.; He, Q.; Yang, Q. Spatial and Temporal Variability of Water Vapor Content during 1961-2011 in Tianshan

Mountains, China. J. Mt. Sci. 2015, 12, 571–581. [CrossRef]
33. Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. Comparison of Modeled and Observed Environmental Influences on the Stable

Oxygen and Hydrogen Isotope Composition of Leaf Water inPhaseolus vulgaris. Plant Physiol. 1991, 96, 588–596. [CrossRef]
[PubMed]

84



Sustainability 2021, 13, 12943

34. Ali, M.A.; Islam, M.M.; Islam, M.N.; Almazroui, M. Investigations of MODIS AOD and cloud properties with CERES sensor
based net cloud radiative effect and a NOAA HYSPLIT Model over Bangladesh for the period 2001–2016. Atmos. Res. 2019, 215,
268–283. [CrossRef]

35. Bagheri, R.; Bagheri, F.; Karami, G.H.; Jafari, H. Chemo-isotopes (18O & 2H) signatures and HYSPLIT model application: Clues to
the atmospheric moisture and air mass origins. Atmos. Environ. 2019, 215, 116892.

36. Connan, O.; Smith, K.; Organo, C.; Solier, L.; Maro, D.; Hebert, D. Comparison of rimpuff, hysplit, adms atmospheric dispersion
model outputs, using emergency response procedures, with 85kr measurements made in the vicinity of nuclear reprocessing
plant. J. Environ. Radioact. 2013, 124, 266–277. [CrossRef]

37. Michelsen, N.; Reshid, M.; Siebert, C.; Schulz, S.; Knöller, K.; Weise, S.M.; Rausch, R.; Al-Saud, M.; Schüth, C. Isotopic and
chemical composition of precipitation in Riyadh, Saudi Arabia. Chem. Geol. 2015, 413, 51–62. [CrossRef]

38. Wu, H.; Li, X.Y.; Jiang, Z.; Chen, H.; Zhang, C.; Xiao, X. Contrasting water use pattern of introduced and native plants in an alpine
desert ecosystem, Northeast Qinghai–Tibet Plateau, China. Sci. Total Environ. 2016, 542, 182–191. [CrossRef] [PubMed]

39. Liu, W.R.; Peng, X.H.; Sheng, Y.X.; Chen, Y.M. Determination of Hydrogen and Oxygen Isotopes in Liquid Water by Laser Isotope
Analyzer and Spectral Pollution Correction. J. Ecol. 2013, 32, 1181–1186.

40. Meng, X.J.; Wen, X.F.; Zhang, X.Y.; Han, J.Y.; Sun, X.M.; Li, X.B. The effect of organic matter on the determination of δ18O and δD
in plant leaf and stem water by infrared spectroscopy. Chin. J. Eco-Agric. 2012, 20, 1359–1365. [CrossRef]

41. Van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water
Resour. Res. 2010, 46, 1–12. [CrossRef]

42. Su, T.; Lu, Z.Y.; Zhou, J.; Hou, W.; Tu, G. Spatial distribution and seasonal variation characteristics of global atmospheric moisture
recycling. Acta Physica Sinica Chin. Ed. 2014, 63, 099201-972.

43. Yamanaka, T.; Shimizu, R. Spatial distribution of deuterium in atmospheric water vapor: Diagnosing sources and the mixing of
atmospheric moisture. Geochim. Cosmochim. Acta 2007, 71, 3162–3169. [CrossRef]

44. Aizen, V.B. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records. Ann. Glaciol.
2006, 43, 49–60. [CrossRef]

45. Tian, L.D.; Yao, T.D. High-resolution climatic and environmental records from the Tibetan Plateau ice cores. Chin. Sci. Bull. 2016,
61, 926–937. [CrossRef]

46. Conroy, J.L.; Noone, D.; Cobb, K.M.; Moerman, J.W.; Konecky, B.L. Paired stable isotopologues in precipitation and vapor: A case
study of the amount effect within western tropical Pacific storms. J. Geophys. Res. Atmos. 2016, 121, 3290–3303. [CrossRef]

85





water

Article

Case Study of Urban Flood Inundation—Impact of Temporal
Variability in Rainfall Events

Ting Li 1, Gyuwon Lee 2 and Gwangseob Kim 1,*

Citation: Li, T.; Lee, G.; Kim, G. Case

Study of Urban Flood

Inundation—Impact of Temporal

Variability in Rainfall Events. Water

2021, 13, 3438. https://doi.org/

10.3390/w13233438

Academic Editor: Thomas

M. Missimer

Received: 3 November 2021

Accepted: 1 December 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University,
80 Daehak-ro, Buk-gu, Daegu 41566, Korea; lt0751@knu.ac.kr

2 Center for Atmospheric REmote Sensing (CARE), Department of Astronomy and Atmospheric Sciences,
Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; gyuwon@knu.ac.kr

* Correspondence: kimgs@knu.ac.kr; Tel.: +82-053-950-5614

Abstract: This study aimed to calculate and analyze total overflows that accumulate in urban man-
holes in the target drainage basin of Samsung-dong, Seoul in heavy rainfall events with different
temporal distribution characteristics, using the EPA’s Storm Water Management Model (EPA-SWMM
model). Inundation behaviors were analyzed using the two-dimensional flood model (FLO-2D). The
extreme rainfall events were produced using different exceedance probability Huff distributions
for different durations and return periods, such as from 1 to 3 h and 10 years, 50 years, 80 years,
100 years, respectively. The inundation model was validated using the actual flood observations on
21 September 2010 in the Samsung-dong drainage basin. The total overflow amount showed consid-
erable differences according to the different time distribution characteristics, such as the temporal
location of the storm peak and the concentration level of the storm. Furthermore, the inundation
behaviors were also related to the temporal characteristics of storms. The results illustrated that
the consideration of the temporal distribution characteristics of extreme rainfall events is essential
for an accurate understanding of the rainfall–runoff response and inundation behavior in urban
drainage basins.

Keywords: extreme rainfall event; huff method; optimum inundation map; EPA-SWMM; FLO-2D;
Samsung-dong

1. Introduction

The issue of urban flood inundation has become a key global concern in recent years
because of the regional impacts of climate change, which cause more frequent short-
duration extreme storms [1]. The negative impacts of urban floods include the failure
of city infrastructure, economic loss, the risk to life, etc. Inundation in urban areas is
associated not only with the increase in the intensity and frequency of extreme rainfall,
but also with impermeable surfaces and limited discharge capacity during heavy rainfall,
as well as inappropriate artificial interventions that affect the intensity and magnitude of
floods [2–4]. Analyses of the temporal characteristics of rainfall in Korea show a gradual
increase in the intensity and frequency of extreme rainfall events. Therefore, the failure of
the stormwater drainage system has become more frequent and severe. The metropolitan
area of Seoul is vulnerable to urban flooding due to its high precipitation compared to
other regions of Korea [5,6]. Recently, the potential for flood-resilient and sustainable
redevelopment of Seoul was analyzed to propose city renovation strategies for resistance
to flood disasters [7]. In Japan, urban flood vulnerability was quantified by analyzing the
topographic characteristics of a fluvial area of the Kaki River in Nagaoka city to evaluate
evacuation urgency during urban flooding [8]. Various studies have been conducted to
accurately express the temporal distribution characteristics of input rainfall data used for
urban flood simulation and analysis, including the Keifer and Chu method [9], the method
suggested by Yen and Chow [10], the SCS curve method [11], the Huff method [12], etc.
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For example, the SCS curve method has been used in urban areas to predict the surface
runoff from impervious areas and sediment yield in downstream areas [13]. In South Korea,
there have been many studies on the distribution of Huff rainfall time; the Huff rainfall
distribution is constructed so that the peak of the heavy rain can be placed in the desired
time section. This tends to represent the time distribution of heavy rain relatively well;
therefore, the Huff method was chosen in this study as the time distribution of rainfall was
suitable for the applied rainfall–runoff model [14].

Many studies have been conducted on the assessment and management of urban
flood inundation, using the Huff method to represent the time distribution of heavy
storms. Yang et al. [15] modeled floods by coupling the 1D stormwater management
model (SWMM) and the 2D flood inundation model (ECNU Flood-Urban) to analyze
rainfall–runoff processes in an urban environment in the central business district of East
Nanjing Road in downtown Shanghai. Bezak et al. [16] investigated the impact of the
different design rainfall events of Huff curves on the combined 1D/2D hydraulic modeling
results. Lee [17] proposed a support plan for the Huff rainfall distribution, impact-based,
urban flooding forecast. The SWMM or FLO-2D models can be used to predict floods and
pipeline drainage, or prepare flood hazard maps. Erena et al. [18] proposed local flood
management strategies for 232 households located in flood-prone areas of Dire Dawa city,
Ethiopia. Flood hazard mapping was used for different storm events. Luo et al. [19] used a
calibrated flood inundation model to assess the influence of four extreme rainfall events
on water depth and inundation area in the Hanoi Central Area, Vietnam. The research
only focused on overland flooding caused by extreme rainfall, while little attention was
paid to floods caused by failures of the drainage system. Vojtek et al. [20] investigated
the sensitivity of flood areas, flood volume associated with model input parameters, and
showed the importance of proper input parameter estimation in the flood simulation.
GebreEgziabher et al. [21] coupled the one-dimensional SWMM model with the new flood
inundation and recession model (FIRM) to model urban flood inundation and recession
and the impact of manhole characteristics such as spatial extent and depth.

Urban floods are highly associated not only with future rainfall quantities, but also
the time distribution characteristics of heavy storms, the antecedent rainfall conditions,
the capacity of drainage networks, etc. Among all of these factors, the influence of the
temporal patterns of extreme rainfall on the manhole overflow is one of the most important
factors. Previous research has demonstrated that the impacts of the temporal characteristics
of potential extreme rainfall events on the amount of urban flooding should be considered
to enhance urban flood risk management systems. Nevertheless, previous studies have not
thoroughly explored the impacts of the time distribution characteristics of extreme rainfall
patterns on urban floods.

The temporal concentration level of storms and the storm peak occurrence quartile
are the main time distribution characteristics of heavy storms associated with manhole
overflow. In this study, the urban flood inundation impacts caused by the temporal
concentration level of storms and the storm peak occurrence quartile were analyzed for
a target drainage basin in Seoul, Korea. The total manhole overflow in the target urban
drainage basin was calculated using the EPA-SWMM model for different rainfall scenarios.
Rainfall scenarios reflecting the temporal characteristics of rainfall events were constructed
using the Huff method. The impacts of the temporal concentration level were analyzed
using nine different exceedance probabilities (10–90%) and the impacts of the temporal
location of storm peak were analyzed using four different quartiles (1–4th quartile) for
three different storm durations (1–3 h) and four different return periods (10, 50, 80, and
100-years). The two-dimensional inundation analysis of the overflow in each manhole was
conducted using the FLO-2D model.
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2. Materials and Methods

2.1. Study Area and Input Rainfall Data

The Samsung-dong area is divided into Samsung 1-dong and Samsung 2-dong, and is
located in the Seoul metropolitan area, which contains 239 drainage basins. Samsung-dong
has a population of 44,031, with an area of 3.18 km2, and there are 342 manholes and
359 conduit links from the urban drainage system in the study area. Rainwater from both
areas is pumped to the Tancheon river (Figure 1). The ratio of the impervious area in
Seoul is as high as 54.4% according to the management report of the National Institute
of Environmental Sciences of Korea, 2014. Samsung-dong, which is a part of Gangnam-
gu, Seoul, consists of relatively low land and has a complex drainage system. Figure 2
showed the actual rainfall on 21 September 2010 which was used for the verification of
the EPA-SWMM and FLO-2D model and extreme rainfall scenario using the Huff time
distribution method which were used for analysis. An inundation trace map shows the
extent of flooding from rainfall on 21 September 2010 (Figure 3) [22].

 

Figure 1. Location of the study area in the Samsung-dong and flood risk zone.

For more accurate research on the impact of extreme rainfall on severe flooding
in the city, the latest precipitation data from an automated synoptic observing system
(ASOS) were obtained from the South Korea Meteorological Administration. The actual
rainfall on 21 September 2010 was investigated, and the Huff method produced data for
different duration periods of extreme rainfall; the total extreme rainfall event data included
432 different periods of extreme rainfall event data, such as 10-year, 50-year, 80-year, and
100-year periods. The Huff curve characterizes the temporal distribution of rainfall depth
over an area and is widely utilized as an input to rainfall–runoff models for drainage
design [23,24]. Most urban floods occur within 6 h, and the duration of extreme rainfall
is divided into 1-h, 2-h, and 3-h timespans [25]. Table 1 shows the total, maximum and
minimum rainfall during five extreme rainfall periods. Figure 2 shows that the actual total
rainfall was 278 mm, minimum rainfall was 1 mm and maximum rainfall was 19 mm on
21 September 2010, with representative changes over 6 h of extreme rainfall event data.
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(a) 

(b) 

Figure 2. (a) Actual rainfall sample on 21 September 2010 and (b) 6-h extreme Huff rainfall sample.

 

(a) 

 

(b) 

Figure 3. Verification of two-dimensional flood analysis results.
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Table 1. 1, 2, and 3-h total rainfall during different return periods.

Duration (Hour)
Total Rainfall by Periods (mm)

10 Years 50 Years 80 Years 100 Years

1 72.6 91.5 96.6 99.01

2 108.6 140.4 149.2 153.3

3 136.2 181.4 194.5 200.6

2.2. Hydraulic Modeling (EPA-SWMM and FLO-2D Model)

To construct the flood prediction model and calculate the runoff or overflow at each
manhole in the urban watershed, the EPA-SWMM model was used to simulate 432 different
extreme rainfall event data (1 to 3-h, in 10 min intervals) considering the high-intensity
rainfall conditions. This was obtained from the United States Environmental Protection
Agency and was useful for checking the amount of urban overflow [26]. The EPA-SWMM
can calculate the total accumulative overflow in the study area. The flood volume for
each rainfall scenario was calculated and the flows in the drainage pipe network in urban
basins with drainage systems were analyzed [27]. The EPA-SWMM model performed the
initial calculations of the flow rate and depth of the drainage pipe system, which allowed
analysis of the backflow and overflow amount in the pipe based on the various rainfall
events in the study area [28]. The Saint–Venant equations (Equations (1) and (2)) were used
in this calculation.

Q = W × 1
n
(d − dp)

5
3 × S

1
2 (1)

∂Q
∂t

+ gAS f − 2V
∂A
∂t

− V2 ∂A
∂x

+ gA
∂H
∂x

= 0 (2)

where Q is runoff (m3/s), W is the sub-watershed width (m), n is the Manning’s roughness
coefficient, d is the depth (m), dp is the ground reservoir lost depth (m), S is the sub-
watershed slope, A is the surface flow cross-sectional area of sub-watershed (m2), and V is
the surface flow velocity (m/s). The EPA-SWMM model was used for the one-dimensional
simulation of urban flood overflow analysis. To determine the adequacy of the one-
dimensional urban runoff analysis results, the total accumulative overflow at each manhole
point underwent a two-dimensional inundation analysis using a two-dimensional flood
analysis program, the FLO-2D model [29]. The results were compared with those for
actual flood areas because only the actual flood map can be used to verify the EPA-SWMM-
simulated results at present, and data on the water level and discharge in the conduit were
absent. Figure 3 shows the verification of the two-dimensional flood analysis results used
for rainfall data and the flood mask map from 21 September 2010 in Samsung-dong. The
total rainfall was 278 mm over 6 h in 10 min intervals.

FLO-2D is a grid-based, two-dimensional hydraulic model approved by the Fed-
eral Emergency Management Agency (FEMA), and developed by O’Brien in 2003. It is
a two-dimensional, finite-difference model used to simulate flood hazards and urban
floodplains [30]. In the whole digital elevation model simulated domain, the construction
of two-dimensional grids needs to be completed; the exact location of a manhole in the
two-dimensional 5 m2 grid system was found by using the spatial join tool of the ArcGIS
model and flood routing and two-dimensional inundation analysis were performed using
the FLO-2D model. Interactive flood routing between channel, street, and floodplain flow
was performed using a 5 m2 grid system to properly reflect the influence of buildings
and roads on the flood waves, and to describe the complex floodplain topography. The
overflows of each manhole were calculated from EPA-SWMM, and these were entered
into the input file of FLO-2D, which helped construct the two-dimensional grids. Af-
ter completing the two-dimensional grids, the model-governing equations included the
continuity equation and the two-dimensional equations of motion. The one continuity
equation (Equation (3)) and two momentum equations were applied in the x and y direc-
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tions (Equations (4) and (5), respectively) to carry out a two-dimensional analysis of urban
flood inundation changes [31,32]. According to the results compared with those for actual
flood areas, the synthetic roughness coefficient calibrated was 0.15.

∂d
∂t

+
∂qx

∂x
+

∂qy

∂y
= e (3)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= g
(

Sox − S f x − ∂d
∂x

)
(4)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= g
(

Soy − S f y − ∂d
∂y

)
(5)

where d is depth at a surface; qx and qy are the flows per unit width in the x and y directions,
respectively; u and v indicate average velocities in the x and y directions, respectively; Sox
and Soy are the bed slope x and y directions, respectively; Sfx and Sfy are the friction slopes
in the x and y directions, respectively. The variable e is the generation or extinction section
per unit area.

Figure 4 illustrates the summarized procedure of the EPA-SWMM and FLO-2D sim-
ulation. To effectively calculate and analyze total overflows that accumulated in urban
manholes with different temporal distribution characteristics, heavy rainfall scenarios were
designed using the Huff rainfall distribution method and the 10 min intervals rainfall
data from the Seoul site of the Automated Synoptic Observation System (ASOS) of the
Korea Meteorological Administration. These rainfall scenario data were used as the input
for the EPA-SWMM to calculate the total overflow amount of each manhole in the target
drainage basin of Samsung-dong, Seoul, Korea. The EPA-SWMM model was suitable for
the one-dimensional simulation of urban flood overflow analysis. The adequacy of the
one-dimensional urban runoff analysis results was validated for the actual urban flood
observation by using a two-dimensional flood analysis program, the FLO-2D model. To
do the two-dimensional flood simulation, a digital elevation model (DEM) (Figure 5) with
a 5-m cell size was composed of the target area, which was produced by using the add
building tool in the ArcGIS model.

 

Figure 4. Flowchart of study methodology.
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Figure 5. Digital elevation model (DEM) for the target area.

In addition, the exact location of each manhole was found by using the spatial join tool
in the ArcGIS model in the whole 5-m cell size digital elevation model simulated domain,
which was needed to complete the construction of two-dimensional grids (Figure 6). After
completing the two-dimensional grids, the total overflows of each manhole data and
the exact location of each manhole were used as the input data for the FLO-2D model.
Flood routing and two-dimensional inundation analysis were performed by interactive
flood routing between channel, street, and floodplain flow to properly reflect the influence
of buildings, and describe the complex floodplain topography. Also, the mapper pro.
2009 tool in the FLO-2D model was used to generate maximum flow depth in the cell
map and to generate the optimal inundation map. The optimal inundation maps were
generated according to the total overflows, reflecting different temporal rainfall distribution
characteristics.

Figure 6. The exact location of each manhole was adjusted by the ArcGIS model.

3. Results and Discussion

3.1. EPA-SWMM Model Simulation Results for Accumulated Manholes Overflows

The accumulated manhole overflow from 342 manholes in the study area was simu-
lated using the EPA-SWMM model, and a model input rainfall database was established
using diverse extreme rainfall events. The extreme rainfall event database periods were
10-years, 50-years, 80-years, and 100-years. The total rainfall is shown in Table 1, over 1-h,
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2-h, and 3-h periods (in 10 min intervals). Table 2 shows the total EPA-SWMM-model-
simulated overflow results for a duration of one hour over different periods in the same
quartiles. The extreme rainfall data produced by the Huff method were used.

Table 2. The EPA-SWMM-model-simulated 1-h total overflow results.

Huff
Quartile

Period
(Year)

Total Overflow According to Different Exceedance Probabilities (m3) Average

(m3)
Minimum

(m3)
Maximum

(m3)10% 20% 30% 40% 50% 60% 70% 80% 90%

1st

10 110.2 70.2 74.4 72.7 67.1 58.9 46.4 32.0 22.8 61.6 22.8 110.2
50 395.0 206.3 133.3 118.8 122.8 129.7 118.3 117.5 114.3 161.8 114.3 395.0
80 489.7 222.6 167.8 137.0 149.3 142.4 141.4 136.8 132.4 191.0 132.4 489.7
100 536.0 263.9 180.1 149.8 153.9 153.1 149.3 146.6 156.8 209.9 146.6 536.0

2nd

10 102.7 98.9 101.3 101.0 84.0 85.1 82.0 77.9 74.3 89.7 74.3 102.7
50 189.9 187.9 158.0 156.8 157.9 140.1 148.6 201.0 156.1 166.3 140.1 201.0
80 236.4 233.5 182.5 173.6 173.0 160.0 169.4 172.3 183.7 187.2 160.0 236.4
100 290.4 225.9 192.8 236.2 186.4 186.0 179.5 184.0 201.2 209.2 179.5 290.4

3rd

10 71.4 84.0 89.4 85.9 93.6 95.8 93.0 108.0 115.4 92.9 71.4 115.4
50 159.6 168.6 165.8 162.7 159.5 170.7 176.8 200.7 205.8 174.5 159.5 205.8
80 190.2 192.5 185.2 184.8 185.0 202.8 215.2 217.3 268.1 204.6 184.8 268.1
100 207.5 197.4 196.5 195.7 206.7 217.3 232.0 241.8 296.7 221.3 195.7 296.7

4th

10 43.4 54.2 65.5 77.5 88.3 93.8 97.1 111.0 133.2 84.9 43.4 133.2
50 113.7 122.2 119.7 132.2 134.2 153.5 179.1 263.5 486.8 189.4 113.7 486.8
80 139.2 149.1 153.1 154.8 167.7 189.7 241.1 371.7 639.1 245.1 139.2 639.1
100 153.0 152.2 156.8 166.0 184.1 203.0 368.3 447.4 718.2 283.2 152.2 718.2

In a period of 10 years, the Huff method’s simulated results for the 1st quartile
showed a minimum total overflow of 22.8 m3, a maximum total overflow of 110.2 m3,
and an average total overflow of 61.6 m3. In a period of 50 years, the Huff method 1st
quartile simulated results showed minimum, maximum and average total overflows with
significant increases of 91.5 to 284.8 m3 relative to the 10-year simulated results. However,
in a period of 80 years, the Huff method 1st quartile simulated results showed that the
minimum, maximum and average total overflows increased by 18.1 to 94.7 m3 relative
to the 50-year simulated results. In a period of 100 years, the Huff method 1st quartile
simulated results showed that the minimum, maximum, and average total overflows were
increased by 14.2 to 46.3 m3 relative to the 80-year simulated results. Additionally, in a
period of 10 years, the Huff method 2nd quartile simulated results showed minimum,
maximum and average total overflows of 74.3 m3, 102.7 m3, and 89.7 m3, respectively. In
a period of 50 years, the Huff method 2nd quartile simulated results showed minimum,
maximum and average total overflows with significant increases of 65.8 to 98.3 m3 relative
to the 10-year simulated results. In a period of 80 years, the Huff method 2nd quartile
simulated results showed that minimum, maximum and average total overflows were
increased by 19.9 to 35.4 m3 relative to the 50-year simulated results. In a period of 100 years,
the Huff method 2nd quartile simulated results showed that minimum, maximum and
average total overflows were increased by 19.5 to 54.0 m3 relative to the 80-year simulated
results. Additionally, in a period of 10 years, the Huff method 3rd quartile simulated
results showed minimum, maximum and average total overflows of 71.4 m3, 115.4 m3,
and 92.9 m3, respectively. In a period of 50 years, the Huff method 3rd quartile simulated
results showed minimum, maximum and average total overflows with significant increases
ranging from 81.5 to 90.4 m3 relative to the 10-year simulated results. However, in a period
of 80 years, the Huff method 3rd quartile simulated results showed that the minimum,
maximum and average total overflows increased by 25.3 to 62.3 m3 relative to the 50-year
simulated results. In a period of 100 years, the Huff method 3rd quartile simulated results
showed the minimum, maximum and average total overflows to be increased by 10.9
to 28.6 m3 relative to the 80-year simulated results. Finally, in a period of 10 years, the
Huff method 4th quartile simulated results showed minimum, maximum and average
total overflows of 43.4 m3, 133.2 m3, and 84.9 m3, respectively. In a period of 50 years,
the Huff method 4th quartile simulated results showed increases in minimum, maximum
and average total overflow of 70.3 to 353.6 m3 relative to the 10-year simulated results. In
a period of 80 years, the Huff method 4th quartile simulated results showed minimum,
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maximum, and average total overflows that were increased by 25.5 to 152.3 m3 relative
to the 50-year simulated results. In a period of 100 years, the Huff method 4th quartile
simulated results showed minimum, maximum and average total overflows to be increased
by 13.0 to 79.1 m3 relative to the 80-year simulated results.

Table 3 shows the EPA-SWMM-model-simulated overflow results for a duration of
two hours. Similarly, in a period of 10 years, the Huff method 1st quartile simulated
results showed minimum, maximum and average total overflows of 28.1 m3, 203.5 m3,
and 101.1 m3, respectively. In a period of 50 years, the Huff method 1st quartile simulated
results showed minimum, maximum and average total overflows with significant increases
of 128.1 to 470.4 m3. In a period of 80 years, the Huff method 1st quartile simulated
results showed minimum, maximum and average total overflows were increased by 76.7
to 247.7 m3. In a 100-year period, the Huff method 1st quartile simulated results showed
the minimum, maximum, and average total overflow was increased by 42.6 to 129.0 m3. In
a period of 10 years, the Huff method 2nd quartile simulated results showed minimum,
maximum and average total overflows of 93.8 m3, 182.1 m3, and 141.9 m3 respectively. In
a period of 50 years, the Huff method 2nd quartile simulated results showed minimum,
maximum, and average total overflow with significant increases of 228.9 to 296.1 m3. In
a period of 80 years, the Huff method 2nd quartile simulated results showed that the
minimum, maximum and average total overflows increased by 96.0 to 177.8 m3. In a
period of 100 years, the Huff method 2nd quartile simulated results showed that minimum,
maximum and average total overflows increased by 40.8 to 83.1 m3. In a period of 10 years,
the Huff method 3rd quartile simulated results showed minimum, maximum, and average
total overflows of 121.2 m3, 201.9 m3, and 159.5 m3, respectively. In a period of 50 years,
the Huff method 3rd quartile simulated results showed minimum, maximum and average
total overflows with significant increases of 250.1 to 326.2 m3. In a period of 80 years, the
Huff method 3rd quartile simulated results showed minimum, maximum and average
total overflows to be increased by 104.3 to 124.6 m3. In a period of 100 years, the Huff
method 3rd quartile simulated results showed minimum, maximum and average total
overflows were increased by 46.01 to 74.6 m3. In a period of 10 years, the Huff method
4th quartile simulated results showed minimum, maximum and average total overflows
of 74.3 m3, 361.5 m3, and 177.0 m3, respectively. In a period of 50 years, the Huff method
4th quartile simulated results showed minimum, maximum and average total overflows
with significant increases of 181.6 to 624.2 m3. In a period of 80 years, the Huff method
4th quartile simulated results showed that the minimum, maximum and average total
overflows increased by 90.5 to 281.2 m3. In a period of 100 years, the Huff method
4th quartile simulated results showed that the minimum, maximum and average total
overflows increased by 47.7 to 127.3 m3.

Table 3. The EPA-SWMM-model-simulated duration 2-h total overflow results.

Huff
Quartile

Period
(Year)

Total Overflow According to Different Exceedance Probabilities (m3) Average

(m3)
Minimum

(m3)
Maximum

(m3)10% 20% 30% 40% 50% 60% 70% 80% 90%

1st

10 203.5 166.1 142.6 110.2 93.8 68.9 55.4 41.5 28.1 101.1 28.1 203.5
50 673.9 370.4 331.8 287.8 256.5 221.0 185.2 216.0 156.2 299.9 156.2 673.9
80 921.6 489.6 403.7 386.8 351.8 322.7 288.1 232.9 237.0 403.8 232.9 921.6
100 1050.6 549.6 446.0 426.9 390.0 374.8 346.6 303.6 275.5 462.6 275.5 1050.6

2nd

10 182.1 175.5 146.9 161.2 157.1 129.3 117.8 113.6 93.8 141.9 93.8 182.1
50 478.2 400.1 378.1 379.0 355.4 346.9 324.3 323.4 352.0 370.8 323.4 478.2
80 656.0 520.9 463.3 461.0 466.4 432.5 419.4 421.0 442.4 475.9 419.4 656.0
100 739.1 574.3 510.0 509.9 504.1 472.7 462.1 460.2 488.2 524.5 460.2 739.1

3rd

10 128.2 121.2 150.8 156.8 153.7 163.3 177.9 182.0 201.9 159.5 121.2 201.9
50 374.1 371.3 384.2 402.2 490.6 436.3 451.8 463.9 528.1 433.6 371.3 528.1
80 507.2 475.6 482.6 499.1 531.9 630.2 556.0 596.3 652.7 548.0 475.6 652.7
100 588.9 523.8 541.6 546.5 574.8 569.9 613.6 659.3 727.3 594.0 523.8 727.3

4th

10 74.3 99.4 121.0 148.2 165.6 178.7 212.2 231.7 361.5 177.0 74.3 361.5
50 255.9 347.8 326.3 403.9 418.6 462.8 590.5 661.9 985.7 494.8 255.9 985.7
80 346.4 383.8 427.5 507.1 537.9 601.4 785.2 874.4 1266.9 636.7 346.4 1266.9
100 394.1 435.7 473.8 561.5 584.7 687.7 888.1 988.0 1394.2 712.0 394.1 1394.2
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Finally, Table 4 shows the EPA-SWMM-model-simulated results for a duration of
three hours. In a period of 10 years, the Huff method 1st quartile simulated results
showed minimum, maximum and average total overflows of 27.3 m3, 286.5 m3, and
123.5 m3, respectively. In a period of 50 years, the Huff method 1st quartile simulated
results showed minimum, maximum and average total overflows with significant increases
ranging from 271.0 to 630.8 m3. In a period of 80 years, the Huff method 1st quartile
simulated results showed that minimum, maximum and average total overflows increased
by 152.6 to 354.1 m3. In a period of 100 years, the Huff method 1st quartile simulated
results showed that minimum, maximum and average total overflows increased by 68.4 to
176.7 m3. Similarly, in a period of 10 years, the Huff method 2nd quartile simulated results
showed the minimum, maximum and average total overflows were 100.0 m3, 256.8 m3,
and 166.7 m3, respectively. In a period of 50 years, the Huff method 2nd quartile simulated
results showed minimum, maximum and average total overflows with significant increases
of 428.2 to 544.1 m3. In a period of 80 years, the Huff method 2nd quartile simulated results
showed minimum, maximum and average total overflows to be increased by 133.5 to
290.3 m3. In a period of 100 years, the Huff method 2nd quartile simulated results showed
that minimum, maximum and average total overflows were increased by 77.1 to 141.7 m3.
In a period of 10 years, the Huff method 3rd quartile simulated results showed minimum,
maximum, and average total overflows of 174.1 m3, 371.3 m3, and 231.6 m3, respectively.
In a period of 50 years, the Huff method 3rd quartile simulated results showed minimum,
maximum and average total overflows with significant increases of 426.3 to 463.1 m3. In a
period of 80 years, the Huff method 3rd quartile simulated results showed that minimum,
maximum and average total overflows increased by 193.9 to 253.3 m3. In a period of
100 years, the Huff method 3rd quartile simulated results showed minimum, maximum
and average total overflows were increased by 93.7 to 144.1 m3. In a period of 10 years,
the Huff method 4th quartile simulated results showed minimum, maximum, and average
total overflows of 119.5 m3, 459.9 m3, and 269.3 m3, respectively. In a period of 50 years, the
Huff method 4th quartile simulated results showed minimum, maximum and average total
overflows with significant increases of 349.7 to 996.7 m3. In a period of 80 years, the Huff
method 4th quartile simulated results showed that minimum, maximum and average total
overflows increased by 164.1 to 391.3 m3. In a period of 100 years, the Huff method 4th
quartile simulated results showed minimum, maximum and average total overflows were
increased by 70.1 to 179.3 m3. The simulated total overflow results for different periods
in the same quantiles showed a gradual increase in simulated overflow over the different
periods, with significant increases concentrated in a 50-year period.

Table 4. The EPA-SWMM-model-simulated total overflow results for a 3-h duration.

Huff
Quartile Period

Total Overflow According to Different Exceedance Probabilities (m3) Average

(m3)
Minimum

(m3)
Maximum

(m3)10% 20% 30% 40% 50% 60% 70% 80% 90%

1st

10 286.5 216.6 176.9 122.5 105.5 84.9 56.3 34.8 27.3 123.5 27.3 286.5
50 917.3 601.9 523.1 480.7 439.2 395.5 333.9 298.3 311.0 477.9 298.3 917.3
80 1271.4 746.8 682.7 611.1 575.8 532.4 496.7 463.5 450.9 647.9 450.9 1271.4
100 1448.1 847.9 740.9 693.1 652.0 603.8 563.9 557.1 519.3 736.2 519.3 1448.1

2nd

10 256.8 250.3 183.4 122.5 178.5 155.4 132.4 121.3 100.0 166.7 100.0 256.8
50 800.9 634.8 605.9 584.2 582.8 566.2 532.4 528.2 534.4 596.6 528.2 800.9
80 1091.2 900.6 764.5 755.4 735.5 729.3 690.0 661.7 712.9 782.3 661.7 1091.2
100 1232.9 916.5 839.6 838.3 816.1 800.2 761.0 747.0 783.3 859.4 747.0 1232.9

3rd

10 174.1 192.3 194.9 210.9 220.6 227.6 236.1 256.5 371.3 231.6 174.1 371.3
50 600.4 619.7 625.9 650.6 698.7 700.0 717.9 810.5 828.7 694.7 600.4 828.7
80 810.4 808.8 811.6 834.0 885.8 903.8 913.9 947.2 1082.0 888.6 808.8 1082.0
100 940.2 907.3 902.5 911.7 988.2 998.8 1030.1 1062.5 1226.1 996.4 902.5 1226.1

4th

10 119.5 136.5 179.7 234.7 243.4 271.6 339.3 439.5 459.9 269.3 119.5 459.9
50 469.2 503.9 563.1 691.5 729.0 876.6 966.9 984.1 1456.6 804.5 469.2 1456.6
80 633.3 671.3 725.5 900.7 944.8 1048.3 1272.5 1310.3 1847.9 1039.4 633.3 1847.9

100 703.4 752.1 815.7 1013.7 1068.9 1175.0 1423.7 1484.2 2027.2 1162.7 703.4 2027.2
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3.2. Perform of Optimum Inundation Map by FLO-2D Model

The overflow calculated by considering the simulated results for accumulated over-
flow from 342 manholes was used as the input data for the 2D hydraulic analysis program
(FLO-2D model) based on the finite-difference method, as well as generated optimum
inundation maps that can reflect maximum flood depth. According to the simulated total
overflow results, most of the simulated maximum values of total overflow in the same
year exist in different quartiles. Thus, the minimum and maximum flood occurrence maps
were generated for different quantiles in the same year (Figures 7–9), using the simulated
results of a 1-h minimum, and maximum total overflow for the 100 years from the 1st
to the 4th quartile of the Huff method. Figure 7 shows the minimum flood occurrence
map results; over the 100 years, the largest flood scale can be seen in the map of the 3rd
quartile. Similarly, Figure 8 shows that over 100 years, the largest flood scale can be found
in the map of the 4th quartile. Figure 9 shows the simulated results of 100-year 1-h rainfall
events with different exceedance probabilities (10%, 30%, 60%, 90%) of the Huff 4th quartile.
The results showed that different exceedance probabilities for Huff events also produce
different flood inundation responses. This means that the temporal concentration level of
storms has a strong influence on the inundation behaviors, even when they occur in the
same temporal peak location.

  

(a) (b) 

  

(c) (d) 

Figure 7. Sample minimum inundation maps applying 100-year, 1-h rainfall events with different
Huff quartile distributions ((a–d): 1st, 2nd, 3rd, and 4th quartile).
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(a) (b) 

  

(c) (d) 

Figure 8. Sample maximum inundation maps applying 100-year, 1-h rainfall events with different
Huff quartile distributions ((a–d): 1st, 2nd, 3rd, and 4th quartile).

The results demonstrated that the same quantity of rainfall events showed consid-
erable differences in overflow quantities with different time distribution characteristics.
The difference between overflow amount and temporal distribution showed the differ-
ent inundation behaviors. The rainfall event of the 4th quartile, with a 90% exceedance
probability according to the Huff distribution, showed the maximum manhole overflow
and widest range of inundation. The results showed that the temporal characteristics of
storms, such as the temporal location of the storm peak and concentration level should
be considered in order to generate the optimal inundation map to establish inundation
prevention measures and conduct preliminary analysis and identification of the flood risk
areas in urban drainage basins.

3.3. Discussion

Boxplots of the simulated total manhole overflow provide a visual summary of the
results of 432 different rainfall scenarios reflecting the temporal characteristics of rainfall
events such as the temporal concentration level and the temporal location of the storm
peak. The rainfall scenarios consisted of nine different exceedance probabilities (10–90%),
four different quartiles (1–4th quartile) of the Huff method, three different storm durations
(1–3 h) and four different return periods (10, 50, 80, and 100-year) (Figure 10). The difference
between the maximum and minimum total overflow with different temporal concentration
levels of the 1, 2, and 3 h 10-year return period was 28.4 to 340.4 m3 (the maximum total
overflow was 1.4 to 10.5 times larger than the minimum total overflow), the difference
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between maximum total overflow and minimum with different temporal concentration
levels of the 1, 2 and 3 h 100-year return period was 101 to 1323.8 m3 (the maximum total
overflow was 1.5 to 4.7 times the minimum total overflow), shown according to the growth
in the return period and duration, has the larger difference in overflow quantity with the
same rainfall amount, and is related to temporal concentration levels. In addition, the
difference between maximum total overflow and minimum in the 1st quartile of the 1, 2,
and 3 h 10 to 100-year return period was 87.4 to 928.8 m3 (the maximum total overflow
was 2.8 to 10.5 times larger than the minimum total overflow), whereas the difference
between maximum total overflow and minimum in the 2nd quartile of the 1, 2, and 3
h 10 to 100-year return period was 28.4 to 485.9 m3 (the maximum total overflow was
1.4 to 2.6 times larger than the minimum total overflow). Furthermore, the difference
between maximum total overflow and minimum in the 3rd quartile of the 1, 2, and 3 h
10 to 100-year return period was 44 to 323.6 m3 (the maximum total overflow was 1.4 to
1.7 times larger than the minimum total overflow). The difference between maximum total
overflow and minimum in the 4th quartile of the 1, 2, and 3 h 10 to 100-year return period
was 89.8 to 1323.8 m3 (the maximum total overflow was 3.1 to 4.9 times larger than the
minimum total overflow). The simulated total overflow results for the different quartiles in
the same period showed that most of the simulated maximum values of total overflow in
the same year exist in different quartiles. The simulated total overflow results also showed
considerable differences.

  

(a) (b) 

  

(c) (d) 

Figure 9. Sample inundation maps applying 100-year, 1-h rainfall events with different exceedance
probabilities ((a–d): 10%, 30%, 60%, 90%) of Huff 4th quartile distribution.
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(a) 

 

 

(b) 

 

 

(c) 

Figure 10. Boxplots of the EPA-SWMM-model-simulated total overflow from 1 to 3 h for a period from 10 to 100 years
((a) total overflow of 1-h rainfall, (b) total overflow of 2-h rainfall, (c) total overflow of 3-h rainfall).
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Overall, the results demonstrated that the average total overflow increases with the
increase in the quartile of the storm peak location. The maximum total overflow generally
occurred when the storm peak was located in the 4th quartile. The minimum total overflow
generally occurred when the storm peak was located in the 1st quartile. Nevertheless, the
difference between the maximum and minimum total overflow in the 1st and 4th quartile
was greater than that of the 2nd and 3rd quartile. The storm concentration level effect on
the total overflow is larger than that of the storm peak location. This means that accurate
time distribution characteristics of rainfall events are essential for a correct understanding
and response to unban flood management. Even though the results showed that the total
overflow is highly related to the storm concentration level and the temporal location of the
storm peak, there are limitations to generalizing the results since the results are generated
by a case study of an urban drainage basin. To overcome the locality issues and to enhance
the applicability, extensive further research is necessary to generalize the relationships
between the characteristics of time distribution of heavy storms and manhole overflow.

4. Conclusions

The urban flood inundation impacts associated with the temporal characteristics of
heavy storms were analyzed for a target drainage basin in Seoul, Korea. The total manhole
overflow and the inundation behavior were simulated using the EPA-SWMM and the
FLO-2D model, respectively. Rainfall scenarios reflecting the temporal characteristics of
rainfall events, such as the temporal concentration level and the temporal location of the
storm peak were created using the Huff method for nine different exceedance probabilities
(10–90%), for four different quartiles (1–4th quartile), for three different storm durations
(1–3 h) and four different return periods (10, 50, 80, and 100-years).

The simulated manhole overflow and inundation area were highly related to the
temporal characteristics of storms, not only the temporal location of the storm peak but also
the concentration level. The manhole overflow with different temporal concentration levels
of 1, 2, and 3 h 10-year return period events showed a 4.8, 7.2 and 10.5 times difference,
respectively. This means that the longer rainfall duration has the larger difference in
overflow quantity with the same rainfall amount. The overflow amount with different
temporal concentration levels of 1, 2, and 3 h 100-year return period events showed a 3.7,
3.8 and 2.8 times difference, respectively.

The manhole overflow with different temporal locations of the storm peak of 1, 2, and
3 h 10-year return period events showed a 29.7, 98.5 and 79.1%, difference, respectively.
The manhole overflow with different temporal locations of the storm peak of 1, 2, and 3 h
100-year return period events showed a 2.17, 1.92 and 1.65 times difference, respectively.
The rainfall event in the 4th quartile, with 90% exceedance in terms of Huff distribution
probability, showed the maximum manhole overflow and widest inundation range. The
results also illustrated that the temporal concentration level is more effective in determining
the manhole overflow amount than the temporal location of the storm peak.

The results illustrate that despite the same rainfall quantity, there is a huge difference
in the manhole overflow amount and the inundation area according to the difference in the
time distribution characteristics. Therefore, a consideration of the temporal distribution
characteristics of extreme rainfall events is essential for an accurate understanding of
the rainfall–runoff response and the inundation behavior in urban areas. The results
also show the possibility of establishing appropriate inundation prevention measures in
urban drainage basins when rainfall forecasts including not only quantity but also time
distribution characteristics are available.
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Abstract: In recent years, climate change has been widely discussed around the world. The Inter-
governmental Panel on Climate Change (IPCC) published the Sixth Assessment Report (AR6) in
2021, which stated that with the intensification of global warming, heavy rainfalls are becoming
more severe and frequent. Economic development in recent years has also caused the proportion
of impervious areas in urban regions to increase with the advancement of urbanization. When
the two aforementioned factors are coupled together, the result is faster surface runoff speeds and
reduced infiltration rates, which in turn result in worse flooding. Thus, water disaster mitigation is
becoming a topic of great importance to developed and developing countries. This study examined
five Nature-based Solutions (NbS) cases (A, B C, D, E) for the Nangang river in Taiwan. Case A is to
design levees with a 100-year return period flood design standard. Under steady flow conditions,
floods can be smoothly discharged downstream without any significant inundation in most situations.
Case B and C used gabions with a 10-year return period flood design standard and discontinuous
levees with a 25-year return period flood design standard, respectively. Though neither case is as
effective in flood mitigation, both cases B and C can still reduce inundation from the flooding disaster
relatively well. Case D is to dredge local areas of the main channel, but the steady flow simulation
showed little flood mitigation effect. Case E is the implementation of “Room for the River”, and
employs main channel dredging and floodplain land grading to increase flood conveyance capacity.
Case E provides good flood mitigation.

Keywords: nature-based solution; physiographic drainage-inundation model; flood mitigation

1. Introduction

The EU has actively promoted the use of Nature-based Solutions (NbS) to respond
to disasters with the hope that NbS can be as effective as traditional engineering methods
in preventing disasters while providing benefits for the ecological environment. NbS is
a concept proposed by the International Union for Conservation of Nature (IUCN) and
the World Bank in 2008 [1], and aims to respond to social challenges such as climate
change, food and water safety, and public health by adopting nature-based methods to
achieve resource sustainability and conduct effective disaster risk management measures.
It also aims to provide other benefits, such as promoting human welfare and sustaining
ecological diversity [2]. The European Commission (EC) defines NbS as actions inspired
by, supported by, or copied from nature that aim to improve current or provide better
methods for dealing with environmental, social, and economic challenges [3]. The United

Water 2021, 13, 3451. https://doi.org/10.3390/w13233451 https://www.mdpi.com/journal/water
105



Water 2021, 13, 3451

Nations “World Water Assessment Programme” (WWAP) defines NbS as nature-inspired
or mimicking actions that improve and contribute to water resource management [4].
In short, NbS refers to natural solutions and methods developed in response to various
social or disaster challenges to achieve goals such as resource sustainability, effective
disaster risk management, or disaster prevention and mitigation while providing social
and environmental benefits simultaneously.

An ecosystem that is 100% natural may still not qualify as a NbS. To determine whether
it is an NbS, it is necessary to consider whether the system can use natural processes
to achieve water-related purposes [3], such as flood mitigation and water reservation.
According to the EC’s definition, NbS must also be able to provide added values when
addressing the social, environmental, or economic challenge that is the main objective [4].
The IUCN pointed out that any solution must be an integrated concept for addressing one
or more social challenges to be called NbS, and the solution must be able to maintain or
promote biodiversity and human welfare [2].

The NbS of flood mitigation can be divided into small and large-scale solutions, where
the small-scale solution refers to solutions for urban or local areas, and large scale refers to
those for suburbs, river basins, or regional areas. The concept and facilities of small-scale
NbS are like those of low-impact development; in fact, most related research, including
those on facilities such as green roofs, rainwater harvesting systems, permeable pavements,
bio-retentions, and rain gardens [5–7], were called as such in the past. Past studies have
confirmed that small-scale NbS have significant effects on urban disaster reduction during
small rainfall (2–5-year return period rainfall), and permeable pavement is one of the
most effective devices of small-scale NbS [8]. However, in extreme rainfall events (such as
50-year or 100-year return period rainfall), the effectiveness of the permeable pavements is
very limited [5]. The commonly applied large-scale NbS include wetland restoration, river
restoration, flood detention ponds, forest restoration, and “Room for the River” [9–11].
Though large-scale NbS is similar to traditional engineering methods, large-scale NbS not
only achieves disaster reduction by restoring the original appearance of the landscape or
using natural materials, but increases biodiversity, improves environmental resilience, or
provides added value such as an amenity-oriented environment to the general public. As a
result, this study believes that grey measures combined with both small and large-scale
NBS should be the future trend [12,13].

The literature to date shows that various social challenges can be addressed through
NbS. Reducing flood risk [14], reducing surface runoff [13], reducing exposure to soil
erosion and landslides [15], and limiting coastal erosion [16] are a few examples of such
challenges. Such benefits help in reaching sustainable water management.

The percentage of Taiwan’s population that is exposed to more than three types of
natural disasters is as high as 73%, ranking first in the world [17]. With most of the
population under such risks, disaster prevention, mitigation, and disaster recovery are
considered to be some of the most important issues in need of addressing. In the past,
Taiwan responded to floods with traditional engineering methods such as drainage systems
planning and levee building. With the rapid development of cities resulting in impervious
area increases, the scale and characteristics of flood disasters have become difficult to
predict when coupled with the impact of extreme rainfall. Therefore, the concept of
flood mitigation in Taiwan has gradually shifted from traditional flood control methods
to comprehensive river basin management and land planning that integrates various
engineering and non-engineering measures. For example, the concept of “Local Detention”
reduces the required regional discharge capacity by lowering the water levels of fish farms
and farmland in batches before typhoons and floods. This further reduces the probability
of flooding during said events.

2. Materials and Methods

Figure 1 shows the process of effectiveness assessment of flood mitigation used in
this study. After the study area was selected, the hydrological data (such as rainfall, water
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level, and discharge) and physiographic data (such as drainage system, flood mitigation
structure, land use, and digital elevation model) were collected for the chosen area. Then,
computational cells were built based on the data collected, and historical rainfall events
were used for the calibration and verification of the PHD model. The calibrated and verified
PHD model was then used to simulate the max inundation depth and area for various NbS
cases. Finally, the NbS case most suitable for the case area was chosen according to the
results of the simulation and the consensus of residents and stakeholders.

 

Figure 1. The flow chart of assessment effectiveness of flood mitigation.

2.1. Study Area

This study selected Nangang River in central Taiwan for the NbS flood and disaster
mitigation case area. Nangang River is a tributary of the Wu River upstream, and it is
the fourth-largest river in Taiwan. The length of the mainstream of Nangang River is
about 37 km, with a basin area of about 438 km2 and a population of about 130,000. The
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surrounding area of the basin is mainly used for agriculture. The largest tributary upstream
of Nangang River is Mei River, with a drainage area of 136 km2 and accounting for about
1/3 of the area of the Nangang River [18]. After the two rivers converge, they enter the
mainstream of Wu River, where most of the basin topography decreases with the elevation
from east to west as shown in Figure 2.

Figure 2. The elevation of Nangang River catchment.

Nangang River’s main channel is narrow, and several major floods occurred in the
past due to insufficient protection standards. A heavy rain event washed out a bridge in
2017, and another bridge was broken by heavy rain in 2018. Although new levees have
been built, the local people believe that the addition of cement structures has impacted the
overall landscape and the increasingly scarce wetland ecology. The local stakeholders hope
the river can be protected in a natural way.

2.2. Flood Mitigation Case Based on Nature-Based Solutions

The considerations of NbS in disaster mitigation includes three aspects: water, people,
and nature. Based on this, possible stakeholders in the Nangang River case include the
competent authority, local residents, and related non-governmental organizations. To
consolidate the consensus of local residents and relevant stakeholders on river governance
and environmental construction, the 3rd River Management Office conducted a total of
three interviews in March, July, and September 2020. In the first interview, residents
mentioned that the channel capacity is too small and often results in flooding after heavy
rain. They suggested that the 3rd River Management Office expropriate the land instead of
building new levees to achieve the objective of ecological resource protection and flood
mitigation. In the second interview, residents and stakeholders mentioned that they want
to know the flood mitigation effectiveness of each flood mitigation plan for comparison.
They also called for promenades to be built or local tree species to be planted along
with the planned flood mitigation facilities to satisfy protection standards and enrich the
landscape simultaneously. In the third interview, residents and stakeholders mentioned
that discontinuous levees and wildlife corridors could be set up to increase permeability
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and reduce the impact on the ecological environment and the landscape. They suggested
that the competent authority should propose feasible environmental solutions based on
the local cultural background, environmental construction, and public expectations. Based
on the interview results, this research conducted a site survey and proposed five cases, as
shown in Table 1.

Table 1. Description of the 5 Nangang River NbS cases.

Case Name Content Description

A Extend the existing levees

Adopt the 100-year
return period flood level

as planned levee
top elevation

High-strength flood
mitigation protection

engineering

B Extend the existing levees

Adopt the 10-year return
period flood level as

planned levee
top elevation

Low-strength flood
mitigation protection

engineering.

C Discontinuous levees

Set up discontinuous
levees with a 25-year

return period flood level
as planned levee top

elevation, and set up a
wildlife corridor at the

levee opening

Using discontinuous levees
and wildlife corridors to

increase permeability and
reduce the impact on the
ecological environment

and landscape

D Dredging
Dredge 1 m of the

riverbed on selected
areas of the main channel

Dredged soil can be placed
on both sides of the levees

and used to plant local
plant species.

E Room for the River
Plan a “Room for the
River” with an area of
about 36.35 hectares

Plan lower elevation areas
as detention wetlands and
higher elevation areas as

recreational facilities. Can
be combined with local

plant species to enrich the
surrounding landscape.

2.3. The Flood Mitigation Assessment Model

To understand the impact of the above cases on the Nangang River, numerical models
are used to simulate and compare the changes in surface runoff of each case. As surface
runoff is related to the temporal and spatial distribution of rainfall and surface water, when
performing rainfall runoff simulation, the hydrological and physiographic conditions in the
case area should be considered. This study adopts the Physiographic Drainage-inundation
(PHD) model, which is widely used in Taiwan to simulate rainfall runoff. The PHD
model can be used for flooding vulnerability assessment [19], detention pond operation
optimization [20], and the assessment of the impact of extreme weather under climate
change [21]. Its governing equation is shown as follows [22]:

Asi
dhi
dt

= Pei + ∑
k

Qi,k(hi, hk) (1)

where Asi is the area of the i cell; Qi,k denotes the discharge from the k cell into its
neighboring i cell. Discharge is positive when flowing into the i cell and negative when
flowing out of the i cell; hi and hk represent the water levels of the i and k cells at time
t respectively; and Pei expresses the effective rainfall volume per unit time in the i cell,
which is equal to the effective rainfall per unit time in the i cell multiplied by its area Asi.
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Total effective rainfall P′ can be calculate by the SCS-CN method; the equation can be
writen as [23]:

P′ = (P − Ia)
2

(P − Ia) + S
(2)

S =
25400 − 254CN

CN
(3)

P is the total rainfall; Ia is the initial abstraction, including depression storage, in-
tercepting, and evapotranspiration; and CN is the dimensionless curve number that is
determined by soil type, type of vegetation cover, land use, hydrologic condition, an-
tecedent moisture condition, and climate of the watershed [23]. In this study, Ia = 0.2S and
CN is between 25 and 98.

The flow discharge between adjacent cells in the model can be divided into the river
flow type, the weir flow type, and the pumping station type.

2.3.1. River Flow Type

If there are no flow obstacles in the exchange of water between two adjacent cells,
it is regarded as an overland flow, where the Manning formula can be used to calculate
the water flow through the boundary of the two cells. From i cell, the flow from k cell to i
cell is:

Qi,k =
hk − hi
|hk − hi| · Φ(hi,k) ·

√
|hk − hi| f or

∂Qi,k

∂hi
≤ 0 (4)

Qi,k = Φ(hk) ·
√
|hk − hi| f or

∂Qi,k

∂hi
> 0 (5)

where hi,k is the water level at the boundary of i and k cells.

hi,k = hk + (1 − α)hi, 0 ≤ α ≤ 1 (6)

and Φ(h):

Φ(h) =
A(h)R(h)2/3

n
√

Δx
(7)

where Δx is the distance between the center of the i and k cells; n is the Manning roughness
coefficient of overland flow between the two neighboring cells; and A, R the hydraulic area
and radius at the border between the two neighboring cells, respectively. When hk > hi
and hi is decreasing, we can assume that α = 1 in Equation (4), to negate the influence of hi
and calculate the water flow from the k cell to i cell with Equation (3).

2.3.2. Weir Flow Type

If the areas are divided by hydraulic or artificial structures, such as roadways, levees,
field ridges, or banks, then the border may be treated as a broad-crested weir, and the weir
flow formula can be used to obtain flow from one cell to the other. Such flow exchange
between cells is regarded as the weir flow type. If hk > hi, then there are two possible
situations, the free weir, and the submerged weir, as shown in Figure 3. When the flow
condition is the free weir, the status of the flow will be critical, and when the flow condition
is submerged weir, the status of the flow will be sub-critical. Below are the formulas for
both flow conditions:

1. Free weir

(hi − hw) <
2
3
(hk − hw), Qi,k = μ1b

√
2g(hk − hw)

3
2 (8)

2. Submerged weir

(hi − hw) ≥ 2
3
(hk − hw), Qi,k = μ2b

√
2g(hi − hw)(hk − hi)

1
2 (9)
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where hw is the weir height, which is the roadway, levees or ground height; b is the
effective width of the weir top, which is equivalent to the intersection length of two
adjacent cells; g is gravitational constant; and μ1 and μ2 are the weir coefficients of
the free and submerged weirs, respectively. μ1= 0.36–0.57. In this study, μ1= 0.4 and
μ2= 2.6μ1 [24] are used.

Figure 3. The free weir and the submerged weir flow.

2.3.3. Pumping Station Type

If a pumping station is set up in the i cell, the water exchange between two adjacent
cells is based on the operation principle of the pumping station. When the water level in
the i cell exceeds the initial water-pumping level, the water exchange between the cells will
be carried out according to the pumping capacity of the pump.

If the water level in i cell exceeds the initial water-pumping level:

hi ≥ hp, Qi,k = Qp · Δt (10)

If the water level in i cell is below the initial water-pumping level:

hi < hp, Qi,k = 0 (11)

where hp is the initial water-pumping level of the pumping station operation rules, Δt is
the time step, and Qp is the pumping rate during Δt.

The PHD model is based on the basic equation of the quasi-2D discharge where
the mathematical model is established by the explicit finite-difference method. After the
discretization of Equation (1) via the use of the explicit finite difference method, we can
arrive at Equation (12):

Δhi = [Pei + ∑ Qi,k(h, hk)]Δt/Asi (12)

Δhi is the water level increment during time.

2.4. Model Certification and Verification

This study built a computational cell based on the hydrological and physiographic
data of the case area. The computational cell covers an area of 2046 km2, with a total of
9804 cells, as shown in Figure 4.

This study took the heavy rain event from June 2016 as a certification case of the PHD
model and used the Nash-Sutcliffe efficiency (NSE) coefficient and root mean square error
(RMSE) for checking the value of the model accuracy. Another heavy rain event from May
2019 was taken as a verification case, and the simulation results of both events are as shown
in Figure 5. The NSE and RMSE values of the heavy rain event in June 2016 are 0.78 and
0.15 m, and the heavy rain event in May 2019 has values of 0.68 and 0.47 m, respectively.
As the NSE values of both events exceeded 0.5, we concluded that the PHD model can
reasonably simulate the phenomenon of runoff in the case area.
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Figure 4. Computational cells.

  
(a) (b) 

Figure 5. The comparison between simulated and observed water level. (a) Heavy rain event from June 2016; (b) Heavy
rain event from May 2019.

2.5. Boundary Condition

As this study was conducted from a planning perspective, the more conservative
steady stream condition was chosen for the upstream boundary flow condition.

The flow discharge of the Nangang River and the tributary of the Mei River during
each return period are shown in Table 2 in accordance to the Nangang River planning
report [15]. The flow discharge will be used as the upstream boundary condition for steady
flow simulation in the future.
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Table 2. Upstream inflow conditions for different return periods.

Flow Discharge 5-Year Return Period 10-Year Return Period 25-Year Return Period
100-Year Return

Period

Mei River 960 1240 1620 2230
Nangang River 910 1200 1570 2200

Units: cms.

3. Results and Discussion

3.1. Hydrologic Assessment for Each Case
3.1.1. Current Situation

To compare the current situation with the flood mitigation of each case, the hydrogra-
phy simulation under each return period was carried out based on the current situation of
the case area. The results of the simulations are shown in Figure 6.

  
(a) (b) 

  
(c) (d) 

Figure 6. Maximum inundation depth of current situation. (a) 5-year return period flood; (b) 10-year return period flood;
(c) 25-year return period flood; (d) 100-year return period flood.

When the return period was 5 years, the maximum inundation depth of the main
channel was between 1.5 and 2 m. When the return period was greater than 5 years, the
maximum inundation depth of the main channel exceeded 2 m. The topography of the left
bank in the case area is relatively lower, so under current conditions the inundation area on
the left bank increases with increases in upstream flow. There were some inundation areas
on the floodplains of the right bank, with the maximum inundation water depth being 0.3
to 0.5 m when the return period is 5 years. As the return period increased, the inundation
area and the maximum inundation depth increased, with maximum inundation depth on
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the floodplains of the right bank exceeding 2 m when the return period was 100 years.
The floodplains of the left bank had lower elevation, and thus had worse flooding. The
maximum inundation depth of 5-year return period floods was 0.5 to 1.5 m. When the
return periods were 10 and 25 years, the inundation area of the left bank increased further,
and maximum inundation depth reached 1.5 to 2 m. When the return period was 100 years,
the maximum inundation depth exceeded 2 m. The topography of the left bank in the case
area is relatively lower, so under current conditions, with the increase in upstream flow,
the inundation areas of the left bank also increase.

3.1.2. Case A

Case A proposes to extend the existing levees downstream by 1500 m to meet the
100-year return period flood design standard. According to the results simulated, after
the existing levees were extended downstream, the inundation of the left bank can be
significantly improved, as shown in Figure 7.

  
(a) (b) 

  
(c) (d) 

Figure 7. Maximum inundation depth of case A. (a) 5-year return period flood; (b) 10-year return period flood; (c) 25-year
return period flood; (d) 100-year return period flood.

Inundation only occurred in low-lying parts of the left bank when the case area was
subject to a 100-year return period flood. The water depth of the main channel rises slightly
for all return periods when compared to the current situation, while the inundation of the
right bank largely remains unchanged for all return periods.

3.1.3. Case B

Both cases B and A extend the existing levees downstream by 1500 m, but the 10-year
return period was chosen for the levee flood design standard in case B. The results simulated
are as shown in Figure 8.

114



Water 2021, 13, 3451

Inundation on the left bank still occurs, with the inundation area larger and inundation
depth deeper for case B when compared to case A. The maximum water depth of inundated
areas of the left bank was 0.3 m to 1.5 m for a return period of 5 years, 1.5 m to 2 m for
return periods of 10 years and 25 years, and over 2 m for a return period of 100 years.
Inundation of the right bank largely remained unchanged from the current situation.

  
(a) (b) 

  
(c) (d) 

Figure 8. Maximum inundation depth of case B. (a) 5-year return period flood; (b) 10-year return period flood; (c) 25-year
return period flood; (d) 100-year return period flood.

3.1.4. Case C

Case C is a concept proposed by the 3rd River Management Office. It proposed using
the solution assembled from the interviews with the residents and stakeholders. The
case consisted of building 600 m of discontinuous levees with a 25-year return period
flood design standard on the left bank of the river, and adding a wildlife corridor to the
discontinuous levees. The simulated results are shown in Figure 9.

It was found in the simulation that the inundation area of the left bank became smaller
than the current situation after the implementation of case C. The inundation depth of
the left bank also reduced. The inundation depth of the right bank, however, remained
similar to the current situation. Areas not covered by the levees of the left bank had
maximum inundation depths of 0.3 m to 1.5 m for 5 to 25-year return period floods, with
the inundation area increasing with the length of the return period. When the return period
was 100 years, the maximum inundation depth reached 1.5 to 2 m.

3.1.5. Case D

Case D refrained from altering current structures, instead choosing to dredge 1 m
of soil from the riverbed for 200 m both upstream and downstream of the bridge sup-
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ports. The results of the simulation are shown in Figure 10, and show that main channel
dredging makes no significant difference in inundation of the case area. The inundation
area and maximum inundation depth of case D is similar to the current situation for all
return periods.

3.1.6. Case E

Case E proposed to plan a “Room for the River” using an area of about 36.35 hectares
in size from the case area itself and areas in the immediate vicinity. “Room for the River”
includes both main channel dredging and floodplain grading in this situation. The results
of the simulation are shown in Figure 11, where the main channel elevation has been
dredged and the flooding capacity increased.

In the simulations, no inundation occurred for floods with return periods below
100 years after the implementation of case E. When the return period was 5, 10, or 25 years,
the floodwater distribution almost covered the “Room for the River” area entirely. The
main channel depth was above 2 m for all return periods, with the floodplain inundation
depth at 0.5 to 1.5 m when under a 5-year return period, 1.5 to 2.0 m when under a 10-year
return period, and exceeding 2 m when under a 25-year return period. When the return
period was 100 years, the inundation area exceeded that of the “Room for the River” area,
and the maximum inundation depth reached 1.5 to 2 m.

  
(a) (b) 

  
(c) (d) 

Figure 9. Maximum inundation depth of case C. (a) 5-year return period flood; (b) 10-year return period flood; (c) 25-year
return period flood; (d) 100-year return period flood.
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(a) (b) 

  
(c) (d) 

Figure 10. Maximum inundation depth of case D. (a) 5-year return period flood; (b) 10-year return period flood; (c) 25-year
return period flood; (d) 100-year return period flood.

  
(a) (b) 

  
(c) (d) 

Figure 11. Maximum inundation depth of case E. (a) 5-year return period flood; (b) 10-year return period flood; (c) 25-year
return period flood; (d) 100-year return period flood.
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3.2. Inundation Area Comparison of Each Case

The total inundation area (areas with maximum inundation depth above 0.3 m) of
the current situation and of the five proposed cases is shown in Table 3. The total inun-
dation areas of case A when under the 25-year and 100-year return periods were 0.12
and 5.2 hectares, respectively, which is less than the total inundation area of the current
situation and demonstrates that case A has good flood mitigation. Cases B and C are better
in terms of total inundation area when compared with the current situation, but their flood
mitigation effects were not as profound as case A. Case D increased the capacity of the
main channel through dredging, but as this action has little effect when under the steady
flow condition, the total inundation area remained unchanged from the current situation.
Case E increased the maximum river capacity through land expropriation, dredging, and
land grading. When under the 25-year and 100-year return periods, the total inundation
areas were 4.3 and 13.96 hectares, respectively. The flood mitigation effect of case E was
second only to case A when under the 25-year return period, and roughly equivalent to
case C when under the 100-year return period.

Table 3. Total inundation area of different return periods of each case.

Flow Discharge 5-Year Return Period 10-Year Return Period 25-Year Return Period 100-Year Return Period

Current Situation 10.72 17.65 19.34 25.05
Case A 0.00 0.00 0.12 5.20
Case B 8.60 8.71 11.44 15.74
Case C 7.96 7.96 10.14 13.16
Case D 10.72 17.65 19.34 25.05
Case E 1.64 2.41 4.30 13.96

Unit: Hectare.

3.3. Case Selection

As can be seen from the results of the simulations, under all four return periods case
A surpassed all other cases in the reduction of inundation area size, i.e., case A had the best
flood mitigation in all simulated situations. The rest of the cases are ranked in descending
order as case E, case C, case B, and case D in terms of flood mitigation. Case D had little
effect under the steady flow condition.

All NbS cases consider benefitting the protection of resident life and property in the
field side of the levee as the main objective; the expected co-benefits are as shown in Table 4.
According to the simulation results and statistics on inundation area sizes of each case, all
cases except case D are able to reduce agricultural losses caused by inundation.

Other factors to consider are cost, ecosystem service efficiency, and recreational value.
Case A and case E will be more costly than the other cases, as case A employs high-strength
levees and case E employs land expropriation. Case C can increase ecosystem service
efficiency via the setting up of a wildlife corridor, and case E via the planting of local tree
species in the floodplain area to enrich the landscape and the ecology. In case E, floodplains
can also be planned as parks, detention wetlands, stadiums, or promenade facilities to
serve recreational purposes.

Taking all benefits and co-benefits into account, this study suggests case E for the case
area Nangang River; not only does case E provide good flood mitigation for low return
period floods, but also increases ecosystem service efficiency and provides recreational
areas for locals.
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Table 4. Expected co-benefits of NbS case.

Case Outline Expected Co-Benefits

A Extend the existing levees
• Protection of farmlands and reduction of agricultural losses
• Prevention of agricultural land erosion

B Extend the existing levees

• Protection of farmlands and reduction of agricultural losses
• Reduced impact on the ecological environment and landscape
• Reduced engineering costs

C Discontinuous levees

• Protection of farmlands and reduction of agricultural losses
• Reduced impact on the ecological environment and landscape
• Reduced engineering costs
• Increased ecological permeability

D Dredging

• Protection of farmlands and reduction of agricultural losses
• Prevention of agricultural land erosion
• Reduced impact to river characteristics
• Reduced engineering costs

E Room for the River

• Protection of farmlands and reduction of agricultural losses
• Reduced impact on the ecological environment and landscape
• Option of providing riverbank park and promote tourism
• Enrichment of the local landscape and ecological environment

4. Conclusions

This study focused on the Nangang River area and developed and proposed five NbS
cases. Cases A and B can be condensed as the act of extending the existing levees, case C
as the act of adding discontinuous levees, case D as the act of dredging the main channel,
and case E as the act of implementing “Room for the River”. The PHD model was used to
simulate the steady flow of each return period and compare the results of the simulations
with the current situation.

Overall, case A has the best flood mitigation under all return period conditions, and
the flood mitigation effects of the other cases are ranked in descending order as cases E, C,
B, and D.

The core value and principle of NbS is to solve social challenges through nature-based
means and increase biodiversity and ecological services at the same time. Cases C and E are
good in this regard, as they can bring benefits to ecological services, while the co-benefits
of cases A and B are relatively small. Taking both the expected benefits and co-benefits
into account, this study believes that case E is most suited for improving flood disaster
mitigation in the Nangang River area. It is still necessary to discuss with local stakeholders
and obtain their consensus and support before the actual implementation of the case, so as
to achieve the goal of “Living with nature, booming with water”.

There may be negative impacts to the environment after the implementation of NbS;
constant monitoring and assessment of the environment will be required to establish the
level of impact. It should be noted that uncertain negative impacts to the environment
may be caused by the implementation of NbS; constant monitoring and assessment of the
environment will be required to establish the level of impact, if any. Another point to take
note of is that the PHD model uses fewer cells to describe physiographic conditions in
order to rapidly assess the flood mitigation benefits of each case. For areas with drastic
changes to the elevation, water depth cannot be accurately described by a PHD model with
fewer cells. If one wishes to increase the accuracy of simulations, this study recommends
increasing cells in areas that fulfill the aforementioned criteria.
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Abstract: The current study presents a methodology for water mapping from Sentinel-1 (S1) data and
a flood extent analysis of the three largest floodplains in Estonia. The automatic processing scheme
of S1 data was set up for the mapping of open-water flooding (OWF) and flooding under vegetation
(FUV). The extremely mild winter of 2019/2020 resulted in several large floods at floodplains that
were detected from S1 imagery with a maximal OWF extent up to 5000 ha and maximal FUV extent
up to 4500 ha. A significant correlation (r2 > 0.6) between the OWF extent and the closest gauge
data was obtained for inland riverbank floodplains. The outcome enabled us to define the water
level at which the water exceeds the shoreline and flooding starts. However, for a coastal river delta
floodplain, a lower correlation (r2 < 0.34) with gauge data was obtained, and the excess of river
coastline could not be related to a certain water level. At inland riverbank floodplains, the extent of
FUV was three times larger compared to that of OWF. The correlation between the water level and
FUV was <0.51, indicating that the river water level at these test sites can be used as a proxy for forest
floods. Relating conventional gauge data to S1 time series data contributes to flood risk mitigation.

Keywords: Sentinel-1; flood; climate change

1. Introduction

Near real-time and statistical information about flooded areas is essential for several
public services, i.e., emergency, rescue, recovery, spatial planning, habitat monitoring, and
adaption to climate change. Satellite remote sensing can provide timely and operational
data as well as statistical spatial information about inundated areas covered with water.
Two types of satellite imagery are available for monitoring surface flood dynamics: optical
and synthetic aperture radar (SAR). Optical satellite remote sensing can only be applied
in cloud-free situations. However, floods often occur during long-lasting periods of pre-
cipitation and persistent cloud cover. Therefore, SAR systems are usually a preferred tool
for the monitoring of floods from space. A smooth open water surface is characterized by
a low SAR backscatter, and this difference in backscatter response generally allows flood
mapping [1]. Over the last decade, various methods for deriving the flood extent from SAR
data have been proposed [2–18]. Based on summaries by Martinis et al. [18] and Liang and
Liu [8], the most commonly applied methodology for flood mapping from a single image is
histogram thresholding, which can be used in combination with different image processing
approaches. Temporal change detection techniques [19,20] and coherence analysis [21] have
also been used for open water mapping. However, temporal change detection approaches
require two images and can therefore be limited by the temporal coverage of satellite
imagery. To improve flood mapping accuracy, the advantages of ancillary data, such as the
DEM (digital elevation model) derived HAND (height above the nearest drainage) index
and the catchment derived DIST (distance from drainage) index as well as land use map,
have been demonstrated in several studies [17,18,20,22]. Most of the proposed approaches
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for flood mapping are semi-automatic. A fully automatic methodology that integrates split
thresholding and fuzzy logic classification has been proposed and applied by Martinis
et al. [18] for the processing of TerraSAR-X, and by Twele et al. [23] for the processing
of Sentinel-1 (S1).

Recent studies by Grimaldi et al. [24] and Tsyganskaya et al. [25] have summarized
the approaches of flood mapping under the forest canopy. The study by Grimaldi et al. [24]
shows that the most commonly applied method for the detection of flooded areas under
vegetation is the identification of increased backscatter values compared to other objects.
The penetration depth of the SAR signal into vegetation is higher for longer wavelengths, so
the use of the L-band has been recommended [26–28]. However, several studies [20,29,30]
have demonstrated the capabilities of C-band and X-band data in the identification of
flooded vegetation, especially in the case of sparse forests and leaf-off conditions. Co-
polarized signals (HH or VV) are preferred over cross-polarized signals for mapping water
under vegetation. Studies have indicated that the use of HH-polarization leads to more
accurate results compared to VV-polarization [31,32]. Moreover, the use of polarimetric
decomposition and/or interferometric SAR coherence has been utilized for the mapping of
floods under vegetation [33]. However, the availability of full polarimetric data is often
limited in terms of spatial extent and temporal coverage.

Estonia is known for its large seasonal riverside areas that are flooded over annually.
The surface area of the Estonian floodplain grasslands with a high nature conservation
value is estimated to be 16,000 hectares. According to the EU Habitats Directive, northern
boreal alluvial meadows (habitat type code 6450) are grasslands situated on the banks of
large rivers, in sections with slow flow, which are frozen in the winter and flooded in the
spring–summer period. However, extremely warm winters in Estonia during the last five
years have also caused large flooding during winter [34]. Extreme changes in inundation
extent, depth, and duration define phonological patterns, animal migration routes, and
human living spaces [35]. Therefore, it is important to monitor the temporal and spatial
changes in flooded areas.

The boreal forest encompasses approximately 30% of the global forest area and pro-
vides critical services to local, regional, and global populations. Communities benefit from
ecosystem services provided by forests for fishing, hunting, leisure activities, and economic
opportunities [36]. Countries such as Canada, Finland, Sweden, and Russia extract wood
from boreal regions for their forest industries [36]. Flooding causes disturbances in forest
management, resulting in economic losses. The vulnerability of the forest ecosystem in
a changing climate has been discussed in Gauthier et al. [36] and Hari and Kulmala [37].
Previous studies have expressed the importance of flood monitoring in areas with emerging
vegetation for a comprehensive evaluation of the economic and environmental costs of
floods [38–40]. Recent mild winters in Estonia have affected the forest industry. Forest
management is impossible due to unfrozen soils and floods [41]. However, the spatial
extent and duration of floods during the winter period in Estonia is still unknown.

At the European scale, two flood-monitoring services are provided. The (1) Copernicus
Emergency Management Service (EMS) [42] provides a free-of-charge mapping service in
cases of natural disasters, man-made emergencies, and humanitarian crises throughout
the world. This service can be triggered by request in the case of an emergency. The (2)
Copernicus Land Monitoring Service (CLMS) provides a pan-European, high-resolution
product known as Water and Wetness. This product shows the occurrence of water and
wet surfaces over the 2009–2018 period. Thematic maps were produced for the years 2015
and 2018. These layers are compiled from multi-temporal high-resolution optical and radar
satellite imagery [43].

However, these services do not provide information about the inter-annual variability
of water extent on the floodplains, nor information about the flooded forest areas. Therefore,
the current study was initiated with the following aims:

• Set up an optimal automatic workflow for open-water and flooded forest mapping
from S1 data.
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• Apply the workflow for the mapping of flood duration and extent on three of the
largest floodplains in Estonia during an extremely mild winter (1 November 2019–31
March 2020).

• Analyze the correlation between flood extent and the water level measured in the
closest hydrological station. Define the water level that indicates the occurrence of
flooding (river coastline excess) on floodplains.

2. Study Sites and Data

2.1. Study Sites

Floodplain grasslands can be found all over Estonia, and most of them lie on the
larger rivers—Emajõgi, Põltsamaa, Pedja, Kasari, Halliste, Raudna, Piusa, Koiva, Mustjõgi,
and Narva headwaters—but some also near lakes (Peipsi, etc.). We chose the three largest
floodplain grasslands (Alam-Pedja, Soomaa, and Matsalu) as our study sites. Figure 1
shows study areas with the areas of environmental restrictions, maps of natural grasslands
and forests (CLC 2018 from CLMS), and the official shoreline from the Estonian Topographic
Database (ETD). Matsalu is a coastal test site located at the River Kasari delta. The defined
region of interest used in the analysis of the current study was 1068 km2 (Figure 1). The
inland riverbank test sites of Alam-Pedja (located by the River Emajõgi) and Soomaa
(located by the Halliste and Navesti rivers) have regions of interest of 546 km2 and 255 km2,
respectively (Figure 1, Table 1).

Figure 1. Location of the test sites.

Table 1. Share of natural grassland and forest types at study sites according to CLC 2018.

Test Site
Total
Size

(km2)

Broad-Leaved
Forest Area

(%)

Coniferous
Forest Area

(%)

Mixed Forest
Area (%)

Natural
Grasslands

Area (%)

Alam-
Pedja 546 11.5 9.3 20.9 5.5

Soomaa 1068 2.0 4.4 3.8 7.8
Matsalu 255 17.2 11.1 11.3 0.8

Natural grasslands along rivers have a high nature conservation interest (Figure 1).
The habitats of floodplain grassland vegetation are considerably more variable in com-
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parison to boreo-nemoral grasslands—26 different plant communities have been noted as
opposed to the 13 found in boreo-nemoral grasslands. Approximately 20–22, maximally 30,
bird species are native to the floodplains in Estonia. The share of natural grassland differs
between study sites—at Matsalu the share of natural grassland is 7.8% of the study area,
while at Soomaa the natural grassland covers 0.8% of the total study area (Table 1).

The share of forest types according to CLC 2018 are shown in Table 1. The dom-
inant forest type at Matsalu and Soomaa is the broad-leaf forest, while at Alam-Pedja
the mixed forest type is dominant. The coniferous forest represents the smallest share of
forest (Table 1).

2.2. Satellite Data

The S1 mission that carries the C-band SAR sensor provides routine data in two imaging
modes: interferometric wide swath mode (IW) and extended wide swath mode (EW).
The spatial resolution of the IW mode data is 5 × 20 m, and the spatial resolution of the
EW mode data is 20 × 40 m [44]. The Sentinel-2 (S2) optical data are beneficial during
cloud-free conditions and have a spatial resolution of 10 × 10, 20 × 20, and 60 × 60 m
depending on the wavelength band [45]. The medium spatial resolution data and sufficient
repeat cycle of S1 (12 days with one satellite and 6 days with two satellites) and S2 (10 days
with one satellite and 5 days with two satellites) missions form a solid basis for statistical
flood mapping applications and the operational flood monitoring service [46].

S1 SAR and cloud-free S2 multispectral imager (MSI) data were downloaded from the
Copernicus Open Access Hub [47]. The dataset was divided into two parts: (1) algorithm
development/validation and (2) algorithm application for statistical analysis. The overview
of the data used for algorithm development is given in Table 2. The numbers of images
included in the statistical analysis per month at each test site are given in Table 3. To
eliminate the water lookalikes caused by thin ice cover, we excluded images that were
acquired in the case of negative air temperature from our analysis.

Table 2. Numbers of S1 (IW mode and EW mode), S2, and UAV (unmanned aerial vehicle) im-
ages used for algorithm development and validation in open water flood (OWF) and flood under
vegetation (FUV) conditions.

Purpose of Data S1 IW S1 EW S2 UAV

Algorithm development (sensitivity) 1 1
Algorithm development OWF (incidence

angle backscattering dependence) 7 12

Algorithm development FUV (incidence angle
backscattering dependence) 3

Validation 2 2 4 44

Table 3. Number of images included in analysis per month per test site. OWF represents the number
of images from which open-water flood was mapped. FUV represents the number of images from
which flood under vegetation was mapped.

Test Site
Nov 2019

OWF/FUV
Dec 2019

OWF/FUV
Jan 2020

OWF/FUV
Feb 2020

OWF/FUV
March 2020
OWF/FUV

Alam-Pedja 13/7 18/11 19/14 14/9 19/13
Soomaa 18/10 19/13 20/12 15/9 21/11
Matsalu 10/8 12/8 14/6 10/8 18/9

2.3. Auxiliary Data

Auxiliary datasets used in the study include different maps and hydro-meteorological
information gathered during the study period.

Maps of wetlands, shorelines, inland waters, wooden areas, and buildings were
downloaded from the Estonian Topographic Database (ETD) (provided by the Estonian
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Land Board) [48]. Maps of areas with environmental restrictions were downloaded from
the Estonian Environment Agency WFS service [49]. The digital elevation model (DEM)
with a five-meter resolution was downloaded from the Estonian Land Board database [50].
CLC+ (2018) was downloaded from CLMS [43].

Air temperature and water level data measured at national hydro-meteorological
stations were obtained from the Estonian Environment Agency [51].

Observations at the time of flooding and UAV flight were performed on 22 March
2019 at the Soomaa test site. In total 44 observations were used for algorithm development.

3. Methodology

3.1. Sentinel-1 Data Processing

We evaluated the sensitivity of S1 polarizations for land and water discrimina-
tion [52,53]. The overall backscatter differences resulting from the sensitivity analysis
are summarized in Table 4. In the case of the IW imaging mode, the greatest difference
between terrestrial and open water signals was obtained for VH polarization (10.5 dB).
Data were acquired with an incidence angle of 39.5–47◦. In the EW mode, the differences
were the greatest for HV polarization (9.6 dB). The data were acquired with an incidence
angle of 37.5–46◦.

Table 4. Summary of sensitivity analysis for land and water discrimination for different S1 polarizations [52].

S1 Mode Polarization
Water/Dry Land Difference

(dB)
Flooded Forest/Unflooded Forest

Difference (dB)
Range of Incidence Angle

IW VH 10.6 0.17 39.5–47
IW VV 10.2 1.32 39.5–47
EW HH 7.7 4.5 37.5–46
EW HV 9.6 0.6 37.5–46

We also evaluated the sensitivity of S1 for the discrimination of flooded forests from
dry forest areas. The greatest differences were observed in the case of HH polarization
(a difference of 4.5 dB). The data were acquired with an incidence angle of 37.5–46◦.

Relying on the sensitivity analysis, the open water mapping algorithm was developed
for IW VH and EW HV datasets, and water under vegetation was mapped from EW HH
data in the current study.

Previous studies have shown the advantage of using multiple incidence angles for
water mapping [54]. Therefore, we established an empirical relationship between the local
incidence angle and surface water backscattering collected at our test sites. The dataset of
open water backscattering from known waterbodies was collected from 7 IW and 12 EW
mode images acquired at the time of flooding in October, November, December, and
April in three consecutive years (2017–2019). The relationships between the local incidence
angle (θ) and surface water backscattering (σ0) for polarizations with the greatest sensitivity
(Table 4 in the previous section) are shown in Figure 2a (original source of data [52]). An
established relationship was used for the water mapping algorithm (Table 5) dependency.
The algorithms for open water mapping from IW VH and EW HV polarizations are
summarized in Table 5.
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Figure 2. (a) Relationship between open-water backscattered signal (σ0) and incidence angle (θ).
IW mode data (VH) were acquired from 80 and 58 orbit overflights, and EW mode data (HV) were
acquired from 51, 58, 87, 153, and 160 orbit overflights [52]. (b) Relationship between flooded forest
backscattered signal (σ0) and incidence angle (θ). EW mode data (HH) were acquired from 51, 58, 87,
153, and 160 orbit overflights.

Table 5. Water mapping threshold conditions for different polarizations, imaging modes, and flood
types (FUV and OWF).

S1 Mode Polarization Threshold for Water Mapping SD No

IW VH Water < −0.30 × θ− 12.13 + 2 × SD 1.43 1
EW HV Water < −0.23 × θ− 19.12 + 2 × SD 2.26 2
EW HH Flooded forest > −3.15 − 1.06 1.06 3

A study by Lang et al. [55] showed the relationship between the incidence angle and
backscatter of water under vegetation. The study demonstrated a decrease in backscatter
by 2.45 dB at the incidence angle between 23.5◦ and 47◦, in the case of Radarsat data. For
the evaluation of the dependence of incidence angle on the backscattering in the case of
a flooded forest, the data were collected at the time of flooding from images acquired
on 08 November 2019, 13 November 2019, and 11 April 2018. However, analysis of our
dataset did not confirm the relationship between the incidence angle and backscattered
signal in a flooded forest (Figure 2b). Relying on our analysis, a threshold condition of
HH > −4.21dB was set for flooded forest mapping. The threshold was estimated on an
averaged backscattered signal (σ0) +1 standard deviation (SD) in flooded forest areas
determined from visual observations.

The data processing scheme was set up in a cluster computing environment. The data
processing setup is schematically shown in Figure 3. Pre-processing included the following
steps: radar signal calibration, noise filtering, terrain correction, and the image processing
technical processes of reading, cutting, and extracting data (Figure 3). Pre-processing
was performed using the processors from SNAP (Sentinel Application Platform) software.
Water mapping was performed according to Equations (1)–(3) presented in Table 5. The
automatic water mapping processes were set up in a cluster computing environment using
SHELL script to download the imagery from the Sentinel Open Data Hub and to run SNAP
based GPT for water mapping. A combination of the DIST and HAND approaches was
applied for the elimination of water lookalikes. The auxiliary data from the Estonian Land
Board, namely, the DEM dataset with 5 × 5 m resolution and the official inland water
body map (from ETD), were used to improve the mapping accuracy. In the first step of
post-processing, the data were polygonised. In the case of inland water bodies, open water
polygons (mapped from S1) that intersected with the inland waters map (ETD) with a
buffer zone of 100 m were extracted for further analysis. At the coastal zone of the Baltic
Sea, the open water polygons that intersected with a coastal area of up to a one meter
elevation were extracted for further analysis. GDAL (Geospatial Data Abstraction Library)
software processors were used for the post-processing of the data.
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Figure 3. Data processing setup.

In the post-processing of the water mapped under vegetation, the noise (false-positives)
from buildings was extracted by removing the polygons that intersected with the build-
ings map (from ETD). After removal of the areas with elevated backscattering caused by
buildings, the water polygons related to the wooden area map (ETD) were extracted for
future analysis.
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3.2. Sentinel-2 Data Processing

S2 data were used as a validation dataset for an accuracy estimation of the water
mapped from S1. S2 data processing is shown in the block scheme in Figure 3. The
modified normalized difference water index (MNDWI) was calculated as follows:

MNDWI = (Band 3 − Band 11)/(Band 3 + Band 11) (1)

where Band 3 is the top-of-atmosphere (TOA) reflectance of the green band of S2, and
Band 11 is the TOA reflectance of the shortwave infrared band of S2. Band 3 and Band 11
have different spatial resolutions of 10 and 20 m, respectively. For the estimation of the
MNDWI index, the spatial resolution of Band 11 was scaled to 10 m. In order to determine
the water-covered areas from the MNDWI map, the MNDWI > 0.6 condition was applied.
The condition was set by visually comparing the Sentinel-2 RGB images to the derived
MNDWI map. The relatively high MNDWI threshold is caused by the low values of Band
11 (shortwave infrared) during wintertime. A threshold of 0.6 was sufficient to avoid a
large number of false-positive detections.

3.3. Accuracy Evaluation

The accuracy of open-water flood mapping from S1 was evaluated against water
mapped from S2 by estimating the overall accuracy and kappa hat coefficient. For accuracy
assessment, the Semi-Automatic Classification Plugin in QGIS was used [56]. The kappa
hat coefficient (κc) was estimated for the evaluation of classification accuracy between
water mapped from S1 and S2 datasets as follows:

κc =
pa − pe

1 − pe
(2)

where pa represents the overall percentage of agreements between S1 and S2 data in raster
and pe represents the percentage of chance agreement of S1 and S2 data.

The evaluation of accuracy in the case of water mapped under the vegetation is a
complicated task, as water under vegetation cannot be directly mapped from the optical
satellite images. The evaluation of water mapped under the vegetation was performed
using drone photos and observations (44 observation points) collected at the Soomaa test
site on 22 March 2019.

4. Results

4.1. Mapping Accuracy

The open water mapping accuracy from EW HV polarization data was evaluated
against the MNDWI index estimated from S2 imagery at three test sites (Table 6, Figure 4).
The accuracy of open water mapped from S1 EW HV polarization data at the Matsalu test
site was 97.8% with a kappa hat coefficient of 0.94 (Figure 4a, Table 6). The accuracy and
kappa hat coefficient of S1 IW VH data from the Alam-Pedja (96.70% and 0.84, respectively;
Figure 4c) and Matsalu (95.90% and 0.86, respectively; Figure 4b) test sites were very high,
while at the Soomaa test site, the corresponding numbers were lower, 93.60% and 0.62,
respectively (Figure 4d).

Table 6. Validation results. Accuracy and κc values for different test sites and imaging modes.

Location Date Imaging Mode/Polarization Accuracy (%) κc

Matsalu 24 September 2019 IW/VH 95.90 0.86
Matsalu 3–4 April 2019 EW/HV 97.80 0.94
Alam-
Pedja 5 April 2019 IW/VH 96.70 0.84

Soomaa 16 November 2017 IW/VH 93.60 0.62
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Figure 4. Validation results. (a) Open water mapped from S1 EW HV data vs. S2 MNDWI (4 April 2019), (b) Open water
mapped from S1 IW VH data vs. S2 MNDWI (23 March 2019), (c) Open water mapped from S1 IW VH data vs. S2 MNDWI
(5 April 2019), (d) Open water mapped from S1 IW VH data vs. S2 MNDWI (16 November 2017) and (e) Comparison of in
situ validation points (22 March 2019) with open water mapped from S1 VH data (24 March 2019) and water mapped under
vegetation from S1 EW HH data (23 March 2019).

The evaluation of the water mapped under vegetation was performed using drone
photos and observations collected at the Soomaa test site on 22 March 2019. Figure 4e
shows the water mapped from S1 images and observation points of the water. As seen in
Figure 4e, the validation points coincide with mapped water under vegetation from the S1
EW mode HH data. However, it must be noted that the applied methodology for mapping
FUV is less accurate (incidence angle normalization is not applicable) (Figure 2b). Still, we
see that statistical analysis enables the identification of areas where water accumulates in
forested areas.

4.2. Flood Extent and Frequency for Winter 2019/2020 in Estonian Floodplains

In Figure 5, open water and water under vegetation mapped from S1 data for winter
2019/2020 at our test sites are presented. The winter of 2019/2020 was extremely warm
in Estonia. The monthly average temperatures from November 2019 to March 2020 were
above zero (Figure 6). Climatological averages for December, January, February, and March
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have been negative in Estonia in the past (Figure 6). Due to positive air temperatures in
the 2019/2020 winter, the soils did not freeze, there was no permanent ice cover on inland
waters, and the precipitation was mostly rain. Due to the environmental conditions of
winter 2019/2020, open water could be mapped throughout the winter. The flooded area
(in hectares—ha) was estimated as the extent of water-covered area outside the official
shoreline within the region of interest shown in Figure 1.

  
(a)  (b)  

  
(c)  (d)  

  
(e)  (f)  

Figure 5. Cont.
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(g) (h)  

  
(i) (j) 

  
(k) (l) 

Figure 5. Floods mapped at test sites; (a) Open water frequency (%) at Alam-Pedja, (b) Frequency of water under vegetation
(%) at Alam-Pedja, (c) Extent of open-water flood (ha) and water level (cm) at Alam-Pedja, (d) Extent of flood under
vegetation (ha) and water level (cm) at Alam-Pedja, (e) Open water frequency (%) at Soomaa, (f) Frequency of water under
vegetation (%) at Soomaa, (g) Extent of open-water flood (ha) and water level (cm) at Soomaa, (h) Extent of flood under
vegetation (ha) and water level (cm) at Soomaa, (i) Open water frequency (%) at Matsalu, (j) Frequency of water under
vegetation (%) at Matsalu, (k) Extent of open-water flood (ha) and water level (cm) at Matsalu, (l) Extent of flood under
vegetation (ha) and water level (cm) at Matsalu.
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Figure 6. Meteorological data: monthly average air temperature (black) and corresponding climato-
logical average (blue).

At the Alam-Pedja test site, open-water floods occurred near the Emajõgi river. The
frequency of flood in pixel varied mainly between 5 and 25%; however, in some areas it
reached over 50% (Figure 5a). Figure 5c also shows the water level measured at the Tartu
hydrological station on the Emajõgi river and the estimated open-water flood extent. From
mid-February, the water covered area repeatedly exceeds the shoreline, and the maximum
open-water flood extent (>1000 ha) lasted from February 29 until 15 March 2020 (Figure 5c).
In Figure 5, the flood frequency (Figure 5b) and extent (Figure 5d) under the vegetation at
the Alam-Pedja test site are also shown. The extent of the flooded area under the vegetation
was about three times larger than that of the open-water flood, reaching up to 3500 ha on
13 March 2020 (Figure 5d). However, the frequency of FUV was lower than that of the
open-water flood, between 5 and 25%.

At the Soomaa floodplain, the largest flood extent was detected at the beginning of
the study period on 7 November 2019, when the open-water flood reached up to 230 ha
and the flooded area under the vegetation was 4400 ha (Figure 5g,h). Starting from mid-
November, the open-water flood decreased, and the following flood events occurred in
mid-December and mid-January. The last flood event lasted from mid-February until mid-
March (Figure 5g). The maximal water level measured at the Riisa hydrological station
corresponds well to the maximal open-water flood events (Figure 5g). The frequency of
open-water flooding remained below 50% in Soomaa. The flood extent analysis revealed
that floods detected under the vegetated area lasted through the winter. In the forested area
at the Soomaa test site, the floods were absent only during the second half of November
(Figure 5h). The flood frequency map presented in Figure 5f indicates the forested areas
(dark blue denotes flood frequency >75%) where floods occurred throughout almost the
whole duration of the winter.

At the Matsalu test site, large open-water floods outside the official shoreline (ETD)
could be detected throughout almost the whole duration of the winter (Figure 5k). The max-
imum open-water flood extent was detected in March, reaching up to 3000 ha (Figure 5k).
In Figure 5i, there is a highlighted area (red rectangle) where open-water floods were
observed most frequently (on more than 70% of images). The Matsalu test site has fewer
forested areas than the Alam-Pedja and Soomaa test sites. However, there are large areas
covered with coastal reed at this test site. The largest floods under the vegetation at this
test site are related to an area with coastal reeds (Figure 5j, red rectangle). At the Matsalu
test site, the floods under the vegetated area were smaller at 1300 ha (Figure 5k), compared
to the open area floods at 3000 ha (Figure 5l).

4.3. Causation Analysis between Flood Extent and Water Level Measured at Hydrological Stations

An analysis was performed with the aim of defining the critical water level at the
closest hydrological station that indicates the start of a flooding event (shoreline excess),
and to find site specific relationships between the measured water level and flood extent.
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At the Alam-Pedja test site, a polynomial relationship between the flooded area extent
and water level measured at the Tartu hydrological station (HS) was observed (Figure 7).
The correlation (r2) with water level was most significant (0.94) for the open-water flood
extent estimated from IW VH data; the correlation (r2) for EW HV was 0.85 (Figure 7).
The r2 between the flooded area extent under vegetation and the water level measured
at the Tartu HS was 0.51 (Figure 7). Our analysis indicated that open-water floodings at
the Alam-Pedja floodplain occur when the water level at the Tartu HS increases above
120 cm (Figure 7, red line). Additionally, there was a significant correlation (0.51) between
the extent of the flooded area under vegetation and the water level measured at the Tartu
HS. It was not possible to define the precise critical water level for the Tartu HS at which
flooding under vegetation starts (Figure 7).

Open water Water under vegetation 
EW + IW EW IW EW 

Alam-Pedja flood vs. water level at Tartu HS 

    
Soomaa flood vs. water level at Riisa HS 

    
Matsalu flood vs. water level at Kasari HS 

    

Figure 7. Correlation between flooded area and water level at the closest hydrological station. FA: flooded area extent; WL:
water level. Red line denotes the critical water level at which coastline excess occurs and flooding starts.

The relationship between the water level at the Riisa HS and the flooded area extent
at Soomaa was polynomial (Figure 7). The correlation coefficient (r2) between the Soomaa
open-water flood extent and the water level measured at the Riisa hydrological station was
0.62 for EW HV data and 0.57 for IW VH data (Figure 7). The correlation (r2) between the
water level measured at the Riisa hydrological station and the flooded area extent under
vegetation was 0.29 (Figure 7). Our analysis showed that open-water floodings occur when
the water level at the Riisa HS increases above 160 cm (Figure 7, red line).

While the relationship between the water level and the extent of the flooded area was
polynomial at the Alam-Pedja and Soomaa test sites, the relationship was linear at the
Matsalu test site. The r2 between the open-water flood extent at the Matsalu site and the
water level measured at the Kasari hydrological station was 0.34 for IW VH data and 0.38
for EW HV data (Figure 7). There was no correlation between the water under vegetation
and the water level measured at the Kasari HS (Figure 7). At the Matsalu test site, floods
occurred throughout the winter, and it was not possible to define a precise critical water
level at the Kasari HS that could be related to the beginning of flooding.
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5. Discussion

Previous studies have shown the advantages of incidence angle dependent thresh-
olding in the case of TerraSAR-X and Envisat ASAR datasets [18,54]. Our operational
setup for flood mapping from S1 data for Estonian floodplains integrates incident angle
dependent water thresholding and post-processing using auxiliary information from the
Estonian Topographic Database. Post-processing using information from the ETD enables
the elimination of water lookalikes. We evaluated the open water mapping accuracy for
IW mode VH polarization at our test sites. There was good agreement between the water
mapped from IW VH data and the S2 MNDWI index, with an accuracy as high as 96.70%
and a kappa hat of 0.86 (Table 6). The accuracy of flood mapping using S1 VH polarization
has also been evaluated by Twele et al. [23], who obtained a kappa hat coefficient of 0.88
and an accuracy of 94%. While their operational methodology applied for flood mapping
differs from that used in our study, the overall accuracy of the flood mapping is comparable.
In the study conducted by Twele et al. [23], the split based thresholding for water mapping
was used together with the HAND index in the post-processing step.

During the winter season, the default imaging mode of S1 over the Baltic Sea region is
the EW regime. To delineate the information about flooded areas in Estonia, an algorithm
for open water mapping for the EW regime was established and applied. The open water
mapping accuracy from EW HV polarization data was 97.8%. By including the information
from EW data, we could delineate the flood maps approximately using 55 images from
each test site. Combining the information from IW and EW regimes, we analyzed 83 images
from the Alam-Pedja test site, 93 from the Soomaa test site, and 64 from the Matsalu test
site for open water mapping for the period of 1 November 2019–31 March 2020 (Figure 5).
Thus, the proposed flood mapping method was tested on a large and diverse dataset.
The method developed and proposed in the current study has potential for operational
mapping of floods in Estonia and neighboring countries (e.g., Latvia).

The winter of 2019/2020 was extremely mild in Estonia, and there was no permanent
ice on the rivers, nor was there snow cover. The monthly averaged air temperature was
above 0 ◦C at all meteorological stations. Our analysis of flood duration and extent showed
that in the winter of 2019/2020, floods were observed almost through the whole period of
winter. However, the dynamics of the floods differed between the test sites. The maximum
flooding observed at Alam-Pedja occurred in March, while at Soomaa and Matsalu several
flood events were detected during the winter of 2019/2020. Analysis of the open-water
flood extent and water level measured at the closest hydrological station confirmed the
correlation between these variables. The correlation was more significant (r2 < 0.6) for
the inland riverside floodplains of Alam-Pedja and Soomaa. For the coastal floodplain at
Matsalu, the correlation was 0.34, indicating that the river gauge data cannot be used as
proxy for flood extent as the coastal flood was significantly influenced by marine processes
(not only by riverine hydrology and precipitation). The analysis also revealed that at
Alam-Pedja, floods occur when the water level rises above 120 cm at the Tartu HS. At the
Soomaa test site, floods occur when the water level rises above 170 cm at the Riisa HS. At
the Matsalu test site, open water outside the official coastline could be observed throughout
the winter, and we could not define the precise water level at the Kasari HS that results in a
flooding at the floodplain. The Matsalu floodplain is located at the outflow to the Baltic
Sea; therefore, it is also influenced by the water level in the sea.

Defining the water level at the closest hydrological station from which the floods
start (shoreline excess occurs) can provide information for risk mitigation. Hydraulic
modelling is a common tool used in flood risk estimation [57]. However, for hydraulic
and hydrological modelling, detailed information about riverbed topography, a digital
elevation model of the landscape, and a flow rate are needed. These datasets are not
always available; therefore, analysis of remote sensing information in combination with
standard gauge data can give valuable information from a single source. S1 time series
analysis with local gauge data has been used to determine the positional accuracy of
riverside embankments [58]. A study conducted by Wood et al. [58] also pointed out the
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possibility of determining the positional accuracy of embankments using only a sequence
of S1 imagery and gauge data without using topographic data.

In the winter of 2019/2020, several floods in forested areas that harmed economic
activities were also reported in the Estonian press [41]. However, the economic loss caused
by wintertime flooding in Estonia is unknown. The current study indicated that at the
inland riverside floodplains of Soomaa and Alam-Pedja, the flooded areas under vegetation
reached up to 4500 ha and were about three times larger than open-water floods at these
test sites. Voormasik et al. [30] analyzed the flood extent at Alam-Pedja from TerraSAR-X
imagery and estimated the area of flooded forest to be about three times larger than the
extent of the open-water flood. Studies indicate that an evaluation of the extent of flooded
forest near inland riverbank floodplains is necessary for the estimation of the total flood
extent and its economic consequences. Our analysis also revealed that in the case of the
inland water floodplains of Alam-Pedja and Soomaa, flood under vegetation could be
correlated with the water levels measured at the closest hydrological station.

6. Conclusions

The current paper presents an automatic water mapping method for S1 EW and IW
modes by compiling local incident angle thresholding and the application of ancillary
information from the Estonian Topographic Database in a post-processing scheme. The
proposed method was used to analyze the flood duration and extent in Estonian floodplains
during the extremely mild winter of 2019/2020. Our analysis revealed the areas that are
most frequently inundated in Estonian floodplains. The observed flood maps allowed us
to evaluate the connections between the extent of the flooded area and the water level
measured at the closest hydrological station. The study enabled us to determine the water
level at which floods occur at the floodplains and to provide valuable information for risk
mitigation purposes (standard water level readings from automatic stations are available
with a ten-minute interval). The analysis of the extent and frequency of wintertime floods
can form the basis for various economic analyses, evaluations of revenue foregone in the
forest industry due to mild winters, and evaluations of stress to northern boreal alluvial
meadows. The analysis also contributes to the implementation of flood risk assessment and
management directive in Estonia [59]. Moreover, the proposed method can be implemented
for operational flood mapping in Estonia and neighboring countries.
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Abstract: Agricultural practices are heterogeneous among farmers in the face of climate hazards.
Structural and material resources as well as risk preferences explain some of this heterogeneity, but
little is known about how psychological factors associated with the decision-making process may
explain differences in practices among farmers. The aim of this study was to understand whether
decision-making process factors help explain the heterogeneity of a specific practice—the date of
first irrigation—among maize farmers, along with material and structural factors. We conducted
semi-directed interviews with 35 farmers who irrigated maize in southwestern France. We analyzed
discriminating factors of the decision-making process, such as reactivity (i.e., capacity to change
plans), deliberation (i.e., level of internal information used to make decisions) and assistance (i.e., level
of external information used to make decisions). We used two complementary statistical methods
(linear regression and regression trees) to analyze the database. Our study confirms the influence
of material and structural factors, and also reveals the strong influence of decision-making process
factors. A high level of reactivity is associated with adaptive behavior. Moreover, using decision-
support tools and technologies helps farmers to manage the use of water resources. These elements
could be used by advisors and public policy-makers in the agriculture sector to improve adaptation.

Keywords: adaptation; water scarcity; adaptive capacity; decision-making; irrigation practices;
maize-cropping system

1. Introduction

Farmers today are facing climate hazards such as floods, droughts and/or frost. In
central and southern Europe, farmers are experiencing an increase in the frequency of
droughts, with negative impacts on crop productivity [1]. In France, 2011 has been one
of the ten driest years in 50 years so far, with a hydric deficit mean of more than 10%
and a mean temperature exceeding the reference by 2.6 ◦C (1971–2000) [2]. The context of
agricultural production has become increasingly volatile and unpredictable [3]. Farmers
need to adapt to a changing environment with new constraints, such as water scarcity [4].
Their decisions regarding irrigation strategies directly influence the quantity and quality of
natural resources [5]. The impact of droughts is particularly severe for summer-irrigated
plants, such as maize (Zea mays L.).

In France, grain maize is the second most frequently produced cereal after wheat
(Triticum aestvum), with a national production of 13.5 million t in 2020 [6] over an area of just
over 1 million ha, 35% of which was irrigated [7]. The decrease in rainfall directly affects
maize yield since it is sensitive to hydric deficit, especially at reproductive development
stages. Adaptation strategies, such as changing the amount, timing and frequency of
irrigation, can avoid yield losses and make it possible to save water [8,9]. The start of the
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irrigation season is a key element for crop development and is a milestone that should
not be missed; it will make it possible to target high yields and ensure the continuation of
irrigation practices. Focusing on the date of first irrigation is therefore a major challenge for
farmers in terms of water management. The date of first irrigation for maize usually varies
with the region. However, it may also vary from farm to farm in a similar context of water
availability. Understanding explicative factors of this heterogeneity is key to enhancing
adaptation in agriculture.

Many studies have sought to explain the heterogeneity of farmers’ practices. Most of
them considered structural and material factors such as farm characteristics and agricultural
practices. Several studies attempted to understand farming system management based on
the level of resources [10], intensity of agricultural practices [11,12], equipment and socio-
economic aspects [13]. However, practices remain heterogeneous even when farmers have
similar production situations [14]. For example, differences in chemical input practices
have been explained in part by farmers’ personal characteristics and their production
situation [15,16]. Moreover, farmers’ decisions are not completely based on structural and
material factors [17]. Recent studies have hypothesized that, in addition to structural and
material factors, psychological factors could also explain the heterogeneity of practices
among farmers [18]. It appears that two types of psychological factors can explain such
heterogeneity: risk preference (i.e., a farmer’s degree of reluctance to perform potentially
risky practices [19,20]), and decision-making process factors (i.e., psychological factors
specific to the decision-making process). The decision-making process is the process by
which an individual commits to following a choice when alternatives exist, even when
these alternatives are not known or analyzed [21]. Few studies have focused on the
influence of decision-making process factors on the heterogeneity of practices [22–25].
Some studies modeled the decision-making process in order to better understand farmers’
behavior [18,25,26]. Daydé (2017) developed a conceptual model of the decision-making
process and hypothesized that the heterogeneity of the process among farmers explained
the heterogeneity of practices. His case study focused on fungicide doses applied to wheat.
In Daydé’s (2017) model, the farmer’s decision-making process was based on three decision-
making process factors: reactivity (i.e., the farmer’s capacity to change his plans), assistance
(i.e., amount of external information used by the farmer), and deliberation (amount of
internal information used by the farmer).

Our study aimed to explain the heterogeneity of the date of first irrigation of maize
farmers in southwestern France. Our objectives were to study the role of structural and
material factors as well as psychological factors through risk preferences and the three
decision-making process factors (reactivity, assistance and deliberation). Our study was
based on semi-directed interviews with maize farmers. We begin by describing the concep-
tual framework, survey design and the methods for analyzing the survey data. We then
present and discuss the main results, with particular focus on psychological factors specific
to the decision-making process and their influence on farmers’ decisions to start irrigating.

2. Materials and Methods

2.1. Conceptual Framework

Irrigation practices can be explained by the context within which the farm is exposed.
The changing context (price and climate variability) often leads to changes in practices.
Price and climate variability are external factors that constitute the main driving forces.
However, within the same context, farmers can have different practices. The adoption of
practices can also be explained by internal factors, i.e., factors directly linked to the farming
system and the farmer (e.g., structure of soil, age of the farmer). The conceptual framework
(Figure 1) is based on the association of material, structural and psychological factors
previously identified as potential factors that explained the heterogeneity of practices. It
assumes that both observable and non-observable factors contribute to the heterogeneity
of practices.
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Figure 1. The conceptual framework used to analyze the observable and non-observable factors that a farmer uses to choose
the date of first irrigation of an irrigated grain maize crop.

Observable factors (i.e., structural and material; [27]) are categorized into four groups:
farm characteristics, agronomic practices, irrigation practices and farmers’ personal charac-
teristics (i.e., age, education level, experience as a maize grower). For the non-observable
factors, we used the conceptual framework developed by Martin-Clouaire (2017), which
considers risk preferences and decision-making process factors. Daydé’s (2017) three
decision-making process factors are defined as follows:

1. Deliberation: the amount of internal information used by the farmer for decision-making;
2. Assistance: the amount of external information used by the farmer for decision-making;
3. Reactivity: to the farmer’s capacity to change his plans in response to new information.

2.2. Implementation of the Conceptual Framework
2.2.1. Survey Design

One challenge of the survey design (Figure 2) was to identify ways to obtain subjective
data related to non-observable factors. To do this, we used a variety of elicitation methods
in the survey questionnaire [28]: a lottery game to assess the level of risk aversion, scenarios
to assess the level of reactivity, and a mind map and role-playing to assess the level of
deliberation. The level of assistance was assessed using direct elicitation of information by
asking a variety of questions. Observable factors were also assessed using direct elicitation
of information. We asked about financial data at the end of the interview, when the farmer
was more comfortable and more inclined to provide important and confidential data.
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Figure 2. Survey structure and elicitation methods to obtain structural data (dark gray), farming practices data (light gray),
and psychological data (white).

2.2.2. Structural and Farming Practice Data

Structural and material factors can be directly measured using closed Likert scales
and multiple-choice questions. We captured farm characteristics using indicators such as
area, soil type and slope. We also asked about general agronomic practices such as crop
sequences, the type of maize grown, percentage of maize in the crop sequence and the
use of tillage. We recorded farmers’ personal characteristics using indicators such as age,
level of education and experience with maize production. Finally, we focused on irrigation
practices, including the equipment used, duration of irrigation and the volume of water
per irrigation period. Indeed, we assumed that these elements could influence the date of
first irrigation. For example, if there is little equipment, irrigation time would be extended,
and the farmer would therefore need to start the irrigation campaign earlier. To identify
the date of first irrigation, we developed a maize-cropping scenario for a typical year in the
temperate climate of the Occitanie region of France and without water restrictions. The
interviewer showed temperature, rainfall and evapotranspiration graphs to the farmers
and asked them which day they would start irrigating.

2.2.3. Psychological Data

As mentioned, we used the lottery game, role-playing and scenarios as elicitation
methods to assess psychological factors. We used a variety of inquiry methods to obtain
redundant and complementary data, which minimizes each method’s bias and offsets its
limits by using other methods, based on the principle of data triangulation [28].

To assess risk preferences, we used a lottery game developed in experimental eco-
nomics [19]. We asked the farmers to choose one of nine lottery games to play (Appendix A).
Each lottery game involved two possible outcomes. The game they chose revealed their
level of risk aversion. We then used different approaches to assess the three decision-
making process factors (Table 1).

Table 1. Elicitation techniques and indicators for assessment of the three decision-making process factors: deliberation,
reactivity and assistance. Assistance is divided into professional assistance, networking assistance and digital assistance.

Decision-Making Process Factors Indicator for Assessment Elicitation Technique

Deliberation Number of pieces of information used to
make a decision

Two elicitation techniques: (i) a mind map to
obtain a list of information that the farmer
used to choose the date of first irrigation; (i) a
role-playing activity [29] consisting of placing
the farmer in a situation that required making
a decision with no information at the outset.
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Table 1. Cont.

Decision-Making Process Factors Indicator for Assessment Elicitation Technique

Reactivity
Number of intention changes (i.e., the
number of times an individual changes
his choice)

Farmers were asked to express their intentions
in scenarios in which water availability could
have major impacts on their objectives. We
designed four scenarios based on annual
weather conditions (temperate year vs. dry
year) and on the potential restriction of the
water quota (none vs. 25% restriction).

Professional assistance Number of advisors Direct questions

Networking assistance Number of other maize farmers with
whom the farmer interacted Direct questions

Digital assistance
Number of technologies; the use of sensors,
decision tools or weather stations; and the
number of weather sources.

Direct questions

2.3. Case Study

The case study was based in southwestern France (Figure 3). Maize has high economic
and cultural value in southwestern France but requires more water in summer than many
other field crops. Maize farms in this region use an average of 54,000 m3 of water per year.
Most of the maize-growing area is irrigated (i.e., 90%, for farms specialized in field crops).
The increase in droughts in summer leads to a greater need for irrigation of maize, making
these farms economically dependent on irrigation in six out of ten years on average [30].

Figure 3. Location of the Tarn, Gers and Haute-Garonne departments in the Midi-Pyrénées sub-region of the Occitanie
region of France.

To recruit participants for the survey, the regional Chamber of Agriculture gave us
contact information for 69 farmers who grew irrigated maize (waxy, popcorn, grain or
seed). We contacted them and 35 farmers responded positively. Their farms were located
in the administrative departments of the Tarn (nine farms), the Gers (14 farms) and the
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Haute-Garonne (11 farms) (Figure 3). Interviews were conducted in April, May, September
and October 2019. Each interview lasted 1–4 h.

2.4. Data Processing and Analysis

The data (quantitative and qualitative) collected in the surveys were entered in a
Microsoft Excel® file (35 rows (farmers) × 184 columns (variables)) for further analysis.
Before analyzing the data, we cleaned the data in several steps (Figure 4). Step 5 con-
sisted of sorting the 44 variables into the eight groups of observable and non-observable
factors: farmers’ characteristics, farm characteristics, agronomic practices, irrigation prac-
tices, risk preferences, reactivity, assistance and deliberation. When variables in a group
remained correlated (R2 > 0.4 for quantitative variables and p-value < 0.05 for qualitative
variables), we selected no more than three variables with the greatest influence on the date
of first irrigation. Keeping a few variables in each group allowed us to represent each
group fairly, and this final step left one response variable (the date of first irrigation) and
24 explanatory variables.

Figure 4. The data cleaning and selection procedure. d1i: date of first irrigation.

Two statistical models were then used to model the influence of these explanatory
variables on the date of first irrigation: linear regression and a regression tree (Table 2).
The linear regression was performed using stepwise selection (forward and backward).
We selected and tested several combinations of the 24 variables to find the best set of
explanatory variables. Since linear regression models consider variables additively, without
considering non-additive effects, combined effects or interactions, we built a regression
tree [31].). Regression trees thus consider local interactions among variables.

Statistical analyses were performed using R software ([32]. We used a classification
approach (ClustOfVar package ([33]) and the FAMD function (of the FactoMineR package)
to compare all variables and identify redundant information.
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Table 2. Characteristics of the two statistical models: linear regression and regression tree.

Regression Tree Linear Regression

Definition
The regression tree sequentially divides responses
according to the most relevant explanatory variable
(i.e., minimizes the locally explained variance)

Linear regression creates many combinations of variables by
adding or removing them until it finds the best combination.

Parameters
Stopping rules (minimum number of observations to
separate a node (minsplit) = 10, minimum number of
observations, into a leaf (minbucket) = 3)

Use of the Akaike Information Criterion to minimize
over-fitting. Tests on residuals were performed to check
independence (Durbin-Watson test), normality
(Shapiro-Will test) and homogeneity (Breusch-Pagan test).

R functions Rpart function in the rpart package of R (based on
the CART model) Lm and step functions of R

3. Results and Discussion

3.1. Farm Characteristics

Our sample was representative of French farms (Table 3) in terms of the mean age of
farmers, legal status and water sources. However, farms in our sample had more utilized
agricultural area (UAA) and mean irrigable area than the mean of the Midi-Pyrénées
(Midi-Pyrénées is part of the new Occitanie region) region. Having larger farms explained
the bigger equipment needed for irrigation (center pivot) and the use of a larger volume
of water. Nineteen farmers have received post-secondary education (at least 2 years).
Most of the farmers grew grain maize (24/34), did not till the soil (24/34) and did not
irrigate at sowing (20/34). Although our sample is not entirely representative of the
Occitanie region, potential results of the study can provide knowledge about maize farming
systems in Occitanie, in particular, for large farms in terms of surface area and irrigation
water consumption.

Table 3. Characteristics of surveyed and reference farms. Reference data are at the regional scale, when available (former
Midi-Pyrénées region, corresponding to the western Occitanie region), or the country scale (France). UAA: utilized
agricultural area.

Characteristic Sample Reference Scale Source

Mean (±SD) age (years) 49.8 (±12.0) 49.3 France, all types of farms [34]
Legal status Limited-liability farm (13/34) Limited-liability farm France, field crops [35]

Mean (±SD) UAA (ha) 171 (±77) 83 Midi-Pyrénées, field crops [36]
Mean (±SD) irrigable UAA (ha) 87 (±58) 28 Midi-Pyrénées, field crops [36]

Water sources
Watercourses (rivers, canals)
(21/34) and water storage
(hillside lakes) (14/34)

Watercourses and
water storage Midi-Pyrénées [36]

Irrigation materials
Sprinkler trolleys (19/34) and
center pivots (15/34)

More sprinkler trolleys than
center pivots Midi-Pyrénées [36]

Mean water volume (m3/ha/year) 2302 1725 Midi-Pyrénées [37]

3.2. Description of the Variables

The date of the first irrigation ranged from 29 May to 20 July, with a median of 21 June
(Figure 5). With a range of 52 days, the date of first irrigation had high heterogeneity. Most
dates of first irrigation ranged from 17–28 June (25/34).

Of the 24 explanatory variables selected, those for structural and material factors
were mainly farm characteristics (5) and agronomic practices (5), followed by irrigation
practices (4) and farmer’s characteristics (3). In comparison, the variables for psychological
factors were mainly assistance (4), followed by reactivity (2), deliberation (2) and risk
preferences (1) (Table 4).
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Figure 5. Distribution of the dates of first irrigation for interviewed farmers.

Table 4. Classification, responses and descriptions of the 24 explanatory variables.

Group of Variables Variable Name Response (Mean or by Class) Description

Farmer’s characteristics
years-maize Mean = 32 Number of years of experience with maize production

education-level PS: 19, P: 14, O: 1 Level of education (PS: post-secondary, S: secondary, O: other)

Farm characteristics

department G: 14, HG: 11, T: 9 Administrative department where the farm is located (G:
Gers, HG: Haute-Garonne, T: Tarn)

UAA Mean = 171 Utilized agricultural area (ha)

soil-boulb Yes: 14, No: 20 “boulbène” soil (vernacular name for sandy-clay Luvisol)
or not (yes, no)

soil-water-storage Low: 11, Moderate: 20, High: 3 Level of soil water-holding capacity (low to high)

slope-level Low: 22, Moderate: 1, High: 11 Slope (low to high) (The five initial modalities (score from 1
to 5) were converted to three levels (low, moderate, high))

Agronomic practices

maize-type p: 6, g: 23, s: 3, f: 1, w: 1 Type of maize (g: grain, s: seed, p: popcorn, w: waxy, f: fodder)

maize-main Yes: 14, No: 20 Whether or not maize is the main crop (yes, no)

tillage Yes: 11, No: 23 Whether or not the farmer practices tillage (yes, no)

sow-date Early: 23, Middle: 4, Late: 7 Date of sowing (early to late)
29 May ≤ Early < 16 June ≤ Middle < 4 July ≤ Late < 20 July

Irrigation practices

sow-irrigat Yes: 14, No: 20 Whether the farmer practices irrigation at sowing or not
(yes, no)

n-days-cycle Mean = 6 days Number of days in the irrigation cycle

volume Mean = 230 mm Volume of water used for irrigation (mm)

equip-irrig Pivot: 15, Trolley: 19 Type of equipment used for irrigation (pivot, trolley)
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Table 4. Cont.

Group of Variables Variable Name Response (Mean or by Class) Description

Risk preferences risk-level Low: 6, Moderate: 16, High: 12
Level of risk aversion (low to high) (The nine Initial
modalities (score from 1 to 9) were converted to three levels
(low, moderate, high))

Reactivity

n-intentions Mean = 4 Number of intention changes when deciding the date of
first irrigation in different scenarios

irrigation-gap Mean = 34 days Interval between the earliest and latest date the farmer
would start irrigating

Assistance

n-maize-farmers Mean = 8 Number of other maize farmers with whom the farmer
shares irrigation information

weather-station Yes: 16, No: 18 Whether or not the farmer has a weather station (yes, no)

n-weather-sources Mean = 2.5 Number of weather information sources the farmer consults

n-technologies Mean = 1.1 Number of technologies the farmer uses to obtain
weather information

Deliberation

n-info-question Mean = 2.4 Number of pieces of information the farmer uses to make
irrigation decisions (direct question)

n-info-role play Mean = 4.2 Number of pieces of information the farmer uses to make
irrigation decisions (role-playing)

3.3. Influence of Structural, Material and Psychological Factors
3.3.1. Regression Models Converged for Six Major Variables

The linear regression model selected 12 of the 24 variables to explain the date of
first irrigation (Table 5), while the regression tree contained six variables for agronomic
practices, irrigation practices, reactivity and assistance. Three of the six variables selected
by the tree were decision-making process factors. All variables in the regression tree were
also in the linear regression model.
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Table 5. Statistical results of the two types of regression models that explain the date of first irrigation. Only variables
selected for at least one of the two methods are shown (see Table 3 for a description of the variables). Significance codes: 0 <
p < 0.001: ***; 0.001 < p < 0.01: **; 0.01 < p < 0.05: *.

Group of
Variables

Variable and
Response

Linear Regression Model

Position in the
Regression Tree

Convergence of
the Two ModelsSignificance

Influence on
the Date of

First Irrigation

S
tr

u
ct

u
ra

l
a

n
d

m
a

te
ri

a
l

fa
ct

o
rs

Farmer’s
characteristics years-maize 0.00612 ** + N/A

Farm
characteristics

Department_HG 0.00336 ** + N/A
Department_T 0.01607 * + N/A

Agronomic
practices

maize-type_g 0.04933 * + 3a confirmed
maize-type_p 0.00114 ** + 3a confirmed
maize-type_s ns + 3a
maize-type_w ns + 3a

Tillage _yes ns + 2

Irrigation
practices

Sow-irrigat_yes 0.04764 * + N/A
Volume 0.01508 * − 4 inversed

Equip-irrig_pivot ns − N/A

Ps
yc

ho
lo

gi
ca

l
fa

ct
or

s

Risk
preferences

risk-level_high 0.00863 ** − N/A
risk-level_moderate Ns − N/A

Reactivity n-intentions 6.72 × 10−6 *** + 1 confirmed

Assistance
n-maize-farmers 0.01128 * − 3b confirmed

weather-station_yes 0.01065 * + N/A
n-technologies ns − 5 inversed

In the linear regression model, the date of first irrigation was significantly influenced
by the number of years of experience with maize production, level of risk aversion, de-
partment, type of maize grown, irrigation at sowing, total volume of water used during
irrigation, number of intention changes, number of other maize farmers with whom the
farmer interacted, and number of weather stations (Table 3). In comparison, the variables
in the regression tree, presented by decreasing influence, were the number of intention
changes, tillage, maize type, number of other maize farmers with whom the farmer in-
teracted, total volume of water used during irrigation, and number of technologies used
to obtain weather information. The first branch of the regression tree, the mean date of
first irrigation for farmers with high reactivity, is earlier than the sample mean (9 July vs.
24 June). On the other hand, among farmers with low reactivity, tillage application tends
to advance the date of first irrigation. Moreover, farmers with big networks tend to irrigate
earlier than others (Figure 6).

To offset the limits of each model (e.g., linearity and distribution hypotheses, multi-
collinearity, complex interactions, local effects), we compared the results of the models
before determining how influential each variable was. The variables selected by both
models were the type of maize grown, total volume of water used during irrigation, number
of intention changes and number of other maize farmers with whom the farmer interacted.
As expected, structural and material factors influenced the date of first irrigation, but
decision-making process factors (levels of reactivity and assistance) also had an influence
in both models. Notably, reactivity was the variable with the most significant influence in
the regression tree and the linear regression model (p < 0.001).

The linear regression model explained 77% of the variance (adjusted R2 = 0.77). The
tests of residuals of independence (Durbin–Watson test), normality (Shapiro–Will test) and
homogeneity (Breusch–Pagan test) were satisfactory, as was the reliability of the regression
tree model, probably due to the choice of a conservative stopping rule (minsplit = 10) to
minimize the error.
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Figure 6. The regression tree model that explained the date of first irrigation. Information on lines includes thresholds or decision
variables. Letters in parentheses are variable classes (C: agronomic practices; D: irrigation practices; F: reactivity; G: assistance).

3.3.2. Influence of Structural and Material Factors

All groups of structural and material factors influenced the date of first irrigation in at
least one model. The farmer’s experiences (Farmer’s characteristics) influenced the date of
first irrigation in the linear regression model. Experience increases the ability to observe
changes in the environment and to rapidly and efficiently make decisions [26,38,39]. The
more experienced the farmer was, the later the farmer started irrigating.

The department (Farm characteristics) also influenced the date of first irrigation in
the linear regression model. Farmers in the Tarn and Haute-Garonne departments tended
to start irrigating later than those in the Gers (mean of +6 and +10 days, respectively).
Differences in soil and climate conditions, such as a drier spring season in the Gers (40 mm
less rainfall on average), could explain the heterogeneity of the date of first irrigation.

Agronomic practices are of primary interest. In both models, the type of maize had
a strong influence on the date of first irrigation. For example, popcorn maize, which
has a less dense canopy [40], was associated with a later date of first irrigation in both
models. According to the regression tree, seed maize was irrigated later than grain or
fodder maize. Later sowing dates for seed maize can explain these later dates of first
irrigation. Conversely, fodder maize was associated with an earlier start of irrigation since
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it is harvested immature and irrigated to optimize early vegetative growth. The influence
of grain maize differed between the models due to differences in their mathematical
functioning. Maize grain was significantly (p = 0.0493) associated with a later date of
first irrigation in the linear regression model but with an earlier date of first irrigation
in the regression tree. We considered the regression tree to be more relevant since the
influence of maize type was based on interactions with previously chosen variables (e.g.,
tillage, psychological factors). Since the type of maize was significantly correlated with the
department (p = 0.005), soil and climate conditions in the department could also explain
indirect effects.

Tillage, another agronomic practice, was associated with a later date of first irrigation
in the regression tree (a mean of +8 days) but not in the linear regression model. Direct
effects of tillage on water availability for a crop are complex and depend on local conditions
and practices since tillage can decrease water infiltration into the soil as well as increase
evaporation [41,42]. Tillage can also have an indirect effect since it strongly influences other
influential variables in the models, such as cover crop and irrigation at sowing. Tillage
was negatively correlated with the variable cover crop (p = 0.010) since tillage is performed
mainly in autumn in this area and, conversely, was positively correlated with irrigation at
sowing (p = 0.007).

Irrigation at sowing (irrigation practices) was positively correlated with the date of
first irrigation and was significant in the linear regression model. Farmers who irrigated
at sowing started irrigation later. Irrigation at sowing provides additional water for the
maize, which decreases the need for irrigation later.

In both models, the volume of water used for irrigation significantly influenced the
date of first irrigation, but the direction of the effect differed. In the linear regression model,
increasing volume was associated with an earlier date of first irrigation; the more water the
farmer has, the earlier he will irrigate because he does not need to save water since there is
no risk of being water-limited later. Conversely, in the regression tree, decreasing volume
was associated with an earlier date of first irrigation. Since the volume variable appeared
at the end of the tree, only a few of the farmers were concerned by this result, including
those who grew fodder maize, who irrigate earlier.

We thus confirmed the influence of farmers’ experience, farm location and agro-
nomic practices. The influence of structural and material factors was consistent with the
literature [10,11,13,18].

3.3.3. Influence of Psychological Factors

As expected, farmers’ risk aversion was negatively correlated with the date of first
irrigation: a farmer with greater risk aversion tended to start irrigating earlier. A farmer
who is risk-averse will deliberate over a decision as much as possible and will start
irrigating earlier to avoid the risk of hydric stress on maize plants before it occurs. Several
studies have demonstrated the influence of risk aversion on decision-making [19,26,43,44].

A major result for decision-making process factors was the key influence of the level
of reactivity (i.e., number of intention changes). Thus, the more reactive the farmer was, the
later the farmer started irrigating. In a previous study of factors that influence fungicide
applications on soft wheat [25], a high level of reactivity was associated with adaptive
behavior. Similarly, Rodriguez et al. (2011) showed that reactivity (or plasticity) provided
greater resilience to change than anticipation (or rigidity) when facing uncertainty since it
improved adaptive behaviors and strategies [45].

The level of assistance also had a significant influence. The number of other maize
farmers with whom the farmer interacted was negatively correlated with the date of first
irrigation in both models. This suggests a mimetic effect: interacting with a larger network
of farmers increases the likelihood that one of the farmers in the network will have started
irrigating. Several studies indicate that the size of the social network increases the adoption
of adaptive behaviors [22,46].
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Unlike human factors, technological assistance variables were positively correlated
with the date of first irrigation. Farmers who had a weather station or used multiple
information technologies were more likely to start irrigating later. The weather-station
variable was also significantly correlated with the use of decision-making tools (p = 0.03) or
weather sensors (p = 0.03). We concluded that all types of tools that provide accurate and
specific information about the weather could postpone the date of first irrigation. In the
same way, Berthold et al. [47] also showed that the use of irrigation tools make it possible
to optimize water by making informed decisions. These opposite effects of different types
of assistance variables are noteworthy; they suggest that human assistance advances the
date of first irrigation, while technological assistance postpones it. In either case, assistance
leads to adaptive behaviors.

No variable related to deliberation appeared in either model; thus, unlike reactivity and
assistance, deliberation did not influence the date of first irrigation. This result differs from that
of Daydé (2017) for whom deliberation increased the adoption of more sustainable practices.

3.3.4. Synthesis of Results

Figure 7 summarizes results regarding factors that influence the decision of the date
of first irrigation.

Figure 7. Variables identified as influential factors for the decision of the date of first irrigation.

3.4. Advantages and Disadvantages of the Method

The use of different inquiry methods allowed us to identify robust indicators to
describe the decision-making process. We removed the subjectivity of personal statements
by using methods such as role-playing and different scenarios with farmers.

Preselecting variables based on correlation and agronomic expertise was important to
minimize the types of bias that collinear variables can create in linear regression models:
high variance in predictors, large or unstable regression coefficients, and coefficient signs
that run counter to intuition [48] Because predictors change when explanatory variables
are strongly correlated, we preselected only independent variables. However, we could not
eliminate all complex interactions and correlations that can disturb linear regression models.
To obtain a relatively equal distribution of variables among the groups, variables were
excluded only if they were simultaneously in the same group and had high correlations
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between each other (i.e., p < 0.05 for qualitative variables, and Pearson correlation >0.4
for quantitative variables). We used a regression tree to offset these limits of the linear
regression model, but it was subject to more local effects since it divided observations into
groups and sub-groups until the stopping rule was activated. In particular, variables at
the end of the tree must be carefully interpreted because, in this study, they were based
on 3–4 individuals. Deep learning from our database was challenging due to its small
sample size.

We obtained more robust results by using two types of regression models that have
complementary advantages and disadvantages. Although linear regression and regression
trees are based on different statistical approaches, each yielded similar results, particularly
the strong influence of decision-making process factors (assistance and reactivity) on the
date of first irrigation. However, the models sometimes yielded different results due to
their functioning or initial descriptions of the data. For example, regression trees can
highlight local effects of variables, such as the volume of irrigation water, which obscure
the overall influence of these variables for the entire sample. The linear regression model
always considered all observations of the sample. However, when two variables were
strongly correlated, it selected only the one that best explained the date of first irrigation,
and this approach can ignore the influence of the second variable.

The main disadvantage of this study is its relatively small sample size (34 farmers).
Since the sample is not entirely representative of the region, the results cannot be considered
generic. However, they provide knowledge about the adaptive capacity of large maize
farming systems. Moreover, our goal was not to describe or predict behaviors of farmers in
the region, but to test the hypothesis that decision-making process factors can influence
irrigation practices. We met this goal since we revealed the strong influence of reactivity
and assistance on the heterogeneity of the date of first irrigation. For example, the linear
model selected the number of intention changes because it had the largest influence on the
date of first irrigation, but it ignored the number of technologies because it was redundant.

We studied the influence of multiple factors on the date of first irrigation, which is
only one aspect of farmers’ irrigation practices. Thus, it could be interesting to study other
aspects such as irrigation equipment or duration, which would make it possible to test the
influence of decision-making process factors on the entire irrigation strategy. However, the
current study did not include multiple factors due to time, means and budget limitations.

3.5. Improving Adaptive Capacity

Although adaptation strategies are studied in the agricultural extension literature,
farmers do not always adopt them. According to Öhlmér et al. [49], adaptive capacity can
explain the difficulty that farmers experience when implementing new practices recom-
mended by experts. Adaptive capacity is defined as the capacity of actors to implement
new adaptation strategies, which leads to resilience [50]. Farmers’ behaviors can explain
much about their adaptive capacity [51]. In particular, the decision-making process needs
to be studied to improve adaptations [52]. Thus, a better understanding of the influence of
farmers’ decision-making mechanisms on the adoption of practices could improve their
adaptive capacity through the design of specific supports and policies.

Understanding farmers’ adaptive processes is crucial for improving adaptation strate-
gies. Behavior models that model the decision process using decision-making process
factors, such as that of Daydé [23], help explain the heterogeneity of practices and, thus, the
reasons for adopting practices. Our study reveals that farmers adopt practices in part due
to their decision-making process. For agricultural water management, levels of assistance
and reactivity strongly influence the date of first irrigation.

Reactivity could improve the adaptive capacity of farmers since a reactive decision-
making process is associated with changes in irrigation practices (i.e., later date of first
irrigation). The more reactive farmers are, the more they are able to postpone the date of
first irrigation if necessary. Therefore, if farmers are facing a heatwave forecast, they would
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be able to change their date of first irrigation in order to find a balance between saving
water and avoiding water stress.

Better support of maize farmers in southwestern France could encourage them to
become more reactive. One way to increase reactive behavior is to encourage greater consid-
eration of new information, increase the ability to observe changes in the environment and
make better use of past experiences. One starting point is for farmers to share experiences
and re-frame self-criticism of past decisions in discussion groups.

Encouraging access to specific information tools such as weather stations and new
technologies is a way to obtain more adaptive behaviors, which may help to optimize
water use for irrigation. Communicating with and educating farmers about the use of
decision-support tools and technologies could increase adaptation practices. In addition,
financial support from agricultural policies for farmers to invest in these tools would
be relevant.

Future research should focus on a better understanding of decision-making strategies
and the identification of relevant methods to measure them. Research should also focus on
understanding how to improve adaptive behaviors. A key element of the decision-making
strategy is the information received by the farmer and the farmer’s ability to process
information. Helping farmers find, access and understand information, compare sources,
and rapidly select the relevant information according to the context are initial elements
required to improve adaptive behaviors.

Our study contributes to research on adaptations by highlighting the important role
of farmers’ decision-making strategies. We revealed the need to improve reactive and
assistance behaviors to increase adoption of adaptation practices, and to provide ways to
improve these adaptive behaviors. These elements should be considered by advisors and
included in public policies.

4. Conclusions

To explain the heterogeneity of the date of first irrigation among farmers, we surveyed
35 maize farmers. Our results confirm the role of structural, material and risk-aversion
factors. They also highlight the strong influence of decision-making process factors on the
date of first irrigation. Reactivity influenced the date of first irrigation more than any other
variable. A high level of reactivity is associated with adaptive behaviors. Assistance from
decision support tools and technologies also helps farmers adopt more adaptive behaviors.
Conversely, other types of assistance such as social networks decrease adaptive capacity.
However, assistance always influenced the date of first irrigation, whether it advanced
it or postponed it. Advisors and public policies in the agriculture sector could consider
these elements as ways to improve adaptation. In the context of water scarcity, our findings
could help agricultural advisors to assist maize farmers with their water management
practices. Future studies of farmers’ irrigation practices could focus on exploring the
influence of decision-making process factors on other key explanatory variables such as
equipment, irrigation sources or water volumes. Their results would help us to understand
the extent to which decision-making process factors influence the irrigation strategies of
maize farmers.
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Appendix A

“In this part, we will assess your preferences toward risk using a lottery game. Nine
lottery games are proposed. For each game, two profits are possible (a low one and a high
one) with identical chances to occur. We will ask you to choose your favorite lottery game
from among the nine proposed”.
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Abstract: Recent studies observed a correlation between estrogen-related cancers and groundwater
atrazine in eastern Nebraska counties. However, the mechanisms of human exposure to atrazine
are unclear because low groundwater atrazine concentration was observed in counties with high
cancer incidence despite having the highest atrazine usage. We studied groundwater atrazine fate in
high atrazine usage Nebraska counties. Data were collected from Quality Assessed Agrichemical
Contaminant Nebraska Groundwater, Parameter–Elevation Regressions on Independent Slopes
Model (PRISM), and water use databases. Descriptive statistics and cluster analysis were performed.
Domestic wells (59%) were the predominant well type. Groundwater atrazine was affected by well
depth. Clusters consisting of wells with low atrazine were characterized by excessive groundwater
abstraction, reduced precipitation, high population, discharge areas, and metropolitan counties.
Hence, low groundwater atrazine may be due to excessive groundwater abstraction accompanied by
atrazine. Human exposure to atrazine in abstracted groundwater may be higher than the estimated
amount in groundwater.

Keywords: groundwater; atrazine; abstraction; cancers; climate; Nebraska

1. Introduction

Approximately 115 million people in the U.S. rely on groundwater as drinking wa-
ter [1], and 80–85% of Nebraskans receive their drinking water from groundwater [2,3].
Despite the importance of this water source, there are many unresolved issues about its
quality. Water quality standards of private wells are not regulated under the Safe Drinking
Water Act; however, Nebraska Departments of Agriculture (N.D.A.) and Environmental
Quality initiated a project in 1996 to create a data repository for groundwater that would
allow the assessment of groundwater pesticides obtained at different periods for different
purposes [3]. This data repository is called the Quality-Assessed Agrichemical Contam-
inant Data for Nebraska. We recently explored this database to identify the different
pesticides in Nebraska groundwater and their likely health implications. We observed
clusters of breast and prostate cancers in counties with positive atrazine groundwater [4].

Moreover, only low-level atrazine was detected in most wells of counties with higher
cancer incidence despite the high atrazine usage in these counties. The discordance between
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atrazine usage and groundwater atrazine concentration raises a critical question, especially
when no known groundwater atrazine depletion intervention is in place in these counties.
To address this conundrum, this study explored groundwater atrazine fate to account for
missing groundwater atrazine residue after land application. Understanding atrazine fate
will help uncover the exposure mechanisms of groundwater atrazine in counties of high
atrazine usage.

Meanwhile, atrazine and its metabolites were not the only detected agrichemical
in Nebraska groundwater; other agrichemicals, such as nitrate, glyphosate, acetochlor,
and alachlor, were also detected. This may be due to the co-usage of atrazine with other
agrichemicals. In fact, glyphosate usage is as high as atrazine usage in Nebraska [5].
While glyphosate usage did not become widespread until recently, other herbicides such
as alachlor are as old as atrazine [6,7]. Despite atrazine co-usage with other herbicides,
only atrazine and its metabolites persist longer in groundwater [8,9]. This fact underscores
why this study is focused on atrazine in Nebraska groundwater. Atrazine persistence
may be linked to high application rates; other factors such as well structures, groundwater
abstraction rates, and climatic changes [10] may play crucial roles in groundwater atrazine’s
fate and human exposure.

To effectively understand the health implications of atrazine, knowledge of atrazine’s
fate in groundwater is vital. Moreover, designing studies in line with Bradford Hills
criteria for evaluating the cause-and-effect relationship between atrazine exposure and
disease outcomes will become apparent with the in-depth understanding of atrazine fate
in groundwater.

In addition, atrazine metabolites are often ignored when exploring atrazine toxicity,
even though these metabolites may have significant pathological implications [11]. In fact,
previous studies have characterized the toxicity of atrazine metabolites, Deethylatrazine
(D.E.A.) and Deisopropylatrazine (D.I.A.), as endocrine disruptors in humans and among
aquatic organisms [12,13]. Therefore, it should not be assumed that atrazine degradation
results in the detoxification of atrazine. Thus, exploring the fate of toxic groundwater
atrazine metabolites in an agricultural setting with high atrazine usage will contribute to
this body of knowledge.

To provide clean and safe water, atrazine and other agrichemicals are frequently
measured in groundwater. Since these measurements only detect low-level atrazine even in
high atrazine usage counties, it leaves one to wonder whether the atrazine measurements
represent actual groundwater atrazine deposition. It could be that atrazine concentration
is underestimated. Given this, we aimed to determine the groundwater atrazine fate of
selected Nebraska counties with high atrazine usage. Nebraska is a good subject for this
study because it is one of the agriculturally intensive “corn belts” of the United States. The
objective of this study was to uncover the potential reasons for the frequently observed
low-level groundwater atrazine in eastern Nebraska counties, which are characterized by
high atrazine usage.

2. Materials and Methods

Data used for this county-level study were obtained from three data sources: Qual-
ity Assessed Agrichemical Contaminant Nebraska Groundwater Database; Parameter–
Elevation Regressions on Independent Slopes Model (PRISM) as weather data [14,15]; and
water use data obtained from United States Geographical Survey (USGS).

Counties with high atrazine usage (>28.73 kg/mi2), as indicated by the National Water-
Quality Assessment (NAWQA) Project, USGS (1992–2017), were included in this study.
Based on this, 33 counties in the eastern Nebraska District (Burt, Butler, Cass, Cedar, Colfax,
Cuming, Dakota, Dixon, Dodge, Douglas, Fillmore, Gage, Jefferson, Johnson, Lancaster,
Lincoln, Madison, Nemaha, Otoe, Pawnee, Pierce, Platte, Polk, Richardson, Saline, Sarpy,
Saunders, Seward, Stanton, Thayer, Washington, Wayne, York) were eligible for this study,
Figure 1a,b. The findings from our recent study, which observed a potential correlation
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between atrazine and estrogen-related cancers (ERC) in eastern Nebraska, further justified
the selection of the study area [4].

Figure 1. Estimated agricultural use for atrazine in Nebraska, National Water-Quality Assessment
(NAWQA) Project, United States Geological Survey, 1995. (a) Atrazine (EPest-low) (b) Atrazine
(EPest-High).

While USGS pesticide usage data began in 1992, the timeframe for this study was
between 1995 and 2014 due to data availability for atrazine-contaminated groundwater.
The Quality Assessed Agrichemical Contaminant Nebraska Groundwater Database was
queried for atrazine and its metabolites (D.E.A., D.I.A., and hydroxyatrazine) for 1995–2014.
In addition to the concentration of atrazine and its metabolites in parts per billion (ppb),
other variables such as well types and well depths (in feet) were also obtained. Methods
used for measuring atrazine, D.E.A., and D.I.A. concentrations in the water supply wells
were described elsewhere [16]. The water supply wells selected for this study were wells
in eastern Nebraska counties with high atrazine usage. Numerous wells were measured
for atrazine in each county, and each well was measured multiple times during the study
period.

Since groundwater atrazine fate in saturated and unsaturated aquifers is greatly
impacted by environmental factors, such as precipitation and soil temperature across a
range of soil profiles and over time, there was a need to incorporate some of these factors
into the analysis. However, since the network of land-based weather stations may lack
the capacity to adequately capture the spatial variability of weather variables across the
counties mentioned above, the PRISM weather dataset was used as an alternative in this
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study. The PRISM is a high-resolution weather dataset based on a spatial resolution of
4 km. Daily time series data for precipitation and mean air temperature were extracted
from 1995 to 2014. Although soil temperature would be more critical to the kinetics of
atrazine in groundwater than the air temperature, the lack of direct measurements of soil
temperature resulted in the use of annual mean air temperature as a proxy for the soil
temperature at depths where groundwater wells would be screened. This is valid because
there is a strong relationship between mean air temperature and soil temperature due to
the exchange processes between them [17,18]. Groundwater temperature is usually equal
to the annual mean air temperature above the ground, and it generally fluctuates narrowly
(based on depth) around this mean temperature year round.

USGS via the web interface of the National Water Information System provides water
usage data for different surface or groundwater types. This database was queried for
water usage between 1995 and 2010 because 2014 data was unavailable. While annual
groundwater usage was unavailable, the report was available every five years for the
designated counties. Since domestic well usage may be a better predictor of human
exposure to groundwater atrazine, the total number of people using self-supplied domestic
fresh groundwater and the amount of Million gallons per day (Mgal/d) of fresh domestic
groundwater withdrawn in the selected 33 counties of eastern Nebraska were obtained.

Statistical Analysis

Variables included in the analysis were either categorical or continuous variables.
Descriptive analyses were performed on the categorical variables (groundwater or well
type). Meanwhile, the time (in years) of sampling groundwater atrazine, D.E.A., and D.I.A.,
which was initially a count variable, was categorized by five year intervals. Continuous
variables were atrazine, D.E.A., D.I.A. concentrations (ppb), well depth (in feet), precipi-
tation (in millimeters), and annual mean air temperature (in degree Celsius). Descriptive
statistics for these variables included mean, standard deviation, minimum and maximum
values. Given the longitudinal design of this study, we used scatter plots to examine the
correlations between atrazine, D.I.A., D.E.A. concentrations (ppb), and time (years).

A cluster analysis was performed to examine the effects of well depth on groundwater
atrazine concentration. Similarity for each cluster was based on the negative squared
Euclidean distance of both standardized atrazine and well depth, and the shared value was
20% quantile of their similarities.

All analyses were performed on SASv9.4 (S.A.S. Institute Inc. 2013. Cary, NC, USA),
and plots were made on Microsoft Excel 2016 and Prism GraphPad Prism v7.03 software
(GraphPad, La Jolla, CA, USA).

3. Results

3.1. Descriptive Statistics of Sampled Wells, Hydrometeorological Characteristics, and
Groundwater Utilization in the Eastern Nebraska Counties

This study included six well types (commercial, domestic, irrigation, public, monitor-
ing, and livestock wells). Domestic wells were the most represented well-type, accounting
for 59% of the study wells (Figure 2a). Furthermore, irrigation (180 ft) and domestic wells
(120 ft) were the deepest of all well types in the study location (Figure 2b).

The average values of atrazine, D.E.A., and D.I.A. during the entire study period
(1995–2014) for all the counties were 0.17, 0.015, and 0.073 ppb, respectively. However, no
value was obtained for hydroxyatrazine, another atrazine metabolite, during this period.
Furthermore, the overall average well depth (129.94 ft) is similar to the average depth of
domestic wells, confirming the high prevalence of domestic well types among the study
wells. Interestingly, the average withdrawals of domestic groundwater were 0.90 million
gallons per day (Mgal/day), and these supplied an average of 7100 people in the selected
counties of eastern Nebraska based on 2010 data (Table 1).
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Figure 2. Descriptive characteristics of well types in the selected counties at the eastern district of
Nebraska obtained from quality-assessed agrichemical contaminant Nebraska groundwater database.
(a) The prevalence of well types (1995). (b) Average well depth of the different well types (1995).

Table 1. The descriptive statistics of atrazine, its metabolites, and well depth obtained from quality-assessed agrichemical
contaminant Nebraska groundwater database (1995–2014), precipitation and annual mean air temperature obtained from
PRISM climate data (1995–2014), and amount of water usage obtained from water use data (2010) in the selected counties of
eastern Nebraska district.

Variable N Mean Standard Deviation Minimum Maximum

Atrazine (ppb) 4053 0.2 0.7 0.0 9.7

Deethylatrazine(ppb) 3008 0.02 0.08 0.0 0.8

Deisopropylatrazine (ppb) 3601 0.07 0.2 0.0 2.6

Hydroxyatrazine (ppb) 70 0.0 0.0 0.0 0.0

Well depth (feet) 4295 129.9 85.3 4.0 765.0

Precipitation (mm) 3360 60.2 53.2 0.0 347.0

Mean daily temperature (◦C) 3360 10.6 10.3 -10.9 27.2

Domestic total self-supplied groundwater withdrawals (Mgal/d) 33 0.90 1.9 0.02 10.1

Domestic self-supplied population (thousands) 33 7.1 15.0 0.1 79.1
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3.2. Atrazine Concentration by Well Depth in Eastern Nebraska Counties

Atrazine, D.E.A., and D.I.A. concentration were higher in shallow wells (Figure 3a–c).

Figure 3. Atrazine and its metabolites based on well depths. (a) Average atrazine concentration
detected in different well depths; (b) Average D.E.A. concentration detected in different well depths;
(c) Average D.I.A. concentration detected in different well depth.
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3.3. Depletion of Atrazine and Its Metabolites with Time in Eastern Nebraska Counties

In Figure 4a, a time-dependent groundwater atrazine decline was observed despite
continuous atrazine usage during the same period. This corresponded to a decrease in
groundwater D.E.A. and D.I.A. (Figure 4b,c).

Figure 4. Cont.
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Figure 4. Linear relationship of atrazine and its metabolites over time (1995–2014). (a) Time series
plot of atrazine (ppb). (b). Time series plot of D.E.A. (ppb). (c) Time series plot of D.I.A. (ppb).

3.4. Precipitation and Temperature trend in Eastern Nebraska Counties

Precipitation and temperature trends between 1995 and 2014 were characterized in
Figure 5a,b, respectively. The observed counties seem to record lower precipitation in 1995,
2000, and 2012, Figure 5a.

Figure 5. Cont.
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Figure 5. Climatic changes with time, PRISM (1995–2014). (a) Precipitation. (b) Temperature.

3.5. Seasonal Variation of Atrazine and Its Metabolites in Eastern Nebraska Counites

Figure 6a–c shows that the average groundwater atrazine, D.E.A., and D.I.A. concentra-
tion by month was consistently higher during Nebraska’s winter and early springs (December-
March). Moreover, the highest precipitation was recorded in May-June (Figure 6d), and the
highest mean daily temperature was reported in July-August (Figure 6e).

Figure 6. Seasonal variation in groundwater atrazine and its metabolites (a) Average atrazine
concentration by month. (b) Average D.E.A. concentration by month. (c) Average D.I.A. concentration
by month (d). Average annual precipitation by month. (e) Mean daily temperature by month.
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3.6. Characterization of Groundwater Atrazine Depletion in Eastern Nebraska Counties

Given that irrigation and domestic water wells were the deepest wells in the study
area and atrazine depletion was observed in deeper wells, we clustered the data based
on well depth and re-evaluated the effects of other factors on atrazine depletion. Seven
different clusters of counties were observed. While wells in counties of clusters 3, 4,
and 5 had low-level atrazine regardless of well depths, wells found in cluster 7 had
high atrazine concentration, Figure 7a. To exclude the effect of well depth, additional
analysis was performed, comparing two different clusters with similar well depth but
different groundwater atrazine concentrations, Table 2. The two clusters eligible for this
comparison were cluster 5 (low atrazine) and cluster 7 (high atrazine). Cluster 5 contains
wells mostly in groundwater discharge areas, while cluster 7 contains wells predominantly
in groundwater recharge areas. Groundwater discharge areas and recharge areas are areas
where groundwater flow has an upward and a downward flow component, respectively.
The discharge areas of a regional groundwater system are located downstream of a river
basin, while the recharge areas of a regional system occupy the upstream water divide
of the river basin. For a local groundwater flow system, its discharge areas are at a
topographic low, and its recharge areas are at an adjacent topographic high. As shown in
the figure below, for cluster 5 counties, most of Burt, Dodge, and Colfax counties are in
the downstream areas of Elkhorn River Basin, while Sarpy and Cass counties are in the
downstream areas of both Lower Platte and Missouri River Basins.

Similarly, the northwestern part of Lincoln County is in the downstream areas of
both North Platte and South Platte River Basins. Although the wells in the eastern part of
Lincoln County are located in upstream of the Middle Platte River Basin, they are mainly
close to Platte River, which implies that they are in topographic low (discharge areas). For
cluster 7 counties, most Polk and all York counties are located in the upstream (recharge
areas) of the Big Blue River Basin.

Table 2. Comparisons of cluster 5 and cluster 7 characteristics.

Characteristics Cluster 5 Cluster 7

Counties Burt, Cass, Colfax, Dodge,
Lincoln, and Sarpy York and Polk

Number of observations 34 6

Average of precipitation (mm) 57.7 62.0

Annual average air temperature (◦C) 10.8 10.8

Average well density (wells per area of land) Low High

Average domestic self-supplied population,
in thousands 7.30 2.90

Average public supply population served by
groundwater, in thousands 30.20 6.84

Average domestic total self-supplied
withdrawals, groundwater, in Mgal/d 0.96 0.37

Average public supply total self-supplied
withdrawals, groundwater, in Mgal/d 8.82 1.26

Average commercial total self-supplied
withdrawals, groundwater, in Mgal/d 0.008 0

Average total population of the area
(in thousands) 103.1 9.9

Metropolitan Yes No
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The average population that potentially used the groundwater in cluster 5 was three
times more than cluster 7. Moreover, wells in cluster 5 received slightly lower precipitation
than cluster 7. The average well density per unit land area is low for cluster 5 compared to
cluster 7 (Figure 7b–h).

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. Cluster analysis to demonstrate the determinants of low-level groundwater atrazine, Quality Assessed Agrichemi-
cal Contaminant Nebraska Groundwater Database, 1995–2014. (a) Scatter plot of well depth versus atrazine groundwater
concentration. Each color corresponds to a cluster, and a box marks each cluster’s prototypical data point (exemplar) while
all cluster members are joined to their exemplars with lines. (b) Atrazine level by counties (c) Average precipitation by
counties (d) Average temperature by counties (e) Population by counties (2018) (f) Changes in the groundwater level of
counties of observed clusters (g) River basins of counties of observed clusters (h) Density of wells in the counties of observed
clusters. Counties with utilization wells were labeled “U”, and counties with monitoring wells were labeled “M”.

4. Discussion

It is rational to expect groundwater atrazine concentration in Nebraska counties with
continuously high atrazine usage to be significantly elevated or at least remain constant
over time. Instead, low-level groundwater atrazine is frequently observed even though
no groundwater atrazine elimination process was identified in these counties. This raises
some issues addressed by this study. Before delving into these critical issues, the long-
term significance of this study will be reiterated. The toxic or carcinogenic effects of
atrazine are common knowledge due to evidence from experimental [19–23] and ecological
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studies [4,24,25]. However, due to sparse epidemiological evidence [26,27], atrazine is
often absolved of the supposed toxicity observed in experimental and ecological studies.

Meanwhile, it must be noted that only the use of individual-level atrazine exposure
data would credibly predict the health outcomes associated with atrazine exposure. How-
ever, only a handful of studies are available for such designs. Hence most studies utilize
county-level groundwater atrazine as exposure for potential disease outcomes. This may be
downplaying the toxic effects of atrazine, since groundwater atrazine measurement reveals
low-level atrazine concentration, which would interfere with identifying existing correla-
tions between atrazine exposure and suspected pathological conditions when county-wide
atrazine use data is used instead of individual atrazine exposure data. To this end, this
study provided evidence for why the inclusion of groundwater atrazine measurements
as explanatory variables for most models in epidemiological studies may fail to predict
proposed atrazine-induced pathological conditions accurately.

The inferences drawn from this study may have direct human implications, given that
approximately 60% of the sampled wells were domestic. Moreover, the domestic wells
in this study were among the deepest. This is interesting and reassuring, since previous
studies have observed correlations between better water quality and deeper wells [28]. Fur-
thermore, the average atrazine amount detected in all the wells for the entire study period
is significantly less than the United States Environmental Protection Agency Maximum
Contaminant Level (MCL). Additionally, two primary atrazine metabolites, D.E.A. and
D.I.A., were detected, suggesting atrazine degradation during the study period. While
D.E.A. and D.I.A. are not the only atrazine metabolites, they were the only metabolites
sufficiently detected during the study period. Hydroxyatrazine, another atrazine metabo-
lite, was not detected, indicating dealkylation as the predominant metabolic pathway for
atrazine degradation in the sampled groundwater. While abiotic pathway was previously
reported for atrazine dealkylation, most atrazine dealkylation processes are attributed
to biotic pathways [29]. This may suggest microbial co-contamination of the sampled
groundwater [30–32]. Although microbial contaminant is not the focus of this study, this
needs to be verified by future studies.

Atrazine depletion corresponded to D.E.A. and D.I.A. depletion in this study. More-
over, atrazine, D.I.A., and D.E.A. depletions were more apparent in the year 2000 than
in other years. It is difficult to conclude any relationship between atrazine and D.I.A. or
D.E.A. depletion, given that no baseline data for any of the pesticides was captured in this
study. Furthermore, atrazine depletion was observed with the formation of its metabolites
as time progressed. Although atrazine half-life in the sampled water supply wells may be
challenging to determine, atrazine degradation to D.E.A. or D.I.A. contributes to atrazine
depletion. Atrazine half-life depends on environmental factors. For example, it may range
between 2 weeks and 16 weeks in surface soils. Moreover, it could be four years, or degra-
dation may not even occur [33]. Atrazine degradation was not observed in groundwater
after 77 weeks [34], and another study reported atrazine’s half-life in groundwater as 83
weeks [35]. However, this may be as short as 24 weeks in the presence of sunlight [36].

As this is an environmental observational study, environmental effects, including
climatic changes, cannot be excluded from groundwater atrazine’s fate. Climatic changes
were in this study described in terms of hydrometeorological factors such as precipitation
and annual mean air temperature. While daily mean air temperatures observed for most of
the years were in the range of extreme heat or cold, there appears to be evidence of drought
in 1995, 2000, and 2012. Drought during a growing season reduces the groundwater
recharge rate. Consequently, the lower recharge also reduces the leaching of atrazine to
wells. Hence, the sharp atrazine, D.I.A., and D.E.A. depletion in the year with the longest
drought duration may be due to a drought-induced decrease in atrazine leaching [37].
Moreover, high precipitation was observed in cluster 7, characterized by high groundwater
atrazine concentration. This suggests the involvement of precipitation in the deposition of
atrazine in groundwater [38].
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Data used in this study provided evidence of seasonal variation of atrazine, D.E.A., and
D.I.A. While May and June are the peak season for atrazine application [39,40], December,
January, February, and March, which are winter/early spring seasons, were observed in this
study as the months with groundwater peak atrazine, D.E.A., and D.I.A. In contrast, another
study reported peak atrazine concentration in late summer and early autumn. This was
attributed to rainfall [41]. Nebraska’s intense rainstorms in May and June may contribute
to atrazine leaching after application. This, therefore, suggests that peak groundwater
atrazine detected in the winter and early spring may result from a time lag of five to seven
months required for atrazine transition from the application site to groundwater.

Moreover, other studies conducted in the Midwest have reported groundwater atrazine
peaks in the winter and early spring [42], which is in congruence with the findings of this
study. In addition, winter is known to slow down atrazine degradation [43]. This may
partly contribute to the seasonal variation of atrazine in favor of winter and early spring.

Atrazine depletion with time was indeed observed in this study. Given the extreme
climatic changes in Nebraska, one may easily attribute this to the time-dependent atrazine
depletion. However, only a slight precipitation effect was observed. Instead, well depth
highly predicted low-level groundwater atrazine. This finding is not novel because the
associations between well depth and decreased atrazine level were previously reported [28].
This underscores the significance of the irrigation and domestic wells, the deepest wells
in this study. To determine other factors beyond well depth which affects groundwater
atrazine concentration, a cluster analysis was performed. The effect of well depth was
excluded by comparing clusters with the same well depth but different groundwater
atrazine concentrations. County clusters with low groundwater atrazine concentration had
approximately three times the population supplied by domestic groundwater compared to
county clusters with high-level atrazine.

Furthermore, counties with low-level atrazine are more metropolitan than counties
with high-level atrazine. In contrast to the wells in high-level atrazine counties, wells in
low-level atrazine counties were mostly utilization wells. This suggests that low-level
groundwater atrazine in cluster 5 may be due to excessive groundwater usage [44].

In addition, cluster 5 with low-level atrazine counties (mainly in groundwater dis-
charge areas) was characterized by slightly lower precipitation than cluster 7 with high-level
atrazine counties. The fate of atrazine in these two clusters could be due to the interplay be-
tween degradation processes, leaching to groundwater wells, and groundwater abstraction.
In general, the expectation is that the greater the well depth or the depth to water table,
the more the groundwater wells should be protected from atrazine contamination. Since
these two clusters have similar well depth and groundwater temperature (based on annual
mean air temperature), the difference in their mean atrazine concentrations may be due to
differences in their precipitation, their rates of groundwater abstraction (as a function of
the population of potential groundwater users and density of wells, Table 2), their bedrock
geology, or whether they are in recharge or discharge areas.

Compared to cluster 5, the higher average groundwater atrazine concentration in
cluster 7 could be attributed to leaching, since its counties are in recharge areas, coupled
with higher precipitation and higher irrigation well density (more abstraction for irrigation
during growing seasons). In contrast, the low average groundwater atrazine concentration
in cluster 5 counties could be attributed to the fact that they are primarily in discharge
areas (and close to major streams and rivers) with lower precipitation (less leaching), low
irrigation well density, and high population (more drinking water wells). This could also
result from groundwater mixing since some drinking water wells in discharge areas could
draw water from nearby streams, lakes, or rivers.

The reasons for groundwater atrazine depletion are highly convoluted. This current
study demonstrated robustness for deciphering the factors associated with low-level
groundwater atrazine in counties of high atrazine usage. However, it was limited by
reliance on publicly available data representing only county-level groundwater atrazine
estimation. Atrazine measurement of abstracted groundwater at usage sites may be more

174



Int. J. Environ. Res. Public Health 2021, 18, 13241

explicit. Another limitation is that not all wells sampled for atrazine had measurements for
atrazine metabolites. Hence, atrazine metabolites were under-reported in this study.

Furthermore, this study failed to account for the transport process of atrazine through
the vadose zone. In addition, no data was available regarding atrazine at the recharge areas.
However, county-level data summarized all the potential defects that the aforementioned
limitations would provide if we had used individual wells for this study.

5. Conclusions

The motivation for this study emanated from our previous findings, which observed
elevated ERC incidence in Nebraska counties with the highest atrazine usage. Given that
groundwater is one of the significant exposure routes of atrazine to humans, we were
puzzled by the low-level atrazine concentration frequently observed in the groundwater of
these counties. As we unraveled the potential reasons for low-level groundwater atrazine
in the counites of elevated ERC incidence and high atrazine usage, we found a negative
correlation between well depth and groundwater atrazine, D.E.A., and D.I.A. concen-
trations. This suggests that shallow wells are more atrazine-contaminated than deeper
wells. Further analysis among water supply wells with equal depths showed that excessive
groundwater abstraction, reduced precipitation, high population, metropolitan areas, and
water discharge areas were potential reasons for Nebraska’s observed low groundwater
atrazine in high atrazine usage counties. Hence, this makes it difficult to rely on groundwa-
ter atrazine measurement as a good predictor for potential health implications of atrazine.
Therefore, as we aim to determine the toxicity and health implications of atrazine in this
field, groundwater atrazine may not sufficiently explain potential pathological implications;
studies aimed at understanding the potential toxicity of atrazine in water should utilize
atrazine measurement of already abstracted groundwater. They may be better predictors
of health outcomes.
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N.D.A. Nebraska Departments of Agriculture
D.E.A. Deethylatrazine
DIA Deisopropylatrazine
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PRISM Parameter–Elevation Regressions on Independent Slopes Model
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USGS United States Geographical Survey
MCL Maximum Contaminant Level
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Abstract: Droughts are complex and gradually evolving conditions of extreme water deficits which
can compromise livelihoods and ecological integrity, especially in fragile arid and semi-arid regions
that depend on rainfed farming, such as Kitui West in south-eastern Kenya. Against the background
of low ground-station density, 10 gridded rainfall products and four gridded temperature products
were used to generate an ensemble of 40 calculations of the Standardized Precipitation Evapotranspi-
ration Index (SPEI) to assess uncertainties in the onset, duration, and magnitude of past droughts.
These uncertainties were driven more by variations between the rainfall products than variations
between the temperature products. Remaining ambiguities in drought occurrence could be resolved
by complementing the quantitative analysis with ground-based information from key informants
engaged in disaster relief, effectively formulating an ensemble approach to SPEI-based drought
identification to aid decision making. The reported trend towards drier conditions in Eastern Africa
was confirmed for Kitui West by the majority of data products, whereby the rainfall effect on those
increasingly dry conditions was subtler than just annual and seasonal declines and greater annual
variation of rainfall, which requires further investigation. Nevertheless, the effects of increasing
droughts are already felt on the ground and warrant decisive action.

Keywords: droughts; gridded data; SPEI; semi-arid; Eastern Africa

1. Introduction

Drought is a slow-onset phenomenon characterized by spatiotemporal water deficits
restricting water accessibility and availability for social–ecological systems at varying
temporal scales [1–5]. Characteristic persistent negative anomalies in precipitation and
high temperatures leading to high evapotranspiration from soils and crops eventually have
cross-sectoral effects on agriculture, food, and livelihoods, particularly in East Africa where
rainfed agriculture is the economic mainstay [1,6–11]. Droughts and other environmen-
tal changes prevalent in East Africa, such as agricultural expansion and corresponding
land degradation, contribute to water crises as they aggravate the competition of water
demands [1]. Droughts may be categorized as: (i) meteorological (resulting from rainfall
deficit) or, depending on duration and additional drivers and impacts, (ii) agricultural
(exceptionally low soil moisture), (iii) hydrological (exceptionally low surface and/or sub-
surface water levels), and (iv) socio-economic (resulting from water supply and demand
failure in relation to the previous categories) [1,4].

Droughts have severe, widespread effects on livelihoods, especially in arid and semi-
arid regions, contributing inter alia to declining crop quality and quantity and forest
productivity [12,13], and deterioration of aquatic life [10]. East Africa, and especially Kenya,
is emblematic of the recurring drought regions worldwide [10,14–17]. The agroecosystems
of semi-arid eastern Kenya are particularly vulnerable, with an inconsistent rainfall regime
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and the frequency and intensity of droughts increasing [3,10,12,18]. Kitui County in south-
eastern Kenya is such a vulnerable semi-arid region with inconsistent rainfall and high
temperatures, featuring dry spells in the growing season that impede the dominantly
rainfed agriculture [10,16,19]. Water demand will likely follow the projected population
increase in the area KNBS [20]; hence, monitoring and understanding of drought dynamics
and the development of management interventions are ever more necessary.

Precipitation and temperature are the primary meteorological variables modulating
drought duration and severity. However, the impact of prevailing data uncertainties as
McMillan et al. [21] found in the identification of past droughts, particularly in data scarce
regions like East Africa, has received little attention in the literature. Identification of past
drought occurrence is essential to assess responses and mitigate against current and future
events. The inherent interrelation of hydrological and social factors in drought occurrences,
impacts, and responses has attracted a range of research fields across the natural and social
sciences [2,22,23]. It seems apt, therefore, to complement the meteorological data with
qualitative, ground-based information from disaster response and other sources in order
to verify the drought identification based on the quantitative products. This promising
approach has to date remained largely unexplored.

The Standardized Precipitation Index (SPI) and the Standardized Precipitation-
Evapotranspiration Index (SPEI) are two widely used drought intensity monitoring indices.
The SPI is recommended by the World Meteorological Organization (WMO) [1,15,24] and
requires rainfall as the only parameter. The SPEI, an extension of the SPI, is a more recent
statistical index where the water balance is represented by precipitation and potential
evapotranspiration (PET) Svoboda and Fuchs [25], making it arguably more reliable for the
detection and monitoring of drought [25–27]. The SPEI identifies meteorological drought
at a sub-annual scale but can be a proxy for hydrological, agricultural, and socioeconomic
drought [28].

SPI and SPEI have been applied to various ecosystems in East Africa. Studies have
typically responded to the uneven distribution and general scarcity of station-based data
over East Africa with the use of gridded data products [7,9,29–32]. For instance, Polong
et al. [27] demonstrated near similarity of SPEI and SPI using the Modern-Era Retrospective
Analysis for Research and Applications (MERRA-2) temperature product, merged with the
Climate Hazards group InfraRed Precipitation with Station data (CHIRPS) rainfall product.
Nguvava et al. [33], by contrast emphasized the value of PET for drought identification, and
hence the superiority of SPEI over SPI. Bayissa et al. [34] showed the value of gridded data
for drought assessment in the Ethiopian Upper Blue Nile Basin; in their case, the CHIRPS
product outperformed the Tropical Applications of Meteorology using SATellite data and
ground-based observations (TAMSAT) product, the TAMSAT African Rainfall Climatology
And Time series (TARCAT) product, the Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Network (PERSIANN) product, and the Tropical
Rainfall Measuring Mission (TRMM) product. Gebrechorkos et al. [35] also emphasized
the usefulness of CHIRPS considering the uneven topography of East Africa. The authors
revealed the value of precipitation and minimum and maximum temperature at monthly
resolution for long-term climate variability assessment.

Naumann et al. [9] used an array of five gridded data products to compute SPI, SPEI,
and soil moisture anomalies, demonstrating the uncertainty in existing products, with
discrepancies particularly in mountainous areas and areas with low ground-station density.
Gebrechorkos et al. [35] emphasized the need to consider temperature variation alongside
rainfall and the need for higher quality data to manage data-related uncertainties in the
central Kenyan highlands. Gebremeskel, Gebremedhin, Qiuhong Tang, Siao Sun, Zhongwei
Huang, Xuejun Zhang, and Xingcai Liu [36] provided an account of drought impacts over
East African agroecosystems and the importance of temporal assessment using gridded
data, further emphasizing uncertainty and spatial variability.

Against this background, the objectives of the present study were to: (i) quantify
similarities and differences between precipitation and temperature products available for
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the study region; (ii) propagate these similarities and differences to trend analyses and
SPEI to judge the ambiguity of trends and drought identification; and (iii) explore whether
ambiguities in drought identification can be resolved by triangulation with key informant
information. The paper is structured as follows. Section 2 introduces data and methods.
Sections 3 and 4 present and discuss the results in light of other studies in Kenya and East
Africa. Section 5 concludes with a summary and recommendations for policy and practice.

2. Materials and Methods

2.1. Study Area

Kitui County is a largely semi-arid to arid locality in south-eastern Kenya (Figure 1)
with an intermittent river regime. The county has a population of over 1.1 million persons
with a density of 37 persons per km2, an average household size of 4.3 and a total area
of about 30,430 km2 [20]. The county is characterized by relatively high poverty levels,
with indicators of food and water insecurity highlighted in the sub-national development
blueprint, the Kitui County Integrated Development Plan (2018–2022) [37]. Food poverty
is estimated at about 39.4% compared to Kenya’s average of 32% [37]. Approximately 50%
of inhabitants do not have access to water sources within a walking distance of 5 km [37].
The erratic rainfall regime is considered a principal driver of the risk to the viability of the
mixed crop agroecosystem in the face of recurrent drought conditions [11]. As in most
of East Africa, small-scale mixed crop farming is the primary livelihood in Kitui County,
supporting food production among other benefits [11].

Kenya receives rainfall in two seasons, a longer one in March–May (MAM) and a
shorter but more reliable season in October–December (OND) [38]. Temperatures range
from 14 to 34 ◦C, with January–February being the warmest months followed by MAM [39].
The ecological profile of the county includes seven agroecological zones that reflect the agri-
cultural development potential as well as varying vegetative cover. Dominant soil groups
include Dystric Regosols, Lithosols and Humic Cambisols, the Ferralo category consisting
of Acrisols (ferric), Luvisols and Ferralsols, and Chromic Luvisols and Ferralsols [8].

2.2. SPEI Calculation

The SPEI was calculated using the R package SPEI version 1.7 Vicente-Serrano
et al. [40] for a 30-year period (1987–2016) using all combinations of 10 monthly rain-
fall (P) and four monthly min/max temperature (Tmin/Tmax) products (Table 1), which
yielded a total of 40 data blends. These products were chosen because they had proven
reliable in the variable terrain of East Africa [27,34,35,41]. A 30-year window of analysis
was chosen as all products overlapped during this period. The units of all data sources
were harmonized to mm month−1 and ◦C (monthly average), respectively. Monthly PET
was calculated from Tmin and Tmax using the reduced data Hargreaves method in the SPEI
package. Following previous studies, a 12-month accumulation was used as it yielded a
smoother annual drought visualization compared to 3- and 6-month accumulations, while
depicting generally similar drought patterns [27,42]. The 12-month SPEI also represented
an annual hydrometeorological regime matching the semi-arid agro-ecology of the study
area which often receives minimal rainfall. It also aligned with the observed inter-annual
distribution of drought instances as learned from interviews in the field. The accumulated
differences between rainfall and PET were normalized using the log-logistic distribution,
fitted using the unbiased estimator of probability-weighted moments, as implemented in
the SPEI package. In addition to the SPEI, the P and Tmin/Tmax anomaly were derived
by computing the Standardized Anomaly Index (SAI) after Ali and Lebel [43] where the
annual deviation of the 30-year mean is calculated and then normalized by the 30-year
standard deviation.
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Figure 1. Map of the study area, Kitui West Sub County, in Kitui County, south-eastern Kenya, with
a Digital Elevation Model (DEM) overlay obtained from, https://dwtkns.com/srtm30m/, accessed
on 25 February 2020.

2.3. Meteorological Data Products
2.3.1. Rainfall (P) Only Products

The data from the Global Precipitation Climatology Centre (GPCC), operated by the
German Weather Service, consists of the world’s largest database of station-based precipi-
tation data [44]. The primarily monthly data is used to develop gridded products such as
version 6 monthly rainfall data, which integrates the largest station number. The GPCC
data showed reliable performance when compared at various locations at the global level
compared to the Climatic Research Unit gridded data (CRU CL 2.0) and ERA40 product
from the European Center for Medium-Range Weather Forecasts (ECMWF). The data from
the Global Precipitation Climatology Project (GPCP) from the World Data Center for Meteo-
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rology, in turn, is a monthly gridded product built by merging satellite estimates and gauge
analysis from the GPCC. Version 2.3 includes adjustments for improved rainfall estimates
compared to version 2.2 [45]. A study over the complex terrain of the Ethiopian highlands
by Dinku et al. [7] showed the applicability of the product under those circumstances
compared to the TRMM 3B43 and the Climate Prediction Center (CPC) Merged Analysis of
Precipitation (CMAP) data.

The CHIRPS data is a merged product including five satellite-based and ground-
station products [41]. It has previously proven reliable in the uneven topography of East
Africa [30]. Over Kenya, the product has demonstrated remarkable performance as Ayugi
et al. [46] found out and over drier regions as Gebrechorkos et al. [35] report, where it out-
performed the Africa Rainfall Climatology (ARC2) and CHIRPS datasets. The latest version
of TAMSAT data (TAMSAT 3.1), in turn, merges Meteosat thermal infrared imagery and
rain gauge observations covering the entire African continent since 1983 [47]. Alongside
the TRMM 3B42 and Climate Prediction Center Morphing Method (CMORPH) product,
TAMSAT demonstrated high performance over the complex Ethiopian highlands in a study
by [7]. Another largely satellite based product, the PERSIANN-CDR (Climate Data Record),
is developed from GPCP and satellite-based data [48]. The PERSIANN-CDR has proven
useful in detecting disasters as Ashouri et al. [48] showed in the 2005 Katrina hurricane
product verification study, comparing also GPCP, TRMM, and the CPC gridded data.

2.3.2. Rainfall (P) and Temperature (Tmin/Tmax) Products

The Kenya Meteorological Department (KMD) indicated Machakos and Makindu,
located approximately 100–200 km away from the study area KMD [32], as the two nearest
ground stations. The nearest station, Kitui Agrometeorological Station, had only a 5-
year record and too many data gaps to be useful for our analysis. The same applied to
adjacent volunteer stations [32]. Hence the gridded data products could only be compared
to the Machakos and Makindu stations that had reliable records [32,49]. The gridded
products are summarized in Table 1. The KMD also provided gridded data for Kitui
West [32,50]. This product is developed through the Enhancing National Climate Services
(ENACTS) program [50–52], which works with national meteorological services across
Africa to improve the quality of climate data and enhance access in essential sectors such
as agriculture to counter the problem of scarce ground-based stations [29,52]. The KMD
product combines spatially downscaled reanalysis data and bias corrected satellite-based
rainfall estimates with sparse station-based observations. For Tmax and Tmin, 37 weather
stations across Kenya were used and merged with data from the JRA-55 (Japanese 55-year
Reanalysis) product (see Table 1 for JRA-55 background) [53]. Rainfall was generated using
data from about 700 stations which were merged with satellite data from the CHIRPS
product (see Table 1) [41,50].

The CRU TS data is a gridded product based on angular distance weighting of ground-
station data from national meteorological services around the world [54]. The product’s
performance has been compared to the GPCC data. The JRA-55 data, produced by the
Japanese Meteorological Agency, is an improvement of the predecessor, JRA-25, where
shortcomings, such as cold bias in the lower atmosphere, dry bias in the Amazon, and
a longer time scale, since 1958, have been addressed [55]. Following Hua et al. [56], the
product has demonstrated reliability in central equatorial Africa where a comparison was
made with other reanalysis products including MERRA-2, ERA-Interim, The Twentieth
Century Reanalysis (20CR), the Climate Forecast System (CFSR), the National Center for
Atmospheric Prediction NCEP-1 and NCEP-2. The ERA5 data is a fifth-generation reanaly-
sis product of the ECMWF [57]. It has a longer temporal coverage and higher resolution
than the predecessor, ERA-Interim, and provides more parameters at hourly resolution
accompanied by uncertainty information. A study by Tetzner et al. [58] compared the
performance of the product to in-situ stations, with Kawohl [59] revealing the usefulness
of ERA5 especially at high elevations. The MERRA-2 data is a reanalysis product of the
Global Modeling and Assimilation Office of the Goddard Space Flight Center developed
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towards the aim of an integrated earth system analysis [60]. The satisfactory performance
of the product as compared to the Global Precipitation Climatology Project (GPCP) and
JRA-55 products is depicted by Bosilovich et al. [61] and by Hua et al. [56] over central
equatorial Africa through comparison with the new gauge-based NIC31 product alongside
other reanalysis data such as JRA-55 and ERA-Interim.

Table 1. Rainfall (P) and temperature (Tmin/Tmax) products used in the computation of SPEI. Original daily data were
aggregated to a common monthly resolution. Only validated and widely used products with a length of more than 30 years
were used.

Data Product URL Spatial Resolution
Temporal

Resolution
Temporal
Coverage

Spatial
Coverage

Design
Application

Data
Sources

KMD gridded P
and Tmin/Tmax;

P from
ground-stations
Machakos and

Makindu
[32,50,52]

https:
//meteo.go.ke/,
accessed on 25
February 2020.

0.0375◦ (P)/1.25◦
(Tmin/Tmax) Monthly

before
1987-after

2016
Kenya Drought

monitoring

Gauge,
satellite,

reanalysis

JRA-55 P and
Tmin/Tmax

[53,62]

https:
//rda.ucar.edu/

datasets/ds628.0/,
accessed on

21 February 2021.

1.25◦ Hourly Since 1958 Global

Climate
variabil-

ity/change
monitoring

Reanalysis

ERA5 P [57]

https://cds.
climate.copernicus.

eu/cdsapp#!/
dataset/reanalysis-

era5-land-
monthsly-means?

tab=overview,
accessed on
6 May 2020.

1◦ × 0.1◦; native
resolution 9 km Hourly Since 1981 Global Drought

forecasting Reanalysis

MERRA-2 P and
Tmin/Tmax [60]

https:
//disc.gsfc.nasa.

gov/information/
howto?title=

How%20to%20
Download%20
MERRA-2%20

Daily%20Mean%
20Data, accessed
on 20 June 2020.

0.5◦ × 0.625◦ Hourly 1980–2017 Global Climate
monitoring Reanalysis

GPCC 2018 P
[44]

https://opendata.
dwd.de/climate_

environment/
GPCC/html/,

accessed on
17 March 2020.

0.5◦ Daily 1891–2016 Global Drought
monitoring

Gauge,
satellite

GPCP 2.03 P [45]

https:
//www.ncei.noaa.
gov/data/global-

precipitation-
climatology-
project-gpcp-

monthly/access/,
accessed on

12 June 2020.

0.5◦ Daily 1901–2018 Global
Climate
variabil-

ity/extremes

Gauge,
reanalysis

CRU TS 4.03 P
and Tmin/Tmax

[54]

https:
//www.chc.ucsb.
edu/data/chirps,

accessed on
23 March 2020.

0.05◦ 5 days Since 1981 50◦ S–50◦ N

Early
warning,
drought

monitoring

Gauge,
satellite
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Table 1. Cont.

Data Product URL
Spatial

Resolution
Temporal

Resolution
Temporal
Coverage

Spatial
Coverage

Design Application
Data

Sources

CHIRPS 2.0 P
[41]

https://www.
chc.ucsb.edu/
data/chirps,
accessed on

18 September 2020.

0.0375◦ 5 days, daily Since 1983 50◦ S–50◦ N
Risk assessment,

drought insurance,
early warning

Satellite

TAMSAT 3.1 P
[47]

https:
//www.tamsat.

org.uk/data/
rfe/index.cgi#
main-content,
accessed on

16 June 2020.

0.25◦ Hourly Since 1983 60◦ S–60◦ N
Climate

change/variability
studies

Satellite

2.4. Areal Averages

The meteorological data were averaged over the study area by weighted average,
proportional to the contribution of each grid cell to the study area shape (see Figure S1
and Equation (S1) of the Supplementary Information). For each data product, the grids
differed in their intersection with the study area (see Figure S2). Correlations of the areal
averages with the nearest ground-stations at Machakos and Makindu and the gridded
rainfall data provided by the KMD were greater than 0.6 (see Figure S3). Following Sun
et al. [63], we used the native resolution of the products (Table 1) in the computation of areal
averages. Nevertheless, topographic information could be included in interpolation in
future studies, certainly when covering greater areas in East Africa where the topography
is highly variable.

2.5. Key Informant Interviews

Balint et al. [3] recommend the triangulation of SPEI output in order to reinforce
the results while also contributing to a broader understanding of the temporal evolu-
tion of droughts and ongoing responses. Following Denscombe [64], we additionally
view methodological triangulation (referred to as triangulation in the text) as an optimal
approach for integrating qualitative and quantitative data to generate a confirmatory pic-
ture. Therefore, in addition to the SPEI calculations using the 40 blends of rainfall and
temperature products, information on drought occurrence and severity was obtained by
interviews with 14 key informants with a track record of working on droughts and related
activities, e.g., food security, humanitarian, and farm-based interventions, in the study
region (Table 2). The key informants include representatives from Non-Governmental
Organizations (NGOs) and government agencies at the national and county-level). The
interviews were conducted between August 2020 and February 2021 as video meetings
and were preceded by official communication. They included discussions under the broad
subjects of drought frequency, trends, and history as observed in the interviewee’s line
of activity, nature of responses implemented with regard to water storage and on-farm
interventions, collaboration with the affected communities, and experiences and prospects
under the relatively new county governance system. The interview guide is included in
the Supplementary Information under Breakdown S1. A snowball sampling approach was
used, where each key informant was asked to suggest equally active organizations in the
study area for further interviews [64]. The organization’s profile and activities were also
reviewed via desktop-based research. Some interviews were recorded upon consent of the
interviewee; for others, notes were taken.
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Table 2. Key informants with operations in Kitui West and their corresponding designation, categorization, organization, or
department and interview date.

Organization/ Department Category Interview Date Website

CARITAS-Kitui NGO 10 January 2020 https://caritaskitui.org/

Africa sand dam foundation-ASDF NGO 15 May 2020 https://asdfafrica.org/

Anglican Development Services
ADS-Eastern NGO 5 August 2020 https://www.adseastern.org/

Kenya Red Cross NGO 12 August 2020 https://www.redcross.or.ke/

Sahelian Solutions (SASOL) NGO 12 October 2020 https://www.sasolfoundation.co.ke/

National Drought Management
Authority (NDMA)-Kenya National Government 12 November 2020 https://www.ndma.go.ke/

Adventist Development and Relief
Agency (ADRA)-Kenya NGO 01 December 2020 https://www.adrakenya.org/

German Agro Action NGO 17 December 2020 https://www.welthungerhilfe.org/our-work/
countries/kenya/

Kitui County Government County Government 12 January 2021 https://kitui.go.ke/countygovt/ministries/
ministry-of-agriculture-water-and-livestock/

World Vision NGO 14 January 2021 https://www.wvi.org/kenya

National Water Harvesting & Storage
Authority (NWHA)-Kenya National Government 26 January 2021 https://www.waterauthority.go.ke/index.php?

option=com_content&view=featured&Itemid=369

Samaritans Purse NGO 29 January 2021 https://www.samaritanspurse.org/operation-
christmas-child-countries/kenya/

Kitui County Government County Government 5 February 2021 https://kitui.go.ke/countygovt/about-kitui/

Water Resources Management Authority
(WARMA)-Kenya National Government 26 February 2021 https://wra.go.ke/

3. Results

3.1. Precipitation and Temperature Variability

The inter-annual variability in precipitation across the study area is high and fre-
quently exceeded ±1 standard deviation (in 30% of the cases), less often ±2 standard
deviations (5% of the cases), (Figure 2; for zoomed-in versions see Supplementary Infor-
mation, Figure S5). Mean absolute deviation; for zoomed-in versions see Supplementary
Information, Figure S5). Mean absolute deviation was 154 mm for annual precipitation,
and negative precipitation anomalies were more frequent but had lower magnitudes as
compared to the positive precipitation anomalies. The annual mean of all products was
656 mm, with a standard deviation (SD) of 197 mm and a coefficient of variation (CV) of
32%. The data products often, but not always, agreed on the direction of the anomaly (70%
of the cases), but generally disagreed on the magnitude of the anomaly across all years
(Figure 2). The precipitation products in greatest disagreement with the others were JRA-55
and MERRA-2 reanalysis. These products showed positive anomalies when most of the
other products agreed on negative anomalies in 1993, 1995–1996 (both), 1999 (MERRA-2),
2000–2001, 2003, 2009–2010 (JRA-55), and 2013–2014, 2016 (MERRA-2), or negative anoma-
lies in case of otherwise widespread agreement on positive anomalies in 1988 (both), 1989,
1994 (JRA-55), 2002 (MERRA-2), and 2015 (JRA-55). These two products also turned out the
least correlated with other products and the measurement stations (Figure S3; correlations
between 0.5 and 0.8). The greatest inter-product agreement was found in the years 1987,
1991 (negative anomalies), 1997 (positive anomaly), 2004–2005 (negative anomalies), 2006
(positive anomaly) and 2007–2008 (negative anomalies). The greatest disagreement was
found in the years 1989, 1992–1993, 1995, 1998, and 2001, and the more recent years of 2010,
2012–2013, and 2015–2016.
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Figure 2. Annual precipitation anomalies as conveyed by the different data products.

There was less variation in Tmin/Tmax compared to precipitation (mean = 29.97 ◦C,
SD = 0.86 ◦C, CV = 1.74%; mean = 17.59 ◦C, SD = 0.30 ◦C, CV = 1.67% for Tmax and Tmin,
respectively). The Tmin/Tmax products were more similar in inter-annual pattern than
magnitude (Figure 3). KMD and MERRA-2 largely agreed both in terms of Tmax pattern
and magnitude, whereas CRU and JRA-55 showed a similar pattern but lower values (see
Table S1 for means and CV). For Tmin, the products were largely in agreement in terms
of pattern, but not in magnitude, with mean Tmin decreasing in the order KMD, JRA-55,
MERRA-2, and CRU (see Figure 3 and Table S1). The agreement in pattern could also be
seen in the correlation analysis (Figure S4; all coefficients greater than 0.8).

Figure 3. Annual maximum (Tmax) and minimum (Tmin) temperature time series as conveyed by the different data
products.
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3.2. Precipitation, Temperature Trends, and SPEI-Based Drought Identification

All products agreed (at the 0.01 significance level, referring to the t-test of significance
of linear regression slope) on an upward trend of Tmin of about 0.02–0.03 ◦C per year and
of Tmax of about 0.02–0.06 ◦C per year (Figure 4). The annual rainfall sums showed no
trend or a declining trend, but none of these were significant at the 0.01 level (Figure 5).
The standard deviations of rainfall likewise showed no significant trends (Figure 6). The
same applied for seasonal trends (Figure 7). Despite the differences in the precipitation
and temperature products, once propagated to the SPEI the differences smoothed out, yet
differences in onset, duration, and magnitude of drought remained (Figures S7–S10).

Figure 4. Significant annual maximum (Tmax) and minimum (Tmin) temperature trends in the
MERRA-2, KMD_grid, CRU, and JRA-55 gridded products. The black dots represent annual precipi-
tation values with the blue line indicating the linear regression.

 
Figure 5. Non-significant annual precipitation trends in the 10 products. The back dots represent
annual precipitation values with the blue line indicating the linear regression.
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Figure 6. Non-significant annual precipitation standard deviation trends in the 10 products. The
black dots represent annual precipitation values with the blue line indicating the linear regression.

Out of the 40 blends, 18 agreed on a statistically significant (at 0.01 level) trend in
SPEI of 0.0001 to −0.0098 units month−1, suggesting increasing instances of drought occur-
rence (Figure S7–S10). Those trends were consistent across the temperature products with
CHIRPS, GPCP, KMD_grid, and PERSIANN rainfall, sometimes with ERA-5 and JRA-55,
and in one instance with CRU rainfall (Figure S7–S10). Plotting the SPEI mean and standard
deviation across the product blends further consolidated the picture (Figure 8). Unam-
biguous drought years, according to the data products, were 1994, 1996–1997, 1999–2000,
2005–2006, 2009, and 2011. More ambiguous were 1988, 1991–1993, 2001–2004, 2008, 2010,
and 2012–2016. Drier conditions in recent years, as suggested by the trend analysis, could
be seen in 2005–2006 and 2008–2012, compared to more positive anomalies in the 1990s
and early 2000s.

The information from the key informant interviews agrees with all unambiguous
droughts in the timespan (2005–2006, 2009, and 2011) and the one year which was unam-
biguously wet (2007). The interviews also pointed to droughts in 2008, 2010, 2012, and
2014–2015 where the SPEI information based on the different data products was ambiguous.
In the other ambiguous years, 2013 and 2016, the key informant interviews pointed to no
drought. Hence it would seem that key informants engaged in drought relief on the ground
can help resolve the ambiguity resulting from the disagreement between meteorological
data products. Their input is thus fundamental for drought identification in regions with
scarce ground stations.
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(a) 

 

(b) 

 

Figure 7. Non-significant seasonal precipitation trends for the 10 products: (a) March–April–May
and (b) October-November-December. The black dots represent annual precipitation values with the
blue line indicating the linear regression.

Figure 8. Inter-product SPEI mean (black line) ± 2 standard deviations (gray shading), compared with key informant information
from 2005 to 2016 (Red dots). Periods where mean SPEI ± 2 standard deviations were below zero are colored red, those above
zero are blue.
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4. Discussion

4.1. Uncertainty in Rainfall and Temperature Estimates and Propagation to SPEI

Reliable assessments of the onset, magnitude, and duration of drought are vital in
agro-pastoral ecosystems, not only to understand impacts on livelihoods but also to signal
and assess the reliability of responses [2,65]. In the absence of reliable meteorological
data as a result of sparse in-situ station density over Kenya [16,32,35] and other African
countries, rainfall and temperature data from gridded products can overcome data scarcity
for large-scale drought assessment [7,46,66]. These products, however, are subject to
uncertainty, including gauge-level measurement errors in the underlying station data,
the number and representativeness of the stations used, interpolation steps, structural,
parameter, and general input data uncertainties of the meteorological models used [21].

The abundance of gridded data products available thus creates both a challenge
and an opportunity for users. Choosing a single product can lead to biased drought
estimations as AghaKouchak et al. [67] found out; hence; the use of multiple products in an
ensemble approach is preferable [68]. Such an approach will add uncertainty information
to the gridded products that can improve decision making in response and management
operations [67]. That said, uncertainty in drought magnitude should in no way instill a
sense of complacency as increasing extreme events such as droughts over East Africa have
already resulted in deterioration of livelihoods and ecosystem integrity [69–71].

In the current study, uncertainty manifests itself in differences between the data values
of gridded meteorological products, with annual minimum and maximum temperature
varying less than rainfall. The temporal pattern of the Tmax and Tmin input was also
more similar across products than that of rainfall. The variation of SPEI across data
blends therefore predominantly reflects the variation of the rainfall data. Plotting the SPEI
ensemble mean ±2 standard deviations identified periods of unambiguous dry and wet
years, while ambiguous periods could be resolved by information from key informants
engaged in drought relief on the ground. It should be noted that the uniform weighting of
SPEI ensemble members neglects the similarity between some of the data blends, as they
use similar data and assumptions, which are, however, hard to disentangle and quantify in
an alternative weighting scheme. As such, we could not authoritatively pick out a superior
data product but observed the similarity in detecting drier years. Drought occurrence was
thereby much less ambiguous than drought severity.

4.2. Annual and Seasonal Trends

By comparing 10 precipitation products, we found no evidence of a statistically signif-
icant trend (although there could be a trend), neither in annual rainfall nor seasonal rainfall
totals, nor annual standard deviations. This finding is in contrast with the declining rainfall
trend over East Africa reported by [36,38,71,72] and [11]. It is also in contrast with the key
informant information that the March-April-May (MAM) rain season, being the longer of
the two seasons and essential in the farming calendar, has demonstrated unreliability in
recent years. Agricultural water demand is likely rising considering the growing popu-
lation [20,37], nevertheless declining length of the March-April-May season could be the
principal factor of increasing water scarcity, rather than burgeoning anthropogenic water
needs. Since rain-fed agriculture is the primary source of livelihoods in the study area and
the primary contributor to the economy [36,37], a decrease of rainfall in the long season
and a general shortening of the season is a major concern [73]. However, the reported
unreliability of the March-April-May season in recent years could also be reflective of
generally drier soil conditions in response to the positive temperature trend which we did
find across all data products, or changes in sub-seasonal rainfall timing that are not visible
as a trend in annual standard deviations. Both would propagate to lower SPEI values,
which in our case and for most products agree with an increase in drought instances in
recent years.

The absence of evidence of a significant trend in the shorter October-November-
December (OND) rain season in our case (Figure 7) differs from recent studies over
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Kenya [38]. The key informants and the Kenyan Government GoK [74], however, support
our finding by mentioning that the shorter OND season has shown more reliability in
supporting farming compared to the longer MAM season. This is manifested by greater
seasonal rainfall averages in the OND season in most products (Table S2). The OND season,
however, shows greater variation than the MAM season (Table S2) as also reported by [75].
The MAM, especially due to its lower variability, thus remains important for agroecosys-
tem productivity in the region, with a likely atmospheric teleconnection with the OND as
shown by [71]. The MAM season plays a primary role in the farming calendar of the study
area, accounting for about 30% of crop productivity, and supporting cultivation of staple
pulses such as pigeon peas and green grams [74].

With regard to temperature, all data products compared in this study agreed on posi-
tive trends in min/max temperatures. While the products were in greater agreement about
the magnitude of the Tmin trend, the Tmax trend magnitude varied more between prod-
ucts. This agrees with findings over Kenya by Ayugi and Tan [46] who found increasing
trends of min/max temperatures, and Camberlin [76] who similarly reports a marked
warming in the Horn of Africa. Ayugi and Tan [46] found warm days to be increasing
and cold nights to be decreasing, as well as summer days to be increasing, over Kenya,
confirming the picture of rising temperatures.

4.3. Anomalies, Drought Identification, and the Value of Triangulation

The 10 different precipitation products compared in this study generally agreed on
years with negative rainfall anomalies. However, the products disagreed considerably
on the magnitudes of those anomalies. The anomalies, seen in Figure 2, demonstrate the
prevailing inter-annual variability in the study area [75]. The anomalies propagated to
droughts of varying magnitude, confirmed by unanimously negative SPEI values or key
informants in 27% of the 30 years. However, in 1988, 1991–1993, and 2001–2004 there was
disagreement between the products and the key informant information did not reach that
far back.

The 2010–2011 period is widely reported as the worst drought in a 60-year span in
the Horn of Africa [11,71,77] which is confirmed by the key informants for the study area
but unanimously confirmed by the SPEI products only for 2011. While in most years
the multi-product approach allows us to robustly identify drought and get a handle on
the uncertainty in drought magnitude, from 2008 onwards, the greater disagreement
between the data products, both in terms of SPEI direction and magnitude, highlights
the potential of information from actors engaged in drought relief in the region. Our key
informants worked in disaster risk management, food security, water storage/harvesting
and climate change resilience building, i.e., sectors that are sensitive to drought conditions.
These experts’ inputs are therefore viewed as important in the continued assessment and
response to droughts with their observations contributing to resolving ambiguity.

These inputs are particularly valuable in drought assessments for relatively con-
strained spatial extents, as informant data on droughts can be assumed to cover the entire
study area. For large-area drought estimations covering larger regions or featuring more
localized droughts, spatially explicit information on the location and extent of informant
activities must be collected during interviews and integrated into the verification of the
drought occurrence estimation. The involvement of key informant observations and mete-
orological data covers the blind spots of the respective category.

According to the EM-DAT global disasters database EM-DAT [78], the year 2010
experienced large-scale drought conditions in the coastal, northern-most, and north-eastern
locations. Our analysis suggests that the 2010–2011 drought conditions had existed already
since 2008 and continued until 2012, even though the year 2010 showed wetter conditions
in some of the products, as also confirmed by [70]. The effects of the severe 2011 drought
might have carried over to 2012, with SPEI showing no sign of relief, although the actual
magnitude of SPEI is ambiguous in that year. The effects of this prolonged drought period
were devastating among the households largely dependent on rainfed agriculture. Essential
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sectors such as energy, which is largely hydro-based, were negatively impacted across East
Africa [2,6]. In Kenya, a total of 3.75 million persons, primarily in the north and parts of the
south-east, were affected by the resulting food shortage according to the global record of
mass disaster occurrence [78]. The drought period 2005–2006, confirmed by most products,
was followed by wetter conditions in 2007, which exacerbated impacts. As [18,36,77]
discuss, livelihoods and natural ecosystems across East Africa were severely impacted
by the drought and, as Nicholson [70] reiterates, subsequent flash floods. The drought
conditions seem to have commenced in 2004 and peaked in 2006, a classic demonstration
of the evolving nature of the hazard [4,22].

A case of disagreement between the SPEI blends are the years 2014–2015, which
were confirmed as drought years by actors engaged in drought relief in the area and the
EM-DAT database. EM-DAT mentions the year 2014 with only a few areas in northern
and north-eastern Kenya affected. In this light, south-eastern Kenya, including Kitui West,
might have seen milder drought conditions. The National Drought Management Authority
of the Kenyan government (NDMA) reports that in 2013–2014, during the OND, the greater
Kitui region experienced moderate drought conditions and instances of decline in crop
production and crop failure [79,80]. Triangulation of the SPEI calculations with qualitative
information on the ground showed its greatest value here. The qualitative input effectively
resolved the ambiguity between the data products. However, the qualitative data, too,
have the potential for errors, including false recollections, difficulties in estimating the
length of a drought and distinguishing trends and extremes, influences of recent events
and media attention on past occurrences, and willfully biased responses with the aim to
attract funding by exaggerating the severity of the drought situation [81]. On their own, the
qualitative data lack information on drought magnitude and timing, which is something
that the SPEI analysis can provide, albeit with uncertainty.

5. Conclusions

We revealed uncertainties related to the choice of rainfall and temperature products for
the calculation of SPEI in the context of identifying past drought conditions in the semi-arid
Kitui West area of Kitui County, south-east Kenya. We thereby complement existing studies
with a demonstration of the variation of data products and the resulting SPEI calculations at
the sub-national scale, which is relevant for assessing drought impacts on agriculture-based
livelihoods. In an attempt to resolve the ambiguity in drought identification resulting from
the differences in products, we assessed the value of complementing the SPEI analysis with
key informant interviews, effectively demonstrating the added value of triangulation.

We observed that blends of 10 gridded rainfall and four gridded temperature products
unanimously identified years experiencing drought conditions amidst a few variations.
Moreover, 18 of the 40 SPEI combinations, revealed trends towards drier conditions,
statistically significant at the 0.01 level. Using the ensemble of gridded meteorological
data blends in the calculation of drought indices, the SPEI in this study, facilitated greater
understanding of the uncertainties in onset, duration, and magnitude of past droughts.
These uncertainties were driven more by the variation between rainfall products than
temperature products in our case. Understanding past droughts is important to study
their social-ecological impacts and assess the adequacy of responses in the future. Our
study thus holds an important lesson for studies of past droughts: using any one of the
available data products would risk severely misrepresenting drought characteristics and
perhaps instituting erroneous responses. It is similarly important to bear in mind that,
in the absence of a dense ground-station network, there is no benchmark dataset against
which the individual data products can be assessed. Searching for a “best” product is thus
not viable, and the value of these products can only be realized in an ensemble as we have
revealed.

An ensemble approach to SPEI could not, however, identify all droughts unanimously
in our case, using an ensemble of 10 rainfall products times four temperature products
over the Kitui West area in south-east Kenya. This ambiguity could only be resolved with
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the information from 14 key informants engaged in disaster relief on the ground. Our
study thus demonstrates the value of triangulating quantitative drought analysis with
qualitative data. The qualitative data alone, in turn, would miss information on drought
onset, duration, and magnitude; this is what the ensemble approach to SPEI provides,
albeit with uncertainty. It is thus the juxtaposition of both types of data that is most fruitful.

Engaging organizations involved in disaster relief locally in drought identification will
also strengthen their role in the region. Since drought is a gradually evolving phenomenon
with long-lasting socio-economic impacts, there is need to develop and/or intensify in-
tegrated interventions and capacity building where affected communities are actively
engaged at sub-national levels. The evolving and complex dry conditions accompanied by
uncertainty are a challenge for the relatively recently devolved Kitui County administra-
tion, which has the mandate to coordinate multistakeholder risk management strategies at
county-level. Such management strategies and collaborative networks should be flexible
to detect, track, and respond effectively to various unique drought episodes. Effective
responses include enhancement of government, private sector, and community-based dis-
aster relief systems, targeting, for example, crop diversification with cultivation of drought
resistant varieties as championed by the Kenya Red Cross [82]. An ensemble approach to
SPEI will provide the necessary quantitative basis for these policies, while the experience
of community, regional and national organizations will help resolve data ambiguities as
well as strengthen the implementation of national policies.

Appreciating uncertainties in drought characteristics should in no way distract from
decisive action to mitigate the impacts of droughts, improve disaster relief, and strengthen
adaptive capacity, because extreme events such as droughts have been increasing over East
Africa and have already resulted in deterioration of livelihoods and ecosystem integrity.
While there is likely spatial variation over the region, we confirmed a statistically significant
trend towards increasingly drier conditions also for Kitui West with just over half of the SPEI
ensemble members. This trend was partly driven by a significant increase of minimum and
maximum temperature over time in all data products, while negative annual and seasonal
rainfall trends in some of the products could not be proven statistically significant. Beyond
the temperature, and therefore evapotranspiration, effect, it will be worth investigating
next how the timing and sub-annual variation of rainfall propagates into negative SPEI
values, i.e., drier conditions. Such an analysis should go beyond trends in annual standard
deviations of rainfall, which in our case did not turn out significantly either.
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Abstract: This article presents new approaches to water diplomacy connected with the United
Nations 2030 Agenda. The research question is what is the role and significance of water diplomacy
for Sustainable Development Goals (SDGs) and global security architecture? The paper is based on
the theory of interdependence. To illustrate this concept, the author used several case studies to
identify the international security role of water diplomacy in the context of SDGs. The case studies
point to the greater likelihood that wars in the twenty-first century will be due to freshwater disputes;
water diplomacy should be a crucial instrument for the SDGs implementation. Water diplomacy has
the potential to become an effective platform for international cooperation in the face of many current
and future global water challenges. Water diplomacy combines preventive and reactive measures, as
well as the mediation and implementation of solutions. It is crucial for regional and world security.
The results of this paper show future research directions on water diplomacy.

Keywords: water diplomacy; global security architecture; sustainable development goals

1. Introduction

The global system of international relations, built on the European, Westphalian
model, has been undergoing fundamental transformations. The era of the fourth industrial
revolution brings new challenges and new communication as well as cooperation tools.
In this process, there is an increasing interdependence between and among the system
participants. At the same time, there is a growing striving for hegemony, especially in
the global security architecture. Thus, on the one hand, the issue of international anarchy
remained relevant within a system of increasing economic interdependence. On the other
hand, populism continued to play a significant role in state-to-state relations. International
anarchy emphasizes the acquiring of national power and the building of regional and
even world predominance. However, the beginning of the twenty-first century brought
events that led to profound changes in the dimension of global security architecture,
including environmental challenges and climate change. Both are linked directly with
water and security. Moreover, ‘the war for resources’, or the critical infrastructure use,
related to the water supply as a tool for struggle, is becoming increasingly important.
Thus, the interdependence, power, and hegemony of water issues directly impact the
likelihood of conflict, including armed conflict. According to analyses of the United States
National Intelligence Director’s Office, water will be the reason for many regional conflicts,
the collapse of states, and cause instability in countries of strategic importance to US
interests [1].

This article has adopted the research question: what is the role and significance of wa-
ter diplomacy for Sustainable Development Goals (SDGs) and global security architecture?
A hypothesis has been adopted emphasizing that water diplomacy, as a network of cooper-
ation, state, and non-state actors for water, contributes to more effective implementation
of the SDGs and increasing peace in the world. Over the concept of water diplomacy in
literature, apart from emphasizing its other elements, as indicated by Huntjens et al., there
is common acceptance of the fundamental role of many actors, state and non-state, as well

Sustainability 2021, 13, 13898. https://doi.org/10.3390/su132413898 https://www.mdpi.com/journal/sustainability
199



Sustainability 2021, 13, 13898

as the importance of their multi-dimensional cooperation [2] (p. 86). Water diplomacy is
crucial for the United Nations (UN) Agenda 2030, SDGs implementation, and the global
security system. The UN has defined water challenges as one of the most significant global
challenges [3]. According to data from the United Nations, over 2 billion people worldwide
experience a severe water shortage. As predicted, by 2030, due to the increasing effects
of climate change and the lack of sufficient fresh water, there will be large human migra-
tions of up to 700 million. By 2040, 25 percent of children under the age of 18 worldwide
will experience an extreme freshwater shortage [4]. Increasing water pollution, including
chemicals and solid waste, primarily plastics, is causing many infectious diseases. The
consequence is the rapid spread of microbial contamination among people, affecting the
entire ecosystem. It will directly impact international security policies and structures.

After the fall of the Cold War and the bipolar world order, a new global security
architecture is emerging. It is identified by decentralized tendencies and a complex in-
terdependence between influential transnational actors. This, in turn, leads to the need
for effective policy coordination and diplomatic approaches as well as more flexible and
facilitating cooperation with many non-state actors, including NGOs, universities, civil
societies, and the business sector. Diplomacy tools have been changing in recent years
because of interconnected, hybrid, international relations and the need to face current
global challenges. In this context, water diplomacy refers to the ways and means in which
state and non-state actors cooperate. Water diplomacy includes a myriad of approaches, for
example, bilateral, multilateral, science-based solutions, cooperation, and governance [5].

This article calls for a new approach in water diplomacy, presented as part of modern
diplomacy—a global interdependence network, working together to promote strategic ties
on bilateral, regional, and global challenges related to water. This future world interde-
pendent network includes national diplomatic services, international organizations, local
authorities, leaders of social groups, including religious, numerous non-governmental or-
ganizations, and entrepreneurs and business leaders. Therefore, this cooperation assumes
the adoption of many strategies, projects, and innovative solutions. Water diplomacy prior-
itizes the issues of reducing economic and political tensions between countries, making
efforts to prevent conflicts, and, in the event of their occurrence, solving them effectively. In
this reality, multinational corporations will play an increasingly important role. They use
water diplomacy to promote new technologies, increase their sales volume, and increase
their income. In addition, corporations could be involved in other critically important ways.
One example is supporting diplomacy by supporting the processes of the Conference of
the Parties, as part of the United Nations Climate Change Conference.

Sustainable Development Goals-related projects are crucial as they address key global,
contemporary, and future challenges, largely related to water. Therefore, to achieve these
goals, water diplomacy is required. In this sense, this article illustrates water diplomacy
with a broader dimension of cooperation, beyond water-specific issues, as a specific contri-
bution to the debate. A fundamental issue for the development of all countries, regions,
and the world, including the implementation of SDGs, is peace based on a stable global
security structure. However, water has been the source of hundreds of conflicts during
this century [6]. The twenty-first century may be characterized by water wars [7] (p. 2).
Therefore, many international entities, including international organizations, undertook
initiatives to avoid this risk.

The research target is to explore the role and importance of water diplomacy for
global challenges, including Sustainable Development Goals. This paper first reviews the
literature and documents of the subject. Moreover, the author implemented an appropri-
ate research method based on the complex interdependence concept. Additionally, the
research utilized case study methods. Research is limited in scope due to the sample size
and geographic area. The case studies focus on the Middle East, Africa, and Asia. The
rationale behind this choice is that these regions are most affected by limited access to fresh
water, with the consequences of conflicts. Moreover, the study focuses on international
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actors involved in multilateral diplomacy within the United Nations, which, with a global
purview, adopted the SDGs.

2. Materials, Methods, and Theoretical Background

The author collected research material data in 2018–2021 about water diplomacy
projects, events, and strategies. Then, it became the subject of analyses. The researcher
examined primary sources as well as the rich literature. The author acquired relevant data
from, among others, United Nations, Strategic Foresight Group, Organization for Security
and Cooperation in Europe, European Union Institute for Security Studies, Emirates Diplo-
matic Academy, and Bangladesh Institute of Peace and Security Studies. To investigate the
discussed issue and answer the research question, the researcher selected case studies on
Asia, the Middle East, North Africa, and the river basins showing immense sensitivity to
water-related conflicts. Furthermore, the world’s great powers are directly or indirectly
involved in these regions and river basins. The author examined various actors, both state
and non-state. The researcher analyzed the UN, a global organization that adopted SDGs
and engaged in water diplomacy. The adopted case studies are analytical and empirical.
Therefore, qualitative methods have been used, aimed at causal explanation and inter-
pretation. The adopted case analysis goal is to find an answer to the research question
by investigating the sequence of events, starting from the causes and ending with the
observed effect. The concept of power and interdependence was adopted as the key theory.
In addition, the author draws on personal experiences in and observations of bilateral and
multilateral diplomacy. Thus, the approach presented in this article is novel. Therefore,
this research has unique significance for the ongoing discussion on global challenges.

A theoretical apparatus was used to better understand international processes about
water diplomacy, the SDGs, and the new global security structure. In addition, this research
analyzed numerous government and NGO documents and their initiatives, projects, and
commitment to water diplomacy. This article is based on the concept of complex interde-
pendence, investigating the system and international order. It refers to the interdependence
of states and other actors on the international stage. Keohane and Nye emphasize the
diminishing role and importance of states in shaping foreign policy. In creating a new
architecture of international relations, there has been a growing influence of non-state
actors, including international organizations with international regimes, NGOs, pressure
groups, and transnational corporations. However, the essential conceptual value of com-
plex interdependence is to combine, in the neo-liberalist school, with some elements of
realism concerning the anarchic world order, and the recognition of nation-states as the
main subjects of international relations and global politics. Thus, this concept combined
power politics and economic liberalism while showing that these categories concerning
ecological interdependence can lead to competition. In complex interdependence, the role
and significance of hard power also are significant. Pressure on a weaker partner, and
the other, as readiness for armed conflict, resulted in economic competition and political
conflict. For in-depth analysis, the Waltz statements were valuable, among others, such as
those that regard anarchy as a ‘permanent’ force. While Tucker pointed to the inequalities
in the distribution of power in the global order. Given the concept of a weaker partner,
the hierarchical system of predominance. Thus, Herz, Kissinger, Wolfers, and Aron were
appropriate for analyzing hegemony.

3. Case Studies

This section is divided into subheadings. It provides a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions
that can be drawn. The security situation analyses in different regions show that various
groups use water hegemony, among others, as a tool of military operations conducted by
terrorists. Therefore, the international community must recognize the water’s significance
for sustainable development and international peace and security [8]. Solutions that address
water challenges are a significant element of geopolitical analyses and foreign and security
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policies. The Middle East, Africa, and Asia are of increasing importance for emerging
global security architecture. The numerous conflicts and military operations in these areas
involve major global and regional players. The end of wars and conflict resolution in these
parts of the world will not only affect the formation of the new geopolitical system in the
region, it will also affect the shape of the new global security architecture. Since 2003, the
war in Iraq has been seen as a major change (transition in power) in the weakening of
the US position in influencing and shaping the security system, enhancing China’s role
and significance. Thus, a new political and economic platform for strategic cooperation
between the Middle East, African countries, and China is created. This will affect the
new global security architecture. Asia also is facing increasingly severe water challenges.
Although this continent is home to more than half of the world’s population, people lack
fresh water. Moreover, the rapid growth of residents in Asia in the coming years will affect
the increasing challenge of freshwater access, especially in cities. Also, the effects of climate
change contribute to a growing threat. Climate change will lead to, amongst other things,
massive migrations of people seeking conditions that enable their survival. Consequently,
such a situation will cause tensions and upset political and economic structures. This,
in turn, will have an impact on disrupting the current geopolitical image, including the
regional security structure. This diagnosis is confirmed, among others, by the US National
Intelligence Council’s Global Trends 2025 report [1].

3.1. The Middle East and Africa

The biggest challenge for water diplomacy and security in the Middle East and Africa
is in the Nile, the Jordan, and the Tigris–Euphrates basins. Gleick, a specialist on conflicts
over water, demonstrates a connection between environmental challenges and security,
including armed conflict [9] (p. 17). Moreover, according to this article’s author, in the
anarchic nature of international relations, there is a natural hegemony among the countries
in the rivers’ basins. It occurs because of their different location. This situation is often
used by individual countries, providing tensions. Therefore, effective water diplomacy can
meet the challenges of water, with climate change affecting international security.

3.1.1. Middle East

Due to the lack of fresh water in many countries of the Middle East, water is linked
with state power. Consequently, this natural resource has become the reason for the game
of power. Therefore, water diplomacy is especially significant in the Arab region as a
strategic tool for sustainability and peace [10]. Cooperation and joint projects on water
between Israel and Jordan offer opportunities to reduce the tension level. Noteworthiest
are new ideas and initiatives to develop a network of collaborative platforms to tackle
water challenges. As part of water diplomacy, in April 2012, a high-level group was created
to address the water challenges in the Middle East, headed by Prince of Jordan, Hassan
Bin Talal. The Jordan River and the Yarmouk River, with their large underground sources,
provide transboundary water for Jordan and Israel (Figure 1). In this area, water is essential
for both human life and statehood. Each of these countries treated this basin as its own.
Therefore, those two countries experienced many conflicts, including military actions.
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Figure 1. The Jordan River basin (source: Hoff, Bonzi, Joyce, Tielbörger [11] (p. 719)).

The Jordan River basin is one of the oldest subjects of water conflict. Intensification
occurred in 1953 when Israel was implementing the National Water Carrier project. As a
result, Jordan, Lebanon, and Syria lost control of the Jordan River by changing its course.
In the face of growing conflicts, the US, as a hegemon in this region, launched the Johnston
Plan in 1955. This aimed to solve this serious problem for the strategic significance of
the Middle East. However, this plan did not achieve the intended goal, and the desire to
control water, as well as the issue of gaining new elements of geopolitical advantage of
each of the participants in the conflict, caused further tensions. The conflict intensified
when the National Water Carrier of Israel was completed in 1964, and Syria and Jordan
decided to divert the two upper tributaries of the Jordan River (about 35 percent, i.e.,
Banyas and Hasbani) to the Jarmuk River. These actions contributed to military operations
and, consequently, to the Six-Day War, which involved Algeria, Egypt, Iraq, Israel, Jordan,
Kuwait, Saudi Arabia, and Syria [12] (pp. 64–65). Between 1948 and 1994, both sides
have taken unilateral actions to access water and demonstrate national interests. Many
diplomatic efforts have failed [13]. Actions taken by Israel and Jordan have led to water
pollution and the devastation of the environment. In 1994, both states signed a peace treaty.
Sides agreed on the river basin and water distribution. Nevertheless, Lebanon, Palestine,
and Syria, transboundary water countries, were not part of the agreement, and the political
tension dynamic was visible [13]. Jordan’s water resources are one of the most significant
elements of the Middle East conflict. Water may again become a source of clash in the
Jordan basin. In these areas, there is dynamic population growth. Moreover, climate change
consequences are related to the drastic lowering of the water level and less precipitation.
Therefore, the United Nations is engaging its agendas to meet the challenges and SDGs.
One example is the support for the signing of the Memorandum of Understanding (MoU)
at the World Bank on 9 December 2013 by representatives of Israel, Jordan, and Palestine,
to jointly manage the water resources of the Red Sea, Jordan River, and the Sea of Galilee.
Co-financing and the possibility of supervising the implementation of such projects by UN
institutions may convince the leaders of this region to develop cooperation. The year 2021
shows increased cooperation in the field of water between two countries. It results from,
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among other things, the pressure of the United States. Another favorable situation is the
establishment of technological cooperation on the water between Israel, Jordan, and the
United Arab Emirates.

The two rivers of crucial importance to Iran, Iraq, Syria, and Turkey, are the Tiger
and the Euphrates (Figure 2), which are consistently losing their underground sources, as
demonstrated by research and analysis of the Strategic Foresight Group (SFG) [14] (p. 147).
Therefore, the rivalry for control over the Euphrates and Tiger rivers is growing among
Iraq, Syria, and Turkey. The main reason is Turkey’s implementation of the Southeastern
Anatolia Project (GAP), which restricts water flow to Iraq and Syria [15]. It will be of
great importance to the water challenges and impact on conflicts and the regional security
structure. It is an enormous project that will enable Turkey to become a hegemon in the
Euphrates basin and Tigris River. It will ignite Turkey’s subsequent conflicts with Iraq and
Syria. Specifically, this project enables water hegemony by allowing Turkey to block the
water flow to Syria, which has immediate consequences for Iraqi–Syrian water relations in
the Euphrates basin. In turn, in the Tigris basin, Iran has the potential to limit the water
flow to Iraq, which also has the potential to develop conflicts [16] (p. 321).

 

Figure 2. Tigris–Euphrates Rivers basin (source: Issa [17] (p. 424)).

Moreover, during military conflicts in Iraq and Syria and the war on terror, Daesh
fighters (ISIS) primarily moved along these two most important Mesopotamia rivers. Water,
for Daesh, became one of the primary weapons, and the control of its critical infrastructure,
including dams, made it possible for their military operations to succeed. One example
is the seizing of the Fallujah Dam in April 2014. Terrorists flooded 300 square kilometers
of farmland and villages. As a result, Iraqi forces withdrew, allowing Daesh to take over
Fallujah city in Iraq. In 2016, Daesh destroyed a pipe supplying water to eastern Mosul,
Iraq. It led to a water loss for half a million inhabitants. In the same year, access to drinking
water in Syria fell by 50 percent due to attacks on water systems. Daesh was strongest
during the period it controlled critical water infrastructure. The control of the Tabqa Dam in
Syria and Mosul Dam in Iraq allowed Daesh to maintain power in its capital in Iraq, Mosul,
and its headquarters in Syria, Raqqa [17] (p. 323). Therefore, the SFG’s work focuses mainly
on the MENA region, and Asia calls for new global security architecture construction based
on the peaceful use of water. This group established the Blue Peace Community, with
the Prince of Jordan, Hassan Bin Talal, as the chairman, to prevent water conflicts in the
Middle East. The SFG calls for appropriate actions to effectively protect dams and water
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infrastructure from being used as a war tool. Control of water infrastructure has become
an essential element of the strategy of terrorists [18] (p. 3).

On 11 April 2018, a conference was held in Bahrain, focused on water prevention
in the MENA region. The Minister of Electricity, and Water Authorities of this country,
pointed out that in the Middle East, more than in other world regions, there are conflicts
due to water. The minister called on the Gulf Co-operation Council (GCC) to make water
one of the most significant areas of the alliance. Therefore, the minister’s idea, ‘Program of
Work for Integrated Management and Sustainable Water Development’, adopted by the
GCC Secretariat, should be accepted as a significant step towards the effective cooperation
mechanism development in this area. In addition, conference participants emphasized that
the entire international community should cooperate with each other in the framework of
water diplomacy [19] (p. 6).

3.1.2. Africa

The tensions over Nile River water resources are hardly new. Its waters flow through
eleven countries: Burundi, Congo, Egypt, Eritrea, Ethiopia, Kenya, Rwanda, Sudan, South
Sudan, Tanzania, and Uganda (Figure 3). The Nile River basin supports the lives of 160 million
people. Currently, the main actors of the conflict are Egypt, Ethiopia, and Sudan. Egypt
is acting as a ‘hydro-hegemony’ that controls most of the Nile’s water resources. Egypt,
with Sudan, thanks to its position, managed to divide almost all the Nile. Ethiopia and
other equatorial states (even though most of the waters originate in their territories) were
omitted when the division was made. Conflicts between Egypt and Sudan over water have
a long history. After the Second World War, in 1958, a war took place again.

 

Figure 3. Nile River basin (source: Belete, Deng, Zhou, Wang, You, Hong, Weston [20] (p. 3).
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The new global security structure based on the United Nations was unable to prevent
it. However, in 1959, the international community led to the signing of the Nile Water Treaty
between the military conflict parties. Currently, the clash over the Nile water resources
is coming to the fore again. Moreover, ‘the Great Ethiopian Revival’ Dam (the biggest in
Africa) will allow Ethiopia to manage the Nile’s water. On 23 March 2015, Egypt, Ethiopia,
and Sudan signed declarations regarding cooperation in water resources on the Nile in
the context of the construction of the Grand Ethiopian Renaissance Dam. However, as the
reservoir filled, tensions emerged between Egypt and Ethiopia. Therefore, in November
2016, negotiations between the two countries began. Then, after the collapse of mediations,
Sudan joined as a mediator, to no avail. The crucial point of contention is the individual
countries’ uses of water flow. Due to the breaking of official talks in October 2019 among
Egypt, Ethiopia, and Sudan, the United States became involved in this dispute the following
month [21]. However, the mediation of the United States, joined by the European Union
and the United Nations, did not bring significant results in the conflict. Therefore, in July
2021, Egypt and Sudan asked the UN Security Council to take up the mega-dam on the Nile.
In addition, in September 2021, both countries proposed the establishment of a quartet that
would include the European Union, the African Union (AU), the United Nations, and the
United States. However, Ethiopia has expressed its readiness to talk only within the AU.

3.1.3. Case Study’s Analytical Significance: Summary

The states, international relations basic units, will continue to strive for the power
maximization favorable to the hegemonic system. Case study analysis shows that interna-
tional security must combine peace with climate change and environmental degradation as
well as access to water, especially in the Middle East. In this region, water issues are crucial
to security. The situations in the Nile, Jordan, Euphrates, and Tiger basins don’t only affect
the relationships of the major Middle East players. They also impact the global security
architecture. Therefore, global water challenges need dynamic relationships and institu-
tional cooperation, and the use of water diplomacy [12] (p. 74). Dynamic relationships and
institutional cooperation are essential to solving global water challenges. Water diplomacy
provides such an approach and a platform.

3.2. Asia
3.2.1. Himalayan Strategic Triangle (India–China–Nepal) Plus Bangladesh

The Himalayan glaciers are crucial for the rivers of Asia, especially Bangladesh, China,
India, and Nepal (Figure 4). In these countries, 1.3 billion people, 20 percent of the global
population, live in Himalayan river basins. Roughly 10–20 percent of the Himalayan rivers
are fed by glaciers. Climate change will impact those glaciers in ways that will be seen in
2050 [22] (pp. 56–57).

Scientists foresee that for this reason, the Yellow River and the Ganges will lose
between 15–30 percent of water by 2050. The Yellow River is the second-longest river in
Asia (5464 kilometers), and the sixth-longest in the world. The civilization of ancient China
was created along this river. Although the Ganges (2700 kilometers in length) lies within
India, more of its vast delta is in Bangladesh. While the Chinese river, the Yangtze, and
the Brahmaputra, located in China, India, and Bangladesh, will lose around 7–14 percent
of their water. The Yangtze is the longest river in Asia (6380 kilometers), the longest river
in the world entirely within one country, and the third-longest in the world. Around
40 percent of China’s population lives in the Yangtze basin (Figure 5).
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Figure 4. Major South and Southeast Asian river basins (source: Hasson [23] (p. 4)).

Figure 5. Yellow and Yangtze Rivers basins (source: Wu, Ma, Yang, Zhou, Peng, Wang, Yu [24] (p. 3).

Additionally, the Yangtze is the most significant Chinese river from an economic point
of view, having 75 percent of the nationwide rice harvest [25]. This river is the crucial route
for Chinese inland waterway transport, being a significant element of a new economic
belt. The Brahmaputra (3848 km) is one of the most important transboundary rivers in
Asia. It is a river that comes out of the highest part of the Himalayas and enters the Indian
Oceans. In addition, the Brahmaputra and Ganges combine to create the largest delta
in the world, covering 80,000 square kilometers. Moreover, tensions between China and
India regarding water have a solid foundation in asymmetric interests. India is concerned
about China’s unilateral actions in the Ganges–Brahmaputra–Meghna (GBM) river basins.
Especially regarding the construction of the Zangmu Dam [26]. Another real controversy is
about the idea of the partial reversal of the Brahmaputra River course. Experts say that it
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will significantly reduce the level of the river on the Indian side. It will affect agriculture,
fisheries, and soil salinity level. This concept is a part of an even larger project, the so-called
south–north relapse. According to the plan, the Brahmaputra would be one of three rivers
whose courses run from the south to the north through the artificial channels. China will
take 30 percent of the river waters away from India and Bangladesh [27]. In recent years,
there has been a growing tendency in water initiatives to focus solely on national interests.

The construction of huge dams contributes to large migration. By 2050 in Bangladesh,
China, India, and Nepal, around 70 million people will be forced to migrate. It will cause
social conflict, including that based on ethnic and religious differences [28] (p. 9). This is
not a unique challenge that only affects Asia. In other parts of the world, many societies
will experience similar water-related migration. According to the Water and Migration: A
Global Overview Report, which analyzes the relationship between water and migration,
millions of people are in places with potential water crises. Consequently, these crises
have the potential to lead to conflict and cause migration. Moreover, coupled with the
consequences of climate change, by 2050, more than half of the global population, or some
4.8 billion people, will be exposed to these challenges [29]. Additionally, every year the
Indus basin aquifers lose 10 km3 of water. It is almost half the water storage in all the
reservoirs in Pakistan, or more than half of India’s six large dams in the region.

3.2.2. India–Pakistan Tensions over Water

The causes of the conflict between India and Pakistan for over 70 years are complex.
Apart from the territorial issues over Kashmir, one of the reasons is the access to water.
Under the Indus Waters Treaty, signed on 19 September 1960 by India and Pakistan with the
participation of representatives of the World Bank, access to Indus waters and its tributaries
was divided between both sides [30]. Despite subsequent conflicts over Kashmir, the treaty
lasted many years, providing access to water for hundreds of millions of people. The
challenges are increasing drastically due to the accelerating melting of the Himalayan
glaciers. The vast deforestation in Kashmir also contributes to this process. Moreover,
the rapid population growth in both countries contributes to the increased demand for
electricity obtained from hydroelectric power plants and water for agriculture. At the same
time, Pakistan is one of the countries most affected by the water problem.

In many projects, Pakistan is supported by China, including as part of the China–
Pakistan Economic Corridor (CPEC), which has been implemented since 2013. Most of them
concern the construction of hydropower plants and associated dams. In 2020, both sides
concluded a contract for the Kohala hydroelectric project, located in the Pakistan-controlled
part of Kashmir. Islamabad calls these lands ‘Free Kashmir’, while India identifies this
region as ‘Pakistan-Occupied Kashmir’. In 2020, Pakistan signed an agreement to build
another hydropower plant in the same area—in Azad Pattan. Moreover, to construct a
dam in the Diamer–Bhasha and Gilgit–Baltistan regions (Figure 6). In response to the
announcement of the dam in the Diamer–Bhasha region, New Delhi stressed that Pakistan
is making changes to Indian territories that are under its illegal occupation. Pakistan and
China rejected these allegations. If CPEC does become a corridor between the PRC and
Pakistan, it will have to run through the Gilgit–Baltistan area that India recognizes as
its own.
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Figure 6. Contested Territories (source: Podger, Ahmad, Yu, Stewart, Shah, Khero [31] (p. 3)).

Drinking water reserves are declining at an alarming rate, also in India. Environmental
migrations are already taking place in many regions of the country. At least 21 cities, includ-
ing the capital, New Delhi, may run out of groundwater. About 100 million people may
have limited access to water. Therefore, India has already built several dozen hydropower
plants on the rivers that start in the Indian part of Kashmir and flow to Pakistan. More
projects are planned on the rivers Chenab, Jhelum, and Neelum, a tributary of the Indus.
Decisions around the dams built by Pakistan will flare up in the coming years. However,
India, because of two of these projects, has the possibility of influencing them. The power
plants in Kohala and Azad Pattan are to be built on the Jhelum River, whose sources lie
in the mountains of India. Thus, New Delhi has the potential to limit the water supply
to them [32]. Therefore, the dam on Kishanganga was completed in 2018. Tensions could
herald ‘water wars’ between India and Pakistan.

In March 2019, another major escalation of the conflict took place, with the threat of war.
India then decided to use its access to water as a ‘weapon’ if necessary. In addition, Indian
Mirage 2000 fighters bombed targets in Balakot, Muzaffarabad, and Chakothi, cities in
Pakistan. The raid was a response to a suicide terrorist attack in Kashmir in which 40 Indian
policemen were killed. The Indian operation was the first raid since the 1971 war beyond
the line of control, the border separating the Indian and Pakistani parts of Kashmir. Pakistan
responded to India’s actions with airstrikes in the Indian part of Kashmir. A spokesman
for the Pakistani army announced the shooting down of two Indian fighters [33].

In 2021, the Intergovernmental Panel on Climate Change published a new report on
melting glaciers, emphasizing that Pakistan will be hit first by climate change. The country
will run out of water by 2050. Around 75 percent of Pakistan’s 218 million inhabitants live
on the banks of the river, and as many as five of the largest cities depend entirely on the
river as a water source [34]. Heatwaves regularly kill city dwellers and affect crop cycles
and yields. In recent years, Pakistan has experienced devastating floods, including in the
capital, Islamabad, and the largest city, Karachi.

3.2.3. Central Asia

Another example of water’s influence on the roles of the states is the situation in
Central Asia. Water issues and geopolitical trends also threaten stability in this region.
Central Asia is an area where world players compete for 11 percent of the global natural gas
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resources. However, the most significant factor influencing conflicts and socio-economic
development is access to fresh water. This situation is the consequence of the water man-
agement ineffectiveness during the USSR period. Additionally, the lack of modernization
of the water infrastructure after the founding of independent states and insufficient cooper-
ation between them. A great example of the neglect effects of both periods is the ecological
disaster of the Aral Sea (once the fourth-largest lake in the world), which lost 90 percent of
its water (Figure 7).

 

Figure 7. Aral Sea Coastline 1960–2018 (source: Aladin, Gontar, Zhakova, et al. [35] (p. 229)).

Consequently, Turkmenistan currently has water only about 4 percent of the global
average of this source. By contrast, Uzbekistan is presently only 9 percent of the world
average. Moreover, the forecasts indicate high population growth in this region, which may
reach 100 million inhabitants in the next 30 years, an increase from 72 million at present.
Kyrgyzstan and Tajikistan, located in the upper reaches of two rivers, the Amu Darya and
the Syr Darya, are at a better point (Figure 8). They have a geographic advantage, close to
the snowpack and glaciers of the Pamir Mountains.

 

Figure 8. Amu Darya and the Syr Darya Rivers basins. (source: Ma, Abuduwaili, Smanov, Ge,
Samarkhanov, Saparov, Issanova [36] (p. 3)).

210



Sustainability 2021, 13, 13898

They are the most important rivers of Central Asia, supplying water to the Aral Sea.
However, statistics show that the Pamir–Alai glaciers, which are the primary source of these
rivers, lost about 25 percent of their area in the second half of the 20th century. In addition,
climate change is forecast to decrease water availability by 25 percent in 2040 [37]. The
countries of the region are focusing on short-term national interests. Therefore, Kyrgyzstan
and Tajikistan (the upstream countries) have conflicts with Kazakhstan, Turkmenistan,
and Uzbekistan (the downstream countries). Moscow wants to coordinate those relations
again and to have them under its control of regional waters [38] (pp. 16–17). In these
countries, water resources are state property and closely related to the national interest. It
makes it challenging to adopt a common strategy for all countries in the region. Therefore,
the crucial issue is the international community involvement, using water diplomacy to
support transboundary water management [39] (p. 11). One of the ways supporting water
diplomacy is the UN Regional Centre for Preventive Diplomacy for Central Asia.

3.2.4. Case Study’s Analytical Significance: Summary

The author of this manuscript only partially agrees with Keohane’s claim that hege-
mony contributes to order [40] (p. 31). However, concerning the hydro-hegemony in
examined the case studies, it causes tensions. On the other hand, to some extent, the re-
searcher accepts Taliaferro’s assumption that the security dilemma is an inevitable feature
of anarchy in which geographical proximity and access to raw materials affect security
between countries [41] (p. 131). However, the guarantor of security is a state acting under
international law as an exponent of the interests of civil society. Moreover, nowadays,
more and more people are affected by the consequences of climate change, which are
spreading beyond national borders. Specialists and scientists from this region stress that
climate challenges have a critical impact on water security in the region. They call for
politicians to take joint actions respecting all interests. Otherwise, there is a risk of water
conflict [42]. Moreover, the Himalayas are experiencing consequences of climate change,
which is caused by, among other things, increasing flood risk, decreasing water availability
in many places, and an increasing inability to cultivate plants. For Bangladesh, China,
India, Nepal, and Pakistan, one of the priority policies is to ensure that they have enough
water, which, in the Himalayas, is dwindling. It could lead to a geopolitical conflict in the
region by 2050 [28] (p. 105).

3.3. Global Multilateral Diplomacy: United Nations

Many UN agencies are engaged in water diplomacy, such as the United Nations Envi-
ronment Programme (UNEP); United Nations Development Programme (UNDP); United
Nations Educational, Scientific, and Cultural Organization (UNESCO); World Health Orga-
nization (WHO), Food and Agriculture Organization (FAO); and United Nations Industrial
Development Organization (UNIDO). These institutions adopted a Comprehensive Assess-
ment of the Freshwater Resources of the World [43]. At the same time, the Global Water
Partnership was established, and in 2002 was transformed into an intergovernmental orga-
nization called the Global Water Partnership Organization, with a secretariat in Sweden, in
Stockholm. The following year, United Nations Water (UN-Water) was set up as a platform
for cooperation and coordination between UN agencies and international organizations in
the water field. At that time, UNDP; UNESCO; and the World Bank, along with the Interna-
tional Commission for Irrigation and Drainage; the International Union for Conservation
of Nature (IUCN); the International Water Association (IWA); AquaFed (International
Federation of Private Water Operators); and Suez Lyonnaise des Eaux set up the World
Water Council (World Water Council) as an international think tank based in Marseille,
France [44] (p. 2). Currently, this cooperation platform includes several hundred members
of both government and intergovernmental entities, UN agencies, and the private sector.
The World Water Council has been organizing the World Water Forum every three years,
the largest global water conference.
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The United Nations adopted in 1992 (entered into force in 1996) the Convention on
the Protection and Use of Transboundary Watercourses and International Lakes (Water
Convention), Resolution the UN General Assembly on 28 July 2010 on the human right to
water and sanitation, and Resolution on the Law of Transboundary Aquifers adopted on
11 December 2011. However, the key to the UN convention for matters related to water
is the Convention on the Law of Non-navigational Uses of International Watercourses.
This international law came into force in 2014, 17 years after its signing. In addition, only
39 out of 193 United Nations members are parties to the convention. Interests may also be
redefined through a normative change [45] (p. 749).

In May 2003, the UN and its agencies with the Organization for Security and Co-
operation in Europe (OSCE) established a collaborative platform for common global chal-
lenges. It combined environmental issues with security under the name the Environment
and Security (ENVSEC) [46]. Consequently, since 2014, the OSCE has been increasingly
interested in water diplomacy as a crucial tool for building trust, promoting stability and
global security, and preventing conflict, including supporting the SDGs [47]. To this end,
the United Nations, with the OSCE, treats water diplomacy as a significant element of
global coordination and, by undertaking negotiations, limits potential disputes and con-
tributes to their resolution. [48]. The Organization for Security and Cooperation in Europe
is the world’s largest regional security organization, with 57 members from North America,
Europe, and Asia.

In 2016, the United Nations Security Council, for the first time, organized a conference
on ‘water, peace, and security’, with 69 representatives of states participating in the discus-
sion. The UN Secretary, General Ban Ki-Moon, pointed out that peaceful water relations
are a fundamental, strategic condition for world peace and security. At the same time, the
Secretary-General presented Syria and Gaza as an example, where the destruction of water
infrastructure resulted in armed conflicts [49]. Moreover, from the United Nations’ point
of view, international community activities, including water diplomacy, must implement
the SDGs [50].

4. Results

The study results have been identified based on the conducted qualitative research
using case studies. It considers the specific geopolitical context of the research areas in terms
of challenges related to water, their impact on international security, and diplomacy as a
tool for finding a win-win solution. The case studies selected as samples in this qualitative
study have been chosen to provide as much information as possible from different points
of view. As a result, they made it possible to interpret reality and predict future potential
processes.

4.1. Water Diplomacy’s Potential Impact

The findings from the first case study demonstrate that the most critical war on terror
has been in the Tigris and Euphrates basins, and in Syria and Iraq, water has been used
as a weapon in the fighting. They demonstrate the need to engage in water diplomacy.
Another case study describes the melting of glaciers in the Himalayas, drastically reducing
the water of the ten largest rivers in Asia and increasing pollution. This situation has a
direct impact on the billion people living in this region. Clear evidence and validation
description of the obtained results are provided in Section 3 of this research paper.

The current global order experiences a falling of the current balance of power and
emerging new global security architecture. Therefore, the world needs water diplomacy,
active at all levels of inter-aisle structures and societies activity, launching innovative
solutions and economic projects to jointly deal with global challenges that are fundamental
to the world security structure. In this sense, water diplomacy also has an impact on the
implementation of the SDGs. Water diplomacy has the chance to create a new culture of
world partnership, which is an efficient global platform connected by numerous elements
of a network of various entities and leaders improving the model of global management.
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To solve conflicts over shared water resources, water diplomacy should encompass
both global and regional activities. Water is the foundation of world peace. Based on
broadly developed multilateralism, leadership is also required, which includes the constel-
lation of national interests in the face of universal global challenges. However, the current,
and, to a greater extent, the future global order will be increasingly complicated, with an
enormous number of international players and interdependencies. Moreover, there will
be more aggressive competition at various levels of international relations. At the same
time, the current global security structure has been regionalized and dispersed, with an
increasing emphasis on the pursuit of national interests. At present, water diplomacy,
involving many actors, has not yet created efficient cooperative tools. In addition, the
current international relations are more characterized by ignoring multilateral cooperation.
Thus, the emerging new global security architecture will be shaped by complex new unsta-
ble spheres of influence and chaos. At the same time, global security architecture will be
anarchic, with regional hegemons, including transboundary water resource management.

4.2. The Lack of Effective “Mechanisms” and State Role

The third case study shows that, despite many UN agencies being active in water
diplomacy, the effectiveness of its engagement in peaceful solutions to water-related
conflicts is limited. Due to interrelationships and interdependencies, the SDGs related to
water challenges require a flexible approach. Therefore, the Water Diplomacy Framework
could be a significant world element supporting the UN Agenda 2030 implementation
by individual countries and affect the new global security structure [51] (p. 75). In this
context, the fundamental thing to understand is that all UN member states constitute this
organization. They are primarily responsible for the success of the programs and initiatives
adopted by it. However, although there are many projects related to water diplomacy
and promises from politicians, there is still a lack of effective consultation mechanisms
and powerful activities. There are many pieces of evidence, among others, in the Tigris–
Euphrates basin or conflicts over Nile water resources. International organizations, which
are fundamental to water diplomacy, lose their effectiveness. International law is unable
to keep up with contemporary challenges. The UN conventions and resolutions on water
presented in the case study demonstrate this.

Moreover, these research results show that the concept of a hydro-political security
complex requires refinement. In this context, it is worth further researching anarchic struc-
tures with national interests. International relations experience the global challenges of
interdependence, the enormous dynamics of change, and difficulties predicting new dy-
namics. Therefore, there is a need for flexible water diplomacy capable of effective political
interactions at all levels. In addition, this interdependence requires a comprehensive and
strategic approach to common challenges. However, at the same time, presented research
findings in this manuscript demonstrate the role and significance of the state as a condition
for the effectiveness of water diplomacy on regional and global levels.

4.3. Emerging Global Security Architecture

The anarchic system of international relations offers a complex interdependence in
which the hierarchy occurs. Water challenges facing modern diplomacy reveal hegemony
in a multilevel global interdependence network. Water diplomacy without coordination
and far-reaching strategy cannot be fully effective for facing water-related challenges.
One of the significant concepts of international relations is the complex interdependence
that assumes that anarchy is the unchanging principle of the international order and is
also a variable in the distribution of states’ capacities. Case studies prove that water
diplomacy is an example of the complex interdependence concept application. The global
water challenges show that the emerging world security architecture will be dominated by
hierarchies and hegemony, in anarchy and interdependence. In the Middle East and Africa
climates, the small amounts of freshwater cause tensions and conflicts between countries.
They want to gain control over this valuable resource. Therefore, some countries have
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undertaken activities related to the construction of dams and canals. This situation will
exacerbate conflicts, causing serious challenges to international security. In this sense, the
SDGs require effective coordinated water diplomacy. Consequently, it will contribute to
building a global security architecture based on more and more collaborative platforms.

The case studies underline that many international entities’ strategies and geopolitics
influence growing global challenges related to water. This situation will have a critical role
in the new world security structure. Based on the research carried out, applying the concept
of complex independence, the author proposes a new interpretation of it, concerning water
diplomacy. Hydro-politics, led by water diplomacy, considering geopolitics, influences the
anarchic structures of international relations through a cooperation network with state and
non-state actors. Moreover, in the current international changes’ dynamics, the state’s role
as an exponent of national interests must be preserved. Only in this way is there a chance
to meet global challenges and strengthen world security.

5. Discussion

The obtained research results were subject to interpretation and discussion with the
other authors’ studies. It is necessary to point to Yıldız, who stresses the water’s role and
importance in a broad and deep perspective [52] (p. 4). The author of this manuscript
proposes to recognize the deeper role of water as an opportunity to build a global collabo-
rative platform. As one of its crucial elements, water is a part of the peace process. It is a
critical issue as the lack of cooperation in the sharing of water resources in many places
around the world causes hydro-hegemony. Additionally, another challenge is the growing
tensions between international organizations and national interests. In these processes,
water diplomacy emerges as a tool to meet these challenges and provide a comprehensive
approach to international security.

5.1. Sustainable Development Goals

The author of the presented manuscript analyzed the SDGs’ roles and significance
for multilateral diplomacy [53] (p. 47). The results indicate the fundamental significance
of the diplomacy employed in SDGs, including water diplomacy for the country’s brand
growth [54]. As emphasized by Salmoral et al., water diplomacy is key to achieving SDGs.
However, it still faces massive challenges in its implementation due to various political and
economic interests. Therefore, water diplomacy needs to overcome the limitation of many
entities due to its concentration on short-term interests. Moreover, there are often question-
able negotiation results, a lack of transparency, and limited access to reliable information [2]
(p. 94). As Noaman points out, the world needs multi-faceted and holistic solutions because
of the interdependence between water quantity and water quality [51] (pp. 6, 8).

A significant element of the water diplomacy discussion is the Strategy for Sustain-
able Peace 2017–2022, developed by the Swedish Agency for International Development
Cooperation (SIDA) [55]. Referring to this, Ravnborg emphasizes that according to her
predictions, water issues will attract more joint projects and cooperation than conflicts,
except in the MENA region [56] (pp. 19–20). Therefore, Susskind, as well as Islam, points
out the need for both a Water Diplomacy Framework (WDF) and a Water Diplomacy
Network (WDN) [13]. Expanding this issue, Schulz proposed to combine the rivers issue as
an element of national security, with geopolitics as part of the concept of a hydro-political
security complex [57] (pp. 91–122).

Referring to the discussion, the research results show that water diplomacy meets the
Sustainable Development Goals. As a global platform for cooperation, water diplomacy,
embracing both state and non-state actors, can not only provide an effective instrument
for the 2030 perspective, but, beyond this year, it will become a permanent and dynamic
global structure for cooperation in response to climate change.

214



Sustainability 2021, 13, 13898

5.2. International Security

As Ikenberry emphasizes, there is now a ‘crisis of transformation’, in which the current
world liberal order, at the top of which the US would gradually erode, and new global
architecture has not yet shaped [58]. The author of this research analyzed the importance
of water for military conflicts. The research findings show the necessity to conduct water
diplomacy in preventing conflicts, including armed ones [16]. The reasons for the tensions
that grow into armed conflicts are often social inequalities and extreme poverty. Huntjens
and de Man Rens underline that the main obstacle to maintaining or restoring peace in
many places around the world is the issue of lack of readiness to cooperate in shared water
resources [59] (p. 10). However, Cuppari identifies tensions in finding a solution in crises
over water between international organizations and national interests [60]. Moreover, Kjellén
adds that this kind of tension in the emerging global order will grow [61] (p. 110). Therefore,
specialists working for Strategic Foresight Group (SFG) underline that water is in many
cases an inseparable element of peace processes and a part of building partnership [62].
FSG, founded in 2002, is a think tank that operates in dozens of countries on four continents.
Its main area of activity is water diplomacy and international security, including those
relating to global challenges.

Wolf demonstrates the global tensions related to water [44] (p. 34). Analyzing the
objectives of water diplomacy in the context of world peace, Molnar et al. point to four
interconnected processes—first, reconciliation, second, integrated prevention to promote
peace, third, prevention and conflict resolution, and fourth, to promote peace, security, and
stability. Moreover, the goal of water diplomacy is security [63]. Tignino also emphasizes
that the growing shortage of freshwater can be the cause of wars. In addition, a researcher
foresees a consistent reduction in freshwater availability in the Middle East and North
Africa (MENA) region [64] (p. 649). As emphasized by Turton et al., the Euphrates, Jordan,
Nile, and Tigris, which in the MENA region are the basic sources of fresh water, are of
fundamental importance for the strategic development of countries located in their basins
and societies [65] (p. 24).

Kupchan and Kupchan emphasize that collective security organizations are irrelevant.
Moreover, they are also dangerous because states place inconsistent hope in collective
security. Therefore, basing on their own national resources development in an anarchist
system may increase the state’s security [66] (p. 60).

Due to climate change, there is a drastic reduction in the amount of fresh water on
earth. Access to this raw material is becoming a more and more prioritized goal of the
security policies of many countries around the world. Therefore, one must agree that
access to drinking water is a source of war. However, this challenge can also inspire closer
cooperation, thanks to effective and active water diplomacy. Thus, water diplomacy will
contribute to a more secure world.

5.3. Global Security Architecture: Hydro-Hegemony or Anarchy?

It is significant to identify hydro-hegemony. Menga recognizes this in the same way
as the definition of classical hegemony—the dominant position over others [67] (p. 418).
Tucker draws attention to the inequalities in power and the power distribution, which con-
tribute to the international order and global security [68]. On the other hand, Waltz points
out the exceptional responsibilities of great powers and their various functions resulting
from them due to the diversity of societies [69] (p. 198). Therefore, the US is also active in
water diplomacy and thus influences the new global security architecture [70] (p. 2). As
Lake emphasizes, the envisaged system is a global hierarchy dominated by great powers,
in which weaker states even sacrifice sovereignty to obtain security guarantees [71] (p. 110).
Moreover, the international system is not fully anarchic. Additionally, he argues that rela-
tions between major powers, international institutions, and states are much more complex
than neo-realists proclaim [72] (p. 159). Booth argues that anarchy is the best solution
to current global challenges and ensures peace and security [73] (p. 540). Moreover, the
same author proposes ‘emancipation’ as a fundamental concept relating to security, with
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simultaneously inseparable elements ensuring stable security. Emancipation means free-
ing people from war, poverty, and oppression, offering education and freedom. To face
global challenges, he proposes an anarchic global ‘community of communities’ that should
support the founding of a stable global security architecture with emancipation as more
important than power and order [73] (p. 539).

Hussein, Menga, and Greco examined SDG 6 (clean water and sanitation); 5 (gender
equality); and 2 (zero hanger). Their research confirms that there are international agree-
ments regarding water management in which a hegemonic system is visible. Therefore,
they propose to reduce such contracts. Moreover, they also call for broad and deep cooper-
ation between NGOs. However, its effectiveness can be ensured by civil society [74] (p. 7).
According to this research author, different active local communities working together to
face the water challenges, will provide the foundation for defining national interests and a
global platform for cooperation. Despite the hegemonic system, citizens working together
within NGOs increase the role of water diplomacy in conflict prevention. At the same time,
it contributes to the more effective implementation of the Sustainable Development Goals.

To ensure access to ever more valuable fresh water, states will strive even more to
maximize power, seeking a hegemonic position, hydro-hegemony. It will have an impact
on international security, both at the regional and global levels. However, water diplomacy,
representing a comprehensive approach to security, can shape the global security architec-
ture, reducing the number of military conflicts. It provides a multi-level and multi-faceted
dimension and covers a wide range of actors, including active civil societies. Moreover,
water diplomacy will address many aspects in the broad sense of security.

6. Conclusions

There is insufficient literature related to water diplomacy in the context of the new fu-
ture global security structure. Many studies focus on water diplomacy and SDGs. However,
there is a lack of research on these issues linked with the emerging new security architecture.
Therefore, this article is a contribution to fill such a gap. The answer to the stated research
question underlines that water diplomacy influences global security architecture. However,
a condition for its effectiveness is engagement between not only international entities but
primarily nation-states and global great superpowers. The findings are added value for the
audience of the presented research. These research results will be valuable for researchers,
actors, and participants of international relations. The conducted research shows that the
presented hypothesis has been confirmed. However, without the will of state actors, it will
be almost impossible to be effective in implementing the SDGs and creating more peace in
the world. The action of the United Nations will also be more effective with the support of
its member states. In this way, the United Nations will receive real legitimacy to influence
the world. Thus, the UN water diplomacy, with numerous agencies and funds, has a great
opportunity to influence the Middle East, Africa, and Asia in implementing the SDGs and
contributing to world peace.

Fresh water will be increasingly affected coupled with population growth and climate
change, contributing to international conflicts. In armed conflicts that are already underway,
water infrastructure is a crucial element of ongoing military operations. At the same
time, the world is witnessing enormous dynamics in global relations with the complex
constellation of power and interests. Moreover, increasingly, the current international
relations are based on a world network of connections and interdependencies. In addition,
a present world order structure meets the aggressive implementation of national interests
and new influence spheres. On the one hand, the world can observe a novel balance of
power appearing, on the other hand, this system shows enormous instability. This, in
turn, causes growing tensions and an increase in political, economic, and military conflicts.
Therefore, for modern diplomacy, including water diplomacy, the new world security
architecture is one of the most serious tasks.

The presented findings of this research are significant to a global audience. However,
due to the requirements of the length of the text, the study was limited to selected inter-
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national entities. As a result, the topic under discussion lacks an in-depth analysis of a
broader circle of actors in international relations, such as NGOs, that play a significant role
in water diplomacy. In addition, linkages of non-governmental initiatives with national
governments and multinational corporations are crucial issues to be explored. Conse-
quently, an interesting point for further research of the discussed topic should be related
to transnational business groups’ influence on SDGs and water diplomacy effectiveness.
Additionally, the two global great powers, the US and China, change strategies related
to climate changes, and the Sustainable Development Goals are the new inspiration for
worldwide researchers. Taking this crucial topic, they can provide novel contributions in
the field of academic and professional endeavors.
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Abstract: Conventional stormwater management infrastructures show low levels of sustainability
owing to the consistent impact of urbanization and climate change, and the green stormwater
infrastructure (GSI) has been identified as a more sustainable alternative approach. According to a
systematic review, the articles and papers concerning GSI planning are fragmented, especially those
discussing the planning steps; thus, an integrated framework of GSI planning is developed here to
guide forthcoming planning. In the facility aspect, the research status and prospects of four critical
planning steps (i.e., objective formulation, type/scenario evaluation, quantity/scale determination,
and site selection) are discussed, and a method of quantifying the relationship between GSI and
ecosystem services is given. In the ecosystem aspect, ecosystem resilience promotion is regarded as an
approach to guarantee the interaction between hydrological processes and ecological processes, which
maintains the sustainable provision of ecosystem services produced by GSI in diverse disturbances.
Proposals for future GSI planning research are put forward as comprehensive consideration of the
two abovementioned aspects to harvest ecosystem services from GSI directly and to promote the
anti-disturbance ability of the ecosystem to guarantee the stable provision of ecosystem services
indirectly, which are conducive to the social, economic, and environmental sustainability of GSI.

Keywords: green stormwater infrastructure; stormwater management; planning; eco-hydrology;
ecosystem resilience

1. Introduction

In the past several decades, the appearance and functions of the urban environment
have been altered tremendously by human behavior [1]. Urbanization leads to the ex-
pansion of cities and suburbs into rural areas and hence the fragmentation of natural
resources [2]. Meanwhile, a series of environmental problems follow, e.g., the rapid expan-
sion of impervious surfaces in urban areas, an increase in surface runoff, changes in soil
conditions, a deterioration in water and air quality, and a negative impact on urban hydro-
logical functions [1–4]. Moreover, urbanization intensifies human activities that directly
affect the Earth’s climate system through nonlinear processes [5], and climate change leads
to a variety of precipitation patterns [6] and an increase in the frequency and intensity of
storm events [7]. Under these circumstances, the feasibility of conventional stormwater in-
frastructures (e.g., gutters, tunnels, storm sewers, pipes, and channels) is reduced, because
they are designed for transporting runoff to downstream areas as soon as possible [8] and
may lead to insufficient groundwater recharge and the deterioration of water quality [1,9],
although they minimize runoff accumulation and overflow problems. Urban floods are
becoming more frequent [10–12], and the expansion of conventional infrastructures to
cope with this problem has proven to be costly and unsustainable, especially in devel-
oped urban areas [13]. As a result, in the past century, stormwater management measures
have gradually shifted focus from the rapid removal of rainfall from buildings and roads,
without considering downstream effects, to minimizing impervious surfaces and adopting
facilities that promote infiltration and evaporation [14]. As a more sustainable alternative
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approach, and differing from the conventional ones, green infrastructure (hereafter GI)
focuses on decentralized units and the control of runoff near the source by imitating the
natural hydrology and promoting the infiltration, evaporation, and retention of urban
watersheds [15]. GI ensures that the hydrological conditions after development remain
close to the natural conditions before development [3], which is conducive to returning
runoff to the natural water cycle, groundwater recharge, reducing stormwater runoff, im-
proving water quality, and reducing implementation and maintenance costs [15,16]. Since
Prince George’s County, Maryland, first pioneered GI in 1997, it has not yet been ascribed
a precise and unified definition but instead has different definitions based on the actual
research status and needs in respective fields. Among them, the definition given by the
EPA [17] is cited most frequently: “a cost-effective, resilient approach to managing wet
weather impacts that provides many community benefits . . . ”. To date, the research field
of GI has focused on stormwater management and the common development of social and
economic well-being, e.g., mental health, aesthetic value, and property improvement, for
which the research has increased gradually. It has been pointed out that the ambiguity of
the definition of GI has promoted its expansion in many fields, on the one hand, but, on
the other hand, due to the scattered research and the irregular use of terms, the theoretical
research and practical implementation of GI is hindered to a certain extent; therefore, this
ambiguity is a double-edged sword [18].

Common consensus has been reached regarding GI on several grounds, the most
important of which is that the function of GI is to provide multiple ecosystem services
(hereafter, ESs) sustainably, with sustainability and multifunctionality. Scholars [18–20]
integrated GI and ES to clarify their relationship. This paper is not dedicated to seek-
ing a clear definition of GI but focuses on its planning and application in stormwater
management; therefore, GI is regarded as an approach that provides various stormwater
management ES, e.g., runoff reduction [21,22], water quality improvement [23,24], tem-
perature regulation [25], biodiversity [26], habitat services [27], and aesthetic quality [28],
and the most widely used types are green roofs, grassed swales, rain barrels, permeable
pavements, bio-retention cells, and infiltration trenches. In recent years, ES has become
the focus of decision-making processes to achieve sustainable development [29]. Urban
stormwater management planning is one of the areas that strongly facilitates the integration
of ES knowledge [30]. GI planning involves evaluating multiple ESs and also needs to
reduce the complexity of the evaluation process and allow the comparison of different
scenarios and the monitoring of implementation effects [31].

To emphasize the benefits of stormwater management, we use the green stormwater
infrastructure (GSI) as the main term in this paper. At present, water quantity regulation
and water quality regulation services for stormwater are the major objectives of GSI
planning. Specifically, water quantity regulation services mainly include runoff volume
reduction, peak flow reduction, and time-to-peak delay, while water quality regulation
services are mainly the removal of TN, TP, COD, TSS, etc. Nevertheless, relevant GSI
planning research involves disparate planning steps, e.g., Koc et al. [32] evaluate GSI
scenarios to select the best one based on identifying the planning objective as runoff
reduction; in contrast, Zhang et al. [33] directly assess the suitability of GSI construction
without clearly setting out the planning objective, while Li et al. [34] put forward the
planning objectives clearly as a 20% annual comprehensive runoff coefficient, evaluated
the scenarios through SWMM and SUSTAIN, and calculated the construction area of GSI.
Therefore, GSI planning may involve objective formulation, type/scenario evaluation, site
selection, etc., which are given different considerations in different planning strategies.
Even for the same step, such as objective formulation, a discrepancy in concrete methods
exists; Koc et al. [32] simply describe the benefits of GSI in runoff reduction, without
setting specific quantitative targets, while Li et al. [34] put forward the planning objectives
quantitatively, as previously mentioned, and there are even some studies that do not
mention the planning objective at all [35,36]. GSI planning is extensive and fragmented,
without standard planning steps or methods, which limits its development. Moreover,
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given that GSI is a concept of ecological planning, researchers have realized that the
success of GSI planning depends on the facilities themselves, but it is also restricted by
the ecosystem. A system with high resilience can absorb changes and remain in the same
state in a series of disturbances and management actions; on the contrary, one with low
resilience may react strongly and move to another state [37], so different ecosystem states
may lead to differences in the performance of the GSI system, and even failure. A feasible
solution is to promote ecosystem resilience through optimization measures, so as to ensure
the stable operation and interaction of ecological processes and hydrological processes,
and indirectly promote the sustainable provision of ESs [38,39].

In accordance with the review of existing studies, we found that GSI planning research
is extensive and fragmented, and there is still a lack of detailed instructions for the GSI
planning steps; in addition, there is no review of GSI planning that integrates the facility
aspect and ecosystem aspect simultaneously. Therefore, the objectives of this paper are
to (1) review and synthesize the published literature and identify the research gaps, and
(2) make suggestions for future GSI planning to harvest stormwater management ES in
terms of both facility and ecosystem, which will aid planners and managers in managing
stormwater sustainably.

2. Methods

We searched the related literature via Web of Science, and the results showed that GSI
research involves multiple terms (i.e., green infrastructure, green stormwater infrastructure,
low-impact development, best management practice, ecosystem services, water-sensitive
urban design, sustainable urban drainage system, sponge city, ecosystem resilience, green-
way, greenbelt, and ecological infrastructure). In fact, these terms are similar and inter-
changeable in most cases, without clear separation. For the convenience of research, this
review used GSI as an alternative. We searched all the terms and checked the abstracts
of the papers that contributed to this review. A total of 158 papers were reviewed, 67 of
which were searched and checked with the terms and planning as keywords. We sum-
marized the four critical steps of GSI planning through the abovementioned 67 planning
articles, i.e., objective formulation, type/scenario evaluation, quantity/scale determination,
and site selection, which were considered frequently. It should be noted that a list of
the 67 consulted articles is provided in the Supplementary Materials. Furthermore, we
calculated statistics for the planning steps considered in these planning articles to illustrate
the current situation of GSI planning, which are discussed in Sections 3 and 4. The other
91 papers were consulted to illustrate the effect of ecosystem resilience promotion on
GSI planning, and we discussed the approaches to promoting ecosystem resilience; some
experiment or review papers were also taken into consideration, such as the evaluation of
GSI performance to indicate the ES that it may provide, which helped us to understand the
topic more comprehensively.

In fact, the review of this literature was only a starting point, through which we
proposed an integrated framework (Figure 1) for GSI planning to discuss possible research
directions for future GSI planning in terms of both facility and ecosystem to improve sus-
tainability. Regarding the facility aspect, four key steps of GSI planning were summarized
based on the published literature, and the possible directions for future research were
discussed based on the analysis of the current research status of each step. In order to
obtain the stormwater management ES from the GSI facilities directly and efficiently, we
discussed how to formulate the objectives, how to evaluate the GSI types/scenarios, how
to determine the quantity/scale, and how to select the sites. Regarding the ecosystem
aspect, we analyzed the benefits of ecosystem resilience promotion to the ES based on
the literature and put forward the research directions of future GSI planning in terms of
promoting ecosystem resilience, which contributes to strengthening the stable interaction
between ecological and hydrological processes, and ensures that the GSI system can still
operate in response to disturbances with the sustainable supply of ES. This integrated
framework can provide a reference for GSI planners and stakeholders.
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Figure 1. The GSI planning framework.

3. Results

3.1. Overview of the Planning Articles Reviewed

Among the 67 planning articles reviewed, the number of articles that contained
objective formulation, type/scenario evaluation, quantity/scale determination, and site
selection is 60, 58, 14, and 20. It is known that objective formulation and type/scenario
evaluation are the hotspots of GSI planning at present, while the planning approaches that
considered quantity/scale determination or site selection are less than one-third of the
articles. In addition, there were only 3 articles that contain all planning steps, and 16 articles
with consideration of 3 steps, while most (43) articles included 2 steps, 33 of which dealt
with the objective formulation and the type/scenario evaluation. The remaining five
articles only carried out a single step. Therefore, the current GSI planning is fragmented
and the planning steps considered are not consistent and comprehensive in articles, which
may limit the development of GSI planning and construction. It is therefore insightful to
identify the research gaps of the planning steps from the facility perspective. A detailed
description of the distribution of planning steps considered in these articles, and a detailed
discussion of each planning step, are carried out in Sections 3.2–3.5.

3.2. Objective Formulation

Among the selected 67 planning-related articles, there were 60 studies that con-
tained objective formulations, which mainly addressed water quantity regulation services
(e.g., runoff volume reduction, peak flow reduction, and combined sewer overflow) and
water quality regulation services (i.e., the removal of runoff pollutant), as well as referring
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to greenhouse gas emissions (1), temperature regulation (3), biodiversity enhancement (5),
cultural services (2), and social and economic benefits (5). The planning objectives were
formulated as one or more of the abovementioned ES, and 56 articles (93%) formulated their
objectives as the water quantity regulation or water quality regulation services; these two
types of ES are still the dominant objectives of GSI planning. Only 3 articles put forward
clear quantitative objectives, and the other 57 articles briefly summarized the planning
goals in a qualitative way based on the functions confirmed by the relevant research of
GSI. Another 7 studies did not mention the concept of planning objectives and directly
proceeded to other steps in planning. This may be attributed to the fact that the authors
utilized the relevant functions of GSI that were widely confirmed, and therefore, there was
no need to specifically propose the objective. Current planning objectives lack quantitative
and precise considerations, which may be caused by two reasons: Firstly, researchers are
accustomed to directly providing qualitative planning objectives that may be feasible in
explaining the functions of GSI. However, the ambiguous expression of such objectives
may induce a decrease in the interest of investors and stakeholders, thus hindering the
development of GSI. Secondly, the quantitative research on the function of GSI is still im-
mature. For example, in the literature review, as regards the runoff volume reduction using
strategies such as bioretention (BR), green roof (GR), infiltration trench (IT), permeable
pavement (PP), rain barrel (RB), and vegetative swales (VS), the research results show high
spatial heterogeneity, as shown in Table 1.

Table 1. Runoff volume reduction, implementation cost, and annual maintenance costs of six types of GSI.

Main Function
Runoff Reduction

Rate (%)
Implementation Cost

(USD/m2) [40]
Annual Maintenance
Cost (USD/m2) [40]

Bioretention (BR)
Infiltration
Retention

Purification

50 [41]
>60 [42] 109–227 6

Green roof (GR) Retention 77.2 [43]
62.2 [44]

Extensive: 112;
Semi-intensive: 147;

Intensive: 409

Extensive: 4.84;
Semi-intensive: 8.78;

Intensive: 6.37

Infiltration trench (IT) Infiltration 33–61 [45]
16–70 [46] 97–149 4.54

Permeable pavement (PP) Infiltration
43 [47]

4.2–10.5 [48]
80 [49]

53–81 0.91

Rain barrel (RB) Retention
7.4 [50]

18–40 [51]
2–12 [52]

1.91 0.02

Vegetative swale (VS) Transportation
Infiltration

17 [53]
5.11–13.46 [54]

40–75 [55]
0.20 0.01

Since a quantitative relationship between GSI and ES cannot be clearly known, it
is formidable to determine an appropriate clear objective based on existing studies or
to determine whether the GSI planning objective can be achieved after it is formulated
quantitatively. Moreover, based on the literature review regarding water quality regulation,
the initial conditions (e.g., climate, geology, and the composition and number of pollutants
in stormwater runoff) of different study areas are inconsistent, which makes even a certain
type of GSI show different water quality regulation capabilities, as shown in Table 2.
Researchers adopt a variety of facility configurations in actual operations, such as filler
and plants. Furthermore, GSI planning is increasingly inclined to address a combination of
different types of facilities, which makes objective formulation more complicated.
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Table 2. The runoff reduction and pollutant removal performances of bioretention.

Function Performance (%) Reference Location

Runoff reduction 50 [41] Cincinnati, USA

>60 [42] Kyoto, Japan

16.1–99.8 [56] Nanning, China

75 [57] Guangzhou, China

Pollutant removal COD: 94.6;
TP: 93.7 [58] Xian, China

NO−
3-N: 73.8–100;

Ammonium: 80.5–97.4 [59] Beijing, China

Nitrate nitrogen: 70–90;
TN: 75–90;

TN: 90;
ammonia nitrogen: 80;

COD: 25–50

[60] Xian, China

TSS: 94;
Ammonia: 85;

total copper: 59;
total zinc: 80

[61] Potland, USA

3.3. Type/Scenario Evaluation

Among the reviewed articles, there were 58 articles that addressed GSI type or sce-
nario, 23 studies of which are directly based on local conditions and existing research results
of GSI facility types for selecting one or more type(s) of GSI, while the other 35 articles are
based on a number of preliminary alternatives from which the best solution is selected
by evaluating multiple criteria. We do not deny the efforts of the former in terms of re-
search caliber but endorse the reliability of the latter for reducing the weight of subjective
judgments in decision making. When considering the infiltration function, for example,
BR, IT, and PP may all be appropriate choices, if a solution is directly determined by a
planner or institution; thus, strong subjective factors may be inevitable. The type/scenario
evaluation process incorporates criteria from multiple dimensions of society, economy, and
environment comprehensively, which makes the corresponding GSI planning more likely
to be adopted and implemented. In addition, the evaluation of multiple alternatives is
also in line with the trend in GSI planning of choosing combined facilities, as it can help
to distinguish the functional differences between diverse facility types themselves and
their combinations, and to broaden the research field of GSI. Hua et al. [62] simulated the
two-dimensional runoff routing processes under different GSI scenarios and storm patterns
via a hydrological model; they used an evaluation system consisting of life cycle cost anal-
ysis, analytic hierarchy process, and regret decision theory, the criteria of which covered
technology, economy, environment, and operational aspects; lastly, the best strategy was
determined as the combined use of bioretention, infiltration trenches, and rain barrels.
Similarly, Kourtis et al. [63] proposed a framework for evaluating stormwater management
measures in urban basins; they included hydrological, hydraulic, and economic criteria,
aiming to quantify the impact of alternatives on mitigating urban flood, and evaluated the
construction, operation, and maintenance costs of all scenarios based on a typical life cycle
(30 years). Comparing the conventional scheme (offline detention tanks, sewer enlarge-
ment) and GSI (GR, PP) with no stormwater management measures, the results showed
that the GSI solution performed more effectively when traffic congestion, noise, construc-
tion difficulty, and the impacts of coordination downstream are taken into comprehensive
consideration. Accurate quantities of ES provided by GSI cannot be obtained currently;
therefore, the values of evaluation criteria of water quality and quantity regulation services
are not accurate enough. Consequently, the credibility of the best type/scenario through
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this evaluation is still low, and therefore, it is urgent to quantitatively identify the values of
ES provided by GSI.

3.4. Quantity/Scale Determination

Among the 67 planning studies reviewed, only 14 included the step of quantity/scale
determination. However, most of these studies simply designated the areas where GSI,
entirely or in part, can be built as planned areas; thus, the selected quantity or scale was not
calculated and evaluated in detail, which means large randomness and subjectivity. In these
articles, providing enough expected ES cannot be guaranteed, and the interest of stakehold-
ers cannot be enhanced by minimizing GSI investment either. There are also studies that
made efforts to attain the quantity or scale via calculation or evaluation. Men et al. [64] com-
bined and optimized the SWMM model by using the preference-inspired co-evolutionary
algorithm using goal vectors (PICEA g) in accordance with the maximum buildable area of
PP, and GR, compared with the study area, and calculated the optimal construction areas of
GSI regarding four objectives, i.e., total runoff reduction, peak flow reduction, the removal
of suspended solids (SS), and total cost. Guerrero et al. [21] constructed a decision-support
system to simulate the runoff volume reduction performance of different construction
areas with porous concrete pavement, bioretention, and bioswales, which can be used
to determine the construction areas of GSI according to the objective of runoff volume
control. It is worth noting that most of these quantitative studies refer to the relevant GSI
water quality and quantity regulation capabilities given by existing studies, such as the
runoff coefficient of various types of facilities [34], or the default GSI performance that is
calculated by parameter settings with large uncertainties in the hydrological model [64,65].
A method supporting the idea that GSI can provide the same amount of ES in different
planning scenarios is bound to be flawed, as the discussion regarding performance dis-
crepancy in different studies in Sections 3.2 and 3.3 revealed. Fundamentally speaking,
a considerable amount of uncertainty between GSI and ES results in these shortcomings.
On the one hand, the ambiguity of the number of ES that GSI can provide leads to the
ambiguity of objective formulation, which makes the quantity/scale determination lack
accurate objective constraints. On the other hand, even if a certain quantitative objective
is given, the planning is still subject to uncertainty and unable to determine the precise
quantity or scale. An increasing number of studies [20,66] point to a consensus that the
function of GSI is ES production, and they agree that it is necessary to quantify the rela-
tionship between the two, as they believe quantification will help incorporate GSI into
relevant environmental policies more widely and enhance the interest of stakeholders, so
as to understand and implement effective GSI practices; however, they have not achieved
breakthrough results yet.

3.5. Site Selection

Among the 67 reviewed articles, 20 articles included the criterion of site selection.
The location of GSI is often regarded as a significant factor affecting the effectiveness
of planning [67]. Therefore, identifying high-priority construction areas for various GSI
types is always a research hotspot. The appropriate sites contribute to the reduction in
the vulnerability of the study area (e.g., floods, climate change), and the acceleration of
the production of a wider range of ES [68]. Taylor et al. [69] integrated GIS with e-tools,
and identified the potential GSI areas based on the determination of the existing GSI, and
the principles of its site selection were as follows: vegetation height < 1.5 m; 10 m buffer
zone for cemeteries, playgrounds, and railways; exclusion of impervious surface areas,
golf courses, historical sites, water bodies, and wetlands; polygons ≥ 9.29 m2. Martin-
Mikle et al. [70] identified hydrologically sensitive areas by extracting land-use types to
calculate the topographic index and selected 140 priority GSI sites after the identification
of land use, spatial scale, and the applicability of constructing GSI in impervious areas.
Li et al. [71] evaluated priority sites for GSI to mitigate floods in Ghent, Belgium, through
runoff coefficient, socially sensitive groups, road sensitivity, building sensitivity, and
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environmental justice. Langemeyer et al. [72] discussed six types of ESs, i.e., heat regulation,
runoff control, habitat, food production, entertainment and leisure, and social cohesion
through multi-criteria decision analysis (MCDA) to select priority areas for green roofs
in Barcelona, while Song et al. [73] selected eight criteria in three dimensions—social,
hydrologic, and physical–geometric—to construct the MCDA framework to evaluate the
performance of infiltration trench and permeable pavement in eight sub-catchments in
Seoul, South Korea, then ascertained the best location.

4. Discussion

4.1. Facility Aspect
4.1.1. Objective Formulation

We affirm the significance of objective formulation, as it affects all subsequent plan-
ning steps. If the objective is always described qualitatively, not only will the interest of
stakeholders and investors become lower and lower, it will also lead to loopholes in all
subsequent planning steps (i.e., type/scenario evaluation, quantity/scale determination,
and site selection) and considerable hidden dangers. A feasible solution is according to
the ES (i.e., water quantity regulation and water quality regulation services in this review)
that GSI can provide, and building an integrated framework of GSI and ES to fully identify
the functions of GSI, so as to accomplish the multifunctionality of GSI to obtain maximum
benefits. However, the ES concept is rarely used explicitly in planning objectives, which
may be caused by the fact that it is not clear how ES provides guidance for decision-making
information and whether ES concepts should be introduced in the objective formulation
step [74,75], while others argue that the ES concept is not clear enough among planning
practitioners and has not reached a broad understanding [76,77]. In fact, urban stormwater
management planning is one of the areas that strongly facilitates the integration of ES
knowledge [66], and GSI planning affects ES in multiple ways at different decision-making
levels [78]. Future GSI planning needs to reduce the complexity of the evaluation process
to attract more stakeholders’ attention to understand the ES concept. ES assessment has
been increasingly conducted as an imperative source of knowledge to support decision
making [79]. Meanwhile, incorporating ES assessment results into decision-making pro-
cesses usually means a significant increase in the amount of information that needs to be
considered [80]. In complex decision-making problems, proper knowledge synthesis is a
basic step to reduce the burden of information and support evidence-based decision mak-
ing. Therefore, how to effectively integrate multiple ES assessments is a problem that needs
to be solved in the objective formulation step in future GSI planning [66], which means
the trade-off among ES should be taken into account, e.g., increase in aquifer storage and
groundwater pollution, water purification, and water flow temperature management [20].

In addition, similar or different GSI facility types in different studies perform different
functions, which impedes a quantitative objective formulation, as shown in Tables 1 and 2.
A viable method is that the authorities summarize various water quantity and water qual-
ity regulation capacities of different GSI facility types based on as many existing studies
as possible, taking the spatial heterogeneity into account, and then formulate reference
values, with reasonable ranges that are based on social, economic, and environmental
conditions of specific study areas, which may be more suitable than fixed values, as the
latter may affect the rationality of planning objectives. Xu et al. [81] set the water quan-
tity regulation objective according to the Urban Flood Control Engineering Disciplines,
China (GB/T50805-2012), while the water quality regulation objective was set based on the
water quality volume criterion of BMPs developed by the US Environmental Protection
Agency (USEPA); nevertheless, the planning area was Shanghai, China. This method
of randomly setting objectives with reference to different standards is obviously flawed.
Reference standards should consider regional differences, and provide the best reference
range for water quantity and quality regulation objectives such as pollutant reduction rate
and total runoff control rate; for example, Zheng et al. [44] integrated 75 GR studies and
quantified the average runoff retention rate that reached 62.2%. There are already authori-
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tative references—the USEPA has set an objective for retaining the 95th percentile rainfall
event [82]; China’s Technical Guide for Sponge City Construction (Trial) [83] proposed
70–90% annual runoff control rate targets for different regions, which sets different runoff
control objectives for different subareas and is in line with real-world scenarios to guide
the objective formulation in planning areas with different conditions. In line with Rog-
gero [84], highlighting the benefits of policy instruments for GSI planning, these policies
have leading roles in planning. However, as shown in the literature we reviewed, there is
no clear quantitative objective reference for water quality control or other aspects of water
quantity control, and studies only qualitatively proposed factors such as pollutant removal,
runoff peak reduction, and time-to-peak delay, without accurate values. Moreover, as
relevant studies are increasingly inclined to investigate comprehensive GSI scenarios with
multiple facility type combinations, the synergy of facilities in the future should also be
taken into consideration.

4.1.2. Type/Scenario Evaluation

The type/scenario evaluation should set up preliminary, optional GSI scenarios based
on the actual situation of planning areas after determining the ES requirements during
the objective formulation step. These options may involve a combination of various types
of GSI, where the opinions of experts who are familiar with related fields and planning
areas are instrumental. The key to this planning step lies in the selection of evaluation
criteria and their weight determination. The evaluation involves multiple dimensions,
so the adopted and feasible approach is to build frameworks of MCDA [32,62,85] to
integrate the selected criteria and their weights for evaluating the performance of the
GSI types or scenarios and determining the best one. As an alternative to conventional
methods, GSI makes up for their low level of sustainability [10], and the entire life cycle
of GSI, i.e., planning, implementation, operation, and maintenance, is related to multiple
dimensions of society, economy, and environment; thus, we recommend that the criteria
system of evaluation frameworks should cover the three dimensions of social sustainability,
economic sustainability, and environmental sustainability, so that the most favorable
option for the comprehensive sustainability encompassing the above three dimensions
can be identified, which is feasible and advantageous. Based on the reviewed articles,
we enumerate reference evaluation criteria (Table 3) for social sustainability, economic
sustainability, and environmental sustainability, which can provide guidance for related
planning. Actual planning may assign the criteria subjectively and objectively; for example,
the environmental and operational criteria in the planning of Hua et al. [62] are assigned by
subjective judgments of the authors, while other indicators are assigned through simulation
or calculation, which does not mean that these values are accurate enough. When assigning
ES criteria in the evaluation system, the inability to accurately quantify the relationship
between GSI and ES reduces its accuracy, which is similar to the defects pointed out in
the step of objectives formulation and also emphasizes the urgency of quantifying the
relationship between GSI and ES.

Table 3. Example criteria to evaluate the social, economic, and environmental sustainability of the alternative scenarios.

Social Economic Environmental

Aesthetic Initial investment cost Runoff volume reduction
Community resistance Operational cost Peak runoff reduction

Employment probability Operational feasibility Time-to-peak delay
Social acceptability Implementation cost Removal of TSS, COD, TN, TP, etc.

Maintenance cost Annual runoff volume control
Runoff duration time

Impact on flora and fauna
Greenhouse gas emission

Groundwater recharge
Rainwater usage
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As regards the determination of criteria weights, analytical hierarchy process (AHP) or
AHP-based integrated methods are often used [32,62,85], which have been widely utilized
to evaluate decision criteria for various topics [86]. AHP is a simple tool for MCDA but
with a certain degree of subjectivity. Conventional AHP cannot provide decision making
for uncertain issues based on subjective judgment; therefore, scholars have made some
efforts to remedy this, such as using improved AHP to cope with the subjectivity inherent
in human judgment [32,85]. In addition, the decision of the type/scenario evaluation
still needs to be verified to ensure that it can be conducted in practice, which means the
options should be verified through case studies and communication with decision makers
in the future.

4.1.3. Quantity/Scale Determination

In order to make up for the existing shortcomings, it is essential to analyze the
mechanism of how GSI provides ES. The dominant features covered in this review are
water quantity regulation and water quality regulation ESs that GSI provides by making
full use of natural elements, especially vegetation (e.g., BR, GR, VS), to carry out stormwater
infiltration, retention, transmission, evapotranspiration, and purification processes; this is
exactly the essential difference between GSI and conventional methods; in other words,
GSI planning can introduce ecological processes (mainly related to vegetation), and as
there are complex interactions between ecological and hydrological processes, changes
in hydrological processes will occur, thus the production of various ESs such as water
quantity and quality regulation. There are mutual influences (Figure 2) between ecological
and hydrological processes. On the one hand, the evapotranspiration process of vegetation
transports water to the atmosphere; the growth of vegetation roots affects the structure
of soil porosity, thereby changing the distribution of surface and deep soil moisture [87];
the existence of rhizosphere microorganisms and vegetation absorption facilitates the
removal of heavy metals, nitrogen, phosphorus, bacteria and other pollutants in the water
body; the increase in vegetation cover with the canopy interception contributes to the
redistribution of precipitation; compared with other land cover types, vegetation cover
generally has a lower runoff coefficient, which helps reduce the peak runoff and delay
the peak time [88]. Conversely, hydrological elements, such as flow volume, flow velocity,
water quality, and water level, affect the structure, dynamics, distribution, and succession
of vegetation communities; hydrological processes such as infiltration, abortion, and
confluence affect the flow of nutrients, pollutants, minerals, and organic matter in the
ecosystem and its distribution in soil and water bodies; moreover, hydrological processes
contribute to improving hydrological connectivity, recharging watershed water volume,
making hydrological gradients smoother at the large scale (e.g., watershed and country),
and the integrity of ecosystems [89]. The water cycle takes the atmosphere, vegetation, and
soil as basic media for the migration and conversion of water, while the material circulation
and energy flow of the ecosystem driven by the water cycle maintain its critical structure
and function.

There are many differences in hydrological, ecological, and other features of society,
economy, and environment among the study areas, so different responses between hy-
drological and ecological processes are bound to be involved, which leads to different
performances of GSI. The above-mentioned idea of referring to the default values given
by existing research or hydrological models [70,90,91] is still dedicated to obtaining the
direct quantitative relationship between GSI and ES, which ignores the discrepancy of
the hydrological and ecological process responses in different planning scenarios, and it
should be amended. We suggest an indirect method to determine the quantity or scale, i.e.,
exploring the interaction mechanism between local hydrological and ecological processes
in each planning area, then identifying the response and variation of hydrological processes
driven by the ecological processes that are introduced by GSI, so as to determine the extent
of ESs that these responses and variations can produce, as shown in Figure 3. We are not
committed to obtaining a simple quantitative relationship between GSI and ES once and
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for all, proven to be unattainable, but to provide an indirect quantitative approach that
can be used for the future GSI planning step of quantity/scale determination, where the
identification of the interaction mechanisms between local hydrological and ecological
processes in each planning is encouraged.

Figure 2. The interaction between hydrological processes and ecological processes [80–82].

Figure 3. The method of quantifying the relationship between GSI and ES by eco-hydrological
coupling model.

The eco-hydrology proposed by the United Nations Conference on Water and En-
vironment [92] in 1992 provides an understanding of the complex interaction between
hydrology and ecological processes quantitatively. The method that has been adopted is
to construct a coupling model of hydrology and ecology, where the two-way feedback
of hydrological and ecological processes can proceed. Specifically, numerous variables
and parameters in hydrological and ecological models are used to simulate the hydro-
logical and ecological processes, and the variables and parameters that exist in the two
types of models at the same time support the feedback. Related research on the coupling
of these two systems has been extensively carried out. Marshall et al. [93] applied the
Simultaneous Heat and Water (SHAW) model, loosely coupled with the Geophysical
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Institute Permafrost Laboratory (GIPL) model to simulate the soil moisture dynamics.
Cristiano et al. [94] used an eco-hydrological streamflow model for urban areas (EHSMu),
taking into consideration water and soil dynamics, vegetation types, evapotranspiration
fluxes, and aquifer recharge, and simulated the runoff formation, evapotranspiration, and
aquifer recharge on an hourly scale. These studies are helpful to analyze the migration of
water in the soil–plant–atmosphere continuum (SPAC) [95]. Under the drastic process of
climate change and urbanization, it is inevitable to consider climatic and social disturbance
factors. Yu et al. [96] coupled the vegetation interface processes (VIP) model with the China
AgroSys model to simulate eco-hydrological processes, such as crop yield, evapotranspira-
tion, and runoff yield, and discussed the human impact on hydrology and ecology within
the basin and region. Li et al. [97] coupled an eco-hydrological model (GBEHM-HEIFLOW)
with a socio-economic model (WEM-HRB), taking into account the impact of the socio-
economic system, and developed a watershed system to simulate the coevolution of natural
and social systems with water–land–air–plant–human nexus. Among the coupling models,
there are differences in the degree of simplification of eco-hydrological processes, the use
of empirical equations, and the choice of parameterization schemes. However, it is still
possible to use the same equation formula, such as the soil temperature diffusion equation
for calculating soil temperature [98], the Richard equation for calculating water movement
of unsaturated soil [99], and the Farquhar and Collatz photosynthesis models for simu-
lating vegetation photosynthesis [100,101]. Eco-hydrological models may involve many
variables [102], e.g., meteorological variables (rainfall, radiation, and evaporation, etc.),
hydrological variables (water level, water discharge, and flow velocity, etc.), and ecolog-
ical variables (vegetation and its net primary productivity, plankton, and benthos, etc.).
Existing studies mainly focus on experimental observation, mechanism exploration, and
numerical simulation toward ecosystems to discuss carbon flux, soil water transfer, evapo-
ration, and soil water-related parameter observation at a point or field scale [102], but the
interaction mechanism of eco-hydrological processes at the watershed and even the global
scale is worthy of more exploration. For future research on coupling models, we suggest
the following:

1. Models should contain sufficient ecological and hydrological processes and their in-
teractions. The continuity and heterogeneity of ecological and hydrological processes
should be comprehensively revealed through site monitoring, laboratory experiments,
or numerical simulation methods [102], as well as the multi-scale and multi-variable
simulations, to comprehensively identify eco-hydrological processes in a changing
environment. To clarify the migration and transformation of rules and the evolution
characteristics of variables in the SPAC interface, and to explore the spatiotemporal
distribution of key eco-hydrological variables, it is helpful to comprehensively ana-
lyze eco-hydrological evolution characteristics and driving mechanisms. However,
this means more parameters and variations, increasing the complexity of the model,
and therefore, the trade-off should be considered.

2. The selected processes need to be simulated as accurately as possible. Appropriate
equations should be selected based on the conditions of planning areas to improve
the accuracy of the selected parameters, and the redundancy or overlap of parameters
should be observed. Models should be combined with local, social, economic, and
environmental conditions because future research on coupling models is not so much
to obtain a number of ESs, generally provided by the GSI, that can be used directly
in all planning areas, but a way to encourage planners to adjust the models and
re-simulate them to identify a balanced response between ecological and hydrological
processes for each planning. Meanwhile, improving the resolution of the model
simulation as much as possible is significant, then the number of ESs provided by GSI
can be identified locally. Furthermore, the coupling study of hydro-ecological models
is affected by inherent data uncertainty, and ignoring the uncertainty will lead to
errors in model parameters, unreliable predictions, and vicious management decision
making [103]. The sources of uncertainty can be roughly divided into uncertainties
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related to model input, model structure, parameters, and observations used for model
calibration [104]. It is estimated that the sources of uncertainty in complex models
are still in the initial stage, and more experimental research and summary can be
conducted to reduce the uncertainty.

3. The basic framework, theoretical system, and technical methods of eco-hydrology
should be improved. The mismatch of spatial and temporal scales between eco-
hydrological processes is always a challenge for coupling research. Theoretically,
the small-scale simulation is closer to the actual situation, but the current small-
scale research conclusions are difficult to be extended to watersheds or other large-
scale systems [105]. Hydrological models usually use a daily scale, while ecological
models usually use an hourly scale, and downscaling or upscaling approaches can be
used to achieve the dynamic calculation of exchange variables and scale conversion
among modules.

4. The response of eco-hydrological mechanisms to global changes, such as climate
change and human impact, should be considered. Interfaces with socio-economic
models and climate change models should be constructed in eco-hydrological cou-
pling models, so as to identify the necessary response mechanisms of eco-hydrological
processes under the common influence of climate change and urbanization.

4.1.4. Site Selection

Site selection by means of remote sensing is a widely used method; the most common
approach is to generalize the planning area via the Geographic Information System (GIS)
and to construct a GSI evaluation system suitable for construction with the MCDA frame-
work to obtain the evaluation results, then to select the sites based on economic, social, and
ecological conditions in areas with higher suitability. Similar to the studies in type/scenario
evaluation, site selection also involves multi-standard evaluation. MCDA can logically
structure complex issues and specify various uncertainties; therefore, all specifications
for the site selection of GSI involve MCDA [73]. AHP is also widely used in the index
weight determination process [33,106]. The layer-cake theory proposed by McHarg [107]
guides the site selection plan. Although planners select different numbers and types
of social, economic, and environmental indicators, the overlay analysis of construction
suitability indicators is evaluated on land grids of different resolutions essentially. It is
worth mentioning that related studies use different terms, such as suitability, sensitivity,
or vulnerability. We do not make a distinction because these terms are similar; planners
are all committed to choosing the most vulnerable areas with the highest demand for GSI
construction. GIS provides convenience to visualize the evaluation results of the suitability
of GSI construction. It is worth noting that most of the existing suitability studies still focus
on the environment dimension, and therefore, the evaluation framework for suitability may
only deal with environmental indicators (e.g., slope, elevation, water body, and ecological
land). However, GSI should never be separated from human society with the exclusive
consideration of the environment. Although the objective of GSI planning is water quantity
and water quality regulation services, the complex interaction of hydrological and ecolog-
ical processes existing in GSI in the social–ecological system makes the comprehensive
consideration of hydrological, ecological, and social benefits indispensable. The key to site
selection is to harvest more potential benefits on the basis of achieving planning objectives.
Researchers have begun to incorporate GSI into the social–ecological system, considering
the interaction of multiple processes of ecology, hydrology, and social economy involved
in GSI, with more attention paid to public participation. Therefore, both the construction
suitability indicators (slope, elevation, land use type, etc.) and the requirement indicators
of hydrological, ecological, and social benefits (runoff coefficient, ecological sensitivity,
social sensitivity, etc.) all need to be considered in the evaluation framework. In addition,
for the site selection of different types and scales of GSI, the evaluation should be further
adjusted in each planning to ensure that the sites of GSI are located in the most suitable
and most needed areas.
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4.2. The Ecosystem Aspect
4.2.1. Ecosystem Resilience

Disturbances such as urbanization and climate change affect the GSI facility as well
as the entire ecosystem where GSI operates. As previously discussed, GSI is influenced
by the interaction of ecological and hydrological processes in the ecosystem of the GSI
planning framework; therefore, it is necessary to consider the ecosystem aspect, to which
the concept of ecosystem resilience greatly contributes. The concept of resilience was
introduced into the field of ecology in 1973 by Holling [108], who defined it as “a measure
of the persistence of systems and of their ability to absorb change and disturbance and
still maintain the same relationships between populations or state variables”. Since then,
many scholars have been devoted to clarifying the definition of resilience [109–111]. A clear
formulation and application of ecological resilience can provide a basis for improving the
ability of an ecosystem to cope with stressors and disturbances and help them tide over the
reorganization period [37]. Systems with high resilience can absorb changes and maintain
the same state in a series of disturbances and management actions [112]; these systems
may possess favorable environmental conditions, strong multi-scale feedback, and a high
level of diversity and redundancy [37]. As a comparison, systems with low resilience may
react strongly to disturbances and move to another state [112], and these systems may
contain poor environmental conditions, insufficiency of species or functional groups, and
disturbances exceeding the range of historical changes [37]. Managers coping with the
latter type of systems face the greatest challenge because they usually need to manage
the systems actively. After management behavior improves the conditions, systems with
high adaptability may be reorganized and restored to their original state [37]. Therefore,
regarding the ecosystem aspect, if resilience is high enough, the ecosystem can absorb
disturbances and return to the state before the disturbances, and the processes in the
system can still operate normally; that is, ecological and hydrological processes can interact
continuously and steadily. As a result, the management and promotion of ecosystem
resilience is the guarantee for the stable operation of GSI. Therefore, the different purposes
of facility and ecosystem aspects are obvious—the former is to harvest various ES from
facilities directly, while the latter is to ensure that hydrological and ecological processes can
maintain stable interaction in response to disturbances to indirectly support the continuous
provision of ES.

Thus far, most studies have focused on theories, definitions, and conceptualizations
to understand ecological resilience, focusing on the response of species diversity and
functions to stress and disturbance on a small (i.e., local) scale [37]. In fact, integrating
the concept of ecosystem resilience with landscape patterns provides an approach to un-
derstanding how ecosystem attributes and processes interact with landscape structure to
affect ecosystem responses to disturbances and how the ecosystem supports resources,
habitats, and species [37]. In the context of landscape, this integration provides a way
of understanding the aforementioned processes within the ecosystem. Resilience-based
management uses a spatially clear approach and contributes to selecting the type of man-
agement action that is most likely to succeed [37]. Ahern [113] explained the relationship
of landscape composition, structure, and dynamics with resilience, and pointed out that
a reasonable landscape pattern plays a significant role in buffering risks and helps the
system to recover from disturbances. Therefore, landscape pattern optimization based
on the interaction of spatial pattern and ecological processes can be an approach to the
management and promotion of ecosystem resilience, as it provides a “spatial language”
for concretely describing the interrelationship and the dynamics of spatiotemporal scales
between landscape structure and function. Landscape patterns can be summarized as
the shape, proportion, and spatial distribution of landscape elements. Patches, corridors,
and matrices are the basic elements of landscape patterns, which are related to ecological
processes in the landscape and affect the distribution and layout of resources and the
physical environment. Landscape pattern optimization is essential to adjust the spatial
structure of the landscape, with the goal of enhancing the integrity and connectivity of the
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ecosystem and building a spatial pattern that maintains the regional ecological processes.
The “patches–corridor–matrix” theory in landscape ecology is often used in landscape
pattern optimization to identify and reorganize the key components of landscape patterns
(i.e., patches, corridors, nodes, and matrices), which guide the protection and restoration of
these components that are vital to the provision of expected ESs. The optimization process
helps improve the integrity, connectivity, and diversity of landscape patterns, build ecolog-
ical networks, enhance regional ecosystem resilience, protect or restore biodiversity, and
sustainably provide multiple ESs [114]. Fu et al. [114] used InVEST software to evaluate
two typical ecosystem services (water production and habitat quality) to identify ecological
sources, and selected the minimum cumulative resistance model to identify ecological
corridors; the landscape pattern was optimized by the improvement and reorganization of
ecological sources to strengthen the material and energy flow between ecological sources
and provide channels for species migration.

4.2.2. Quantitative Assessment of Ecosystem Resilience

Obviously, a quantitative assessment of resilience is a way to visually express the
results of resilience promotion management, but there is no single measurable variable
that can represent ecosystem resilience. Relevant studies mostly evaluate urban resilience
from the aspects of infrastructure, society, economy, and ecology [115]. Liu et al. [116]
built an index system including diversity, connectivity, decentralization, and ecosystem
service provision to assess the resilience of Shenyang, China, and established a link be-
tween resilience and landscape characteristics to guide the planning practice. Yi et al. [38]
divided the existing quantitative assessment studies of resilience into three categories
—forest resilience, soil microbial community resilience, and hydrological resilience; they
found that many variables (e.g., tree-ring width, NDVI, microbiome mass, and catchment
evapotranspiration index) can be used as indicators of system state variables, but it is hard
to tell which one is better, as it depends on the objective and data availability in each study.
They also pointed out that the measurement of resilience is not actually measuring itself,
but its components, such as resistance, recovery, or combinations of them, i.e., elasticity.
Dynamic system theory is a fundamental base of resilience research [38]. The uncertainty
of resilience is based on the complexity of the nonlinear system, which contains many
positive and negative feedback loops. Resistance, recovery, and resilience are the results
of competition and cooperation between these feedback loops. Therefore, policymakers
should understand the feedback structure of the nonlinear social–ecological system, and
manage the related feedback loops to reduce disturbances or accelerate recovery, or to
prevent the system from entering a new stable steady state [38]. In the future, it is necessary
to grasp how to manage the dominant feedback to avoid catastrophic disasters.

As a matter of fact, the management of ecosystem resilience can bring many benefits,
not just in terms of the ESs discussed in this review, but also the benefits of resources,
habitats, and populations, etc. [37]. We focus on the effect of resilience promotion on the in-
teraction between ecological and hydrological processes within the ecosystem. Future GSI
planning should integrate facility and ecosystem aspects to explore the specific quantitative
benefits of ecosystem resilience to the GSI system, and take more types of ESs into consider-
ation. We recommend managing ecosystem resilience to ensure the stable operation of the
GSI system through landscape pattern optimization. Exploring the interaction between the
two aspects is also a point that needs to be considered in the future, for example, whether
an ecosystem with high resilience can reduce GSI investment. We hold the assertion that
the consideration of the two aspects in the GSI planning framework is equally crucial,
and planners should strive to take into account both facility and ecosystem aspects when
developing an overall understanding of the conditions in the study areas, so as to obtain
ES in a comprehensive and sustainable manner. The quantitative assessment of ecosystem
resilience also deserves more in-depth discussions in the future. A feasible solution is to
select the indicators that can characterize the landscape pattern in view of the affirmation
of landscape pattern optimization as an approach to enhancing ecological resilience, then
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to determine the weights of selected indicators through appropriate methods, finally to
form an evaluation system following the interaction mechanism of the eco-hydrological
processes. In addition, the effective cooperation among managers, planners, scholars, and
stakeholders helps to develop resilience-based management measures to strengthen and
restore the ecosystem.

4.3. Limitations

This review included only 158 articles, although they help to identify the current
research status of GSI planning regarding both facility and ecosystem aspects, and are the
basis for us to predict future research directions, the papers that were not contained may
contradict this review, which means the scope of follow-up studies needs to be expanded.
We focused on water quality and water quantity regulation, but GSI practice has been
extended to many areas of society, economy, and ecology. Therefore, it is inevitable for
future research to explore more types of ESs in the social–ecological system, which is
attached to greater complexity. In addition, the GSI planning framework we proposed
may not be detailed enough, as some default planning steps were omitted. The objective
formulation also includes steps such as collecting information on the conditions of the
study areas; further, we did not describe the types of information required in detail, which
may need to be discussed in forthcoming research.

In addition, most of the evaluation studies analyzing the performances of GSI were
carried out in the laboratory or monitored conditions after the implementation of GSI
planning. We do not deny the contribution of these evaluation articles to GSI and even agree
with its positive effects. Although feedbacks can be given to GSI planning by evaluating
its performances, the evaluation should be accomplished by the researcher through a
long period of monitoring, and there are still many deficiencies in the pre-planning steps
(i.e., objective formulation, type/scenario evaluation, quantity/scale determination, and
site selection); therefore, the related articles regarding the performance evaluation of GSI
were not considered as a planning step of the GSI planning framework in this review. It is
worth mentioning that although we did not discuss the evaluation of GSI’s performances in
detail, we reviewed and quoted some relevant papers in the steps of objective formulation
and type/scenario evaluation to support our arguments.

5. Conclusions

We developed a GSI planning framework that integrates the aspects of facility and
ecosystems and made suggestions for future GSI planning to harvest stormwater manage-
ment ESs through reviewing and synthesizing the literature. Regarding the facility aspect,
quantitative and clear objectives are decisive for the entire GSI planning, since the social,
economic, and environmental characteristics between study areas are discrepant; therefore,
it is recommended that relevant authorities provide references to planning objectives that
can vary with regional characteristics. It is foreseeable that these references should be
scopes rather than a fixed value, thus allowing the actual planning to formulate clear
objectives based on the trade-off of multiple anticipated ESs. Integrating indicators of
multiple dimensions of social, economic, and environmental sustainability to evaluate GSI
types/scenarios via MCDA and reinforce the sustainability of the GSI planning is the future
research focus of type/scenario evaluation. Developing coupling models of hydrology and
ecology to explore the quantitative relationship between the GSI type/scenario and the
planning objective is the focus of future research; moreover, difficulty in difficulty in the
determination of quantity/scale and finding the appropriate quantity/scale will receive
much attention from stakeholders, which is helpful to the development of GSI. However,
improving the completeness and accuracy of the coupling models will definitely increase
the complexity in the meantime, and therefore, this trade-off needs to be considered in
depth. A key factor in site selection is to evaluate the construction suitability of pixels in
the study area based on the layer-cake theory, through which multiple considerations of
social, economic, and environmental criteria should be covered.
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In addition, the success of GSI planning is determined by the GSI facilities themselves
as well as, the ecosystem, which also has a critical influence. Therefore, regarding the
ecosystem aspect, in order to ensure that the ecosystem can withstand disturbances and
still maintain the stable interaction of ecological and hydrological processes, and indirectly
guarantee continuous ES production, we discussed the benefits of promoting ecosystem
resilience. We suggested adopting landscape pattern optimization as an approach to re-
silience promotion, while it is necessary to consider more comprehensive and specific ways
in the future. In addition, Future GSI planning should integrate facility and ecosystem
aspects to explore the specific quantitative benefits of ecosystem resilience to the GSI
system, and take more types of ESs into consideration. The quantitative assessment of
ecosystem resilience also deserves more in-depth discussions. A feasible solution is to
select the indicators that can characterize landscape patterns resulting from landscape
pattern optimization as an approach to enhancing ecological resilience, then to determine
the weights of selected indicators through appropriate methods, and finally, to form an
evaluation system following the interaction mechanism of eco-hydrological processes. Ex-
ploring the interaction between these two aspects is also a point that needs to be considered
in the future, for example. whether an ecosystem with high resilience can reduce GSI
investment. We hold the assertion that the consideration of the two aspects in the GSI
planning framework is equally crucial, and planners should strive to take into account both
facility and ecosystem aspects when developing an overall understanding of the conditions
in the studied areas. In addition, effective cooperation among managers, planners, scholars,
and stakeholders helps to develop resilience-based management measures to strengthen
and restore the ecosystem.

The most critical part that needs to be explored in detail urgently in this framework is
the determination of quantity/scale. To advance the research in this area, we developed
an indirect quantitative approach, where the relationship between GSI and ES is quanti-
fied precisely and operationally through a deep understanding, resulting from accurate
simulations, of the interaction mechanism of ecological and hydrological processes. We en-
courage generating hydrological and ecological coupling simulations based on local social,
economic, and environmental conditions in each planning scenario, then understanding
the interaction mechanism between hydrological and ecological processes and identifying
the interactions and changes in eco-hydrological processes caused by the ecological pro-
cesses introduced by GSI. As a result, the number of ESs can be analyzed in accordance
with these interactions and changes, as well as the quantitative relationship between GSI
and ES that will instruct other steps of GSI planning. This approach is consistent with
the spatiotemporal heterogeneity of the performance of GSI facilities. Furthermore, GSI
planning using explicit data will be advantageous for its promotion, construction, and the
reduction in the planners’ and investors’ concerns about selecting GSI as an alternative.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su132413942/s1.

Author Contributions: Conceptualization, G.L.; methodology, G.L.; resources, G.L.; writing—
original draft preparation, G.L.; writing—review and editing, G.L. and L.W.; supervision, L.W.;
project administration, L.W.; funding acquisition, L.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (NO. 2018YFC0408000, 2018YFC0408004) and the Jinan Water Science and Technology Project
(NO. JNSWKJ202103).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

237



Sustainability 2021, 13, 13942

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Dhakal, K.P.; Chevalier, L.R. Implementing Low Impact Development in Urban Landscapes: A Policy Perspective. In World
Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems, Austin, USA; Karvazy, K., Chevalier, L.R., Eds.;
American Society of Civil Engineers: New York, NY, USA, 2015.

2. Kim, J.-H.; Kim, H.Y.; Demarie, F. Facilitators and Barrier s of Applying Low Impact Development Practices in Urban Development.
Water Resour. Manag. 2017, 31, 3795–3808. [CrossRef]

3. Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions
for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [CrossRef]

4. Bichai, F.; Ashbolt, N. Public health and water quality management in low-exposure stormwater schemes: A critical review of
regulatory frameworks and path forward. Sustain. Cities Soc. 2017, 28, 453–465. [CrossRef]

5. Varotsos, C.A.; Efstathiou, M.N.; Cracknell, A.P. On the scaling effect in global surface air temperature anomalies. Atmospheric
Chem. Phys. Discuss. 2013, 13, 5243–5253. [CrossRef]

6. Karamouz, M.; Hosseinpour, A.; Nazif, S. Improvement of Urban Drainage System Performance under Climate Change Impact:
Case Study. J. Hydrol. Eng. 2010, 16, 395–412. [CrossRef]

7. Dong, X.; Guo, H.; Zeng, S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Res.
2017, 124, 280–289. [CrossRef]

8. Sohn, W.; Kim, J.-H.; Li, M.-H.; Brown, R. The influence of climate on the effectiveness of low impact development: A systematic
review. J. Environ. Manag. 2019, 236, 365–379. [CrossRef]

9. Akhter, F.; Hewa, G.A.; Ahammed, F.; Myers, B.; Argue, J.R. Performance Evaluation of Stormwater Management Systems and Its
Impact on Development Costing. Water 2020, 12, 375. [CrossRef]

10. Akther, M.; He, J.; Chu, A.; Huang, J.; Van Duin, B. A Review of Green Roof Applications for Managing Urban Stormwater in
Different Climatic Zones. Sustainability 2018, 10, 2864. [CrossRef]

11. Conley, G.; Beck, N.; Riihimaki, C.A.; Tanner, M. Quantifying clogging patterns of infiltration systems to improve urban
stormwater pollution reduction estimates. Water Res. X 2020, 7, 100049. [CrossRef]

12. Sanicola, O. Using Permeable Pavements to Reduce the Environmental Impacts of Urbanisation. Int. J. Geomate 2018, 14, 159–166.
[CrossRef]

13. Qin, H.-P.; Li, Z.-X.; Fu, G.T. The effects of low impact development on urban flooding under different rainfall characteristics. J.
Environ. Manag. 2013, 129, 577–585. [CrossRef]

14. Wright, S.P.; Santelmann, M.V.; Vache, K.B.; Hulse, D.W. Modeling the impact of development policies and climate on sub-urban
watershed hydrology near Portland, Oregon. Landsc. Urban Plan. 2021, 214, 104133. [CrossRef]

15. Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ.
2017, 607, 413–432. [CrossRef] [PubMed]

16. Son, C.H.; Hyun, K.H.; Kim, D.; Baek, J.I.; Ban, Y.U. Development and Application of a Low Impact Development (LID)-Based
District Unit Planning Model. Sustainability 2017, 9, 145. [CrossRef]

17. EPA. What Is Green Infrastructure? Available online: http://www2.epa.gov/greeninfrastructure/what-green-infrastructure
(accessed on 17 June 2021).

18. Matsler, M.; Meerow, S.; Mell, I.C.; Pavao-Zuckerman, M.A. A ‘green’ chameleon: Exploring the many disciplinary definitions,
goals, and forms of “green infrastructure”. Landscape Urban Plan. 2021, 214, 104145. [CrossRef]

19. Flynn, C.D.; Davidson, C.I. Adapting the social-ecological system framework for urban stormwater management: The case of
green infrastructure adoption. Ecol. Soc. 2016, 21, 19. [CrossRef]

20. Prudencio, L.; Null, S. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [CrossRef]
21. Guerrero, J.; Alam, T.; Mahmoud, A.; Jones, K.D.; Ernest, A. Decision-Support System for LID Footprint Planning and Urban

Runoff Mitigation in the Lower Rio Grande Valley of South Texas. Sustainability 2020, 12, 3152. [CrossRef]
22. Bautista, D.; Peña-Guzmán, C. Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an

Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia. Resources 2019, 8, 68. [CrossRef]
23. Kim, J.; Ryu, J.H. Decision-Making of LID-BMPs for Adaptive Water Management at the Boise River Watershed in a Changing

Global Environment. Water 2020, 12, 2436. [CrossRef]
24. Tuttolomondo, T.; Virga, G.; Licata, M.; Leto, C.; La Bella, S. Constructed Wetlands as Sustainable Technology for the Treatment

and Reuse of the First-Flush Stormwater in Agriculture—A Case Study in Sicily (Italy). Water 2020, 12, 2542. [CrossRef]
25. Venter, Z.S.; Barton, D.N.; Martinez-Izquierdo, L.; Langemeyer, J.; Baró, F.; McPhearson, T. Interactive spatial planning of

urban green infrastructure—Retrofitting green roofs where ecosystem services are most needed in Oslo. Ecosyst. Serv. 2021, 50,
101314. [CrossRef]

26. Jessup, K.; Parker, S.S.; Randall, J.M.; Cohen, B.S.; Roderick-Jones, R.; Ganguly, S.; Sourial, J. Planting Stormwater Solutions: A
methodology for siting nature-based solutions for pollution capture, habitat enhancement, and multiple health benefits. Urban
For. Urban Green. 2021, 64, 127300. [CrossRef]

238



Sustainability 2021, 13, 13942

27. Hale, R.; Swearer, S.E.; Sievers, M.; Coleman, R. Balancing biodiversity outcomes and pollution management in urban stormwater
treatment wetlands. J. Environ. Manag. 2019, 233, 302–307. [CrossRef] [PubMed]

28. Darnthamrongkul, W.; Mozingo, L.A. Toward sustainable stormwater management: Understanding public appreciation and
recognition of urban Low Impact Development (LID) in the San Francisco Bay Area. J. Environ. Manag. 2021, 300, 113716.
[CrossRef] [PubMed]

29. Cortinovis, C.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land
Use Policy 2018, 70, 298–312. [CrossRef]

30. Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; von Haaren, C.; Lovett, A. Applying ecosystem services indicators in landscape
planning and management: The ES-in-Planning framework. Ecol. Indic. 2016, 61, 100–113. [CrossRef]

31. Salata, S.; Giaimo, C.; Barbieri, C.A.; Garnero, G. The utilization of ecosystem services mapping in land use planning: The
experience of LIFE SAM4CP project. J. Environ. Plan. Manag. 2020, 63, 523–545. [CrossRef]
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Abstract: This study estimates the economic value of the Daecheong Dam for the public function
of responding to climate change. It examines the moderating effect of climate change perceptions
on value estimates by applying choice experiments (CE). The study specifies three dam function
attributes—drought management (DM), flood control (FC), and water quality monitoring (WM)—
subdivided into three levels to improve the existing conditions. Survey data from 603 households
living in Daejeon, Chungbuk, and Chungnam have been collected to perform the CE. Subsequently,
two clusters—high-involvement and low-involvement groups—have been extracted, based on the
climate change perception index. The main results of comparing the marginal willingness-to-pay
between the two clusters are as follows. The attributes and price variable significantly affected the
choice probability to benefit from improvements in the rational signs of the coefficients. This does
not violate the independence of the irrelevant alternatives assumption. The improvement values of
high-involvement and low-involvement groups are estimated as KRW 21,570 and KRW 14,572 a year
per household, respectively. Both show the same value intensities in the order of WM, DM, and FC.

Keywords: choice experiments; climate change; Daecheong Dam; public functions; willingness to
pay (WTP); non-market values

1. Introduction

Global climate change has intensified precipitation irregularity, lake and river sur-
face decline, and water quality deterioration [1–3], which in turn has hampered water
management efficiency [4,5]. In South Korea, drought and flood damage keeps recur-
ring [6–8]. Hence, countermeasures against climate change are being promoted. One of
the highlighted issues is dam operation [9,10]. Recently, since water supply and demand
management in response to climate change has become a national problem, a variety of
measures have been proposed for effective water resource management. This includes
restructuring the main role of hydroelectric dams to supply water during drought, and
flood defenses [11]. Efficient dam operation plans are urgently required to manage drought,
flood stress, and water quality. Multi-purpose dams benefit local people, directly and
indirectly, by providing domestic and industrial water, electricity generation, and eco-
tourism as well as drought relief and flood prevention [12,13]. Furthermore, the fact that
the reservoir water condition is highly relevant to drinking water quality and recreational
value for local people has added significance [14,15].

The point of interest here is that water supply and distribution should be government
controlled, since the benefits of using dams are characterized by public goods more than
private goods [16]. Therefore, it has become a major concern to confirm the input cost
validity (The feasibility of the dam project is determined by a cost and benefit economic
analysis, and the result of comparing these two figures affects investment decisions [17].)
when implementing dam operational improvement projects for public use. Such procedural
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justification can be ensured in case the benefit exceeds the cost [17,18]. At this point, as the
operational benefits (including drought prevention, flood protection, and water quality
management) [19–21] are services for unspecified individuals, public interest valuations
are eventually considered for judging government project performance. First, given that
time or cost constraints are unavoidable, examining core factors of value inducement and
identifying influencer priorities might be regarded as important to foster business efficiency.

Several relevant studies have emphasized the importance of identifying climate change
impacts on water management. Vital research problems about the economic value of
drought stress alleviation, flood risk management, and water quality improvement have
been globally discussed, thus, contributing to the awareness of the economic value of the
public benefits provided by dam functions. However, the results of these studies did not
examine the direct value. Furthermore, it is difficult to immediately compare results from
different analysis environments due to different spaces and timeslots.

Therefore, this study primarily investigates the economic value of the role of dams
in coping with climate change and benefiting the public through drought management
(DM), flood control (FC), and water quality monitoring (WM). Thus, it ultimately provides
foundational information through which to highlight the public benefits of establishing
water-resource countermeasures against climate change. Considering the severe damage
caused by floods, droughts, and water pollution by South Korea’s changing climate, dealing
with the three functions is desirable. In addition, the study investigates the moderating
effect of climate change risk perceptions on the economic value of each public function; the
perceived public value can vary significantly according to the climate change awareness
level. Confirming whether there are discriminative values is considered necessary for
highly acceptable policy drives. Some studies (e.g., [22–24]) have shown that climate-
change awareness affects the acceptance of dam operation policies. Thus, generalizing the
results of the study without additional verification regarding the subdivided value might
distort the value judgment.

This study investigates the benefits of the Daecheong Dam. The Daecheong Dam—
completed in 1980 as a multi-purpose dam—is 72 meters tall and is 495 meters wide. Its
catchment area is 4,134 square kilometers with a capacity of about 1.49 billion cubic meters.
The reservoir, formed by dam administrators, is located within Chungcheongnam-do and
Chungcheongbuk-do. As a serious water-bloom phenomenon increased after the 2015 dry
season, there was an emergency in water quality management regarding Lake Daecheong—
the source of drinking water for the Chungcheong region. The waterworks authority
exercised closer monitoring of harmful algal blooms at Daecheong reservoir [25,26], located
in Daejeon metropolitan city, South Korea. The public role of the Daecheong Dam, directly
and indirectly, include the benefits of water supply for agricultural, industrial, and resi-
dential use, as well as the supervision of water quality for drinking and recreation [27–29].
Drought, flood, and water pollution emphasize how crucial dam operation plans can be.
Moreover, this study applied the choice experiment (CE) (The estimation of economic val-
ues for public services is carried out in diverse environmental fields (e.g., [30,31]), and CVM
and CE have been regarded as typical valuation methods. Among the several econometric
methods, the CE designed by Adamowicz et al. [32] has the advantage of subdividing
the value of the estimated object into main attributes. Moreover, progressive values can
be estimated by phases from the lowest to the highest level. The bundle of alternatives
combined by each level of functionality is presented to respondents, after which the most
preferred alternative (including a price level) is selected (this can be calculated as the values
for each level). In particular, where the effects of water resources development plan vary,
CE can be cost-effective by enhancing the feasibility of policy alternatives.) methodology
for valuation, which has the advantage of separating the attributes that affect the value of a
certain good by level and estimating the value of each level [33].

The study concluded that three dam functions are of high importance through several
key pieces of evidence, and verifying them is crucial for South Korea. The role of dams
has been specified through three major attributes: DM, FC, and WM. Furthermore, the
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results of advanced studies (which suggest the perceived seriousness of climate change
significantly affects policy support ratings) indicate that the higher the level of consideration
in climate change, the greater the likelihood of advocating for the enhancement of dam
functions [22–24]. Accordingly, it is expected that people’s awareness of climate change
may cause meaningful differences in the economic values of the dam’s public functions.
Hence, the study conducts empirical analyses to achieve specific objectives as follows:

1. Estimate the economic value of Daecheong Dam by the subdivided attributes (DM,
FC, and WM).

2. Examine the moderating effect of climate change perceptions on the economic
values of the dam’s public functions.

This study contributes to the literature by estimating the WTP of Daecheong Dam’s
functions and how they differ depending on climate change awareness. Taking the
two previously mentioned objects into consideration, the following research questions
are proposed.

Q1. Do the three attributes (DM, FC, WM) of Daecheong Dam have a significant
impact on the increase in the utility of survey respondents?

Q2. Does the MWTP for the public interest function of Daecheong Dam differ depend-
ing on the degree of awareness of climate change among survey respondents?

2. Materials and Methods

2.1. Study Area

The Daecheong Dam basin (36◦28′33.3′′ N 127◦28′31.1′′ E) is 2608 km2, accounts for
more than 1/4 of the total area of 9914 km2 of the Geumgang River basin, and 10 ad-
ministrative districts. It spans Daedeok-gu, Dong-gu, Yuseong-gu, Daejeon Metropoli-
tan City; Cheongju-si, Boeun-gun, Okcheon-gun, Chungcheongbuk-do; Geumsan-gun,
Chungcheongnam-do, Yeongdong-gun; Sangju-si, Gyeongsangbuk-do and Muju-gun,
Jeollabuk-do [34] (see Figure 1). In the Daecheong Dam basin, there are 108,852 residents
from across 43,140 households, and the population density was analyzed to be 163.08 peo-
ple/km. The water supply rate in the Daecheong Dam basin was found to be about 86.0%,
lower than Korea’s total water supply rate, 96.5% (including village water supply, small
water supply facility population) [35].

 
Figure 1. Location of the Daecheong Dam basin.
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Construction for the Daecheong Dam began in March 1975, and it was completed in
December 1980. It is a complex dam composed of a gravity-type concrete dam and a sand
dam with a height of 72 m, a length of 495 m, a reservoir area of 72.8, and a volume of
1,234,000 m3. There exists the main dam with a storage capacity of 1.49 billion m3, and
three auxiliary dams that prevent water in the reservoir from overflowing to other areas.
In addition, there are hydroelectric power plants with a capacity of 90,000 kW and a water
channel to supply water to some areas of the Chungcheong region.

2.2. Literature Review

There is a large body of scientific data linking climate change to hydrologic changes
such as in precipitation, streamflow and evapotranspiration. Climate change’s impact on
the hydrologic cycle poses a severe threat to Korea, an area threatened by periodic floods
and droughts. Climate change-induced increases in streamflow during the monsoon (a
period of significant rainfall, typically May–September) have the potential to exacerbate
flood damage, whereas increases in evaporative losses (due to warmer temperatures)
during the dry period can exacerbate water scarcity in some areas [36].

Among the measures used to manage water resources in response to climate change,
the operation of dams and the improvement of their functions has emerged as a major
subject of interest. In the case of multipurpose dams, the importance of dam operation
plans for flood control, drought management, and environmental functions is increasing
as they are directly or indirectly related to the benefits of water for residents, such as
water supply, hydroelectric power generation, and water quality improvement [37,38].
The public interest value of water resources by the dam function makes it difficult to
clearly measure benefits, and the absence of a market has acted as a challenge in efficient
resource distribution, making government intervention inevitable in water supply and
distribution. For this reason, evaluating and proving the validity of non-market value for
dam function and water resource use is considered a task that must be preceded in the
process of controlling and managing it [39].

Because it is concerned with modeling options ranging over a variety of attributes
rather than estimating WTP for a single option, the CE technique presents a potential
chance to quantify the economic values of diverse environmental consequences induced
by big dam development. The CE methodology, similar to the CV method’s referendum
model, has its theoretical grounding in the random utility model, which is compatible with
economic theory [40–42].

The rationale for estimating the values of dam functions regarding DM, FC, and WM
is sourced from various prior studies. First, value estimation studies resulting from drought
mitigation are typically conducted in terms of drought relief for watershed protection [43],
the willingness to pay (WTP) to avoid drought-water constraints for households and busi-
nesses [44], premium payments for agricultural insurance [45], and the value of avoiding
drought water-usage restrictions [46].

Furthermore, in studies on flood-risk reduction values, empirical tests on nation-
wide flood control measures [47], flood risk reduction [48], flood insurance premiums for
rural households [49], and the economic value and determinants of flood defenses [50]
were explored. Moreover, regarding water quality values, various studies on the value
of secure and reliable drinking water [51], the amount of payments to improve in-home
water services [52], the value of water quality improvement and determinants that affect
the value [53], and the quality improvement value of tap water for urban residents [54]
have been carried out. In most of the previous studies mentioned, the contingent val-
uation method (CVM) and CE were used for measurement. It was also noted that
individual characteristics such as gender, age, income level, education level, residen-
tial environment, government trust, and perceptions about disasters affected the value
determination [45,47–51,53,54].

While a variety of economic valuation cases have been globally executed, it has been
confirmed that there are few intermittent studies in South Korea. The precedent studies
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relevant to the three roles are as follows. Hwang et al. [55] estimated WTP to improve the
future status of Korean water scarcity by households using CVM. Thus, Busan residents in
Korea perceived water shortage, and about 70% of them were willing to pay. The average
payment amount per household was about KRW 3572 (USD 4) per household per month.
Choi and Lee [56] calculated home buyer contributions to flood prevention construction
through the hedonic price method. According to the results, the buyer’s WTP for a 1%
reduction in rainfall intensity was KRW 62,101 per square meter, and the WTP for a 1%
reduction in annual rainfall was KRW 36,533 per square meter.

Furthermore, Lee et al. [57] used CVM to evaluate the WTP for a future water shortage
project in Korea, resulting in about 320 million dollars. They, however, concluded that the
project cost was greater than the national utility. Kwak et al. [58] valued WTP for tap-water
quality improvement in Busan, Korea, through CVM; the average amount per household
was KRW 2124 per month. In addition, Um et al. [59] applied the averting behavior method
to estimate WTP to reduce the negative perceptions caused by the discrepancy between the
objective pollution level and perceived level. The results highlighted that perceived risk is
more effective than objective risk, and the USD range of WTP were [0.07; 1.70] to [4.2; 6.1].

Moreover, these three functions act as major factors of dam operations according
to an expert opinion survey that prioritizes the core properties for adapting to climate
change. Furthermore, there is much emphasis on paying constant attention to comprehend
the managerial importance of these factors [60]. So far, it is clear that CVM, CE, and the
hedonic price method were frequently employed as value-estimation methods. CVM,
which measured only the single value of the goods, was used most. In addition, the spatial
and temporal features of the study site and the demographic characteristics of the study
subjects had a significant effect on the estimation results.

2.3. Setting Attributes and Levels

Concerning the attributes from the previous studies, a content validity examination
was further conducted. Thus, those three functions were selected as the final attributes
based on carefully reviewed outcomes by experts (professors and senior researchers on
environmentology, hydrology, and mineral economics). Focus group interviews (with ten
regular people cognizant of Daecheong Dam) were, then, employed to determine specific
levels of the attributes. In this respect, interviewees described the image associated with
Daecheong Dam’s climate change role. Accordingly, functional levels expressible in are cog-
nizable manner were established. Information on techniques relevant to drought mitigation
(such as sedimentation reduction and emergency drainage design), flood reduction (such
as spillway design and dam raise), and water quality monitoring (such as the installation
of devices for reducing non-point sources and sewage treatment facility expansion) was
given to the interviewees in advance.

At the end of the discussion, the decision was that it is too restrictive to manifest the
diffusion of specific technologies at a certain level. Thus, it was desirable to describe the
attribute levels as complementing overall current technologies and creating new crafts
beyond the present structure. Subsequently, each attribute level is classified into three
phases: low-level (to maintain the status quo), medium-level (to complement existing
technologies), and high-level (to develop new technologies along with the complementa-
tion). These demonstrate utilities calculated as per the increase in the improvement levels.
In addition, a preliminary test for 30 respondents regarding WTP was conducted using
open-ended questions to determine appropriate bid levels along with a realistic payment
vehicle. Thus, via the focus group interviews and the reviewed attributes [61–63], it was
determined that three asking prices of KRW 5000, KRW 10,000, and KRW 20,000 within
the range of 15% to 82% of the response distribution [64] should be the annual financial
support. The levels are shown in Table 1.
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Table 1. Description of attribute levels.

Attributes
Improvement Levels

Low Medium High

Drought
Management

(Status quo)
Maintaining current

techniques to prevent
drought disaster

(Partial improvement)
Complementing existing

techniques to prevent
drought disaster

(Substantial improvement)
Complementing existing

techniques and developing new techniques to
prevent drought disaster

Flood
Control

(Status quo)
Maintaining current

techniques to prevent
flood disaster

(Partial improvement)
Complementing existing

techniques to prevent
flood disaster

(Substantial improvement)
Complementing existing

techniques and developing new techniques to
prevent flood disaster

Water quality
Monitoring

(Status quo)
Maintaining current

purification techniques to
prevent water pollution

(Partial improvement)
Complementing existing

techniques to prevent
water pollution

(Substantial improvement)
Complementing existing

techniques and developing new techniques to
prevent water

pollution

2.4. Development of a Measurement Instrument

The survey questionnaire was composed of demographic items (gender, age, marriage
status, education, household income, and resident area), climate change perception index,
and CE elements. Choice sets are first structured based on the derived attributes and
levels to develop the measurement tool for CE. The procedures are as follows. Since the
three attributes of the dam’s public benefit function and the annual financial support,
respectively include three levels, a total of 81 alternatives exist (3 raised to the 4th power).
The study employed a more efficient experimental design using the SAS orthogonal design
program because it is an unrealistic field survey that requires responses to all of the alterna-
tives. Thirty-four optimal profiles were extracted, and 18 choice sets were derived from
each choice profile involving two optional alternatives along with a reference alternative.
Furthermore, the results are confirmed to be statistically significant due to superiority in
terms of efficiency and error (D-efficiency = 2.08; D-error = 0.48) [65]. Presenting a set
of 18 optional alternatives to one respondent may increase non-sampling errors. In this
study, after dividing the entire survey questionnaires into Type A/B/C, six sets of optional
alternatives were assigned to each type.

However, if one respondent evaluates all 18 choice sets at once, the response validity
might be impacted. Thus, the sample was divided into three blocks to enhance the response
validity. Each of the three questionnaire types contained six choice sets. Figure 2 below
shows one of the 18 choice sets. The respondents evaluated the choice sets composed of
each level of the dam’s public benefit function and the annual financial support. Then,
they selected the most preferred alternative among two options for further improvement
along with one “no-choice” option. Here, the level of each attribute in the “no-choice”
option is low (i.e., status quo), and the annual financial support is designated as KRW 0.
Respondents choose the most preferred alternative among the three options after reading
the contents of the current technology level described in the questionnaire introduction.

Prior to the analysis, Option 3. “Choosing neither option” (see Figure 2) in the
questionnaire indicates not selecting any of the two improvement alternatives, implying
that the current condition would be maintained. Therefore, the willingness to pay financial
support is calculated as KRW 0, but the water expense is still maintained.
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Figure 2. An example of choice set.

2.5. Sample Collection

The study population comprised adults aged 20 and older who, directly and indirectly,
benefit from various water supply and hydroelectric power generation of Daecheong Dam.
For this reason, residents who were aware of Daecheong Dam and living in Daejeon City
or its surrounding areas such as Chungbuk and Chungnam were selected as participants.
The samples were selected according to gender and age-group properly represented the
population (purposive quota sampling). Before the main survey, we conducted a pre-test
to check whether the content, arrangement, and phrasing of the items were clear. We
completed the final questionnaire by correcting and complementing the questions. A total
of 630 questionnaires (210 copies for each type) were distributed under the household unit
of analysis by direct face-to-face street-intercept interviews around Geum River, LOHAS
Park, near Daecheong Dam. After screening, 603 valid questionnaires were employed for
data analyses.

2.6. Analytical Method

The analytical model of CE is based on the indirect utility function theoretically
implied in economics. The function Uij in Equation (1) indicates the indirect utility of any
individual i (= 1, . . . , n), which can be obtained from an alternative j (= 1, . . . , J) among a
choice set Ci.

Uij = Vij (Zij, Si) + eij (1)

Here, Vij accounts for the attribute functions of the alternative (Zij) and the individual
characteristics (Si) of the respondent as the observable elements. In addition, eij means
unobservable errors, which are relevant to the theoretical foundation for composing the
likelihood function.

In the CE analysis, the discrete choice model is applied. If the jth alternative of the
choice set Ci chosen by the respondent i generates a greater utility than another alternative
k [Uij > Uik (k ∈ Ci, k �= j)], it is logically clear from the above that the alternative j should
be chosen. Thus, in Equation (2), the probability of respondent i choosing alternative j can
be written as:

P(j|Ci)= Pr (Vij + eij > Vik + eik) = Pr (Vij − Vik > eik − eij) (2)

249



Sustainability 2021, 13, 14060

In the case of estimating the multi-nominal logit model described in Equation (2), if
the assumption about the error term independence is satisfied (per the Type I extreme
value distribution), then the probability of the respondent i selecting alternative j is given
by Equation (3).

Pi(j|Ci) =
exp
(
Vij
)

∑k∈Ci
exp(Vik)

(3)

The multi-nominal responses derived from the CE questionnaire represent the out-
comes where the individuals pursue utility maximization. This is analyzed through the
likelihood function in Equation (4).

lnL = ∑n
i=1 ∑J

j=1

{
Yij ·ln[Pri (j|C)]} (4)

In this case, the respondent may or may not select alternative j, where the variable
Yij = 1 indicates that the ith respondent has chosen the alternative j. Here, 1(·) denotes the
indicator function, and “1” is assigned in 1(·) when the jth alternative is selected; otherwise,
0 is granted. Hence, the parameters can be calculated by applying the method of maximum
likelihood estimation to the log-likelihood function of Equation (4) [66].

The indirect utility function Vij of this study can be described as the linear function of
observable attribute vectors: an alternative specific constant (ASC), medium level (DMMid)
and high level (DMHigh) for the DM function improvement, medium level (FCMid) and
high level (FCHigh) for the FC function improvement, medium level (WMMid) and high
level (WMHigh) for the WM function improvement, and financial support (Bid) as shown in
Equation (5). β is an estimated parameter that affects the utility.

Vij = ASC + β1DMMid,ij + β2DMHigh,ij + β3FCMid,ij + β4FCHigh,ij + β5WMMid,ij +
β6WMHigh,ij + β7Bidij

(5)

Moreover, an extended model into which demographic variables are additionally
inserted is estimated for detailed examinations. The model is structured as in Equation (6):

Vij = ASC + β1DMMid,ij + β2DMHigh,ij + β3FCMid,ij
+ β4FCHigh,ij + β5WMMid,ij + β6WMHigh,ij + β7Bidij + ∑S

s=1 γsKsi
(6)

where Ksi is the vector representing the individual characteristics of the ith respondent, s
(= 1, . . . , S) is the demographic variable, and φ is an estimate of the interaction variables.

Thus, the marginal willingness-to-pay (MWTP) for the attributes can be estimated by
Equations (5) and (6), which demonstrate the marginal rate of substitution (The marginal
rate of substitution can be defined as the quantity of one good to be discarded to obtain
another [67], that is, respondents have to pay more for a higher level of improvement.)
between each level of the attributes and the price variable. Therefore, the MWTP, owing
to the vector variation of each attribute, can be estimated as the coefficient ratio of the
corresponding level to the price variable as shown in Equation (7).

MWTPDMMid = ∂Bid/∂DMMid = −β1/β7
...

MWTPWMHigh = ∂Bid/∂DMHign = −β6/β7

(7)

This study employed a climate change perceptions index, proposed by the Korea
Energy Management Corporation [68], to measure the climate change level cognized by the
respondents. An R-type explanatory factor analysis (EFA), based on principal components,
corroborated the measurement item validity. In the factor extraction process, only items
higher than eigen value 1.0 were factorized with a loading of more than 0.4. To measure the
reliability of measurement tools, an internal consistency technique using Cronbach’s Alpha
Coefficient was applied. If the value of the Cronbach’s alpha coefficient is 0.6 or more, the
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reliability can be considered valid, and the entire items can be analyzed by synthesizing
them on a single scale.

3. Results and Discussion

3.1. Demographic Profile of the Sample

The demographic characteristics of the sample are shown in Table 2. In this survey,
a total of 18 choice sets are split into three questionnaire types including 6 sets. Thus, a
χ2 test for the condition of homogeneity between respondents was employed. The results
demonstrated the alternative hypothesis that the collected data was heterogeneous; it was
rejected at the 5% significance level for gender (p = 0.980), age (p = 0.950), marital status
(p = 0.694), education (p = 0.061), occupation (p = 0.497), residence area (p = 0.994), and
income (p = 0.051). Hence, it confirmed that there was no statistical difference regarding
key demographic variables between groups according to the questionnaire types.

Table 2. Demographic profiles.

Categories
Type A Type B Type C χ2-Test

p-ValueFrequency % Frequency % Frequency %

Gender

Male 106 52.2 106 52.5 102 51.5 0.980Female 97 47.8 96 47.5 96 48.5

Age

20–29 57 49.8 55 44.6 57 47.0

0.950
30–39 60 50.2 63 55.4 60 53.0
40–49 55 28.1 54 27.2 54 28.8
50–59 21 29.6 22 31.2 23 30.3

60s or older 10 27.1 8 26.7 4 27.3

Marital status

Single 101 10.3 90 10.9 93 11.6 0.694Married 102 4.9 112 4.0 105 2.0

Education

Middle school or less 6 3.0 2 1.0 6 2.9

0.061High school 78 38.4 53 26.2 74 35.6
College degree 94 46.3 120 59.4 94 45.2

Postgraduate degree 25 12.3 27 13.4 34 16.3

Occupation

Profession 16 55.2 26 56.9 19 57.1

0.497

Clerical work 69 26.6 78 25.2 70 24.7
Production 14 18.2 10 17.8 18 18.2

Service 17 7.9 11 12.9 15 9.6
Civil servant 5 34.0 5 38.6 3 35.4
Teaching staff 4 6.9 3 5.0 4 9.1

Self-ownership 16 8.4 7 5.4 17 7.6
Student 30 2.5 31 2.5 28 1.5

Unemployed 15 2.0 12 1.5 5 2.0
Housewife 17 7.9 19 3.5 19 8.6

Residence area

Daejeon 112 14.8 115 15.3 113 14.1
0.994Chungbuk 54 7.4 51 5.9 49 2.5

Chungnam 37 8.4 36 9.4 36 9.6

Monthly household income (unit: 10,000 won)

99 or less 7 3.4 5 2.5 5 2.5

0.051

100–199 29 14.3 19 9.4 16 8.1
200–299 35 17.2 29 14.4 48 24.2
300–399 38 18.7 42 20.8 29 14.6
400–499 36 17.7 41 20.3 32 16.2
500–599 16 7.9 24 11.9 28 14.1
600–699 14 6.9 6 3.0 16 8.1
700–799 9 4.4 16 7.9 13 6.6

800 or more 19 9.4 20 9.9 11 5.6

Total 203 100 202 100 198 100 -

n = 603
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3.2. Estimating Conditional Logit Model

Table 3 shows the estimation results for the conditional logit model. Model I is a
basic model to which the attributes of the public functions—DM, FC, WM, and financial
support—are solely assigned. Model II is an extended model with additional demographic
variables because individual characteristics need to be used as control variables based
on previous research that found that socioeconomic factors may influence the value es-
timates [69]. Thus, after analyzing 3618 observed data in both models, the basic model
showed acceptable results. LLF was −3515.53 (p < 0.001), and the Pseudo R-squared (The
Pseudo R-squared statistic, which provides an auxiliary explanation for the model fit, is
not high. It is, however, preferable to highlight the figure because it tends to be lower than
usual regression analysis. For instance, according to Brau [70], the 0.11 level is acceptable),
was approximately 11.0%. Moreover, the price variable (Bid) was negatively effective at
the 1% significance level, which satisfies the theoretical direction of the coefficient. All
levels of the attribute variables (The levels named ‘Mid’ and ‘High’ of the three attributes
indicate ‘the change from the low to medium level’ and ‘the change from the low level to
high level’, respectively. Thus, those variables were coded as (1, 0) and (0, 1), where the
low level signifies the reference alternative (0, 0)) have direct impacts at the 1% significance
level (except FCMid significant at the 5% level), which implies that the higher the attribute
level, the greater the probability of choosing the proposed options compared to the status
quo. That is, the enhancement of each function for the dam can increase its utility for
local people.

Table 3. Estimates of conditional logit models.

Model Model I Model II

Variable Coef. S.E. t-Ratio Coef. S.E. t-Ratio

ASC 0.151 0.082 1.83 * 0.790 0.316 2.50 **
DM_Mid 0.454 0.065 7.02 *** 0.453 0.065 7.00 ***
DM_High 0.626 0.059 10.57 *** 0.627 0.059 10.57 ***
FC_Mid 0.273 0.059 4.59 ** 0.274 0.060 4.60 ***

FlC_High 0.391 0.060 6.46 *** 0.393 0.061 6.49 ***
WM_Mid 0.567 0.061 9.31 *** 0.568 0.061 9.32 ***
WM_High 0.818 0.060 13.58 *** 0.818 0.060 13.59 ***

Bid −0.938 0.043 −21.58 *** −0.939 0.044 −21.58 ***

ASC*Gender 0.023 0.076 0.30
ASC*Age −0.010 0.004 −2.50 **

ASC*Income 0.047 0.019 2.46 **
ASC*Education −0.025 0.017 −1.47

ASC*Marital Status −0.016 0.077 −0.21
ASC*Occupation −0.123 0.089 −1.38

ASC*Residence Area 0.050 0.077 0.65

LLF −3515.53 −3506.31
Adj. Pseudo R2 0.110 0.113

No. of Obs. 3618 3618

IIA test

Alternative dropped χ2 (df =7) p-value

Option 1 9.166 0.241
Option 2 6.589 0.473
Option 3 12.613 0.082

Note (1) Model I ⇒ Model II: χ2 (0.05, 7) = 18.44 > 14.07; Note (2) ***, **, *: Significance at the 1%, 5%, 10% levels, respectively.

Moreover, seven interaction variables between the alternative specific constant (ASC)
and the demographic variables (Age, Income per household (unit: million KRW), and
Education (years of education) are the continuous variables. Gender (with female = 0,
male = 1), Marital status (with single = 0, married = 1), Occupation (unemployed = 0,
employed =1), and residential area (Daejeon = 0, Chungnam and Chumgbuk = 1) are
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dummy variables) were computed to identify other influencers on the choice probability
which cannot be examined by the underlying attributes. Consequently, an extended model
fitness was achieved as LLF (−3506.31) and Pseudo-R2 (0.113) improved compared to the
basic model. The age (t = −2.50) and income (t = 2.46) variables had a negative and positive
influence at the 1% significance level. This implies that lower age and higher income levels
mean more choice possibilities for improvement alternatives. However, performing the
Hausman tests for the independence of irrelevant alternatives meant all p-values rejected
the null hypothesis that parameter estimates are heterogeneous at the 5% significance level,
confirming the independence of irrelevant alternatives (IIA) assumption regarding the
independence of error terms had been fulfilled.

3.3. Measuring Climate Change Perceptions and Segmenting Respondents

The analysis revealed that three factors—cause, countermeasures, and effect—were
derived in terms of the level of understanding, as in the theoretical composition. Moreover,
the levels of awareness and practice are each a single factor. Bartlett’s test of spheric-
ity and the Kaiser–Meyer–Olkin values were statistically significant at the 0.01% level
(Appendix A). In addition, the reliability tests showed Cronbach α values for all EFA factors
to be more than 0.77—the level of understanding about the cause (α = 0.776), countermea-
sures (α = 0.795), the effect (α = 0.808), and the level of awareness (α = 0.817)—except for
the level of practice with an α value of 0.667, albeit close to 0.7 [71].

Subsequently, a two-step clustering analysis utilizing five such factors was conducted
to distinguish the climate change perception segments from the whole group (see Table 4).
Two clusters were derived. Due to an independent-samples t-test to reveal the features
of the two clusters, it was classified into segments of high levels (H) and low levels (L)
regarding the five factors. The “H” and “L” clusters were, respectively named as “high
involvement” and “low involvement.”

Table 4. Clustering and t-test according to climate change awareness.

Clusters
Factors

Cluster 1:
High Involvement

Cluster 2:
Low Involvement t-Ratio

Mean(S.D.) Mean(S.D.)

Level of understanding
of climate change:

Understanding the causes 3.46(0.36) H 2.94(0.43) L 15.82 ***
Understanding the measure 3.50(0.38) H 2.88(0.35) L 19.97 ***
Understanding the results 2.74(0.56) H 2.35(0.51) L 8.74 ***

Level of awareness of the behavioral pattern 4.16(0.51) H 3.42(0.56) L 16.29 ***
Level of behavioral style 3.54(0.54) H 2.90(0.50) L 14.68 ***

Note (1) Statistical mean difference: L < H. Note (2) ***: Significance at 1% level.

3.4. Estimating Implicit Prices by Cluster

As shown in Table 5, the coefficients for MWTP calculation of each group were
estimated based on the extended model. The conditional logit models of the two groups
were compared based on the likelihood ratio test [72,73] to clarify the moderating effect
according to climate change perceptions. First, the likelihood ratio test between the two
models showed that χ2 was 65.62. This is larger than the threshold of 30.58 at the 1%
significance level with 15 degrees of freedom, proving that the moderating effect of climate
change perceptions was effective between the two groups.

Regarding the demographic variable interaction with ASC, age (p < 0.05), income
(p < 0.01), occupation (p < 0.10), education (p < 0.10), and residence area (p < 0.05), variables
were solely significant in the high-involvement group, while the effect of age (p < 0.10),
education (p < 0.10), and residence area (p < 0.05) was marginally revealed in the low-
involvement group. Thus, the statistical differences in the determinants between the
models were verified. Moreover, concerning the main attributes, there were significant
effects in both groups, and the directions of influence were also the same. However, since
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there is a limit to the comparison of the variable impacts on the significance or the effect
size, slope tests were performed to address the statistical differences of the effects [74].

Table 5. Comparison of conditional logit models between clusters.

Model High-Involvement Group Low-Involvement Group
Coef.

Comparison

Variable Coef. S.E. t-Ratio Coef. S.E. t-Ratio

ASC 0.873 0.523 1.67 * 0.981 0.407 2.41 ** -
DM_Mid 0.637 0.108 5.92 *** 0.361 0.082 4.42 *** 4.17 **
DM_High 0.846 0.098 8.61 *** 0.499 0.075 6.64 *** 7.89 ***
FC_Mid 0.274 0.096 2.86 *** 0.280 0.076 3.67 *** 0.00
FC_High 0.389 0.098 3.98 *** 0.394 0.078 5.08 *** 0.00
WM_Mid 0.638 0.099 6.47 *** 0.522 0.078 6.70 *** 0.84
WM_High 1.005 0.097 10.33 *** 0.702 0.077 9.08 *** 5.95 **

Bid −0.986 0.072 −13.78 *** −0.922 0.055 −16.69 *** 0.49
ASC*Gender 0.095 0.126 0.75 0.051 0.098 0.51 0.08

ASC*Age −0.014 0.007 −2.09 ** −0.009 0.005 −1.75 * 0.36
ASC*Income 0.140 0.032 4.33 *** −0.001 0.024 −0.05 12.20 ***

ASC*Education −0.009 0.027 −0.32 −0.042 0.022 −1.90 * 0.87
ASC*Marital Status −0.009 0.120 −0.07 0.000 0.101 0.00 0.00

ASC*Occupation −0.761 0.164 −4.65 *** 0.151 0.110 1.38 21.46 ***
ASC*Residence Area −0.348 0.133 −2.62 *** 0.227 0.098 2.31 ** 12.15 ***

LLF −1335.46 −2138.04
-Adj. Pseudo R2 0.147 0.103

No. of Obs. 1440 2178

Note (1) LR test b/w two clusters: χ2 (0.01, 15) = 65.62 > 30.58; Note (2) Coefficient comparison w/χ2 (0.01, 1) = 6.63;χ2 (0.05, 1) = 3.84; Note
(3) ***, **, *: Significance at 1%, 5%, 10% level.

According to the main results, an improvement from the low-level to the medium-
level (χ2 = 4.17, p < 0.05), the low-level to high-level (χ2 = 7.89, p < 0.01) of the DM function,
and the low-level to high-level (χ2 = 5.95, p < 0.05) of the WM function showed significant
differences. Thus, the influence on the choice probability was found to be greater in the
high-involvement group than the low-involvement group, although the coefficients had the
same directions. In addition, income (t = 4.33) and occupation (t = −4.65) were statistically
re-examined as being significant variables only in the high-involvement group. Regarding
the local variable residence area, Daejeon region was significantly associated with the
high-involvement group (t = −2.62) while the Chungbuk and Chungnam areas correlated
to the low-involvement group (t = 2.31). However, there was no significant difference in
the effect of age and education variables between the two groups.

Table 6 shows the results of analyzing the marginal MWTPs for the two groups
(Regarding the level changes of each attribute for the pooled sample (‘Low’ to ‘Medium’
and ‘Medium’ to ‘High’), 4829 KRW and 1848 KRW for DM, KRW 2916 and 1271 KRW
for FC, and 6058 KRW and 2663 KRW for WM were derived, respectively). The 95%
MWTP confidence intervals were estimated using Krinsky and Robb [75]’s Monte Carlo
simulation, and the t-statistics were derived based on the delta method [76]. First, regarding
the DM function, the increments in the two levels of the high-involvement group were
significant with the result. The different between the low to medium level is KRW 6467
(with a 95% confidence range of KRW 4261 to KRW 8673), and the medium to high level
indicates a difference of KRW 2121 (with a 95% confidence range of KRW 382 to KRW 3860).
Meanwhile, the low-involvement group disclosed KRW 3924 (from an interval of KRW
2139 to KRW 5693) in terms of the improvement from low to medium level. However, an
insignificant effect on the change from medium to high level was detected. Regarding the
FC function, there was no statistical difference between the two groups on the change from
low to medium level (high involvement at KRW 2783 vs. low involvement at KRW 3036),
while the medium level did not effectively move into the high level in both groups.
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Table 6. Estimates of MWTP by cluster.

Attribute Level
Implicit Prices

(t-Ratio)
Confidence

Interval 95%
Implicit Prices

(t-Ratio)
Confidence

Interval 95%

Drought
Management

Low → Mid 6467
(5.75) *** [4261–8673] 3924

(4.33) *** [2139–5693]

Mid → High 2121
(2.39) ** [382–3860] 1486

(1.81) n.s. [−114–3098]

Flood
Control

Low → Mid 2783
(2.81) *** [842–4725] 3036

(3.64) *** [1407–4672]

Mid → High 1162
(1.25) n.s. [−662–2986] 1228

(6.27) n.s. [−353–2824]

Water-quality
Monitoring

Low → Mid 6471
(5.82) *** [4290–8652] 5661

(5.81) *** [3898–7432]

Mid → High 3728
(3.89) *** [1848–5609] 1951

(2.38) ** [342–3555]

Total MWTP 21,570
(10.26) *** [17,450–25,691] 14,569

(8.75) *** [11,306–17,832]

Note (1) Unit of Marginal WTP: won/year-household. Note (2) ***, **: Significance at 1%, 5% level.

Moreover, the WM function also exhibited significance at each level in both groups as
per the results. This indicates that MWTPs (95% confidence interval) of the high-involvement
and low-involvement groups, respectively showed KRW 6471(KRW 4290–KRW 8652) and
KRW 5661 (KRW 3898–KRW 7, KRW) regarding the change from medium to high level,
as well as KRW 3,728 (KRW 1848–KRW 5609) and KRW 1951 (KRW 342–KRW 3555)
regarding the change from medium to high level. However, the slope test results showed
the intergroup heterogeneity. Finally, the total amount of MWTPs for the high-involvement
group was KRW 21,570 (95% confidence interval: [17,450; 25,691]), and that of the low
interest group was KRW 14,569 (95% confidence interval: [11,306; 17,832]).Thus, there a
merged MWTP difference of around KRW 7000 a year per household between the two
groups exists (in US dollar terms, the converted amount is approximately USD 18.58 and
USD 12.61, respectively, with a difference of 6.06USD based on the exchange rate system of
the Bank of Korea). The large difference in MWTP between high and low climate change
awareness groups is in line with Kim et al. [34]’s study, which found that the Daecheong
Dam basin was one of the most damaged areas in the summer of 2020, and that damage
caused by climate change could worsen in the future.

Both groups showed the same value intensities in the order of water quality moni-
toring, drought management, and flood control. It is difficult to secure drinking water
supplies in neighboring regions, since it continues to suffer from water quality issues such
as non-point pollutant sources flowing from surrounding areas of rivers, which has a
significant influence on the supply of various water types, such as daily and agricultural
water [77]. Based on the findings of these prior research, the greatest MWTP of the survey
respondents’ water quality monitoring attribute is considered as accurately reflecting the
true situation.

The estimated study values indicated results that are different from prior studies [55–58].
Nevertheless, there is agreement on the utility of reducing damages. Granted, the values
were limited to tentative results that further research can rectify. These results, however,
show that the economic value of the dam’s public functions is regulated by climate change
awareness. The estimation results can be differentiated from previous studies since the values
of the dam’s function attributes, corresponding to climate change, can be derived within a
single analysis framework and the utility size between the attributes can be compared.

4. Conclusions

The purpose of this study was to estimate the economic value of the Daecheong Dam
for the public function of responding to climate change. It examined the moderating effect
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of climate change perceptions on value estimates by applying choice experiments. The
study specified three dam function attributes such as drought management, flood control,
and water quality monitoring, and subdivided each into three levels to improve the status
quo. Survey data from 603 households living in Daejeon, Chungbuk, and Chungnam were
collected to perform the choice experiments. Subsequently, two clusters, including high-
involvement and low-involvement groups, were extracted based on the climate-change
perception index. According to the main results of comparing the marginal willingness-to-
pay between the two clusters, the attributes and price variable significantly affected the
choice probability to benefit from improvements in the rational signs of the coefficients.
This result does not violate the independence of irrelevant alternatives assumption. The
improvement values of high-involvement and low-involvement groups are, respectively,
estimated as KRW 21,570 and KRW 14,572 a year per household.

The findings of this study have the following managerial and policy implications.
First, the estimates of the economic value of Daecheong Dam for the public function of
responding to climate change are the same in both clusters, and were found to be in the
order of water quality monitoring, drought management, and flood control. This can be
interpreted as the environmental concerns at the study site being fairly reflected, as serious
water bloom has occurred in Lake Daecheong since the rainy season in 2016, and because
water pollution still needs to be addressed. Moreover, the implementation of a restricted
water supply in the Chungnam area in 2015 raised the awareness of national disasters,
leading to the perception that drought prevention is a more urgent problem, and demands
an immediate countermeasures, in comparison to flood protection. These results show
that public projects, for which the levels of public awareness are sufficiently considered,
will have higher reception because the related economic value can vary according to
public recognition.

As a result, in order to manage future water resources and establish measures to
prevent water disasters in consideration of climate change, it is essential to first identify
the increasing flood volume and decreasing dry-water volume due to climate change
and to establish policies based on citizens’ demands. For example, disaster-prevention
urban planning, the designation and administration of natural disaster risk improvement
zones, and the provision of safe drinking and living water may all boost the policy’s
positive efficacy.

This study has also demonstrated that the economic value of the dam’s public func-
tions are regulated by climate change awareness, which supports the belief that policies
in which the public’s propensity to climate change is considered can positively promote
public welfare. Values of public roles are found for both groups, regardless of climate
change perception, but their degree shows remarkable differences between the groups.
In particular, the MWTPs on functional improvements are not significant at some levels,
suggesting that people may disagree with the use of tax for strengthening its functions;
this implies that the actual importance of the dam’s role in climate change perception has
not been understood fully. Hence, identifying the specific sub-groups according to the
awareness level of climate change and building differential communication strategies for a
paradigm shift is necessary to heighten the feasibility of implementing dam improvement
and development plans. The results of this study can be differentiated from previous ones
in that the values of the dam function corresponding to climate change can be derived
within a single analysis framework, and the utility value between attributes can be com-
pared. We believe that the obtained economic values translate into suggestions for fulfilling
environmental policy needs.

Although it is meaningful, in that this study provides theoretical and practical impli-
cations to identify the core priorities of the dam’s public functions from the perspective of
the value concept, and thus suggest directions of future dam improvement projects, several
limitations need to be addressed in further research. First, this study extracts the three
attributes as the role of dams for climate change measures through the extensive literature
review, expert surveys, and focus group interviews; however, there has been a limit to
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the generalizability of these attributes to all cases even though it is considered reasonable
to generalize the results of the study when the operating conditions of Daecheong Dam
and the demographic characteristics of residents are under similar conditions. Therefore,
it is recommended that more common functions appropriate for general cases will be
further explored in subsequent studies, and socioeconomic variables reflecting specific
regional characteristics will need to be considered more sensitively if the model extension.
Second, the estimated value in this study is limited to the tentative results, not conclusive
ones, as the choice experiments are based upon the questionnaire survey due to the stated
preferences. In fact, since this drawback is an inevitable vulnerability of stated prefer-
ence experiments, future researchers can develop a methodology to calculate the values
of the dam functions using the revealed preference data. Third, at the level setting, the
highest level is the expected value for new technology development, but the problem is
that we could not explain exactly what kind of technology is anticipated. Regarding this
issue, additional research on new technology development will be needed. Fourth, despite
the introduction, attributes, and adequate explanation for each level of the study area
(Daecheong Dam), the possibility of a Hypothetical Bias cannot be discounted. The need
to solve the Hypothetical Bias using various techniques such as cheap talk [78], certainty
follow-up [79] and oath [80] is raised. Additionally, a binary discrete choice question is
incentive compatible, but multinomial repeated choice is not. In subsequent studies, a
research design based on binary discrete choice is required.

Lastly, the conditional logit model requires a strict assumption that it must be accepted
by IIA. Accordingly, in this study, the Hausman test was conducted to verify that the
IIA assumption was fulfilled, and the conditional logit model was selected as the final
research model. Many studies [81–83] stated that IIA assumption is too dependent on the
parameterization of the model. The mixed logit model can be considered as an improved
alternative that can describe choice probabilities across a given mixing distribution in an
adaptable and flexible manner. Various mixing distributions, such as normal, log-normal,
triangular, or uniform, can be used, depending on prior information on the taste variation
among the decision makers [84]. In subsequent studies, it is necessary to carefully consider
these points and select a research model.

Author Contributions: Conceptualization, H.O. and H.L.; methodology, H.O. and H.L.; software,
H.O. and S.Y.; validation, H.L.; formal analysis, H.O. and S.Y.; investigation, H.O. and S.Y.; resources,
H.O. and S.Y.; data curation, H.O. and S.Y.; writing—original draft preparation, H.O. and S.Y.;
writing—review and editing, H.O. and S.Y.; visualization, H.O. and S.Y.; supervision, H.L.; project
administration, H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data will be made available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

257



Sustainability 2021, 13, 14060

Appendix A

Table A1. Factor analysis of climate change perceptions.

Factors and Items Loading

Level of understanding of climate change
Understanding the causes (EFA α = 0.776; Eigen value = 2.568; Variance explained = 21.40%)

Recent catastrophic events have been caused by the climate change. 0.792
Scientific information about the climate change should be provided to every citizen. 0.776

This is the time to discuss how to adapt to climate change, not to argue. 0.723
The national counter strategy against the climate change is too passive. 0.629

Understanding the measures (EFA α = 0.795; Eigen value = 2.555; Variance explained = 21.30%)
Preparation for the climate change must be a primary objective of national policy 0.852

Recent catastrophic events have been caused by the climate change. 0.797
Scientific information about the climate change should be provided to every citizen. 0.776

This is the time to discuss how to adapt to climate change, not to argue. 0.740
Understanding the results (EFA α = 0.808; Eigen value = 2.363; Variance explained = 19.69%)

Recent catastrophic events have been caused by the climate change. 0.808
Scientific information about the climate change should be provided to every citizen. 0.767

This is the time to discuss how to adapt to climate change, not to argue. 0.692
The national counterstrategy against the climate change is too passive. 0.621

KMO = 0.860; Bartlett’s test of sphericity: χ2 = 2489.81; df = 66; p = 0.000

Level of awareness of the behavioral pattern (EFA α = 0.817; Eigen value = 3.166; Variance explained = 52.76%)
The environmental protection helps improve the quality of life. 0.770
With the environmental protection, everybody wins eventually. 0.765

The health threat of air pollution is more serious than people perceive it to be 0.721
Global warming is still ongoing. 0.715

Protecting the environment is beneficial to my health. 0.694
The climate change is affecting everyone in real time. 0.690
KMO = 0.820; Bartlett’s test of sphericity: χ2 = 1171.84; df = 28; p = 0.000

Level of behavioral style (EFA α = 0.677; Eigen value = 2.363; Variance explained = 39.33%)
The environmental protection helps improve the quality of life. 0.784
With the environmental protection, everybody wins eventually. 0.749

The health threat of air pollution is more serious than people perceive it to be 0.602
Global warming is still ongoing. 0.562

Protecting the environment is beneficial to my health. 0.535
The climate change is affecting everyone in real time. 0.468
KMO = 0.678; Bartlett’s test of sphericity: χ2 = 664.285; df = 15; p = 0.000
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Abstract: Basemap and Planet Fusion—derived from PlanetScope imagery—represent the next
generation of analysis ready datasets that minimize the effects of the presence of clouds. These
datasets have high spatial (3 m) and temporal (daily) resolution, which provides an unprecedented
opportunity to improve the monitoring of on-farm reservoirs (OFRs)—small water bodies that store
freshwater and play important role in surface hydrology and global irrigation activities. In this
study, we assessed the usefulness of both datasets to monitor sub-weekly surface area changes of
340 OFRs in eastern Arkansas, USA, and we evaluated the datasets main differences when used to
monitor OFRs. When comparing the OFRs surface area derived from Basemap and Planet Fusion
to an independent validation dataset, both datasets had high agreement (r2 ≥ 0.87), and small
uncertainties, with a mean absolute percent error (MAPE) between 7.05% and 10.08%. Pairwise
surface area comparisons between the two datasets and the PlanetScope imagery showed that 61%
of the OFRs had r2 ≥ 0.55, and 70% of the OFRs had MAPE <5%. In general, both datasets can be
employed to monitor OFRs sub-weekly surface area changes, and Basemap had higher surface area
variability and was more susceptible to the presence of cloud shadows and haze when compared
to Planet Fusion, which had a smoother time series with less variability and fewer abrupt changes
throughout the year. The uncertainties in surface area classification decreased as the OFRs increased
in size. In addition, the surface area time series can have high variability, depending on the OFR
environmental conditions (e.g., presence of vegetation inside the OFR). Our findings suggest that
both datasets can be used to monitor OFRs sub-weekly, seasonal, and inter-annual surface area
changes; therefore, these datasets can help improve freshwater management by allowing better
assessment and management of the OFRs.

Keywords: analysis ready datasets; PlanetScope; Basemap; Planet Fusion; on-farm reservoirs; water
management

1. Introduction

Planet Labs currently operates more than 200 PlanetScope satellites in sun-synchronous
orbits and frequently launches new satellites that are designed to have a short operational
lifetime (<4 years). The PlanetScope satellite constellation enables near-daily monitoring
with multi-spectral imagery at high spatial resolution (3 m) [1]. PlanetScope imagery has
been applied to a variety of studies to monitor phenomena that require both high spatial and
temporal resolution, for instance, to monitor small water bodies [2–4], estimate methane
emissions from forested wetlands [5], assess river-ice and water velocity [6], improve
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crop leaf-area-index estimation with sensor data fusion [7–9], and monitor near-real-time
aboveground carbon emissions from tropical forests [10–12].

A recent global analysis of PlanetScope’s temporal availability [13] showed that
the annual and monthly number of PlanetScope observations does not vary uniformly
across the globe. The authors attributed this finding to different PlanetScope orbits (i.e.,
altitude and inclinations), due to different numbers of sensors in orbit, which vary when
PlanetScope satellites are decommissioned and replaced with new sensors, and due to
images that cannot be geolocated [13]. In addition, it is well known that the number of
observations from optical wavelength satellite imagery will vary according to dynamic and
global cloud obscuration. While the PlanetScope cloud mask, Usable Data Mask 2 (UDM2),
is available [1] and allows for discernment of classes like cloud, cloud shadow, and heavy,
haze among others, its accuracy has not been thoroughly assessed [13–15] and it is not
available for images prior to 2018 [1]. Aiming to overcome these limitations—irregular
cadence and cloud obscuration—and to increase the applications of PlanetScope imagery,
Planet Labs has focused on developing the next generation of tiled analysis ready datasets—
Basemap [16] and Planet Fusion [17]—which are less affected by the presence of clouds
and are set for a fixed temporal cadence.

Basemap is generated by mosaicking the whole or part of the highest quality Plan-
etScope imagery, which is selected based on cloud cover and image acutance (i.e., sharp-
ness). For example, for a given period of interest—Basemap can be processed using
different image cadences, e.g., daily, weekly, biweekly—PlanetScope images are ranked
based on these metrics such that cloud-free images have higher scores than cloudy im-
ages [16,18]. Basemap is designed to monitor changes over time and for analytics-driven
use cases, and it has been applied to several research projects, including monitoring of
forest biomass [10–12], to assess carbon emissions from drainage canals [19], and to monitor
coral reef map probabilities [20]. Planet Fusion, on the other hand, is based on the CubeSat-
enabled spatiotemporal enhancement method [8], and it leverages the high spatial and
temporal resolution provided by PlanetScope scenes with rigorously calibrated publicly
available multispectral satellites (i.e., Sentinel-2, Landsat, MODIS, and VIIRS) to provide
daily and radiometrically consistent and gap-filled surface-reflectance images that are free
of clouds and shadows [17]. Planet Fusion is suitable to assess inter-day changes, for time-
series analysis, and monitoring of disturbances of Earth’s surface. Recently, Planet Fusion
has been applied to monitor crop phenology, using the normalized difference vegetation
index and leaf area index [21,22]. Given that these datasets are cloud-free and processed
to have daily cadence at high spatial resolution—both Basemap and Planet Fusion have
3 m pixel size—they provide an unprecedented opportunity to improve the monitoring
of dynamic small water bodies, for instance, on-farm reservoirs (OFRs) that are used by
farmers to store water during the wet season and for crop irrigation during the dry season.
OFRs have a dynamic surface area time series, especially during the crop-growing season,
when farmers are irrigating their crops and may pump water from nearby streams [23–25].

There are more than 2.6 million OFRs in the USA alone, and these OFRs play a
key role in surface hydrology by storing fresh water and as an essential component of
global irrigation activities [26–28]. Nonetheless, OFRs can contribute to downstream water
stress by decreasing stream discharge and peak flow in the watersheds where they are
built [24,29,30]. Therefore, monitoring OFRs sub-weekly surface area changes is critical to
the assessment of their seasonal and inter-annual variability, as well as to mitigation of their
downstream impacts, with implications concerning how OFRs are managed and where
they are built. Previous research assessed the spatial and temporal variability of OFRs
by leveraging the long-term (≥25 years) Landsat-based inundation datasets [23,31,32].
Nonetheless, these datasets are limited to a few annual observations—due to clouds, sensor
issues, and the 16-day repeat cycle—and Landsat’s spatial resolution (30 m) limits the
applications of these datasets to monitor OFRs smaller than 5 ha (i.e., high surface area
uncertainties ~ 20%). Aiming to overcome these limitations, other studies [4,33,34] have
applied a multi-sensor satellite imagery approach, including sensors of higher spatial and
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temporal resolution (e.g., PlanetScope [3 m] and Sentinel-2 [10 m]) when compared to
Landsat. However, a multi-sensor approach requires processing of satellite imagery of
different spatial resolution from multiple platforms, which can be time-consuming and a
limiting factor if it is necessary to process, download, and move the satellite imagery across
multiple platforms [33]. In this study, we propose a novel use of the analysis ready datasets
Basemap and Planet Fusion, and we aim (1) to assess the usefulness of both datasets to
monitor OFRs sub-weekly surface area changes and (2) to compare the two datasets and
describe their differences when used to monitor OFRs.

2. Methods

2.1. Study Region

Eastern Arkansas is one of the largest irrigated regions in the USA that has seen a
rapid increase in the number of OFRs during the last 40 years [35–37]. The region has a
humid subtropical climate with an average annual precipitation of 1300 mm, mostly dis-
tributed between March and May and November and January [23]. Recent studies [35,36]
mapped the spatial distribution of 340 OFRs with surface area <30 ha and distributed
across three sub-watersheds in the study region (Figure 1). The OFR dataset was manually
mapped using the high-resolution (1 m) National Agriculture Imagery Program archive
in combination with 2015 Google Earth satellite imagery. The authors of the OFR dataset
used Google Earth Explorer to sharpen the image details when zooming in and to provide
a validation for features appearing indistinct or pixelated in the 1-m mosaic imagery [35].
We assigned the OFRs to three size classes (0.1–5 ha, 5–10 ha, and 10–30 ha) based on the
surface area mapped in the OFR dataset. These classes were used to support the surface
area monitoring analyses when accounting for different OFR sizes (Figure 1).

Figure 1. Study region in eastern Arkansas, USA, and the OFRs size distribution. The inset map represents the OFRs
shapefile overlaid on SkySat satellite imagery.
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We downloaded PlanetScope images and processed daily Basemap and Planet Fusion
images between July 2020 and July 2021. This time frame was chosen based on the imagery
availability to generate both analysis ready datasets. The images spatial resolution and
band-wavelength ranges are presented in Table 1. In addition, the general workflow used
to assess the OFRs’ surface area time series is provided in Figure 2.

Table 1. PlanetScope, Basemap, and Planet Fusion image spatial resolutions and different wave-
lengths bands.

Source Pixel Size (m) Blue (μm) Green (μm) Red (μm) NIR (μm)

PlanetScope 3 0.455–0.515 0.500–0.590 0.590–0.670 0.780–0.860

Basemap 3 0.450–0.510 0.530–0.590 0.640–0.670 0.850–0.860

Planet Fusion 3 0.450–0.510 0.530–0.590 0.640–0.670 0.850–0.880

 

Figure 2. Workflow used to estimate the OFRs’ surface area-time series from PlanetScope, Basemap,
and Planet Fusion between July 2020 and July 2021.

2.2. Satellite Imagery Datasets
2.2.1. PlanetScope CubeSat Surface-Reflectance Ortho Tiles

We used the OFRs’ shapefile to search for and clip Level 3A surface-reflectance imagery
available through Planet Orders API. The PlanetScope surface-reflectance ortho tiles use
a fixed UTM grid system in 25 km by 25 km tiles with 1 km overlap [1]. We filtered
out all images with more than 10% cloud using an image-based cloud-cover filter—this
cloud-cover filter threshold allowed us to download mostly cloud-free images; however,
because it is an image-based filter rather than an OFR or area-of-interest-based cloud filter,
some useful observations (i.e., when the OFR is not covered with clouds but the image is
filtered out) were not downloaded, decreasing the total number of observations per OFR.
In addition, to deal with potential cloud-obscuration outliers, we used the PlanetScope
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UDM2 to filter out all image clips that contained more than 5% unusable pixels (i.e., pixels
covered by clouds, cloud shadow, with light and heavy haze).

The PlanetScope ortho tiles were resampled to 3 m and projected using the WGS84
datum. The ortho tiles were radiometrically, sensor, and geometrically corrected and
aligned to a cartographic map projection. These images were atmospherically corrected
using the 6S radiative transfer model with ancillary data from MODIS [1,38,39], and the
positional accuracy has been reported to be smaller than 10 m [1].

2.2.2. Normalized Surface-Reflectance Basemap

We processed daily Basemap images corrected to surface reflectance using PlanetScope
scenes, and a “best scene on top” algorithm [16,18] that selects the highest quality imagery
from the PlanetScope catalog. This algorithm ranks the PlanetScope scenes based on their
quality by assessing the scenes’ acutance (i.e., sharpness), the fraction of cloud cover, cloud
shadow, haze, and presence of unusable pixels (e.g., no data). Briefly, this algorithm is
based on a linear regression model approach that uses the clear pixels from the best-ranked
scenes; we selected the best scenes first, then progressed successively until the images were
filled or no scenes remained [18]. To obtain Basemap at a daily cadence, we employed a
30-day rolling window that may use PlanetScope scenes collected up to 15 days before
or after the target date; however, if no usable pixels (i.e., cloud-free) are available in this
time range, the image will contain no data. We did not observe any Basemap image
with no-data in our study period. The rolling window approach weights on the image
recency, for instance, a slightly hazy scene (e.g., ~<10% hazy pixels) on the day of the
Basemap image, will score higher than a very clear scene (i.e., no haze) from a few days
before/after. In addition, due to the daily cadence, there may be Basemap images with the
same PlanetScope scene composition, which leads to repetitive information when using
the Basemap images to monitor OFRs.

Basemap images were generated employing a two-step process: normalization and
seamline removal. Normalization aims to radiometrically calibrate the Basemap images and
to minimize the scene-to-scene variability when mosaicking PlanetScope scenes. For this
step, the Framework for Operational Radiometric Correction for Environmental Monitoring
(FORCE) [40] was used to generate a combined Landsat 8 and Sentinel-2 surface-reflectance
product to be used as the “gold” radiometric reference during normalization. FORCE
infers surface reflectance from Landsat 8 and Sentinel-2 by employing the 5S (simulation
of the satellite signal in the solar spectrum) approach [41]. The aerosol optical depth is
estimated using a dark-object-based approach where in water vapor content is derived
from Landsat 8 (obtained from MODIS database) and Sentinel-2 (estimated on a pixel-
specific basis) imagery. In addition, clouds and shadows are detected using a modified
version of Fmask [42] for Sentinel-2 images [43] (see [16,17,44] for further details). An
assessment of the FORCE atmospheric correction was performed as part of the atmospheric
correction inter-comparison exercise [45], and the FORCE implementation uses the Landsat
8 and Sentinel-2 imagery mapped onto a common UTM grid to produce 30 m spatial-
resolution imagery. Seamline removal enhances the visual appearance of the Basemap
image edges. In this step, each PlanetScope scene used in the Basemap mosaic is set to
match its neighbor—pixel values near a scene boundary change more than values away
from the boundary; however, the pixel values are not modified. Specifically, we first
calculated the Basemap mosaic pixel values gradient, then set the gradient values between
1 and 0 (scene boundary) and fixed the original pixel values along the Basemap mosaic edge.
This process was applied independently for each band; therefore, it may alter band ratios
near scene edges—this is most apparent when scenes do not match locally, for instance,
for unmasked clouds. Lastly, the seamline removal may introduce artifacts (e.g., straight
lines, distortions) at the Basemap mosaic boundary, which is most frequent over water
when normalization cannot fully correct for differences between scenes due to waves and
sun glint.
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2.2.3. Planet Fusion Surface Reflectance

We processed Planet Fusion images using an algorithm based on the CubeSat-enabled
spatiotemporal enhancement method [8], which enhances, inter-calibrates, and fuses satel-
lite imagery from multiple sensors. Planet Fusion has unique features, including (1) precise
co-registration and sub-pixel fine alignment for different image sources, (2) PlanetScope
scenes with near-nadir field of view, resulting in minimal bidirectional reflectance distribu-
tion function (BRDF) variation effects, and (3) pixel traceability to identify imagery sources
and to assess the confidence of daily gap-filled images.

To generate Planet Fusion surface-reflectance images, we used the same approach
described for Basemap (i.e., FORCE [40]), with top-of-atmosphere (TOA) PlanetScope
scenes (3 m), Sentinel-2 TOA reflectance (10–20 m), Landsat 8 TOA reflectance (30 m), and
daily tile-based MODIS or VIIRS normalized to a nadir-view direction and local-solar-noon
surface reflectance. The Planet Fusion algorithm uses MODIS MCD43A4 surface-reflectance
product in seven spectral bands that are corrected for reflectance anisotropy using a semi-
empirical BRDF [46], which utilizes the best observations collected over a 16-day period
centered on the day of interest. In addition, VIIRS products (VNP43IA4 and VNP43MA4)
are used as a backup to ensure continuity if MODIS data is not available.

The Planet Fusion algorithm guarantees spatially complete and temporally continuous
images by gap-filling radiometric data (i.e., synthetic pixel values). The gap-filling process
uses both spatial (i.e., neighboring and class-specific pixel information) and temporal
interpolation techniques to estimate the pixel values. In general, uncertainty will vary
based on Earth’s surface characteristics (e.g., vegetation dynamic changes), and it will
be higher for longer daily interval gaps. Planet Fusion images are accompanied by a
quality-assurance product, which is a thematic raster layer using the same spatial grid (i.e.,
UTM grid system in 24 km by 24 km tiles) as the corresponding Planet Fusion spectral
data [17]. We used the quality-assurance product to assess the percentage of synthetic
(i.e., gap-filled) versus observation data (PlanetScope and Sentinel-2) used to generate the
pixel value. The observation data can be a combination of PlanetScope and Sentinel-2. A
value of 1 indicates no gap-filling, whereas a value of 100 indicates an entirely gap-filled
pixel value. Specifically for our study case, when clipping Planet Fusion images using
the OFR boundaries, the clips can have real pixels, synthetic pixels, or a combination of
both. Additionally, there are known issues associated with the gap-filling process used
by the Planet Fusion algorithm, including false cloud or cloud-shadow detection and
image artifacts (e.g., strips, distortions). These issues are most common during prolonged
cloudiness and in study regions with significant terrain shadowing.

2.3. Data Analysis

To classify the OFR surface area from PlanetScope, Basemap, and Planet Fusion, we
clipped all available images using each OFR shapefile buffered to 100 m. Then, we calcu-
lated the normalized difference water index (NDWI) using the green and NIR bands [47],
and we applied an adaptive Otsu threshold [48] for each image in the time series to separate
water from non-water pixels. The Otsu threshold is a well-known algorithm used to classify
surface water of inland water bodies [2,4,49–53]. In addition, the Otsu threshold optimizes
the separability of pixel values is contingent on the bimodal distribution of the pixel values
(i.e., water and non-water pixels), which was ensured by clipping the satellite imagery
using each OFR shapefile. After calculating the Otsu threshold and separating water
from non-water pixels, we clipped the images one more time using the OFRs’ shapefiles
buffered at 20 m. This last step was done to minimize the impact (i.e., inflating surface
area) of adjacent water bodies when estimating OFR surface area. All surface area image
classification was done in Google Earth Engine [54].

PlanetScope has a near-daily revisit time; however, the number of usable satellite
images varies throughout the year due to the presence of clouds and sensor-related issues.
To assess the number of different PlanetScope observations, we first counted the total
number of observations for each OFR and for each month; then, we plotted the monthly
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distribution of this number, including all OFRs (i.e., one boxplot for each month of the year
that represents the variability in the number of monthly observations according to different
OFRs). In addition, we evaluated the total number of different observations for each OFR
along the year (i.e., a histogram that represents the distribution of the total number of
observations for each OFR). A similar approach was used to assess the number of different
Basemap observations and to count the number of Planet Fusion observations that were
real, mixed (i.e., including real and synthetic pixels), and synthetic. Basemap images with
the same PlanetScope scene composition were counted only once.

For the different OFR surface area size classes (Figure 1), we assessed the uncertainties
in the Basemap and Planet Fusion images by pairwise comparing them with PlanetScope
and calculating the percent error (Equation (1)) monthly distribution and the monthly mean
absolute percent error (MAPE; Equation (2)). In addition, for Planet Fusion, we divided
the pairwise comparisons between real, mixed and synthetic surface area observations.
We illustrated the surface area time series derived from PlanetScope, Basemap, and Planet
Fusion for six OFRs of different sizes (Table 2). These OFRs were chosen to demonstrate the
surface area time series variability from the different images and for OFRs located under
different environmental conditions (e.g., presence of vegetation inside the OFR, close to
adjacent water bodies, a multi-part OFR). In addition, we overlaid the OFRs’ shapefile
on high-resolution Google Maps satellite imagery to show the environmental conditions
where the OFRs are located.

Percenterror(%) = ((yi − xi)/xi) ∗ 100 (1)

Mean absolute percent error(%) =
1
n

Σ
∣∣∣∣yi − xi

xi

∣∣∣∣ ∗ 100 (2)

where xi is the SkySat or PlanetScope surface area and yi is the Basemap or Planet Fusion
surface area.

Table 2. Selected OFRs to illustrate PlanetScope, Basemap, and Planet Fusion surface area time series
and their size according to the OFR dataset.

OFR id OFR Size (ha)

A 13.62

B 22.60

C 9.83

D 12.73

E 13.82

F 29.72

2.4. Validation Scheme

To validate the surface area classification using the Otsu thresholding approach, we
downloaded five orthorectified and multispectral SkySat images [17] (Blue: 0.450–0.515 μm,
Green: 0.515–0.595 μm, Red: 0.605–0.695 μm, and NIR: 0.740–0.900 μm) at sub-meter
(0.66–0.73 m) spatial resolution (Table 3). For each image, we overlaid the OFR geometry
and manually delineated the OFR surface area, which resulted in 144 validation surface
areas from 71 different OFRs for multiple observations in time. Then, we conducted a
pairwise comparison of the validation surface area with the surface area obtained from
PlanetScope, Basemap, and Planet Fusion. When the PlanetScope surface area date did
not correspond exactly to the SkySat dates, we used the closest observation in time, which
had a maximum difference of three days before or after the SkySat date. In addition, we
assessed the uncertainties of PlanetScope, Basemap, and Planet Fusion for different surface
area size classes: 0.1–5 ha (n = 50), 5–10 ha (n = 46), and 10–50 ha (n = 48).
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Table 3. SkySat image identification, acquisition date, number of OFRs surface area observations per image, percent clear
(indicates the presence or absence of cloud cover; higher values indicate fewer clouds), ground-control ratio (defines the
image positional accuracy; values closer to 1 mean higher accuracy), and ground-sampling distance in meters.

SkySat Image Date
OFRs

Observations
Percent

Clear (%)
Ground-Control

Ratio
Ground Sampling

Distance (m)

20200929_193409_ssc10_u0001 29 September 2020 35 87 0.91 0.66

20201013_194518_ssc6_u0001 13 October 2020 44 99 0.97 0.73

20201102_193752_ssc9_u0001 2 November 2020 16 100 0.97 0.67

20201102_193752_ssc9_u0002 2 November 2020 10 100 0.96 0.67

20201210_194154_ssc11_u0001 10 December 2020 39 99 0.91 0.68

3. Results

3.1. Surface Water Area Validation Using SkySat Imagery

The surface area obtained from PlanetScope, Basemap, and Planet Fusion showed
great agreement (r2 ≥ 0.98) with the validation dataset. In addition, PlanetScope had the
smallest MAPE (8.09%), followed by Basemap (8.21%) and Planet Fusion (9.17%) (Figure 3).
When splitting the validation surface area observations into different size classes (Table 4),
all three image sources presented similar agreement (r2 ≥ 0.87), and the highest r2 values
were found for surface area observations between 10 and 30 ha (r2 ≥ 0.95). All three sources
had a similar MAPE for observations between 0.1 and 5 ha (~7.55%) and between 10 and
30 ha (~7.98%), while the highest values were found for observations between 5 and 10 ha
(~10.27%).

Figure 3. Pairwise comparisons between the SkySat validation surface area and the surface area obtained from PlanetScope,
Basemap, and Planet Fusion for multiple observations in time.

Table 4. Pairwise comparisons between the SkySat validation surface area and the surface area obtained from PlanetScope,
Basemap, and Planet Fusion for multiple observations in time and divided into three size classes.

PlanetScope Basemap Planet Fusion

0.1–5 ha 5–10 ha 10–30 ha 0.1–5 ha 5–10 ha 10–30 ha 0.1–5 ha 5–10 ha 10–30 ha

r2 0.91 0.91 0.94 0.91 0.87 0.90 0.96 0.96 0.95

MAPE
(%) 7.05 7.14 7.68 9.91 10.1 10.8 7.37 7.46 9.11
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3.2. Number of Surface Area Observations per Dataset

The number of PlanetScope observations varied throughout the year and varied across
different OFRs (Figure 4). The months with the highest number of PlanetScope images
were November–December 2020 (~17) and March–April 2021 (~14), while the months with
the lowest numbers were July–September 2020 (<10) and February 2021 (<3) (Figure 4A).
In addition, most of the OFRs (~60%) had 80–100 PlanetScope observations per year
(Figure 4B). Basemap images were processed at a daily cadence, and we considered a new
Basemap observation every time a new image composite was used. In this regard, the
number of Basemap images followed a similar pattern found for PlanetScope; however,
the mean number of Basemap observations per month was higher than of PlanetScope
in 10 out of the 12 months analyzed, and most of the OFRs (~75%) had 90–120 Basemap
observations per year (Figure 4A,B).

 

 

Figure 4. Number of surface area observations per month for PlanetScope and Basemap (A) and for Planet Fusion real,
mixed, and synthetic (C). Frequency distribution of the total number of observations per OFR per year for PlanetScope and
Basemap (B) and for Planet Fusion real, mixed, and synthetic (D).

Planet Fusion images were derived from real and synthetic pixel values, and the
number of real and synthetic observations varied throughout the year (Figure 4C). The
number of images derived from real pixels reached its peak (~13–15) between November
and December 2020, and the lowest numbers were found in February 2021 (~2) and between
May and June 2021 (<5). In general, most of the OFRs had ~ 80–100 real observations per
year. The number of mixed images (i.e., composed by real and synthetic pixels) tended
to be < 10 for all months, and most of the OFRs had <50 mixed observations per year
(Figure 4C,D). The number of synthetic images is higher than real and mixed observations
for all months of the year, and the highest values (~22–26) occurred in July 2021 and
May–June 2020, with the lowest values between November and December 2020 (~14–16)
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(Figure 4C). In addition, most of the OFRs had ~250–260 synthetic observations per year
(Figure 4D).

3.3. Planet Fusion Comparison with PlanetScope

We found a high agreement (r2 ≥ 0.90) for the same-day surface area pairwise com-
parisons between Planet Fusion and PlanetScope for all size classes (Figure 5). MAPE
decreased as observations increased in size, and the highest MAPE values were found for
synthetic, mixed, and real for all size classes (Figure 5). The number of pairwise compar-
isons for real was higher than mixed and synthetic, to a large extent (~60%). This finding is
somewhat expected, as the Planet Fusion algorithm uses PlanetScope images as an input to
generate daily Planet Fusion imagery.

 

 

Figure 5. Same-day pairwise comparisons between PlanetScope and Planet Fusion real, mixed, and synthetic for multiple
observations in time and for all OFRs divided into three size classes (0.1–5 ha, 5–10 ha, and 10–30 ha). Brighter colors
indicate higher point density.
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3.4. Monthly Comparisons between Basemap and Planet Fusion with PlanetScope

When comparing each OFR surface area time series derived from Basemap and Planet
Fusion with PlanetScope, for both datasets, most of the OFRs (63% and 61% for Basemap
and Planet Fusion, respectively) showed good agreement with r2 ≥ 0.55, and 74% and 70%
of the OFRs presented small uncertainties with MAPE <5% (Figure 6).

 
Figure 6. Frequency distribution of r2 and MAPE calculated by comparing the OFR time series from
Basemap and Planet Fusion with PlanetScope.

The mean monthly percent error—calculated by comparing Basemap and Planet
Fusion with PlanetScope—for Basemap and Planet Fusion varied between −2.45–1.48%
and between −3.36%–1.66% for 0.1–5 ha, between −2.88–1.11% and between −3.56–0.51%
for 5–10 ha, and between −2.23–0.53% and −3.13–0.76% for 10–30 ha. These values were
stable throughout the year (Figure 7). The percent error variability decreased as the surface
area observations increased in size, and the observations between 10 and 30 ha had the
least variability. In addition, Planet Fusion presented smaller percent error variability when
compared to Basemap for all size classes (Figure 7). The highest MAPE values for Basemap
(4.73%) and Planet Fusion (5.80%) were found for observations between 0.1 and 5 ha, and
the MAPE was <4.40% for all months for both Basemap and Planet Fusion for observations
between 5 and 10 ha and 10 and 30 ha, respectively. This indicates that even when there are
fewer PlanetScope images available to generate Basemap and Planet Fusion due to clouds,
shadow, and haze, both products tend to have surface area uncertainties <5%.
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Figure 7. Monthly percent error variability and MAPE calculated from the same-day pairwise comparisons between
Basemap and Planet Fusion with PlanetScope for the three size classes (0.1–5 ha, 5–10 ha, and 10–30 ha).

3.5. OFR Surface Area Time Series

We selected six OFRs (Table 2) to illustrate the surface area time series derived from
PlanetScope, Basemap, and Planet Fusion (Figure 8). The surface area time series show that
different OFRs have different surface area change patterns. In general, the OFR surface
area decreased between 20 July and 20 November (e.g., Figure 8, OFRs A–D), period of
the year when farmers are irrigating their crops [23], and it increased between 21 January
and 21 May, which are the months when the study region receives most of its annual
precipitation [23].

When compared to PlanetScope and Basemap, Planet Fusion had a smoother surface
area time series with less variability (e.g., Figure 8 OFRs A–D). In addition, the Planet
Fusion time series was less affected by the presence of clouds and haze, which can increase
or decrease OFR surface area. Even though we used a low cloud-cover threshold (<10%)
for PlanetScope, there are several PlanetScope and Basemap images contaminated with
cloud shadows and haze (e.g., Figure 8, OFR A, between 20 August and 20 September),
indicating surface area ~20% larger than that of Planet Fusion. Other examples were
observed between 20 July and 20 August and between 21 May and 21 June in Figure 8,
OFR B, in which there were no PlanetScope images available and the Basemap shows
abrupt changes in surface area—a drop of 20% and 15% for both dates—which were caused
by the presence of cloud shadows and haze. In Figure 9, we highlighted the impact of
clouds and haze for OFR A (16 August 2020) and OFR B (30 August 2020). For OFR A,
PlanetScope and Basemap surface areas were ~20% larger than those of Planet Fusion,
which is explained by the misclassification of water on the lower-right corner of the OFR.
For OFR B, while the PlanetScope image had a surface area ~13% larger than that of Planet
Fusion, the Basemap image indicated a surface area ~14% smaller. These discrepancies are
caused by the presence of clouds in the PlanetScope image and haze in the Basemap image.
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Figure 8. OFRs (see Table 2) surface-area time series derived from PlanetScope, Basemap, and Planet Fusion and OFR
shapefiles overlaid on high-resolution Google Satellite imagery.

Figure 9. OFRs A and B (see Table 2) PlanetScope, Basemap, and Planet Fusion false-color composites
(blue: red, green: green, and red: NIR) and the surface-water classification for 16 August 2020
(OFR A) and 30 August 2020 (OFR B).
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OFR surface water classification is impacted by the OFRs’ environmental conditions
and their shape geometry. OFRs with complex geometries (e.g., not circular or square
and shapes with a large number of edges) tend to have higher surface area classification
uncertainties [33]. For example, Figure 8, OFR D, shows a multi-part OFR that may not
have all parts inundated at the same time, which can explain part of the variability in the
surface area time series for PlanetScope, Basemap, and Planet Fusion. The surface area time
series from OFR E and OFR F (Figure 8) are influenced by the presence of vegetation within
the OFRs. The presence of vegetation impacts surface water classification [5,33,55], leading
to noisy surface area time series and abrupt changes (e.g., OFR E between 20 September and
21 January). In addition, the high variability in surface area for OFRs E and F is related to the
presence of adjacent water bodies, which can inundate during flood events and contribute
to changes on OFR boundary limits. We highlighted the impact of vegetation on the OFR
E time series for two different occasions: 14 July 2020 and 16 October 2020 (Figure 10).
During the first occasion, PlanetScope and Basemap indicated surface area (~9.5 ha) 95%
greater than Planet Fusion (0.5 ha); on the second occasion, a contrasting scenario in which
Planet Fusion surface area (12.25 ha) was 86% higher than that of PlanetScope and Basemap
(~2 ha). These results shed light on the importance of assessing the OFR environmental
conditions and how they impact the OFR surface area time series before employing these
datasets to monitor surface area changes.

  
Figure 10. OFR E (see Table 2) PlanetScope, Basemap, and Planet Fusion false-color composites (blue: red, green: green, and
red: NIR) and the surface water classification for 14 July 2020 and 16 October 2020.

4. Discussion

The surface area validation carried out using multiple SkySat imagery showed that the
methodology used to classify OFR surface area performed well for PlanetScope, Basemap,
and Planet Fusion, with high agreement r2 ≥ 0.87 and MAPE between 7.05% and 10.08% for
all image sources and all size classes (Table 4). Comparisons between Basemap and Planet
Fusion with PlanetScope highlighted that most of the OFRs had good agreement with 61%
of the OFRs with r2 ≥ 0.55, and small uncertainties with 70% of the OFRs with MAPE < 5%
(Figure 6). Basemap and Planet Fusion presented similar monthly mean percent error
(~−3–3%) and MAPE (~2.20–5.80%) throughout the year (Figure 7). In addition, percent
error variability and MAPE decreased for the larger surface area observations (Figure 7).
The highest monthly MAPE (5.80%) was found for Planet Fusion for observations between
0.1 and 5 ha, and the MAPE was ≤4.40% for Basemap and Planet Fusion for observations
between 5 and 10 ha and between 10 and 30 ha. Furthermore, when analyzing the three
Planet Fusion data categories (i.e., real, mixed, and synthetic), the greatest uncertainties
were found for the synthetic images (MAPE ~ 5%), followed by mixed (MAPE ~ 4%) and
real (MAPE ~ 3%) (Figure 5). These findings indicate that Basemap and Planet Fusion
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images can be employed to monitor OFRs with uncertainties < 10% when the sources
are compared to the validation dataset and with uncertainties < 5% when compared to
PlanetScope. However, time series obtained from Basemap and Planet Fusion can be highly
variable (Figure 8E,F), as surface water classification can be impacted by the size of water
bodies (Table 4, Figures 2, 4 and 6) and the environment in which OFRs are located (e.g.,
presence of vegetation within the OFRs; Figure 8, OFRs D–F).

The number of cloud-free observations offered by Basemap and Planet Fusion enlight-
ens the potential of these datasets to monitor OFR surface area changes (Figure 4). Both
datasets pose advantages when compared to a single sensor approach—employing Plan-
etScope alone (Figure 4), or other sensors, for example, Landsat [23,31,56], Sentinel 1 [57],
and Sentinel-2 [58–60]—or a multi-sensor approach [4,33,34]. Briefly, the use of a single
sensor is limited to a few observations a month, and in some periods of the year in eastern
Arkansas, there could be weeks without a cloud-free image [33]. Although the number of
observations is improved when employing a multi-sensor approach, daily to sub-weekly
monitoring is not attainable unless an assimilation algorithm [33] is implemented. In
addition, when implementing a multi-sensor approach, it is necessary to acquire the data
from different platforms (e.g., Planet Explore, Sentinel Hub, and Google Earth Engine),
which can be time-consuming and a limiting factor if it is necessary to process, download,
and move the satellite imagery across multiple platforms. In this study, we demonstrated
that Basemap and Planet Fusion imagery processing can be done entirely in the cloud
environment by leveraging the integration of Planet’s Platform, Google Cloud Storage, and
Google Earth Engine. This integration allows for swift analysis, and it can be used for other
study regions without the need to acquire data from multiple platforms.

Daily OFR surface area time series derived from Basemap and Planet Fusion revealed
important differences between the two datasets. In general, Basemap had higher surface
area variability, and it was more susceptible to the presence of cloud shadows and haze
when compared to Planet Fusion, which had a smoother time series with less variability
and fewer abrupt changes throughout the year (Figure 8). The Planet Fusion algorithm
combines data from multiple satellites to establish a baseline of OFR surface area time
series by filling gaps with synthetic pixels. Nonetheless, the smoothing effect should be
interpreted cautiously, as some changes in the time series due to large rainfall events
or frequent irrigation activities may be smoothed out. This is especially relevant for
the periods of the year when there are more synthetic observations (Figure 4) and the
uncertainties in surface area tend to be higher (Figure 5). Additionally, because Planet
Fusion is based on a robust algorithm that uses data from various satellites, this dataset
requires more image processing steps and higher computing power when compared to
Basemap, which is generated at a faster speed with lower processing costs. Meanwhile,
the Basemap time series may contain a “stair-step” effect caused by repeated observations
when the Basemap scene composition was kept constant due to a lack of new cloud-free
scenes (e.g., Figure 8, OFR D, early March 2021). By keeping the same image composition,
the Basemap algorithm avoids generating synthetic pixel values while still providing a
cloud-free observation. Nonetheless, it is important to keep in mind that there could be
scenarios (e.g., when there is a lack of a new cloud-free scene for weeks or more) in which
the Basemap may have the same number of observations as PlanetScope, hence decreasing
its monitoring capabilities.

Our findings have important implications to future hydrological studies that aim to
monitor small water bodies at large scale and high temporal frequency. For the OFRs
in eastern Arkansas, the Basemap and Planet Fusion surface area time series helped
unravel sub-weekly changes in OFR surface area, as well as yearly seasonality (Figure 8).
OFRs surface area changes are pivotal information for calculation of OFR water volume
inflows and outflows. This can be achieved by combining the surface area time series
with the area-volume equations (e.g., hypsometry), which are derived using the OFRs’
geometric shape and depth [56,61,62]. Estimating OFRs volume change helps bridge
one of the key limitations when modeling the cumulative impacts of OFRs on surface
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hydrology, as OFR water volume change is commonly assumed to be equal to all OFRs
located in a watershed [24,25,63]. In addition, as the number of OFRs is projected to
increase globally [24,27], understanding the impact of OFRs on surface hydrology is pivotal
when seeking indicators to determine the optimal spatial distribution and number of
OFRs, as well as their storage capacities and water management plans aiming to mitigate
downstream impacts. Beyond implications to hydrological studies, we demonstrated that
Basemap and Planet Fusion can be used to monitor surface area changes for a network of
OFRs (Figure 8). This information can be used by regulatory agencies to create water status
reports to improve regional water management and water use efficiency. These reports
would be especially relevant during the dry critical period of the year when farmers are
frequently irrigating.

5. Known Issues and Limitations

We applied Basemap and Planet Fusion imagery for a one-year analysis. More research
is necessary to assess the performance of these datasets for a longer study period (e.g.,
including periods of prolonged droughts ~3–5 years) and in other study regions—for
example, in Southern India, where OFRs are common [4], and where there is a monsoon
climate in which there could be weeks without a clear-sky image [64]. In addition, the
validation of this study was conducted using cloud-free SkySat imagery; therefore, there is
still a need to further evaluate the performance of both datasets under cloudy conditions.
However, this will require extensive field work, including visiting multiple OFRs on cloudy
days, which imposes several challenges, as most of the OFRs in eastern Arkansas are
located on private properties. Furthermore, we assumed that OFR surface area would vary
within known and limited boundaries (i.e., OFR shapefile buffered to 20 m). However,
different results might be obtained if the Basemap and Planet Fusion images are used
to monitor water bodies that frequently change their boundaries—water impoundments
that are located close to water streams and rivers that flood frequently, impacting the
edges of water bodies. Lastly, although we calculated the uncertainties introduced by
Basemap and Planet Fusion, when using these datasets for monitoring purposes, it would
be helpful to have an estimated uncertainty accompanying every surface area observation.
For instance, whenever there are repeated observations by the Basemap or continuous
synthetic observations from Planet Fusion, the uncertainties from these images will be
higher; however, as of now, we cannot estimate an observation based uncertainty.

6. Conclusions

We presented a novel application of Basemap and Planet Fusion analysis ready
datasets to monitor sub-weekly OFRs surface area changes. We tested both datasets
to monitor 340 OFRs of different sizes, and we found that these datasets can be employed
to monitor OFRs with uncertainties < 10% when compared to an independent valida-
tion dataset and with uncertainties < 5% when compared to PlanetScope imagery. While
Basemap had higher surface area variability and it was more susceptible to the presence of
cloud shadows and haze, Planet Fusion had a smoother time series with less variability
and fewer abrupt changes throughout the year. Given that the surface area classification
can be impacted by the OFR environmental conditions (e.g., presence of vegetation inside
the OFR), therefore limiting the use of these datasets, we recommend assessing the OFRs’
surface area time series before employing them for monitoring purposes. As the number
of OFRs is expected to increase globally, the use of these datasets is of great importance
to understanding OFR sub-weekly, seasonal and inter-annual surface area changes, and
to improving freshwater management by allowing better assessment and management
of OFRs.
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Abstract: Irrigation facilities in the cold winter deserts (CWDs) of Uzbekistan are very traditional
and poorly managed, resulting in low water use efficiency and low productivity. Improving the
irrigation facilities in these deserts is a key priority for the country. This study intended to contribute
towards the development of the irrigation systems through identification and quantification of the
relative implicit values smallholder farmers confer to the key characteristics of irrigation facilities. We
elicited preferences with discrete choice experiments, estimated willingness to pay for these attributes
using random parameters logit models, and analyzed heuristics in the choice process using a series
of latent class models. Our results show that farmers have clear preferences for higher watering
frequency and no interest in sharing irrigation water with downstream users. We also observed
that there are distinct groups of farmers with comparable but different levels of preference. The
development of irrigation facilities in the water-scarce parts of Uzbekistan would benefit from careful
consideration of the preferences of the target communities and targeting of the schemes based on the
broad heterogeneities within the communities. This will aid in the maintenance of irrigation systems
and, as a result, increase agricultural production and productivity.

Keywords: choice experiment; cold winter deserts; ecological services; latent class model; random
parameters logit model

1. Introduction

Ecosystem services are critical for the sustainability of the natural environment, food
security, and livelihoods of the resource-poor inhabitants of the cold winter deserts (CWDs)
in Uzbekistan. CWDs are not well endowed with natural resources, and food production
heavily depends on the availability of water. Even though some efforts are being made by
government agencies to sustain the ecosystem services in the CWDs, there is no evidence to
suggest that these efforts will continue or grow to make a difference in these deserts. On the
other hand, the farming community in the CWDs generally tends to rely on government
investments for improvement and management of the ecosystem services.

Fast growing urbanization and the investment required are making it increasingly
difficult for the government of Uzbekistan to give as much emphasis to these important,
but very fragile CWDs. Therefore, contributions by the local community will be essential to
improve and sustain ecosystem services in the CWDs of Uzbekistan. It is necessary that the
communities in these deserts engage more actively in the planning and implementation
of sustainable land and water management activities. An important tool in managing
common pool resources is payment for ecosystem services [1]. The government agency
managing the deserts may enforce such a payment in the future. However, without the
users’ willingness to participate in the process, the governmental decision on the payment
system for ecosystem services may not be sustainable [2,3]. CWDs provide a number of
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ecosystem services, including biomass production, sand fixation, firewood, and below-
and above-ground carbon storage and buffer functions in the inter-annual carbon cycle [4].
Access to and use of irrigation water is one of the most important ecosystem services
in CWDs of Uzbekistan. It can be argued that irrigation schemes developed based on
the needs and preferences of the target users are more likely to be owned and efficiently
managed by the users. Hence, the costs and benefits of the irrigation schemes need to be
estimated and compared from the perspective of the target users as well.

The key components of the cost are mainly direct and can be measured relatively easily.
However, the direct and indirect benefits of the irrigation services can hardly be measured
with as much simplicity. This is why non-market-based economic valuations are gaining
traction in estimating the value of access to irrigation services or the different attributes
of irrigation services. The value of the access to irrigation is commonly estimated using
different adaptations of contingent valuation [5–10]. Direct elicitation methods would not,
however, enable us to look into the relative importance of different components of the
irrigation services. The services are the sum total of the different attributes characterizing
them. Discrete choice experiments (DCEs) are one of the stated preference-elicitation
methods that can help us assess the relative importance of the components. Compared to
the other elicitation methods, DCEs would enable us to rank the different attributes and
the attribute levels.

A few studies have employed DCEs to estimate implicit prices of the attributes of
irrigation services [11]. This study analyzed the way irrigation water should be managed
in South Africa and recommended a shift towards on-farm volumetric water pricing in
the irrigation schemes. Another study that used DCE reported positive and significant
willingness to pay (WTP) for cropping intensity, frequency of watering, and crop under
production aspects of the irrigation system among smallholder farmers in Ethiopia who
have never paid for irrigation water use [12]. A DCE study in Punjab, Pakistan reported that
sample farmers had a WTP much higher than the current average rates for improved surface
water reliability [13]. A study in four regions of India and Pakistan investigated preferences
of farmers for different forms of irrigation fees and models of local governance [14]. The
study emphasized the heterogeneity across the study areas and the need for localized
approaches in determining irrigation fees and governance.

Despite the popularity of DCEs in other field of applied economics research, we could
not find other peer reviewed studies that used DCEs to elicit preferences for characteristics
of irrigation services. In fact, there is not any study on the valuation of irrigation services
from the perspective of the target users in Uzbekistan or in Central Asia in general.

Uzbekistan’s agriculture is cotton and wheat-centric and almost entirely dependent
on irrigation. About 90% of the water resources in Uzbekistan are used in the agriculture
sector, and it is used with low efficiency [15]. Only 11–12% of the water consumed in the
country comes from within the country [16]. Most of the food and feed production happens
in irrigated agriculture, which covers merely 10% of total cultivable land (4.3 million ha),
demonstrating the importance of water to people’s livelihoods not only in the CWDs
but also in the entire country. CWDs and semi-deserts constitute about 85 percent of
Uzbekistan’s land mass [17]. It is almost impossible to overemphasize the importance of
these deserts and the implications of the availability of water in Uzbekistan and in our
study area. Agrarian livelihoods in the CWDS are becoming more and more fragile and
vulnerable because of scarcity and high variability of the water supply.

A report in 2009 indicated that the welfare of the republic depended on the possibility
of ensuring the water supply for almost 29 million people, for the irrigation of 4.3 million
hectares, and for industry and for the environment [16]. At present, the total annual
water use in the republic is 55.1 km3, of which irrigated agriculture uses 49.7 km3 and the
domestic and drinking water supply for urban and rural populations uses 3.4 km3 [16]. The
immediate solutions revolve around increasing water use efficiency (WUE) and developing
sustainable water-management systems.
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Shortages of water and deterioration of water and land resources are observed through-
out Uzbekistan [15,17,18]. Most of the irrigated area is subjected to salinization [19], water-
logging, water erosion, agro-biodiversity losses, and other very hazardous processes [20,21].
This hampers the development of the economic system—including the agriculture sector—
and aggravates the challenges faced by the poor rural communities. Almost one fourth of
Uzbekistan’s population (more than 6 million) suffers from the negative effects of polluted
water [22,23]. Research has also shown that, in Uzbekistan, the low income of the rural
population is linked to the irregular supplies of irrigation water and the deterioration of
land due to, among others, salinization and waterlogging [17].

Water shortage has become a key factor limiting the sustainable development of
Central Asia, especially for the downstream agricultural countries like Uzbekistan [15,24].
It is not only the availability of water that is an issue but also the level of efficiency of its
use. A recent study [25] argues that low water-use efficiency is a main factor contributing
to water shortages in Central Asia. Irrigation facilities in the region are relatively backward,
and the cropland relies on furrow irrigation, leading to low crop yields and a low utilization
efficiency of water resources [25]. Improvement of these facilities is among the most-
important political-economic priorities of Uzbekistan. Improvement will, however, happen
only if it is based on careful and well-informed planning.

Irrigation is a technology with different characteristics or components. Farmers’
interest in each of the components of the irrigation scheme determines their level of
engagement and efficiency in use. This is the basis of our study, where we estimated
the willingness to pay for the different attributes of irrigation schemes in this vulnerable
ecosystem. By investigating farmers’ choice strategies, we also looked into the relative
importance of the different components of the irrigation schemes.

Planning sustainable development without proper valuation of ecosystem services can
hardly be meaningful, as the focus will be predominantly on direct, local, and immediate
benefits [25]. There is no better evidence than the Aral Sea crisis to show the failure
associated with focusing on direct benefits from ecosystem services [26,27]. Currently, the
most-degraded pastures are located in the Central Kyzylkum deserts, covering the Bukhara,
Navoi, Khorezm, and Karakalpakstan, regions, where the misuse emanates from inadequate
access to land, inappropriate land-management systems, and a lack of knowledge on
sustainable use and management of these resources [18,21]. Weak institutional structures
and procedures, as well as a lack of law enforcement, also contribute enormously to the
challenges of sustainable development [24,28].

We identified five key attributes of irrigation schemes in the Bukhara region’s Karakul
District, one of the most-fragile ecosystems in Uzbekistan, and elicited preferences and
estimated implicit prices. The attributes considered were water availability in the dry
season (May to October), crop water frequency, irrigation water quality, water sharing
with downstream users, and the fee for irrigation. We elicited preferences with discrete
choice experiments and estimated willingness to pay for these attributes using a random-
parameters logit. We also estimated a series of latent class models to investigate the relative
focus given by farmers to the different attributes while choosing among the hypothetical
irrigation schemes.

The results of this study will serve at least two purposes. First, the evidence will inform
policymakers on what the focus of the irrigation development effort should be. Not all
components of the irrigation schemes are equally important to farmers and the community.
Second, we strongly believe that scientific evidence-based designing and implementation
of irrigation schemes helps farmers cope with the unforgiving environment better, as they
will have a scheme that addresses their priorities and the implied challenges thereof.

2. Description of the Study Area

The study was conducted in Durmon village in Karakul District, which is a central
south region of Uzbekistan (Figure 1). The Karakul District Forestry Department, estab-
lished in 1925, includes forest, pastures, and non-used land resources. The entire land
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resources in the district cover 73,542 ha. These land resources are geographically located
at 39.582991◦ N latitude, 63.905707◦ E longitude, and an altitude of 242 m above sea level.
The territory of the forest department encompasses part of the Kimmerikum desert, the
West Kyzyl Kum plains, and the ancient valley of the Zerafshan River. Durmon village has
an area of 517 ha.

Figure 1. Map of Bukhara and its land cover. Note: Map prepared by ICARDA’s geo-informatics unit.

Water availability is the most-important determinant of the land-management prac-
tices of farmers. In terms of land use and management, the study area has two distinct
populations—the smallholder farm households who are always trying to eke out a living
in this harsh environment and the employees of the Forestry department whose focus is
controlling the natural resources both for political and conservation reasons.

Durmon village was selected as a representative site for cold winter deserts that cover
different provinces in Uzbekistan and across other countries around the Aral Sea region in
Central Asia. Livelihoods of the farming communities in Durmon depend entirely on the
ecosystem services provided by the cold winter desert, and the CWDs are a major policy
agenda in Uzbekistan. It is within the national strategy to improve management of the
CWDs to enhance their contribution to rural food security on a sustainable basis.

The study site is characterized by quick climatic fluctuations, constant wind activity,
the prevalence of sand, extremely low precipitation and humidity, aridity, and extensive
degradation of the natural resources. The long-term average precipitation in the pilot area
is only 108 mm—which is very low for rain-fed crop production. An important part of
this precipitation during the growth period of the vegetation (mostly in spring) is around
30 mm only. During summer periods, the precipitation is totally absent, and the relative
humidity sharply decreases with a long-term average of 36%. Although rare, timing of the
first snow in the project pilot area varies from year to year, and usually starts in December
and continues falling until January, sometimes lingering until mid-March.

The annual average air temperature is 14.8 ◦C, ranging from −22 ◦C (in January) to
47.1 ◦C (in July). The last days of cold weather happen in mid-spring (18.04 ◦C), while the
first frost comes in mid-autumn (13.10 ◦C). The hot dry weather lasts 40–50 days during
June–August and causes extreme heat and drying of vegetation. There is constant wind
activity in this region, with dry and hot winds (locally called garmsel). Garmsel wind
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can happen for 45 to 50 days a year, blowing in June through August. This wind speed is
a reason for slight-to-moderate soil erosion and movement of sand in the direction of wind.
The common soil types in the study area are desert sands, takyr-like soils, grey-brown
desert soils, meadow solonchak soils, and meadow irrigated solonchak soils. Soil salinity is
common in this area and happens due to shallow mineralized groundwater.

The operations and management of the study area represent what is happening in the
rest of the CWDs where irrigated agriculture is practiced. Depending on water availability,
which is pumped from the source and delivered through canals, large parcels of land can
be irrigated; however, due to water scarcity, only 13% of the total arable land is cropped,
demonstrating the importance of water overall for the study site. Major crops grown in the
area are vegetables, legumes, and wheat, typically requiring 5–10 thousand m3 per hectare.

3. Materials and Methods

3.1. The Choice Experiment

Valuation of ecosystem services—including irrigation water—is best done with stated
choice methods, as almost no services are directly marketable. Discrete choice experiments
(DCEs) are a widely used data-generation method in stated choice analysis. Lancaster’s
characteristic theory of value (ToV) [29] and McFadden’s random utility theory (RUT) [30]
form the basis for estimating the relative importance of the attributes characterizing the
service at hand, in this case, irrigation. The implicit prices of the characteristics show their
relative importance and the structure of the latent satisfaction from the consumption of the
service [29].

RUT assumes that the choice behavior of individual decision makers is probabilistic
conditional on the characteristics of the services available to them and other factors that
affect their choice decision. It is, therefore, expected that the choice behaviors of the
individual decision makers vary because of variability in the underlying factors. The
underlying factors include unobserved attributes, unobserved individual characteristics
(or taste variations), and/or measurement errors [31]. The RUT also enables us to model
unobserved heterogeneity in choice behavior among the sample households.

Irrigation water is a quality-differentiated service that can be described by its attributes.
Transaction of such attributes does not happen in actual revealed markets, hence the need
for stated choice methods such as discrete choice experiments [32]. Sample households
are currently accessing irrigation water based on arrangements made by the government
or water-user associations with support and guidance from the government. Sustainable
use of the irrigation water resources, however, depends on farmers’ actual demand for
irrigation services. The demand for irrigation water services is a consolidation of the
demand for the different components of the service. We derived the demand for the
attributes of irrigation water services by eliciting sample households’ preferences for the
experimental designed irrigation schemes presented in the form of pair comparison with
the option of opting out included.

The identification, definition, and prioritization of the characteristics of the hypotheti-
cal irrigation schemes in the choice experiment involved iterative focus-group discussions
and a reconnaissance survey. A structured questionnaire survey was undertaken involving
a sample of 200 farmers in 2020 to generate socioeconomic data and the attributes of irriga-
tion services. The discussions with farmers resulted in the following attribute and levels
for the choice experiment (Table 1).

Therefore, our design had five attributes of irrigation schemes. We used Ngene [33] to
generate experimental designs that combine the attributes and create hypothetical irrigation
schemes. Using main effects only, there could be 2 × 34 or 162 combinations of irrigation
schemes with different levels of the five attributes. We, however, used fractional factorial
design to limit the number of alternatives to a reasonable level. Our final D-optimal design
had a D error of 1.32 and generated 36 alternatives paired in two to create nine choice
sets. Each choice set therefore included two hypothetical irrigation schemes and an opt-out
option—added to avoid forced choices.
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Table 1. Attributes of irrigation schemes in the choice experiment.

Attribute/Characteristic Description Levels Considered

1. Canal water available in dry season
(mainly May–October)

The number of months that irrigation water is
available in the canals for irrigation purposes.

It shows the level of water shortage during the
cropping season.

4 Months
5 Months
6 Months

2. Crop water frequency This is the number of watering for a crop farm from
the irrigation canals during the cropping season.

2 watering/month
4 watering/month
6 watering/month

3. Irrigation water quality The purity of the irrigation water based on farmers’
subjective assessments.

Bad
Medium

Good

4. Water sharing with downstream users
Some farmers directly use the canal water for

themselves, while others share with neighboring
farmers. Our measure is sharing once or twice per

month with downstream farmers.

Once/month
Twice/month

5. Semi-volumetric irrigation water user
charge/annum

The amount of money the water-user households
pay for irrigation in the cropping season.

UZS † 250K
UZS 350K
UZS 450K

† UZS stands for Uzbekistan Soms. In May 2020, 1 US Dollar was equivalent to 10,138.19 UZS.

To simplify farmers’ choice decision-making process, we used pictorial representations
for each level of the attributes in preparing the choice cards with which we elicited the
choices. The DCEs were conducted at the residential homes of the respondents, and they
were presented with nine choice sets to choose one among three alternatives in each of
the sets. Before the interview, each respondent was briefed about the research and the
mechanics of the irrigation scheme choice experiment. To ensure that that farmers have
understood the experiment, one or two randomly selected choice sets were presented to
them without recording the responses. Then, the nine sets were presented in random order
for each of the sample respondents.

3.2. Analytical Framework

Decision makers’ choices among alternatives in a choice situation can be analyzed
using discrete choice models [34]. The decision makers in our case were sample households,
and the alternatives represent hypothetical irrigation schemes characterized by different at-
tributes and attribute levels. Assuming a utility-maximizing individual (n), the probability
that a hypothetical irrigation scheme (i) in a choice situation (Ct) is chosen is equivalent to
the probability that the expected utility from this alternative is higher than the utility from
other alternatives in the choice set. Due to RUT, we can formulate this mathematically as:

P(Cnt = i) = P
(
Unit > Unjt

)
, ∀i �= j (1)

The utility function (Uni) has both deterministic and unobserved components. It can
be written as:

Unit = Vnit + εnit (2)
where Vnit is an observable, and hence deterministic, component of the expected utility
from alternative i, and εnit is the idiosyncratic random error term.

We assumed the utility function to be linear in the covariates and utility to be separable
in price and non-price attributes to re-specify the utility function as:

Unit = −αn pnjt + β′
nxnjt + εnjt (3)

where αn and βn are individual specific parameter estimates, and εnjt is the distributed ex-

treme value type I with variance given by η2
n

(
Π2

6

)
, where ηn is a scale parameter. Dividing

Equation (3) by ηn does not affect behavior and results in a new error term, which is an
IID extreme value distributed with variance equal to Π2/6 [35,36]. Because of the division
Unit = −(αn/ηn)pnjt + (βn/ηn)

′xnjt + εnjt/ηn.
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Therefore, the utility model in preference space can be written as:

Unjt = −λnPnjt + c′nxnjt + εnjt (4)

where the utility coefficients are defined as λn = αn/ηn, cn = βn/ηn, and εnjt = εnjt/ηn.
Equation (4) can be estimated using either conditional logit (CL) or random-parameters

logit (RPL) models. CL, however, assumes the preferences for the attributes to be similar
across individuals and requires the strong assumption of irrelevance of independent alter-
natives (IIA) to hold. RPL, on the other hand, is a flexible model that allows for random
taste variation, unrestricted substitution patterns, and correlation in unobserved factors
over time [34]. In this study, we report results of different specifications of the RPL model.

Our main interest is quantifying the relative implicit prices or the willingness-to-pay
(WTP) values for the attributes of the irrigation services. The WTPs are ratios of two
randomly distributed coefficients. Depending on the choice of distributions for the random
coefficients of the RPL model, this can lead to WTP distributions that are heavily skewed
and that may not even have defined moments [35,36]. Hence, the need to estimate RPL in
WTP space arises [35].

The WTP for an attribute is the ratio of the attribute’s estimated coefficient to the

estimated coefficient of the annual payment, i.e., wn = cn
λn

=
βn
ηn
αn
ηn

= βn/αn. Therefore, we

can rewrite the utility function given in Equation (4) as:

Unjt = −λnPnjt + (λnwn)
′xnjt + ζnjt. (5)

We estimated Equation (5) with the assumption of correlated WTP coefficients as
suggested by [35] and [36]. We are therefore reporting RPL models with and without
correlated random coefficients estimated in WTP space.

We also analyzed sample individuals’ choice-simplification strategies and the effect of
the scale parameter on unobserved heterogeneity using latent class models (LCM). LCM is
type of mixed logit (or RPL) model where the mixing density function of the coefficients to
be estimated is of discrete nature, and hence the estimated coefficients take a finite set of
distinct values [34]. We assumed that β takes Z possible values labeled b1, . . . , bZ, with
probability sz that P(β = bz) = SZ. In this case, the RPL becomes the latent class model,
and the choice probability is given as:

Pnit = ΣZ
z=1sz

(
eb′zxnit

Σje
b′zxnj t

)
(6)

We estimated constrained latent class models [37] to look into attribute non-attendance
(ANA) patterns employed by the respondents—to simplify their decision making and scale-
adjusted latent class models [38] to assess preference heterogeneity while considering
response error.

ANA refers to the simplification strategy respondents employ by disregarding one
or more attributes characterizing the alternatives in the choice sets. ANA can be stated
or inferred. Stated ANA occurs when sample respondents state the attribute/attributes
they disregarded or ignored in choosing between alternatives in a choice set, and inferred
ANA is implied from the relative weights of the estimated random coefficients of the utility
model. We are presenting inferred ANA patterns, as we did not generate data on stated
ANA. The latent class models were gradually estimated with constraints on the coefficients
of the attributes assumed to be ignored at every step, following earlier studies [39–41].

4. Results and Discussion

4.1. The Sample Population

This section is based on the socioeconomic survey on 200 farm households that pre-
ceded the DCE survey. As summarized below in Table 2, the sample is entirely of small-
holder farmers (with cultivable farmland of 0.1 hectare per household). Most (68%) of our
sample respondents were men. The sample had an average age of 43 years and 19 years
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of farming experience. Only 37.5% of the sample households depend on farming for their
livelihoods, while the rest of the households complement it with one or more income
generating activities. Yet, two-thirds of the annual income a typical household generates
is from agriculture. Most of the households (~96%) were either in secondary or in profes-
sional/vocational school. Most of the respondents (88%) indicated that agricultural water
shortage happens sometimes, while 11% of them indicated that it happens all the time. The
average number of months with a serious agricultural water shortage was three.

Table 2. Characteristics of the sample households.

Mean St. Dev. Frequency Percentage

Age 43.23 11.87
Household size (0.1 ha) 15.34 7.98

Gender (1 = female) 64 32
Education
Primary 4 2

Secondary 157 78.5
Professional school 35 17.5
Bachelor’s degree 4 2

Mainstay of livelihood
Farming only 75 37.5

Farming and others 125 62.5
Farming experience 18.72 9.58

Distance to the water source 2.06 0.88
Water shortage months 3.07 1.31

Pump user †

“Sayyod” pump 4 2
Private pump 188 94

Neighbor pump (rent) 165 82.5
Water shortage experience

None 2 1
Sometimes 176 88

Always 22 11
Water quality (1 = good) 192 96
WTP for irrigation water

<5K UZS 81 40.5
5K to 10K UZS 94 47

>10K UZS 25 12.5
Single irrigation expenses (,000 UZS) 40.17 17.23

Annual irrigation expenses (,000 UZS) 351 196.59
Annual income from the household (Mil. UZS) 2 0.98

Other monthly income (Mil. UZS) 1.16 0.68

Observations 200
† Frequencies calculated for each pump separately (n = 200).

A given sample household was, on average, 2 km far from the nearest agricultural
water source. Expectedly, almost all (96%) of the respondents consider the quality of the
agricultural water to be good, as the primary source water is a perennial river. Households
use different types of pump for irrigation. Most of the respondents (94%) use their own
irrigation pumps, whereas 82.50% of the respondents use pumps rented from neighbors.
Only 2% of the respondents were found to be using the Sayyod pump station that provides
water for several villages. It is important to note that farmers use more than one pump
whenever they afford to do it.

Direct elicitation of the amount farmers are willing to pay for irrigation water showed
that most of the farmers (~87%) are willing to pay up to UZS 10,000 per year. Almost 13%
are willing to pay even more than that.
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4.2. Willingness to Pay

The WTP estimation was based on the DCE conducted on 300 farm households after
the socioeconomic survey discussed above. We report the results of the RPL models
estimated in WTP space over 1000 Halton random draws (Table 3). Our discussion will be
based on the RPL model with correlated coefficient estimates (Model 2). We also presented
the model estimated with the assumption of uncorrelated random coefficients (Model 1)
to show the consistency of the relative weights farmers attach to the different aspects of
irrigation water.

Table 3. Willingness to pay for irrigation schemes.

Model 1 Model 2

Mean

Alternative specific constant 9.468 *** 2.413 5.102 ** 2.076
Canal water available in dry seasons 1.142 *** 0.280 1.500 *** 0.346

Crop water frequency 1.707 *** 0.315 1.769 *** 0.320
Medium irrigation water quality 0.019 0.187 0.248 0.216

High irrigation water quality 1.187 *** 0.323 1.205 *** 0.355
Water sharing with downstream −0.116 0.340 0.094 0.445

Annual irrigation fee −1.523 *** 0.172 −1.417 *** 0.170

SD

Canal water available in dry seasons −0.846 *** 0.292 0.997 *** 0.227
Crop water frequency 1.131 *** 0.232 1.250 *** 0.253

Medium irrigation water quality −0.142 0.307 0.955 * 0.491
High irrigation water quality 1.715 *** 0.414 1.797 *** 0.424

Water sharing with downstream 3.822 *** 0.730 4.351 *** 0.795
Annual irrigation fee −0.053 0.085 0.543 *** 0.066

Observations 8100 8100
LL −1832.139 −1769.525

AIC 3690.277 3595.050
BIC 3781.272 3791.040

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. Model 1 is RPL with independent random coefficients, and Model 2 is RPL
with correlated random coefficients. LL stands for log likelihood; AIC stands for Akaike Information Criterion;
and BIC stands for Bayesian Information Criterion.

The first attribute of irrigation service is the availability of canal water in the dry
season (mainly May to October). There is a very high WTP for this component in the
study area. The mean of the marginal WTP for one more month of water in between May
and October was UZS 150,000. This implies that farmers have a high effective demand
for irrigation facilities meant for making water available in the dry seasons—especially
during production of key crops. The key crops were a mix of vegetables, legumes, and
wheat for farmers’ own consumption; and wheat; and cotton produced for commercial
purposes. The Sayyod pumping station provides water through an irrigation network, and,
although canal water is usually available, its distribution to consumers in different parts of
the irrigation scheme is the key and is managed by water authorities.

The second attribute of irrigation facilities is crop-watering frequency per month. The
watering frequency each farmer enjoys is determined by the water demand of the crops
and, more importantly, water availability and the actual distribution determined by the
water-user association (if functional) or water authorities that manage the distribution
of water. Farmers have little control over the frequency, and yet this is an attribute that
determines the level of production and the productivity of crops grown by farmers. One
more watering per month has an implicit price of UZS 177,000. This is slightly higher than
the implicit price for canal water in the dry season component of irrigation schemes.

Another important attribute of irrigation is water quality. This is usually the case
when there is water scarcity, consumers revert to groundwater resources, and its quality
is affected by high salinity, making it subsequently detrimental to crop production. Our

291



Sustainability 2022, 14, 94

model was specified in such a way that we could compare WTP for medium compared to
bad quality and for high-quality compared to bad-quality irrigation water.

Farmers have a clear preference for high water quality over bad irrigation water
quality. Farmers are willing to pay UZS 121,000 for high-quality irrigation water over
low-quality irrigation water, everything else held constant. The model also shows that
farmers are not interested in slight improvement of the quality; rather, they are keen on
considerable improvement in the quality.

The results also show that farmers were not interested in water sharing with down-
stream users. This is not unexpected behavior of human beings whenever they are dealing
with scarce resources, and irrigation water is very scarce in this desert.

The results also show that, for farmers, the most-important feature of an irrigation
scheme is watering frequency (Table 3). The higher the number of times they obtain water,
the better. Similar results were reported for Ethiopian smallholder farmers [12]. Farmers
are willing to pay more for irrigation water in the dry seasons than for improvements in
irrigation water quality. The priority is therefore more water in the irrigation schemes.

The lower half of Table 3 shows that there is unobserved heterogeneity around the
mean WTP values for the different irrigation scheme components. The heterogeneity is
very strong and significant in all attributes, except medium water quality (cf. bad water
quality). Particularly, there is significant variability around the marginal WTP values for
water sharing with downstream and high water quality (cf. bad water quality). We further
disentangle the unobserved heterogeneity to see if there are any latent classes of preference
among the respondents. We also look into heuristics that respondents might have applied
to simplify the choice decisions.

4.3. Irrigation Scheme Attribute Preference Heterogeneity

The unobserved heterogeneities (Table 3 above) imply the presence of differences in
preferences among our respondents. Assuming that the scale heterogeneity is discrete, we
estimated scaled-LCM to see whether there are meaningful homogeneous segments within
the sample based on their preferences for the attributes. The level of response error variance
(or scale) determines the quality of the segmentation and hence the part-worth values
estimated for each of these classes [31]. We estimated three sets of six latent class models
each to see whether the scale parameter influences the segmentation of the respondents.
We first estimated non-SLCM Model1-Model6 class models that are homogeneous with
respect to response error. Then, we estimated six LCMs (Model7 to Model12 with two scale
classes assumed. Lastly, we estimated six LCMs (Model13 to Model18) with three scale
classes assumed (Table 4).

Model 10, Model 4, and Model 15 are the three best-fitting LCM models estimated
to see whether there are any discrete segments of preference heterogeneity. Model 10
(two scale segments*three preference segments) is the best-fitting model based on BIC.
Yet, the correct classification rate of Model 10 (87.11%) is the least of the three models.
Model 4 (four preference segments and no scale heterogeneity) correctly classified the
respondents in 89.74% of the cases. Model 15 has a correct classification rate of 87.52%.
As the magnitude (Model 10, scale for class 2 = 0.174; Model 15, scale for class 2 = 0.174,
and scale for class 3 = 0) and influence on the segmentation of the response error variance is
negligible, we focus on Model 4 to describe the different preference segments of the sample.

The four classes of Model 4 contain farm households with overlapping interests. In
fact, the level of interest in the attributes of the hypothetical irrigation schemes was different.
Respondents in Class 1 (64.3% of the sample) were highly interested in higher irrigation
water frequency (Table 5). They were also interested in water availability in the dry season,
slight improvement in the water quality, and sharing water with downstream users. They
were, however, disinterested in low water quality and the fee they have to pay for irrigation
services. In fact, respondents in all segments were expectedly not interested in paying
for the service. Except for water-quality-related attributes, respondents in Class 2 (19.25%
of the sample) had a comparable preference map for irrigation scheme attributes with
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Class 1, albeit with lower intensity. These farmers were not interested in both low and
medium irrigation water quality. They were, however, willing to pay for high-quality (cf.
low-quality) irrigation water. They also had a strong interest in sharing the irrigation water
with downstream users. This is very different from what we saw in Class 3 and Class 4.

Table 4. Latent class models with and without scale heterogeneity.

Group of Models No. LCM Model LL BIC(LL) Npar

Non-scaled 1-6 LCM

Model1 1-class choice −1913.62 3867.16 7
Model2 2-class choice −1782.51 3650.57 15
Model3 3-class choice −1720.20 3571.58 23
Model4 4-class choice −1684.70 3546.22 31
Model5 5-class choice −1666.99 3556.42 39
Model6 6-class choice −1637.40 3542.87 47

Scaled 1-6 LCM with 2 scale classes

Model7 2-sclass 1-class choice −1896.54 3844.42 9
Model8 2-sclass 2-class choice −1733.59 3564.15 17
Model9 2-sclass 3-class choice −1700.95 3544.49 25

Model10 2-sclass 4-class choice −1676.49 3541.20 33
Model11 2-sclass 5-class choice −1656.46 3546.77 41
Model12 2-sclass 6-class choice −1639.75 3558.98 49

Scaled 1-6 LCM with 3 scale classes

Model13 3-sclass 1-class choice −1896.50 3855.74 11
Model14 3-sclass 2-class choice −1724.66 3557.70 19
Model15 3-sclass 3-class choice −1694.69 3543.39 27
Model16 3-sclass 4-class choice −1677.28 3548.50 34
Model17 3-sclass 5-class choice −1655.08 3549.73 42
Model18 3-sclass 6-class choice −1642.98 3565.45 49

Table 5. Estimated part-worth values for the preference classes.

Attributes Class1 z-Value Class2 z-Value Class3 z-Value Class4 z-Value

Class size 0.6430 0.1925 0.1432 0.0213
Canal water availability (dry season) 0.098 ** 2.178 5.405 ** 2.130 −0.394 −0.945 0.027 0.064

Crop water frequency 0.126 *** 5.764 4.309 ** 2.271 2.436 *** 6.497 0.398 * 1.831
Low irrigation water quality −0.150 *** −3.696 −0.529 * −1.942 −2.916 *** −6.142 −4.124 −1.509

Medium irrigation water quality 0.102 ** 2.216 −2.204 * −1.867 0.237 0.494 0.858 0.612
High irrigation water quality 0.048 0.993 2.733 ** 2.041 2.679 *** 4.019 3.267 ** 2.314

Water sharing with downstream 0.140 ** 2.385 7.862 * 1.965 −7.337 *** −6.106 −0.864 −1.215
Annual irrigation fee −0.147 *** −3.766 −0.865 * −1.703 −1.464 *** −4.013 −0.475 * −1.177

Alternative specific constant 4.211 *** 8.020 −40.982 ** −2.211 13.639 *** 3.553 −0.537 −0.169

Note: * p < 0.10, ** p < 0.05, *** p < 0.01.

Farmers in Class 3 (14.3% of the sample) had a very concentrated preference map.
They were highly interested in higher water frequency and high water quality (cf. low
quality). They also showed a strong disinterest in low irrigation water quality and sharing
water with downstream users. This class of farmers was the only one not willing to share
water with farmers in the downstream (Table 5). Their unwillingness was very strong,
and it might have resulted in the sample level indifference despite their small proportion.
Farmers in Class 4 (only 2.3% of the sample) showed a slight interest in increased watering
frequency and high-quality (cf. low-quality) irrigation water and a slight disinterest in
payment for irrigation. Farmers in Class 3 and Class 4 appeared to be indifferent in some
of the attributes or levels in the choice experiment. We discuss this below in detail.

This analysis revealed that our respondents do have distinct differences in terms of
their preference for the irrigation scheme attributes considered. It is therefore important
to make note of these differences when designing irrigation schemes to ensure that the
interventions are in harmony with the expectations of the farm households and, hence, the
sustainability of the irrigation facilities to be developed.
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4.4. Irrigation Scheme Attribute Nonattendance

In this section, we present the results of the latent class analyses for identifying
unobserved groups based on attribute nonattendance patterns. We estimated three latent
class models gradually to capture the extent to which respondents used heuristics to
simplify the choice task. The first LC model (LC Model 1 in Table 6) included full attribute
attendance or full compensatory choice, complete non-attendance or pure random choice,
and one-attribute non-attendance. Therefore, LC Model 1 is a model with seven classes.
The second model (LC Model 2 in Table 6) included full-attendance, full non-attendance,
one-attribute non-attendance classes with class membership probability greater than 5%
from LC Model 1, and two-attribute non-attendance classes. This model has 13 classes. The
third model (LC Model 3 in Table 6) has four classes. The classes are full-attendance, full
non-attendance, and two other two-attribute non-attendance classes with a membership
size of greater than 5% in LC Model 2.

Table 6. Irrigation scheme attribute nonattendance pattern.

Class LC Model 1 LC Model 2 LC Model 3

Class Size Class Size Class Size

Full attendance 1 26.4% 21.2% 22.0%
Full non-attendance 2 59.1% 53.8% 47.1%

Availability NA 3 2.1%
Frequency NA 4 2.0%

Quality NA 5 0.1%
Downstream NA 6 10.0% 0.1%

Fee NA 7 0.3%
Availability and frequency NA 8 1.7%

Availability and quality NA 9 0.0%
Availability and downstream NA 10 0.1%

Availability and fee NA 11 0.3%
Frequency and quality NA 12 0.4%

Frequency and downstream NA 13 1.6%
Frequency and fee NA 14 0.2%

Quality and downstream NA 15 15.3% 23.2%
Quality and fee NA 16 0.1%

Downstream and fee NA 17 5.3% 7.6%
LL −1845.92 −1809.40 −1844.14

BIC(LL) 3760.28 3721.46 3739.62
AIC(LL) 3715.84 3654.79 3706.29

Class. err. 0.12 0.18 0.21
Note: the three models are all latent class models with different patterns of restriction on the coefficient of the
attributes. The models were estimated using LatentGold 5.1 [42]. NA denotes nonattendance. LL is log likelihood.
BIC is Bayesian Information Criterion. AIC is Akaike Information Criterion. Class. err. is classification error
indicating the level of misclassification.

The final ANA model showed that 22% of the respondents attended to all attributes
(Class 1), and 47.1% of them ignored all attributes (Class 2). Similarly, 23.2% of the respon-
dents ignored the quality of irrigation water and access to water by downstream users
(Class 15). Of the farmers, 7.6% also ignored access to water by downstream residents and
the annual fee for irrigation water.

The results show that there was a high level of random choice among the respondents.
There was also low interest in water sharing with downstream, irrigation water quality
and the annual irrigation water user charge. This implies that irrigation development and
efficiency interventions must take into account the relative importance of these attributes
as perceived by farmers.

This reinforces the observation we made above that there is considerable heterogeneity
in preferences among sample farmers. This implies that there is a need for understanding
the interests and heterogeneities among target users in identifying and targeting irrigation
schemes. It will be difficult to develop a scheme and get it accepted by all farm households
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in each community or agro-ecology. Our study area was relatively small, albeit with a very
heterogeneous landscape and farming system. Yet, the level of heterogeneity in the sample
population is a reminder of the limit of the extrapolations we can make and the extent to
which our recommendations will be relevant to our target community.

5. Conclusions

Irrigation agriculture drives rural livelihoods in the cold winter deserts of Uzbekistan.
An agrarian community inhabits Karakul district, and its welfare depends entirely on the
access and use of irrigation services. The government of Uzbekistan is very keen about
the irrigation system, and the system is geared towards the production of export and
strategic commodities as part of national agenda of crop diversification and sustainable
management of underutilized cold winter deserts. Both crop diversification and sustainable
land management depend on the quantity and the quality of irrigation water.

The long-term sustainability and ecological soundness of the irrigation system in
the cool deserts of Uzbekistan depends on farmers’ interest in and hence the effective
demand for the irrigation service. There is, however, no empirical evidence on the pref-
erences for and implicit prices farmers, particularly small holders, are willing to pay for
irrigation services.

Taking a small village of 750 hectares, we conducted a choice experiment survey on
300 sample farmers and estimated their willingness to pay for the different attributes of
irrigation and the relative importance of the attributes in choosing the irrigation schemes.

The analyses revealed that farmers are most interested in a higher irrigation watering
frequency. We also observed that farmers are willing to pay more for irrigation water in
the dry seasons than for improvement in irrigation water quality. It is, therefore, clear that
farmers are rather keen on having more water in the irrigation system. This needs to be
an important consideration in designing or redesigning irrigation schemes in areas where
irrigation is crucial for livelihoods.

We also observed that there was a high level of random choice of the irrigation schemes.
There was low interest in irrigation water quality and even lower in water sharing with
downstream users. There was, in fact, a considerable level of heterogeneity among the
sample respondents. Farmers’ preference for a higher frequency of irrigation without
considering quality may affect the soil properties in terms of sustainability [43]. This aspect,
not addressed in our study, needs to be investigated in future studies to ensure that land in
the cold deserts is cultivated in a sustainable manner. The issue of water quality could be
associated with the fact that most farmers consider the current quality of irrigation water
to be good. Lack of interest in sharing irrigation water with downstream users can only
emanate from the water shortage.

Given the history of inefficient management of water resources in the region, it is
not illogical to expect further deterioration of water resources. This deterioration will pro-
foundly affect agricultural productivity and, hence, livelihoods in the cold winter deserts.
This will create tension between upstream and downstream users of water resources. Pos-
sible solutions entail the designing and implementation of demand-driven and carefully
targeted irrigation schemes. We hope our findings and similar further studies will assist
decision makers to develop such irrigation programs that will address human needs and
sustainability in terms of both environmental and social justice.
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Abstract: The SWAT model equipped with an improved auto-irrigation function was used to assess
the impacts of cultivation practices on irrigated and dryland cotton yield and water conservation
in the Texas Panhandle. Results showed the largest irrigation depth led to reductions in irrigation
and crop evapotranspiration (ETc) with slightly increased cotton yields compared to the baseline
scenarios under different hydroclimatic regimes. However, soil water content and surface runoff
values were increased when using the largest irrigation depth. The opposite results were observed
for the small irrigation depth. Early planting of cotton resulted in decreased irrigation and ETc, and
increased cotton yields under both irrigated and dryland conditions, particularly in normal and wet
years. By contrast, the late planting scenarios indicated the opposite for those variables. Simulated
hydrologic variables were relatively stable using various maturity cultivars. Nevertheless, greater
than 10% reductions in irrigated cotton yield under diverse hydroclimatic years and dryland yields
during normal and wet years were identified in the long-season cotton. The opposite was determined
for the short-season cotton. These outcomes suggest that a larger irrigation depth, earlier planting
date, and short-season cultivar are promising cultivation practices for improving cotton yield and
water conservation in the Texas Panhandle.

Keywords: Soil and Water Assessment Tool (SWAT); irrigation application depth; planting date;
cultivar maturity; precipitation regimes

1. Introduction

Upland cotton (Gossypium hirsutum L.) is an economically significant fiber crop in
Texas, United States (U.S.). According to the National Agricultural Statistics Service [1], the
total value of cotton lint and seed production is approximately 2.1 billion USD per year
in Texas. The semi-arid Texas Panhandle is one of the most essential cotton production
regions in the U.S. This region holds enormous potential for growing both irrigated and
dryland cotton, where cotton was grown on ~1,755,000 ha in 2019, which accounted for
approximately 32% of the U.S. total cotton acreage [1]. However, cotton growth and yield
in this region are often negatively affected by many abiotic factors such as drought, extreme
weather events, and irrigation water availability.

Climate and cultivation practices are treated as two major drivers affecting water
conservation and crop production in the Texas Panhandle. Cultivation practices that
maintain or improve the resilience of the agroecosystem, typically at a basin or regional
scale, are promising in this challenging semi-arid environment [2,3]. Pursuing high cotton
yield has driven the extensive use of the southern Ogallala Aquifer, which has resulted
in a significant decline in the groundwater level with minimal recharge [4,5]. Decreased
groundwater levels have led to changes in cultivation practices that reduce water pumping
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from the southern Ogallala Aquifer while maintaining cotton profitability. Therefore,
recommendations on alternative cultivation practices for cotton production, including
using different maturity cultivars [6,7], irrigation application depths (per application) [8],
and planting dates [9,10], are necessary to explore, which are also relatively easy ways for
growers to incorporate into an agricultural production system.

Genetic advances in cultivar maturity have the potential to preserve profitable yields
under water and temperature stresses. The rationale for short- and long-season cultivars
aims to take advantage of increased growing season precipitation and decreased tem-
perature stress (heat or cold stress) during major growth stages depending on regional
hydroclimatic conditions [11]. Similar to the short- and long-season cultivars, alternative
planting dates may provide an opportunity to reduce the period of crop stress according to
the local environment [9,12,13]. In the semi-arid Texas Panhandle, cotton is an important
cash crop managed under both irrigation and dryland conditions [1]. Cotton is generally
seeded in mid-May and harvested around the end of October. Early or late planting dates
offer a window to make full use of in-season precipitation and optimum temperature
according to hydroclimatic variability between years. Regarding irrigation management,
changes in irrigation application depth have shown positive effects on water conservation
in semi-arid agriculture [8,14].

The Soil and Water Assessment Tool (SWAT) model has been used to conduct effects
studies for agricultural cultivation practices [15,16]. However, little comprehensive infor-
mation is available for the effects of cultivation practices concerning water conservation
and crop production in an intensively irrigated region. The objectives of this study were
therefore to: (1) assess the impacts of irrigation application depths on water conservation
for irrigated cotton in the Double Mountain Fork Brazos (DMFB) basin; and (2) evaluate the
effects of alternative planting dates and maturity cultivars on water balances and cotton
yield under both irrigation and dryland conditions. The widely used agro-hydrologic
model, the SWAT [17], was chosen in this research [18–20]. The SWAT model, equipped
with the more physically-based management allowed depletion (MAD) auto-irrigation
function [21], was selected to assess the cultivation practices on water conservation and
cotton yield in the DMFB basin in the Texas Panhandle.

2. Materials and Methods

2.1. Study Region

The DMFB basin in the Texas Panhandle has a delineated area of approximately
6000 km2 (The values of elevation range from 495 to 1152 m, and the average value is
approximately 809 m.) (Figure 1). The long-term average annual precipitation across the
study basin ranges from 457 to 559 mm, and the long-term mean annual maximum and
minimum temperatures are approximately 24 ◦C and 9 ◦C, respectively. The topography of
the DMFB basin is relatively flat. There is a long history of cotton cultivation in the study
basin and cotton is grown in approximately 30% of the basin (Figure 1). The dominant
types of soil in the DMFB basin are Amarillo sandy loam and Acuff sandy clay loam [22].

Daily precipitation, minimum air temperature, and maximum air temperature data from
1990 to 2009 were obtained from seven National Oceanic and Atmospheric Administration-
National Centers for Environmental Information (NOAA-NCEI) weather stations within
and adjacent to the DMFB basin (Figure 1). Two U.S. Geological Survey (USGS) gages
within the DMFB basin (08079600 and 08080500; Gage I and Gage II) containing streamflow
data from 1994 to 2009 were accessed in this study.
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Figure 1. Location, land uses, weather stations, and stream gaging stations of the Double Mountain
Fork Brazos basin.

2.2. Descriptions of SWAT and SWAT-MAD

The SWAT model is a continuous-time, semi-distributed, process-based, and basin-
scale agro-hydrologic model [17]. The primary model components consist of hydrology,
crop growth, and water quality and the major data needed for setting up the model for
a basin are elevation, land use, soil, climate, and management practices [23]. The SWAT
model has been commonly used to simulate basin-scale best management practices on
hydrologic cycles and crop production worldwide [24–26]. Recently, a more representative
MAD auto-irrigation method was developed by Chen et al. [21] and integrated into the
SWAT model (hereafter referred to as SWAT-MAD). The MAD auto-irrigation method trig-
gers irrigation according to a pre-defined allowable depletion percentage of plant available
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water, determined by the crop-specific maximum rooting depth and soil-specific character-
istics [21]. The ArcSWAT (version 2012.10_2.19; revision 664; Stone Environmental, Inc.,
Montpelier, VT) for the ArcGIS 10.2.2 platform was used in this study. The SWAT Calibra-
tion and Uncertainty Procedures (SWAT-CUP 2012) with the Sequential Uncertainty Fitting
version-2 (SUFI-2) [27] was used for the model calibration and validation for streamflow
with the goal of maximizing Nash–Sutcliffe efficiency (NSE). The NSE [28], coefficient of de-
termination (R2) [29], and percent bias (PBIAS) [30] were used to evaluate the performance
of the SWAT-MAD model in the DMFB basin.

The SWAT-MAD model was calibrated and validated for streamflow data at two
USGS gages and county-level crop yields of both irrigated and dryland cotton. The SWAT-
MAD model was also evaluated by county-level seasonal irrigation requirements of cotton
and percolation amount. The calibrated parameter values for the SWAT-MAD model are
listed in Table S1. A detailed description of the SWAT-MAD model setup, calibration, and
validation for the DMFB basin is provided in the Supplementary Materials. The SWAT-
MAD model calibration and validation performance statistics for monthly streamflow at
the stream gages (Table 1) were well above the “satisfactory” range suggested by Moriasi
et al. [31]. The R2 and overall PBIAS were 0.21 and 2.3% when comparing SWAT-MAD
simulated and observed irrigated cotton lint yield in Lynn County [1] in the DMFB basin.
The simulated irrigation for cotton by the MAD auto-irrigation method (346.9 mm) was
very close to the local survey data [32]. The SWAT-MAD model simulated percolation
amount was also comparable with the values from local reports and literature [33].

Table 1. Performance statistics for monthly streamflow prediction on two USGS gages in the Double
Mountain Fork Brazos basin using the SWAT-MAD model.

Streamflow
Gage I (08079600) Gage II (08080500)

Calibration
(1994–2001)

Validation
(2002–2009)

Calibration
(1994–2001)

Validation
(2002–2009)

Nash-Sutcliffe efficiency
(NSE)

0.86
(Very good #)

0.59
(Satisfactory)

0.63
(Satisfactory)

0.64
(Satisfactory)

R2 0.88 0.71 0.67 0.75

Percent bias (PBIAS; %) 14.6
(Good)

8.5
(Very good)

12.9
(Good)

−12.6
(Good)

# General model performance ratings suggested by Moriasi [31] for monthly predictions of streamflow.

2.3. Scenario Development

The primary management practices of irrigated and dryland cotton under the baseline
scenario in the DMFB basin are listed in Table 2. A flowchart of the modeled cultivation
practices in the Texas Panhandle is shown in Figure 2. As for the classification of hydrocli-
matic years, if the precipitation of an individual year was 25% lower than the long-term
average (1994–2009) annual precipitation of 517 mm, it was identified as a dry year. Like-
wise, if the precipitation of an individual year was 25% higher than the long-term average,
it was treated as a wet year. The remaining years were considered normal years. According
to the aforementioned classification of the hydroclimatic regimes, the dry years were 1994,
1998, and 2003. The wet years were 1997, 2004, and 2007. For the scenario development of
alternative cultivation practices, ten scenarios were simulated under each hydroclimatic
condition in this study, including two alternative irrigation application depths of 12.7 mm
(0.5 inch) and 38.1 mm (1.5 inches) per application for irrigated cotton, two alternative
planting dates of early planting (a half month ahead) and late planting (a half month delay)
for irrigated and dryland cotton, and two alternative maturity cultivars of short-season
cotton (5% less accumulation of heat units to maturity) and long-season cotton (5% more)
(Table 3). The selected irrigation application depths represent associated irrigation man-
agement by local growers across the Texas Panhandle due to diverse well capacities and
soil water holding capacities. The alternative planting dates chosen in this study cover the
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usual cotton planting window in this region. The short- and long-season cotton cultivars
are commonly used locally in response to the changing climate and management needs.

Table 2. Management practices for irrigated and dryland cotton production under the baseline
scenario in the Double Mountain Fork Brazos basin.

No. Operations Description Management Information

Irrigated cotton (generic variety)
1 Tillage (Tillage on 1 April)

TILL_ID Tillage ID Generic spring plowing #
2 Fertilizer application (1 May)

FERT_ID Fertilizer ID Urea
FRT_KG Amount of fertilizer applied 300.7 (kg ha−1) #

3 Begin growing season (Planting on 15 May) Default
Accumulation of heat units to maturity 2354 ◦C-day ξ

4 Auto irrigation (Start date: 15 May; End date: 15 September)
WSTRS_ID Water stress identifier Management allowed depletion
AUTO_WSTRS Water stress threshold 0.75
IRR_MX Irrigation application depth 25.4 mm (1 inch)

5 Harvest and kill (Harvest and kill on 31 October) Default

Dryland cotton (generic variety)
1 Tillage (Tillage on April 1)

TILL_ID Tillage ID Generic spring plowing #
2 Fertilizer application (1 May)

FERT_ID Fertilizer ID Urea
FRT_KG Amount of fertilizer applied 150 (kg ha−1) #

3 Begin growing season (Planting on 15 May) Default
Accumulation of heat units to maturity 2354 ◦C-day ξ

4 Harvest and kill (Harvest and kill on 31 October) Default
# The management methods and parameters were based on published reports and local expertise. ξ Accumulation
of heat units to maturity for cotton was estimated using the SWAT-PHU program (https://swat.tamu.edu/
software/; accessed on 24 December 2021).

Figure 2. Flowchart of the modeled cultivation practices in the Texas Panhandle.

303



Agriculture 2022, 12, 17

Table 3. Descriptions of simulated scenarios in the Double Mountain Fork Brazos basin.

Scenario ID Scenario Description

(1) Irrigation application depth of 12.7 mm in irrigated cotton HRUs (Small
irrigation depth)

(2) Irrigation application depth of 38.1 mm in irrigated cotton HRUs (Large
irrigation depth)

(3) Accumulation of heat units to maturity for cotton reduced by 5%
(2236 ◦C-day) in irrigated cotton HRUs (Short-season irrigated cotton)

(4) Accumulation of heat units to maturity for cotton increased by 5%
(2472 ◦C-day) in irrigated cotton HRUs (Long-season irrigated cotton)

(5) Accumulation of heat units to maturity for cotton reduced by 5%
(2236 ◦C-day) in dryland cotton HRUs (Short-season dryland cotton)

(6) Accumulation of heat units to maturity for cotton increased by 5%
(2472 ◦C-day) in dryland cotton HRUs (Long-season dryland cotton)

(7) Planting date of 1 May and harvest date of 15 October in irrigated cotton
HRUs (Early planting of irrigated cotton)

(8) Planting date of 30 May and harvest date of 15 November in irrigated
cotton HRUs (Late planting of irrigated cotton)

(9) Planting date of 1 May and harvest date of 15 October in dryland cotton
HRUs (Early planting of dryland cotton)

(10) Planting date of 30 May and harvest date of 15 November in dryland
cotton HRUs (Late planting of dryland cotton)

3. Results and Discussion

3.1. Simulated Yearly and Monthly Water Balances in Dry, Normal, and Wet Years under the
Alternative Irrigation Application Depths

In the dry years, the seasonal cotton irrigation amount was 3.5% larger with a small
irrigation application depth of 12.7 mm as compared to the baseline irrigation depth of
25.4 mm. In contrast, a 1.8% reduction in seasonal cotton irrigation amount was simulated
for the large irrigation depth of 31.8 mm relative to the baseline depth (Table 4). Those
changes are a 3.6% increase and a 2.4% decrease for small and large irrigation application
depths, respectively, in the normal years (Table 4). However, less than 1% variation was
found using the alternative irrigation application depths during the wet years (Table 4),
when precipitation was relatively abundant.

An increase in seasonal irrigation amounts with the small irrigation depth led to the
increased ETc of 2.1%, 1.5%, and 0.2% in the dry, normal, and wet years, respectively,
compared to their respective baseline scenarios. In contrast, ETc decreased by 1.1%, 1.1%,
and 0.1% in dry, normal, and wet years, respectively, when using the large irrigation
application depth (Table 4). Increasing the irrigation application depth could reduce
irrigation frequency to supplement the seasonal water requirements of crops and reduce
evaporative water losses associated with irrigation events [34,35]. Evaporative losses
associated with irrigation events are greatest during crop vegetative growth periods when
incomplete canopy conditions exist. These losses are largely mitigated in quickly maturing
crops such as corn (Zea mays L.) [8]. However, cotton typically matures at a much slower
rate than other agricultural crops, extending the time that the soil surface is subject to
evaporative losses following irrigation. Furthermore, cotton may not reach full canopy
closure in certain years. As such, less frequent irrigation of greater depth are more likely to
result in reduced seasonal irrigation requirements for crops such as cotton.

304



Agriculture 2022, 12, 17

Table 4. Comparison of the average annual water balance parameters and cotton yield under three
hydroclimatic regimes using different irrigation application depths, planting dates, and maturity
cultivars in the irrigated cotton HRUs in the Double Mountain Fork Brazos basin.

Scenarios
Irrigation

(mm)
ETc (mm)

Soil Water
Content (mm)

Surface
Runoff (mm)

Water
Yield (mm)

Cotton
Yield

(Mg ha−1)

Baseline dry years 493.4 825.9 32.9 0.0004 1.15 3.07
Small irrigation
depth 510.6 (3.5 #) 843.3 (2.1) 31.4 (−4.7) 0.0002 (−57.5) 1.12 (−2.7) 3.03 (−1.4)

Large irrigation
depth 484.4 (−1.8) 817.0 (−1.1) 33.7 (2.5) 0.0009 (115.4) 1.19 (3.3) 3.12 (1.6)

Early planting 491.4 (−0.4) 823.0 (−0.4) 33.3 (1.1) 0.0018 (332.0) 1.17 (1.3) 3.11 (1.3)
Late planting 502.2 (1.8) 835.2 (1.1) 34.1 (3.6) 0.0005 (29.1) 1.15 (−0.1) 2.63 (−14.4)
Short season 500.1 (1.4) 832.7 (0.8) 32.7 (−0.6) 0.0005 (22.2) 1.16 (0.8) 3.43 (11.6)
Long season 489.3 (−0.8) 822.0 (−0.5) 32.9 (−0.2) 0.0005 (18.0) 1.14 (−0.9) 2.69 (−12.3)

Baseline normal
years 341.9 812.9 58.6 4.37 5.59 2.68

Small irrigation
depth 354.0 (3.6) 825.4 (1.5) 56.4 (−3.7) 4.12 (−5.8) 5.32 (−4.9) 2.65 (−1.0)

Large irrigation
depth 333.5 (−2.4) 804.2 (−1.1) 60.3 (3.0) 4.56 (4.4) 5.81 (3.9) 2.70 (0.8)

Early planting 336.6 (−1.5) 806.0 (−0.9) 62.9 (7.3) 4.48 (2.5) 5.71 (2.0) 2.88 (7.6)
Late planting 327.0 (−4.4) 802.6 (−1.3) 51.3 (−12.5) 4.43 (1.4) 5.64 (0.8) 2.00 (−25.4)
Short season 350.1 (2.4) 820.5 (0.9) 58.7 (0.1) 4.33 (−0.8) 5.58 (−0.3) 3.10 (15.7)
Long season 334.5 (−2.2) 805.7 (−0.9) 59.4 (1.3) 4.42 (1.2) 5.64 (0.8) 2.27 (−15.4)

Baseline wet years 217.0 861.6 110.4 3.13 4.62 2.19
Small irrigation
depth 218.6 (0.8) 863.2 (0.2) 108.6 (−1.6) 2.80 (−10.7) 4.26 (−7.8) 2.17 (−1.2)

Large irrigation
depth 216.3 (−0.3) 860.5 (−0.1) 112.0 (1.4) 3.37 (7.5) 4.89 (5.7) 2.20 (0.5)

Early planting 181.4 (−16.4) 831.7 (−3.5) 114.1 (3.3) 3.72 (18.7) 5.18 (12.0) 2.31 (5.1)
Late planting 232.7 (7.3) 860.1 (−0.2) 115.7 (4.8) 4.59 (46.6) 6.12 (32.4) 1.61 (−26.4)
Short season 219.5 (1.2) 866.3 (0.5) 110.1 (−0.3) 3.11 (−0.8) 4.61 (−0.3) 2.62 (19.2)
Long season 209.1 (−3.6) 853.0 (−1.0) 111.6 (1.1) 3.31 (5.7) 4.79 (3.7) 1.79 (−18.3)

# The number in the parentheses is the percent change using an alternative scenario relative to the respective
baseline scenario.

Reductions in soil water content, surface runoff, and water yield (the total amount of
water leaving the field) were found for the irrigated cotton scenario with the small irrigation
application depth under different hydroclimatic regimes compared to the baseline scenarios.
However, opposite results were found for the large irrigation application depth scenario
under various hydroclimatic years. For instance, soil water content, surface runoff, and
water yield decreased by 4.7%, 57.5%, and 2.7%, respectively, with the small irrigation
depth, while those hydrologic parameters increased by 2.5%, 115.4%, and 3.3%, respectively,
with the large irrigation depth as compared to the baseline scenario in the dry years (Table 4).
It is evident that the smaller irrigation depth can result in relatively lower soil water content
and runoff. Under the alternative full irrigation management conditions, the cotton yield
only showed slight changes (Table 4). There was an increasing trend for cotton yield
under the large irrigation depth while a decreasing tendency under the small irrigation
depth in diverse hydroclimatic years. Therefore, maintaining/enhancing cotton yield while
reducing groundwater pumping from the Ogallala Aquifer in the Texas Panhandle could
be achieved using a large irrigation application depth.

The monthly balance analysis showed that the peak irrigation and ETc occurred in July
during the dry years (Figure 3a,b) and in August during the wet years (Figure 3d,e) in the
irrigated cotton land use. In the dry years of irrigated cotton, there was a high soil water
content during the cotton growing season from May to August (Figure 3c). Nevertheless,
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the soil water content was relatively low in the growing season, especially from July to
October during the wet years (Figure 3f). Generally, the smaller irrigation application depth
resulted in greater irrigation and ETc (Figure 3a,b,d,e). For example, the irrigation amounts
increased by 5.6% and 7.2% in June and July, respectively, in the dry years using the small
irrigation application depth compared to the baseline irrigation depth (Figure S1a). The
irrigation amount increased by 10.2% in May in the wet years (Figure S1d). The range of
increased ETc from May to August varied by 3.0–5.2% and 1.0–1.8% during the dry and wet
years, respectively, using the small irrigation depth (Figure S1b,e). The monthly soil water
content consistently decreased under the small irrigation depth relative to the baseline
irrigation depth in the dry and wet years (Figure 3c and Figure S1c). By contrast, the larger
irrigation depth maintained a higher soil water content compared to the baseline irrigation
depth (Figure 3f and Figure S1f). In the normal years, overall, the small irrigation depth
also led to an increase in irrigation and ETc while soil water content decreased (Figure S2).
However, the large irrigation depth caused reductions in irrigation and ETc and maintained
a high soil water content.

3.2. Impacts of Planting Dates on Water Conservation and Irrigated and Dryland Cotton Yield

Simulated irrigation amount increased by 7.3% with late planting of cotton during wet
years relative to the baseline planting date (Table 4). However, early planting resulted in a
reduction in irrigation amount by 16.4% during the wet years. This reduction was mainly
caused by sufficient early season rainfall during the wet years in the Texas Panhandle.
The percentage changes in ETc were within ±4% under different hydroclimatic years and
planting dates (Table 4). A large variation was found in soil water content according to
the hydroclimatic years and planting dates. The absolute changes in surface runoff and
water yield were relatively small in the dry and normal years irrespective of the planting
dates (Table 4). However, the surface runoff increased by 18.7% and 46.6% in the case of the
early and late planting dates in the wet years, respectively. Simulated cotton yields were
decreased by 14.4%, 25.4%, and 26.4% for the delayed planting date in the dry, normal, and
wet years, respectively (Table 4). However, 1.3%, 7.6%, and 5.1% increase in irrigated cotton
yield was found with early planting date in the dry, normal, and wet years, respectively
(Table 4). Planting and harvesting dates impacted cotton growth and yield [36,37]. Early
planting dates could extend the growing season and help producers avoid inclement
weather in the late season [38]. Mauget et al. [10] also found that early planting could
increase cotton yield by maximizing growing season degree days and total cool hours in
the Texas Panhandle. Cotton requires accumulations of larger amounts of heat units to
maturity compared to corn and sorghum (Sorghum bicolor L.) [39]. Therefore, the early
planting of cotton might be feasible in improving yield and water conservation.

In the study basin, cotton is usually planted in the middle of May according to local
field studies. Planting of cotton a half month ahead caused a clear increase in irrigation
compared to the baseline planting date in May (54.5% and 24.3%) and July (10.7% and
15.6%) in the dry and normal years, and the late planting led to an apparent increase in
irrigation in September of 151.8%, 77.6%, and 81.5% during the dry, normal, and wet years,
respectively (Figure 4a,d and Figures S3a,d and S4a,b). A similar trend to irrigation was
detected for monthly cotton ETc from May to September using the alternative planting
dates under three hydroclimatic years (Figure 4b,e and Figures S3b,e and S4c,d). There were
clearly high soil water contents in September (146.4%, 37.6%, and 39.7%) with the delayed
planting of cotton for dry, normal, and wet years, which was associated with the increased
irrigation amounts with the late planting date (Figure 4c,f and Figures S3c,f and S4e,f).
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Figure 3. Comparison of average monthly irrigation (a,d), crop evapotranspiration (ETc) (b,e), and
soil water content (c,f) during dry and wet years using different irrigation application depths in the
irrigated cotton HRUs in the Double Mountain Fork Brazos basin.

The assessment of results from the dryland cotton HRUs provided a better comparison
because rainfall was the sole source of water input. Thus, the hydroclimatic years were
the dominant factors for water balances. Results indicated a negligible change in ETc with
the alternate planting dates under three hydroclimatic years (Table 5). An increase in soil
water content was found in the case of the early planting of dryland cotton under different
hydroclimatic regimes (Table 5). However, a decrease in soil water content was identified
for the late planting date. Generally, the late planting date resulted in reductions in surface
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runoff and water yield, particularly in the wet years. An evident increase in surface runoff
(42.4%) and water yield (28.5%) were also found for the early planting date in the wet years
(Table 5). The delayed planting of dryland cotton led to an evident reduction in cotton yield
of 9.8%, 21.1%, and 20.5% during the dry, normal, and wet years, respectively (Table 5).
Nevertheless, dryland cotton yields increased by 0.7%, 9.4%, and 5.4% during dry, normal,
and wet years, respectively, for the early planting date. Therefore, to increase both irrigated
and dryland cotton yields, early sowing may be warranted in the Texas Panhandle.

Under the dryland cotton land use, changes in ETc were noticed in June (6.0% increase)
and July (6.4% decrease) with the early planting date in the dry years relative to the
baseline planting date (Figure 5a and Figure S5a). The opposite trends were found for
the late planting date in the dry years. In the normal years, considerable variation in
ETc was found in June (9.8% increase) and October (25.5% decrease) with early planting
of dryland cotton (Figure S6a,b). Relatively small absolute changes were noticed for the
delayed planting in the normal years. Notable changes in ETc were found in July (4.3%
increase) and August (4.5% decrease) for the early planting in the wet years (Figure 5c and
Figure S3c). By contrast, a 7.4% decrease and an 8.2% increase in ETc were detected in July
and August, respectively, for the late planting date in the wet years. The marked increases
in soil water content were only found in June (14.1%) and July (14.9% and 19.6%) during
the dry, normal, and wet years, respectively, for the late planting date. However, distinct
increases in soil water content were found from October to December and from October to
May with the early planting of dryland cotton during the dry years and the normal and
wet years, respectively (Figure 5b,d and Figures S5b,d and S6c,d).

Table 5. Comparison of the average annual water balance parameters and cotton yield under three
hydroclimatic regimes using various planting dates and maturity cultivars in the dryland cotton
HRUs in the Double Mountain Fork Brazos basin.

Scenario ETc (mm)
Soil Water

Content (mm)
Surface

Runoff (mm)
Water

Yield (mm)
Cotton

Yield (Mg ha−1)

Baseline dry years 360.2 19.2 0.170 0.41 0.76
Early planting 360.8 (0.16 #) 22.0 (14.5) 0.167 (−1.9) 0.41 (−0.5) 0.76 (0.7)
Late planting 360.7 (0.14) 16.5 (−13.9) 0.160 (−5.9) 0.40 (−2.5) 0.68 (−9.8)
Short season 360.1 (−0.01) 19.2 (0.13) 0.169 (−0.2) 0.41 (−0.08) 0.79 (4.0)
Long season 360.2 (0.01) 19.2 (−0.03) 0.170 (0.2) 0.41 (0.09) 0.72 (−5.2)

Baseline normal
years 490.1 38.6 2.61 3.00 1.44

Early planting 491.0 (0.18) 46.9 (21.6) 2.68 (2.9) 3.08 (2.6) 1.58 (9.4)
Late planting 490.1 (−0.01) 31.5 (−18.5) 2.59 (−0.7) 2.98 (−0.6) 1.14 (−21.1)
Short season 490.1 (0.003) 38.4 (−0.4) 2.60 (−0.2) 3.00 (−0.2) 1.59 (10.1)
Long season 490.1 (−0.003) 38.7 (0.4) 2.61 (0.2) 3.01 (0.2) 1.30 (−10.1)

Baseline wet years 664.6 91.9 1.33 2.03 1.77
Early planting 660.7 (−0.58) 101.8 (10.8) 1.89 (42.4) 2.60 (28.5) 1.87 (5.4)
Late planting 664.6 (−0.002) 84.3 (−8.3) 1.14 (−14.1) 1.83 (−9.8) 1.41 (−20.5)
Short season 664.6 (0.004) 91.8 (−0.14) 1.32 (−0.5) 2.02 (−0.3) 1.95 (10.0)
Long season 664.6 (−0.003) 92.0 (0.15) 1.34 (0.6) 2.04 (0.4) 1.59 (−10.3)

# The number in the parentheses is the percent change using an alternative scenario relative to the respective
baseline scenario.
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Figure 4. Comparison of average monthly irrigation (a,d), crop evapotranspiration (ETc) (b,e), and
soil water content (c,f) during dry and wet years using different planting dates in the irrigated cotton
HRUs in the Double Mountain Fork Brazos basin.
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Figure 5. Comparison of average monthly crop evapotranspiration (ETc) (a,c) and soil water content
(b,d) during dry and wet years using different planting dates in the dryland cotton HRUs in the
Double Mountain Fork Brazos basin.

3.3. Effects of Different Cotton Maturity Cultivars under Both Irrigation and Dryland Conditions
on Water Balances and Cotton Production

The absolute differences in the studied hydrologic parameters were small when using
different maturity cotton cultivars under both irrigation and dryland management regard-
less of hydroclimatic years (Tables 4 and 5). However, the short-season cultivar produced
11.6%, 15.7%, and 19.2% higher irrigated cotton yield during the dry, normal, and wet years,
respectively, compared to their respective baseline scenarios. Those increases in dryland
cotton yields were 4.0%, 10.1%, and 10.0% in the dry, normal, and wet years. Similar percent-
age reductions were found with the long-season cultivar in various hydroclimatic regimes
under the irrigation and dryland conditions (Tables 4 and 5). Like alternate planting dates,
different maturity cotton cultivars highlighted the importance of heat unit accumulation for
crop development. The concept of heat units emerged from observations that plants do not
grow below a threshold temperature. This temperature for cotton is 15.6 ◦C. Cotton growth
and development are directly related to accumulated heat units when there are no other
environmental limiting factors [40]. Recently, Masasi et al. [41] also reported that under
adequate irrigation supply, cotton yield responds positively and strongly to the increase of
heat units using the AquaCrop model in the U.S. Southern Great Plains. As for the monthly
analysis, small recognizable changes in irrigation and ETc were found in June and July
in the dry years among diverse maturity cultivars (Figure 6a,b and Figure S7a,b,d,e). A
clear decrease in irrigation and ETc was found in July with the long-season cultivar in
the normal and wet years (Figure 6d,e and Figures S7a,b,d,e and S8a,b,c,d). In general, no
considerable changes were noticed in soil water content with the changes in maturity cotton
cultivars in the case of irrigated cotton under three hydroclimatic regimes (Figure 6c,f and
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Figures S7c,f and S8e,f). There was almost no influence of maturity cultivars on ETc and soil
water content under dryland cotton farming (Figure 7 and Figures S9 and S10). Although
the current climate in the Texas Panhandle is suitable for cotton production, short-season
cultivars are more promising for a yield increase. It is worth noting that the short-season
cultivar is crucial for dryland management as it can mature early and reduce water stress
duration relative to the full- and long-season cultivars in this semi-arid environment. There-
fore, the selection of appropriate maturity cultivars is necessary in view of the challenging
environment for cotton production in the Texas Panhandle.

Figure 6. Comparison of average monthly irrigation (a,d), crop evapotranspiration (ETc) (b,e), and
soil water content (c,f) during dry and wet years using different maturity cultivars in the irrigated
cotton HRUs in the Double Mountain Fork Brazos basin.
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Figure 7. Comparison of average monthly crop evapotranspiration (ETc) (a,c) and soil water content
(b,d) during dry and wet years using different maturity cultivars in the dryland cotton HRUs in the
Double Mountain Fork Brazos basin.

4. Conclusions

An assessment of some potential cultivation practices on water conservation and
cotton production was performed in the DMFB basin in the semi-arid Texas Panhandle
region using the SWAT-MAD model. Modeling results indicated that using a relatively
small irrigation application depth for cotton resulted in increased seasonal irrigation
and ETc under various hydroclimatic years. By contrast, the large irrigation application
depth for cotton showed water-saving and yield-boosting effects. The early planting date
demonstrated the potential for water conservation and yield increase for cotton under both
irrigation and dryland conditions, which allowed for the accumulation of relatively high
heat unit totals for crop physiological maturity. It is intuitive that the early planting date
could favor a yield increase more in the normal and wet years compared to the dry years.
Similar to early planting, the short-season cotton cultivar highlighted great potential for
yield improvement under this climatic condition. In summary, larger irrigation application
depths for cotton could primarily support groundwater conservation. Early planting of
irrigated and dryland cotton might be considered for enhancing cotton yields and reducing
water consumption in the Texas Panhandle, especially in wetter years. Additionally,
using a short-season cultivar could be an option for further improving cotton production
capacity and narrowing the yield gap in the Texas Panhandle. In this study, we did not
completely consider the spatial variations in agricultural inputs/practices due to the limited
information available. In addition, the spatial inconsistency with the actual field boundaries
based on the HRU definition could result in some uncertainties. Therefore, the modeling
results have a certain level of uncertainty when representing the real world. For these
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reasons, producers should be cautious when interpreting our findings for decision making
in their specific fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture12010017/s1, Table S1: Default and calibrated values of
hydrologic and cotton growth parameters using the SWAT-MAD model in the Double Mountain Fork
Brazos basin. Figure S1: Change percentages of average monthly irrigation, crop evapotranspiration
(ETc), and soil water content under dry and wet years using different irrigation application depths
relative to the baseline irrigation depth in the irrigated cotton HRUs in the Double Mountain Fork
Brazos basin. Figure S2: Comparison of average monthly irrigation, crop evapotranspiration (ETc),
and soil water content under normal years using different irrigation application depths in the irrigated
cotton HRUs in the Double Mountain Fork Brazos basin. Figure S3: Change percentages of average
monthly irrigation, crop evapotranspiration (ETc), and soil water content under dry and wet years
using various planting dates relative to the baseline planting date in the irrigated cotton HRUs in
the Double Mountain Fork Brazos basin. Figure S4: Comparison of average monthly irrigation,
crop evapotranspiration (ETc), and soil water content under normal years using various planting
dates in the irrigated cotton HRUs in the Double Mountain Fork Brazos basin. Figure S5: Change
percentages of average monthly crop evapotranspiration (ETc) and soil water content under dry
and wet years using various planting dates relative to the baseline periods in the dryland cotton
HRUs in the Double Mountain Fork Brazos basin. Figure S6: Comparison of average monthly crop
evapotranspiration (ETc) and soil water content under normal years using various planting dates in
the dryland cotton HRUs in the Double Mountain Fork Brazos basin. Figure S7: Change percentages
of average monthly irrigation, crop evapotranspiration (ETc), and soil water content under dry and
wet years using diverse maturity cultivars relative to the baseline cultivar in the irrigated cotton HRUs
in the Double Mountain Fork Brazos basin. Figure S8: Comparison of average monthly irrigation,
crop evapotranspiration (ETc), and soil water content under normal years using diverse maturity
cultivars in the irrigated cotton HRUs in the Double Mountain Fork Brazos basin. Figure S9: Change
percentages of average monthly crop evapotranspiration (ETc) and soil water content under dry
and wet years using diverse maturity cultivars relative to the baseline cultivar in the dryland cotton
HRUs in the Double Mountain Fork Brazos basin. Figure S10: Comparison of average monthly crop
evapotranspiration (ETc) and soil water content under normal years using diverse maturity cultivars
in the dryland cotton HRUs in the Double Mountain Fork Brazos basin.
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Abstract: The Prairie Pothole Region (PPR) contains numerous depressional wetlands known as
potholes that provide habitats for waterfowl and other wetland-dependent species. Mapping these
wetlands is essential for identifying viable waterfowl habitat and conservation planning scenarios, yet
it is a challenging task due to the small size of the potholes, and the presence of emergent vegetation.
This study develops an open-source process within the Google Earth Engine platform for mapping the
spatial distribution of wetlands through the integration of Sentinel-1 C-band SAR (synthetic aperture
radar) data with high-resolution (10-m) Sentinel-2 bands. We used two machine-learning algorithms
(random forest (RF) and support vector machine (SVM)) to identify wetlands across the study area
through supervised classification of the multisensor composite. We trained the algorithms with
ground truth data provided through field studies and aerial photography. The accuracy was assessed
by comparing the predicted and actual wetland and non-wetland classes using statistical coefficients
(overall accuracy, Kappa, sensitivity, and specificity). For this purpose, we used four different out-of-
sample test subsets, including the same year, next year, small vegetated, and small non-vegetated test
sets to evaluate the methods on different spatial and temporal scales. The results were also compared
to Landsat-derived JRC surface water products, and the Sentinel-2-derived normalized difference
water index (NDWI). The wetlands derived from the RF model (overall accuracy 0.76 to 0.95) yielded
favorable results, and outperformed the SVM, NDWI, and JRC products in all four testing subsets.
To provide a further characterization of the potholes, the water bodies were stratified based on the
presence of emergent vegetation using Sentinel-2-derived NDVI, and, after excluding permanent
water bodies, using the JRC surface water product. The algorithm presented in the study is scalable
and can be adopted for identifying wetlands in other regions of the world.

Keywords: wetlands; Google Earth Engine; synthetic aperture radar; Sentinel-2; supervised classification

1. Introduction

Wetlands have been identified as valuable resources that provide a variety of ecological
and socioeconomic benefits [1], but they are also threatened due to human activities, such
as agricultural intensification and climate change [2]. These threats and others make
monitoring the spatiotemporal variation of wetlands’ hydrological processes crucial to
their effective management. Here, by hydrological processes, we refer to wetlands’ highly
variable environments characterized by hydric soils temporarily or permanently flooded
by water. When dry, wetlands resemble surrounding uplands, whereas when inundated,
they can have either moist soils or surface water that ranges from centimeters to meters
deep. There are also high levels of diversity in wetland cover classes, wherein some
inundated wetlands are filled with emergent or submerged vegetation, and others are
absent of all vegetation.

Though the dynamic nature of wetlands makes them ecologically valuable to numer-
ous flora and fauna, this also makes them difficult to monitor [3,4]. Monitoring depressional
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wetlands can also be challenging because these highly dynamic systems are primarily de-
pendent on climate and local weather systems for ponding, and can often be relatively
small (<40 ha) [5,6]. The interplay among water, vegetation, and soil results in wetlands
that share spectral reflectance characteristics of both aquatic and terrestrial environments.
Accurate and unbiased estimates of wetland surface water across the range of natural
conditions have therefore eluded scientists.

The Prairie Pothole Region (PPR) is one example of a high-risk, dynamic wetland
system composed of millions of temporary, seasonal, and semi-permanent depressional
wetlands, called potholes. These potholes are known for their cycles of drought and
deluge, which drive important ecosystem functions, such as the abundance of aquatic
invertebrates [5]. The PPR covers an extensive area of approximately 750,000 km2, including
parts of five US states and three Canadian provinces (Figure 1), and provides habitat for
over 50% of North America’s migratory waterfowl [7,8]. Hydroperiods in the potholes
vary from days to years, but seasonal wetlands that maintain water for less than four
months are common [9,10]. Reduced surface water area and changes in hydrology are
common in PPR wetlands, for example, as caused by tile draining to allow for higher
agricultural production [11], or upland sediment erosion into wetlands, which, though
a natural process, is often accelerated by agricultural activity, which fills potholes, and
reduces their volume [12]. The total wetland loss in the PPR caused by climate change and
human activity was estimated to be 30,000 ha between 1997 and 2009 [10]. A resulting shift
towards smaller wetlands and shortened hydroperiods [13–15] has underscored a need to
understand how these altered hydrological conditions affect ecosystem services and habitat
provisioning at broad spatial scales, which starts with an accurate and repeatable estimate
of spatial variation in wetland surface water.

Remote sensing analysis can provide broad-scale spatial and temporal information
about wetland surface water [16,17]. Previous studies utilized various remote sensing
technologies to monitor wetlands across the PPR [8,18]. For example, [8] used high-
resolution NAIP data and LIDAR Digital Elevation Models (DEMs) to map PPR wetland
inundation, and tested the results with the Wildlife Service National Wetlands Inventory
(NWI). However, though NAIP and DEMs can provide fine spatial resolution data (<1 m),
these methods cannot capture temporal variation within a season, as NAIP and LiDAR data
are not collected intraannually. Optical sensors, such as Sentinel-2 and Landsat, can detect
surface water, and have often been used with success for deep, permanent, large water
bodies [19,20]. For example, the Joint Research Centre (JRC) provided Landsat-derived
surface water products useful for capturing large wetlands. However, the JRC and other
products that rely on moderate resolution spectral data often underperform in detecting
water in small potholes with dense vegetation canopies and mixed pixels. Others have
used Sentinel-1 synthetic aperture radar (SAR) data (spatial resolution: 10 m) to map water
extent in the PPR with reasonable success [21,22], as SAR data is robust to cloud cover, and
10 m data provide reasonable spatial resolution. However, no study has solved all of the
challenges for mapping the spatial and temporal variation of surface water in the PPR, and
made their algorithm available for long-term monitoring by the research and conservation
community. There is a need for open-science algorithms that capture the variation of
surface water, can map water even below emergent vegetation, and still represent surface
water in smaller potholes.

This study relies on geospatial informatics, which is an expanding field, and includes
remote sensing of landscape-scale big data, the development of machine learning tools,
and integration with High-Performance Computational (HPC) cloud computing resources.
Geospatial informatics offers a unique opportunity for the fast processing of broad-scale
remote sensing data in a short time, providing a more comprehensive set of applications,
and addressing the limitation of traditional methods [23,24]. The Google Earth Engine
(GEE) cloud geospatial computing platform provides a web-based interface to fast parallel
processing on Google HPCs with planetary-scale analysis capabilities. The GEE provides
a multi-petabyte catalog of global satellite and geospatial datasets [25], such as Landsat,
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MODIS, and Sentinels. It also gives users the ability to analyze, manipulate, and map
the results, and create web-based applications to repeat the analysis [26]. As part of our
work, we utilized the capabilities of GEE to create an open-source algorithm for mapping
wetlands that can readily be shared with conservation managers and the science community
for continued use and development.

 

A 

C 

B 

Figure 1. The location of the Prairie Pothole Region (PPR) (A); the location of the study site in the US
and the state of North Dakota (B); distribution of ground truth points in the study site (C).

To help solve the historical problems of surface water mapping in the PPR, this paper
presents a multi-sensor fusion approach that integrates selected fine-resolution (10-m)
bands of Sentinel-2 with 10-m Sentinel-1 SAR data, allowing an estimate of both large
and small inundated areas. The integration of SAR with optical data also offers comple-
mentary information, and can significantly improve the interpretation and classification of
results [27,28], for example, by allowing surface water estimates beneath closed-canopy
herbaceous vegetation. Altogether, this study aims to provide scalable surface water es-
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timates that can assist with habitat models for wetland-dependent organisms, such as
waterbirds or aquatic invertebrates. We will provide our algorithm in a format that can be
freely shared and readily implemented by those with minimal coding and modeling experi-
ence, such as conservation managers. We achieved this through the following objectives:
(1) we developed an open-source framework to map the spatial variation in wetland surface
inundation and vegetation based on Sentinel-1 SAR data and Sentinel-2 high-resolution
bands within the GEE platform; (2) we deployed this algorithm over a portion of PPR in the
high priority conservation area of the PPR; (3) we analyzed the accuracy of this algorithm
for generating the information needed for setting conservation targets.

2. Study Area

Our study area was a portion of PPR in North Dakota, USA (Figure 1). The area is dom-
inated by natural grasslands, agricultural areas, and a relatively high density of potholes,
which, in this area, often present as small and elliptical water bodies. These numerous
small wetlands provide natural habitats for wetland-dependent animals and plant species.
We selected this area due to the high density of small potholes, high conservation priority,
and availability of ground truth data. We mainly focused our algorithm on a subset of the
PPR identified as a high priority conservation site for waterfowl by the United States Fish
and Wildlife Service.

3. Data

The data includes a set of aerial imagery to serve as ground truth data, the high-
resolution bands (bands 2, 3, 4, and 8) of Sentinel-2, and C-band SAR data Sentinel-1 sensor.
We describe the details of the dataset below.

3.1. Ground Truth

Researchers from Duck Unlimited Inc., a non-profit conservation organization, pro-
vided the ground truth data. These data include georeferenced aerial photographs of the
PPR wetlands in North Dakota collected through a partnership with the United States Fish
and Wildlife Service (USFWS). The USFWS used a fixed-wing aircraft to collect imagery
in a 1.5 m spatial resolution. If necessary, the images were orthorectified by technicians
or research scientists, and used to estimate wet areas during spring and summer for the
research projects. We used the summer data of two years (2016 and 2017). These datasets
were provided in shapefile formats, and showed wetland boundaries, delineating dry and
inundated wetland areas. Some of these wetlands also contained emergent vegetation
cover, as identified by field observers (range: 0–80% vegetation cover).

We examined the spectral reflectance of wetland and non-wetland classes, which
differed substantially, as indicated by a plot generated for a portion of the study area
(Figure 2). The spectral characteristics of wetlands and open water especially differ due
to mixed pixels, differences in water depth, the potential presence of vegetation, and
variation in water turbidity. Compared to forest and agriculture, deep open water exhibited
lower spectral reflectance, as water rapidly absorbs electromagnetic radiation, especially
longer wavelengths, and attenuation increases with water depth. The spectral reflectance
of wetlands is intermediate to upland vegetation and open water, making wetlands a
distinct and highly variable land cover type. Wetlands and moist soils show a dampened
near-infrared (NIR) and shortwave infrared (SWIR) reflectance compared with upland
vegetation, but are too shallow to attenuate all electromagnetic radiation, as often occurs
in deep open water. The spectral characteristics of wetlands will also change rapidly
with inundation and vegetation status. To account for this in our ground truth point
selection, we selected random points within the digitized wetland surface water area
polygon shapefiles to provide the ground truth pixels in GEE. We also included non-
wetland training data that represented agriculture, forest, and urban areas. We collected
those points using visual observation of high-resolution Google Earth images. The total

320



Remote Sens. 2022, 14, 159

number of points (including wetland and non-wetland classes) for the years 2016 and 2017
were 895 and 2231, respectively.

Figure 2. Spectral reflectance during summer months from Sentinel-2 optical bands of large bodies
of deep open water compared to inundated wetlands and other land cover types in a portion of the
study area. Wetland water shows different spectral characteristics compared to deep open water,
likely due to the presence of submerged and emergent vegetation. The error bar shows the standard
deviation of spectral reflectance of pixels for each land cover type.

Additionally, we provided two out-of-sample subsets for small-vegetated (1440 points)
and non-vegetated wetlands (1680 points). Ducks Unlimited provided the vegetation
data within the surface water polygons. We used those additional points in a separate
accuracy assessment process to evaluate the performance of our method for the smallest
wetlands, which are the most challenging to classify as they contain the highest proportion
of mixed pixels. The average time difference between ground truth data (wetlands and
non-wetlands) and satellite data acquisition was one month.

3.2. Sentinel-1

Sentinel-1 obtains C-band synthetic aperture radar (SAR) images at various polariza-
tions and resolutions. C-band Level-1 Ground Range Detected (GRD) data were obtained
through GEE. These data were collected in the Interferometric Wide (IW) swath mode
with a spatial resolution of 10 m, a swath width of 250 km, and a repeat cycle of 12 days.
These data are available in GEE as preprocessed datasets that express each pixel’s backscat-
ter coefficient (σ◦) in decibels (dB). The preprocessing steps include applying orbit files,
thermal noise removal, radiometric calibration, and orthorectification (terrain correction).
This study used two polarization modes: single co-polarization with vertical transmits
and receive (VV), and dual-band co-polarization with vertical transmit and horizontal
receive (VH). A total of 20 ascending orbit Sentinel-1 SAR scenes spanning two months
were collected over the study area. We used median values of the S1 temporal time series
in the multisensory band composite. A median composite can provide a cleaner image
with reduced speckle noise [29]. These data were acquired from July to September 2016.
The descending orbit data were excluded from the study because they lacked sufficient
coverage orbit over the study area (Table 1). Unlike optical sensors, SAR data can be
acquired day and night and during cloudy conditions, completely independent of solar
radiation, which is particularly important in high latitudes, and increases the availability
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of multi-temporal observations for assessing wetland hydroperiods. Moreover, SAR data
is sensitive to both open water and below-canopy inundation, making it advantageous to
identify inundation in vegetated wetlands [30]. The C-band SAR data of Sentinel-1 is also
known to be useful for the discrimination of water and non-water classes in non-forested
wetlands with short herbaceous vegetation (e.g., bog and fen) [31]. This is in contrast to the
longer wavelengths, such as L-band SAR data, that are preferred to detect inundation areas
in forests due to higher penetration depth [32].

Table 1. Multisensor satellite data and spectral reflectance indices were used for supervised classifica-
tion to identify the water bodies in the study area.

Data Acquisition Date Resolution (m) Variable Description

Sentinel-1 July to September 2016 10 VV Backscattering coefficient for vertically polarized
transmit and vertically polarized receive

Sentinel-1 July to September 2016 10 VH Backscattering coefficient for vertically polarized
transmit and horizontally polarized receive

Sentinel-2 May to October 2016 10 B2, B3, B4, B8 Green, Blue, Red, Near-infrared
NDVI May to October 2016 10 (B8 − B4)/(B8 + B4) Derived from Sentinel-2 bands
NDWI May to October 2016 10 (B3 − B8/(B3 + B8) Derived from Sentinel-2 bands

3.3. Sentinel-2

We used a total of 118 Sentinel-2 (S2) images with level 1C processing to surface
reflectance as part of this study. S2 is a wide-swath multi-spectral earth observation
mission with spatial resolution varying from 10 to 60 m. The multi-spectral data include
13 bands in the visible, near-infrared (NIR), and shortwave spectra, revisiting every 10 days
under the same viewing angle. The level 1-C products within GEE are orthorectified
and radiometrically corrected, providing top-of-atmosphere (TOA) reflectance values. We
adopted an automatic cloud masking procedure using the QA60 band of the S2 1C product
to mask the opaque and cirrus clouds. We also set the cloud coverage within S2 scenes to a
maximum of 10 percent over the time of data acquisition. Due to frequent cloud coverage
over the study area, we used a median of 5 months (May to October 2016) of the reflectance
values. We used four bands of S2 (blue, green, red, and near-infrared) with a spatial
resolution of 10 m to create the band compositions for supervised classifications using
machine learning algorithms. We used median values of S2 temporal images to be used in
the multisensory band composite. Additionally, we calculated the normalized difference
vegetation index (NDVI) [33] and normalized difference water index (NDWI) [34] using
the four bands of S2, and used them as predictors in the classification process (Figure 3).
Figure 4 shows the variation of NDWI over two potholes in the study area, showing periods
of inundation and drought. Typically, NDWI > 0.3 and <0.3 indicates the presence and
absence of detectable surface water [35]
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Figure 3. Sentinel-2 derived NDWI (A); NDVI (B); Sentinel-1 VV (C); Sentinel-2 RGB (D).

3.4. JRC Global Surface Water Products

This study focused on depressional wetlands that, by definition, are not permanent
water, and often change inundation status quickly due to climate variability. We used the
JRC product to differentiate wetlands from permanent water bodies across the entire study
area. The Joint Research Centre’s Global Surface Water (JRC GSW) product contains the
surface water’s spatial and temporal distribution at 30 m resolution. The product provides
different characteristics of surface water, including occurrence, intensity, seasonality, re-
currence, transitions, and maximum water extent [36]. The JRC GSW data were generated
using more than 3 million scenes from various Landsat missions (Landsat 5, 7, and 8)
between 1984 to 2019. The pixels were classified into water and non-water classes using an
expert system. JRC GSW presents results each month for the entire period (1984–2019) for
change detection. We defined permanent water bodies as those classified as water in >90%
of the observations within the period (1984–2019), and filtered those pixels from the study.
The permanent wet pixels were excluded from the final results to map the surface waters
that only belong to wetlands.
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Figure 4. An RGB image of Sentinel-2 over a portion of the study area (A). NDWI time series in two
small potholes in the study area (B), and showing significant temporal variations in surface water (C).

4. Methods

We developed an open-source process in GEE based on machine learning algorithms
and multisensory remote sensing data for wetlands identification, as follows. First, a total
of 895 ground truth points for 2016, including inundated wetlands and non-wetland classes,
were randomly divided into two subsets of training (comprising 637 data points) and testing
(comprising 258 data points). The training subset was used for training the machine learning
algorithms, and the testing subset was withheld from the model, and used for the accuracy
assessment. We created a multisensory band composite by integrating Sentinel-1 SAR data
to selected Sentinel-2 high-resolution bands (Figure 3; Table 1). We used this Sentinel-1
and Sentinel-2 composite as predictors in the classification. We evaluated two machine
learning algorithms, random forest (RF) and support vector machine (SVM), to establish
a relationship between the multisensory composite bands as predictors and the training
ground truth data. The optimum model (the model with the highest accuracy for classifying
testing data) was used to classify the multisensory composite into two classes of wetlands
and non-wetland pixels to identify wetlands in our study area. The generalizability of the
optimum model was tested again using an additional 2231 ground truth points from a
novel year, 2017.

Additionally, we tested the method by performing an accuracy assessment on small
vegetated and small non-vegetated wetlands (see explanation below). Next, we excluded
the permanent water bodies from the map using the JRC products as described above.
Finally, we mapped the emergent vegetation within the identified wetlands using Sentinel-
2-derived NDVI. We describe the details of the adopted methodology below. Figure 5
shows the workflow of the method.
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Figure 5. Flowchart showing the main steps that were used in this study for mapping wetlands
surface water.

4.1. Supervised Classification

Supervised machine learning algorithms establish relationships between input vari-
ables and target prediction [37–39]. We compared two popular machine learning algorithms,
namely random forest (RF) and support vector machine (SVM), as supervised classifiers
of surface water inundation, as predicted by the multisensory composite of Sentinel-1,
Sentinel-2, NDVI, and NDWI (Table 1). These algorithms, which are available as func-
tions within the GEE platform, were trained using the training subset, where the ground
truth data served as a binary categorical response variable (0 = not an inundated wetland,
1 = inundated wetland). The trained algorithms were tested using the test subset, which
was withheld from model fitting, and the model with the best performance was selected
for the classification of the multisensory composite to identify the water bodies across
the study area. The best performance was identified through accuracy assessment using
statistical coefficients.
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RF is an advanced version of a decision tree algorithm. Decision tree algorithms
are robust predictive machine learning models that utilize a tree structure to establish
relationships between inputs and outcomes. A tree structure mirrors how a tree starts
at a wide trunk and splits into smaller branches as it is developed upward. Likewise, a
decision tree learner uses a structure of branching decisions that lead examples into a final
predicted class value. RF improves decision trees by combining bootstrap aggregation with
random feature selection to add additional diversity to the model [40]. Further, though
a decision tree is constructed on a whole dataset using all the features of interest, RF
randomly selects observations and specific features to create multiple decision trees, and
then averages the results to make predictions, which results in a more robust model [41].
The hyperparameters of the RF, including the number of trees, min leaf population, and bag
fraction, were determined through a trial–error procedure in which we added the values
gradually to obtain the least error values in the training data prediction outcome. The
optimum hyperparameters of the RF model in this study are presented in Table 2.

Table 2. The optimum hyperparameters of the SVM and RF algorithms used for surface water
classification.

SVM RF

Parameter Value Parameter Value
Kernel type Radial basis function Number of trees 170

Decision procedure voting Min Leaf Population 1
Hyper parameter gamma 0.5 Bag fraction 0.5

Cost C parameter 10

The SVM classification tool uses machine learning theory to maximize predictive
accuracy while automatically avoiding over-fitting the data [42]. SVM can be defined as
systems that use the hypothesis space of linear functions in a high dimensional feature
space, trained with a learning algorithm from the optimization theory [43]. SVM can be
imagined as a surface that creates a boundary between plotted points in a multidimensional
space representing their feature values. An SVM’s goal is to create a flat border, called a
hyperplane, which divides the space to develop relatively homogeneous partitions on either
side. We adjusted the hyperparameters needed for SVM through a trial–error procedure to
identify the optimum structure of the SVM model (Table 2).

4.2. Identification of Wetland Surface Water

We used the 2017 testing data to estimate wetland surface water via the trained
algorithm without refitting the model. As we mentioned before, the JRC product was used
to exclude the permanent water pixels in order to identify surface water in wetlands across
the test site. The remaining water pixels were stratified based on the presence of emergent
vegetation, allowing us to determine the accuracy of detecting surface water in vegetated
vs. non-vegetated wetlands, where vegetation status was inferred from NDVI values. The
Jenks natural breaks optimization method was used to classify the wetlands into three
low, medium, and high NDVI clusters (Table 3). The Jenks method is a data clustering
technique designed to determine the best combination of values into different classes. This
is performed by attempting to minimize the variance within classes, and maximize the
variance between classes. NDVI values below zero typically represent open water [44], and
increase with increasing vegetation cover until they saturate for high vegetation closed
canopies [45].

326



Remote Sens. 2022, 14, 159

Table 3. NDVI cut-off values for classifying vegetation status in the identified wetlands.

Class NDVI Values Cover Type

Low −0.50 to 0.00 Open water
Medium 0.00 to 0.20 Sparsely vegetated wetland

High 0.20 to 0.77 Densely vegetated wetland

4.3. Accuracy Assessment

The SVM and RF algorithms used to classify the multisensor composite were evaluated
by constructing a confusion matrix for each model. The accuracy assessment was performed
on the test subset in which the predictions and the ground truth data were compared using
statistical coefficients (Equations (1–4)). Accuracy assessment was also carried out for
the next year (2017) to evaluate the generalizability of the optimum model. The ground
truth points for the year 2017 were only used for testing the model. Additionally, we
performed separate accuracy assessments for small vegetated and small non-vegetated
wetlands. To assess the accuracy of the methodology on small and highly vegetated
wetlands, we provided a test set of 679 random points from small wetlands in the study
area, with an additional 763 points from non-wetland classes from the 2016 aerial survey
inventory. These were novel points that were not used as part of model training. These
points came from wetlands with areas that ranged between 10 to 850 m2, and the presence
of emergent vegetation ranged from 40 to 100%. We used the same procedure for small
(10 to 850 m2) non-vegetated wetlands by providing a test set of 1680 points (1311 wetland
and 369 non-wetland classes).

Acuracy =
TP + TN

TP + TN + FP + FN
(1)

Speci f ity =
TN

TN + FP
(2)

Sensitivity =
TP

TP + FN
(3)

In the equations above, N indicates the total number of observations; n denotes the
number of accurately classified wetland and non-wetland pixels; TP, TN, FP, and FN refer
to true positive, true negative, false positive, and false negative, respectively.

Kappa =
Po − Pe

1 − Pe
(4)

where po is the relative observed agreement, and pe is the hypothetical probability of chance
agreement:

Po =
TP + TN

n
(5)

and
Pe =

1√
N
((TP + FN)(TP + FP) + (FP + TN)(FN + TN)) (6)

5. Results

The trained SVM and RF algorithms were used to classify multisensor composites
for the years 2016 and 2017. The accuracy assessment showed SVM and RF models
yielded favorable results across the testing data. However, the RF outperformed the
SVM in both 2016 and 2017 testing data. Therefore, the RF model was selected as the
optimum model for wetland inundation mapping. The overall testing data accuracy
for the SVM and RF model for the year 2016 was 0.88 and 0.95 (Table 4), and for the
year 2017 was 0.88 and 0.94, respectively (Table 5). A summary of accuracy assessment
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using overall accuracy, Kappa, Sensitivity, and specificity for the years 2016 and 2017 is
shown in Tables 4 and 5, respectively.

Table 4. Accuracy assessment of supervised classification of wetland surface water (WSW) vs. other
classes (OC) for the year 2016 on the test data subset that was withheld from model calibration.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.95 0.9 0.94 0.96 136 8 107 4
SVM 0.88 0.75 0.75 0.98 129 14 114 1
JRC 0.73 0.5 0.99 0.55 218 271 330 2

NDWI 0.68 0.38 0.67 0.48 287 89 184 305

Table 5. Accuracy assessment of supervised classification of wetland surface water (WSW) vs. other
classes (OC) for 2017 on the test data subset that was withheld from model calibration.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.94 0.87 0.9 0.99 757 250 1206 18
SVM 0.88 0.76 0.76 0.98 771 236 1205 19

NDWI 0.7 0.36 0.72 0.86 584 423 1131 93
JRC 0.72 0.41 0.99 0.75 612 395 1178 2

We mapped wetland surface water across the study area for the years 2016 and 2017.
Figures 6 and 7 show the identified wetlands across the study area for the years 2016
and 2017, respectively. The spatial resolution of the final maps is 10 m. The local wetland
inundation in the study area can also be extracted based on the results. For example,
a portion of the study area is magnified in Figure 8. A visual comparison between the
aerial survey (ground truth data) and wetland surface water map (based on RF classifier)
in Figure 9 shows that surface water in wetlands was mapped with acceptable accuracy
(overall accuracy: 0.95; Kappa: 0.9). As we mentioned before, we also tested our algorithm
in the identification of surface water in small vegetated and small non-vegetated wetlands.
We compared the results with NDWI and Landsat-derived JRC surface water products
(Tables 6 and 7). The results showed higher accuracy in RF as the optimum model (overall
accuracy 0.76) compared to JRC (overall accuracy 0.60) and NDWI (overall accuracy 0.62)
in surface water detection in small and highly vegetated wetlands (Table 6). The RF (overall
accuracy 0.81) also outperformed the NDWI (overall accuracy 0.44) and JRC (overall
accuracy 0.41) in small non-vegetated wetlands (Table 7).
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Figure 6. Spatial distribution in inundated wetlands (A), spatial distribution of surface water (B) in
August 2016.
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A 

B 

Figure 7. Spatial distribution of emergent vegetation in inundated wetlands (A), spatial distribution
of surface water (B) in August 2017.
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Figure 8. Visual comparison of wetland inundation maps between predicted (A) and observed
wetlands in aerial surveys (B) in a portion of the study area. The accuracy assessment for small
vegetated wetlands and small non-vegetated wetlands are presented in Tables 6 and 7, respectively.

Table 6. Accuracy assessment for detection of wetland surface water (WSW) vs. other classes (OC) in
wetlands that are both small (<850 m2) and highly vegetated wetlands (vegetation > 40%) from the
year 2016 on the test data subset that was withheld from model calibration.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.76 0.51 0.97 0.69 342 334 753 10
SVM 0.73 0.44 0.84 0.68 324 352 694 69

NDWI 0.62 0.19 0.94 0.58 131 545 755 8
JRC 0.6 0.15 1 0.57 99 577 763 0

Table 7. Accuracy assessment for detection of wetland surface water (WSW) vs. other classes in small
(<850 m2) and non-vegetated (vegetation < 40%) wetlands for 2016.

Data Overall Accuracy Kappa Sensitivity Specificity Correct WSW Incorrect WSW Correct OC Incorrect OC

RF 0.81 0.57 0.98 0.55 1027 287 344 25
SVM 0.72 0.41 0.97 0.43 858 456 346 23

NDWI 0.44 0.14 0.99 0.28 379 941 365 4
JRC 0.41 0.13 1 0.27 324 987 368 1

Figures 6 and 7 show the identified wetlands after excluding the permanent wet pixels
for the years 2016 and 2017, respectively. The presence of emergent vegetation within the
identified wetlands, as indicated by NDVI, for both years is also shown in Figures 6 and 7.
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Figure 9. The result of wetland inundation maps for the year 2017 was obtained from the multisensor
composite classification using random forest. The image shows the identified wetland. The back-
ground image is Sentinel-1 VV. The black arrows show some examples of those small wetlands that
were not detected in the JRC (A); frequency of surface water occurrence from the year 1984 to 2019
obtained from the Landsat-derived JRC products (B); surface water visualization using the Sentinel-2
derived NDWI (C); water extent for the year 2017 derived from the Landsat-derived JRC product (D).

6. Discussion

This study developed an automated workflow within the GEE platform for mapping
wetland surface water for 2016 and 2017 by applying the RF classifier to a combination of
Sentinel-1, Sentinel-2 band data, and spectral reflectance indices derived from Sentinel-2.
The results were evaluated using statistical coefficients and visual comparison with ground
truth data, as well as results from Landsat-derived surface water products. The inundation
of relatively large and deep water bodies can be identified in most existing remote sensing
products. However, mapping wetland surface water in the PPR region is challenging due
to two main reasons: (1) most PPR wetlands are very small and are highly sensitive to
climate variability; and (2) the wetlands can be dry or wet, and they can contain different
species of vegetation that can mask surface water. Therefore, these wetlands have complex
spectral characteristics that complicate the detection of surface water extent from satellite
sensors. Our approach also provides information regarding emergent vegetation within
those wetlands. This is important because emergent vegetation provides shelter and food
for aquatic vertebrates, such as waterfowl communities [46]. Our method can also detect
water below those vegetation canopies; water that would otherwise be excluded from
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habitat maps. We also provide an open-science algorithm in GEE for repeating these
estimates, which can form the basis of long-term wetland surface water monitoring in
the PPR.

A typical approach for mapping wetlands uses passive remote sensing that relies on
water’s optical properties, which differ from other land use types [47–49]. For instance,
water quickly absorbs electromagnetic radiation, and more rapidly attenuates longer wave-
lengths than shorter ones [50–52]. However, the application of optical sensors in identifying
PPR wetlands is limited, since both water depth and mixed pixels can change the water spec-
tral signature [50–52]. Moreover, organic carbon compounds, water turbidity, chlorophyll
content, and suspended materials can also add variation to water spectral properties. We
addressed this issue by integrating the high-resolution bands of optical and radar sensors.
Figure 9 shows a visual comparison of surface water derived from different remote sensing
data. The figure shows that many small wetlands were not captured in the Landsat-derived
surface water products, since the spatial resolution of Landsat products (30 m) is too coarse
to capture those wetlands. This is typical of many surface water classifiers that are focused
on deep open water, as they misclassify the highly variable spectral signatures of inundated
wetlands [53]. Moreover, optical sensors struggled to capture wetlands covered by emer-
gent vegetation. This study integrated Sentinel-1 SAR data into the high resolution (10 m)
optical bands of Sentinel-2 to create a more robust classifier (Figure 9A). We also used a
wider temporal window for the optical bands, which increased the number of observations
over the study area. This allows our algorithm to minimize the effects of cloud covers,
and identify the small wetlands by detecting frequently wet pixels. We performed an
independent accuracy assessment on small and highly vegetated, and small non-vegetated
wetlands. The results showed acceptable accuracy for both types of wetlands. We also
compared the results with surface water maps derived from optical sensors (Table 6). Our
algorithm performs better in identifying both large and small wetland water bodies than
the Landsat-derived JRC and Sentinel-2-derived NDWI algorithms (Tables 4–6).

The wetland surface water was also evaluated in vegetated and non-vegetated wet-
lands. Visual observation shows that the small inundated wetlands contain more vegetation
compared to larger and deeper water bodies. Comparing 2016 and 2017 wetland surface
water maps reveals abrupt changes in emergent vegetation in small wetlands. These results
agree with the findings of [54]. They reported that the small, ephemeral wetlands in the
PPR experienced more vegetation change variability than larger, semi-permanent wet-
lands [54]. Large and deep water bodies can be easily detected by various remote sensing
data. For example, [55] used Landsat time-series to create a global map of inland water
dynamics. However, identifying small water bodies in the PPR is challenging due to the
wetlands’ size and strong potential for dense vegetation cover. This is very important, as
the majority of wetlands in the PPR are small. This causes the surface water in potholes to
be highly dynamic. The total surface water area calculated from the JRC product and our
classification method was 294 km2 and 376 km2, respectively. Algorithms that miss surface
water in these small wetlands will be biased, and misrepresent the hydrologic variability on
the landscape. For example, small wetlands provide more foraging habitats for organisms
that rely on shallow water.

Cloud computing and the advent of multisensor remote sensing data in the GEE have
several advantages for large-scale and time-series analysis, such as monitoring wetlands
dynamics [56]. The use of the GEE cloud computing platform is more convenient than
traditional methods, considering its processing speed and ease of use [57]. As more machine
learning algorithms and remote sensing data become available within the GEE platform,
we expect remote sensing data processing to be simplified even further. Additionally, and
unlike most supercomputing centers, GEE is also designed to help researchers quickly
disseminate their results to other researchers and interested parties. Once an algorithm
has been developed on the GEE, users can generate systematic data products or deploy
interactive applications aided by the GEE’s resources [25]. The fully automated workflow
developed for this study allows us to refine the existing data and method, and rapidly
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apply it to a broad geographical scale to generate estimates in new years. One of the
disadvantages of using the GEE cloud computing platform is that it limits the number of
field samples and input features. This is especially challenging when the analysis is applied
to a large domain, which may reduce the efficiency of the implemented method.

7. Conclusions

Wetland habitat characteristics, including wetland surface water area and vegetation
presence, are essential for estimating waterfowl populations. The PPR contains millions
of small wetlands providing abundant and critical habitats for waterfowl in North Amer-
ica. Mapping wetlands is needed to set conservation targets and develop management
plans for waterfowl in the PPR. However, remote-sensing-based mapping of wetlands has
previously been challenging. Many small wetlands in the region were missed by existing
remote-sensing-derived surface water inventories due to limitations in the spatial resolu-
tion of remote sensing products. The trade-off between spectral and spatial resolution of
remote sensing products necessitates the use of complementary data for wetland detection
methods. Limiting the input parameters to the high-resolution bands of S2 helps detect
smaller wetlands; however, it will ignore the spectral information of the other bands. Given
its high resolution and ability to detect surface water, SAR can provide additional spectral
information when combined with S2. The pre-processing of the original S1 and S2 images,
and performing classification methods need massive computation. The GEE Cloud-based
platform hosts many open access remote sensing images that provide remote analysis to
apply machine learning algorithms for environmental monitoring. This study will share
the resulting algorithm, which is tailored towards the needs of waterfowl conservation
managers, with the management community, allowing its use for setting future conserva-
tion targets. These efforts will help conservation managers improve local estimates of pair
abundance and waterfowl populations’ distribution patterns in the study area, and similar
settings elsewhere.
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Abstract: It is an effective measure to estimate groundwater storage anomalies (GWSA) by combining
Gravity Recovery and Climate Experiment (GRACE) data and hydrological models. However, GWSA
results based on a single hydrological model and GRACE data may have greater uncertainties, and it
is difficult to verify in some regions where in situ groundwater-level measurements are limited. First,
to solve this problem, a groundwater weighted fusion model (GWFM) is presented, based on the
extended triple collocation (ETC) method. Second, the Shiyang River Basin (SYRB) is taken as an
example, and in situ groundwater-level measurements are used to evaluate the performance of the
GWFM. The comparison indicates that the correlation coefficient (CC) and Nash-Sutcliffe efficiency
coefficient (NSE) are increased by 9–40% and 23–657%, respectively, relative to the original results.
Moreover, the root mean squared error (RMSE) is reduced by 9–28%, which verifies the superiority
of the GWFM. Third, the spatiotemporal distribution and influencing factors of GWSA in the Hexi
Corridor (HC) are comprehensively analyzed during the period between 2003 and 2016. The results
show that GWSA decline, with a trend of −2.37 ± 0.38 mm/yr from 2003 to 2010, and the downward
trend after 2011 (−0.46 ± 1.35 mm/yr) slow down significantly compared to 2003–2010. The spatial
distribution obtained by the GWFM is more reliable compared to the arithmetic average results, and
GWFM-based GWSA fully retain the advantages of different models, especially in the southeastern
part of the SYRB. Additionally, a simple index is used to evaluate the contributions of climatic factors
and human factors to groundwater storage (GWS) in the HC and its different subregions. The index
indicates that climate factors occupy a dominant position in the SLRB and SYRB, while human factors
have a significant impact on GWS in the Heihe River Basin (HRB). This study can provide suggestions
for the management and assessments of groundwater resources in some arid regions.

Keywords: groundwater weighted fusion model; GRACE; Hexi corridor; ETC; groundwater storage

1. Introduction

As an important component of terrestrial water storage (TWS), groundwater plays
a key role in domestic, agriculture and industrial use, as well as ecosystems [1,2]. More
than 38% of the world’s population lives in arid or semi-arid zones [3], where groundwa-
ter is usually the dominant freshwater resource, supplying domestic use and irrigation
water [4]. Especially in northwest China, groundwater resources have been facing the
risk of depletion, which may lead to the ecological environment of the region losing its
ability to self-repair and endangering local ecological security [5]. Therefore, accurate
estimation of groundwater storage anomalies (GWSA) is essential for the effective use of
local groundwater resources. The traditional method of monitoring groundwater level
mainly uses monitoring wells. However, monitoring wells are scarce, and the observation
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records are short and discontinuous, restricting research related to GWSA [2,6,7]. Therefore,
it is important to seek an alternative method to obtain ground-based network data for
monitoring of large-scale groundwater storage (GWS) variations.

Since March 2002, Gravity Recovery and Climate Experiment (GRACE) satellites have
provided an opportunity to assess global TWS changes, with a resolution of ~300 km [8–10].
Currently, the GRACE gravity satellites are the only way to sense water storage at all levels,
including soil moisture (SM), snow-water equivalent (SWE), canopy water storage (CWS),
and GWS [10]. To isolate the GWS component from TWS, water storage changes of other
components have to be estimated based on hydrological models [11,12]. At present, there
are several frequently employed hydrological models and reanalysis datasets, such as the
Global Land Data Assimilation System (GLDAS) [13], the WaterGAP Global Hydrology
model (WGHM) [14], and the ERA5 reanalysis dataset [15,16]. Furthermore, previous
studies have demonstrated the effectiveness of GRACE observations to estimate GWSA in
many typically regions of the world, e.g., the Central Valley of California [17,18], northwest
India [9,19,20], and the North China Plain [1,21,22].

Currently, most studies mainly rely on a single hydrological model to separate GWS
components from GRACE-derived TWS [23–25]. However, the accuracy of these models is
restricted by uncertainties in climate forcing (particularly precipitation), model parameters,
and deficiencies in model structure [26–31]. Therefore, the effective combination of multiple
models can improve the performance of hydrological simulations relative to a single model.
For instance, Shamseldin et al. [32] used the method of multi-model ensemble to develop
more skillful and reliable probabilistic hydrologic prediction. The results confirmed that
better estimates of water storage can be obtained by combining the model outputs of differ-
ent hydrological models. Long et al. [33] used the Bayesian model-averaging technique,
which can merge multiple TWS products to analyze the spatiotemporal variability of TWS.
Mehrnegar [27] presented the dynamic model-data-averaging method, which can be used
to merge multiple TWS simulations. The result indicated that linear trends and seasonality
within global hydrological models can be improved by using the dynamic model-data-
averaging method. These multi-model techniques prove to provide accurate estimates by
combining different models according to the different weighting strategies [32,34].

Triple collocation (TC) is a statistical method to estimate the random-error variance
of three independent datasets [35]. Currently, the TC method has been used to estimate
measurement errors of GRACE data [36]. Specifically, Khaki et al. [37] and Nigatu et al. [38]
estimated the changes in key water-storage components by using the GRACE data and
soil-moisture data based on the TC analysis method. Yin and Park [39] proposed a simple
least-square merging approach using error characteristics quantified from the TC approach
to estimate weight. Compared to the classic TC approach, the extended triple collocation
(ETC), proposed by McColl [40], can obtain an additional evaluation index, that is, the
correlation coefficient relative to the unknown true value. Up to now, there are few studies
that have merged datasets from different sources based on the ETC method.

The Hexi Corridor (HC) is one of the most agriculturally rich areas of northwest China,
which is characterized as an irrigation district of “no irrigation, no agriculture” [5,41].
Moreover, groundwater resources have been depleted on a large scale in the area due to
poor management of groundwater exploitation [42]. The policy of building a water-saving
society was introduced in Zhangye City of Gansu Province in 2001 [43]. The government
initiated a policy called the Key Governance Planning Project of the Shiyang River Basin
in 2007, which aimed to improve the ecological conditions of the area [44,45]. Accurate
estimation of GWS is essential for understanding the complex hydrological process and
formulating sustainable management policies for groundwater resources in the region.

The purpose of this study is to improve the accuracy of groundwater storage estimates
in some regions where in situ groundwater-level measurements are limited and to quantify
the impact of climate change and human activities. Specifically, a weighted fusion model is
proposed, based on the squared correlation coefficient and error variance calculated by the
ETC [40,46] method. The ratio of these two indicators is used to develop the groundwater

338



Remote Sens. 2022, 14, 202

weighted fusion model (GWFM), which is helpful in merging GWSA based on the GRACE
and multiple hydrological models, and compare it with the original results. In addition,
a simple and effective method is used to evaluate the contribution of climate factors and
human factors to GWS.

2. Materials and Methods

2.1. Study Area

The HC is located in Northwest China (92◦12′–104◦20′ E, 37◦17′–42◦48′ N) (Figure 1a),
including the five prefecture-level cities of Wuwei, Jinchang, Zhangye, Jiuquan, and Ji-
ayuguan (Figure 1c, http://srtm.csi.cgiar.org (accessed on 10 August 2021)) [47]. The three
major rivers of the HC, from west to east, are the Shule River, the Heihe River and the
Shiyang River, originating from the Qilian Mountains. The HC is mainly covered by bare
land and gobi, and agricultural land is concentrated in the Shiyang River Basin (SYRB)
and Heihe River Basin (HRB) (Figure 1d, https://www.resdc.cn (accessed on 10 August
2021)) [48]. It belongs to the arid continental climate, with an average annual temperature
ranging from 8 to 10 ◦C [42], and the annual evaporation is 1500–3200 mm [49]. The rainfall
shows a decreasing trend from east to west (Figure 1b, http://data.cma.cn (accessed on
10 August 2021)), and ~80% of rainfall occurs during July–August [50]. The Qilian Moun-
tains in the south nurture extensive glaciers and snow, which is an important freshwater
resource for downstream cities critical to easing agricultural drought and other human
activities in the HC [51].

 

Figure 1. Information summary of the Hexi corridor: (a) geographical location, (b) annual precipita-
tion, (c) digital elevation and distribution of groundwater-level monitoring points, (d) land use.

2.2. Materials
2.2.1. GRACE Data

The GRACE RL05 Mascon solutions are utilized to derive TWS anomalies in this study,
which are provided by the Center for Space Research (CSR) [52]. Monthly TWS anomalies
are provided from April 2002 to June 2017, with a spatial resolution of 0.5 × 0.5◦. The
regularization constraint on mascon solutions is derived from original GRACE information
with no empirical filtering post-processing [52,53]. Therefore, the product can capture all
the signals observed by GRACE within the measurement noise level and be used without
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further processing [54]. Missing data in the CSR Mascon are filled by linear interpolation of
the nearby monthly mean values [24].

2.2.2. Soil Moisture Datasets

GLDAS was jointly developed by the National Aeronautics and Space Administration
and the National Oceanic and Atmospheric Administration, which can obtain land-surface
state and flux with high time resolution (https://disc.gsfc.nasa.gov/ (accessed on 1 July
2021)) [13]. In this study, the monthly SM product provided by the GLDAS Noah model
with a spatial resolution of 1.0 × 1.0◦ is used to estimate SM over the HC. For consistency of
data resolution, the related datasets are interpolated into a spatial resolution of 0.5 × 0.5◦.
More details on various soil-moisture data used are summarized in Table 1.

Table 1. Summary of soil-moisture products from GLDAS, WGHM, and ERA5-Land.

Datasets
Spatial

Resolution
Temporal

Resolution
Soil Layer Depth (cm)

GLDAS-Noah 1.0 × 1.0◦ monthly 4 0–10, 10–40, 40–100, 100–200
WGHM 0.5 × 0.5◦ monthly - 100–200

ERA5-Land 0.1 × 0.1◦ monthly 4 0–7, 7–28, 28–100, 100–289

WGHM [14] was developed by the Institute of Physical Geography at the University
of Frankfurt and provides information on spatiotemporal water-storage changes for most
hydrological processes. This model accounts for four of the most important terrestrial
water-storage components: surface water, snow, soil water, and groundwater storage [55].
The WGHM data were retrieved from https://doi.pangaea.de/10.1594/PANGAEA.918447
(accessed on 1 July 2021). The SM product provided by WGHM is used in this study, which
is monthly data from January 2003 to December 2016 at a spatial resolution of 0.5 × 0.5◦.

ERA5-Land [56] is a reanalysis dataset produced by replaying the land component
of the ERA5 climate reanalysis (https://cds.climate.copernicus.eu/ (accessed on 1 July
2021)). It is one of the most modern and finest reanalysis datasets produced by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) within the Copernicus
Climate Change Service. In this study, the SM product of ERA5-Land is employed, which
is the monthly datasets, with a spatial resolution of 0.1 × 0.1◦ from 2003 to 2016. To main-
tain the same spatial resolution, the related datasets are interpolated into the 0.5 × 0.5◦
spatial resolution.

2.2.3. Groundwater Level from Wells

Groundwater monitoring data are collected from the groundwater yearbooks compiled
by the China Institute of Geological Environment Monitoring (CIGEM), which is published
by the Ministry of Land and Resources of the People’s Republic of China. Due to the sparse
number of stations and a lack of continuous data at individual stations, the measured
groundwater-level data of five wells from 2007 to 2014 are selected in the SYRB to verify the
performance of GWFM-based GWSA in this study (shown in Figure 1b). The groundwater
level can be converted to groundwater storage by multiplying by specific yield values.
However, specific yield values are unknown, and the groundwater level is only used
to verify the performance of GWFM. Therefore, there is no need to covert the levels to
groundwater storage in this study to avoid possible errors associated within unknown
specific yield values.

2.2.4. Auxiliary Data

The precipitation dataset is collected from the China Meteorological Data Service Cen-
ter, based on the precipitation data of high-density ground stations in China (2472 national
meteorological observatories). It uses the thin-plate splines method [57] of ANUSPLIN
software for spatial interpolation to generate monthly grid data from 1961 to the present,
with a spatial resolution of 0.5 × 0.5◦. Additionally, evapotranspiration and temperature
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data from the GLDAS and ERA5-Land during 2003–2016 are collected to evaluate the
impact of climate factors on GWS.

To evaluate the impact of human factors, the annual groundwater withdrawal data of
the HC from 2003 to 2016 are also collected. They are collected from the Water Resources
Bulletin of Gansu Province, which is published by the Gansu Provincial Department of
Water Resources, China.

2.3. Methods

The flow chart of the study is shown in Figure 2. First, the GWSA results are estimated
based on GRACE and three hydrological models (selected as GLDAS, ERA5, and WGHM).
Second, the error variance and correlation coefficient of three GWSA derived by ETC are
utilized for weight estimation, and then the GWSA results from different sources are merged
based on the least squares framework. Furthermore, the merged GWSA are verified by the
original results and in situ groundwater-level measurements. Finally, the impact of different
factors on GWS is analyzed by combining climatic factors and water-consumption data.

 
Figure 2. The flow chart of the study.
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2.3.1. Construction of GWFM

Hydrological simulation typically needs to be calibrated by the “true” value of the
target variable. However, it is difficult to obtain measured data in some areas because of
the uneven distribution of monitoring points. ETC is a statistical method to estimate the
correlation coefficient and the random-error variance of three independent datasets. The
prerequisites for the TC approach are: (i) linearity between the true hydrological signal and
the observations, (ii) signal and error stationarity, (iii) independency between the errors
and the hydrological signal (error orthogonality), and (iv) independency between the errors
of each dataset (zero-error cross-correlation) [35]. This study uses the error variance and
squared correlation coefficient calculated by the ETC method to develop the GWFM. The
error model is given by [35,40]:

Si = αi + βiΘ + εi (1)

where Si (i = 1, 2, 3) represents GWSA based on GRACE and three hydrological models;
Θ denotes the unknown true hydrological signal; Si represents collocated measurement
systems linearly related to the true unknown value, Θ; αi and βi represent the least-squares
intercepts and slope, respectively; and εi represents additive zero-mean random noise.

Covariance estimation is used to solve random-error variance in this study. The
covariances between the different datasets are given by [35,40]:

cov(Si, Sj) = E(SiSj)− E(Si)E(Sj) = βiβ jσ
2
Θ

+βi cov(Θ, ε j) + β j cov(Θ, εi) + cov(εi, ε j)
(2)

According to these four prerequisites of the TC approach, cov(εi, ε j) = 0 (i �= j
)
,

cov(εi, Θ) = 0; the equation reduces to [35,40]:

Cij = cov(Si, Sj) =

{
βiβ jσ

2
Θ (i �= j

)
β2

i σ2
Θ + σ2

εi
(i = j)

(3)

where σ2
εi

represents the variance of random-error variance, εi; β2
i σ2

Θ denotes the sensitivity
of datasets, Si, to changes in true signal. In other words, the higher βi, the stronger the
response of datasets,Si, to hydrological signal. The sensitivity of each dataset can be
calculated by combining their covariances [35,40]:

β2
i σ2

Θ =

⎡⎢⎣
C12C13

C23
C21C23

C13
C31C32

C12

⎤⎥⎦ (4)

The error variance can be obtained by subtracting the sensitivity β2
i σ2

Θ of each dataset
from their total variance [35,40]:

σ2
εi
=

⎡⎢⎣ C11 − C12C13
C23

C22 − C21C23
C13

C33 − C31C32
C12

⎤⎥⎦ (5)

ρ2
i,Θ =

β2
i σ2

Θ
β2

i σ2
Θ + σ2

εi

=
SNRi

SNRi + 1
(6)

SNRi =
var(Si)

var(εi)
=

β2
i σ2

Θ
σ2

εi

(7)

where ρ2
i,Θ represents the squared correlation coefficient and SNR represents the un-biased

signal-to-noise ratio.
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In this study, the error variance and squared correlation coefficient calculated by the
above method are used to develop the GWFM. The detailed formula is as follows:

Wi =

⎧⎪⎨⎪⎩
ρ2

i,Θ/σ2
εi

n
∑

i=1
ρ2

i,Θ/σ2
εi

(ρ2
i,Θ > 0, σ2

εi
> 0)

1/3 (ρ2
i,Θ < 0, σ2

εi
< 0)

(8)

Ymodel = W1M1 + W2M2 + W3M3 (9)

where Mi (i = 1, 2, 3) denotes the time series of the same position for the three datasets and
Wi denotes the weight of the corresponding time series, Mi.

2.3.2. Estimation of GWSA Based on GRACE

Generally, GWSA can be estimated by subtracting CWS, SWE, and SM simulated by
hydrologic models from the GRACE-derived TWS anomalies [4]. The detailed formula is
as follows:

GWSA = TWSA − SMA − SWEA − CWSA (10)

where SMA, SWEA, and CWSA represent the storage anomalies of SM, SWE and CWS,
respectively, relative to a reference period (the reference period is 2004–2009). Previous
studies indicated that SM and GWS are the primary contributors to TWS changes and that
variations in snow and ice, biomass, and surface water are relatively minor [9,19,58,59].
In addition, the selected study area is located in the arid region of northwest China and
is mainly covered by bare land and gobi. Therefore, SWE and CWS can be ignored in
this study.

2.3.3. Multiple Linear Regression of Time Series

To analyze the seasonal and secular trend of GWSA, multiple linear regression is used
to analyze the temporal variability of GWSA. The regression model is given by [60]:

Y(t) = β1 + β2t + β3 sin(πt) + β4 cos(πt) + β5 sin(2πt) + β6 cos(2πt) + ε (11)

where Y(t) denotes GWSA at time t; β1 and β2 denote the constant offset and secular trend,
respectively; β3 and β4 represent the annual signal; β5 and β6 represent semi-annual signals;
and ε represents the model error. Meanwhile, the annual and semi-annual amplitude are
computed as [60]:

annual amplitude =
√

β2
3 + β2

4 (12)

semi − annual amplitude =
√

β2
5 + β2

6 (13)

2.3.4. Estimation of the Contribution to GWS

GRACE can monitor the temporal and spatial changes of TWS, including human
factors and climate factors. In order to evaluate the contribution of different factors to GWS,
a method is used to evaluate the contribution of these two factors, which can be computed
as follows [61]:

GWSCc = GWSCGRACE − GWSCH (14)

GWSC = GWSAt − GWSAt−1 (15)

ηH =
GWSCH

|GWSCH |+ |GWSCC| (16)

ηC =
GWSCC

|GWSCH |+ |GWSCC| (17)

where GWSCC represents climate-driven GWS changes; GWSCGRACE represents the annual
GWS changes estimated by GRACE data; and GWSCH denotes the part of GWS changes

343



Remote Sens. 2022, 14, 202

induced by human factors. ηH and ηC denote the contribution of human and climatic
factors to GWS changes, respectively. If η is positive, it provides a positive impact on GWS;
otherwise, the opposite is true.

2.3.5. Evaluation Index

In this study, the correlation coefficient (CC), the root mean squared error (RMSE), and
the Nash-Sutcliffe efficiency coefficient (NSE) are utilized to test the performance of this
result [61–63].

CC =
cov(X(t), Y(t))√

var[X(t)] var(Y(t))
(18)

RMSE =

√
1
n

n

∑
i=1

(X(t)− Y(t))2 (19)

NSE = 1 −

n
∑

i=1
(X(t)− Y(t))2

n
∑

i=1
(X(t)− Xmean)2

(20)

where n denotes the total number of observations; X(t) and Y(t) denote measurements and
simulated values, respectively; and Xmean represents the mean of measurements. Consider-
ing inconsistent scales between different results, in situ groundwater-level measurements
and simulated results should be normalized to [−1, 1].

3. Results

3.1. Experimental Verifications of the GWFM

It is necessary to test the performance of the GWFM before it is applied to the study
area and the SYRB is chosen as the study area. The GWSA results based on GRACE
observations and three hydrological models (namely GLDAS, ERA5, and WGHM) are
introduced as the input data of the GWFM, and GWFM-based results are verified against
in situ groundwater-level measurements.

Figure 3 represents the time series of GWSA estimated from the GWFM and three
GRACE-based GWSA (hereafter GRACE−GLDAS, GRACE−ERA5, and GRACE−WGHM).
Moreover, in situ groundwater-level measurements are also shown, and the shaded areas
represent the uncertainties of GWFM-based GWSA. From the long-term variation of GWSA
point of view, GWFM-based GWSA agree well with that, based on GRACE in terms of
periodicity and seasonality. Furthermore, it is obvious that the long-term trends of GRACE-
based and GWFM-based GWSA and in situ groundwater-level measurements are generally
similar, showing a decreasing trend. However, there is a clear difference in phase between
them (Figure 3). In other words, there is a clear time lag between GRACE-based GWSA and
in situ groundwater-level measurements. Many previous studies have reported the time
lag; for example, Thomas et al. [64] indicated that when the lag time was two months, the
correlation between GRACE-based GWSA and in situ groundwater-level measurements
reached a maximum in the Central Valley of California. Abou et al. [65] reported that there
was a clear time lag between in situ groundwater-level measurements and GWSA based
on GRACE in the Bakhtegan catchment. In order to explore the best lag time, this study
uses GRACE−GLDAS and in situ groundwater-level measurements (S1–S5) (Table 2). The
result shows that the highest correlation (CC = 0.59–0.72) can be found when the lag time is
4–5 months.

In order to explore the reliability of the GWFM, the lag time is set to 4 months, and
GRACE-based (GRACE−GLDAS, GRACE−ERA5, and GRACE−WGHM) and GWFM-
based results are compared with in situ groundwater-level measurements (Figure 4). The
comparison indicates that the seasonality of GRACE-based and GWFM-based GWSA is
consistent with in situ groundwater-level measurements, and the annual amplitude of
GRACE−ERA5 is greater than that of GRACE−GLDAS and GRACE−WGHM. Further-
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more, the amplitudes of in situ groundwater-level measurements (S1–S5) also display larger
differences. For example, S3 shows a small amplitude change after 2011; the amplitude of
S1 varies from −3 m to 5 m, and the amplitude of S5 is between −8 m and 16 m from the
perspective of the long-term average.

 
Figure 3. Comparisons of GWSA time series from GRACE−GLDAS, GRACE−ERA5, GRACE−WGHM,
and GWFM and verified against in situ groundwater-level measurements.

Table 2. Lagged CC between in situ groundwater-level measurements and GWSA in S1–S5 from 2007
to 2014.

Wells
Time Lag (Month)

0 1 2 3 4 5 6

S1 0.34 0.41 0.51 0.60 0.65 0.63 0.55
S2 0.31 0.38 0.51 0.61 0.68 0.72 0.70
S3 0.59 0.60 0.64 0.66 0.69 0.67 0.62
S4 0.48 0.49 0.52 0.54 0.58 0.59 0.57
S5 0.51 0.53 0.58 0.62 0.64 0.61 0.56

In order to quantify the agreement between GWFM-based GWSA and in situ
groundwater-level measurements, three metrics (CC, RMSE, and NSE) are calculated
over the SYRB, as shown in Figure 5. This result shows that the agreement between
GWFM-based GWSA and in situ groundwater-level measurements is much better than
that based on GRACE. Additionally, the GWFM effectively improves the CC and NSE
and decreases the RMSE. Specifically, the CC between GWFM-based GWSA and in
situ groundwater-level measurements, S1, increases from 0.54 to 0.74, and the RMSE
decreases from 0.44 to 0.39, the NSE increases from 0.11 to 0.54 relative to the original
results. Compared with the mean value of in situ groundwater-level measurements (ex-
pressed by S6), similar improvements can also be seen for CC (9–40%), NSE (23–657%),
and RMSE (9–28%). The above verification results indicate that reasonable GWSA
estimates can be obtained through the GWFM in the SYRB. Therefore, it can give us
confidence in applying this developed method to the HC, so as to better understand the
temporal and spatial characteristics.

345



Remote Sens. 2022, 14, 202

 
Figure 4. Comparison of GWSA from GRACE−GLDAS, GRACE−ERA5, GRACE−WGHM, and
GWFM estimates with in situ groundwater-level measurements after setting the lag time. (a) S1;
(b) S2; (c) S3; (d) S4; (e) S5; (f) average of S1–S5.
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Figure 5. Comparison of the evaluation index between GWSA and in situ groundwater-
level measurements.

3.2. Comparison of GWSA

Figure 6 shows the annual, monthly, and seasonal scales of GRACE-based and GWFM-
based GWSA from January 2003 to December 2016. The long-term trend of GRACE-based
and GWFM-based GWSA shows a reasonable agreement, and four results also have a
similar annual cycle. For the intra-annual changes of GWSA, the GWSA time series have a
reasonable agreement; the anomalies are positive from May to August (Figure 6c). However,
the values are negative for other months, and the only exception is the GRACE−GLDAS,
always remaining negative. The main reason is that the HC is dry and less rainy, and
~80% of rainfall occurs during the period from May to September [66], which effectively
recharges the groundwater. The HC is a well-known irrigated agricultural area in northwest
China, but surface-water resources are scarce, and irrigation water mainly comes from
groundwater. Therefore, a large amount of groundwater is pumped in spring and summer
due to irrigation needs, which leads to a decrease in groundwater storage.

 

Figure 6. Comparison of GRACE-based and GWFM-based GWSA on different time scales over the
HC during the period from 2003 to 2016. (a) Monthly; (b) annual; (c) seasonal.
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From the perspective of the long-term trend, GWSA reveals a significant downward
trend over the study period. Notably, 2011 is a turning point, and the downward trend
before 2011 is significantly higher than the trend after 2011. In order to clarify the difference
between the four results, multivariate statistical analysis is used for the GWSA time series
in the two time periods of 2003–2010 and 2011–2016 in the HC. Table 3 summarizes the
evaluation indexes for the GWSA time series, including the long-term trend and annual
amplitude. From 2003 to 2010, four GWSA downtrends range from 1.08 (GRACE−ERA5)
to 4.17 (GRACE−GLDAS) mm/yr, which clearly indicates groundwater depletion in the
HC during the period from 2003 to 2011. From 2011 to 2016, the results also show a
downward trend (except GRACE−WGHM), and decline rates range from 0.46 (GWFM) to
0.70 (GRACE−ERA5) mm/yr, while GRACE−WGHM increased at a rate of 0.07 mm/yr.
The rate of decline from 2011 to 2016 is significantly slower than that from 2003 to 2010,
while the annual amplitude, compared with the previous period, increases significantly.
This result may be related to the water policy in the area, such as Gansu Province gradually
implementing the most stringent water-resource management system and measures of
“points to areas, Hexi first” in 2011 [67].

Table 3. Comparison of annual amplitude and trend between GWSA from GRACE−GLDAS,
GRACE−ERA5, GRACE−WGHM, and GWFM.

Datasets
2003–2010 2011–2016

Annual Amplitude (mm) Trend (mm/yr) Annual Amplitude (mm) Trend (mm/yr)

GRACE−GLDAS 6.59 ± 1.54 −4.17 ± 0.47 7.07 ± 3.34 −0.48 ± 1.38
GRACE−ERA5 9.44 ± 1.42 −1.08 ± 0.44 10.10 ± 3.37 −0.70 ± 1.39

GRACE−WGHM 7.12 ± 1.16 −1.67 ± 0.36 9.72 ± 3.20 0.07 ± 1.32
GWFM 7.40 ± 1.22 −2.37 ± 0.38 8.67 ± 3.26 −0.46 ± 1.35

The annual and semi-annual changes of time series can be analyzed by phasor dia-
grams, which show their amplitude and phase based on a reference period (in this study,
the reference period is 2004–2009). The length of each vector represents the magnitude of
amplitude, while the vector direction represents a phase. The bigger the difference between
two vector directions and length, the greater the phase and amplitude difference between
two time series. In other words, the phase difference can affect the magnitude of the corre-
lation, and a difference in amplitude can affect variance agreement. In the case of annual
amplitude and phases, GRACE−ERA5 has a higher annual amplitude than other results
(shown in Figure 7a). Although the best amplitude agreement exists between GWFM-
based result and GRACE−WGHM, the phase correspondence is poor, while GWFM-based
GWSA agree well with GRACE−ERA5 at phase. In terms of semi-annual amplitude and
phases (shown in Figure 7b), the phase and amplitude in GWSA from the GWFM show
favorable agreement with GRACE−GLDAS, while the semi-annual phase and amplitude
of GRACE−ERA5 are different from other results.

 

Figure 7. Vector diagram of the GWSA amplitude and phase change from 2003 to 2016. (a) Annual;
(b) semi-annual.
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3.3. Spatial Pattern of Variation Trends in GWSA

Figure 8 shows the spatial distribution of GWSA based on GRACE and GWFM over
the HC from 2003 to 2016. Among these results, GRACE−GLDAS shows that the area
of GWS depletion has a higher downward trend and coverage, but the characteristics
of spatial distribution in the Shule River Basin (SLRB) and the HRB are not distinct.
GRACE−ERA5 shows obvious spatial-change characteristics, such as the D1 of the SLRB,
the D2 of the HRB, and the D3 of the SYRB as the main GWS depleted areas (shown in
Figure 8b). GRACE−WGHM shows a downward trend, high in the north and low in
the south, but the overall spatial distribution shows no significant characteristic changes
relative to other results. The GWFM highlights remarkable GWS depletion in the d1, d2,
d3, and d4 (shown in Figure 8d), with the rates of about −4.22 mm/yr, −2.67 mm/yr,
−3.77 mm/yr, and −5.06 mm/yr, respectively. It should be noted that, GRACE−ERA5 and
the GWFM show opposite trends in the southeast of the SYRB, with the rates of 1.91 and
−1.76 mm/yr, respectively.

 
Figure 8. The spatial distribution of GRACE-based and GWFM-based GWSA over the HC during the
period from 2003 to 2016. (a) GRACE−GLDAS; (b) GRACE−ERA5; (c) GRACE−WGHM; (d) GWFM.

The GWSA based on the GWFM is shown in Figure 9a, and the simple average result
(average) of both GRACE-based GWSA is shown in Figure 9b. The main depletion areas of
the two results are basically similar, but there is a large difference between the GWFM and
average in the southeast of the SYRB (Df1 and df1), where the two trends are −1.76 mm/yr
and 1.11 mm/yr, respectively. The government of Gansu Province announced Gulang
County and Wuwei City as a GWS over-exploitation area, that is, the Df4 in Figure 9a, which
is more consistent with the results of the GWFM. Therefore, the GWFM can effectively
integrate the advantages of multiple models, retain the characteristics of specific regional
changes, and provide a more accurate GWSA result relative to simple average results.
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Figure 9. Comparison of the spatial-trend distribution in the Hexi corridor between the average
results of original results (GRACE−GLDAS, GRACE−ERA5, and GRACE−WGHM) and GWFM-
based GWSA. (a) GWFM; (b) average.

3.4. Response of GWSA to Climate Change

GWS changes are closely related to climate and human factors. Therefore, it is necessary
to evaluate the relationship between GWFM-based GWSA and influencing factors in order
to better understand the causes and development of groundwater depletion in the HC.

In the context of climate change, precipitation and evapotranspiration are the dom-
inant factors that have the greatest impact on GWS [68]. Temperature changes lead to
changes in evapotranspiration, which, in turn, lead to changes in GWS. The net recharge
of groundwater is the difference between recharge and discharge [2]. Groundwater in
the HC piedmont plain is mainly from the infiltration of surface runoff, which accounts
for ~80% of total recharge [69], followed by precipitation and seepage of irrigation wa-
ter. Groundwater discharge is mainly groundwater pumping and evapotranspiration of
shallow groundwater [70].

To further analyze the detailed relationship between climatic factors and GWSA,
cross-wavelet analysis is used in this study. Cross-wavelet transforms between GWSA
and climatic factors in the HC are displayed in Figure 10. Figure 10a indicates that the
correlations between precipitation and GWSA are strong in the HC during the period of
2003–2016, and it shows a statistically positive correlation between precipitation and GWSA
at the 95% confidence level. Evapotranspiration and temperature also exhibit a strong
positive correlation. In addition, GWSA and climatic factors all have a main resonance
period of about 1 month.

Figure 10. Cross-wavelet transforms between GWSA and climatic factors at monthly scale in the HC.
(a) Precipitation; (b) evapotranspiration; (c) temperature.
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Under the background of climate change, precipitation is the input of water, and
evapotranspiration is the output of water in a region. Therefore, precipitation minus evapo-
transpiration (P−ET) can represent the net recharge of surface water and groundwater [71].
During 2003–2016, the maximum P−ET occurred in June-September, and the minimum
in January-April and October-December (shown in Figure 11). P−ET shows a significant
downward trend relative to other time periods during 2007–2016, resulting in a significant
decrease in net recharge. Such shortage of precipitation will directly hinder the growth
of vegetation and human production, and excessive evapotranspiration will further accel-
erate the loss of available water resources and disrupt the balance of the water cycle [72].
Although the net recharge in summer is positive during this period, groundwater is still in
a state of declining, indicating that groundwater is not effectively recharged.

 
Figure 11. Comparison between P–ET and GWFM-based GWSA over the HC during the period from
2003 to 2016.

In addition, snowmelt is also an important factor in groundwater replenishment.
In the context of climate change, snowmelt will increase. This impact means less snow
accumulation in the winter and an earlier peak runoff in the spring [73]. Meanwhile,
snowmelt is an important water source in Northwest China, which is of great significance
to maintenance of ecological balance and sustainable development [74]. Li et al. [75] showed
that from 1960 to 2010, the average annual runoff in the arid area of northwest China was
increasing. Among them, the increased rate of runoff in the northern mountainous area
of the Qilian Mountains was 1.48 × 108 m3/10 a. Therefore, an increase in snowmelt will
have a greater impact on runoff, which, in turn, affects recharge of groundwater.

3.5. Response of GWSA to Human Factors

In addition to climate factors, the impact of human factors on groundwater cannot
be ignored. In the HC, water resources are scarce and unevenly distributed. During the
crop-water demand season, a large amount of water resources is used for irrigation, when
surface water for irrigation is limited, which will lead to a prominent contradiction between
water supply and demand and inevitably lead to groundwater depletion. The HC has been
undergoing tremendous changes over the past few decades. Niu et al. [76] showed that in
the past 30 years, the increase in irrigation water consumption of farmland in the HRB had
led to an average drop of about 1.86 m in groundwater. Zhou et al. [77] showed that as the
area of farmland increased by 11.0%, the total irrigation water demand increased by 6.3%
during the period from 2000 to 2010.
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Figure 12 shows changes in groundwater withdrawal in the HC. During the entire
survey period (2003–2016), the amount of groundwater withdrawal in the HRB is on a
continuous upward trend, while other regions show a trend of a first decline and then
an increase, reaching the lowest in 2009–2011, which is consistent with the change in
precipitation. It is worth noting that even in the rainy season, GWS is in a state of decline.
However, even in drier years, the amount of groundwater withdrawal is lower than
in previous years, and the rate of decline in GWSA is higher than in the rainy season.
This means that even when the amount of groundwater withdrawn is lower than in
previous years, the amount of groundwater withdrawn is much higher than the amount of
groundwater replenishment. If the use of water resources cannot be well improved, the
area will continuously face the problem of groundwater depletion in the future.

 
Figure 12. Time series of groundwater withdrawal in the HC and its three subregions.

4. Discussion

4.1. Spatial Distribution of Weight Index

The weighted fusion model is presented in this study, which can merge three GRACE-
based GWSA. Specifically, the error variance and correlation coefficient of three GWSA
derived by ETC are used for weight estimation. Then, three GWSA from different sources
are merged by the least-squares framework. Therefore, it is necessary to discuss the weight
of different original results.

Figure 13 shows the spatial distribution of the weights. This weight represents the
relative contribution to the merged result. Among the three GRACE-based GWSA (in-
cluding GRACE−GLDAS, GRACE−ERA5, and GRACE−WGHM), the largest average
weight can be obtained by GRACE−ERA5 (0.38), followed by GRACE−WGHM (0.32) and
GRACE−GLDAS (0.30). It is worth noting that there are apparent differences in spatial
distribution, although the average weights of GRACE−GLDAS and GRACE−WGHM are
relatively close. For example, GRACE−WGHM has larger weights than GRACE−GLDAS
in C1, C2, and C3, accounting for about 0.50, 0.45, and 0.49, respectively. GRACE−GLDAS
matches well with GRACE−WGHM in other regions. GRACE−ERA5 has higher weights
relative to other results in B1 and B2. Furthermore, GRACE−ERA5 has a relatively high
relative contribution to the merger result in most regions. These differences may be caused
by different forced data and the parameters of the hydrological model [7,78]. In general,
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GRACE−ERA5 can accurately describe GWS changes in most areas of the HC from the
perspective of single-model results.

 
Figure 13. Weights of three GRACE-based GWSA for the fused GWSA. (a) GRACE−GLDAS;
(b) GRACE−ERA5; (c) GRACE−WGHM.

4.2. Contributions of Different Factors to GWS

The contribution of climate factors and human factors to GWS has been evaluated
using the method proposed in Section 2.3.4. Generally, the larger the value of η, the greater
contribution it makes to GWS changes. The respective contributions are shown in Table 4.

Table 4. Contributions (%) of climate factors and human factors to GWS changes in the HC and its
three subregions.

HC SLRB HRB SYRB

ηC ηH ηC ηH ηC ηH ηC ηH

2003 53.73 −46.27 81.23 −18.77 37.28 −62.72 47.37 −52.63
2004 51.86 −48.14 27.78 −72.22 63.97 −36.03 71.66 −28.34
2005 −15.23 −84.77 −69.58 −30.42 −88.34 −11.66 −70.40 −29.60
2006 63.40 −36.60 75.86 −24.14 84.24 −15.76 73.67 −26.33
2007 −40.64 −59.36 −85.64 −14.36 −90.70 −9.30 −42.28 −57.72
2008 32.43 −67.57 −38.21 −61.79 12.85 −87.15 −58.48 −41.52
2009 65.73 −34.27 74.17 −25.83 81.21 −18.79 84.84 −15.16
2010 −61.61 −38.39 −87.49 −12.51 −87.27 −12.73 −90.15 −9.85
2011 70.55 −29.45 90.63 −9.37 84.20 −15.80 71.01 −28.99
2012 −11.98 −88.02 −88.78 −11.22 15.48 −84.52 −39.99 −60.01
2013 56.40 −43.60 62.68 −37.32 54.32 −45.68 80.03 −19.97
2014 55.33 −44.67 78.58 −21.42 46.74 −53.26 47.75 −52.25
2015 54.91 −45.09 78.35 −21.65 64.81 −35.19 −30.96 −69.04
2016 42.46 −57.54 −14.58 −85.42 8.81 −91.19 15.24 −84.76

As shown in Table 4, human factors are an important factor affecting GWS among
climate and human factors in the HC and its subregions. For example, the impact of human
activities shows a downward trend before 2010 and then begin to rise in the SYRB, which
matches well with the change in trend of groundwater withdrawal in Figure 12. This is
consistent with the conclusion drawn from other research conducted in this region, e.g.,
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Liu et al. [44]. As for HRB, GWS changes affected by human factors show an upward trend
with the increase in groundwater withdrawal. In the HC, the effects of climate change on
GWS changes account for ~48%, while those of human activities contributed ~52%. This
indicates that human activity has been the dominant factor driving the continuous reduction
in groundwater. Wang et al. [5] reported that irrigation was continuously increased during
the period of 2000–2016 in the HC. Moreover, Niu et al. [76] and Zhou et al. [77] also reported
a similar situation in the subregions of the HC. This is consistent with our conclusion that
human factors have become the dominant factor affecting GWS in the HC.

4.3. Limitation and Furture Work

In this study, there are some limitations, although reasonable results have been
achieved. First, the GWFM proposed in this study is based on the same assumptions
as the ETC method, such as error orthogonality and zero-error cross-correlation. Second,
this study only uses GLDAS, ERA5, and WGHM, without considering other data sources.
Third, there is only an eight-year overlap period with the GRACE data due to the short
and discontinuous in situ groundwater-level measurement data. It is impossible to test the
performance of the GWFM over a longer time frame.

In follow-up work, more data will be introduced to develop the model to compare
and analyze GWSA in arid regions where in situ groundwater-level measurements are
scarce. Furthermore, we will conduct a comparative analysis with the existing multi-model
combination of technology to further improve the GWFM.

5. Conclusions

This study estimates GWSA by combining GRACE data with hydrological models.
These data have their own unique characteristics and are developed for a global scale.
Therefore, estimation of regional water-storage state generated by a single model may have
greater uncertainty. In response to this problem, a GWFM is presented that can merge
multi-source GWSA. The useful conclusions are as follows:

(1) To obtain an accurate estimation of GWSA, this paper proposes a groundwater
weighted fusion model. A comprehensive example is defined to verify the per-
formance of the GWFM, and the superiority of the GWFM is verified by in situ
groundwater-level measurements. The results show that the GWFM can effectively
integrate the advantages of each data set sand produce a more reliable GWSA than
the original results. Compared with GRACE-based GWSA, GWFM-based GWSA can
obtain higher CC and NSE, CC increases by 9–40%, NSE increases by 23–657%, while
RMSE decreases by 9–28%.

(2) The GWSA result of the HC from 2003 to 2016 is calculated based on the GWFM.
GWFM-based GWSA show an overall downward trend from 2003 to 2016, but 2011
is a turning point. From 2003 to 2010, there is a rapid downward trend, which is
−2.37 ± 0.38 mm/yr, while the downward trend from 2011 to 2016 is significantly
slowed, at −0.46 ± 1.35 mm/yr. This may be related to the local implementation
of corresponding water-saving policies. In terms of spatial changes, in the central
and southern part of the SLRB, the central part of the HRB and the northern part of
the SYRB, which are the main GWS depleted areas, have a large downward trend.
Furthermore, GWFM-based GWSA can better retain the characteristics of regional
GWSA relative to the arithmetic average result, especially in the southeast of the SYRB.

(3) A simple and effective method is used to evaluate the contribution of climate factors
and human factors to GWS. The results show that the amount of groundwater with-
drawal has a significant impact on GWS, especially in the HRB, where the amount
of groundwater withdrawal is increasing every year. As for the HC, the effects of
climate change on GWS changes account for ~48%, while those of human activities
contributed ~52%. In general, human activities, especially agricultural irrigation, have
become the main reason for GWS decline in the HC.

354



Remote Sens. 2022, 14, 202

Author Contributions: All authors collaborated to conduct this study. K.S., formal analysis, manuscript
writing, and editing; W.Z. and W.Y.: supervision, project management, and editing; L.H. and Y.S.,
review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant (41774014, 41574014), the Liaoning Revitalization Talents Program under Grant (XLYC2002082),
the Frontier Science and Technology Innovation Project and the Innovation Workstation Project of
Science and Technology Commission of the Central Military Commission under Grant (085015), and
the Outstanding Youth Fund of China Academy of Space Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors greatly appreciate the institutions of CSR (http://www.csr.utexas.
edu/grace/ (accessed on 1 July 2021)), which provided the GRACE mascon data. The authors would
like to thank NASA for providing the dataset of GLDAS (https://disc.gsfc.nasa.gov/ (accessed on
1 July 2021)). The authors thank ECMWF (https://www.ecmwf.int/ (accessed on 1 July 2021) for
the re-analysis data of the atmospheric pressure. The authors thank Hannes Muller Schmied for
providing the hydrological outputs from the WGHM model. Finally, the authors also thank China
Meteorological Administration (http://data.cma.cn/ (accessed on 10 August 2021)) for providing
precipitation dataset. Kai Su, Wei Zheng, and Wenjie Yin contributed equally to this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronym Full Name

GRACE Gravity Recovery and Climate Experiment
TWS terrestrial water storage
GWS groundwater storage
GWSA groundwater storage anomalies
GWFM groundwater weighted fusion model
ETC extended triple collocation
HC Hexi Corridor
SYRB Shiyang River Basin
HRB Hei River Basin
SLRB Shule River Basin
SM soil moisture
SWE snow water equivalent
CWS canopy water storage
GLDAS Global Land Data Assimilation System
WGHM WaterGAP Global Hydrology model
CIGEM China Institute of Geological Environment Monitoring
CC correlation coefficient
RMSE root mean squared error
NSE Nash-Sutcliffe efficiency coefficient
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Abstract: Iran is experiencing significant water challenges that have now turned water security into
a national priority. By estimating secular trend groundwater storage in Iran between 2002 and 2017,
we see that there is an intensive negative trend, even −4400 Mm3 in some areas. These estimations
show shifting in the climate and extra extraction from aquifers for agricultural use in some areas
in Iran. The secular trend of groundwater storage changes across the whole of Iran inferred from
observation well data is −20.08 GT/yr. The secular trends of GWS changes based on observation
well data are: −11.55 GT/yr for the Central Plateau basin, −3.60 GT/yr for the Caspian Sea basin,
−3.0 GT/yr for the Persian Gulf and Oman Sea basin, −0.53 GT/yr for the Urmieh Lake basin,
−0.57 GT/yr for the Eastern Boundary basin, and −0.83 GT/yr for the Gharaghom basin. The most
depleted sub-basin (Kavir Markazi) has secular trends of GWS changes of −4.503 GT/yr. This study
suggests that groundwater depletion is the largest single contributor to the observed negative trend
of groundwater storage changes in Iran, the majority of which occurred after the drought in 2007.
The groundwater loss that has been accrued during the study period is particularly alarming for Iran,
which is already facing severe water scarcity.

Keywords: well data; groundwater storage changes; secular trend; agriculture; water management

1. Introduction

Water is an essential resource for life on Earth. In recent decades, because of growth
in the population and in technologies, demands for water resources have been increasing.
Due to groundwater’s physical properties, it has a special role in human life, and it is one of
the most important natural resources for nations, especially in a dry and semi-dry climate
like that of Iran. Water shortages in Middle Eastern countries cause a variety of problems
and lead to economic and consequently political instability, and there is a high frequency
of conflicts due to disputes over groundwater [1–3]. The annual precipitation in Iran is
273 mm, which is less than one-third of the world’s mean annual precipitation [4]. Because
of the recent drought, the rate of precipitation has reached its lowest point (the minimum
yearly precipitation) in more than 40 years, and the average surface run-off in this period is
42% less than the long-term average. In Iran, 72% of precipitation evaporates and transpires
and only 22% of precipitation flows in as surface water source [5]. The temporal and spatial
distribution of rainfall in Iran is not uniform. About 75% of the nation’s precipitation
falls on the southern coast of the Caspian Sea, and only 25% of the precipitation falls
during plant growth season [4,6]. In addition, because of the relatively high temperature,
about half of the annual precipitation evaporates, so there are few permanent streams in
Iran. Furthermore, population growth and inappropriate spatial population distribution is
currently causing the 20 most populous Iranian cities to experience a medium to extremely
high overall water risk.
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Deep beneath the ground, groundwater is unseen and protected from evaporation and
pollution, and there is easy access to pumped wells and access to groundwater any time and
everywhere it is needed. All of these factors make people inclined to use more groundwater
in Iran [7,8]. Iran’s sources of groundwater include wells, springs and underground
aqueducts known as qanats. Groundwater amounts to 60% of the country’s total supply
and is consumed almost entirely by the agricultural sector [9]. Iran is one of the world’s
largest consumers of groundwater [10], and the vast majority of the population lives in
areas that are highly dependent on groundwater for drinking and irrigation. Continuing the
business-as-usual approach in depleting aquifers will expose Iran to food and water risks as
well as social and political security issues. On average, more than half of the design capacity
of Iran’s reservoirs was empty from 2003 to 2017 due to intensive water extraction in the
agricultural sector [11]. Groundwater overdraft has contributed to different socioecological
problems, including the drying up of wetlands, desertification, sand and dust storms,
weakening water quality, frequent occurrences of floods, and climate migration [12–14].
It has also increased the desertification and salinization of land and has also degraded
groundwater quality due to natural processes such as saltwater intrusion [15–18]. Land
subsidence due to groundwater depletion is now a manmade hazard to vital infrastructure
and residents on vulnerable plains. The increasing stress on rural livelihoods and increasing
tensions among groundwater users worsen food and water security risks [19], and create
issues related to the migration of rural populations to urban areas. In addition, rapidly
growing demand for crops has put pressure on authorities to give permission to dig new
wells. There are many illegal wells in aquifers in Iran, so there is no appropriate control
over the withdrawals of water there. The number of wells has dramatically increased in
the past decade in Iran. While the number of groundwater extraction points increased by
84.9% from 546,000 in 2002 to over a million in 2015.

All of these issues make groundwater management a high-priority matter in Iran, but
groundwater monitoring has not been carried out well in some regions. Groundwater with-
drawal statistics are sometimes outdated and measured using inconsistent methods [20,21].
The acquisition of accurate data represents a major challenge mainly due to the hidden
nature of groundwater. The spatial and temporal variability of groundwater data ought to
be good enough for proper water management studies. However, availability of the time
series of parameters of Groundwater Storage (GWS) is usually limited and uncertain [22].
Collected well water-table data are being used to produce the time series of GWS. The
distribution of observation wells is usually not uniform and there are regions with sparce
data. Better water level monitoring and better assessment and forecasting of water resources
would help government agencies allocate water more efficiently among competing needs [23].

Relatively good groundwater data records exist in Iran. The Iran Water Resources Man-
agement Company has collected data from a large number of observation wells for 40 years
that are used in different hydrological studies. But these data are not well organized, and a
huge part of this study was to collect all these data and put them into a database to finally
allow the calculation of GWS changes from well data. Despite its importance, there have
been few hydrological studies carried out on an entire water basin using GWS observational
data in Iran. In this study, we used the water level of all 17,865 observation wells between
2002 and 2017 to estimate nationwide groundwater depletion in Iran.

The main objective of this study is to collect, assess, and evaluate all observation well
data, producing a nationwide database, and allocating those data across water basins in
Iran to constitute the time series of groundwater data for a final estimation of GWS changes
using in-situ hydrological data.

This study provides a statistical analysis of the major groundwater characteristics
using a rich ground-based dataset (2002 to 2017) to determine the groundwater depletion
in all 32 sub-basins of Iran. The investigation of the temporal trend and spatial distribution
of groundwater depletion provides valuable information for the effective management of
groundwater storage across Iran and offers insights to other countries facing similar water
security issues.
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In the following sections, the distribution of observation wells in Iran’s main water
basins is explained and the analysis method is presented. The results are manifested in
the spatial dependence of groundwater storage and the time series of GWS changes. The
time series of GWS changes across Iran’s main basins are analyzed and the trends of GWS
changes across main basins and sub-basins are presented. The last section is devoted to
concluding remarks and outlooks.

2. Data and Analysis Method

2.1. Data

There are 17,865 active observation wells in the whole of Iran. In order to study the
well level time series, Iran is divided into six main basins: the Caspian Sea basin (with a
175,051 km2 area, code 1), the Persian Gulf and Oman Sea basin (with a 424,029.6 km2 area,
code 2), the Lake Urmieh basin (with a 52,000 km2 area, code 3), the Central Plateau basin
(with an 825,000 km2 area, code 4), the Eastern Boundary basin (with a 106,000 km2 area,
code 5), and the Ghareghom basin (with a 44,295.5 km2 area, code 6). Each main water basin is
divided into several sub-basins. Each sub-basin is divided into several study areas too. There
are 32 sub-basins with 641 study areas in Iran (Table 1). But data for 4 of these sub-basins
for the study period have not been collected. Table 1 shows the main water basins and the
number of sub-basins and number of observation wells in each main basin. All well data
observations were provided by the Iran Water Resources Management Company. These
data are categorized based on monthly intervals, where Iran’s water year is defined as the
12-month period between 1 October and 30 September of the following year.

Table 1. Number of wells in study areas, sub-basins and main basins.

Main Basin
Number of
Sub-Basins

Number of
Study Areas

Number of
Observation Wells

Caspian Sea (code 1) 7 31 3280
Persian Gulf and Oman Sea (code 2) 9 256 5404

Urmieh (code 3) 9 1308 25
Central Plateau (code 4) 9 233 13,000

Eastern Boundary (code 5) 9 23 498
Ghareghom (code 6) 13 23 295

Iran 32 641 17,865

In order to have an overview and better analysis, we have provided an elevation
map of Iran, a Topographic Wetness Index (TWI) map of Iran, a spatial distribution of
precipitation (1961–2005), a slope aspect of Iran, and a representation of the observation
wells distribution in each main basin (Figures 1 and 2).

  
(a) (b) 

Figure 1. Cont.
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(c) (d) 

 

 

(e)  

Figure 1. (a) Elevation map of Iran [24], (b) Topographic Wetness Index (TWI) map of Iran [25],
(c) Spatial distribution of precipitation in Iran in millimetre (1961–2005) [26], (d) Slope aspect of
Iran [27], (e) Aquifers across Iran [28].

  
(a) (b) 

Figure 2. Cont.
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(c) (d) 

  
(e) (f) 

Figure 2. Observation wells distribution in the main water basins in Iran: (a) Caspian Sea, (b) Persian
Gulf and Oman Sea, (c) Urmieh, (d) Central Plateau, (e) Eastern Boundary, (f) Ghareghom.

2.2. Analysis Method

The groundwater monitoring wells are established as nonhomogeneous on the alluvial
plains of the study areas. Therefore, we cannot use these well data directly to make a time
series of the groundwater level across the whole study area. In order to achieve an accurate
estimation of the spatial distribution of the water table in every study area, it is necessary
to use a suitable interpolation method, and the Thiessen method is the most appropriate
one. Thiessen polygons were used in several fields, including hydrology and climatology,
as an essential method for the analysis of the proximity and neighborhood of phenomena,
over a century ago.

Different interpolation methods can produce different patterns and estimations of
water table changes across each study area. This implies that the use of alternative methods
of interpolation to estimate water table changes may have differential impacts on the result.
The Thiessen polygon model is among the best, most popular, and most straightforward
method for estimating water levels. Although the method has weaknesses, its strength
makes it ideal for estimating water levels. The method is satisfactory when a good gauge
network is available, and the area is flat. Since the observation wells in Iran are located on
alluvial planes, the wells’ networks are almost at the same altitude.

A major controversial issue of the Thiessen method is the assumption that the water
level between two observation wells linearly varies, and this method does not consider the
changes in water level according to the altitude or orographic effect.
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This method is a graphical technique that calculates station weights based on the
relative areas of each measuring station in the Thiessen polygon network. The method
assigns to each station a weighted value based on the percentage of the area it represents
in relation to the total area of the region in question. This method assigns weight at each
gauge station in proportion to the catchment area that is closest to that gauge. The method
of constructing the polygons implies the following steps (see also Figure 3):

 

Figure 3. (a–d) show steps to construct the Thiessen polygon.

The gauge network is plotted on a map of the catchment area of interest.
Adjacent stations are connected with lines.
Perpendicular bisectors of each line are constructed (perpendicular line at the mid-
point of each line connecting two stations).
The bisectors are extended and used to form the polygon around each gauge station.
The water table value for each gauge station is multiplied by the area of each polygon.
All values from previous step are summed and divided by the total basin area.

Each point location in the watershed is assigned a water table equal to that of the
closest well. If Ai is area assigned to well i, then the water table can be estimated as:

Pave =
m

∑
i=1

Ai
A

Pi (1)

where Pave is the areal mean level, Pi is water table observed at the ith station inside or
outside the basin, Ai is in-region portion of the area of the polygon surrounding the ith

station, m is the number of the area, and A is the total basin area [29,30].
A time series of the changes in GWS changes across each study area can be computed,

as its area multiplies its specific yield multiplies the change in groundwater level:

ΔV = Δh × S × ρ (2)

where
Δh = h − have (3)
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eΔV is groundwater changes, Δh is well-level changes, S is the area of the Thiessen polygon,
ρ is specific yield, h is well level and have has been the average well level during the
period of study. Then we scale up it for each study area by multiplying it by the ratio:(

area of the study area
area of the Thiessen polygon

)
. The total change in GWS across each sub-basin is computed by

adding together the scaled change in GWS of all its study areas. The same procedure is
carried out for each main water basin.

The results for each of Iran’s main water basins and their sub-basins are represented
in detail in the following section. The observations of all well data are categorized based
at monthly intervals in the 12-month period between October 1st and September 30th of
the following year. The 641 study areas have long periods of well-level data; some of them
have more than 40 years of monthly water level data.

3. Results and Discussion

3.1. Spatial Dependence of Groundwater Storage

We have estimated GWS changes across each study area. As an example, the results
for one of the study areas (code 4104) will be illustrated below:

The study area of 4104 (Eshtehard) is 805.5 km2. The Thiessen polygon of this study
area is 245.2 km2 and the specific yield of this study area is ρ = 0.04. According to the
Equation (2), GWS changes across the Thiessen polygon have been estimated. Then we can
scale up it by multiplying it by the ratio:

(
area of the study area

area of the Thiessen polygon

)
= 3.29. We can see the

result in Figure 4:

Figure 4. Long-term monthly values of groundwater storage across study area of 4104.

In order to estimate GWS changes across each sub-basin we scaled up the value for
each study area by multiplying it by the ratio:

(
area of the sub−basin
area of the study area

)
.

Figure 5 shows groundwater storage changes from observation well water level in
sub-basins across Iran, between 2002 and 2017. This map shows contours of water-level
declines, in (Mm3/year = Million cubic meter per year). The secular trend in groundwater
storage varies from 600 to −4400 Mm3 across Iran. In this figure, we see a significant
negative trend of water levels in most of the sub-basins in Iran. Obviously, there are two
intensive trends of water decline in the Central Plateau basin (Daryache namak (code 41)
and Kavir markazi (code 47)). These two areas are mostly located in arid and semi-arid
areas. Some of the most populated cities in Iran are located there. The agriculture sector
is the largest consumer of water in Iran. These estimations represent climate variability
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and changes in agriculture patterns. It also needs to be remembered that during a drought
period, there is intensive pressure on groundwater storage especially in arid areas. These
are all reasons for severe negative trends in the Central Plateau.

Figure 5. Secular trend in Million cubic meter (Mm3/year) normal units groundwater storage across
Iran, computed from water levels inferred from observation wells in sub-basins in Iran, between 2002
and 2017.

Figure 5 shows that there is not a significant negative trend in the Persian Gulf and
the Oman Sea catchment or in the southeast. The Persian Gulf water basin has almost
half of the country’s renewable water resources. This area even has low precipitation, but
it has some rivers that originate from mountains. Rivers provide a large contribution to
Iran’s water resources. Therefore, in this area, rivers fulfill some of the requirements of the
agricultural sector, and there was less pressure on the groundwater during the study period.
In addition to this, irrigating with surface water might be a new means of groundwater
recharge as the water is absorbed by the soil used in agriculture. Another possible reason
for these positive features is the construction of new dams in the region. Constructing dams
probably results in more recharge aquifers in the area.

The positive features of the southeast may be explained by new irrigation methods that
are starting to be used in the basin. Farther west, various Afghan governments constructed
large dams (Arghandab Dam, Kajaki Dam) that diverted water from the upper reaches of
the river [31].
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3.2. Time Series Estimates

In order to investigate the water level time series, we needed to decompose them to long
and short terms. We used a general expression of the following formula to obtain them:

f = A + Bt+∑
i

Ci cos(ωit)+Di sin(ωit)+ε (4)

where f is the water level for each study area, A is a static value, B is the secular trend, Ci
and Di are amplitude of angular frequencies ωi. The variable ε characterizes noise.

To show the groundwater level changes better in each water basin, these changes have
been divided into two components: long-term (inter-annual and secular trend) components
and short-term (semi-annual) components. In the following sections, these components
have been shown.

Based on the time series of the well data across each study area, using Equation (4),
we have computed the long-term (i.e., inter-annual and secular trend) components of
groundwater changes for 28 of sub-basins in Iran, between 2002 and 2017: The two-digit
numbers’ codes show the sub-basins. The first digit of these numbers shows the number of
main basins, and the second digit shows the number of sub-basins (Figure 6).

 

 

Figure 6. Cont.
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Figure 6. The long-term monthly values of groundwater storage across different sub-basins.

We can see some fluctuation in the long period of different sub-basins of the Caspian
Sea basin (codes 11 to 17). We can justify this as there is faster recharge of low-land aquifers
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in this area caused by precipitation. There is quite high precipitation in this area. The
average altitude of this area is very low; therefore, the average water table of this basin
is very close to the Earth’s surface and is not deep. So, the water table fluctuates due to
changes in precipitation.

Table 2 shows the trend of the GWS changes across all sub-basins in Iran. Comparing
trends of sub-basins in the Persian Gulf basin (code 2) and the Caspian Sea (code 1) with the
Central Plateau basin (code 4), we realized that most of the sub-basins in the Central plateau
have intensive negative trends. This is because of less surface water and precipitation in
this area. Therefore, the agricultural sector is forced to use more groundwater. Recent
droughts put more pressure on the groundwater.

Table 2. Trend of GWS changes across sub-basins in Iran.

Sub-Basins Code
Trend

(Mm3/yr)
Sub-Basins Code

Trend
(Mm3/yr)

Aras 11 −63.107 Urmieh 30 −535.362
Anzali 12 −13.873 Daryache Namak 41 −2881.360

Sefidrood Bozorg 13 −281.418 Gav khooni 42 −465.545
Sefidrood-Haraz 14 −31.955 Tashtak 43 −695.810
Gharasoo-Haraz 15 −16.708 Abarghoo 44 −1521.080

Gharasoo-Gorganrood 16 −50.125 Hamoon 45 −1039.140
Atrak 17 −3867 Kavir loot 46 −1399.170

Marzi-e-Gharb 21 −240.328 Kavir Markazi 47 −4502.970
Karkheh 22 −591.728 Kavir Siahkooh 48 −185.784
Karoon 23 34.798 Kavir Daranjir 49 −933.010

Hendijan-Jarahi 24 −247.809 Khaf 51 −368.318
Hele 25 −100.770 Hirmand 52 7.842

Mand 26 −567.042 Mashkil 53 −209.970
Mehran 27 −830.647 Ghareghome 60 −2178.660

Bandar Abbas 28 −441.877
Baloochestan Jonubi 29 −20.909

The only sub-basin that has a positive trend during this period is Hirmand (52). There
is a shared aquifer between Iran and Afghanistan in this area. Some of the rivers in this
area originate from Afghanistan, and water policy in Afghanistan can affect the water level
changes in this sub-basin.

The total change in GWS across each main basin is computed by adding together the
scaled changes in GWS of all its sub-basins. Figure 7 shows the long-term and short-term
components of groundwater depletion in all main basins, from 2002 to 2017.

 

Figure 7. Cont.
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Figure 7. The long-term and short-term monthly values of groundwater storage across the main
basins in Iran.

In most of the basins, there is large negative trend in groundwater storage around
2008. We know that a drought occurred in 2007 in Iran. Therefore, the large negative trend
could be explained by a delay in the soil absorbing the water and reaching aquifers. This
delay depended on the specific yield for each area.

The Central Plateau basin was depleted by more than 1.5 × 105 Mm3 in these 15 years.
This is the largest trend because this basin has the largest area in Iran.

In the Caspian Sea basin, we can find a sharp negative trend around 2003, and after it,
the situation improved. This is probably because of the establishment of more control over
water extraction from illegal wells in this region and changes in agricultural patterns.

In the Persian Gulf and Oman Sea basin, we can find a sharp positive trend around 2003.
This is probably because of the construction of a number of dams in this region. But after that
period, there is a negative trend in the water storage in the basin, which is probably due to
intensive groundwater extractions for irrigation. There is also a sharp negative trend around
2008; this may be because of the occurrence of a drought in 2007. Around 2017, the trend of
water storage is positive, which could be due to more precipitation during that year.

The area of this basin is half that of the Central Plateau, but the amount of depleted
water in the Central Plateau is more than three times that of this basin, which may because
of large permanent rivers such as the Karoon River in this sub-basin. It may also be due
to the fact that the most populated cities are located in the Central Plateau basin and the
intensive immigration to these cities.

The trend in the Urmieh basin is not a smooth one; it has some fluctuation. There is an
intensive negative trend from 2007 to 2008, which might be due to drought in 2007. The
water level in the Urmieh Lake depends on precipitation. The water table in this basin is
directly influenced by the Urmieh lake level, and the drought period had severe effects on
this level. Therefore, the irrigation pattern directly changes the water level in the area.

For instance, turning 90,000 hectares of Urmieh grape fields into apple orchards by using
5 times more water is one of the most important factors in Urmieh Lake drying out [32].

In the Eastern boundary basin, the changes in the trend of groundwater around 2005
are due to Afghan governments constructing large dams (Arghandab Dam, Kajaki Dam)
that diverted water from the mountains in Afghanistan that charges some of rivers and
water storages in this basin.

The long-term trend of groundwater in the Ghareghom basin has some fluctuations.
There is an important transboundary sedimentary aquifer in this basin; it is shared between
Turkmenistan, Afghanistan, and Iran. This fluctuation maybe because of changes in rules
in Afghanistan and Turkmenistan.

After dividing the average volume of groundwater by the areas of every basin, the
water thickness changes will be computed in mm (Table 3).
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Table 3. Trend of GWS changes in the main basins in Iran.

Main Basins Area (km2)

Average
Groundwater

Depletion Trend
(mm/yr)

Groundwater
Depletion Trend

(Mm3)

Groundwater
Depletion Trend

(Mm3/yr)

Groundwater
Depletion Trend

(GT/yr)

Caspian Sea (code 1) 17,5051 −20,565 −5.40 × 104 −3.60 × 103 −3.60
Persian Gulf and Oman

Sea (code 2) 424,029.6 −7.075 −4.50 × 104 −3.0 × 103 −3.0

Urmieh (code 3) 52,000 −10.192 −0.79 × 104 −0.53 × 103 −0.53
Central Plateau(code 4) 825,000 −14,0 −17.25 × 104 −11.55 × 103 −11.55

Eastern Boundary(code 5) 106,000 −5377 −0.85 × 104 −0.57 × 103 −0.57
Ghareghom (code 6) 44,295.5 −18,738 −1.24 × 104 −0.83 × 103 −0.83

Iran 1,626,376.1 −12,346 −3.01 × 105 −20.08 × 103 −20.08

Table 3 shows that the Caspian Sea basin has the largest water thickness negative
trend (−20,565 mm/yr) in Iran. [33] showed that the number of new wells in most of the
sub-basins of the Caspian Sea basin increased intensively between 2002 and 2015. There
may be a relation between the increasing number of wells and the negative trend of GWS
depicted in the Caspian Sea basin. The water level dramatically decreases as the number of
wells increases [33].

Well data in the six main basins show steady groundwater depletion in Iran over the
last few decades. This is valuable information for our estimation for water management. In
most of the regions, we can see sever water depletion. After the drought of 2007, without
surface water to replenish supplies, there was only one choice: to increase reliance on
groundwater. So since 2007, new wells have been dug to meet agricultural and domestic
needs. This rapid increase in groundwater consumption, with no replenishment from
precipitation or streamflow, is an important driver of the groundwater losses that are
estimated in this study.

4. Conclusions and Outlook

Management of the sustainability of groundwater is necessary in a dry and semi-dry
climate like that of Iran. The first stage in water management is to collect water-table data in
order to have a time series of groundwater storage. The Iran Water Resources Management
Company has collected a large number of observation wells data for 40 years. Iran is divided
to six main water basins. There are 17,865 active observation wells in the whole of Iran.
The six main water basins have 32 sub-basins. Each sub-basin is divided into several study
areas. The Thiessen polygon method has been used to make a time series of the groundwater
level across each study area. This study concludes that there are two intensive negative
trends of groundwater storage changes in Iran, concentrated in the Central plateau basin,
around Tehran (See Figure 5: Daryache Namak and Kavir Markazi). Tehran is the capital
and the most populated city in Iran. At least 25% of Iran’s population are living where
the subsidence has the potential to reach to at least one meter within just a few years due
to dramatically shrinking groundwater reserves [34]. This has also been well documented
in several plains within the Daryache Namak sub-basin [35,36], one of the most depleted
sub-basins in Iran (see Figures 2 and 3). Tehran is also vulnerable to seismic hazards due
to high potential for tectonic activities. If significant decline in soil stability due to land
subsidence, caused by extreme groundwater overdraft, is compounded with a major tectonic
activity, it could potentially intensify earthquake impacts causing a human catastrophe (see
also [33]). Groundwater depletion also affects the environment. The depletion results in
increasing soil and groundwater salinity. Salinity negatively affects soil fertility and endangers
long-term food security. As mentioned, a consequence of groundwater depletion is land
subsidence. Land subsidence can change surface and sub-surface flow paths and cause major
and irreversible declines in aquifer capacity (USDA 2007).
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In Iran, there are many wells that likely have no control over their water withdrawals.
In addition to climate change, crop patterns that are likely changing, inefficient irrigation
systems, and high-water wastage with traditional irrigation are causing increased water
extraction. So, there are some pressures on decision makers to grant permission for new
wells in aquifers with negative water balances. When the groundwater table in an aquifer
is decreased, discharges of wells are usually decreased. So even by digging deeper wells,
the yield of wells has been reduced.

According to the Food and Agriculture Organization (FAO), agricultural water usage
in Iran is 22% above the global average, while water productivity (crop yield per cubic
meter of water consumption) is one third of the global average. This means that the
agricultural sector generates about 10% of the country’s gross domestic product (GDP) but
consumes 92% of the country’s fresh water. Groundwater depletion may also affect the
food security of the countries that depend on the agriculture products. These issues lead
us to the necessity of appropriate water management in Iran. Despite of all these issues,
there is not an effective water management strategy that considers the sustainability of
groundwater in Iran. Continuing this situation results in the loss of agricultural yields,
unemployment, and climate migration [37].

In addition, lack of proper use of modern sciences coupled with lack of attention
to warnings by officials about water shortage have aggravated the situation. If water
scarcity is not resolved urgently, its impacts will soon bring heavier and irreparable damage
to all sectors in the country. This situation is irreversible. Given that the most water-
consuming sector in Iran is the agricultural sector, the only way forward is to carry out
more relevant research in order to gain a full insight into sustainable irrigation practices
and an understanding of the characteristics of farms and farming households to better
frame strategies to cope with water-stressed regimes in drought-prone environments.

Water shortages in Iran can still be managed by proper planning, long-term follow-up
assessment, and creating a culture of moderate consumption in the country. Cultural
awareness about moderate use of water can begin with households and can spread to the
industrial and agricultural sector by employing methods such as drip irrigation, greenhouse
cultivation, etc.

Moreover, proper use of climatic information and scientific methods is essential in
preparation of a comprehensive water management plan to identify the regions and prepare
a specific plan that meets the climatic characteristics of each area.

Since drought is unpredictable and may happen frequently in Iran, establishing ap-
plicable and proper rules for water usage permission and having standards for water
withdrawal from groundwater as a safe yield from wells helps to reduce the water de-
pletion and its effects in Iran. Therefore, access to accurate water level data to have an
updated time series is required for proper management. Better monitoring, assessment,
and forecasting of water resources would help government agencies allocate water more
efficiently among competing needs. Integrated management strategies for balancing water
supply and demand at the basin and sub-basin scales are necessary.

In this study, we have focused on the monitoring of groundwater storage changes in
Iran. Other countries with the same climate and intensive groundwater extraction may
experience the same issues and different kinds of consequences of groundwater depletion.
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Abstract: Evapotranspirative irrigation is a simple idea in a watering field based on the actual
evapotranspiration rate, by operating an automatic floating valve in the inlet without electric power
to manage water levels. The current study introduces a model of evapotranspirative irrigation and
its application under different water levels. The objectives were (1) to evaluate the performances of
evapotranspirative irrigation under various irrigation regimes, and to (2) to observe crop and water
productivities of the system of rice intensification (SRI) as affected by different types of irrigation.
The experiment was performed during one rice planting season, starting from July to November 2020,
with three irrigation regimes, i.e., continuous flooded (CFI), moderate flooded (MFI) and water-
saving irrigation (WSI). Good performance of the system was achieved; low root mean square error
(RMSE) was indicated between observed water level and the set point in all irrigation regimes.
Developing a better drainage system can improve the system. Among the regimes, the WSI regime
was most effective in water use. It was able to increase water productivity by up to 14.5% while
maintaining the crop yield. In addition, it has the highest water-use efficiency index. The index
was 34% and 52% higher than those of the MFI and CFI regimes, respectively. Accordingly, the
evapotranspirative irrigation was effective in controlling various water levels, and we recommend
the system implemented at the field levels.

Keywords: evapotranspiration; irrigation regime; paddy field; water level; water use efficiency

1. Introduction

Rice is the main staple food in Indonesia and many countries worldwide; its demand
has steadily increased in recent decades as the population grows. Water availability is
a key component for rice production, but its sustained availability remains uncertain,
due to increased water use from other sectors [1], thus threatening the irrigation water
supply [2,3]. Moreover, current practices of continuously flooded farming have worsened
water availability. Although conventional flooded irrigation systems may increase yield [4],
their design is not efficient, which reduces water productivity [5] and promotes more
greenhouse gas emissions, especially methane gas [6].

Intermittent irrigation is an alternative irrigation strategy that typically saves more
water and is sometimes integrated with an adaptive rice farming called System of Rice
Intensification (SRI) [7]. Previous studies have proven that SRI application increased
rice yield [8,9], thus raising water productivity [10–12]. SRI is also recognized to be more
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environmentally friendly [13] because of its ability to suppress methane gas emission [14,15],
which potentially reduces global warming potential (GWP) [16]. Therefore, this system
is an appropriate choice for climate change adaptation and mitigation strategies [17]
for the agricultural sector. By using the system, the field does not need to be flooded
continuously, but rather it is possible to lower the water table and water level below the
soil surface [18,19].

The main challenge in implementing the SRI system, like other precision farming
techniques, is how to precisely control the water levels at the field, especially for farm-level
farmers. So far, precision farming usually identically relates to irrigation automation that
requires more cost investment of automated instruments and wireless sensor networks [20].
The idea requires installing water content sensors on rice fields, sending data wirelessly
from the sensors to the running controller, then carrying out actions in opening/closing
solenoid valves at the irrigation inlet [21]. Obviously, the technology is too expensive and
is very difficult to be implemented by farmers. The technology may only be applied to
farmsteads or agricultural industries with more capital to invest in technology and human
resources.

In principle, the implementation of precision and smart agriculture does not neces-
sarily require advanced automatic control technology. The principle is “to provide the
right input, at the right place, at the right time, in the right amount, in the right way, using
the right tools” [22]. Therefore, the implementation of precision farming remains a re-
search challenge, especially when dealing with an applicable-efficient irrigation technology.
Here, we propose a model, evapotranspirative irrigation technology. Principally, the field
is watered based on the actual evapotranspiration rate by operating a simple automatic
floating valve. The valve will automatically open or close with mechanical principles
according to the desired water level; this idea is more straightforward than piped irrigation
systems [23]. The inlet holes in the piped irrigation systems are replaced with float valves,
while irrigation canals are replaced with pipelines and high investment costs. While the
concept of evapotranspirative irrigation does not require modification of the irrigation
canals, it modifies the inlet valve with an automatic float system. This system does not
need electric power, but uses a simple mechanical principle to open and close the valve.

Theoretically, an evapotranspirative irrigation system is elaborated from the concept of
evaporative irrigation [24]. The functional design has been designed and developed [25], as
well as tested for lettuce plants [26]. However, the system has not been tested with various
irrigation regimes with different water levels under specific weather conditions for SRI
paddy cultivation. Subsequently, its effect on crop and water productivities would require
observation. Therefore, the objectives of this study were to (1) evaluate the performances
of evapotranspirative irrigation with different irrigation regimes under specific weather
condition, and to (2) observe crop and water productivities on SRI paddy cultivation at
different regimes.

2. Materials and Methods

2.1. Study Site

The research was a laboratory-scale experiment, which was conducted in one rice
planting season from July to November 2020. We carried out an experiment in the Kinjiro
Farm (coordinates 6.59◦ S, 106.77◦ E), Bogor, West Java, Indonesia. Rice seed was sown on
5 July 2020 and was planted on 19 July 2020. After 112 days of cultivation, the grains were
harvested on 10 November 2020.

In a preliminary study, we sampled soils with three replicates on 0–30 cm. From the
samples, we obtained information on soil properties at the study site. Typically, soil texture
was characterized as a clay loam with a silt content more than 40%. Detailed soil physical
properties are presented in Table 1.
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Table 1. Soil physical properties of the field location.

No. Parameter Value Unit Method

1 Dry bulk density 0.89 ± 0.03 g/cm3 Gravimetric
2 Particle density 2.18 ± 0.15 g/cm3 Pycnometer
3 C-organic 6.11 ± 0.15 % Loss on ignition

(LOI)4 Organic content 10.55 ± 0.27 %
5 Soil texture

PipetteSand 22 ± 7.2 %
Silt 44 ± 5.0 %

Clay 34 ± 3.5 %
Soil texture Clay loam

6 Water contents at: Pressure plate
pF 1/h = 10 cm H2O 0.529 ± 0.006 cm3/cm3

pF 2/h = 100 cm H2O 0.434 ± 0.013 cm3/cm3

pF 2.54/h = 347 cm H2O 0.378 ± 0.018 cm3/cm3

pF 4.2/h = 15,849 cm H2O 0.212 ± 0.009 cm3/cm3

Note: Three soil samples were collected and were analyzed in a certified laboratory. The data in the table are the
mean ± SD.

2.2. Experimental Design

The model of evapotranspirative irrigation was applied in the lab-scale experiment.
A miniature paddy field with the dimensions of 4 m × 4 m and 0.5 m in height was
used for each irrigation regime (Figure 1). Additionally, there was drainage storage with
the dimensions of 0.5 m × 2 m × 0.5 m connected to the outlet’s miniature paddy field
model. However, the drainage was not controlled, and the water flowed naturally. In
the inlet, there was a simple automatic float valve. The valve is equipped with a floating
cylinder that pushes the valve upward when the water level rises to a particular level,
thereby closing the valve. On the other hand, when the water level drops (in this case—
caused by evapotranspiration), the floating cylinder will also go down, caused by the valve
opening (Figure 1). The bucket was covered with a transparent fiberglass cover to minimize
evaporation.

Figure 1. A miniature paddy field equipped with a simple automatic valve.

Here, we applied three water irrigation regimes with two replications, so there were
six miniature paddy fields. The first regime was continuous flooded irrigation (CFI), where
flooded water with 0–4 cm water level above the soil surface (the setpoint at 2 cm) was
applied during planting season as control. The second regime was moderate flooded
irrigation (MFI), where applied shallow flooded water with 0–2 cm water depth was used
(the set point at 0 cm). The last regime was water-saving irrigation (WSI), which kept
the water level at the soil surface (the set point at 0 cm) for 0–20 days after transplanting
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(DAT), and then dropped 5 cm below the soil surface (the setpoint −5 cm). The WSI was
selected based on the previous finding that revealed that the optimum water level for SRI
to mitigate greenhouse gas emission was 5 cm below the soil surface [19].

In the rice cultivation, there were some components adopted, such as planting young
seedlings (14 days after sowing), adding space between hills of 30 × 30 cm2 and placing a
single plant in each hill. This practice is known as the System of Rice Intensification (SRI), as
commonly applied in Indonesia [27]. For the fertilizer application, all plots were supplied
with the same doses, i.e., a combination of organic (1 ton compost/ha) and inorganic
(100 kg/ha of urea, 75 kg/ha of phosphorus and 50 kg/ha of KCl) fertilizers.

2.3. Field Measurement

An automatic weather station (AWS) Vantage Pro2 product of Davis Instruments Corp.
Inc., Hayward, CA, USA measured weather parameters such as air temperature, relative
humidity, solar radiation and wind speed at 2 m height. The AWS has sensors such as air
temperature and relative humidity, solar radiation and wind speed sensors, all connected
to ISS (Integrated Suite Sensors) and then stored in the console. For the water level sensor,
we used an e-Tape sensor water level where the output was voltage. Thus, we performed
the calibration for this sensor. The water level measurement was stored in an Em50 Data
Logger, a product of Meter Group Inc., NE Hopkins Ct, Pullman, WA, USA (previously
known as Decagon Corp, Inc.). Both the Davis console and Em50 Data Logger were set and
stored data within 15-minute time intervals.

We observed morphological characteristics of rice once in three days. In each plot, we
measured plant height, tiller and panicles numbers with five replicates. On the harvesting
day, we observed and weighed biomass (straw), grain, panicles number and weed in all
plots. The grain yield, biomass weight and weed weight were converted to ton/ha. In
addition, a single hill was randomly selected to observe root length among the regimes.

2.4. Water Balance Approach

Based on the schema in Figure 1, water balance analysis in each plot was analyzed by
the following equation:

ΔWL(t) = I(t) + P(t)− DR(t)− ETa(t) (1)

where ΔWL is the change of water level in the bucket (mm), I is irrigation (mm), P is
precipitation (mm), DR is drainage or overflow from the plot (mm) and ETa is actual
evapotranspiration (mm). Here, the plot was designed with zero percolation and seepage.
In the inlet and outlet, there was a water meter to measure irrigation and drainage. However,
there was water loss by overflow when heavy rain events occurred and low pressure of
water flow was not recorded. Therefore, the Excel Solver and ETa adjusted the parameters
of I and DR by minimizing the following objective function:

F(x) =
n

∑
t=1

|ΔWLo(t)− ΔWLm(t)| (2)

The constraints:
I ≥ 0; DR ≥ 0; ETa ≥ 0 (3)

where ΔWLo is the change of observed water level (mm), and ΔWLm is the change of
estimated observed water level by the Excel Solver (mm), t is the day after transplanting
(DAT) and n is total cultivation days. Since the Excel Solver only estimated 200 data in one
process, the adjustment process was performed four times according to plant growth stages.
They were initial (1–24 DAT), crop development (25–64 DAT), mid-season (65–87 DAT) and
late-season stages (88–110 DAT).
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Weather data were used to determine reference evapotranspiration according to a
standard model by the FAO Penman-Monteith equation [28], which is derived based on
the aerodynamic and canopy resistance, given by the following equation:

ETo =
0.408Δ(Rn − G) + γ 900

Tave+273 u(es − ea)

Δ + γ(1 + 0.34u)
(4)

where ETo is reference evapotranspiration on a daily basis (mm), Rn is net radiation
received at crop surface (MJ/m2/d), G is soil heat flux density (MJ/m2/d), Tave is air
temperature (◦C), u is wind speed at 2 m height (m/s), es is saturation vapor pressure (kPa),
ea is actual vapor pressure (kPa), γ is psychrometric constant (kPa/◦C) and Δ is the slope
of vapor pressure curve (kPa/◦C). The input data to calculate ETo were solar radiation,
minimum, average and maximum air temperature, relative humidity and wind speed at
2 m height on a daily basis. Moreover, the information regarding the location (elevation
and latitude) was needed, as well as Julian’s day. Detailed derived equations and their
procedure calculations of ETo can be referred to by Allen et al. [28].

ETo and ETa can be used to determine and adjust crop coefficient (Kc) by the following
equation:

Kc =
ETa

ETo
(5)

Water productivity and water-use efficiency index were used to evaluate the perfor-
mance of each regime. There are two definitions of water productivity adopted in this study.
Firstly, water productivity is defined as total production per total water input; secondly,
water productivity is total production per total water evaporated and transpired and they
are expressed in g grain/kg water [29]. Meanwhile, the water-use efficiency index is crop
yield per unit of water supplied [30]. Accordingly, the equation of water productivity and
water-use efficiency index is given by the following equation:

WPI+P =
100Y
I + P

(6)

WPETa =
100Y
ETa

(7)

WUE =
100Y

I
(8)

where Y is grain yield (ton/ha), 100 is a conversion factor, WPI+P is water productivity by
total inflow (irrigation and precipitation) (g grain/kg water), WPETa is water productivity
by actual evapotranspiration (g grain/kg water) and WUE is water use efficiency index
(g grain/kg water).

The water level of the setpoint was compared to the observed to evaluate the perfor-
mance of evapotranspirative irrigation by root mean square error (RMSE):

RMSE =

√√√√ n

∑
i=1

(WLset − WLo)
2

n
(9)

where WLset is water level setpoint (cm), WLo is actual water level (cm) and n is cultivation
days.

A significant test was performed by a single factor analysis of variance (ANOVA) to
elucidate the effects of irrigation regimes on crop performance, water productivities and
water use efficiency. The differences among regimes on all parameters’ means were then
compared using the least significant difference (LSD) at the 0.05 probability level (α = 0.05).
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2.5. Weather Condition during the Season

Figure 2 shows the fluctuations in weather parameters, especially air temperature,
relative humidity and wind speed. Air temperature is presented in minimum, maximum
and average values. Despite fluctuating, air temperature conditions remain relatively
constant throughout the growing season. It can be referred to as the gradient value of the
linear equation, which was relatively low (<0.01). The maximum air temperature reaches
36.3 ◦C, while the minimum and average air temperatures reach 20.5 ◦C and 26.8 ◦C,
respectively.

Figure 2. Air temperature, relative humidity, and wind speed fluctuations during planting season.

On the other hand, the relative humidity was found to decrease slightly. The gradient
value was higher than the linear equations of air temperature; however, the value was low
(<0.1). During one growing season, the consecutive minimum, average and maximum
relative humidity values were 65.4%, 80.1%, and 91.0%, respectively. For the wind speed,
the fluctuation was between 0 and 0.5 m/s, which indicated low wind speed in the field
location (<1 m/s). In addition, its gradient was also relatively low (<0.01) by means there
that even fluctuated; however, there was no significant change in the trends. The minimum,
average and maximum wind speed values were 0, 0.1, and 0.5 m/s, respectively.

Another parameter, solar radiation, also showed a slightly decreasing trend, as de-
picted in Figure 3. The reference evapotranspiration is also presented in the figure. At
the beginning of the growing season, solar radiation reached around 15 MJ/m2/d with
reference evapotranspiration of 3 mm. Then, the reference evapotranspiration and solar
radiation fluctuated; however, the trend was similar to other weather parameters. The
gradient of the linear equation was low (<0.01), which represented no significance in raising
and decreasing those parameters. At the end of the season, the value of solar radiation was
around 14 MJ/m2/d with reference evapotranspiration being lower than 3 mm. The maxi-
mum, average and minimum values of solar radiation were 19.9, 14.1 and 5.9 MJ/m2/d,
respectively. At the same time, the reference evapotranspiration values were 1.1, 2.9, and
4.2 mm for minimum, average and maximum, respectively.
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Figure 3. Solar radiation and reference evapotranspiration fluctuation during the planting season.

The linear relationship between the reference evapotranspiration and the weather
parameters is presented in Figure 4. Among the four parameters, solar radiation has
the most substantial relationship to the reference evapotranspiration, represented by the
highest R2 value. The value of R2 was close to 0.95, indicating that solar radiation has the
highest contribution to the variability of evapotranspiration. The second parameter that
has a major influence on the reference evapotranspiration was relative humidity, followed
by the air temperature and the wind speed. This relationship indicated that solar radiation
most influences the evapotranspiration process through the soil surface and plants [31].
Based on the sensitivity analysis study, solar radiation is the most sensitive parameter to
changes in evapotranspiration [32].

  

 

Figure 4. The linear correlation among reference evapotranspiration and weather parameters: (a) ref-
erence evapotranspiration vs. solar radiation; (b) reference evapotranspiration vs. air temperature; (c)
reference evapotranspiration vs. relative humidity; (d) reference evapotranspiration vs. wind speed.
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3. Results

3.1. Performance of Evapotranspirative Irrigation

The actual condition of the water levels in the CFI regime for replications 1 and 2
(CFI-1 and CFI-2) are presented in Figure 5. In this regime, inundation with a water level
of 2 cm above the soil surface was used as the set point. The water level fluctuated and
was close to the set point; however, high fluctuation occurred when there was a high rain
intensity event. There was a significant increase in water level, especially at 20 DAT, both
in CFI-1 and CFI-2. Heavy rainfall of 26.2 cm caused an increase in water level from 1.5 cm
to 4.9 cm in CFI-1 and from 2.5 cm to 6.4 cm in CFI-2. The same situation occurred at
26 DAT when 50.2 mm of rainfall contributed to raising in water level from 2 cm to 4.6 cm
of CFI-1 and 1 cm to 5.5 cm of CFI-2.

 
(a) 

 
(b) 

Figure 5. The actual field condition of water levels: (a) CFI-1; (b) CFI-2.

On the other hand, water levels tend to be lower when no rain event occurs for several
days. As at 32–42 DAT, the water level decreased from 3.6 cm to 0.8 cm. Although it was
set at the same setpoint, CFI-1 showed better performance. The average water levels were
2 cm and 2.4 cm for CFI-1 and CFI-2, respectively. Even though they fluctuated, the water
levels were close to the desired level, indicating that the evapotranspirative control system
worked well in this regime.
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Figure 6 shows the fluctuations in water levels of the MFI regime in both the first
replication (MFI-1) and the second one (MFI-2). The actual water levels fluctuated and
were a little bit far from the set point. The actual water level is higher than that of the
setpoint, particularly MFI-2. The water levels were lower to the setpoint only at the end of
the growing season. When rainfall with high intensity occurred, it caused water levels in
the field to increase. As at 22 DAT, after 70.8 mm of rain, the water level increased by 4.6 cm
and 1.8 cm for MFI-1 and MFI-2, respectively. As per the same situation on the CFI regime,
lower water levels generally occurred when no rain event happened, such as from 32 to
42 DAT. At this time, the water level tended to decrease from 1.8 cm to 0.5 cm. The average
water levels were 1 cm and 0.9 cm for MFI-1 and MFI-2, respectively. This indicated that
the evapotranspiration control system was slightly accurate in controlling the water level.

 

 
(a) 

 
(b) 

Figure 6. The actual field condition of water levels: (a) MFI-1; (b) MFI-2.

As previously mentioned, there were two setpoints in the WSI regime, i.e., 0 cm at
0–20 DAT and −5 cm afterward. As presented in Figure 7, the water level in both the first
replication (WSI-1) and second replication (WSI-2) was well controlled at 0–20 DAT with
the first set point. There were no significant fluctuations, and the water levels were close to
the setpoint even though there was low rain intensity. The average water level in this phase
is −0.1 and 0.5 cm for WSI-1 and WSI-2, respectively. Then, high fluctuation occurred when
the water level was dropped to −5 cm. In this period, as per the same situation in two
other regimes, high rainfall events occurred. The average water levels in the stage were
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−4.6 cm and −3.3 cm for WSI-1 and WSI-2, respectively. These results indicated that the
performance of WSI was slightly accurate, and both plots can be conditioned to be drier
than the other two regimes.

 
(a) 

 
(b) 

Figure 7. The actual field condition of water levels: (a) WSI-1; (b) WSI-2.

RMSE values of the CFI regime showed the lowest level, indicating that the CFI plot
was the best in controlling water level (Table 2). Its values were 1.17 cm, 15%, and 26%
lower than that of MFI and WSI plots; however, the differences were not significant. The
water level can generally be controlled as their values close to the setpoint, with RMSE
below 1.6 cm. The biggest challenge in implementing the evapotranspirative irrigation was
high rain intensity during one growing season. In hydrology, rainfall is always correlated
to the water level as many models have been developed [33,34]; thus, rainfall becomes the
most important factor in predicting water level under natural conditions.

Table 2. The performances of evapotranspirative irrigation in each regime.

Irrigation Regimes RMSE (cm)

CFI 1.17 ± 0.42a
MFI 1.37 ± 0.49a
WSI 1.57 ± 0.47a

Note: The presented data are the mean ± SD, where different letters in a row indicate a significant difference at
α < 0.05 level.
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Precipitation contributed to most of the water balance component by 79–88% of the
inflow (Table 3). The largest contribution of precipitation was found in the WSI regime
with less irrigation water. However, the rainfall affected more drainage or water loss. It
was counted for 67–69% of outflow. For irrigation, CFI requires the most irrigation water
to maintain flooded conditions in the field. The CFI regime required 27% and 49% more
irrigation water than the MSI and WSI regimes. Flooded conditions in the CFI and MSI
regimes also contributed to the higher value of actual evapotranspiration. The values
were about 8% higher than that of the WSI regime. High actual evapotranspiration also
correlated with higher crop coefficients in the CFI and MSI regimes. Several studies have
shown similar results; flooding increases water used through actual evapotranspiration
and consequently increases the crop coefficients [35–37].

Table 3. Water budget in each regime.

Water Balance Components CFI MSI WSI

Inflow
Precipitation (mm) 957.6 ± 0a 957.6 ± 0a 957.6 ± 0a

Irrigation (mm) 260.7 ± 10.9a 189.4 ± 13.9b 133.3 ± 2.1c
Outflow

Actual evapotranspiration (mm) 364.6 ± 1.2a 363.5 ± 11.0a 333.4 ± 4.4b
Drainage/overflow (mm) 877.1 ± 2.2a 843.6 ± 71.3a 824.0 ± 26.6a
Total water storage (mm) 23.4 ± 14.2a 60.1 ± 66.8a 66.5 ± 24.3a

Average of crop coefficient 1.09 ± 0.00a 1.09 ± 0.04a 0.99 ± 0.01a
Note: The presented data are the mean ± SD, where a different letter in a row indicates a significant difference at
α < 0.05 level.

3.2. Effects of Irrigation Regimes on Crop and Water Productivities

Plant height during one growing season in the three regimes is presented in Figure 8.
At 10 DAT, the average plant height of the CFI, MFI, and WSI regimes was 26.5 cm, 23.4 cm,
and 22.3 cm, respectively. The higher plant height of the CFI regime showed that standing
water in the initial growth stage stimulated the crop to grow taller. At the beginning of
the mid-season stage (64 DAT), there was a proportional and consistent increase in plant
height of 98.8 cm under the CFI regime, while in the MFI and WSI regimes they were,
consecutively, 93.4 cm and 92.2 cm. Finally, the highest average plant height at the end of
the season was found in the CFI regime. It was 3.2% and 4.8% higher than those of the MFI
and WSI regimes, respectively.

 

Figure 8. The Average plant height among the regimes.
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Comparable results in the number of tillers were found among the regimes, particularly
in the early growth stage. At 10 DAT, the regimes produced the same number of tillers
(Figure 9). A significant increase in the number of tillers occurred from the vegetative
growth stage (25–30 DAT). In this phase, the number of tillers was 11, 8, and 8 in the CFI,
MFI, and WSI regimes, respectively. The tiller formation ended at 70 DAT in the generative
state, in which the paddies focused on grain filling. An appealing occurrence happened
at the end of the late-season stage, where the MFI regime produced more tillers than the
two other regimes. The number of tillers in the MFI regime was 34. It was 3.8% and 10.8%
greater than the CFI and WSI regimes, respectively. Thus, saturated soil conditions (water
level at soil the soil surface) were more effective in tillers formation.

 

Figure 9. The average plant height among the regimes.

Based on statistical analysis, there was no significant difference in crop growth perfor-
mance, including in plant height, number of tillers, number of panicles, biomass (straw)
weight and grain yield (Table 4). Indeed, the CFI regime produced the highest plant height,
which correlated to the heaviest straw weight. However, it was only about 5.6% higher
than those of the others two regimes. Meanwhile, the MFI regime, although it produced
lower plant heights than the CFI regime, it produced the greatest number of tillers and
number of panicles. Its quantity was 5–10% higher than those of the CFI and WSI regimes,
respectively. The exciting things occurred in the WSI regime that produced the highest grain
yield. Although not significant, it was 6% and 7.5% higher than the CFI and MFI regimes,
respectively. The increased grain yield seems to be due to the high grain density [38].

Table 4. Yield, water productivity, and water use efficiency among the regimes.

Parameters CFI MFI WSI

Plant height (cm) 111.4 ± 3.7a 107.8 ± 0.3a 106.0 ± 2.0a
Number of tillers 33.0 ± 7.4a 34.4 ± 0.3a 30.7 ± 3.5a

Number of panicles 32.4 ± 6.8a 34.3 ± 0.1a 29.5 ± 4.1a
Biomass (straw) (ton/ha) 21.5 ± 0.7a 20.3 ± 1.4a 20.6 ± 0.7a

Grain yield (ton/ha) 6.3 ± 0.9a 6.2 ± 0.2a 6.7 ± 0.4a
Weed (ton/ha) 0.6 ± 0.8a 0.8 ± 0.4a 3.7 ± 0.6b

Root length (cm) 9.0 16.0 27.0
Water productivities:

WPI+P (g grain/kg water) 0.52 ± 0.08a 0.54 ± 0.02a 0.61 ± 0.04a
WPETa (g grain/kg water) 1.72 ± 0.25a 1.71 ± 0.10a 2.01 ± 0.10a
WUE (g grain/kg water) 2.41 ± 0.46a 3.30 ± 0.34a 5.02 ± 0.23b

Note: The presented data are the mean ± SD, where the different letters in a row indicate a significant difference
at α < 0.05 level.
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However, the WSI regime produced the heaviest weeds biomass, reaching 3.7 tons/ha.
Therefore, it was challenging to implement water-saving irrigation such as intermittent
irrigation of the SRI method [39]. The WSI regime produced weed biomass more than
three-times higher than the other regimes, and they were significantly different (Table 4 and
Figure 10). Indeed, rice inundation was an alternative to prevent weed growth, especially
in the vegetative phase [40]. However, as previously mentioned, it was wasteful in the
water use since the paddies supplied more than they needed.

 

Figure 10. Weed collection after harvesting in each regime: (a) CFI; (b) MFI; (c) WSI.

The drier fields with the low water level caused the roots to grow more profound,
as in the WSI regime (Figure 11). This situation is in line with the previous observations
by Setiawan et al. [18] and Aziez et al. [41]. The water deficit conditions spur roots to
grow vertically downwards in deeper soil layers to get water or nutrients. Deeper root
formation may cause stronger paddy growth in the SRI with intermittent irrigation than in
conventional farming with continuously flooded irrigation. Hence, SRI plant growth may
be better than conventional systems with continuous waterlogging [42]. On the other hand,
when the field is flooded, the roots grow sideways horizontally around the soil surface, as
found in the CFI regime (Figure 11).

 

Figure 11. Root development of randomized hill of paddy in each regime: (a) CFI; (b) MFI; (c) WSI.

The minimum water irrigation in the WSI regime had implications in increasing water
productivities, both in terms of total inflow (WPI+P) and actual evapotranspiration (WPETa).
WPI+P of the WSI regime increased up to 14%; however, it was not significant because
precipitation became dominant in water inflow. The same is true for water productivity
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from the perspective of plant evapotranspiration. Although actual evapotranspiration was
the lowest, the WPETa of WSI regime still increased up to 14.5% since the highest grain yield.
Moreover, the WSI regime had the highest water use efficiency index due to the lowest
irrigation. Its value index was 34% and 52% higher than those of the MFI and CFI regimes.
This lead showed that maintaining water level at the soil surface at the beginning of plant
growth is one alternative to raise water-use efficiency. This result is similar to that from
an alternate wet and dry irrigation (AWD) experiment conducted previously to improve
water use efficiency [43].

4. Discussion

Along with the effect of climate change, water resource availability changes and tends
to decrease, particularly in runoff and water levels due to changes in the hydrological
cycle [44]. Climate change is commonly characterized by increasing temperatures, rainfall
patterns and the frequent occurrence of extreme weather [45]. The concept of evapotran-
spirative irrigation is an effort to find an adaptive strategy to climate change and easier
application in the fields. The performance showed it was satisfactory with fairly small
RMSE values (Table 2). However, the system inaccuracies were raised when there was a
heavy rainfall event (Figures 5–7), and therefore precipitation became a constraining factor
affecting the performance. The precipitation was also found as the main factor that reduced
accuracy in water level control application in Indonesia [46,47].

Although we utilized advanced technology such as sensors, actuators and microcon-
trollers, inaccuracies were found during rainfall whenever the drainage system was not
controlled properly. Sirait et al. [46] developed a solar power pipe irrigation automation
system to control water levels. The performance of the system was very satisfactory from
the beginning and early late-season; however, error increased, as raising the gap between
setpoint and observed water level in the late season since the heavy rain event. An identical
situation was found by Nurfaijah et al. [47]. They developed an on-off water level control
system by utilizing an Arduino microcontroller for three irrigation regimes. There was an
increase in error during the precipitation. Therefore, it is highly recommended to control
the drainage rate for areas with high rainfall, such as by utilizing a subsurface drainage
system [48]. The subsurface drainage technology was able to increase water-use efficiency
up to 20% while maintaining the yield [49].

Among the regimes, the evapotranspirative irrigation was suitable with the WSI
regime in producing more rice. The key to increasing grain yield was seemingly attributed
to the lower water level below the soil surface after 20 DAT. The field was on aerobic
conditions that allowed more oxygen availability in the soil [50]. In addition, in the initial
stage, the field was wet. Thus, the WSI regime was similar to the moderate wetting and
drying regime (MWD) [51] or alternate wetting and drying irrigation (AWDI) [52]. The
regime was effective in water use and able to increase the yield [53]. The key in increasing
grain yield is increasing oxidation activity in roots, raising the photosynthetic rate in
leaves and increasing enzyme activities in the converting process of sucrose to starch in
rice grains [51]. Moreover, the system allows the roots to grow larger. It will transport
cytokinins through the xylem to the leaves in maintaining the photosynthesis process [54].
The longer root, as presented in Figure 11, seemingly shows more activities inside under the
WSI regime. More biomass and grain were also developed when more oxygen absorption
occurred by root activities, particularly in the reproductive stage [55].

However, the aerobic condition also has potential yield reduction when the lower
water level is not well controlled, causing the extreme driest of the soil. Setiawan et al. [18]
reported that the yield could be maintained at a water level of 3.2–7 cm below the soil
surface. However, if the water level is deeper than those intervals of water levels, it
can significantly reduce the yield due to stress on the crop. Based on a field experiment
by Zhang et al. [51], the yield reduction of 32% occurred when the soil was extremely
dry. The reason is due to abiotic factors such as increased soil pH, ammonia toxicity
and nutritional deficiencies in aerobic conditions [56]. In addition, aerobic conditions
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also stimulate significant weed growth, as shown in Figure 10. More weed production
can potentially reduce the yield, thus integrated weed management became important
to deal with this obstacle [57]. In Indonesia, weed growth can be suppressed using an
active herbicide containing 10% ethyl pyrazosulfuron applied after tillage and a mechanical
power weeder [58].

Under the absence of inundation, such as in the WSI regime, the rate of evapotranspi-
ration is low [25]; consequently, the total actual evapotranspiration was lowest compared
to the two other regimes (Table 3). Then, the average actual coefficient of this regime
was also lowest. The finding was supported by Linquist et al. [37]. They performed a
3-year field experiment and found that continuously flooded irrigation resulted in higher
actual evapotranspiration and crop coefficient than that drier, and vice versa. Kadiyala
et al. [59] recorded a 19% lower crop coefficient in aerobic conditions. Commonly, the
lower the actual evapotranspiration, the lower the yield [18,60], according to the basic
equation reported by van Lier et al. [61]. However, several experiments showed different
results [10,62–64]. It seems there is an inconsistent correlation between crop coefficient and
grain yield. According to Zhang et al. [65], the relationship between evapotranspiration
and yield can be represented by a parabolic trend. By means, the higher evapotranspiration
may lead to higher yield within a particular range. Then, after the parabolic peak point, the
opposite trend is found. It is important to optimize the irrigation regime to find the peak
point of actual evapotranspiration and yield so that water can be efficiently used.

The WSI regime improved water productivities and a significant water-use efficiency
index. The similar result was also found by Choudhury et al. [66], that SRI improved water
productivity both in evapotranspiration and total water supplied perspectives. In addition,
the SRI saves 18–21% of water input [67]; thus, the regime is suitable for the areas with
limited water resources such as upland and in combination with SRI cultivation [68]. The
strategies to improve those two parameters are by reducing percolation and evaporation.
Percolation can be reduced by minimizing the inundation water level (or at least at saturated
level) and increasing the duration of unsaturated conditions at 80–90% field capacity water
content [69]. In other words, the water level should be kept between 0 and 5 cm on the
surface [70]. Under this setup, plant growth was not significantly impaired (Figure 8), and
it is an effective strategy to reduce evaporation from the soil surface [71].

5. Conclusions

A model of evapotranspirative irrigation has reasonable prospects of application
because of its simplicity and easiness of use. Good performance of the system was achieved
as indicated by low RMSE in all irrigation regimes during one rice planting season. The
performance can be improved by developing a better drainage system. According to the
experiment under the developed technology, the water-saving irrigation (WSI) regime
of the system of rice intensification (SRI) was most efficient in water use. It was able to
increase water productivity by up to 14.5% without reducing the yield. In addition, it has
the highest water-use efficiency index, which is 34% and 52% higher than the moderate
flooded irrigation (MFI) and continuous flooded irrigation (CFI) regimes. In the near future,
the system should be implemented at the field levels under various climate conditions.
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Abstract: Research analyzing perceptions of water services has focused on water quality, water safety,
and the propensity to consume water from different sources. It has not assessed perceptions of water
costs. To address this knowledge gap, this study collected nationally representative survey data from
households in the United States about water issues and incorporated these data into logistic regression
models. In doing so, our study advances the water and public policy literature in three ways. One, it
addresses the need for household resolution information about water issues given the absence of data
at this scale in the United States. Two, it creates and utilizes one-of-a-kind survey data to understand
the perceptions of household water bills and the drivers of these perceptions. Three, we assess the
impact of proposed solutions to improve water affordability on household perceptions of water costs.
Model results indicate low-income and households in underrepresented groups were more likely to
perceive their water bills to be too high. The perception of water costs also varied geographically.
From a policy perspective, model results indicate utilities can positively affect perceptions of water
bills via the frequency of water billing and provision of payment assistance programs.

Keywords: water infrastructure; water services; water utilities; water bills; billing frequency;
customer assistance programs (CAPS); affordability

1. Introduction

Approximately 68% of the world’s population is projected to live in cities by 2050,
representing a 13% increase in demand for water services in urban areas [1]. In addition to
this rise in demand, water service providers face additional pressures related to institutional
fragmentation, the inability to defray costs to replace deteriorating infrastructure, and
increased capital costs to mitigate the impacts of climate change [2,3]. In the face of these
challenges, urban water providers struggle to balance the rising costs of providing quality
water service while simultaneously keeping the cost of service low for customers [2,4,5].

In the United States, there is some indication individuals feel their water bills are too
high. Anecdotal evidence from news stories cite a lack of billing transparency and a complex
mesh of reasons for rising water costs from city to city [6–9]. In San Diego, CA for example,
residents are confused about the sudden spike in water bills and meter readings, which they
say cannot be explained by rate increases alone [7]. In Bayonne, New Jersey, the city cut a
deal to have its water managed by a Wall Street firm that guarantees a rate of return on their
investment, which has contributed to rising water costs for residents [9]. These consumer
concerns and the rising cost of providing water services mean it is important to understand
consumer perceptions of the cost of water services. To this point in time, research has not
assessed perceptions of water costs. Instead, research has focused on analyzing perceptions
of other aspects of water services including: water quality [10,11], water safety [12–16],
and the propensity to consume water from different sources (e.g., tap water or bottled
water) [17,18]. A Canadian study found for example that 72% of respondents in Toronto
were ‘somewhat’ or ‘extremely’ concerned about chemical pollutants in the water [17].
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A study of the state of Georgia, found that approximately half of the respondents rated
drinking water quality as very safe, safe, or fair [19]. In a study within the state of Florida,
respondents who had experienced water quality issues previously were more likely to
perceive that water quality problems were becoming worse [18]. The same study also found
that participation in extension programs improved the perceptions of water quality.

Studies also find that people’s perceptions of quality are based on superficial char-
acteristics or organoleptic properties (e.g., taste, hardness, color, odor) that do not pose
health risks to people compared to invisible quality issues related to microbial or chem-
ical contamination [12–14]. For instance, hardness of tap water was found to be a main
reason individuals avoid consumption of tap water, despite the fact that hardness does
not pose any health risk [14]. Studies of bottled water consumption also find a diver-
gence or paradox between product characteristics and consumption preferences [20] that
is tied to the perceptions of taste [21,22] and perceptions of water safety [23]. Research
also points to perceptions of water safety as a reason that vulnerable populations, such as
low-income households, females and racial/ethnic minorities are more likely to purchase
bottled water [19,22,24,25].

In terms of research that examines water costs directly, several studies have conducted
research on water resource valuation, demand and willingness to pay [26,27]. Though the
overall demand for water is inelastic [19], several trends have emerged in the literature.
For instance, in Jordan and Elnagheeb’s [19] study, Black Americans were willing to pay
more for improvements in water quality than non-Black Americans. Willingness to pay
was also found to increase with the level of education. Community engagement also affects
public willingness to pay for watershed services as well as the level of public engagement
in watershed management [28].

One of the largest disconnects between the perception of water costs and actual
costs is access to clearly delineated water bills for household water consumers [26,29].
Interestingly, research indicates that the public’s understanding of water rates is affected
by the clarity of water bills [30]. Specifically, studies find that progressive price schedules
are difficult to understand for consumers [30–32]. For example, a nation-wide study of
the U.S. found that only 17% of utilities provided information about marginal prices and
78% provided no information other than the total amount required for payment [30]. More
recent studies suggest this lack of clarity about water pricing may be linked to water
consumption practices. For example, Binet et al. [33] investigated the perceived price of
drinking-water when consumers are imperfectly informed about pricing schedules and
found that households underestimate the price of water and consume more than what is
economically rational. To this point in time, however, research on water and public policy
has not yet evaluated the public’s perception of the fairness of water costs.

To address this gap, this study designed and collected nationally representative survey
data from over 9000 United States households about a variety of water issues, including the
cost of water. These one-of-a-kind data were incorporated into logistic regression models
to assess household perceptions of water bills and the characteristics of households who
perceive their water bills to be too high. In doing so, our study advances the water and
public policy literature by making several contributions. One, it addresses the need for
household resolution information about water issues, given the lack of data at this scale in
the United States. Two, it uses one of a kind survey data to understand the perceptions of
household water bills and the drivers of these perceptions. Three, we assess the impact of
proposed solutions to improve water affordability on household perceptions of water costs.

Model results indicate that low-income and racial/ethnic minority households were
more likely to perceive their water bills to be too high. There are also geographic variations
in household water perceptions that may reflect widespread affordability issues in particu-
lar parts of the country [34,35]. For example, respondents in the Detroit and Flint regions
were the most likely to report their water bills are too high compared to other regions in the
U.S. From a public policy perspective, model results suggest two ways that utilities and city
governments can affect consumer perceptions of water prices. In particular, model results
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indicated that billing frequency and participation in payment assistance programs affects
consumers’ perceptions of whether water bills are too high. Compared to those billed
monthly, households billed quarterly are more likely to say their water bills are too high.
Yet, when extended to annual or semiannual billing, this trend reverses, and households are
more likely to report their water bills are about right. These results indicate that monthly
or annual billing may be ideal billing frequency options for utility companies. Participants
enrolled in payment assistance programs were also less likely to perceive water bills were
too high. This suggests the development of customer assistance programs (CAPs) could
improve perceptions of the cost of water services.

2. Materials and Methods

To provide a first glance at perceptions of residential water costs across the United
States, this study uses data from the Survey of Water Innovation and Socioeconomic Status
of Households (SWISSH). This survey was designed by one of the authors to address the
lack of household data in the United States about water issues and administered to a panel
households by the Qualtrics survey firm [36]. The survey was administered to respondents
at least 25 years of age in households across nine regions in the U.S. between December of
2017 and March of 2018. After data cleaning, 9250 responses were used in the analysis for
this paper. These regions represent geographically, as well as socioeconomically and demo-
graphically diverse locations. Rim weights that combine race/ethnicity and income into
one probability weight for each respondent are available so that the data are representative
of households in the nine regions in terms of race/ethnicity and income, as indicated by
2011–2015 American Community Survey data from the U.S. Census Bureau [36].

The survey covers a variety of water issues, one question in particular asks respondents
about their views on the amount of money they spend on water. The text of this question
reads as follows: “In your opinion, is the amount you pay for water fair or unfair?”
Respondents were given five response options to this question: (1) “unfair, the price of
water should be higher”, (2) “unfair, the price of water should be lower”, (3) “fair, the price
of water is about right”, (4) “don’t know”, or (5) “prefer not to answer”. Survey responses
were coded with a “1” if consumers perceived them to be unfair and too high. The other
responses were coded as a “0” if respondents indicated that the amount they pay for water
is fair and about right or unfair because they were too low. Responses of “do not know” or
“preferred not to answer” were excluded from our analysis.

Logistic regression models were estimated in STATA 14 [37] using the ‘logit’ command
and were weighted with the ‘svy’ command. Rim weights were used to ensure representa-
tive samples that align with the demographic composition of the U.S. Census’ American
Community Survey. The probability that households report their water bills are too high is
as follows:

Pr(y = 1|x) = ex’β/(1 + ex’β) (1)

where y = 1 indicates water bills are too high. Vector β consists of slope coefficients corre-
sponding to the independent variables and an intercept. The overall predicted probability,
Y∗ is a ratio between the probability that households feel their water bills are either too
high or not too high, as shown in Equation (2).

Y∗ = ln
(

P(water cost too high)
P(water cost not too high)

)
(2)

The base category (denominator) is any response in which households did not consider
their water bills too high including a response of fair/about right, or unfair because
they believe the cost could be higher. Vector x in Equation (1) includes the exogenous
variables chosen based on prior research associated with water quality and risk perceptions,
willingness to pay for water, and awareness of environmental issues [9,26]. This body
of work shows that demographic and socio-economic factors such as income, education,
employment and race/ethnicity, are important to understanding perceptions of a range
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of water issues [23]. Independent variables in this model therefore include: (1) water
bill characteristics such as water billing frequency and whether the household is enrolled
in a water bill payment assistance plan, (2) socioeconomic characteristics including age
and income, (3) demographic characteristics, (4) regional variables, and (5) other control
variables. For example, we elected to include controls in the model, such as whether
respondents have health insurance, because these factors may place them at financial
risk. Therefore, health insurance status may affect their perceptions of financial issues,
including the cost of water services. The complete list and description of variables are
found in Table 1.

Table 1. Variable Names and Descriptions.

Variable Name Survey Question Variable Description/Values

Perception In your opinion, is the amount
you pay for water fair or unfair?

Responses considered too high:
- Unfair, the price of water should be lower

Responses not considered too high:
- Fair, the price of water is about right
- Unfair, the price of water should be higher

Region [Region based on zip code]

- Eastern Massachusetts (Boston–Worcester)
- Front Range—Colorado (Denver–Fort Collins)
- Mid-Atlantic (Washington, DC–Baltimore, Maryland)
- Pacific Northwest—Oregon (Portland–Eugene)
- Piedmont Atlantic (Atlanta, Georgia-Charlotte, North Carolina)
- Southeastern Florida (Miami–Palm Bay–Melbourne)
- Southeastern Michigan (Detroit–Flint)
- Southern California (Los Angeles–San Bernardino)
- Sun Corridor—Arizona (Phoenix–Tucson)

Wave [N/A]
- Wave 1
- Wave 2
- Wave 3

Race
With which racial or ethnic

group(s) do you identify
yourself?

- Hispanic
- Non-Hispanic African-American or Black
- Non-Hispanic Asian or Asian-American
- Middle Eastern, Native American or American Indian, Native

Hawaiian or Pacific Islander, Other
- White

Age In what year were you born? [Age was calculated according to the year the survey was administered]

Gender Are you . . . - Female
- Male

Education What is the highest level of
school you have completed?

- Did not finish high school
- High school
- Community college or vocational/technical school
- 4-year college or graduate/professional degree

Health Insurance
Do you have health insurance?

Which of these types of
insurance do you have?

- Medicaid
- Medicare
- No health insurance
- Private health insurance
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Table 1. Cont.

Variable Name Survey Question Variable Description/Values

Assistance paying
water bill

Do you participate in any
program that helps you pay

your water bill?

- No
- Yes

Employment status

Which of the following best
describes your current

employment or labor force
status?

- Full-time/part-time
- Unemployed/disability/not working/not looking
- Retired
- Student/homemaker/other

Income
What was the total combined

income before taxes of everyone
in your household in [year]?

- Less than USD 50,000
- USD 50,000–USD 100,000
- More than USD 100,000

Household type Do you live in . . .

- A single-family home/townhouse/patio home
- A multi-family home/apartment building
- A mobile home or trailer
- Other

Frequency of water bill How is the water bill paid in
your household?

- Monthly to the service provider
- Quarterly to the service provider
- Annually to the service provider
- Water bill is covered by our rent
- Water bill is covered by HOA/condo association
- Have a well and do not pay service provider
- Other

Note: response options in bold indicate the reference category for each variable.

Odds ratios are used to estimate the relative increase or decrease in the perception
that water bills are too high associated with each explanatory variable. These odds ratios
should be interpreted relative to reference groups for each variable, which are highlighted
in bold in Table 1. In general, indicators of high socioeconomic status were selected as the
base comparison category including those who are non-Hispanic White, earners over USD
100,000, male, college graduate or higher, and full-time or part-time employment.

3. Results

A weighted tabulation and corresponding percentage of too high/other responses
for select variables are presented in Table 2 which provides descriptive information about
respondents. Tabulations and percentages were calculated for these variables because they
are discrete and non-ordinal, and therefore, will be included as dummy variables in the
regression analysis that follows. Most households (63.3%) reported that their water bills
were about right or should be higher. Approximately 36.7% reported their water bills were
too high. Several demographic and socio-economic factors impacted the perceptions of
water bills. Females were more likely to indicate their water bills were too high, as were
racial/ethnic minorities. Blacks, Hispanics, and respondents identifying as some other race
(e.g., Native American, Native Hawaiian or Pacific Islander, or Middle Eastern) were more
likely to indicate their water bills were too high. People with lower levels of educational
attainment were also more likely to report that their water bills were too high. In particular,
people without a high school education were the most likely to report that their water bills
were too high. Relatedly, people with incomes under USD 50,000 reported feeling water
bills were too high.
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Table 2. Water Cost Perceptions and Household Demographic and Socio-Economic Characteristics.

Variable Category Variable Option Fair/Should Be Higher Too High Total

# % # % #

TOO HIGH/OTHER 4147 63.3 2400 36.7 6611

RACE/ETHNICITY

White 2580 66.7 1291 33.3 3937
Hispanic 791 59.6 537 40.4 1387
NH Black 444 55.1 361 44.9 860
NH Asian 270 62.2 165 37.8 497

Other 63 56.9 47 43.1 167

GENDER
Male 1686 66.6 845 33.4 2598

Female 2452 61.3 1550 38.7 4064

HIGHEST LEVEL OF
EDUCATION

Bachelor’s or Graduate Degree 2548 67.0 1254 33.0 3870
No High School 54 50.0 54 50.0 159

High School 604 58.1 435 41.9 1097
Community College 929 58.3 664 41.7 1652

INCOME LEVEL
<50 k 1162 54.0 989 46.0 2206

50–100 k 1320 61.8 815 38.2 2198
>100 k 1664 73.6 596 26.4 2334

Table 3 is similar in layout to Table 2 and presents additional information about other
household characteristics including geographic location, employment status, and health
insurance coverage according to water cost perception responses. The table also presents
policy related information such as water bill frequency and respondents’ enrollment in
water payment programs. The table suggests there are regional differences in the percentage
of respondents who felt their water bills were too high. The Pacific Northwest (40.9%),
Southeast Michigan (51.9%), and Southern California (40.8%) were regions where the largest
proportion of individuals reported their water bills were too high. Regions where most
respondents said their water bills were about right or too low are in the Piedmont Atlantic
(69.2%), the Mid-Atlantic (69.9%), and the Sun Corridor (67.1%). Some respondent and
household characteristics had a much higher rate of reporting their water bills were too
high. Some individuals reported their water bills were too high at a greater rate than the
overall survey rate of 36.7% including those on Medicaid (49.0%), with no health insurance
(46.5%), the unemployed (47.9%), and living in a mobile home/trailer (47.3%).

Table 4 presents the logistic regression results that help us understand which of the
variables presented in Table 1 are explanatory variables of water bill perceptions, even after
controlling for these factors simultaneously. Overall, income, geographic location, and race
explained whether individuals considered their water bills to be too high. Compared to
Whites, Black, Asian, and Hispanic individuals were more likely to perceive their water
bill charges as too high: Hispanic respondents were 27.4% more likely to report water bills
were too high, Black respondents were 43.8% more likely, and Asians were 32.1% more
likely.

Income was also a strong indicator of whether respondents felt water bills were too
high. Respondents in the lowest income bracket, making less than USD 50,000 per year
were approximately 2.3 times more likely to report their water bills were too high compared
to those making over USD 100,000 per year. Individuals in households making between
USD 50,000 and USD 100,000 were approximately 75% more likely to report their water
bills were too high compared to those making over USD 100,000.

There were also statistically significant geographic trends in water bill perceptions.
Compared to the Piedmont Atlantic region, four regions were statistically more likely to
have respondents that perceived their water bills to be too high. In Eastern Massachusetts,
respondents were 45.2% more likely to report water bills were too high. In Southern
California, respondents were 63.8% more likely to indicate that water bills were too high.
In Southeast Michigan respondents were 2.59 times more likely to indicate they were billed
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too much for water, while in the Pacific Northwest, respondents were 70% more likely to
indicate their water bills were too high. From a water provider perspective, two significant
variables are particularly interesting. Billing frequency and enrollment in a water payment
assistance program were significant explanatory factors behind perceptions of water bills.
Households on a quarterly schedule for water bill payments were 18% more likely to
consider their water bills to be too high. However, respondents indicating they paid their
water bills annually or had their water included in their homeowners’ association (HOA)
fees were approximately half as likely to indicate they perceived their water bills as too
high. Households enrolled in a payment assistance program were about 26% less likely to
perceive their water bills to be too high.

Table 3. Water Cost Perceptions and Other Household Characteristics.

Variable Category Variable Option Fair/Should Be Higher Too High Total

# % # % #

TOO HIGH/OTHER 4147 63.3 2400 36.7 6611

REGION

Piedmont Atlantic 580 69.2 258 30.8 907
Mid-Atlantic 488 69.9 210 30.1 768

Eastern Massachusetts 404 65.2 216 34.8 684
Southeast Florida 422 62.3 256 37.7 740

Front Range 517 68.9 234 31.1 819
Southern California 411 59.2 283 40.8 753
Southeast Michigan 352 48.1 379 51.9 779
Pacific Northwest 432 59.1 299 40.9 790

Sun Corridor 542 67.1 266 32.9 875

WAVE
Wave 1 366 61.1 233 38.9 660
Wave 2 1364 61.0 873 39.0 2298
Wave 3 2417 65.1 1294 34.9 3777

HEALTH INSURANCE

Private Health Insurance 2503 64.9 1351 35.1 3919
Medicaid 280 51.0 270 49.0 601
Medicare 1015 66.9 502 33.1 1584

None 217 53.5 188 46.5 458

WATER PAYMENT
PROGRAM

Enrolled 165 61.3 104 38.7 330
Not Enrolled 3970 63.4 2288 36.6 6321

EMPLOYMENT STATUS

Full time/Part time 2530 63.5 1453 36.5 4046
Unemployed/Not
Working/Looking 233 52.1 214 47.9 500

Retired 1077 67.9 508 32.1 1653
Student/Homemaker/Other 300 57.7 220 42.3 578

HOUSEHOLD TYPE

Single Family
Home/Townhome 3467 63.7 1976 36.3 5506

Multi-Family
Home/Apartment 582 62.0 357 38.0 1001

Mobile Home/Trailer 56 52.7 50 47.3 158

WATER BILLING
FREQUENCY

Monthly 2799 63.3 1626 36.7 4489
Quarterly 908 59.7 614 40.3 1582

Annually/Semiannually 71 75.0 24 25.0 170
Bimonthly 114 60.2 75 39.8 249

HOA/Condo 108 79.6 28 20.4 215
Have Well 115 95.5 5 4.5 215

Other 32 53.6 28 46.4 114
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Table 4. Logistic Regression Results: Odds Ratios for Factors affecting Perceptions of Water Bills.

Variable Category Base Variable Variable Option Odds Ratio Standard Error

REGION Piedmont Atlantic

Mid-Atlantic 1.112 (0.147)

Eastern Massachusetts 1.452 *** (0.204)

Southeast Florida 1.207 (0.155)

Front Range 1.191 (0.149)

Southern California 1.638 *** (0.212)

Southeast Michigan 2.588 *** (0.330)

Pacific Northwest 1.704 *** (0.206)

Sun Corridor 1.157 (0.143)

WAVE Wave 1
Wave 2 1.104 (0.130)

Wave 3 0.974 (0.111)

RACE/ETHNICITY White

Hispanic 1.274 *** (0.119)

NH Black 1.438 *** (0.136)

NH Asian 1.321 *** (0.128)

NH Native American, Native
Hawaiian, Middle Eastern,

Other
1.233 (0.191)

GENDER Male Female 1.063 (0.069)

HIGHEST LEVEL OF
EDUCATION

Bachelor’s or Graduate
Degree

No High School 0.719 (0.207)
High School 1.006 (0.093)

Community College 1.067 (0.081)

HEALTH INSURANCE Private Health Insurance
Medicaid 1.131 (0.134)
Medicare 0.826 ** (0.078)

None 1.162 (0.157)

SOCIAL PROGRAM Enrolled in Water Bill
Payment Program

Note enrolled in water bill
payment program 0.738 ** (0.114)

EMPLOYMENT
STATUS

Full Time/Part Time

Unemployed/Disability/Not
Working and Not Looking 1.121 (0.150)

Retired 0.842 * (0.085)
Student/Homemaker/Other 1.213 (0.145)

INCOME LEVEL >100 k
<50 k 2.343 *** (0.217)

50–100 k 1.745 *** (0.131)

HOUSEHOLD TYPE
Single family

home/townhome

Multi-Family
Home/Apartment 0.943 (0.086)

Mobile Home/Trailer 1.175 (0.314)

WATER BILLING
FREQUENCY

Monthly

Quarterly 1.182 ** (0.100)
Annually/Semiannually 0.504 ** (0.147)

Bimonthly 1.107 (0.191)
HOA/Condo 0.508 *** (0.133)

Have Well 0.089 *** (0.039)
Other 1.289 (0.368)

AGE N/A Age 1.009 *** (0.003)

CONSTANT Constant 0.148 *** (0.032)

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. N = 6198 F-statistic = 9.305 ***.

Table 5 presents information from the U.S. Census Bureau and the Environmental
Protection Agency’s Environmental Quality Index (EQI) [38] for each of the regions to
provide context to the regression results. These data correspond to the counties containing
the city pairs of interest in each region, as listed earlier in Table 1. Social and demographic
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information comes from the U.S. Census Bureau’s American Community Survey 2015–
2019 [39]. The EQI index presents a county-level ranking of overall environmental quality
according to five categories: air, water, land, built, and sociodemographic environments
across the U.S [38]. Table 5 includes a measure of the total overall ranking, as well as the
water subset of the EQI. Low rankings represent lower levels of degradation. The rankings
are based on percentiles across U.S. counties as follows: lowest (0–5th percentile); very
low (5th–20th percentile); low (20th–40th percentile); moderate (40th–60th percentile); high
(60th–80th percentile); very high (80th–95th percentile); highest (95th–100 percentile). In
Table 5, the regions are divided into two groups according to the previous regression results:
regions where respondents were less likely to perceive their water bills to be too high and
regions that were more likely to perceive their water bills to be too high.

The regions more likely to say their water bills are too high have on average, a higher
percentage of individuals with a high school education or below (38.24% compared to
31.3%), a higher non-White population (43% compared to 30%), and higher population
densities. Median household income and poverty levels were similar for both. Regions
with a higher percentage of households more likely to say their water bills are too high are
located in counties with a ranking of water quality problems ranging from high to highest
(75% for regions more likely to report bills too high compared to 50% for those less likely).
These regions also have higher levels of environmental degradation (37.5% compared to
30%). Therefore, respondents from regions that perceived their water bills to be too high
are more likely to live in areas of lower water and lower environmental quality.

Table 6 presents tabulations of survey questions for respondents who felt their water
bills were too high, which provide important contextual information about respondents’
experiences with water and utilities (e.g., water and electricity). Based on the information
presented in this table, the majority of households who perceive their water bills to be
too high worry about the cost of water and are less likely to feel they can easily afford
their water bills. Only 44.7% of these households reported they could easily afford their
water bills and 81.2% say they worry about the cost of water. However, a lower percentage
of these same respondents have had prior experience with utility affordability issues.
Of the respondents who indicated their water bills were too high, just over a third had
experienced prior restrictions on water use (32.8%) or had received a water (32.2%) or
electric shutoff notification (36.3%);23.3 percent and 20.5 percent had experienced a water
or electric shutoff respectively.

Interestingly, these views and experiences do not appear to have impacted respondents’
trust in public institutions at the time of the survey. Table 7 presents tabulations of survey
questions about trust in public institutions, which may be a driver of water bill perceptions;
households with low trust in institutions may be more likely to perceive water bills to be
too high. The table indicates however, that the majority of respondents felt confident in
institutions such as their local water utility (62%), flood control district (54.6%) and public
health agencies (58.5%). A somewhat lower percentage of respondents felt confident about
their city/town government (50.6%).
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Table 6. Contextual Survey Questions Related to Experiences with Water Services.

Question Variable Option Response Options # %

In the Past 12
Months Have You

Had . . .

Water Use
Restriction

Yes 443 32.8
No 909 67.2

Total 1353 100.0

Water Shutoff
Notification

Yes 180 32.2
No 378 67.8

Total 558 100.0

Water Shutoff
Yes 94 23.3
No 311 76.7

Total 405 100.0

Electric Shutoff
Notification

Yes 248 36.3
No 435 63.7

Total 683 100.0

Electric Shutoff
Yes 98 20.5
No 381 79.5

Total 480 100.0

Do you agree or
disagree with the

following
statements?

Cost of Water
has Increased

Disagree 127 5.3
Neither agree nor disagree 439 18.4

Agree 1822 76.3
Total 2388 100.0

Easily Afford my
Water Bill

Disagree 635 26.5
Neither agree nor disagree 689 28.8

Agree 1068 44.7
Total 2392 100.0

Worried about
Cost of Water

Disagree 149 6.2
Neither agree nor disagree 301 12.6

Agree 1939 81.2
Total 2388 100.0

I Conserve Water
Due to Expense

Disagree 212 8.9
Neither agree nor disagree 377 15.8

Agree 1802 75.4
Total 2392 100.0

Note: Affirmative responses (yes or agree) are presented in bold in this table.

Table 7. Survey Questions Related to Trust in Institutions.

Question Variable Option Response Options # %

As far as these institutions
and their leaders are

concerned, how confident
are you in each of the

following?

Your Local Water
Utility

Not Confident 381 16.4
Neutral 503 21.6

Confident 1444 62.0
Total 2329 100.0

City/Town
Government

Not Confident 537 23.0
Neutral 614 26.3

Confident 1181 50.6
Total 2333 100.0

Your
Drainage/Flood
Control District

Not Confident 337 15.8
Neutral 635 29.7

Confident 1167 54.6
Total 2139 100.0

Public Health
Agencies

Not Confident 395 17.2
Neutral 562 24.4

Confident 1348 58.5
Total 2305 100.0
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4. Discussion

The United States is in an era of infrastructure replacement, which will require massive
investments totaling an estimated USD 600 billion towards water infrastructure over the
next two decades [3]. These investments, along with shutoffs in water service in several
cities across the United States and the Flint water crisis, suggest that trust in water service
and also the perceptions of water services are important to analyze at this juncture in
history. Aside from consumer reactions to water costs, the perceptions of these costs are
also important for water utilities to bear in mind since a sizable customer base that considers
water bills to be too high may lead to the inability or unwillingness to pay for water services.
It may also cause consumers to switch to alternate water sources, such as private wells
or bottled water, which could erode the revenue streams of utilities [40]. Combined,
these coping strategies may erode the long-term customer base of utilities and public
engagement in local water policy decisions [41]. To this point in time, however, studies
of water perceptions in the developed world have assessed dimensions of water services
(e.g., quality and willingness to pay) other than perceptions of water costs. To address this
research gap, the goal of this paper was to analyze the perceptions of households regarding
the cost of water services and to assess the characteristics of households who felt their
water bills were too high.

Not surprisingly, income was one of the more important factors in explaining water
bill perceptions. Households making less than USD 50,000 were more likely to feel that
their water bills were too high. Even after controlling for income, race was also a significant
factor behind households’ perceptions of water bills. Non-white, minority households
were more likely to perceive that their water bills were too high. This finding is in line
with recent research, which finds high water costs disproportionately affect communities
of color [42,43]. Studies suggest that these high costs are a result of population decline in
urban areas and postindustrial divestment [42]. It may also reflect the fact that Black and
Hispanic neighborhoods are at higher risk for water shutoffs due to non-payment than
predominantly White neighborhoods [29].

Another important finding of this study was variations in household perceptions
across particular regions of the country. Households in four regions of the country (e.g.,
Eastern Massachusetts, Southern California, Southeast Michigan, and Pacific Northwest)
were more likely to perceive water bills as being too high. This may reflect the higher cost
of living in three of these areas of the country (Eastern Massachusetts, Southern California,
Pacific Northwest). In Southeast Michigan, which includes the cities of Flint and Detroit,
these results may reflect consumer awareness of shutoffs in Detroit and also rising water
rates in these cities [34,35].

Model results also indicated that the frequency of billing affects perceptions of water
bills. Respondents billed quarterly were more likely to consider their water bills to be too
high compared to customers billed monthly or annually. Therefore, one recommendation
based on these findings is for water companies to bill monthly, which prior work indicates
helps household budget their money better [44]. Alternatively, companies could also bill
households annually, allowing for customers to easily anticipate this one-time annual
payment without focusing on water costs for the rest of the year. Another important result
was that water payment programs reduced the likelihood that households perceived their
water bills to be too high. This finding suggests that water providers should work to
establish water assistance programs for customers in need. At present there is no federal
framework guiding the implementation of customer assistance programs (CAPs) [45],
which provides utilities with a good deal of flexibility in structuring these programs. Types
of CAPs that may be offered range from water efficiency programs to bill discounts to
lifeline rates [46]. Important considerations in CAP design that influence program cost
include the program size and the type of assistance offered [46]. State laws governing
utility regulation and the wording and interpretation of state statutes are also important
considerations to keep in mind when designing programs because the legal barriers to
CAPs do vary across states and utility type [8]. If a utility already has a CAP in place,
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providers may want to develop outreach programs to communicate with customers and
enhance their awareness of CAPS.

That said, it is important to acknowledge some limitations of the present study. One,
the SWISSH survey contains several questions that ask about pollution in nearby water
bodies and experiences with water pollution. These questions were not incorporated
into the logit model because pollution is not related to the primary topic of this paper.
In addition, as noted previously in the introduction to this paper, research on public
perceptions of the quality of local water resources finds that perceptions of the quality of
local water resources are based predominantly on organoleptic properties such as taste and
turbidity, which are not based on measurable safety or water quality metrics [23,47]. Studies
also show the perceived risk of local water resources is strongly associated with perceived
(not necessarily measurable levels) of chemicals in water, external information, past health
problems, and trust in water suppliers [47]. Two, the SWISSH survey does ask respondents
to estimate the amount of their last water bill. We elected not to include this information in
the models because prior research has indicted that biases in responses are likely to arise
related to recall problems [48]. Studies have also found that consumers do not have an
accurate understanding about how their water bills are calculated or how much they pay
for water services [30]. There is also no nationwide data available in the United States
about water rates to use in place of survey data. The American Water Works Association
(AWWA) has a survey, but it is only for AWWA member utilities and is not representative
of all utilities across the nation. The University of North Carolina also provides some rate
data [49], but the coverage of these data is not national. It is also prohibitive from a time
and financial perspective to collect rate data for the nation as a whole. Collecting this
information would require collaboration with thousands of water providers. Harmonizing
these data would also be quite complex because utilities use different pricing strategies
for water in the United States, which contributes further to the infeasibility of creating a
nationwide water rate database. A third limitation of this study is that it does not control for
household water use, which could impact the amount of water bills and also perceptions of
water bills. To control for this, water usage data would need to be acquired from individual
utilities which may be infeasible because of privacy concerns for customers. It is also not
feasible to acquire usage data with the same coverage as the SWISSH survey.

The limitations of this paper present several opportunities for future research that
expand on the present study. One, future work could collect information about water costs,
water use, and survey data about perceptions of water costs, based on those provided
by the SWISSH survey, to understand the linkages between water cost, water use, and
perceptions of water costs. Acquiring these data would also require the cooperation of a
utility and would require them to solicit information from customers. There may be privacy
risks to customers in acquiring these data, however. Thus, the feasibility of this research
path is questionable. Two, future work could collect information about actual water costs
from customer bills, and pair these data with survey data from customers about their
estimated costs of water. This would be useful in understanding the extent customers are
aware of the actual cost of their water use and their recall accuracy. Again, the privacy risk
to customers and the time burden this may place on utilities may render this research path
unfeasible. Third, the results of our study suggest that news coverage about water issues
may explain geographic differences in household perceptions of water costs, particularly
in Southeast Michigan, that includes the cities of Flint and Detroit, which has received a
lot of national news coverage related to water shutoffs and water rate increases [34,35].
Future work could test the extent that news coverage creates bias in household perceptions
of water costs by collecting times series information about water rates from individual
providers, survey data about customer perceptions of water trends and news reports from
the media about water issues. This type of survey design has fewer data privacy risks for
individual consumers, but is risky because the data collection would be time intensive and
require a knowledgeable team of personnel which could also be quite costly.
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5. Conclusions

This study provided the first examination of household perceptions of water costs
across nine geographically, demographically, and socioeconomically diverse regions of the
United States. In doing so, our study advances the water and public policy literature in
three ways. One, it collected one-of-a-kind survey data to address the need for household
resolution information about water issues given the absence of data at this scale in the
United States. Two, it incorporated these one-of-a-kind survey data into logistic regression
models to understand the drivers of household perceptions of water costs. Three, we
assessed the impact of proposed solutions to improve water affordability on household
perceptions of water costs. Model results indicated low-income and households in under-
represented groups, such as racial and ethnic minorities, were more likely to perceive their
water bills to be too high. The perception of water costs also varied geographically. From
a policy perspective, model results indicate utilities can positively affect perceptions of
water bills via the frequency of water billing and provision of payment assistance programs.
Utilities could also use the information from the survey and model results to focus outreach
and communication activities to customers who feel their water bills are too high. As
water utilities and city governments navigate the conflicting objectives of maintaining
and upgrading water systems at prices that are affordable for a majority of water users,
communication with customers will be key to maintaining good relationships during this
period of change and adaptation.
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Abstract: The surface water ecosystem has important ecological value and plays an important sup-
porting and guarantee role in the sustainable development of human society. In this study, an inexact
two-stage stochastic programming (ITSP) model was developed for supporting water resource alloca-
tion for the four main water sectors (industry, municipal, agriculture, and ecological environment).
Several scenarios corresponding to different flow patterns, which reflect different probabilities of
water resource availability and environmental carrying capacity, were examined. On the basis of
traditional water resource allocation, this model adds consideration of ecological value factors, which
is conducive to the synergistic efficiency of socio-economic and ecological water consumption. Results
revealed that the water resource carrying capacity, ecological value factors, and water environmental
capacity are the main factors affecting the optimal allocation of water resources. Furthermore, the op-
timal allocation scheme for water resources coupled with ecological value factors were determined to
realize the coordinated development of social economic benefits and ecological benefits. The current
study findings are of great significance for establishing a rational water resource management system
for water resource exploitation and utilization. This model can be used to guide various departments
in Dalian to formulate an optimal water resources allocation scheme by considering ecological value
factors, and provide a basis for realizing the coordinated development of Dalian’s socio-economic
development goals, water resource utilization, and environmental quality improvement.

Keywords: inexact two-stage stochastic programming; water management; ecological value factor;
water resource allocation

1. Introduction

Water resources are the lifeline of social progress and economic development. How-
ever, in today’s world, social development and progress, population expansion, and over-
exploitation of water resources have caused a shortage of fresh water resources [1]. The op-
timal allocation of water resources is an important means to coordinate the relationship
between supply and demand of water resources, improve the utilization of water resources,
and coordinate the conflicts among water consuming departments, particularly in areas
with water shortages [2–4]. Therefore, it is necessary to optimize the allocation of water
resources in water-scarce areas. With the increasing demand for water quality improve-
ment, water demand has become important for regional water resource optimization and
allocation [5,6]. However, the value created by the water ecosystem cannot be presented in-
tuitively, the conventional optimal allocation of urban water resources pays more attention
to the economic output of water consumption and does not fully consider the ecological
value, which is not conducive to the synergistic efficiency of socio-economic and ecological
water consumption. Therefore, it is necessary to increase the direct consideration of ecolog-
ical value factors while considering the optimal allocation of water resources. In addition,
there are many uncertainties in the optimal allocation of water resources, such as variable
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availability of water resources, demand, and development of water treatment technolo-
gies, which make it difficult to select the optimal allocation method. Therefore, under the
background of promoting the construction of urban ecological civilization, the optimal
allocation of water resources presents challenges in coordinating the ecological value and
dealing with various uncertain factors [7].

Interval-parameter programming, fuzzy programming, and stochastic programming
are common methods for water resources allocation under uncertainty [8–12]. For ex-
ample, Huang and Locks [13] were the first to propose the inexact two-stage stochastic
programming (ITSP) to deal with uncertain information in interval-valued and random
variable representations. Under the framework of the ITSP method, various advanced
models are proposed and applied to water resources management [14]. Maqsood [15]
presented an interval-parameter fuzzy two-stage stochastic programming (IFTSP) method
for the planning of water resource management systems under uncertainty; Li et al. [16]
selected an interval-fuzzy two-stage stochastic quadratic programming model with the
objective of maximum benefits to have the best irrigation water allocation scheme. Xie [13]
developed an inexact, two-stage, water resources management model for multi-regional
water resources planning in the Nansi Lake Basin, China. In the ITSP, an initial decision
is made before the random events. After future uncertainties are resolved and the values
of the random variables are revealed, a second decision is made that minimizes penalties
due to any infeasibilities [17]. It can be seen that ITSP is an effective method for optimal
allocation of water resources under uncertain conditions.

As the leading revitalization and famous coastal industrial city in Northeast China,
Dalian lacks freshwater resources. With the development of the urban social economy
and the improvement of the ecosystem, the demand for water resources continues to
grow rapidly and presents intensified competition. It is difficult to coordinate water use
among industrial, municipal, and ecological environment sectors [18]. Under the overall
objective of coordinating urban social and economic development and improving the
living environment, this study intended to reflect different probabilities of water resource
availability and environmental carrying capacity in different flow scenarios. An ITSP model
was constructed by coupling the ecological value factors, which was more comprehensively
considering the impact of ecological value factors on the optimal allocation results of water
resources. The four major urban water departments in Dalian, including the industry, urban
community, agriculture, and ecological environment, were studied to discuss the optimal
allocation mode and method for urban water resources, coordinate the needs and value
factors for the improvement of the ecosystem, and realize the coordinated development of
ecological value and social and economic benefits.

Therefore, aiming at the dual constraints of water resource shortage and water en-
vironment quality and based on the principle of achieving the coordination of ecological
value and social and economic benefits, a general framework for establishing an ITSP for
the optimal allocation of water resources in Dalian under uncertain conditions is proposed
(Figure 1). The model considers constraints such as ecological area and water consumption,
as well as available water resources and water environment capacity, and combines eco-
logical value benefits with water resource management to provide Dalian with a relatively
reasonable water resource allocation plan. Our study findings are of great significance for
establishing a rational water resource management system for water resource exploitation
and utilization, as well as water ecosystem protection, and provide a basis for realizing the
coordinated development of Dalian’s socio-economic development goals, water resource
utilization, and environmental quality improvement.
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Figure 1. Framework for the inexact two-stage stochastic programming (ITSP) model.

2. Study Area and Division of Integrated Zones

Dalian covers 43,014 km2, of which 13,739 km2 is land. The city’s multi-year average
total water resources are 3.14 × 109 m3, of which surface water resources are 3.05 × 109 m3,
and the regional distribution, as well as inter- and intra-annual changes in the runoff in
each basin, are extremely uneven, making it a water-poor area [19]. There are more than
300 rivers in the urban area, which are divided into the river systems along the Yellow Sea
in eastern Liaodong and the river systems along the Bohai Sea in the eastern Liaodong
Bay. There are 57 rivers that flow into the sea, along with a catchment area of more than
2.00 × 107 m2 [20]. There are 69 reservoirs of various types, with a total annual storage
capacity of 1.32 × 109 m3, of which 22 are the main drinking water sources. Dalian is rich
in wetland resources, with a total area of about 3.58 × 109 m2, including 2.42 × 109 m2 of
offshore and coastal wetlands, 1.04 × 109 m2 of artificial (coastal) wetlands, 1.15 × 108 m2

of river wetlands, and 3.00 × 108 m2 of marsh wetlands.
Figure 2 shows the geographical position and study regions of Dalian. To reflect

different water environmental functions and water resource utilization in terms of time
and space, the study area was divided into 37 integrated zones (i = 1–37 represent I, II,
III, IV, V, VI, VII, VIII, IX, X, XI, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII,
XXIII, XXIV, XXV, XXVI, XXVII, XXVIII, XXIX, XXX, XXXI, XXXII, XXXIII, XXXIV, XXXV,
XXXVI, and XXXVII) and six administrative regions (i = 1–6 represent four districts (Xigang,
Shahekou, Ganjingzi, and Zhongshan), as well as Lvshunkou, Jinpu, Wafangdian, Pulan-
dian, and Zhuanghe). Figure 3 shows the relationship between regional pollutant emissions
and water distribution, including pollutant emission directions and proportions. The values
show the proportion of pollutant emissions generated from region j and discharged into
the water environment zone i.
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Figure 2. Geographical position and study regions of Dalian.

 
Figure 3. Relationship between regional pollutant emissions and water distribution.

3. Model Formulation

3.1. Model Development

It is often necessary to combine two-stage stochastic programming (TSP) [21] with
Interval Linear Programming (ILP) to deal with uncertain factors in practical problems.
Using the maximization problem as an example, the ILP is combined with the TSP to obtain
the interval two-stage stochastic optimization model (ITSP), which can be expressed as:

maxf± = c±x± −
N

∑
s=1

psq(y±,ω±
s ) (1a)
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and
A±x± ≤ b± (1b)

T(ω±
s )x

± + W(ω±
s )y

± = h(ω±
s ) (1c)

x± ≥ 0, y
(
ω±

s
) ≥ 0 (1d)

Model 1 can be solved by transforming into sub-models of upper bound and lower
bound objective functions through an interactive algorithm [14]. Then, the optimal so-
lutions for Model 3 can be obtained as f±jopt =

[
f−jopt, f+jopt

]
, x±jopt =

[
x−jopt, x+jopt

]
and

y±
lsopt =

[
y−

lsopt, y+
lsopt

]
. For more details, refer to [14,22].

The research planning period will last until 2035 and will be divided into three phases:
2021–2025 (phase I), 2026–2030 (phase II), and 2031–2035 (phase III). Three flow scenarios
are designed as low, medium, and high, reflecting different probabilities of water resource
availability and environmental carrying capacity with different flow scenarios. The ecosys-
tem is a prerequisite for economic and social development, and the ecological value needs to
be taken into account while optimizing the allocation of water resources to achieve synergy
between ecological and water use benefits. Model ecological benefits primarily include the
value of ecosystem-regulating services, which can be defined as the sum of the value of
ecosystems for sustainable economic and social development and human well-being [23].
This study considers four main values of water ecosystem regulation services: water purifi-
cation value, hydrological regulation value, water conservation value, and research and
cultural value. In the model, the difficulty of clarifying parameters, such as the number
of surface water resources and water consumption quota in Dalian, can be expressed in
discrete intervals based on their maximum and minimum values. The ITSP model of Dalian
coupled with ecological value factors can be formulated as follows:

maxf± = f±1 + f±2 − f±3 − f′±3 − f±4 − f′±4 − f±5 (2a)

where f± is the total expected system benefit (104 CNY) over the planning periods.
(1) Sectors of water utilization benefits:

f±1 =
6

∑
j=1

3

∑
k=1

3

∑
t=1

Lt · UNB±
jkt ·
(

IAW±
jkt + RW±

jkt

)
(2b)

where j denotes the administrative region; k is the water use sectors (k = 1 for industry,
k = 2 for municipal, k = 3 for agriculture, and k = 4 for the ecological environment); t is
different periods in the planning horizon (t = 1 is phase I, t = 2 is phase II, and t = 3 is phase
III); Lt is the length of period, which is fixed at 5 years; UNB±

jkt represents water-use benefit

(104 CNY/104 m3); IAW±
jkt represents the initial allocation of water resources (104 m3/year);

RW±
jkt represents the reused water usage (104 m3/year).
(2) Ecological benefits:

f±2 =
3
∑

t=1

4
∑

m=1
C1 · Lt · A±

mt +
3
∑

t=1
Lt · C2 ·

(
4
∑

m=1
A±

mt · D +
24
∑

n=1
S±nt · Z

)
+

3
∑

t=1

4
∑

m=1
Lt · C2 · A±

mt · V±
mt +

3
∑

t=1
Lt ·
(

4
∑

m=1
A±

mt +
24
∑

n=1
S±nt

)
· C3

(2c)

where m denotes types of wetland (m = 1–4 for riverine, coastal, marsh, and constructed
wetlands, respectively), and n represents types of river (n = 1–24 for Biliu, Fuzhou, Dasha,
Yingna, Zhuanghe, Huli, Diyin, Xiaosi, Geli, Zanzi, Qingshui, Anzi, Weitao, Yongning,
Fudu, Langu, Dengsha, Sanshili, Shihe, Qingyun, Beida, Xiaogushan, Muchengyi, and Malan
rivers, respectively). C1 is the scientific and cultural value of wetlands per m2, which is
0.382 CNY/m2. A±

mt and S±nt denote wetland and river areas (104 m2), respectively. C2 rep-
resents the cost of the reservoir project, which is 0.67 CNY/m3. C3 is the value of wetland
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and water body degrading pollution, taking 2.81 CNY/m2. Z represents the normal water
level in the study region, which is 2.5 m. D is the maximum water storage difference, which
is 2 m.

(3) Sectors of water shortage penalty:

f±3 =
6

∑
j=1

3

∑
k=1

3

∑
t=1

3

∑
h=1

Lt · ph · PNB±
jkt · DW±

jkth (2d)

where h represents various runoff scenarios in every period (h = 1 is low scenarios, h = 2
is medium scenarios, h = 3 is high scenarios); Ph denotes the occurrence probability of
scenario h; PNB±

jkt represents the reduction of net benefit to sector k per unit of water

resource not delivered (104 CNY/104 m3); DW±
jkth is the allocation deficit of the surface

water environment of Dalian that does not meet the initial water resource quotas of sector
k during period t in region j under scenario h (104 m3/year).

(4) Penalty for lack of ecological water:

f′±3 =
3

∑
t=1

3

∑
h=1

Lt · ph ·
(

4

∑
m=1

DA±
mt +

24

∑
n=1

DS±nt

)
· PNA±

t (2e)

where DA±
mt and DS±nt represent the missing area of various types of wetlands and rivers

that did not meet the ecological requirements during period t (104 m2/year). PNA±
t is the

water deficit loss in the ecosystem water department during period t (104 CNY/104 m2).
(5) Sectors of water supply cost:

f±4 =
6
∑

j=1

3
∑

k=1

3
∑

t=1
Lt ·
(

IAW±
jkt −

3
∑

h=1
ph · DW±

jkth

)
· CW±

jkt

+
6
∑

j=1

3
∑

k=1

3
∑

t=1
Lt · RW±

jkt · CRW±
jkt

(2f)

where CW±
jkt represents the costs of water supply (104 CNY/104 m3); and CRW±

jkt is the

cost of reused water supply (104 CNY/104 m3).
(6) Ecological water use cost:

f′±4 =
3

∑
t=1

Lt ·
(

4

∑
m=1

(
A±

mt − DA±
mt
)
+

24

∑
n=1

(
S±nt − DS±nt

)) · SCW±
t (2g)

where SCW±
t is the cost of water resources in the eco-environmental water department in

period t (104 CNY/104 m2).
(7) Wastewater treatment cost:

f±5 =
6

∑
j=1

4

∑
k=1

3

∑
t=1

Lt ·

⎛⎜⎝ IAW±
jkt −

3
∑

h=1
ph · DW±

jkth

+RW±
jkt

⎞⎟⎠ · αjkt · CWW±
jkt (2h)

where CWW±
jkt represents the costs of wastewater treatment (104 CNY/104 m3); and αjkt

represents the wastewater emission coefficient.
Subject to:
(1) Water supply constraints:

3

∑
k=1

(
IAW±

jkt − DW±
jkth

)
≤ AWQ±

th; ∀t, h (2i)

DW±
jkth ≤ IAW±

jkt; ∀j, k, t, h (2j)
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where AWQ±
th represents available water resources in Dalian (104 m3/year).

(2) Demand constraints of water use sectors:

IAW±
jkt − DW±

jkth + RW±
jkt ≥ WD±

min jkt; ∀j, k, t, h (2k)

IAW±
jkt − DW±

jkth + RW±
jkt ≤ WD±

max jkt; ∀j, k, t, h (2l)

where WD±
minjkt and WD±

maxjkt represent the minimum and maximum water resources

requirement, respectively (104 m3/year).
(3) Regional wastewater treatment capacity constraints:

2

∑
k=1

(
IAW±

jkt − DW±
jkth + RW±

jkt

)
· αjkt ≤ ATW±

jkt, ∀j, k, t, h (2m)

where ATW±
jkt represents the wastewater treatment capacity (104 tons/year).

(4) Regional wastewater reuse capacity constraints:

2

∑
k=1

(
IAW±

jkt − DW±
jkth + RW±

jkt

)
· αjkt · ξjkt ≥

4

∑
k=1

RW±
jkt, ∀j, t (2n)

where ξjkt is the wastewater reuse rate.
(5) Water environmental carrying capacity constraint:

6

∑
j=1

4

∑
k=1

(
IAW±

jkt − DW±
jkth

+RW±
jkt

)
· α±

jkt · β±
jkt · EC±

krt · IDRkrt · Xij ≤ ALD±
jrth, ∀j, r, t, h (2o)

where r represents the type of pollutant (r = 1 for chemical oxygen demand (COD), r = 2
for ammonia nitrogen (NH4-N), r = 3 for total phosphorus (Tp)); EC±

krt represents the
concentration of pollutant r after wastewater treatment (tons/104 m3); IDRkrt represents
the river load ratio; βjkt is the wastewater concentration treatment coefficient; Xij is the
receiving ratio of water; and ALD±

irth represents the water environment carrying capacity
(tons/year).

(6) Ecological value factor constraints:

A±
mt − DA±

mt ≥ PRA±
mt, ∀m, t (2p)

S±nt − DS±nt ≥ PRS±nt, ∀n, t (2q)

4

∑
m=1

(
A±

mt − DA±
mt
) · V±

mt +
24

∑
n=1

(
S±nt − DS±nt

) · V±
nt ≤ IAS±t , ∀t, h (2r)

where V±
mt and V±

nt represent water storage capacity at normal water level (104 m3/104 m2),
PRA±

mt and PRS±nt, respectively, represent the minimum area of wetlands and rivers in the
study area to ensure ecological functions (104 m2); and IAS±t represents the amount of
water resources available in the ecological environment department (104 m3/year).

(7) Other:
DW±

jkth, RW±
jkt, DA±

mt, DS±nt ≥ 0 (2s)

Using an interactive algorithm, the ITSP model can be transformed into two deterministic
sub-models corresponding to the lower and upper bound values of the desired objective func-
tion. By solving the two sub-models, DW−

jkth, DW+
jkth, RW+

jkt, RW−
jkt, DA−

mt, DA+
mt, DS−nt, DS+nt

were obtained, forming the final ITSP model as
[
DW−

jkth, DW+
jkth

]
,
[
RW−

jkt, RW+
jkt

]
,[

DA−
mt, DA+

mt
]
,
[
DS−nt, DS+nt

]
.
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3.2. Model Parameters

Table 1 lists the upper and lower bounds of the initial resource allocation of each water
sector in Dalian. These were determined based on the latest last 10 years of regional water
resource consumption in each sector and on the developmental planning for the region.

Table 1. Upper and lower bounds of the initial water resource allocation in Dalian (104 m3/year).

Regions Departments
Periods

t = 1 t = 2 t = 3

Four Districts

k = 1 258~337 307~370 314~395
k = 2 6538~7699 3148~8739 8819~10,053
k = 3 122~132 124~128 116~122
k = 4 67~71 61~93 69~111

Lvshunkou

k = 1 3602~4254 3684~4341 3704~4383
k = 2 2992~3109 3063~3530 3141~4060
k = 3 423~486 430~471 436~450
k = 4 161~263 169~273 160~296

Jinpu

k = 1 9301~10,313 9116~10,331 9856~10,534
k = 2 3073~3131 2828~3554 3609~4089
k = 3 2364~3120 2408~3026 2448~2894
k = 4 1282~1688 1499~1731 1597~1761

Wafangdian

k = 1 3266~3613 3185~3819 3447~4020
k = 2 1233~1728 1400~1852 1611~1987
k = 3 4067~4699 4133~4557 4192~4359
k = 4 1637~2542 1915~2576 2167~2606

Pulandian

k = 1 889~1716 804~1919 817~2119
k = 2 1814~2018 1943~2291 2086~2635
k = 3 6133~6622 3226~6423 5910~6143
k = 4 3015~3582 3527~3788 3532~3888

Zhuanghe

k = 1 12,589~13,395 12,974~13,418 12,140~13,423
k = 2 923~5347 389~6070 1062~6983
k = 3 4821~5410 4897~5247 4965~5019
k = 4 1606~2926 1879~3941 2127~2952

4. Results and Discussion

4.1. Allocation of Water Resources in the Water Department

Table 2 lists the initial optimal allocation of water resources in Dalian. It can be
observed that the optimal allocation of water resources is close to the upper limit of the
initial plan because more water allocation will bring more water resource benefits to various
water-consuming sectors [24]. With the development of the society and economy, the annual
water demand of the industrial and municipal domestic water sectors in different planning
periods is gradually increasing. The development of Dalian is relatively balanced. Except
for the ecological environment, the industrial water consumption in the study area accounts
for about 43%, and the municipal and agricultural water consumption accounts for 32%
and 25%, respectively.
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Table 2. The initial optimal allocation of water resources in Dalian (104 m3/year).

Regions Sectors
Periods

t = 1 t = 2 t = 3

Four Districts
k = 1 337 370 395
k = 2 7699 8739 10,053
k = 3 132 128 122

Lvshunkou
k = 1 4254 4341 4383
k = 2 3109 353 4060
k = 3 486 471 450

Jinpu
k = 1 10,313 10,431 10,534
k = 2 3132 3554 4089
k = 3 3120 3026 2894

Wafangdian
k = 1 3613 3819 4020
k = 2 1728 1852 1987
k = 3 4699 4557 4359

Pulandian
k = 1 1716 1919 2119
k = 2 2018 2291 2635
k = 3 6623 6423 6143

Zhuanghe
k = 1 13,395 13,418 13,423
k = 2 4865 6070 6983
k = 3 5410 5247 5019

Figures 4 and 5, respectively, show the amount of water reused by the industrial
and municipal sectors in different planning periods. As shown in Figure 3, in regions
Four Districts, Pulandian, and Zhuanghe, due to the higher water consumption rate and
reclaimed water reuse rate of the industrial sector, the amount of reused water allocated
gradually increased over time. For example, in region Zhuanghe, water reuse quotas were
27.02 × 104~54.37 × 104, 32.78 × 104~63.44 × 104, and 37.76 × 104~68.65 × 104 m3/year
during the three periods. However, in regions Lvshunkou, Jinpu, and Wafangdian, water
reuse quotas showed opposite trends for the three periods. The water reuse quotas were
18.80 × 104~38.93 × 104, 17.44 × 104~37.35 × 104, and 14.83 × 104~31.96 × 104 m3/year for re-
gion Lvshunkou; 4.36× 104~5.97× 104, 3.98× 104~4.89× 104, and 3.14 × 104~4.74 × 104 m3/year
for region Jinpu; 28.32 × 104~71.20 × 104, 24.06 × 104~56.33 × 104,
and 19.04 × 104~44.66 × 104 m3/year for region Wafangdian, during the three periods,
respectively. The first reason may be that the industrial sector has a relatively high water
revenue; hence, the initial water quota in these two regions is close to the highest water de-
mand, and there is no need for excess water resource allocation. The second is that increased
water use means more wastewater is produced, which may exceed the existing wastewater
treatment capacity. Therefore, under the condition of limited wastewater treatment capacity,
a higher initial allocation of water resources will lead to water waste. As observed from
Figure 5, the water reuse quota allocated to municipal life in the three planning periods was
relatively small, especially in regions Lvshunkou and Jinpu. The reused water allocated
to municipal sectors was even as low as 0.02 × 104 m3/year. This may be because the
municipal living sector has low demand for water reuse and low revenue; therefore, water
is more likely to be allocated to the industrial sector with higher revenue. Since agricultural
irrigation has higher requirements for reused water, it also has higher requirements for
reused water treatment technologies. However, due to lower returns than the industrial
sector, this is not considered.
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Figure 4. Reused water resource allocations for industry (104 m3/year).

Figure 5. Reused water resource allocations for municipal use (104 m3/year).

Tables 3–5 list the upper and lower bounds of water resource scarcity in the industrial,
municipal, and agricultural sectors of each planning area during the three planning periods.
As observed from the table, as the water resources increase, water shortages decrease.
For example, in period 1, region Four Districts, water shortages of the industrial, munic-
ipal, and agricultural sectors in low, medium, and high water resource scenarios for the
three periods were as follows: 311.02 × 104~320.57 × 104, 149.79 × 104~245.81 × 104, and
101.59 × 104~201.70 × 104 m3/year for the industrial sector; 4682.25 × 104~5695.01 × 104,
1489.38 × 104~5695.01 × 104, and 0.00~5695.01 × 104 m3/year for the municipal sector;
2.80 × 104~59.73 × 104, 0, and 0 m3/year for the agricultural sector. Although the in-
dustrial sector had the highest water efficiency, it consumed a lot of water. Therefore,
as the planning period progressed, the demand and shortage for water continued to in-
crease. The industrial sector in region Zhuanghe had the largest water shortage, for which
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the shortage under different water resource scenarios was 11,092.97 × 104~12,848.82 × 104,
594.47 × 104~3126.95 × 104, and 0.00~3126.95 × 104 m3/year in period 1,
11,886.10 × 104~15,872.69 × 104, 382.03 × 104~3619.22 × 104, and 0.00~3619.22 × 104 m3/year
in period 2, 11,852.15 × 104~12,879.20 × 104, 625.84 × 104~4879.20 × 104, and
0.00~4879.20 × 104 m3/year in period 3. This is because, with the advancement of the
planning period, the industry in region Zhuanghe had continuously increased water
demand and water shortage. However, the lack of water in some other regions and
water-consuming sectors did not show this regularity. For example, in region Jinpu,
the municipal sector showed a low water resource scenario, and the water shortage was
2125.84 × 104~3128.79 × 104, 1548.06× 104~3552.92× 104, and884.61 × 104~2087.49 × 104 m3/year
in the three periods, respectively, showing a significant downward trend. This is be-
cause, under the current conditions of the development and utilization of water resources,
over time, the water demand of various sectors has gradually increased, and the water
safety of municipal sectors should be prioritized during the allocation of water resources.

Table 3. Upper and lower bounds of water resource deficit for each sector under different scenarios
in period 1 (104 m3/year).

Regions Sectors
Scenarios

h = 1 h = 2 h = 3

Four Districts
k = 1 311~321 150~246 102~202
k = 2 4682~5695 1489~5695 0~5695
k = 3 3~60 0 0

Lvshunkou
k = 1 3881~4074 3210~3959 2783~3959
k = 2 1104~3107 0~3107 0
k = 3 0 0 0

Jinpu
k = 1 10,211~11,273 8069~10,258 7936~9211
k = 2 2126~3129 0~3129 0~3129
k = 3 2142~3099 0~1119 0

Wafangdian
k = 1 3140~3417 2165~3308 2038~3308
k = 2 1267~1375 873~1375 0
k = 3 4173~4523 0 0

Pulandian
k = 1 1390~1707 591~1688 0
k = 2 235~2012 0~2012 0
k = 3 3605~5323 1569~2404 0

Zhuanghe
k = 1 11,093~12,849 594~3127 0~3127
k = 2 3807~4856 0~4856 0
k = 3 2989~4686 0~166 0

Table 4. Upper and lower bounds of water resource deficit for each sector under different scenarios
in period 2 (104 m3/year).

Regions Sectors
Scenarios

h = 1 h = 2 h = 3

Four Districts
k = 1 303~337 140~252 140~235
k = 2 3725~4035 3725~4035 0~4035
k = 3 8~58 0 0

Lvshunkou
k = 1 4045~4203 3524~4043 3182~4043
k = 2 1526~3529 376~3529 0~3529
k = 3 230~320 0 0

Jinpu
k = 1 10,296~10,377 10,125~10,377 9977~10,318
k = 2 1548~3553 0~3553 0~3553
k = 3 1950~3000 1022~1317 0~340
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Table 4. Cont.

Regions Sectors
Scenarios

h = 1 h = 2 h = 3

Wafangdian
k = 1 3200~3567 2320~3523 2262~3523
k = 2 1436~1542 0~1542 0
k = 3 3911~4361 0 0

Pulandian
k = 1 1891~1909 794~1748 0
k = 2 1247~2284 0~2284 0
k = 3 3733~5332 1413~2779 0

Zhuanghe
k = 1 11,886~15,873 382~3619 0~3619
k = 2 4014~6063 0~6063 0
k = 3 1202~4537 0~141 0

Table 5. Upper and lower bounds of water resource deficit for each sector under different scenarios
in period 3 (104 m3/year).

Regions Sectors
Scenarios

h = 1 h = 2 h = 3

Four Districts
k = 1 333~364 199~302 170~265
k = 2 4035~5045 0~5045 0~5045
k = 3 13~61 0 0

Lvshunkou
k = 1 4160~4280 3756~4079 3492~4079
k = 2 2057~4060 270~4060 0~4060
k = 3 156~245 0 0

Jinpu
k = 1 10,420~10,430 10,337~10,492 10,221~10,464
k = 2 885~2087 0~2087 0~2087
k = 3 1453~2833 732~1160 0~364

Wafangdian
k = 1 3601~3843 3098~3843 2533~3713
k = 2 1649~1754 0~1754 0
k = 3 3628~4178 0 0

Pulandian
k = 1 2090~2107 1965~2107 0
k = 2 1020~2627 1020~2627 0
k = 3 4844~5651 1064~4139 0

Zhuanghe
k = 1 11,852~12,879 626~4879 0~4879
k = 2 4927~6975 0~6975 0
k = 3 1412~4028 0 0

4.2. Analysis of Ecological Value Factors
4.2.1. Analysis of Water Distribution in the Ecological Environment Department

Table 6 lists the initial water use scenarios for ecological environment sector of the
administrative districts in Dalian. It was observed that the water consumption of the
environment sector in each planning period gradually increased. Region Pulandian had
the largest environmental water consumption, which was 3581.54 × 104, 3787.75 × 104,
and 3888.45 × 104 m3/year in the three periods, and the environmental water consumption
increased each year. The first reason for this may be the increasing importance of the
protection of the water environment, and the second may be the increasing benefits received
by the ecological environment sector, which has prompted more water resources to be
allocated to the ecological environment sector.
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Table 6. The initial optimal allocation of water resources for ecological environment sector in Dalian
(104 m3/year).

Regions
Periods

t = 1 t = 2 t = 3

Four Districts 71 93 111
Lvshunkou 263 273 296

Jinpu 1688 1730 1761
Wafangdian 2542 2576 2606
Pulandian 3582 3788 3888
Zhuanghe 2926 2941 2952

Figure 6 shows the amount of water reused by the ecological environment sector.
As shown in the figure, over time, the reused water quota gradually increased. For ex-
ample, in region Pulandian, the amount of water reused was 336.73 × 104~398.94 × 104,
361.97 × 104~427.80 × 104, and 408.96 × 104~483.08 × 104 m3/year in the three peri-
ods. The ecological environment sector had increasing benefits from water use and a
high water demand; therefore, after all sectors reach the minimum water requirements,
priority should be given to the allocation of more reused water to the ecological envi-
ronment sector. Regions Four Districts and Lvshunkou showed relatively low water
reuse. In region Four Districts, the amount of water reused was 57.92 × 104~71.21 × 104,
82.37 × 104~105.93 × 104, and 93.05 × 104~119.88 × 104 m3/year during the three periods.
This may be due to the relatively low river runoff in regions Four Districts and Lvshunkou.
In region Jinpu, there was a very small difference between periods 2 and 3 in the amount of
reused water; 299.06 × 104~396.30 × 104 and 301.81 × 104~404.97 × 104 m3/year, respec-
tively. The reason may be that during period 2 in region Jinpu, the amount of water reused
was sufficient to meet the water requirements, and excessive allocation caused water waste.

Figure 6. Reused water resource allocations for environment.

Tables 7–9 list the upper and lower bounds of water resource deficit for the ecolog-
ical environment sector under different scenarios. As observed from the table, as the
water resources increased, the amount of water shortages in the ecological environment
sector decreased. For example, during period 1 in region Zhuanghe, the water deficits
under different scenarios were 1415.75 × 104~1753.54 × 104, 384.57 × 104~1753.34 × 104,
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and 0.00~153.54 × 104 m3/year. Under the high water resources scenario, except for region
Pulandian, the water shortage of the ecological environment sector was 0, and the water
shortage of the ecological environment sector in regions Four Districts and Lvshunkou were
0 under all water resource scenarios. This is because the quality of the water environment
is closely related to the profitability of other sectors and ensuring the water consumption of
the ecological environment sector is the basic prerequisite for economic development and
the improvement of the quality of human life. This is in line with the objectives of China’s
14th Five-Year Plan, which states that “we will adhere to the priority of ecology, promote
ecological protection and economic development in a concerted manner, and create a
beautiful China where people and nature live in harmony”.

Table 7. Upper and lower bounds of water resource deficit for ecological environment sector under
different scenarios in period 1.

Regions
Scenarios

h = 1 h = 2 h = 3

Four Districts 0 0 0
Lvshunkou 0 0 0

Jinpu 47~457 0~457 0
Wafangdian 657~734 0 0
Pulandian 1416~1754 385~1753 0~154
Zhuanghe 650~1521 0 0

Table 8. Upper and lower bounds of water resource deficit for ecological environment sector under
different scenarios in period 2.

Regions
Scenarios

h = 1 h = 2 h = 3

Four Districts 0 0 0
Lvshunkou 0 0 0

Jinpu 89~492 0~492 0
Wafangdian 693~768 0 0
Pulandian 1616~1950 428~1950 0~1950
Zhuanghe 651~1514 0 0

Table 9. Upper and lower bounds of water resource deficit for ecological environment sector under
different scenarios in period 3.

Regions
Scenarios

h = 1 h = 2 h = 3

Four Districts 0 0 0
Lvshunkou 0 0 0

Jinpu 203~600 0~600 0
Wafangdian 843~916 0 0
Pulandian 1764~2090 681~2090 0~2090
Zhuanghe 785~1634 0 0

4.2.2. Analysis of the Missing Area of the Aquatic Ecosystem

The regulation service value created by aquatic ecosystems has a great relationship
with the area of various types of aquatic ecosystems. The lack of ecosystem area indicates
the damage of the ecosystem and the lack of ecosystem value, which is not conducive to
the development of the society and economy. Figures 7 and 8 show the area of water loss
in the ecosystem (various wetlands and rivers) during the three periods. It was observed
that the loss of ecosystem area gradually decreased over time, and the loss of some rivers
reached 0. For example, the area of marsh wetland loss was 55.69 × 104~59.96 × 104,
37.04 × 104~44.11 × 104, and 20.08 × 104~30.24 × 104 m2 in the three periods, respectively.
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In rivers 7 and 14, the amount of river area missing is 0 in the three periods. There is
no increase in the area loss over time, because the amount of water used to maintain the
normal development and relative stability of the aquatic ecosystem continued to increase,
which reduced the area loss.

Figure 7. Loss of water ecosystem (wetland) area (104 m2).

Figure 8. Loss of water ecosystem (river) area (104 m2).

4.2.3. Analysis of the Value of Ecological Regulation Services

The optimal allocation model of water resources coupled with ecological value factors
takes profit maximization as the objective function. The projected profit primarily includes
the use of water resources and the regulation service value of the water ecosystem. The av-
erage annual ecological regulation service value of the three periods is shown in Figure 9.
After the implementation of the optimal allocation of water resources, the overall value of
Dalian’s water ecosystem regulation services was on the rise, from 980,900 × 104 CNY in
period 1 to 999,700 × 104 CNY in period 3. The values of the four types of indicators all
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grew steadily, with the highest proportion being the hydrological regulation value, which
increased from 959,400 × 104 CNY in period 1 to 972,100 × 104 CNY in period 3. This may
be due to the gradual increase in the amount of water resources available for the ecological
environment sector, the basic functions of the ecosystem are safeguarded and show a trend
towards gradual improvement. Water ecosystems are creating more and more value and
are in better environmental condition.

Figure 9. Ecological regulation service value (104 CNY/year).

4.3. Analysis of Regional Pollutant Emissions

Figures 10–12 show COD, NH3-N, and Tp emissions from the industrial, municipal,
and agricultural sectors, respectively. The discharge of pollutants does not exceed the
maximum permissible discharge concentration of pollutants in freshwater waters of “the
Liaoning Provincial Water Pollutant Discharge Standards for Coastal Areas”, in addition,
the discharge of various pollutants does not exceed the regional water environment capacity.
Under the condition of implementing the optimal water resource allocation scheme coupled
with ecological value factors, the emission of all kinds of pollutants in all sectors presented
a downward trend over time. For the industrial sector, in region Wafangdian, the COD
emissions were 502.10, 464.10, and 367.45 tons/year, NH3-N emissions were 78.48, 71.4,
and 54.6 tons/year, and Tp emissions were 37.10, 33.56, and 26.17 tons/year in the three
periods, respectively. For the municipal sector, COD emissions were: 1888.43, 1745.54,
and 1382.01 tons/year, NH3-N emissions were 254.43, 231.49, and 177.00 tons/year, and Tp
emissions were 54.27, 49.10, and 38.29 tons/year in the three periods, respectively. For the
agriculture sector, COD emissions were 14,549.27, 13,448.37, and 10,647.61 tons/year,
NH3-N emissions were 1217.00, 1107.25, and 846.64 tons/year, and Tp emissions were
326.32, 295.21, and 230.23 tons/year in the three periods. This is in line with the objectives
of China’s 14th Five-Year Plan, which states that “by 2035, the total emissions of major
pollutants will continue to be reduced, the efficiency of resource use will be significantly
improved, and the first demonstration zone of a beautiful China will be basically built”.
However, Tp emissions increased slightly in some areas. For example, in region Four
Districts, Tp emissions of the municipal sector were 458.09, 470.13, and 504.49 tons/year
in the three periods, respectively. This may be because the domestic sewage collection
and centralized treatment system were not perfect. Therefore, improving the domestic
sewage centralized collection and treatment system will not only reduce the discharge
of pollutants but also solve the water shortage problem. In regions Four Districts and
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Lvshunkou with high population density, the pollutants were mainly from the municipal
sector, while the pollutants from the agricultural sector were relatively high in other regions.
In some regions, the industrial sector consumed more water than the agricultural sector,
but the sewage discharge was lower, which may be because the industrial sewage collection
and treatment network is relatively perfect, and the sewage is generally discharged or
reused after treatment.

  
 

(a) (b) (c) 

Figure 10. Chemical oxygen demand (COD) emissions of various sectors: (a) industry; (b) municipal;
(c) agriculture (tons/year).

  
(a) (b) (c) 

Figure 11. NH3-N emissions of various sectors: (a) industry; (b) municipal; (c) agriculture (tons/year).

  
(a) (b) (c) 

Figure 12. Tp emissions of various sectors: (a) industry; (b) municipal; (c) agriculture (tons/year).
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5. Conclusions

This study established an inexact two-stage stochastic programming (ITSP) model
of optimal allocation of water resources that couples water ecological value factors under
uncertain conditions. This model is mainly to forecast and optimize the long-term prospects
of Dalian, which is a typical water shortage in China. By integrating IPP and TSP meth-
ods, the model can manage uncertainties in interval values and probability distributions.
By solving the ITSP model, on the premise of protecting the ecological value, the optimal
allocation of water resources under different conditions to different water sectors and three
periods was determined. In addition, data were also obtained on the lack of an aquatic
ecosystem acreage, value of ecosystem service and the discharge of major water pollutants
in various administrative regions. These results are constrained by the available water
resources and provide the basis for the optimize the allocation of water resources and
water quality management in Dalian. In addition, optimal allocation of water resources can
improve the discharge of water pollutants in various administrative regions. The model
results can be used to guide various departments in Dalian to formulate an optimal water
resources allocation scheme by considering ecological value factors. The study findings
provide the basis and support for Dalian to achieve the social and economic development
goals, use water resources efficiently, and improve ecosystem quality through the optimized
allocation of water resources.

The purpose of this research was to establish an ITSP model to create a water re-
sources management system in Dalian that combines ecological value factors with the
optimal allocation of water resources, so as to realize the coordinated development of
social economic benefits and ecological benefits, and conducive to the synergistic effi-
ciency of socio-economic and ecological water consumption, and it can also be applied to
other regions with water shortages. Although the ITSP model can provide optimal preset
schedules and adjustments under different scenarios, it cannot measure decision-making
risks, nor does it assess the impact of different water sources and climate change on the
availability of water resources. Therefore, there is still considerable room for improvement.
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Abstract: Understanding the changes in regional droughts is important for promoting overall sus-
tainable development. However, the spatiotemporal dynamics of soil droughts in Guangxi under the
background of global warming and regional vegetation restoration have not been studied extensively,
and the potential causes are scarcely understood. Here, using TerraClimate soil moisture data, we
constructed a monthly standardized soil moisture index (SSMI), analyzed the seasonal and annual
spatiotemporal distribution of droughts from the perspective of soil moisture, and studied past soil
drought events in Guangxi. Migration methods of drought centroid, trend analysis, and principal
component decomposition were used. In the interannual dynamics, the overall SSMI increased,
indicating that the soil drought situation was gradually alleviated in Guangxi. Further, the frequency
of extreme and severe droughts decreased with time, mainly in autumn and winter. During early
drought stages, the migration path was short, which extended as the droughts progressed. Ocean
temperature and soil moisture were strongly correlated, indicating that abnormal ocean surface
temperature may drive soil moisture. This study provides scientific guidance for the early warning,
prevention, and mitigation of losses associated with soil droughts in Guangxi and serves as valuable
reference for understanding the impacts of large-scale climate anomalies on soil moisture.

Keywords: soil drought; spatiotemporal evolution characteristics; drought migration; climate
change; Guangxi

1. Introduction

Drought is a major natural disaster severely affecting the ecosystem and humans [1–3].
It is generally represented by soil water shortage and has long periods, wide range, occurs
frequently, and affects large populations [4]. China is largely an agricultural country facing
frequent droughts, which cause huge economic losses [5–7]. Therefore, strengthening
drought monitoring, especially on a large scale with high spatiotemporal continuity, is
necessary, and it can facilitate real-time dynamic capturing of drought occurrence and its
development process and provide a reference for decision making to undertake timely and
effective mitigation measures.

Previously, studies have been conducted on methods to monitor and evaluate droughts
objectively, accurately, and quantitatively [1]. Generally, several drought assessment in-
dicators are constructed using observation factors, such as precipitation, temperature,
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evaporation, and runoff [1,8]. However, these indicators do not consider the hydrological
problems of subsurface soil and further divide the integrity of the water cycle to some
extent. Soil moisture is a key physical quantity in climate studies [9–11]. It not only regu-
lates the balance between material and energy exchange during land–air interactions [12],
but it is also the most direct water source for natural ecosystems. Vegetation growth
and development is extremely sensitive to changes in soil moisture [13,14], which can
change the water–energy balance between land and air by affecting the surface albedo,
soil thermal parameters, evaporation, and transpiration [12], and change the structure of
the atmospheric boundary layer. Thus, soil moisture can both cause climate change and
can be affected by climate change [13]. Soil droughts are mostly caused by a lack of soil
moisture. The soil moisture content has a crucial relationship with the drought intensity
in any region [15] and has a further direct impact on vegetation growth and agricultural
production [14]. Therefore, considering soil moisture during drought monitoring using
remote sensing is necessary.

Many direct methods, such as the gravimetric method, are accurate but expensive
and are used to estimate soil moisture [15,16]. Additionally, indirect estimates based on
microwave [8,17] or near-infrared band remote sensing data are also efficient approaches
to estimate soil moisture. Some highly advanced soil moisture remote sensing products,
such as Soil Moisture Active Passive [18] and Soil Moisture and Ocean Salinity [19] by the
National Aeronautics and Space Administration, and European Space Agency’s Climate
Change Initiative Soil Moisture [20] have been developed and widely used globally for
drought studies. However, some studies have indicated that the accuracy of soil moisture
estimates can be enhanced by combining microwave and optical remote sensing [5].

Currently, TerraClimate, a dataset of high-spatial resolution (~4-km, 1/24◦) monthly
climatic water balance for regional and global terrestrial surfaces during 1958–2018 [21],
provides new types of soil moisture assimilation data, which have been previously applied
to monitor soil droughts [22]. Considering the regional and seasonal dependence, the ability
of TerraClimate data to capture soil moisture anomalies and their variabilities corresponds
to other properties used to characterize the soil conditions [21]. The subsequent results can
support TerraClimate as an indicator of soil water status; additionally, it can be used to
develop new indicators of soil drought.

The present study was conducted in the Guangxi Zhuang Autonomous Region (here-
inafter referred to as Guangxi). The shallow soil layer and its poor water holding capacity
in Guangxi results in a complex runoff generation and confluence, thereby causing frequent
regional floods and droughts for many years [23]. Studying the characteristics and risks of
regional droughts in this region is thus urgently required. To study the impacts of climate
change on soil droughts, soil moisture as an indicator of soil drought should be considered.
Presently, little research has been conducted on the point-scale measurement of soil mois-
ture; therefore, high-resolution distribution data of soil moisture are required for agriculture
management, water management, and drought and flood monitoring in Guangxi.

In this study, we calculated the standardized soil moisture index (SSMI) based on the
precipitation and temperature data of Guangxi for 1990–2018 and analyzed its variations,
period, frequency, and other characteristics. Later, we analyzed the spatial variation
characteristics of two typical droughts. Finally, we discussed the correlation between soil
moisture anomaly and ocean temperature, which provides scientific reference for drought
monitoring and early warning in Guangxi. The main aims of this study were: (1) to study
the long-term trends and seasonal differences in soil droughts in Guangxi, (2) to discuss
the spatial variation characteristics of soil droughts, and (3) to preliminarily explore the
teleconnection factors affecting soil drought dynamics.

2. Materials and Methods

2.1. Study Area

Guangxi (extending from 20◦54′ N–26◦24′ N to 104◦26′ E–112◦04′ E) is located in South
China (Figure 1) and to the southeast of the Yunnan–Guizhou Plateau, west of the Guang-
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dong and Guangxi hills, and south of the North Bay. The terrain of this region is flat in the
middle and south areas, which are in turn surrounded by mountains and plateaus, and the
average altitude of the area is 802 m. An inclining trend is observed in the entire terrain
from northwest to southeast. As a typical subtropical monsoon humid area, the annual
precipitation in Guangxi is abundant (range 1500~2000 mm), with uneven spatiotemporal
distribution, and the average annual temperature is relatively high, between 16~23 ◦C.
Furthermore, karst developed hills and depressions are widely distributed [9]. Due to
the special geological environment of karst areas in Guangxi, atmospheric precipitation
can easily leak into the deep underground layer and become deeply buried groundwater,
forming a pattern of water and soil separation, resulting in drought on the surface due
to soil water shortage. At present, the development of rocky desertification in karst areas
in Guangxi has become the most serious eco-environmental problem, restricting the sus-
tainable development of Southwest China, and soil humidity is the key factor Therefore,
the study of soil moisture in Guangxi has become an important measure for the ecological
restoration and reconstruction of the region.

 
Figure 1. Geographical location of Guangxi. (a) The position of Guangxi in China, the green area in
the picture is Guangxi; (b) altitude map; (c) land-use types derived from the European Space Agency.

2.2. Soil Moisture Data

Monthly TerraClimate precipitation data from January 1990 to November 2018 were
used in this study. The data spatial resolution was 1/24◦ (~4-km). TerraClimate includes
the requisite variables for calculating energy-based reference potential evapotranspiration
and a water balance model [21]. TerraClimate uses satellite and climatic data that can be
integrated and has the characteristics of high accuracy, a wide detectable range, and high
spatiotemporal resolution [21]. In this study, the soil moisture mentioned includes all water
below the surface except groundwater, rather than only plant root or surface soil water.
Further, soil moisture data were acquired from TerraClimate: Monthly Climate and Climatic
Water Balance for Global Terrestrial Surfaces, http://www.climatologylab.org/terraclimate
(accessed on 11 August 2019).

2.3. Standardized Soil Drought Index

SSMI is a standardized anomaly of remotely sensed soil moisture data from 1990 to
2018. We used soil moisture data in TerraClimate to calculate the SSMI to characterize
agricultural drought.

SSMIi,j =
SMi,j − SMj

∂j
.

Here, i is the observation year from 1990 to 2018, j is the observation month from
January to December, and SMj and ∂j are the average and standard deviation of soil
humidity in month j, respectively. A detailed description of the this method can be found
in the previous studies [24,25]. SSMI is dimensionless and is used to detect drought. When
SSMI is greater than 0, it can be considered that it is wetter than that in the same period
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of many years; otherwise, it is drier. In this study, the drought situation levels, including
slight (SSMI range: −0.5 to 0), moderate (−1 to −0.5), severe (−1.5 to −1), and extreme
droughts (−2 to −1.5). If the SSMI value is lower than −1.5 in a certain month from 1990 to
2018, it represents an extreme drought event.

2.4. Drought Frequency

Drought frequency is defined as the number of droughts that exceeds a certain risk
threshold per unit time. In this study, the drought frequency was defined as a ratio of the
total number of drought months with different grades to the number of the total months
of the study period (totally 468 months). For example, from 1990 to 2018, the number
of months with SSMI lower than −1.5 for each grid cell was 10, and the frequency of
extreme drought was 10/468, or 2.13%. The spatial frequency of droughts with different
grades was calculated. Subsequently, the spatial frequency of different drought levels
in spring (March–May), summer (June–August), autumn (September–November), and
winter (December–February) were calculated to discuss the seasonal dynamics of soil
drought frequency.

2.5. Migration Path of Droughts

The center of mass used to study the migration of matter and energy is an important
method to study the geographical distribution [26]. In this study, the centroid model was
used to study the spatiotemporal migration characteristics of soil dryness, and the distance
of centroid movement reflects the spatial difference of the differentiation degree of SSMI
change. Further, we used the migration of drought centers to describe the spatiotemporal
evolution of soil drought. Initially, we used the statistical analysis box (mean center tool) of
ArcGIS 10.0 software to obtain the spatial centroid of the SSMI drought index and plotted
the centroid migration of two extreme soil drought events to describe the spatiotemporal
evolution of soil drought better. The drought centers were then connected to record the
track, path length, direction, and velocity characteristics of the droughts.

2.6. Empirical Orthogonal Function Decomposition

Empirical orthogonal function (EOF) decomposition, also known as eigenvector anal-
ysis, is a method to analyze the structural features of matrix data and extract the main
data features [27]. Feature vector corresponds to space vector, also known as space fea-
ture vector or space mode, which reflects the spatial distribution characteristics of the
factor field to a certain extent. The principal component (PC), also known as the time
coefficient, corresponds to the time variation, which reflects the weight variation of the
corresponding spatial mode with time. To investigate the causes of soil dryness in Guangxi,
we further analyzed the correlation between the main variation model of SSMI (EOF-1) and
its corresponding principal component (PC-1) and sea surface temperature (SST) from the
perspective of remote correlation.

3. Results

3.1. Identification of Variation Characteristics of Soil Drought

Figure 2 shows that, since 1990, drought and flood disasters occurred alternately in
Guangxi, with slight or serious droughts and floods occurring almost every year; addition-
ally, the temporal distribution of different types of droughts and floods is evident from the
figure. Serious soil drought occurred every five to six years on average in Guangxi, with
multiple droughts observed in 1993, 1998, and 2004. In general, Guangxi experienced many
soil droughts during 1990–2018, with the drought duration and intensity being generally
heavy. After 2000, the soil droughts in arid areas decreased (Figure 2).
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(a) 

(b) 

Figure 2. Variation curve of soil moisture in Guangxi. (a) Changes in SSMI monthly time series.
(b) Damaged areas affected by soil drought. Damaged area is defined as the ratio between the number
of pixels with a certain level of drought and the total number of pixels in this area, and then the ratio
is multiplied by the total area of Guangxi to obtain the regional drought damage area.

Further, the SSMI showed evident seasonal characteristics in Guangxi (Figure 3),
with the magnitude of variation being the highest in autumn. Serious soil droughts were
observed in the autumns of 1992 and 1998, but none have occurred since 2010. However,
the SSMI trends in winter and spring were similar. Overall, the seasonal soil moisture
dynamics in Guangxi showed similar changes with the interannual dynamics. After 2012,
the observed loss of soil moisture in each season was alleviated.

Figure 3. Seasonal variations in SSMI in Guangxi.

3.2. Statistics of Drought Frequency

The results of the frequency of slight to extreme drought occurrence (Figure 4) indi-
cated that the frequency of slight droughts in Guangxi was 16.37–34.77%, of which the
frequency in central Guangxi was the highest, followed by the southern region. The fre-
quency of slight droughts in most other areas was less than 30%. The frequency of moderate
droughts was 10.63–21.84%, while it was less than 18% in most areas. The frequency of
severe droughts was less than 5% in most areas, with the lowest frequency being 2.29%. The
frequency of extreme droughts was extremely low (0–6%), with the value being less than
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2% for most areas. The order of the average frequency of different drought levels (Figure 4)
was light drought > (26.84%) > moderate drought (16.15%) > severe drought (6.11%) >
extreme drought (2.64%) in Guangxi. Overall, no significant geographical difference was
observed in the soil droughts.

Figure 4. Frequency of different soil drought levels. (a) Slight droughts, (b) moderate droughts
(c) severe droughts, and (d) extreme droughts.

Figure 5 shows that slight droughts mostly occurred in autumn and winter, lasting
for more than 20 months. During spring, the probability of mild weather in the southwest
was higher than that in the southeast. During summer, soil droughts occurred for a smaller
number of months. The spatial variation of moderate droughts was similar to that of slight
droughts, with soil droughts occurring in autumn and winter. Further, the number of
months of severe and extreme droughts was relatively small, and the number of months
of sudden droughts in each season was mostly less than five months. The underlying
surface in Guangxi is relatively uniform, and the water and heat redistribution of this
region do not allow for evident regional drought differences, thereby resulting in no spatial
heterogeneity. However, severe and extreme droughts occurred in the least number of
months. These trends are significantly important factors that affect crop production and
carbon accumulation.
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Figure 5. Spatial variations in the frequency of drought months in different seasons in Guangxi.
(a–d) Frequency of slight droughts in each season ((a–d) represent spring, summer, autumn, and
winter, respectively); (e–h) frequency of moderate droughts in each season; (i–l) frequency of severe
droughts in each season; (m–p) frequency of extreme droughts in each season.

3.3. Spatial Evolution Characteristics of Two Extremely Severe Soil Droughts

Two extreme soil drought events, which occurred in 1998 and 2003, were selected
from the period 1990–2018 using the drought migration method (Figure 6). The migration
direction of drought cores indicated that the two droughts were mainly concentrated in
central Guangxi. The 1998 and 2003 soil drought followed a similar northeast to southwest
trajectory. The migration paths of the two soil droughts were longer at the initial stage of
formation and later extended with the aggravation of drought duration.
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Figure 6. Spatial migration process of soil droughts. The direction of the black arrow indicates
the migration direction of droughts in the next month. The green and red circles indicate the
comprehensive drought index of the current month. (a) Average SSMI from September 1998 to March
1999, (b) spatial migration of the 1998 soil drought from September 1998 to March 1999, (c) average
SSMI value from November 2003 to April 2004, and (d) spatial migration of the 2003 soil drought
from November 2003 to April 2004.

3.4. Correlation between Soil Moisture Anomaly and Ocean Surface Temperature

The soil moisture anomaly is regulated by precipitation, and the main reasons for pre-
cipitation differences are caused by anomalies in the ocean temperature [28,29]. Therefore,
to understand the importance of atmospheric circulation caused by SST anomaly to soil
moisture in Guangxi, we compared the teleconnection between soil moisture and ocean
temperature (Figure 7). The spatial variation of the dominant pattern (EOF-1) obtained
from EOF analysis was similar to the soil moisture trend during 1990–2018, accounting for
66.9% of the total square covariance of Guangxi. Overall, the PC-1 showed that the soil
moisture in Guangxi showed an increasing trend over time. Correlation analysis showed
that PC-1 and SST were significantly positively correlated (p < 0.05), suggesting that SST
might be an important teleconnection factor affecting soil moisture in Guangxi.
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Figure 7. Relationship between SSMI and sea surface temperature in Guangxi during 1990–2018.
(a) Spatial trend of soil moisture, (b) main transformer mode calculated using an empirical orthogonal
function (EOF-1), (c) main transformer mode (EOF-1) corresponding to the monthly change in the
principal component (PC-1), and (d) correlation between ocean temperature and PC-1 (corresponding
to EOF-1).

4. Discussion

As soil moisture plays an important role in drought research, an assimilation data
product is a useful alternative method in the absence of long-term consistent soil moisture
observational data at the national scale [15,30,31]. In this study, TerraClimate soil moisture
product was used to construct the SSMI. The soil drought index derived from the data
set was ideal to monitor regional droughts, and it accurately describe the spatiotemporal
characteristics of regional soil water addition and loss. Using this index, we observed that
the drought types in Guangxi are mainly light drought and moderate drought, and the
occurrence of severe and extreme drought is relatively low, which is basically once in five
years. Spatially, the occurrence frequency is low in the middle and high in the east and
west. The majority of the soil droughts in Guangxi evolved from moderate droughts, and
the probability of sudden, short, and strong droughts was low. This provides additional
time for early warning and prevention from the beginning of droughts to the beginning of
abnormal droughts, which further helps to reduce negative implications of droughts.

According to the different disaster seasons, soil droughts can be divided into spring,
summer, autumn and winter droughts [15]. The drought pattern in Guangxi differed under
the influence of monsoon circulation and tropical cyclone, and the frequency of autumn
droughts was the highest, followed by winter droughts, while that of spring and summer
droughts was low. Spring droughts refer to the droughts between March and May [32].
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During spring, crops bloom, grow, and develop in Guangxi; moreover, it is the sowing
and emergence season for spring plants. Spring precipitation in Guangxi is relatively less,
and precipitation less than the usual intensity can cause serious droughts that not only
affect summer vegetation productivity, but also cause bad spring sowing conditions and
affect the growth and harvest of autumn crops and carbon accumulation. Summer affects
vegetation productivity and ecosystem operation [33] and is most vulnerable to monsoon.
The frequency of droughts in Guangxi in summer was extremely low, possibly due to the
location of Guangxi in the monsoon region. In summer, the strong East Asian monsoon
brings in a large water mass from the ocean, and the rain-forming clouds over Guangxi lead
to abundant regional precipitation, which improves the soil water content. During autumn,
autumn harvest plants mature and overwintering plants sprout and are sown. Autumn
droughts occur between September and November. They may not only affect the autumn
vegetation productivity of the current year, but also the summer vegetation productivity
of the next year [34]. Autumn droughts occur almost once every two years in Guangxi,
with slight droughts being more common. The frequency of these droughts was higher in
the middle-eastern regions than of that in the western regions. Moreover, the frequency of
moderate, severe, and extreme droughts in this season was also significantly higher than
of that in other seasons. In addition, autumn is generally characterized by water storage,
long-term droughts, and less rain. Subsequently, the reductions in runoff cause insufficient
water reserves for water conservancy projects, thereby creating difficulties in using water
during winter and spring. Winter droughts occur from December to February of the next
year. In Guangxi, winter droughts occur once in two years, with slight droughts having
a higher frequency in the central and southwest regions than in in the northeast regions.
Overall, the frequency of soil droughts in autumn and winter in Guangxi was relatively
high. Among these droughts, most were slight and moderate droughts. These findings
suggested that the impact of autumn and winter soil droughts should be considered while
assessing the impacts of droughts on regional crop production and ecosystem.

From the perspective of temporal characteristics, the two major soil droughts (1998 and
2003) in Guangxi lasted for more than six months. Every natural phenomenon has its own
unique process of formation, occurrence, development, and extinction [15]. For example,
floods tend to form quickly and can be formed in a few days or even hours [35]. Hurricanes
form relatively faster, probably within hours, minutes, or seconds [36]. Contrastingly,
the occurrence and development of soil droughts is much slower (several months and
several seasons) [15]. Long-term soil water deficit affects the regional crop production and
domestic and ecological water demand [13,30]. In addition, regarding the spatial scale,
the two major soil droughts in Guangxi occurred extensively. Most areas in Guangxi are
affected by the subtropical monsoon humid climate, which reduces the probability of soil
droughts. However, once soil droughts occur, the soil moisture in the entire region is
relatively reduced. Some studies predict that although Guangxi is a humid region, several
measures to deal with soil water deficit under the background of frequent extreme climate
events in the future will assist in reducing losses in agricultural production and other
associated economic losses [37].

Regarding variability, as soil droughts are temporary phenomena, they are a direct
reflection of the persistent anomalies in atmospheric circulation and major weather sys-
tems. The time and intensity of monsoon onset and retreat and the duration of monsoon
interruption are directly related to soil drought [38]. The atmospheric circulation anomaly
refers to the abnormal changes in the development, mutual configuration and interaction,
and intensity and location of some atmospheric circulation systems, all of which directly
cause large-scale droughts and floods [39,40]. The anomaly of monsoon circulation implies
that the time, position, advance and retreat speed, and intensity of monsoon change con-
siderably compare with those of normal years [41,42], which is often the reason for the
frequent occurrence of soil droughts in the monsoon region. The abnormal atmospheric
or monsoon circulation results in less precipitation in a certain area compared with the
normal conditions. When the degree and duration of low precipitation reach a certain
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degree, meteorological droughts occurs [43]. As precipitation is the main source of water
supply, meteorological droughts may induce soil droughts [15]. During the early stage of
meteorological droughts, the soil moisture content will not decrease immediately due to
the regulation and storage of soil moisture [44]. However, less precipitation is generally
accompanied by a temperature increase, which further enhances evapotranspiration and
excessive water consumption in the vadose zone. Under other constant conditions, when
the meteorological droughts intensify and spread further, the precipitation and runoff
may decrease, while the water in the vadose zone will continue to be consumed and not
be supplemented, and thus, the soil water condition will further deteriorate [45,46]. Our
findings indicated a strong positive correlation between the soil moisture in Guangxi and
the ocean temperature in the surrounding sea area, which was in agreement with our
assumption that the ocean surface temperature anomaly creates the atmospheric circulation
anomaly or monsoon circulation anomaly, and later affects the rainfall and soil moisture
anomaly in Guangxi.

This study makes up for the deficiency of previous studies on drought in Guangxi
from the perspective of soil moisture, but the analysis results still have some uncertainties
and deficiencies. First, this study only selects TerraClimate soil moisture products with
high spatial resolution, but the applicability of this data in karst areas has not been fully
evaluated. However, comparing the soil moisture products through model and reanalysis,
TerraClimate soil moisture, which is more reliable and corrected by remote sensing and
models, has been applied to the study of Guangxi for the first time. In addition, there are
many factors affecting the dynamics of soil moisture in the driving force analysis. This
study uses the most fundamental driving factor—ocean surface temperature, which may
not fully explain the long-term evolution characteristics of soil drought in Guangxi.

5. Conclusions

In this study, the SSMI model was constructed using the TerraClimate soil moisture
data; additionally, the applicability of SSMI in soil drought monitoring in Guangxi was
evaluated. The following conclusions were drawn: (1) The annual autumn and winter soil
droughts in Guangxi were moderate from 1990 to 2018, and the probability of moderate
and higher-grade drought after 2005 is much lower than that before 2005. (2) The level of
soil drought in Guangxi is mainly light drought and moderate drought, and the possibility
of severe drought and extreme drought is relatively low. (3) Two severe soil droughts that
occurred in 1998 and 2003 exhibited a large disaster-affected area and persisted for a long
duration. (4) The principal component variables of ocean surface temperature and soil
moisture showed a strong positive correlation, implying that the ocean surface temperature
anomaly may be the root driving force of soil moisture variation in Guangxi. These findings
provide scientific guidance for the early warning, prevention, and mitigation of social,
ecological, and economic losses associated with soil droughts in Guangxi. Moreover, the
results serve as a valuable reference for understanding the impacts of large-scale climate
anomalies on soil moisture.
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Abstract: A multidisciplinary study was conducted to investigate the environmental and economic
impact of the Grand Ethiopian Renaissance Dam (GERD). Focusing on Egypt, we estimate projected
losses in Egypt’s annual water allocation from the Blue Nile under the 3, 7, and 10-year GERD
reservoir filling scenarios, which are part of an array of scenarios currently under consideration.
We then examine the resultant losses in Egypt’s agricultural land and the corresponding impact
on selected macroeconomic variables relative to a baseline (no GERD) scenario. For the 3-year
filling period, in particular, we estimate projected losses in Egypt’s annual water allocation to be
51.29 ± 2.62%. This translates into annual losses of agricultural land of 52.75 ± 2.44% relative to
the baseline, with a resultant decline in food production of 38.47 ± 2.18% and an overall decline in
agricultural sector output by 17.51 ± 0.99%. This contributes to a rise in the national unemployment
rate of 11.24 ± 1.77 percentage points above the baseline. Moreover, we estimate projected annual
losses in real Gross Domestic Product (GDP) per capita to be 8.02 ± 0.45% relative to the baseline,
which translates into an annual loss in real GDP of $26.30 ± 2.81 billion and a loss in welfare of
12.83 ± 0.73% annually, relative to the baseline.

Keywords: Grand Ethiopian Renaissance Dam; environmental impact; economic losses; Egypt

1. Introduction

The Nile River stretches from south to north (length: 6853 km) in northeast Africa
through the Nile River Basin (NRB, area: 3.4 × 106 km2; Figure 1a). The main sources of
the Nile River are the While and Blue Niles. The White Nile flows from Lake Victoria and
runs through Uganda and into Sudan, where it meets the Blue Nile (originating from the
Lake Tana in Ethiopia) at the city Khartoum. The Nile River then flows north towards
Egypt (Figure 1a). The NRB extends over 11 African countries and represents a home for
an estimated 300 × 106 people, the majority of whom live in rural areas.

In addition to the transboundary nature of the NRB, which contributes significantly to
political conflicts and disputes, the water resources of the NRB are extremely vulnerable to
both natural climatic and anthropogenic forces [1]. Natural factors include climatic cyclicity
that affects flow volumes and timing [2]. They also include changes in precipitation patterns,
amounts, frequencies, and distributions; changes in temperature, and changes in frequency
and severity of floods and drought events [3].

The construction of new and the heightening of existing irrigation and hydropower
dams also affects the NRB water resources [1]. Ethiopia, for example, just launched a major
project to construct the Grand Ethiopian Renaissance Dam (GERD). The GERD is located
on the Blue Nile, about 15 km east of the Ethiopian border with Sudan (Figure 1a) [4]. The
Blue Nile runs north–south and then east–west through the Upper Blue Nile Basin (UBN;
area: 173,000 km2; Figure 1b). It is estimated that the dam will provide up to 6.45 gigawatts

Water 2022, 14, 312. https://doi.org/10.3390/w14030312 https://www.mdpi.com/journal/water
449



Water 2022, 14, 312

of electricity upon completion [5]. This is a significant power source for the Ethiopian
economy. This project is expected to bring employment and business opportunities, as
well as putting the world’s gaze on Ethiopia. Upon completion, the outcomes of this
project are expected to improve Ethiopians’ living standards and initiate and maintain their
sustainable development.

Figure 1. (a) Spatial distribution of the Nile River within the Nile River Basin (NRB) and location
of the Grand Ethiopian Renaissance Dam (GERD), major lakes, and the Upper Blue Nile (UBN)
sub-basin. (b) Digital elevation model (DEM) of the UBN sub-basin. The location of the 74 km3 GERD
reservoir is also shown.

However, this project has the potential to cause irreversible damage to the ecosystem
in the entire NRB, thereby threatening the livelihood of the neighboring communities living
in the downstream countries Sudan and Egypt. This has led to some political tensions
between these affected countries. Many of the arguments posited by the feuding factions
about the project are largely based on media reports that lack scientific rigor. The most
important issues of contention are the size of the reservoir to be created by the GERD and
the time it will take to fill this reservoir.

In a recent study, Taye et. al. [6] argue that in spite of the contentious nature of the
project, GERD—like any major river infrastructure project—can bring about social, environ-
mental, and economic change, and on balance, can provide substantial benefits for regional
development. Similarly, in a study that uses a Computable General Equilibrium (CGE)
framework with dynamic feedbacks between the river system and Egypt’s macroeconomy,
Basheer et al. [7] show that a coordinated operating strategy could result in a situation
where Egypt’s water demands are met during periods of water scarcity while increasing
hydropower generation and storage in Ethiopia during high flows. However, in an analysis
that relies on growth rate projections by the World Bank [8], Heggy et al. [9] find that
implementing GERD in a 3-year span would contribute to losses in Egypt’s Gross Domestic
Product (GDP) per capita by approximately 8%, and to a rise in the national unemployment
rate by about 11 percentage points.
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In this study, we apply a multidisciplinary and comprehensive approach to investigate
both the environmental and economic impact of GERD, focusing on water supply in the
downstream countries, agricultural production, and overall economic activity, with a focus
on Egypt. Specifically, we quantify the volume of projected losses in Egypt’s annual water
allocation from the Nile. We then estimate the resulting losses in Egypt’s agricultural land
and the corresponding impact on Egypt’s economy. Specifically, we examine losses/gains
in economic variables such as agricultural sector output, real GDP per capita, consumption
per capita, male and female employment (both in agriculture and economy-wide), and the
cost of living.

It is worth mentioning that this study assumes that there is no mitigating strategy
put in place by Egypt. Our estimates for environmental and economic impacts therefore
represent the worst-case scenario in terms of losses generated by GERD. We would also
like to note that, while this study focuses on Egypt, there are other downstream countries
(Sudan) that would be impacted in various ways. Furthermore, Ethiopia is expected
to benefit tremendously from GERD when the project takes off. It would constitute a
significant source of power for the Ethiopian economy and is expected to bring employment
and business opportunities. By some estimates, up to 12,000 new jobs would be created
in the wake of GERD [10]. These benefits would go a long way to improving the overall
living standards in the country. Sudan’s accumulated GDP gains from GERD (2020—2060)
are estimated between US$ 27 billion and US$ 29 billion relative to a baseline without the
GERD [11] The coverage of this study is therefore limited in terms of the overall impact
of GERD.

2. Materials and Methods

In this multidisciplinary study, we investigate the environmental and economic impact
of the GERD. In particular, we examine the effects of GERD on downstream water flows
along the NRB, focusing on Egypt. We also assess the impact of the project on available
agricultural land, agricultural production, and overall economic activity in Egypt. In
carrying out this exercise, we first quantify the volume of projected losses in Egypt’s annual
water allocation from the Blue Nile while taking into account specific reservoir filling
periods that are currently under consideration. We then estimate the resultant losses in
Egypt’s agricultural land and the corresponding impact on macroeconomic variables such
as food production, food import and export, employment, the cost of living, real GDP per
capita, and welfare. In order to provide a clearer presentation, we confine our study to
three of the reservoir filling scenarios under consideration. Specifically, we examine losses
under the 3, 7, and 10-year filling scenarios. Figure 2 presents a flow diagram illustrating
the sequence of events from water losses through economic losses.

Figure 2. Egypt’s water and economic losses due to GERD construction.

2.1. Nile River Water Losses

The current Egypt annual Nile water allocation is estimated at 55 km3. This volume
will be significantly affected by the construction of the GERD reservoir, particularly by
the reservoir volume and filling period. Media reports suggest different GERD reservoir
volumes to be filled in different time periods, for example, filling 16, 63, 67, 70, and 74 km3 in
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3, 5, 7, 10, and 15 years. In this study, we simulate the Nile water losses attributed to filling
the GERD reservoir volume of 74 km3 over 3, 7, and 10 years. We calculate the volume
by summing up the impoundment (filling) volume, infiltration losses, evapotranspiration
losses, and climate change-related losses. Errors in the average annual water losses were
calculated as the standard deviation of water losses in individual years. Figure 3 and Table 1
show the average annual losses in Egypt’s Nile water allocation as a function of the GERD
filling scenarios.

Figure 3. Average annual water loss from Egypt’s Nile water allocation (in km3 and %) as a function
of filling scenarios (in years).

Table 1. Average annual losses in Egypt’s Nile water allocation and the associated losses in agricul-
tural land relative to the baseline (no GERD) scenario.

Filling Period
Loss in Egypt’s Water Allocation

(%)
Loss in Egypt’s Agricultural Land

(%)

3 51.29 ± 2.62 52.75 ± 2.44
7 24.75 ± 2.76 28.14 ± 2.56

10 18.78 ± 2.76 22.61 ± 2.58

Impoundment Volume: The annual impoundment volume was calculated by divid-
ing the GERD reservoir volume (74 km3) by the number of years in each filling scenario.
We assumed a constant yearly filling volume for each filling scenario.

Infiltration Losses: Given the lack of infiltration information at the GERD site, we
used the infiltration rate of the High Aswan Dam reservoir (e.g., Lake Nasser; Figure 1a).
The Lake Nasser infiltration rate was estimated at 2% of the lake volume [12].

Evapotranspiration Rate: The evapotranspiration rate at the Roseries reservoir (90 km
downstream from GERD) was used in this study. This rate was estimated at 2000 mm/yr [13].
We also accounted for an 8.3% increase in evapotranspiration rates, predicted in different
climatic models [14]. The final evapotranspiration rate used in this study is 2166 mm/yr.
The evapotranspiration volume was calculated by multiplying the rate by the area of the
GERD reservoir (1770 km2). The GERD reservoir area was calculated using a 30 m digital
elevation model (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) for
the UBN sub-basin (Figure 1b) [4]. Knowing the GERD reservoir volume (74 km3), the
water height could be estimated using ArcGIS tools, yielding a raster with the shape of the
final reservoir. This raster was then used to calculate the reservoir area at each filling stage.
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Climate Change Losses: We use the average annual rainfall rates over the UBN sub-
basin to calculate the rainfall/discharge ratio. This ratio was then used to calculate the
loss in discharge rates as a result of climate changes. The Global Precipitation Climatology
Project (GPCP) rainfall data was used to calculate the average annual rainfall for the UBN
sub-basin during the period from 1979 to 2020. An annual discharge rate of 48.9 km3 was
reported at El Diem station (located right above the GERD location). Using this rate, the
discharge to rainfall ratio was calculated at 28%. We accounted for a 5.5% decrease in
rainfall rates, predicted from different climatic models [14]. The corrected average annual
discharge rate was estimated at 46.21 km3.

2.2. Losses in Agricultural Land

The loss in downstream water flows constitutes a significant shock to Egypt’s agri-
cultural land by rendering a significant part of an otherwise fertile land less suitable for
farming and other agricultural activities. We estimate the losses in agricultural land by
using the conversion rates published by Abdelhaleem and Helal [15]. In their work, they
calculate the average loss in agricultural land for Upper Egypt as follows:

Agricultural Land Loss = −0.0173 × Nile water loss + 1.0376 (1)

For middle Egypt and Nile Delta, they use the following formula:

Agricultural Land Loss = −0.0164 × Nile water loss + 0.9369 (2)

We averaged estimates from Equations (1) and (2) in order to calibrate the losses
in agricultural land for all of Egypt that are attributable to GERD. Errors in the average
annual losses in agricultural lands were calculated as the standard deviation of land
losses in individual years. Figure 4 and Table 1 present projected annual losses in Egypt’s
agricultural land as a function of the filling period (in years).

Figure 4. Impact of the GERD on Egypt’s agriculture land (in km2 and %) as function of filling
scenario (in years).
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2.3. Impact on Egypt’s Economy

Having estimated the losses in Egypt’s water allocation under the alternative filling
scenarios (e.g., 3, 7, and 10-year filling scenarios) and the corresponding losses in agricul-
tural land, we then look at mechanisms through which this affects Egypt’s economy. In
particular, we analyze the effects of GERD on Egypt’s agricultural sector output, employ-
ment in the agricultural sector, food import, and food export. We also look at the impact
of this project on Egypt’s real GDP and cost-of-living. In order to carry out this analysis,
we first build an empirical framework to forecast trends in the selected economic variables
(baseline model). We then examine deviations from these trends caused by the shocks from
GERD under the alternative filling scenarios.

2.3.1. Baseline Model Structure

The quantitative framework for trend analysis builds on a Vector Auto Regressive
(VAR) model, presented in the general form as follows:

Yt = βYt−1 + εt (3)

where Yt is an LX1 vector of endogenous variables, β is an LXLp matrix of coefficients, and
εt is an LX1 vector of white noise. Given the number of lags p, the companion matrix β is
given as follows:

β =

⎛⎜⎜⎜⎜⎜⎝
β1 β2 . . . βp−1 βp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎠ (4)

In order to determine the appropriate number of lags, we carry out fitness tests based
on the Akaike’s Information Criterion (AIC) [16], Schwarz’s Bayesian Information Criterion
(SBIC) [17], and the Hannan and Quinn Information Criterion (HQIC) [18]. We then
set p based on the selection order criteria for the system (Appendix A). We also test for
stationarity by examining the eigenvalue stability conditions of the companion matrix,
thereby ensuring that all the eigenvalues lie within the unit circle [17]. Moreover, we
follow-up with a Johansen test for cointegration to gauge if there is a long-run relationship
between the series [19]. We then employ vector error correction procedures [19] where
appropriate (Appendix A).

Given this multivariate VAR framework, we then map out expected values of the
system n periods ahead recursively [20]. Based on the availability of data up to period t,
we can forecast for periods (t + 1), (t + 2), and (t + n) as follows, respectively:

E(Yt+1) = βYt + E(εt+1) (5)

E(Yt+2) = βE(Yt+1) + E(εt+2) (6)

E(Yt+n) = βE(Yt+n−1) + E(εt+n) (7)

2.3.2. Baseline Model Inputs

We use annual data from the World Development Indicator (WDI) database published
by the World Bank [21]. The data spans a 50-year period, from 1970 through 2019. In setting
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up the variables in the system, we follow [22]. The full set of variables in the system are
ordered as follows:

(variables) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

agricultural land
f ood production

f emale agric.employment
male agric.employment

f ood import
f ood export

consumption per capita
investment per capita
real GDP per capita

CPI in f lation
unemploiment rate

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

The variable “agricultural land”, which is measured in squared kilometers, is the share
of land area that is arable and used for permanent crops and permanent pastures. The
variable “food production” refers to the production index of food crops that are considered
edible and nutritious. The variables “food import” and “food export” are, respectively,
the share of import and export of food items (as defined by Standard International Trade
Classification (SITC) sections 0, 1, 4, and SITC division 22) in total merchandise trade.
The variable “female agric. employment” represents the share of the female labor force
employed in the agricultural sector. Likewise, “male agric. employment” is the share of
the male labor force engaged in the agricultural sector. When appropriate, we substitute
these two employment variables for a single variable termed “agric. sector employment”,
which represents the share of Egypt’s total labor force that is employed in the agricultural
sector. Similarly, we substitute food production for “agricultural sector output”, which
sums up the value added of agriculture, forestry, and fisheries. We note that the term
“agricultural sector output” and “agricultural production” are used interchangeably in
this paper. Moreover, consumption per capita, investment per capita, real GDP per capita,
CPI inflation, and unemployment rate are as defined in standard literature. Although the
data generally spans from 1970 to 2019, we do acknowledge missing entries in some of the
series, especially for the earlier part of the period. We therefore make adjustments as we
see appropriate (Appendix A).

2.3.3. The Transmission of GERD in the Macroeconomy

The loss in Egypt’s available agricultural land due to the construction of GERD is
expected to cause significant disruption in the supply of food and other agricultural
products, which will have significant ramifications for the broader economy. To examine
the extent of this disruption, we first carry out sensitivity analysis where we examine the
responses of selected economic variables to changes in available agricultural land. We then
use the estimated elasticity coefficients and the projected losses in available agricultural
land (Table 1) to map out the potential losses/gains in the economic variables under the
alternative filling scenarios.

First, we estimate the elasticity coefficients for agricultural sector output and food pro-
duction in response to changes in the size of agricultural land. The quantitative frameworks
for estimating these elasticities are given as follows, respectively:

ln−AgriYt = αY + βYln−Agrilandt + γYXY,t + εt (9)

ln−Food_Prodt = αF + βFln−Agrilandt + γFXF,t + εt (10)

where the variables ln_AgriYt and ln_Food−Prodt represent Egypt’s agricultural sector
output and food production in logs, respectively, whereas ln_Agrilandt represents the size
of Egypt’s agricultural land, also in logs. βY and βF are then the elasticity coefficients
between agricultural sector output and food production on the one hand, and Egypt’s
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available agricultural land on the other hand, respectively. XY,t and XF,t are vectors of other
independent variables (in logs) which include Egypt’s population, private investment, and
private consumption. Given the composition of variables in Equations (9) and (10), we
conduct model fitness tests through a Variance Inflation Factor (VIF) analysis. The VIFs
and the associated tolerance levels (not shown) suggest the presence of multicollinearity.
To correct for this, we drop private investment and consumption from (9) and (10). This
confines XY,t and XF,t to the size of Egypt’s population.

Moreover, a Breusch–Pagan (BP) test [23] reveals that the baseline model is not robust
to heteroscedasticity (with a reported chi-square statistic and p-value equal to 13.66 and
0.0002, respectively). We therefore employ robust cluster procedures in order to obtain
estimates that are consistent even in the face of the heteroscedasticity. Estimating Equa-
tions (9) and (10) yields βY = 0.33 and βF = 0.73, which are both statistically significant
at the 1% level. Having obtained the elasticity coefficients for agricultural sector output
and food production, we then regress other macroeconomic variables on agricultural sec-
tor output in order to obtain the elasticity coefficients for these variables with respect to
agricultural production.

3. Results and Discussion

3.1. Losses in Egypt’s Water and Agricultural Land

Figure 3 and Table 1 show the relationship between average annual losses in Egypt’s
Nile water allocation and GERD filling scenarios. Given the GERD reservoir volume
of 74 km3, we estimate losses in Egypt’s annual water allocation to be 51.29 ± 2.62%,
24.75 ± 2.76%, and 18.78 ± 2.76% for the 3, 7, and 10-year filling scenarios, respectively.
The nature and extent of the loss depends on the length of time it takes for Ethiopia to
fill the reservoir. Losses that emanate from shorter filling horizons are expected to be
more severe on impact, but less persistent, whereas losses from longer filling horizons are
expected to be relatively less severe on impact, but drag on for longer periods.

Egypt will lose 52.75 ± 2.44%, 28.14 ± 2.56% and 22.61 ± 2.58% of their agricultural
land, relative to the baseline, for the 3, 7 and 10-year filling scenarios, respectively (Figure 4;
Table 1). The losses in agricultural land presented in Figure 4 and Table 1 are calibrated
under the assumption that there is no mitigating strategy in place by the government of
Egypt. These estimates therefore represent the worst-case scenario in terms of losses in
agricultural land. In subsequent studies, we plan to extend the analysis to include various
mitigation strategies that are likely to be implemented by the government of Egypt.

3.2. Projected Trends in Selected Economic Variables: Baseline Model

Table 2 presents a numerical summary of projected trends in selected variables in a
baseline (no GERD) scenario over a 3-year period. In this scenario, Egypt’s agricultural
sector output is projected to grow at an average annual rate of 2.27 ± 0.71% for the next
3 years, with minimum growth expected to be 1.47% and maximum to be 2.83%. Moreover,
consumption per capita, which is a measure of overall welfare to some extent, is projected
to grow at an annual rate of 4.74 ± 2.12% in the 3-year horizon.

Table 2. Projected average annual growth (%) in selected variables in a baseline (no GERD) scenario
over the next 3 years.

Variable
Mean ± Standard

Deviation
Lower Limit Upper Limit

Agricultural sector output
(value added) 2.27 ± 0.71 1.47 2.83

Consumption per capita 4.74 ± 2.12 2.48 6.69
Real GDP per capita 2.38 ± 1.65 1.30 4.28

Real GDP 4.51 ± 1.65 3.43 6.41
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In addition, real GDP per capita is projected to grow at an average annual rate of
2.38 ± 1.65%. This translates into an average annual growth in real GDP of 4.51 ± 1.65%,
with minimum growth in the 3-year horizon projected to be 3.43% and a maximum 6.41%.
Real GDP growth rate in Egypt pre-pandemic was estimated to be 5.6%. This declined
to 3.6% during the fiscal year 2019/2020, following the COVID-19 shocks. However, the
World Bank projects that, assuming vaccines are steadily rolled out through 2021 and
early 2022, Egypt will start regaining its pre-pandemic growth momentum by the fiscal
years 2021/2022/2023 [8]. Similarly, the IMF projects Egypt’s GDP growth to ramp up
from 2.5% in 2021 to 5.8% by the year 2025 [24]. This puts our estimates of real GDP
growth right within the range projected by both the World Bank and the IMF. In what
follows, we examine deviations from these trends arising from GERD under the alternative
feeling scenarios.

3.3. Effects of GERD on Egypt’s Macroeconomy

Table 3 summarizes results of this quantitative exercise (Appendix B). First, consider
the top panel of Table 3. The results show that a 1 standard deviation (SD) increase in
agricultural land translates into a 0.33 SD increase in the value of agricultural output overall,
and a 0.73 SD increase in food production in particular. This provides a channel for GERD
to manifest in Egypt’s agricultural sector, with implications for the entire economy.

For transmission into the broader economy, we look at the coefficients in the bottom
panel (Panel b; Table 3). The coefficients in this panel represent the sensitivity of the
featured variables to changes in agricultural sector production. Following a 1 SD increase
in agricultural sector output, food import declines by 0.49 SD. This also causes an increase
of 0.94 SD in food export. As expected, female employment, male employment, and total
employment in the agricultural sector respond positively to output in this sector. CPI
inflation, on the other hand, declines in response to an increase in agricultural sector output.
Moreover, real GDP per capita and consumption per capita increase by 0.46 and 0.73 SD,
respectively, in response to a 1 SD increase in agricultural sector output.

Having established the transmission channel for losses in agricultural land in the
economy, we now look at the impact of GERD on specific macroeconomic variables under
the alternative filling scenarios. Using the elasticity coefficients (Table 3) and the expected
losses in agricultural land (Table 1 ), we estimate the projected losses/gains in the variables
for the alternative reservoir filling scenarios. We also trace out the expected deviations in
these variables from trends in the baseline scenario.

Table 3. Elasticity coefficients for selected variables grouped by regressors.

(a) Regressor = Agricultural Land

Variable Elasticity Coefficient

Agricultural output (value added) 0.33
Food production 0.73

(b) Regressor = Agricultural Output (Value Added)

Variable Elasticity Coefficient

Food import −0.49
Food export 0.94

Employment in agric. Sector (female) 5.51
Employment in agric. Sector (male) 1.49
Employment in agric. Sector (total) 4.93

Unemployment rate (national) −5.58
CPI inflation −4.35

Real GDP per capita 0.46
Consumption per capita 0.73
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3.3.1. GDP, the Cost of Living, and Welfare

We start by examining the overall impact of GERD on agricultural sector output, real
GDP per capita and consumption per capita. We also examine the impact of GERD on the
overall cost of living, as measured by CPI inflation. Figure 5 presents projected trends in
these variables for both GERD and non-GERD (baseline) scenarios. A few comments are in
order. First, in the baseline scenario, agricultural output, GDP per capita, and consumption
per capita are projected to continue trending upwards for the next few years, with projected
average annual growths of 2.27 ± 0.71%, 2.38 ± 1.65% and 4.74 ± 2.12%, respectively,
over the next 3 years (Table 2). Overall, the recent swings in CPI inflation are expected to
continue in the next few years. For a 3-year horizon, however, this variable is expected to
continue a downward trend.

The implementation of GERD is projected to cause disruptions in these economic
trends to various degrees depending on the filling scenario. As shown in the top panel of
Table 4, the projected annual losses in agricultural sector output due to GERD are estimated
to average 17.51 ± 0.99%, 9.34 ± 0.92%, and 7.50 ± 0.90% under the 3, 7, and 10-year
filling scenarios, respectively, relative to the baseline (Figure 5a). This also translates into
annual losses in real GDP per capita of 8.02 ± 0.45%, 4.28 ± 0.42%, and 3.44 ± 0.41%,
respectively (Figure 5b). The projected loss in GDP per capita under the 3-year scenario is
in line with the findings by Heggy et al. [9]. In a study that relies on growth rate projections
by the World Bank [25], they also find that implementing GERD in a 3-year span would
contribute to losses in GDP per capita by approximately 8%. Moreover, as shown in the
bottom panel of Table 4, the projected losses in real GDP per capita amount to annual
losses in real GDP of $26.30 ± 2.81 billion, $15.70 ± 3.04 billion, and $13.40 ± 3.11 billion,
respectively. For agricultural sector output, this amounts to annual losses equivalent to
$6.99 ± 0.58 billion, $3.96 ± 0.61 billion, and $3.32 ± 0.65 billion, under the 3, 7, and 10-year
filling scenarios, respectively.

The disruptive effects of GERD also lead to losses in welfare, as defined by the decline
in consumption per capita, of up to 12.83 ± 0.73% relative to the baseline, while augmenting
the cost of living in Egypt to various degrees depending on the reservoir filling scenario
(Figure 5c,d). Under the 3-year scenario for example, CPI inflation is projected to rise
9.38 ± 4.38 percentage points above the baseline (Figure 5d). For the 7-year and 10-year
scenarios, the projections are 4.70 ± 1.66 and 5.07 ± 2.75 percentage points higher than the
baseline, respectively (Figure 5d).

Table 4. Losses/gains in agricultural sector output, real GDP per capita, consumption per capita, and
CPI inflation relative to the baseline (no GERD) scenario.

(a) Average Annual Losses/Gains (%) Relative to the Baseline (no GERD) Scenario

Variable 3-Year Filling 7-Year Filling 10-Year Filling

Agricultural output (value
added) −17.51 ± 0.99 −9.34 ± 0.92 −7.50 ± 0.90

Real GDP per capita −8.02 ± 0.45 −4.28 ± 0.42 −3.44 ± 0.41
Consumption per capita −12.83 ± 0.73 −6.85 ± 0.67 −5.50 ± 0.66

CPI inflation 9.38 ± 4.38 4.70 ± 1.66 5.07 ± 2.75

(b) Approximate Dollar Equivalent in Annual Losses/Gains (Billion $) in Agricultural Sector
Output and Real GDP

Variable 3-Year Filling 7-Year Filling 10-Year Filling

Agricultural output (value
added) −6.99 ± 0.58 −3.96 ± 0.61 −3.32 ± 0.65

Real GDP −26.30 ± 2.81 −15.70 ± 3.04 −13.40 ± 3.11
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Figure 5. Projected trends in (a) agricultural sector output (billion $), (b) GDP per capita, (c) con-
sumption per capita, and (d) CPI inflation under the alternative filling scenarios.

3.3.2. Food Production, Food Import, and Food Export

We now look at the impact of GERD on food production, food imports, and food
exports. Figure 6 presents projected trends in these variables in both GERD and the baseline
(no GERD) scenarios. A numerical summary of these trends is presented in Table 5.

Table 5. Average annual losses/gains (%) in food production, food imports, and food exports relative
to the benchmark (no GERD) scenario.

Variable 3-Year Filling 7-Year Filling 10-Year Filling

Food production −38.47 ± 2.18 −20.53 ± 2.02 −16.49 ± 1.98
Food imports 8.56 ± 0.49 4.57 ± 0.45 3.67 ± 0.44
Food exports −16.50 ± 0.94 −8.80 ± 0.87 −7.07 ± 0.85

Notes: The variable “food production” refers to the production index of food crops. “food import” and “food
export” are, respectively, the share of import and export of food items in total merchandise trade.

In the baseline scenario, the graph shows a generally upward trend in the index
of food production. With GERD, however, food production declines significantly, with
the shorter filling scenarios constituting larger shocks to this variable (Figure 6a). Under
the 3-year filling scenario, GERD is projected to cause an average annual loss in food
production of 38.47 ± 2.18% relative to the baseline scenario (Table 5). For the 7-year and
10-year filling periods, the corresponding average annual losses are 20.53 ± 2.02% and
16.49 ± 1.98%, respectively. To partially compensate for the shortage in domestic food
production, food import, as a share of total merchandise import, is expected to rise by
8.56 ± 0.49%, 4.57 ± 0.45%, and 3.67 ± 0.44% annually relative to the baseline, depending
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on the filling scenario (Figure 6b). Compared to food import, food export is projected to
decline more dramatically, with the 3-year filling scenario causing an annual decline of
16.50 ± 0.94% relative to the baseline scenario (Figure 6c; Table 5).

Figure 6. Projected trends in (a) food production index, (b) food imports, and (c) food exports under
the alternative filling scenarios.

3.3.3. Trends in Employment

In this part, we focus on employment trends with and without GERD. Specifically, we
examine the impact of GERD on employment in the agricultural sector by gender and how
that translates into overall national unemployment numbers. Figure 7 presents projected
trends in employment for both GERD and the baseline scenarios.

In the baseline scenario, the share of female workers engaged in agricultural activity
is projected to trend upwards in the next few years, with noticeable swings in the short
run (Figure 7a). A similar trend is projected for the share of male employment in the
agricultural sector (Figure 7b). Not surprising, the share of the labor force engaged in the
agricultural sector as a whole inherits the properties of these two series.

With the implementation of GERD, both male and female employment in the agricul-
tural sector is projected to drop drastically, with female employment suffering significantly
higher losses than that of male (Figure 7a,b). As shown in Table 6, the share of female
workers in the agricultural sector is expected to decline by 25.48 ± 5.32 percentage points
annually under the 3-year filling scenario relative to the baseline. For male workers, the
losses are projected to be 5.00 ± 0.44 percentage points below the baseline. These translate
into a total loss of 18.10 ± 1.85 percentage points in the share of the labor force engaged in
the agricultural sector (Figure 7c), thereby contributing to the national unemployment rate
of 11.24 ± 1.77 percentage points (Figure 7d). This is also consistent with the findings in
Heggy et al. [9] amid the differences in methods.
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Figure 7. Projected trends in (a) female employment in the agricultural sector, (b) male employment
in the agricultural sector, (c) total employment in the agricultural sector (male and female), and
(d) the national unemployment rate under the alternative filling scenarios.

Table 6. Average annual change (%) in agricultural sector employment and the national unemploy-
ment rate relative to the benchmark (no GERD) scenario.

Variable 3-Year Filling 7-Year Filling 10-Year Filling

Employment in agric.
sector (female) −25.48 ± 5.32 −18.40 ± 7.81 −16.31 ± 6.45

Employment in agric.
sector (male) −5.00 ± 0.44 −2.86 ± 0.50 −2.33 ± 0.42

Employment in agric.
sector (total) −18.10 ± 1.85 −10.85 ± 2.42 −8.92 ± 1.88

Unemployment rate
(national) 11.24 ± 1.77 6.73 ± 1.35 5.19 ± 0.83

Notes: The variable “employment in agric. sector (female)” represents the share of female labor force employed in
the agricultural sector. Likewise, “employment in agric. sector (male)” is the share of male labor force engaged in
the agricultural sector. “employment in agric. sector (total)” represents the share of Egypt’s total labor force that is
employed in the agricultural sector.

4. Conclusions

In this multidisciplinary study, we investigate the environmental and economic impact
of the GERD. We do so by quantifying the volume of projected losses in Egypt’s annual
water allocation from the Blue Nile, focusing on the 3, 7, and 10-year reservoir filling
scenarios that are part of the array of scenarios currently under consideration. We then
estimate the resultant losses in Egypt’s agricultural land and the corresponding impact on
macroeconomic variables such as food production, food import and export, employment,
the cost of living, real GDP per capita and general welfare.
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Given the GERD reservoir volume of 74 km3, we estimate losses in Egypt’s annual
water allocation be 51.29 ± 2.62%, 24.75 ± 2.76% and 18.78 ± 2.76% for the 3, 7 and 10-year
filling scenarios, respectively. These translate into projected annual losses in agricultural
land of 52.75 ± 2.44%, 28.14 ± 2.56%, and 22.61 ± 2.58% relative to the baseline scenario.
Under the 3-year filling scenario, these losses lead to an average annual decline in food
production of 38.47 ± 2.18% relative to the baseline, leading to a rise in food import by
8.56 ± 0.49% and a corresponding decline in food export of 16.50 ± 0.94%. With regards
to overall agricultural sector output, the losses are projected to be 17.51 ± 0.99% annually
for the 3-year filling period relative to the baseline. Moreover, the decline in the supply of
food and other agricultural raw materials leads to a rise in the overall cost of living (CPI
inflation) by 9.38 ± 4.38 percentage points above the baseline.

Furthermore, with GERD, both male and female employment in the agricultural sector
is projected to drop drastically, with female employment suffering significantly higher
losses compared to male employment. Specifically, the share of female workers engaged in
the agricultural sector is expected to decline by 25.48 ± 5.32 percentage points annually
below the baseline under the 3-year filling scenario. For male workers, the losses are
projected to be 5.00 ± 0.44 percentage points below the baseline. These translate into
a total decline of 18.10 ± 1.85 percentage points in the share of labor force engaged in
the agricultural sector, thereby contributing to a rise in the national unemployment rate
of 11.24 ± 1.77 percentage points. Moreover, we estimate the projected annual losses in
real GDP per capita to be 8.02 ± 0.45%, 4.28 ± 0.42%, and 3.44 ± 0.41% for the 3, 7, and
10-year scenarios, respectively. These translate into annual losses in Egypt’s real GDP of
$26.30 ± 2.81 billion, $15.70 ± 3.04 billion, and $13.40 ± 3.11 billion, respectively, leading to
overall welfare losses, defined as the decline in consumption per capita, by 12.83 ± 0.73%,
6.85 ± 0.67%, and 5.50 ± 0.66%, respectively.

There are a few caveats that we would like to reiterate. First, we carried out this study
under the assumption that there are no mitigating strategy in place by the government
of Egypt. Therefore, these estimates represent the worst-case scenario in terms of losses
generated by GERD. In subsequent studies, we plan to extend the analysis to include
various mitigation strategies that are likely to be implemented by the government of
Egypt. We would also like to note that, while this study focuses on Egypt, there are other
downstream countries (Sudan) that would be impacted in various ways. Furthermore,
Ethiopia is expected to benefit tremendously from GERD when the project takes off. It
would constitute a significant source of power for the Ethiopian economy, and is expected
to bring employment and business opportunities. These benefits would go a long way
to improving the overall living standards in the country. The coverage of this study is
therefore limited in terms of the overall impact of GERD.

We also assume that the GERD reservoir will be filled gradually under a constant
filling rate (fixed water amount per year). This constitutes a departure from reality, since
Ethiopia will be filling the reservoir using “phase” mechanisms. For example, in each
filling phase, they would add a certain volume of water to the reservoir for which the
filling rate might not be constant from year to year. Moreover, we assume full recovery
in Egypt’s water allocation following the end of reservoir filling. We assume the same for
the subsequent loss in agricultural land. However, we acknowledge that recovery may
take longer, and in the case of agricultural land, the loss in productivity may not be fully
recoverable. These shortfalls likely limit the robustness of our results. In spite of this, the
results provide some useful insights into the real-world consequences of GERD.
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Appendix A. The VAR System

The time span for the series is from 1970 to 2019. However, some of the variable in
the system have missing entries that are significant. For example, variables for agricultural
sector employment including that for male, female, and combined are only available from
1991 through 2019. Likewise, the entries for unemployment rate are spotty, especially in
the earlier part of the series. We therefore make adjustments by excluding these variables
where we see appropriate.

Model 1: In order to obtain the projected values for agricultural sector output, con-
sumption per capita, real GDP per capita, and real GDP, we use the following system
of variables:

(variables) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

agricultural land
agricultural sector output

f ood import
f ood export

consumption per capita
investment per capita
real GDP per capita

CPI in f lation

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We carry out a fitness test based on the Akaike’s Information Criterion (AIC), Schwarz’s

Bayesian Information Criterion (SBIC), and the Hannan and Quinn Information Criterion
(HQIC). We set p = 5 based on the selection order criteria. We also test for stationarity by
examining the eigenvalue stability conditions of the companion matrix. The results show
that all the eigenvalues lie inside the unit circle. However, a Johansen tests for cointegration
fails to support the absence of long run relationships between the series (with a reported
rank = 4). We therefore estimate both the short run VAR model and a long run Vector Error
Correction Model (VECM). Results generated by the VAR model are reported in Tables 2
and 4, with graphs in Figure 5 (in the main text). Predictions based on the VECM estimation
are presented in Tables A1 and A2.

Table A1. Projected average annual growth (%) in selected variables in a baseline (no GERD) scenario
over the next 3-year period based on VECM estimates.

Variable Mean St. Dev. Lower Limit Upper Limit

agricultural output (value added) 3.35 0.17 3.16 3.48
consumption per capita 3.10 2.10 1.27 5.39

real GDP per capita 4.48 0.71 3.96 5.29
real GDP 6.61 0.71 6.09 7.42
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Table A2. Losses/gains in agricultural sector output, real GDP per capita and consumption per capita
relative to the baseline (no GERD) scenario based on VECM estimates.

(a) Average Annual Losses/Gains (%) Relative to the Baseline (no GERD) Scenario

Variable 3-Year Filling 7-Year Filling 10-Year Filling

Agricultural output (value
added) −17.51 −9.34 −7.50

Real GDP per capita −8.02 −4.28 −3.4
Consumption per capita −12.83 −6.85 −5.50

(b) Approximate Dollar Equivalent in Annual Losses/Gains (Billion $)

Variable 3-Year Filling 7-Year Filling 10-Year Filling

Agricultural output (value
added) −7.18 −4.13 −3.51

Real GDP −27.70 −17.00 −15.20

Model 2: In projecting values for food production, food import, and food export, we
substitute the variable “agricultural sector output” for the variable “food production”,
in which case we set p = 4 bases on the selection order criteria. The resultant system
also satisfies stability conditions. However, like the preceding system, a Johansen test
for cointegration fails to support the absence of cointegration (with a reported rank = 3).
Estimating this system via VAR generates the values in Table 4 and Figure 6 (in the main
text). Results of the VECM estimates are presented in Table A3.

Table A3. Average annual losses/gains (%) in food production, food imports, food exports, and CPI
inflation relative to the baseline scenario based on VECM estimates.

Variable 3-Year Filling 7-Year Filling 10-Year Filling

Food production −38.47 −20.53 −16.49
Food imports 8.56 4.57 3.67
Food exports −16.50 −8.80 −7.07

Model 3: For agricultural sector employment variables (with a shorter time span from
1991 to 2019), the unemployment rate, and CPI inflation, we use the full set of variables,
while acknowledging the limitations of the data. The resultant system is given as follows:

(variables) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

agricultural land
f ood production

f emale agric.employment
male agric.employment

f ood import
f ood export

consumption per capita
investment per capita
real GDP per capita

CPI in f lation
unemploiment rate

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For this system, we set p = 3 based on the selection order criteria. We also confirm sta-

tionarity of this system by examining the eigenvalue stability conditions of the companion
matrix. The Johansen test in this case supports the absence of cointegration. Estimating
this system leads to the values that are reported in Table 6, with graphs plotted in Figure 7
(in the main text).
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Appendix B. Elasticity

In Section 2.3.3, we presented a framework for estimating elasticity coefficients in
agricultural sector output and food production given changes in available agricultural
land. We now present a framework for obtaining elasticity coefficients for the other
macroeconomic variables. This is given in the general form as follows:

ln−Yt = α + βln−AgriYt + γZt + εt (A1)

where ln−Yt is the log of the dependent variable of interest and ln−AgriYt is the log of
agricultural sector output. Zt is a vector of other control variables, also in logs. The constant
β is then the elasticity coefficient for the variable Yt with respect to changes in agricultural
sector output. Table A4 summarizes the methods for estimating these coefficients, which
are reported in Table 3 (in the main text).

Table A4. Summary of methods for obtaining elasticity coefficients for selected variables with respect
to agricultural sector output.

Regressand (Yt) Regressors (AgriYt, Zt) Estimator β p-Value

Food import - agric. sector output OLS, vce cluster by time −0.49 0.001
- exchange rate

Food export - agric. sector output OLS, vce cluster by time 0.94 0.006
- exchange rate

CPI Inflation - agric. sector output IV 2SLS, vce cluster by time −4.35 0.006
- consumption per capita agric. sector output = pop
- investment per capita
- exchange rate

Employment in agric. - agric. sector output OLS, vce cluster by time 5.51 0.000
sector (female) - female population

- adult fertility rate
- interaction b/w
- female population
- and adult fertility rate

Employment in agric. - agric. sector output OLS, vce cluster by time 1.49 0.000
sector (male) - male population

Employment in agric. - agric. production IV 2SLS, vce cluster by time 4.93 0.015
sector (total) - population population = energy use

Unemployment rate - agric. sector output IV 2SLS, vce cluster by time −5.58 0.000
(national) - population population = energy use

Real GDP per capita - agric. sector output IV 2SLS, vce cluster by time 0.46 0.000
- investment agric. sector output = pop
- exchange rate

Consumption per capita - agric. sector output IV 2SLS, vce cluster by time 0.73 0.000
- investment agric. sector output = pop
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Abstract: Densely distributed Global Navigation Satellite System (GNSS) stations can invert the
terrestrial water storage anomaly (TWSA) with high precision. However, the uneven distribution
of GNSS stations greatly limits the application of TWSA inversion. The purpose of this study was
to compensate for the spatial coverage of GNSS stations by simulating the vertical deformation
in unobserved grids. First, a new deep learning weight loading inversion model (DWLIM) was
constructed by combining the long short-term memory (LSTM) algorithm, inverse distance weight,
and the crustal load model. DWLIM is beneficial for improving the inversion accuracy of TWSA
based on the GNSS vertical displacement. Second, the DWLIM-based and traditional GNSS-derived
TWSA methods were utilized to derive TWSA over mainland China. Furthermore, the TWSA results
were compared with the TWSA solutions of the Gravity Recovery and Climate Experiment (GRACE)
and Global Land Data Assimilation System (GLDAS) model. The results indicate that the maximum
Pearson’s correlation coefficient (PCC), Nash–Sutcliffe efficiency (NSE) coefficient, and root mean
square error (RMSE) equal 0.81, 0.61, and 2.18 cm, respectively. The accuracy of DWLIM was higher
than that of the traditional GNSS inversion method according to PCC, NSE, and RMSE, which were
increased by 67.11, 128.15, and 22.75%. The inversion strategy of DWLIM can effectively improve
the accuracy of TWSA inversion in regions with unevenly distributed GNSS stations. Third, this
study investigated the variation characteristics of TWSA based on DWLIM in 10 river basins over
mainland China. The analysis shows that the TWSA amplitudes of Songhua and Liaohe River basins
are significantly higher than those of the other basins. Moreover, TWSA sequences in each river basin
contain annual seasonal signals, and the wave peaks of TWSA estimates emerge between June and
July. Overall, DWLIM provides a useful measure to derive TWSA in regions where GNSS stations are
uneven or sparse.

Keywords: deep learning weight loading inversion model; TWSA; GNSS; GRACE; LSTM

1. Introduction

Terrestrial water storage (TWS) comprises all of the water stored on the crustal surface
and underground, including snow, glaciers, soil water, groundwater, runoff, and biological
water components, which is an essential part of the water cycle system [1,2]. However,
the TWS is extraordinarily limited, only accounting for 3.47% of the total global water
resources [3]. The TWS provides an essential function for industry, agriculture, and human
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life. The freshwater resources of China account for only 6% of the total global water
resources [4]. The Chinese per capita freshwater resource is only 2100 cubic meters, which
is a quarter of the world’s per capita value [5,6]. Moreover, TWS suffers from uneven
interannual distribution, apparent conflicts between water supply and demand, and low
utilization of water resources [7]. In recent years, a series of natural disasters have occurred
frequently, for example, droughts, floods, and soil erosion [8,9]. This phenomenon seriously
affects human life and the economic development of society. Thus, it has become an urgent
issue to scientifically and effectively manage regional water resources in China [10].

The optimization of hydrological models and advancements in observation techniques
have allowed us to accurately monitor the redistribution of TWS at different spatiotemporal
scales [11]. Hydrological models are mathematical models of TWS processes, which are
widely used in climate change studies and human exploration of global water resources [12].
Unfortunately, hydrological models typically simplify the complex hydrological cycle [13].
Not all hydrological components are included in hydrological models, which results in a
tendency to underestimate climate and human-induced changes in the terrestrial water
cycle [14]. For example, the Noah model in the Global Land Data Assimilation System
(GLDAS) only includes soil moisture, snow water equivalent, and total canopy storage
components at 0–2 m depth [15]. The influences of other components are ignored in hydro-
logical models, such as surface water, deep groundwater, and anthropogenic factors [16].
It is essential to find an alternative method for monitoring TWS on a large spatial scale.
Correspondingly, the redistribution of substantial water mass will cause changes in the
gravity field of the surrounding regions. It is possible to invert the terrestrial water storage
anomaly (TWSA) based on gravity anomaly data [17]. Gravity Recovery and Climate
Experiment (GRACE) satellites were launched by the National Aeronautics and Space Ad-
ministration (NASA) in March 2002, which provided an unprecedented method to detect
TWSA on a large scale [18]. This observation tool can accurately measure the gravity field
and continuously monitor changes in surface mass [19]. In recent years, many researchers
have studied the redistribution of the water mass in typical regions based on GRACE,
such as the Amazon basin [20], Greenland [21], the North China Plain [22], and Southwest
China [23]. However, the orbit radius of GRACE satellites leads to inversion results with a
coarser spatiotemporal resolution [24]. Specifically, the temporal resolution is on a monthly
scale, and the spatial resolution is about 300–400 km under the harmonic degree of 60–90,
which dramatically limits the TWSA inversion in small-scale regions using GRACE [25].
The aging of GRACE satellite elements led to its retirement in 2017 and the launch of its
next gravity satellites, namely, GRACE Follow-On (GRACE-FO), in 2018 [7]. There is a gap
of nearly one year between the GRACE and GRACE-FO satellites [2]. Hence, it is essential
to find an alternative method to continuously monitor TWSA.

The redistribution of water masses will cause the subtle deformation of the surround-
ing crust [26,27]. It is then possible to invert TWSA by continuously monitoring crustal
deformation [28–30]. Crustal deformation can be continuously measured by Global Navi-
gation Satellite System (GNSS) stations. Moreover, there are many advantages with regard
to GNSS observations, such as high accuracy and all-weather and real-time measure-
ments [31]. Currently, the GNSS is constantly utilized to derive TWSA in distinct regions
around the world, such as California [32,33], the western United States [34,35], southwest
China [3,12], and mainland China [8]. In regions with dense GNSS stations, TWSA can
be effectively derived using GNSS vertical arrays. GNSS can observe the deformation of
the crust caused by TWSA. Correspondingly, the vertical displacement can be utilized to
invert the near real-time TWSA in these regions [36]. This inversion strategy has great
potential for detecting hydrological signals, which can be employed to establish warning
systems for extreme hydrometeorological hazards [37]. In addition, the Crustal Movement
Observation Network of China (CMONOC) was established about 10 years ago, which
makes it possible to obtain the crustal deformation over mainland China [38,39]. The GNSS
datasets provided by CMONOC have been widely utilized to analyze crustal deformation
and surface loading [22,40,41]. However, the distribution of GNSS stations is uneven due
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to harsh geo-climatic conditions, which dramatically limits the application of GNSS for
TWSA inversion [3]. Developing methods to accurately derive TWSA based on sparse
GNSS arrays has become a research hotspot.

Unlike previous studies, this study proposes a new deep learning weight loading
inversion model (DWLIM) by combining the long short-term memory (LSTM) algorithm,
inverse distance weight method, and crustal loading model. Moreover, TWSA was derived
for mainland China from 2011 to 2020 using DWLIM, GRACE, and GLDAS. The TWSA
results were calculated based on DWLIM, and its variation characteristics were investigated
in 10 river basins within China. The organization of this study is as follows: Section 2
describes the materials and methods in this study, and Section 3 presents the TWSA results
based on DWLIM, including the inversion of TWSA and validation of DWLIM. Section 4
discusses the variation characteristics of TWSA in the river basins, and this section also
analyzes the difference among the TWSA results. Finally, the primary findings of this study
are summarized in Section 5.

2. Materials and Methods

2.1. Materials
2.1.1. GNSS Datasets

This study utilized GNSS vertical deformation sequences provided by CMONOC, and
the distribution of the GNSS stations is shown in Figure 1b. The period of each station
is not consistent due to the difference in the station establishment time, and the periods
of GNSS arrays are shown in Figure 1a. The study period was chosen as 2011–2020 to
ensure the completeness of vertical deformation sequences. There were 263 original GNSS
stations after removing 6 stations with large period differences, which are shown by the red
shadow in Figure 1a. The GNSS observation sequences were calculated using observation,
navigation, precision ephemeris, and table files. Furthermore, the daily coordinate solution
file was obtained based on GAMIT/GLOBK 10.4, and its specific solution strategy is shown
in Table 1 [42]. The GNSS vertical sequences were preprocessed by removing observed
outliers that were three times larger than the standard error and system sequence errors
caused by earthquakes or antenna replacement.

Figure 1. Distribution of continuous observation stations over mainland China. (a) The period of
each GNSS station. (b) The distribution map of GNSS stations.
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Table 1. Table of GNSS data resolution strategies based on GAMIT/GLOBK.

Parameters Value Parameters Value

Reference frame ITRF 2008 Flat difference Weighted least-squares
estimation + Kalman filtering

Height cut-off angle 10◦ Ionosphere LC portfolio observations

A priori troposphere 0.5 m Earth rotation parameters Polar shift, UT1

Mapping functions HGMF, DGMF Inertial coordinate system J2000.0

Tidal correction IERS 2003 Model; Polar Tide
Correction; FES 2004 Sea Tide Model Precession of the equinoxes IAU 1976

Satellite phase center IGS ANTEX Model Chapter movement IAU 1980

2.1.2. GRACE Datasets

The primary mission of GRACE satellites is to monitor spatiotemporal variations in
the Earth’s gravity field on a global scale. Specifically, the gravity field anomaly is not
only related to the Earth’s rotation but also affected by geophysical phenomena, such as
earthquakes, glacial equilibrium adjustments, and oceanic and hydrological changes [29,43].
The gravity variations in GRACE inversions are generally attributed to the large-scale
hydrological migration in mainland China. To verify the reliability of DWLIM, this study
employed GRACE Mascon (GRACE-M) to compare its results with the DWLIM outcomes.
However, the difference in solution strategies causes considerable uncertainty in the single
GRACE-M solution. This study utilized the GRACE-M products obtained from 2011 to
2020 provided by the Center for Space Research (CSR) and the Jet Propulsion Laboratory
(JPL) of NASA. The TWSA datasets in mainland China were extracted from the boundary
files, and the mean value of the two products was considered the final GRACE-M result.
Moreover, we did not add additional smoothing, empirical destriping, filtering, or a scaling
factor. To compare DWLIM and GLDAS, the mean datasets of GRACE-M were corrected
by first-order terms.

ΔTWSAGRACE-M =
ΔMasconCSR + ΔMasconJPL

2
(1)

2.1.3. Auxiliary Datasets

GLDAS V2.2 is an evolution of the earlier Catchment Land Surface Model (CLSM)
with 24 variables, including temperature and TWSA. The spatial coverage of daily GLDAS
ranges from 60◦ S to 90◦ N in latitude and 180◦ W to 180◦ E in longitude [44]. For the
construction and validation of DWLIM, this study used the temperature variables from the
GLDAS V2.2 model as the input data for LSTM regression. The TWSA variables from the
GLDAS V2.2 model can be regarded as validation data for DWLIM-derived outcomes. In
addition, surface pressure sequences from ERA 5 datasets were provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF). The spatial resolution of ERA
5 is 0.1◦ × 0.1◦ with global spatial coverage, and the period of time is from 2000 to the
present [45].

2.2. Methods
2.2.1. LSTM Algorithm

LSTM is an improved recursive neural network (RNN) model proposed by Hochreter et al.
in 1997 [46]. The LSTM model is trained by constructing memory storage units and using a
temporal backpropagation algorithm. This algorithm can solve the problem of gradient
disappearance in RNN, and it has no long-term dependence. The standard LSTM model
mainly consists of the following: each step t with its corresponding input sequence X: x1,
x2, . . . , xt, the input gate it, the forget gate ft, and the output gate ot. The memory unit ct
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can control the memory and forget the data through different gates, and it is calculated as
follows [46].

ft = σ(Wf xt + Uf ht) (2)

ot = σ(Woxt + Uoht) (3)

c̃t = tanh(Wcxt + Ucht) (4)

The memory unit cj
t of the j LSTM with unit time t can be expressed as follows [46].

cj
t = ij

t × c̃t + f j
t × cj

t−1 (5)

When the memory cell is updated, the current hidden layer hj
t can be calculated [46].

hj
t = oj

t × tanh(cj
t) (6)

where W denotes the weight matrix of the input process; U denotes the state transfer
weight matrix, which is an S-shaped function; tanh denotes the hyperbolic tangent function;
σ denotes the sigmoid function; ht denotes the hidden state vector of the output; and
c̃t denotes the new matrix after updating. The three types of gates jointly control the
information entering and leaving the memory cell. The input gate regulates the new
information entering the memory cell. The forget gate controls how much information is
kept in the memory cell, and the output gate defines how much information can be output.
The gate structure of LSTM causes the information in the time series to form a balanced
long- and short-term dependence for multiple regression purposes.

The original sequences were decomposed into n feature signals based on MEEMD
due to the few input sequences in this study. The decomposition process is described as
follows [47].

F = IMF1 + IMF2 + . . . + IMFn + noiw (7)

where F denotes the original feature sequence, IMF1–IMFn denote the n modal components
obtained by decomposing the original sequence, and noiw denotes the Gaussian white noise
added by MEEMD to be decomposed in the decomposition process.

The geophysical parameters show similar characteristics over a small-scale region.
There is a homologous amplitude of crustal deformation where the grid is adjacent to the
GNSS station. Therefore, the distance between the grid and GNSS station is considered
by using the algorithm of inverse distance weight. The application of inverse distance
weight contains three steps. Firstly, the figure center of the grid is regarded as the location
coordinates for calculating the distance. Secondly, the distance between the simulated grid
and the control GNSS stations is calculated. Finally, we assign the weight to each simulated
sequence based on the algorithm of inverse distance weight. The simulated formula is
as follows.

Dg =
n

∑
j=1

1
dj

n
∑

i=1

1
di

(
Netj

LSTM(IMF1, IMF2, . . . , IMFm)
)

(8)

where Dg denotes the simulated crustal deformation in the unobserved grid by DWLIM; dj

represents the distance between the center of the grid and the control station;
n
∑

i=1

1
di

denotes

the reciprocal sum of the distances between the grid and each control station; n denotes the
number of the control GNSS stations; IMF1–IMFm denote the m modal feature components
obtained by MEEMD; and Netjth

LSTM denotes the j LSTM regression network. Thus, the
simulated crustal vertical deformation of each grid is regressed n times and weighted
according to the inverse distance weight.
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2.2.2. The Crustal Load-Deformation Model

The upper part of the continental crust can be considered an elastic layer; it will
cause the elastic response of the surface to settle or rebound when the mass of the Earth’s
surface changes. This deformation is also called crustal load-deformation. Crustal load-
deformation occurs not only in the vertical direction but also in the horizontal direction.
Crustal load-deformation is more sensitive in the vertical direction than that in the horizon-
tal direction. The relationship between crustal loading and crustal load-deformation can be
established by the Green function [48], which is calculated as follows.⎧⎪⎪⎨⎪⎪⎩

Ugreen = 2π
∞
∑

n=0
hn × [Pn−1(cos θ)− Pn+1(cos θ)]× GR

g(2n+1) × Pn(cos θ), (n > 0)

Ugreen = 2π
∞
∑

n=0
hn × (1 + cos θ)× GR

g(2n+1) × Pn(cos θ), (n = 0)
(9)

where θ denotes the angular radius from the center of the disk; Pn denotes the Legen-
dre polynomials; G denotes Newton universal gravitational constant, which is equal to
6.67 × 10−11 N × m2/kg2; R denotes the radius of the Earth; hn denotes the loading Love
number; and g denotes the acceleration of gravity.

DWLIM utilizes hydrological deformation as the input data, and it combines the
crustal loading inversion model to obtain the TWSA in the study region. In the crustal
loading model, the obtained solutions are regularized using a curvature smoothing algo-
rithm, and the solutions are added as constraints in the solution matrix. In other words, the
least-squares problem is minimized to estimate the daily terrestrial water storage variability
for each segment of time studied [49].

((Ugreenx − d)/σ)2 + β2(L(x))2 → min (10)

where Ugreen denotes the coefficient matrix of the Green function obtained by Equation (9);
σ denotes the standard deviation of the hydrological load-deformation sequence; d denotes
the hydrological load-deformation time series, including the simulated Ugrid and UGNSS; L
denotes the Laplace operator; and β denotes the smoothing factor.

2.2.3. Construction of DWLIM

Broadly speaking, the hydrology and atmosphere on the surface exert stress on the
continental crust. At the same time, the crust will produce corresponding elastic deforma-
tion when the stress is less than the elasticity of the crustal rocks [50,51]. Fortunately, GNSS
can accurately observe crustal deformation with submillimeter accuracy [52]. In recent
years, the crustal load-deformation model has been employed to invert the local TWSA in
regions where GNSS stations are densely distributed [53–55]. However, the distribution
of GNSS stations is uneven worldwide due to the influence of geographic conditions [12].
Sparsely distributed GNSS arrays cannot be used to accurately invert TWSA because of
the limitation of the disk expansion radius. Therefore, it is one of the keys for accurately
deriving TWSA to accurately simulate surface load-deformation in the unobserved regions.
In this study, DWLIM was constructed by combining LSTM, the inverse distance weighting
method, and the crustal load model. The specific process of DWLIM can be divided into
the following five steps.

(1) Step I: The study region is divided into 1◦ × 1◦ grids, and the grids are divided into
two situations; specifically, the grids contain or do not contain GNSS stations. This
algorithm will proceed to step II if the grid has GNSS stations. Moreover, the grid will
be defined as an unobserved grid if it does not contain GNSS stations, and the vertical
deformation will be simulated in step III.

(2) Step II: The GNSS coordinate solution will be calculated by using observation, pre-
cision ephemeris, navigation, and table files based on GAMIT software [42]. The
daily coordinates are calculated by the GLOBK software based on baseline data files
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(h-files), and series outliers and step terms that are three times larger than the standard
deviation are removed.

(3) Step III: The surface temperature sequence (ST) and atmosphere pressure sequence
(SAP) are normalized on the grid scale. Furthermore, the normalized results are
decomposed using the modified ensemble empirical mode decomposition (MEEMD)
method to obtain 2 n feature sequences, including n ST and n SAP feature sequences.
In the unobserved grid, the GNSS vertical deformation sequences are employed as
the target sequences, and the 2 n feature sequences are utilized as the input sequences.
Then, the LSTM regression method and the inverse distance weight method are
employed to simulate the vertical displacement.

(4) Step IV: The corrected sequences of atmospheric (NTAL) and non-tidal ocean loading
(NTOL) are employed to obtain the hydrologic deformation in all the grids, including
the GNSS grids and unobserved grids [56].

(5) Step V: The TWSA results are obtained by combining the Green function and the
inversion of the crustal load model with all hydrologic deformation. The flow chart of
this study is shown in Figure 2.

Figure 2. The flow chart of DWLIM.

2.3. Evaluation Index

In this study, the root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), and
Pearson’s correlation coefficient (PCC) were utilized to evaluate the accuracy of DWLIM
results [57–59], as follows.

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2 (11)

NSE = 1 − ∑n
i=1(Yi − Xi)

2

∑n
i=1
(
Xi − X

)2 (12)

PCC =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2√
∑n

i=1
(
Yi − Y

)2 (13)

where Y and X denote accurate and simulated data, respectively, and Y and X represent the
mean value of data. The RMSE can be employed to evaluate the deviation of the inversion
results from the actual values. The smaller the value of RMSE, the better the simulation
accuracy. The NSE is mainly used to evaluate the performance of the hydrological model,
and its value is not larger than 1. The larger the value, the better the hydrological model.
When NSE is close to 0, it indicates that the effect of the hydrological model agrees with the
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average of observed values. The PCC is mainly employed to describe the linear correlation
between two sequences. The PCC value is between −1 and 1. If the PCC value is closer to 1,
the inversion result is more reliable.

3. Results

3.1. Inversion of TWSA Using DWLIM
3.1.1. Validation of Simulated Crustal Deformation

Seventy-five GNSS sites were selected in grids where the PCC values between the
atmospheric pressure or temperature sequence and the GNSS sequence were greater than
0.5. The 75 GNSS sites were used as control sequences for the regression of LSTM, and
263 GNSS vertical sequences were employed for the validation of regression. It was re-
gressed 74 times when the grid contained control GNSS stations, and it was regressed
75 times when the grid did not contain control GNSS stations. The inverse distance weight
was employed to assign weights for 74 or 75 simulations. Furthermore, the GNSS vertical
sequences were utilized as the true data to verify the accuracy of regression. The simulated
results were contrasted with the GNSS vertical sequence according to the RMSE and PCC.
The evaluation results are shown in Figure 3.

Figure 3. The verification outcomes of simulated crustal deformation. (a) The RMSE between the
simulation and in situ measurement; (b) the PCC between the derived sequence and true data; (c) the
Taylor figure of the simulated results; (d) the mean simulated sequences in mainland China.

It can be seen from Figure 3 that most of the station sequences have RMSE values
within 5 mm. The variability of the observation quality among GNSS sequences may lead
to large RMSE values for some stations. The statistics of the evaluation index indicate that
68.63% of the RMSE values are within 6 mm. The PCC index was used to evaluate the
consistency between the simulated sequences and the in situ measurements; the largest
PCC value reaches 0.87, and its mean value is 0.53. Figure 3d shows the mean sequences
of simulated results and the true data in China. The features of the annual amplitude are
included in the simulated outcomes, and the mean simulated sequence is smoother than
the GNSS vertical sequence.
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3.1.2. Simulation of Hydrological Load-Deformation

(1) Simulation of crustal deformation

In this study, the surface temperature and atmospheric pressure were utilized as the
input data for the LSTM algorithm, and the models were established by using the 75 control
GNSS vertical sequences. Furthermore, the MEEMD method was employed to decompose
the surface temperature and atmospheric pressure sequences into 10 model components,
IMF1–IMF10, respectively. The decomposition of the input sequences is shown in Figure 4,
and the G456 grid is shown as an example.

Figure 4. The result of normalization and decomposition in the unobserved grids, showing G456 as
an example. (a) The result of the temperature sequence; (b) the result of the atmospheric sequence.

The IMF1 components in Figure 4a,b are the normalized original surface temperature
and atmospheric pressure sequences, respectively. IMF2–IMF10 are the decomposed feature
sequences from high to low frequencies. Specifically, the decomposed results reflect the
trend and seasonal and residual terms of the series. In the LSTM regression method, the
10 IMF components were used as the input sequences, and the GNSS vertical deformation
sequence was used as output data. Furthermore, the inverse distance weight was used
to assign weights to the 75 simulated vertical displacements. The vertical simulated
deformation was obtained in the unobserved grids. The distribution between the unknown
grids and GNSS stations is shown in Figure 5a, and the simulated results of the unknown
grid are shown in Figure 5b–d. The G464, G740, and G456 grids are shown as examples.

 

Figure 5. The simulated results in the unobserved grids. (a) The distribution of the unobserved grids
and GNSS sites; (b) the result of G464; (c) the result of G740; (d) the result of G456.
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It can be seen from Figure 5a that the GNSS stations (blue points) are unevenly dis-
tributed, which cannot achieve the overall coverage of the crust over mainland China.
Hence, the simulation of vertical deformation in unknown grids (yellow points) is essential.
Figure 5b–d presents the simulated outcomes of vertical crustal deformation in unobserved
grids using 20 IMF feature components for LSTM regression [60]. The results show that the
period term and annual amplitude of the vertical crustal deformation can be well simu-
lated according to this strategy, which provides a reasonable data basis for the inversion
of TWSA.

(2) Correction of all deformation sequences

This study used the NTAL and NTOL models as correction data to extract the crustal
deformation caused by hydrological loading. The two corrected sequences were added to
the crustal load-deformation time series in mainland China, including the GNSS vertical
deformation and simulated results in the unobserved grids. Furthermore, the annual
amplitudes of NATL and NOTL were calculated from 2011 to 2020, as shown in Figure 6a,b,
respectively. To evaluate the performance of the correction as a whole, the mean sequence of
the vertical deformation and hydrologic displacement was obtained, as shown in Figure 6c.

Figure 6. The corrected performance using NTAL and NTOL. (a) The annual amplitude distribution
of atmospheric crustal deformation; (b) the annual amplitude distribution of non-ocean crustal
deformation; (c) the mean sequences of the corrected results.

Figure 6 indicates that the mean values of the amplitude of the load-deformation of
NATL and NOTL are equal to 3.62 and 0.22 mm, respectively. The raised region of the
NTAL annual amplitude is mainly located in northern and eastern China, with a maximum
of 5.5 mm. However, the maximum annual amplitude of NTOL is only 1.5 mm, and it is
mainly distributed in the eastern coastal regions of China. It can be seen from Figure 6c
that there are smaller variations in the amplitude and phase of the corrected sequence. The
corrections of NTAL and NTOL provide accurate hydrological load-deformation sequences
for DWLIM inversion of TWSA.

3.1.3. Inversion of TWSA Based on DWLIM

The Green function matrix of the point loadings was calculated, and the spatial
resolution of the inversion outcomes is 0.25◦ × 0.25◦. The expansion boundary range and
β equal 2◦ and 0.01, respectively. Hydrologic displacement sequences were used as the
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input data for Equations (9) and (10) to calculate the daily TWSA in mainland China. To
verify the accuracy of the DWLIM results, first-order term correction was applied to the
inversion results in this study, including TWSA results of DWLIM, GRACE, and GLDAS.
The calculated annual amplitudes and mean sequence of the TWSA results are shown in
Figure 7a,b.

Figure 7. The derived TWSA results based on DWLIM in China. (a) The distribution of TWSA annual
amplitude in China; (b) the mean time series of TWSA in mainland China.

It can be seen from Figure 7 that the annual characteristics and amplitudes of TWSA
sequences based on DWLIM can be effectively inverted. The raised regions of the annual
amplitudes can be calculated using DWLIM, which are located in Yunnan Province, south-
ern Tibet region, and southern North China Plain. Furthermore, this result is consistent
with the inversion conclusions of previous studies [8]. To verify the accuracy of DWLIM,
the outcomes of this study were compared with the inverted TWSA from the GRACE,
GLDAS, and the traditional GNSS-derived method.

3.2. Validation of DWLIM
3.2.1. Spatial Verification of TWSA Results

In order to compare the accuracy of TWSA based on DWLIM, this study obtained
TWSA using the traditional GNSS TWSA inversion method (TRAGNSS), GRACE-M datasets,
and the GLDAS hydrological model. The detailed information of these outcomes is summa-
rized in Table 2. Additionally, the annual amplitudes of these TWSA results were calculated,
and the results are shown in Figure 8.

Table 2. Statistical parameters of DWLIM, traditional GNSS TWSA inversion results, GRACE,
and GLDAS.

Method Period Time Time Resolution Spatial Resolution

DWLIM 2011–2020 1 day 0.25◦ × 0.25◦
TRAGNSS 2011–2020 1 day 0.25◦ × 0.25◦

GRACE 2011–2017
2018–2020 1 month 0.5◦ × 0.5◦

GLDAS 2011–2020 1 day 0.25◦ × 0.25◦

Figure 8 indicates that the DWLIM strategy can effectively invert the raised regions of
annual amplitude in mainland China, such as southwestern Yunnan Province, southeast
China, and the Qinghai–Tibet region. Overall, the spatial amplitude results of DWLIM are
consistent with the outcomes of GRACE and GLDAS. However, the annual amplitude of
DWLIM is slightly larger than that of GRACE and GLDAS. The reason is that the influence
of crustal deformation is complex, and hydrological displacement cannot be completely
extracted using NTAL and NTOL. Specifically, the raised regions of annual amplitude
also contain northern Xinjiang and northern Heilongjiang. The spatial distribution of the
annual amplitude based on the traditional GNSS-derived TWSA method contains speckle
characteristics because of the distance limitation of the radius. Hence, the TWSA results
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based on the traditional GNSS inversion method can only infer the range around the
GNSS stations. This will lead to missed signals in regions with sparse GNSS stations when
smoothing, and it greatly limits the application of GNSS for TWSA inversion. Overall, the
limitation of the disk radius on the GNSS TWSA inversion can be mitigated by simulating
crustal deformation in the unknown grids.

 

Figure 8. The spatial distribution of TWSA annual amplitude in mainland China. (a) The result
of DWLIM; (b) the result of traditional inversion method based on GNSS; (c) the result of GRACE;
(d) the result of GLDAS.

3.2.2. Temporal Verification of the TWSA Results

In order to verify the time series reliability of DWLIM, the DWLIM results were
compared with the results of the traditional GNSS TWSA inversion method, GRACE, and
GLDAS. To further analyze the relationship between DWLIM inversion results and the
results of the other data, cross-wavelet analysis was performed, as shown in Figure 9a–c,
respectively. In addition, the mean sequences of DWLIM, traditional GNSS, GRACE, and
GLDAS over mainland China are shown in Figure 9d.

It can be seen from Figure 9a–c that the TWSA results of DWLIM are consistent with
the TWSA of the traditional GNSS inversion method, GLDAS, and GRACE. In addition,
the resonance periods between the DWLIM and the other data are about one year, which
is shown by the red strip. DWLIM can effectively derive the annual and semiannual
amplitudes of the TWSA sequences, which is consistent with the GRACE and GLDAS
results (Figure 9d). However, the annual amplitude of DWLIM is slightly larger than
the other TWSA results due to the difference in the observation strategy. Moreover, the
corrected crustal deformation sequences also contain other deformation signals, resulting
in the inability to separate single hydrological load-deformation sequences. The seasonal
feature of the DWLIM results is more pronounced that of the traditional GNSS-derived
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results. To quantify the advantages of DWLIM over the traditional GNSS TWSA inversion
method, this study evaluated the inversion results using PCC, NSE, and RMSE. The results
are shown in Figure 10.

Figure 9. The analysis and time series of TWSA results. (a) Wavelet analysis between DWLIM
and traditional GNSS TWSA inversion method; (b) wavelet analysis between DWLIM and GLDAS;
(c) wavelet analysis between DWLIM and GRACE; (d) the mean time series of the TWSA results in
mainland China.

Figure 10. The heat figure of the evaluation index based on DWLIM. (a) The value of PCC in the
GRACE period; (b) the value of NSE in the GRACE period; (c) the value of RMSE in the GRACE
period; (d) the value of PCC in the GRACE-FO period; (e) the value of NSE in the GRACE-FO period;
(f) the value of RMSE in the GRACE-FO period.

It can be seen from Figure 10 that, based on the evaluation indexes PCC, NSE, and
RMSE, the TWSA results based on DWLIM are superior to the traditional GNSS-derived
results. For the period of the GRACE mission (2011–2017), the maximum PCC, NSE, and
RMSE indicators of DWLIM inversion results reach 0.81, 0.62, and 2.18 cm, respectively.
For the period of the GRACE-FO mission (2018–2020), the maximum PCC, NSE, and RMSE
of DWLIM inversion results reach 0.71, 0.49, and 2.4 cm. The results show that the TWSA
results of DWLIM are more consistent with the GLDAS results, which is attributed to
the monthly scale resolution of GRACE, leading to signal loss. Further statistics from the
data show that the DWLIM results improve the PCC, NSE, and RMSE by 67.11, 128.15,
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and 22.75% on average compared to the traditional GNSS inversion method, respectively.
The results further demonstrate that DWLIM can effectively derive TWSA in regions with
sparse GNSS stations. Furthermore, the TWSA of DWLIM is better than the traditional
GNSS-derived method in terms of spatial and temporal characteristics.

4. Discussion

4.1. Comparison with Precipitation over 10 River Basins

It is verified that DWLIM can effectively derive the TWSA in mainland China, and it
can detect the raised regions of the TWSA annual amplitude. The crust shows a decreasing
trend when the terrestrial water storage load increases. On the contrary, the crust shows
an upward rebound trend when the terrestrial water storage load decreases. This study
combined monthly precipitation products provided by the China Meteorological Adminis-
tration (CMA) to analyze the variation characteristics of regional TWSA in mainland China.
Furthermore, this study extracted the precipitation and TWSA of 10 river basins in China
based on boundary files. TWSA was calculated by DWLIM, and the comparison is shown
in Figure 11.

Figure 11. The comparison of precipitation and TWSA over 10 basins in mainland China. (a) Yangtze
River basin; (b) Southeast River basin; (c) Haihe River basin; (d) Huaihe River basin; (e) Yellow River
basin; (f) Liaohe River basin; (g) Songhua River basin; (h) Northwest River basin; (i) Southwest River
basin; (j) Pearl River basin.

Figure 11 indicates that the annual amplitude of TWSA is generally positively corre-
lated with the annual amplitude of precipitation. The mean precipitation sequences in the
Songhua and Liaohe River basins are significantly higher than the others. Correspondingly,
the amplitudes of TWSA results are also significantly higher than those in the other basins.
The phase relationship between TWSA and precipitation in mainland China shows good
consistency. This further indicates the reliability of TWSA in phase for DWLIM inversion
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in mainland China. However, the sequences of TWSA based on DWLIM and precipitation
contain delays on the scale of months due to the time needed for the elastic deformation
of TWSA. The results of TWSA and precipitation are consistent with previous studies [8].
The seasonal items of TWSA outcomes are more regular than previous TWSA results.
Furthermore, the amplitude performance of TWSA and precipitation can also be used to
evaluate the arid situation over the river basins. At the same time, it can also be seen that
there is high-frequency noise in the time series of TWSA sequences, which also affects the
inversion or prediction of TWSA. It is mainly caused by systematic noise from ionospheric,
tropospheric, clock error, and multipath effects during GNSS observations [52,61]. There-
fore, we will also focus on the noise classification and removal of GNSS vertical sequences
to provide cleaner sequences for TWSA inversion in future research.

4.2. Discussion of the Difference between Products

In this study, we utilized DWLIM, GRACE, GLDAS, and the traditional GNSS method
to calculate TWSA over mainland China. We compared these TWSA outcomes from the
perspectives of spatial amplitude (Figure 8) and time series (Figure 9). It can be seen from
Figure 8 that DWLIM is consistent with GRACE and GLDAS over most regions. However,
there are also some differences between DWLIM and other products over certain regions,
such as Beijing. The reasons for this can be summarized as follows. First, there are only two
available GNSS stations (BJFS and BJSH) over Beijing. Second, vertical crustal deformation
in the entirety of the North China Plain is complex and has been greatly influenced by
human activity, which can cause inaccuracies in the simulated deformation. Third, the
GNSS inversion result is also a little higher than the other products because the load-
deformation contains other components. Therefore, there may be some differences between
the results of DWLIM and GRACE and GLDAS in some regions. Furthermore, it can be
seen from Figure 8a,b that DWLIM can effectively suppress the speckle effect caused by
uneven distribution of GNSS stations. In future research, we will focus on extracting cleaner
crustal hydrological load-deformation to increase the accuracy of the inversion results.

5. Conclusions

The main research results can be summarized in the following three points.

(1) To increase the derived accuracy for TWSA, DWLIM was constructed by combining
LSTM, inverse distance weight, and the crustal load-deformation model. First, the
study region was divided into 1◦ × 1◦ grids, and then we determined whether the
grid contained GNSS stations. Second, this study selected the surface temperature and
atmospheric pressure as input data, and the GNSS vertical sequences were utilized
as the output data. Each unobserved grid was simulated 263 times, and the inverse
distance weight was used to calculate the weighted sequence. Third, the NTAL and
NTOL models were employed to correct vertical deformation over all of the grids to
obtain the hydrologic distribution. Finally, all of the corrected sequences were used as
the input data for the crustal load model to derive TWSA in mainland China.

(2) To verify the accuracy of DWLIM, the TWSA results of DWLIM were compared with
the traditional GNSS TWSA inversion, GRACE, and GLDAS results. The results
indicate that the annual amplitude distribution of DWLIM is smoother than the
traditional GNSS inversion results. The strategy of DWLIM greatly suppresses the
effect of a small disk expansion radius. The maximum PCC, NSE, and RMSE of
DWLIM results compared with GRACE and GLDAS are equal to 0.81, 0.62, and 2.18
cm, respectively, which are improved by 67.11, 128.15, and 22.75% compared with
the traditional GNSS-derived TWSA method, respectively. Overall, the DWLIM can
effectively invert the TWSA in regions with an uneven distribution of GNSS stations.

(3) This study employed precipitation data to analyze the relationship between TWSA
and rainfall. We inverted TWSA based on DWLIM in 10 river basins of mainland
China. The results indicate that TWSA is positively correlated with precipitation. The
annual amplitudes of precipitation and TWSA in the Songhua River basin and the
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Liaohe River basin are significantly higher than those in other basins. Furthermore,
the wave peaks of precipitation are in good agreement with the peaks of TWSA, which
are located in June or July. This result further verifies the reliability of the DWLIM
inversion results in terms of phase.
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Abstract: In 1954, the Yangtze River valley was hit by heavy precipitation anomalies, which caused
large casualties and economic losses; however, systematic analyses of the causes are lacking. Adopting
the latest national historical precipitation data collected by the China Meteorological Administration
(CMA) and global sea surface temperature (SST) records, this retrospective study determined the
spatial–temporal distribution characteristics of the precipitation in 1954 in Wuhan, a city situated
in the Yangtze River valley. The results confirmed that the 1954 precipitation anomalies were
characterized by a high volume and a long period of rainfall, plus numerous cloudbursts, with most
of the precipitation concentrated during June and July at the mid- and low-Yangtze areas along the
Yangtze. An El Niño event caused the West Pacific subtropical highs to continually move southward
during the summer, creating a long-term rainband in the drainage basin. Moreover, the continued
low SSTs in the Sea of Okhotsk generated an active blocking high that continuously brought high-
latitude cold air into the south, boosting precipitation over the drainage basin. This study proposed
a new causal model of summertime precipitation across the Yangtze River valley in 1954, whereby
the unusual SST changes initially triggered atmospheric circulation anomalies, which caused the
precipitation anomalies of 1954.

Keywords: 1954 Yangtze floods; precipitation; sea surface temperature anomaly; West Pacific
subtropical high; Okhotsk high

1. Introduction

The Yangtze River valley has observed several heavy rainfall and flooding events in the
last century [1], which caused large casualties and economic losses. Extreme precipitation
events are the primary causes of flooding disasters [2–5]. Understanding the characteristics
of past extreme precipitation events—including the temporal and spatial distribution
characteristics of precipitation anomalies and the formation mechanism—is important for
future flood control and disaster reduction [6,7].

Effected by the geographical location, the factors causing precipitation anomalies in
the Yangtze River valley are very intricate and including the intra-seasonal oscillation of
West Pacific subtropical high cyclones over East Asia, cross-equatorial wind anomalies, the
Asian polar vortex, Asian meridional circulation, as well as sea surface temperature(SST)
anomalies due to ENSO(El Niño-Southern Oscillation) [8–10]. As the strongest interannual
change signal of ocean–atmosphere interaction, the evolution of ENSO events largely affects
the precipitation over the Yangtze River valley in China [11–13]. The abnormal convective
activities over the Philippines caused by the SST anomalies provoke anticyclones at the
bottom of the troposphere in the region [14]. Such circulation with anticyclonic anomalies
tends to continue into the following summer, consequently causing anomalies regarding
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the location, intensity, and seasonal movements (north- and southbound) of the West
Pacific subtropical high (WPSH) [15,16], affecting the East Asian monsoon, and resulting
in increased rainfall in the Yangtze River valley. As the generation of ENSO is relatively
slow, and the observation mode indicated by SST anomalies is intuitive, an ENSO event can
be an important basis for predicting summer precipitation. In fact, the current prediction
system in China depends—to a great extent—on the prediction of an ENSO signal [17,18],
and it has achieved primary success in the prediction of summer precipitation in China [19].
Consequently, the analysis of historical precipitation anomalies related to SST anomalies in
the Yangtze River valley is of great significance for reliable projections of future extreme
precipitation events in this region.

In the summer of 1954, the most severe flood of the past century occurred in the
Yangtze River valley. At the time, the flood level hit a historic high of 29.73 m at the Hankou
weather station, with a peak discharge of 76,100 m3/s [20]. A solid conclusion regarding
the mechanism of 1954’s heavy rain has not been reached.

Some research focused on the causes of this flood has been conducted. Feng et al.,
(2004) explored the superposition of multiple physical factors that were observed during
the 1954 Yangtze floods [21], and proposed that the ENSO event in 1953 is an important
factor causing the flood. Chen (1957) analyzed the atmospheric circulation (AC) features at
the Yangtze River valley during the flood season in 1954 [22], indicating that the formation
of the Okhotsk high and a cold trough above the Tibetan Plateau were closely related to
the unusual precipitation over the drainage basin that year. Some studies demonstrated
that AC anomalies are strongly correlated to SST anomalies, and that SST anomalies occur
before AC anomalies [11–13], directly causing unusual precipitations. Lu Jiong (1954)
proposed that the Pacific SST anomalies played a crucial role in summertime precipitation
anomalies across China [23]. These studies indicate that the precipitation anomalies over
the Yangtze River valley in 1954 should be closely related to the Pacific SST anomalies.

Previous studies on the 1954 flood were limited by the number of stations and data
quality [22,24]. However, the current mass of data provides an opportunity for retrospective
research. The China Meteorological Data Service Centre recently published high-quality
surface climate and daily observation data [25]. In the construction of ground-basic me-
teorological data carried out by the China Meteorological Administration, the quality of
the original data has been repeatedly checked and tested, bad data have been corrected,
and missing data have been supplemented, which has significantly improved data qual-
ity. The National Weather Service of the United States also provided the global SSTs and
geopotential data.

This study started with the spatiotemporal distribution characteristics of precipita-
tion anomalies in 1954 over the Yangtze River valley. We explored the process of how
the Pacific SST anomalies affected the circulation anomalies, and then induced the 1954
Yangtze precipitation anomalies. Based on the results of the analysis, we proposed a causal
model relating the precipitation anomalies to the Pacific SST anomalies and the circulation
anomalies, which can be used as a forecast tool for future severe flood disasters in the
Yangtze River valley.

2. Meteorological Data

This study adopted the following datasets:
(1) Records of daily precipitation data collected from 328 weather stations since the

establishment of each station. The China Meteorological Data Service Centre qualified the
raw data once for the period 1951–2010, free from data errors and missing data, ensuring
the data quality of historical precipitation for the present study. We converted the ground
station data into contours based on the kriging method;

(2) The 2◦ × 2◦ grid size that recorded average monthly SSTs worldwide between 1930
and 2000 from NOAA Extended Reconstructed SST V5 dataset [26];
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(3) The 2.5◦ × 2.5◦ grid size that recorded horizontal wind fields and geopotential
height fields in 1954 (retrieved from the NCEP/NCAR Reanalysis dataset on the National
Ocean and Atmospheric Administration website) [27].

3. Characteristics of the 1954 Precipitation Anomalies

3.1. Characteristics of the Unusual Rainfall over the Yangtze River Valley

Figure 1 reveals the temporal and spatial distribution characteristics of the precipita-
tion anomalies during the summer of 1954. Compared with the precipitable water data in
the NCEP/NCAR Reanalysis dataset the ground station data is more accurate (Figures S1
and S2). Figure 1a depicts the national precipitation distribution during the flood period
(April–July) in 1954, during which abundant rainfall was observed along the mid- and low-
Yangtze River. In particular, the area at the juncture of the provinces of Hubei, Anhui, and
Jiangxi received the highest precipitation. The mid- and low-Yangtze areas between 26◦N
and 32◦N mostly had rainfall exceeding 1500 mm during April–July, signifying extremely
widespread heavy rainbands. The maximum precipitation recorded by weather stations
reached 2212.23 mm, whereas the rainy-season precipitation data collected by weather
stations across the Yangtze mid- and low-Yangtze areas averaged 1044.4 mm. Severe floods
affected the provinces of Hubei, Anhui, Jiangxi, and Jiangsu. The levees at Poyang Lake in
Jiangxi Province broke and flooded most of the streets in Jiujiang City. The farmlands in
Jiangsu Province alongside the Yangtze—with a total area of 10 million mu (equivalent to
666,666.67 hectares)—were flooded, and the Yangtze water level in Nanjing exceeded the
warning limit for 117 days [28].

Figure 1. (a) Precipitation across the Yangtze River valley during April–July of 1954; (b) rainfall
anomaly rates across the Yangtze River valley during April–July of 1954; (c) precipitation percentile
across the Yangtze River valley during April–July of 1954—the 90th percentile indicates that the
precipitation in that year exceeded 90% of the years from 1951 to 1980—which can be used as the
threshold of extreme precipitation events; (d) daily precipitation in Wuhan in 1954; (e) monthly
precipitation anomalies in Wuhan in 1954. The data used in the figures are ground station precip-
itation data from 1951 to 1980. We converted the ground station data into contours based on the
kriging method.
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Figure 1b presents the rainfall anomalies that occurred during the 1954 rainy season.
The figure indicates that the total precipitation between April and July in most of the
mid- and low-Yangtze areas was twice the normal precipitation. The distribution of areas
with high anomalies was mostly consistent with that of heavy rainbands. The rainfall
anomaly rates in upstream areas ranged between 20% and 50% in 1954, and precipitation
at most stations was greater than the 90th percentile (Figure 1c), suggesting a precipitation
anomaly across the entire Yangtze River valley with large outliers centralized in the mid-
and low-Yangtze areas.

3.2. Characteristics of Precipitation Anomalies in Wuhan

In 1954, the disaster of rainfall and flooding in Wuhan city reached the highest in
history; typical damage hit by the 1954 floods was among the cities in the mid- and low-
Yangtze areas. This study, using data compiled by the Wuhan weather station, reconstructed
the precipitation anomaly process in chronological order. In 1954, most of the precipitation
in Wuhan occurred between April and July, whereas the precipitation in other months was
relatively low. As illustrated in Figure 1d, the precipitation surged after April with increased
daily peak rainfall, and it peaked in July. Figure 1e indicates that the precipitation starting
in April was higher compared with that of previous years (i.e., normal conditions). This
anomaly continued for 4 months. In August, the continuous rainfall eventually ended, and
the Yangtze River valley began to witness high temperatures along with low precipitation.
In particular, the monthly total precipitation in Wuhan in August 1954 was only 46 mm,
which was 61.28% less than normal conditions.

The cloudburst frequency in 1954 also exhibited a similar trend. Between April and
July (122 days), Wuhan saw 58 days of rain, of which 11 days had rainfall, revealing a
notable anomaly. Rainfall occurred mostly between mid-June and the end of July. During
this period, 3 days had intense rainfall, namely: 13 June (105 mm), 25 June (130.3 mm), and
29 July (142.2 mm—the highest on record). The precipitation between mid-June and the
end of July was continuous for most of the time, indicating an extended period of rainfall.
The precipitation during April–July of 1954 totaled 1620.1 mm, which was more than
twice the precipitation under normal conditions. The heavy rain prompted the water level
and discharge of the Yangtze to sharply rise. In 1954, the water level and peak discharge
measured at the Hankou (a district of Wuhan) weather station hit historic highs of 29.73 m,
and 76,100 m3/s, respectively. During the flood period that year, the water level of the
city’s levee exceeded its warning limit for more than 100 days, with a total of 21,523 major
and minor events reported [29].

4. Causes of the Precipitation Anomalies

4.1. The 1953–1954 El Niño–Southern Oscillation

The El Niño–Southern Oscillation (ENSO) is a coupled climate phenomenon. El Niño
refers to the unusual warming of surface waters on a large scale in the tropical Pacific
Ocean; whereas, southern oscillation refers to the negatively correlated “seesaw” changes
in tropical sea level pressure in the tropical region between the West and East Pacific Ocean,
as well as the resulting phenomenon of strengthening or weakening of the easterly wind in
the tropical Pacific. These two situations actually represent different phases of the same
phenomenon, namely ENSO [30]. ENSO events have a great impact on the precipitation
over the Yangtze River valley in China [11–13]. Some studies show that the floods in the
Yangtze River valley are closely related to ENSO events [31–33].

Figure 2 displays the SSTA distribution over the Pacific Ocean in 1953. The SST rise
extended from the equatorial Pacific region to areas near the coasts of Mexico in North
America, and Peru in South America. Additionally, Southeast Asia, the eastern coast of
China, Japan, and the mid-latitude Pacific region to the east of Japan witnessed an SST rise.
Near the high-latitude Sea of Okhotsk, the SST level was low.
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Figure 2. Pacific sea surface temperature anomalies in 1953 based on the NOAA Extended Recon-
structed SST V5 dataset [26].

The intensity of El Niño is represented using the SSTA index and is monitored in
various key regions, of which the NINO3 region has the closest relation to the precipitation
in China [34]. Figure 3a reveals the SSTAs in the NINO3 region from 1950 to 2000. In
1953, the NINO3 index (Figure 3b) measured a maximum SSTA value of 1.5 ◦C, suggesting
that 1953’s El Niño was less intense compared with those of other years. Nevertheless,
Figure 3a reveals a rising trend of El Niño intensity since the 1960s [35]. The El Niño event
of 1951–1953 is no less intense than its counterparts that occurred a decade beforehand and
a decade later.

Figure 3. Sea surface temperature anomalies (SSTAs) in the NINO3 region: (a) SSTAs from 1950
to 2000, the shadows indicate the flood disasters that may relate to the ENSO events, grayscale
represents the disaster degree; (b) SSTAs between 1951 and 1954.

The 1951–1954 SSTA (higher than average conditions) continued for a long time. SSTs
became higher than average starting in April 1951, peaked before temporarily dropping
to the short-term slight negative anomaly, and quickly returned to increasing afterwards—
such a double-peaked anomaly continued for 31 months. The SSTs in 1953 were relatively
high, with a double-summit SSTA pattern (i.e., the later anomaly occurred immediately
after the first), causing an extended period of El Niño-induced SSTAs.

An ENSO-induced SSTA often leads to anomalies of the West Pacific subtropical high
(WPSH) [14–16]. Subtropical high anomalies played a critical role in 1954. In the 500-hPa
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geopotential height graph in the summer of 1954 (Figure 4a), the location of the 588-dagpm
contour is that of the WPSH. The location of the subtropical high in 1954 was clearly
further south than during average conditions, and the subtropical-high ridge line was
stably located in the 20N–25N region. In 1954, the ridge line first moved north in May,
which was earlier than in previous years. The second subtropical high northward jump did
not appear until August, which was delayed by 20 days compared with previous data. The
WPSH area index was relatively small in 1954 and even smaller than the multiyear average,
yet the westernmost ridge point was further west than ever during that year. It is clearer
in Figure 4b that the SSTAs in the equatorial Pacific induced positive geopotential height
anomalies in the South China Sea, indicating anomalous anticyclonic circulation over this
region. These characteristics were conducive to the transport of moist and warm airflows
from the Indian Ocean in the southwest toward the mid- and low-Yangtze areas [22,24].

 

Figure 4. (a) The 500 hPa geopotential height in summer 1954; (b) the geopotential height (contours)
and wind anomalies (vectors) in summer 1954. The data used in the figures include geopotential
height data, meridional wind data, and zonal wind data in NCEP/NCAR reanalysis dataset [27].

Between May and July, the WPSH stably moved between 20N and 25N, causing wet
and warm air to move toward the Yangtze River valley and precipitation to be maintained
around the mid- and low-Yangtze areas along the river.
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4.2. SSTAs of the Sea of Okhotsk

In addition to the southward shift of the WPSH ridge line, Figure 4b exhibits another
characteristic: a blocking high hovering over the east of Siberia, Russia, and the Sea of
Okhotsk. Describing the mechanism behind the formation of this blocking high, Lu (1954)
confirmed that when SSTs of the region between the Sea of Okhotsk and Bering Sea were
low with abundant sea surface ice [23], a blocking high can easily develop and sustain over
the Sea of Okhotsk. Conducting potential vorticity inversion, Hisashi et al. (2004) proved
that the cold Okhotsk Sea surface is necessary for highs to develop in this region [36]. The
difference between the high temperature land surface and low SST in the Okhotsk region
can cause cold advection with east wind anomalies, thus inducing the development of
blocking highs. In the fall and winter of 1953, positive SSTAs of the central and eastern
equatorial Pacific region were a typical phenomenon of El Niño. In 1954, the relatively low
SSTAs in the central and eastern equatorial Pacific Ocean, as well as the high SSTAs in the
Philippine Sea area, were both conducive to the formation and maintenance of highs over
the Sea of Okhotsk [37].

Another study clarified that when a high is formed over the Sea of Okhotsk and
becomes stable, the precipitation throughout the Yangtze River valley tends to be higher
than average during the East Asian rainy season [38]. Wang’s research work [39] also
specified that following the development of an Okhotsk Sea high a wave train is generated,
which moves from the Sea of Okhotsk to subtropics throughout the east of Japan. The
dissemination of this wave train then forms a cyclonic circulation centered on the sea
surface to the east of Japan. This circulation is a crucial factor in weakening the northward
shift of the WPSH, causing the subtropical high to move southward and remain there for
nearly 3 months.

Figure 2 reveals that the SSTs in the Sea of Okhotsk region were unusually low in 1953,
whereas the SSTs in regions of the central and eastern equatorial Pacific were relatively
high. Figure 5 shows the SSTAs in the Sea of Okhotsk region from 1953 to 1954. SSTAs were
continually present in the region between January 1953 and May 1954, with the annual
SSTs averaging −0.61 ◦C in 1953 (the lowest SST is −1.3 ◦C). As shown in Figure 2, the
usually low SSTs continued a necessary condition of blocking high formation. In 1954, El
Niño turned into La Niña, during which time the central and eastern equatorial Pacific
SSTAs switched from positive to negative, fostering the development and maintenance of a
blocking high in the Sea of Okhotsk.

Figure 5. Sea surface temperature anomalies of the Sea of Okhotsk.

The standardized anomalies of average monthly 500-hPa geopotential heights within
the region of 120E–150E, 50N–60N were defined as the Okhotsk high index (OKHI). The
index represents the activity level of a blocking high. An OKHI ≥ 1.0 indicates that the
geopotential height anomaly exceeds the mean by 1 standard deviation, suggesting that the
blocking high in question is active. Figure 6 presents the time series of OKHIs. In 1954, the
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Okhotsk high was of substantially high intensity and peaked in June and July. This trend
was consistent with the corresponding peak precipitation values. Intense Okhotsk highs
brought the cold air branches in the mid-latitude westerlies southward to the Yangtze River
valley, causing extended precipitation in the area.

Figure 6. Okhotsk high index (OKHI) in summertime from 1950 to 2000, based on the geopotential
height data in NCEP/NCAR reanalysis dataset [27], the shadow indicates years that OKHI ≥ 1.0.

5. Precipitation Anomaly Causal Model

Numerous studies have proven that Pacific SSTAs are closely associated with the
formation of AC anomalies [14–16,36,37]. Notably, SSTAs occur earlier than AC anomalies;
therefore, SSTAs have been widely recognized as an indicator of unusual AC [40–42]. For
example, Pacific SSTAs have become a crucial indicator for researchers seeking to predict
summertime AC anomalies and precipitation in the Yangtze River valley [17,18].

On the basis of SSTAs and previous data analysis results, we traced the unusual precip-
itation process back to 1954, and proposed a causal model of SSTAs affecting precipitation.
Figure 7 presents the schematic diagrams showing the circulation anomalies associated
with SST anomalies. Between the fall of 1953 and the spring of 1954, the El Niño recession
generated abnormal convection activities across the Philippines, resulting in anticyclones
at the bottom of the troposphere in the region and southward shifts of WPSHs.

Figure 7. Schematic diagram showing the circulation and precipitation anomalies associated with
SST anomalies. WPSH—western Pacific subtropical high.
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An extended period of cold SSTAs was detected near the mid and high latitudes of
the Sea of Okhotsk in contrast to the high temperature of the land surface, which led to
the formation of a blocking high. Moreover, the lowered central and eastern Pacific SSTAs
strengthened the potential energy of the Okhotsk blocking high. The formation of such
a blocking high also weakened the northward shift of the WPSH, causing it to continue
retreating southward. Southward shifts of summertime subtropical highs and the blocking
high over the Sea of Okhotsk jointly and continually brought warm and moist airflows
from over the sea, as well as high-latitude cold air into the drainage basin of the Yangtze.
Consequently, an unusually high volume of precipitation occurred during the summer in
said drainage basin in 1954.

Figure 3a shows that many flood disasters occurred during the recession of ENSO
events, and when the Okhotsk high was also active in that year (Figure 6), the superposition
effect of two anomalies may have intensified the precipitation and generated massive flood
disasters. There are three years that the blocking high in Okhotsk is active: 1954, 1988,
and 1998. Severe flood disasters also occurred in 1954 and 1998; both floods caused large
casualties and economic losses [43]. Similar to the 1954 Yangtze floods, studies have reported
that the 1998 precipitation anomalies in the Yangtze River valley were accompanied by
the El Niño event and active Okhotsk highs (Figure 3a, Figure 6) [44–46]. Although the
1998 El Niño was more intense and rapid than in 1954, the circulation anomalies caused
by it are similar [24]. There was an El Niño event in 1988, and its intensity was similar
to that of 1954, which was relatively weak; however, it did not cause strong anomalies
of the WPSH. Therefore, the precipitation in 1988 was relatively normal in spite of the
existence of the Okhotsk blocking high. We speculate that the Okhotsk blocking high will
enormously intensify the precipitation anomalies caused by El Niño events, resulting in
extreme precipitation events.

The common meteorological background of 1954 and 1998 demonstrated that the
causal model shown in Figure 7 is not particular, but a general pattern of anomalies prone
to generate severe flood disasters; therefore, such a causal model can be used as a forecast
tool for future severe flood disasters in the Yangtze River valley.

6. Conclusions

The 1954 precipitation anomalies were characterized by high total rainfall, an extended
period of rainfall and numerous cloudbursts, with the rain mostly occurring during June
and July. The total rainfall along the mid- and low-Yangtze areas of the Yangtze exceeded
1500 mm between April and July, which was roughly double the volume under average
conditions in previous years; furthermore, heavy rainbands were extremely widespread.

The analysis revealed that between 1951 and early 1954, the SSTs near the eastern
equatorial Pacific were unusually high, indicating the presence of El Niño. The El Niño
event then led to an anomalous anticyclonic circulation in the summer of 1954, affecting
the WSPH and the precipitation throughout the Yangtze River valley. Furthermore, the
continued low SST of the Sea of Okhotsk between 1953 and 1954 generated a blocking
high over the sea during the flood season. This blocking high prompted cold air at high
latitudes to move southward continually, where it met moist and warm airflows over the
sea, finally triggering continuous precipitation. The superposition effect of the above two
anomalies intensified the precipitation and generated a severe flood disaster in the Yangtze
River valley.

This study proposed a causal model of extreme summertime precipitation in the
Yangtze River valley in 1954. The unusual changes in SSTs first resulted in AC anomalies,
which caused the unusually heavy rainfall that year. This model indicated a pattern of
anomalies prone to generate severe flood disasters in the Yangtze River valley, and thus
can be used as a forecast tool for future severe flood disasters in this region.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14030555/s1, Figure S1: (a) Precipitable water across the Yangtze
river valley during April–July of 1954 based on NCEP/NCAR reanalysis. (b) Precipitation across
the Yangtze river valley during April–July of 1954 based on ground station dataset. Figure S2:
(a) Precipitable water anomalies across the Yangtze river valley during April–July of 1954 based
on NCEP/NCAR reanalysis. (b) Precipitation anomalies across the Yangtze river valley during
April–July of 1954 based on ground station dataset.
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Abstract: Tunisia, like most countries in the Middle East and North Africa (MENA) region, has limited
renewable water resources and is classified as a water stress country. The effects of climate change are
exacerbating the situation. The agricultural sector is the main consumer (80%) of blue water reserves.
In this study, to better understand the factors that influence the food water footprint of Tunisian
consumers, we used a multiple linear regression model (MLR) to analyze data from 4853 households.
The innovation in this paper consists of integrating effects of socio-economic, demographic, and
geographic trends on the food consumption water footprint into the assessment of water and food
security. The model results showed that regional variations in food choices meant large differences
in water footprints, as hypothesized. Residents of big cities are more likely to have a large water
footprint. Significant variability in water footprints, due to different food consumption patterns
and socio-demographic characteristics, was also noted. Food waste is also one of the determining
factors of households with a high water footprint. This study provides a new perspective on the
water footprint of food consumption using “household” level data. These dietary water footprint
estimates can be used to assess potential water demand scenarios as food consumption patterns
change. Analysis at the geographic and socio-demographic levels helps to inform policy makers by
identifying realistic dietary changes.

Keywords: consumer behavior; food water footprint; modeling; sustainability; Tunisia

1. Introduction

1.1. Water Supply in Tunisia

In the Middle East and North Africa (MENA) and particularly in Tunisia, the limits of
water resource use are being reached due to economic development, population growth
(expected increase in population of 20% between 2010 and 2050), and water demands
associated with new lifestyles [1]. Unsustainable use has led to deterioration of resources
and increasing water scarcity.

According to the World Health Organization (WHO), water stress begins when water availability
per capita/year is less than 1700 m3. When availability is less than 1000 m3/inhabitant/year, there is
a water shortage in the country. Below 500 m3/inhabitant/year, water becomes a constraint on
development. Tunisia is now in the latter case of maximal water stress. With population
growth, the situation is becoming more and more critical [2].

In addition, the MENA region is greatly affected by climate change, i.e., decreasing
rainfall and increasing temperatures [3]. In this region, with the largest water deficit in
the world, demands for water have exceeded the local capacity to be self-sufficient in
food production. In Tunisia, political and socio-economic changes have contributed to
the overexploitation of natural resources, leading to pollution and degradation of the
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environment, rural exodus, increasing poverty, and deteriorating health, as well as greater
food insecurity of the most vulnerable groups. Food security is currently an important
challenge for public policies whose main development objectives are reducing poverty and
eliminating hunger. This can only be achieved when each person has, at any time, physical
and economic access to a sufficient, healthy, and balanced diet [4]. However, food security
is not static. In many cases there are normal fluctuations in terms of availability, access, and
use, e.g., due to changes in weather or prices. Nevertheless, it is very important to examine
the available production factors in the short, medium and long term to be able to assess a
country’s food security trends.

Water is one of the most important resources to examine. Water’s role in food security
is specified by its effects on food production, access to food, stability of supply, health, and
nutrition [4]. Countries with higher water resources generally have higher levels of food
security [4]. The water scarcity in Tunisia affects both the availability and access to food
products, since it directly affects local production. The theoretical foundations and general
principles linking the concept of food security to water resources indicate that all the axes
of food security as defined by the FAO, namely, availability, access, stability, and even use
are linked to water scarcity [5].

Even if the total demand for food grows slowly worldwide, meeting this demand will
require a 70% increase in production by the year 2050 [6]. This seems inconceivable given
worrying signs of the degradation of natural resources, especially water, and the lack of
investment in the maintenance and sustainable use of these resources.

In Tunisia, water supply policies were initially based on intense mobilization of
water resources (construction of dams, hill lakes, wells, irrigated perimeters, etc.). These
post-independence policies have been insufficient to solve the problems of lack of water
resources in some regions. Another solution was the exploitation of unconventional
resources such as seawater desalination and wastewater recycling. However, the use of
these resources has remained limited and expensive [7]. Subsequently, new strategies based
on water demand management were developed. Indeed, this was necessary to rationalize
water use and to maximize its productivity. Water demand management is currently
a priority of the sustainable development strategy adopted in 2005 by all the countries
bordering the Mediterranean. This strategy aims to stabilize demand by mitigating losses
and inefficient uses and increasing the added value created by each cubic meter of water
used [8]. According to the World Bank [9], in Tunisia, the effectiveness of water use at the
farm level has improved from 50% to 75% between 1996 and 2006, which represents a very
encouraging result according to global standards. Despite this increase in the efficiency of
water resource management and the relative improvement in productivity, the demand
for these resources continues to grow. Thus, the management of water demand needs to
incorporate not only agricultural production but also the role of consumption. Optimizing
the use of water requires involving consumers who play an important role during the final
stage of water utilization.

1.2. Water Footprint of Food Consumption

A new concept to examine this issue, the water footprint, was developed by Hoek-
stra [10]. It measures the direct and indirect use of water by consumers or producers. In
particular, it highlights the pressures exerted globally or locally on water resources. Ac-
cording to Lacirignola et al. [11], diets have an impact on agriculture, the environment, and
the interacting economy. Many studies have mentioned the impact of diets and consumer
habits on the evolution of the water footprint at the international or national/regional
levels and the role this concept could play in overcoming problems of water management
in several countries [12–18]. The water footprint of food consumption represents more
than 86% of the total water footprint [19]. According to Mekonnen and Hoekstra [19], the
Tunisian national water footprint surpasses 2226 m3/capita/year. It is higher than the
annual per capita water footprints in other North African countries, estimated at 2044 m3

in Libya, 1715 m3 in Morocco, and 1606 m3 in Algeria. In Tunisia, the average water
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footprint for the main food categories has increased by 31% during the last decades, from
1208 m3/capita/year in 1985 to 1586 m3/capita/year in 2010 [18]. Despite the decline in
cereal consumption, the water footprint has continued to increase as a result of increased
consumption of animal products. This growth is associated with regional variations in food
choices that imply differences in water footprints [20]. Despite the fact that the Mediter-
ranean diet has a lower average water footprint than other diets [21], and that the Tunisian
diet is still considered Mediterranean, the water footprint of food consumption is very high
compared to the other Mediterranean countries, except Italy and Spain [19].

This leads to our main research questions: what are the main factors that influence the
food consumption water footprint of Tunisian households and how to reduce this water
footprint? The paper uses a multiple regression model to estimate the relationships between
the main relevant variables related to consumption habits, demographic, geographic and
socio-economic characteristics of Tunisian households that may affect the water footprint of
food consumption. The assessment of the water footprint and the model results may show
ways to reduce the food consumption water footprint and can be used to assess potential
water demand scenarios as food consumption patterns change in order to reduce impacts
on food and water security. Analysis at the geographic and socio-demographic levels
helps to inform policy makers by identifying realistic dietary changes, taking into account
social and regional disparities to effectively plan interventions and recommendations for a
sustainable diet using the existing nutrition programs.

The novel contributions of this work are three-fold. First, building on the analysis of
Souissi et al., (2019) [18] we use the household level data to examine factors that affect the
water footprint. Secondly, to our knowledge, few studies focusing on the management of
water resources in Tunisia have taken into account the water footprint of food consumption.
The study of Chouchane et al. [22] who assessed the economic productivity of irrigation wa-
ter by analyzing the production water footprint of some foodstuffs, is one of the rare works
that evokes the concept of the water footprint in Tunisia. A final innovation is integrating
socio-economic trends related to food into the assessment of water and food security.

The existing literature includes a number of studies on environmental degradation
and agriculture [23–25], but very little on the direct link between food consumption and
water resource degradation. At the national level, studies linking the consumption of food
products and the management of water resources are rare. To understand this problem
that threatens food security, especially in countries facing water scarcity, we have chosen to
study this link through the case of Tunisia.

The water footprint of food consumption generally exceeds 90% of a consumer’s total
water footprint. Using this tool to assess food security in a region, in a country or even at a
global scale can be very useful [16,26]. It also helps measure the impact of consumption
patterns and food preferences on natural resources. By considering the water footprint of
food consumption across the country, we aim to shed light on the relevant variables related
to consumption habits and their impacts on food and water security. Indeed, several authors
underlined the effect of demographic, socio-economic and geographic variables such as the
degree of urbanization, income and poverty on the diet [27,28]. The consumption of dairy
products is higher in urban areas (Tunis and central East), where households generally have
better standards of living and better access to animal products and processed products [29].
On the other hand, households residing in the northwest and in the centre-west, where the
poverty rates are the highest, have the highest tendency to consume cereals [30,31]. In turn,
Dehibi and Khaldi [32] underlined the diversification of the consumption of processed
animal products and also pointed out the importance of being able to differentiate the
behavior of the Tunisian consumer according to socio-demographic characteristics. Recent
studies in China analyzed the effect of factors such as region, income, and food waste on
the water footprint [33,34].
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2. Materials and Methods

2.1. Data

The food consumption data used in this study come from the national consumption
survey carried out by the National Institute of Statistics [30]. This survey follows an
approach based on the direct measurements of consumed food quantities. At the household
level, measurements are made by participatory observation. Direct measurements are
carried out through weighing surveys during seven full days that are not successive. A
systematic weighing of food is performed for the entire selected sample. The data relating
to the number of people for whom these foods are intended are also recorded [31].

This type of measure is repeated several times a year to take into account seasonal
variations in consumption. This method provides a set of detailed quantitative data on
the structure of food consumption of different socio-economic, cultural, and geographical
groups. It is possible to determine the relationships between household characteristics and
food consumption. By assessing energy and nutrient intakes, it is also possible to use this
type of data to identify nutritional problems in a given population [35].

The term household is less restrictive than family unit, since it designates all the
occupants of the same house (one person or more) without these people necessarily being
relatives. The household represents a relatively stable and homogeneous structure, which
makes it relevant for decision makers [36,37].

2.2. Water Footprint Estimation

The water footprint (WFP) of a group of consumers can be expressed in terms of water
volume per unit of time per capita. For food products, to assess the water footprint we need
to consider the process of growing the crop or tree. The total WFP of the process of growing
crops or trees is the sum of the green, blue, and grey components. The green (rainwater)
and blue (surface and groundwater) components in crop water use are calculated by
accumulating the daily evapotranspiration over the total growing period. The grey water
part represents the theoretical volume of water required to dilute all the pollutants released
during the production in order to achieve a water quality standard [26]. To assess the water
footprint of food products of animal origin consumption, we resorted to the water footprint
network database, which takes account of the blue, green, and grey water footprint of
animal origin products.

The assessment of the consumer’s water footprint is based on the methodology de-
veloped by the water footprint network described in the water footprint assessment man-
uals [26,38]. The process begins with an inventory of water requirements for each stage
of the product production and processing. The water footprint of a “process step” forms
the basis of all water footprint inventories. The water footprint of a good is the aggregate
of the water footprints of the various relevant stages in the production of that good. A
consumer’s water footprint is the sum of the water footprints of the different consumed
products. The water footprint of a group of consumers can be expressed in terms of the
volume of water per unit of time per capita.

As previously mentioned, to assess the water footprint of the main groups of food
products in the different regions of Tunisia, we used food and nutrition survey data
published in 2015 as well as the database developed by Mekkonen and Hoekstra [19,39]
on the water footprint of crop production as described in detail in [18]. Concerning
food products of animal origin, the water footprint includes both the water footprint of
feedstuffs and the water directly used for breeding animals and for processing dairy and
meat products. A database, grouping the majority of the water footprints of animal products
is also available on the Water Footprint Network website [19,39]. However, it is important
to note that one of the limits of this work, which affects the precision of the estimates, is
the absence of data on the water footprint of fish and seafood, an important component
of the Tunisian diet. For more details about determination of the main food products and
the water footprint assessment method used, we refer readers to Souissi et al. [18], which
presents these steps in detail.

500



Sustainability 2022, 14, 1539

The water footprint may depend on the specific characteristics of a household that usu-
ally influence food consumption patterns. The INS survey also includes data on households’
socio-economic and demographic characteristics such as region, family size, income, etc. As
we noted previously, according to the literature such characteristics influence diets within
households [27–29]. The characteristics of the households in the sample are presented in
Table 1. The sample includes both urban and rural populations from all regions of the
country. We note that more than 62% of the sample live in urban areas. There are eight
different income categories, ranging from less than TND 500 to more than TND 4500 (ex-
change rate during the year of data collection: 1 USD = 1.44 TND). The most common
category of employment is laborer. The most common household size is 5–6 members.
About 14% of the respondents are classified as poor. The poverty line is estimated using the
methodology of the World Bank. The monetary approach is used to determine this poverty
line (or minimum income), which will be considered as the absolute poverty standard.
The population categories with a level of income below this threshold have a high risk of
living in conditions of absolute poverty. This method is based on the assessment of the
cost necessary to meet the minimum calorie requirement of a low-income segment of the
population. This is the category of the population living with a per capita income hovering
around the 20th percentile of household spending. The 20th percentile is the level of per
capita income below which the poorest 20% of the population live. The head of household
is typically a married man. About 29% of the respondents were illiterate.

2.3. Modeling of the Determinants of the Food Consumption Water Footprint of
Tunisian Households

Multiple linear regression (MLR) is used to quantify the relationship between several
independent variables and a dependent variable. We also created a multinomial logit model
by converting the dependent variable Y into three food water footprint classes; however,
to keep Y as a continuous variable, we finally opted for a semi log multiple regression
model. This method has been successfully used by different authors to establish a statistical
model [40–42]. In this study, the MLR method provides an equation linking the dependent
variable Yi (food consumption water footprint) to the independent variables Xi using the
following form:

Yi = β0 + β1Xi1 + · · ·+ βnXin + εi (1)

The intercept (β0) and the regression coefficients of variables (βi) are determined by
the least square method [41]. Xi variables are used to explain the water footprint of food
consumption, (n) is the number of households in the sample, and ε is the error of estimation
in the statistical regression model. The best equation is selected while being based on the
highest (R2), lowest standard deviation (SD), and F-ratio value. The MLR modeling method
was performed using STATA software.

The original dependent variable was Yi = “food consumption water footprint”. To get
around the problems of the large values and highly skewed dependent variable, we used
the log-transformation of the dependent variable. Specifically, we used a semi-log model
applying the natural log of Y (ln Y). Logarithmically transforming variables in a regression
model is useful where a non-linear relationship exists between the independent and de-
pendent variables [43]. Using the logarithm of one or more variables makes the effective
relationship non-linear, while still preserving the linear model. Such transformation is also
a convenient means of transforming a highly skewed variable distribution into one that is
normally distributed.
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Table 1. Characteristics of the household sample (n = 4854).

Variables Variable Name Percentage (%)

Demographic variables
Size of Household Size
1 to 2 persons 13.9
3 to 4 persons 37.6
5 to 6 persons 36.4
7 to 8 persons 9.8
+8 persons 2.3

Geographic variables
Area of residence Area
Municipal 62.7
Non-municipal 37.3
Geographic stratum City size
Big cities 23.6
Small and medium cities 76.4
Region Region
Tunis 16.7
North-east 13.3
North-west 14.8
Centre-east 18
Centre-west 16.5
South-east 11.2
South-west 9.5

Socio-economic variables
Poverty Poverty
No 86
Yes 14
Level of education of the household head Education
Illiterate 29.3
Primary 41.9
Secondary 23.6
University 5.2
Socio-professional category of household head SPC
Freelance 7.3
Employee 7.4
Independent industry/trade 9.9
Farmer 9.9
Laborer 31.1
Retired 15.3
Inactive and others 19.1
Gender of the household head Gender
Male 84.5
Female 15.5
Marital status of the household head Status
Unspecified 0.1
Single 1.7
Married 85.6
Widowed 11.4
Divorced 1.2
Expenditure range (TND/month) Expenditure
≤500 1.9
From 500 to 750 4.4
From 750 to 1000 7.1
From 1000 to 1500 18.5
From 1500 to 2000 17.6
From 2000 to 3000 23.6
From 3000 to 4500 15.8
≥4500 11.1

Source: Own calculations from [30].
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In a first step, all the variables correlated with the dependent variable were introduced
into the model. Then, for the next iterations, the non-significant variables with the highest
p-values were eliminated one by one until the best model is obtained. To choose the optimal
set of independent variables we used a backward selection, based on the Akaike’s Infor-
mation Criterion (AIC) [44] and Bayesian Information Criterion (BIC) (Appendix A). The
Breusch–Pagan/Cook–Weisberg test indicated a problem of heteroscedasticity. Specifying
the robust variance-covariance estimator (VCE robust) option is equivalent to requesting
White-corrected standard errors in the presence of heteroscedasticity (Appendix B). Using
the variance inflation factor (VIF) test we concluded that the selected independent variables
in the final model do not present a problem of multicollinearity (Appendix C).

The independent variables correspond to the geographic, socio-economic, and de-
mographic characteristics of the households. The variables used in the final model are
summarized in Table 2.

Table 2. Variables used in the multiple linear regression model.

Variable Name Description Type Modality

Dependent variable

Ln WFP Natural log of household food water
footprint Continuous

Independent variables
Demographic variables

Size of household Number of persons in the household Continuous
Age Age of head of household (years) Continuous

Geographic variables

City size Geographic stratum Discrete 1 Big city *
2 Medium and small city

Region Region Discrete

1 Tunis *
2 Northeast
3 Northwest
4 Centre-east
5 Centre-west

6 Southeast
7 Southwest

Socio-economic variables

Poverty Poor household Discrete 0 No *
1 Yes

Education Education level of the head of
household Discrete

1 Illiterate
2 Primary *
3 Secondary
4 University

SPC Socio-professional category of the
head of the household Discrete

1 Freelance
2 Employee

3 Independent industry/trade
4 Farmer

5 Laborer *
6 Retired

7 Inactive and others
Variables related to food consumption

Expenditure Food expenditure per capita and per
year (TD/capita/year) Continuous

Waste Number of dishes thrown away per
household/year Continuous

* The reference level for categorical variables is selected according to the modality with the greatest number
of observations.

In order to identify the healthiest and most sustainable diets at the same time, several
studies are starting to look at the quantification of the dietary water footprint [18,45,46].
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However, only a few recent studies in China and Spain incorporated regional, income and
food wastage effects in household consumption water footprint [33,34,47].

3. Results and Discussion

The descriptors and the regression coefficients of the model are presented in Table 3.
Together, the independent variables are statistically significant in estimating the water
footprint (p < 0.00). According to the R squared statistic, 43% of the total variation of
WFP is explained by the model. The model was also checked for multicollinearity as
mentioned above. The variance inflation factor (VIF) value obtained was close to one and,
thus, there was no evidence of multicollinearity [48]. To evaluate the relative importance
of the independent variables, it is common to calculate the beta coefficients (standardized
regression coefficients). In a regression of standardized variables, the (beta) coefficient
estimates express the rank of independent variables in terms of the effect on the dependent
variable. The independent variable with the largest (absolute) beta coefficient has the
biggest effect on the dependent variable. The intercept in such a regression is zero by
construction. According to the results, the F-ratio test confirms that the overall regression
model is a good fit for the data (Table 3). The output shows that the independent variables
statistically significantly predict the dependent variable.

Table 3. Results of the semi-log multiple linear regression model (n = 4853).

Variables Coef. Robust Std. Err. Beta

Demographic variables
Size of household −0.044 *** 0.112 −0.157
Age 0.002 *** 0.014 0.056

Geographic variables
City size (base = large)
Medium and small cities −0.031 * 0.506 −0.026
Region (base = Tunis)
Northeast 0.116 *** 0.646 0.078
Northwest −0.064 *** 0.594 −0.045
Centre-east 0.165 *** 0.594 0.125
Centre-west 0.155 *** 0.599 0.114
Southeast 0.026 0.616 0.016
Southwest 0.089 *** 0.764 0.051
Socio-economic variables
Poverty (base = no) −0.221 *** 0.429 −0.151
Education (base = primary)
Illiterate −0.040 *** 0.430 −0.037
Secondary −0.001 0.419 −0.001
University 0.007 0.965 0.003
SPC (base = laborer)
Freelance 0.053 * 0.785 0.027
Employee 0.035 * 0.579 0.018
Independent (industry/trade) 0.042 ** 0.533 0.025
Farmer 0.108 *** 0.545 0.064
Retired 0.037 0.596 0.026
Inactive and others −0.011 0.460 −0.008

Variables related to food consumption
Expenditure 0.0004 *** 0.001 0.456
Waste 0.015 *** 0.071 0.069
constant 2.714 *** 1.202
F (21, 4831) = 176.2 ***
R-squared = 0.4337
Adjusted R-squared = 0.4313
Root MSE = 0.3812

*, **, and ***, statistically significant at 10%, 5%, and 1%, respectively.

504



Sustainability 2022, 14, 1539

According to Table 3, both demographic variables (household size and age of the
head of the household) are very significant (at 1%) in the prediction of the water footprint
of food consumption of the household with coefficients −0.044 and 0.002, respectively.
The city/geographic variable it is statistically significant at the 5% level; people with
higher water footprints are more likely to be found in big cities than in small and medium
ones. Region is very significant, with only the southeast not differing from the base of
Tunis. The centre-east, centre-west and northeast have the highest coefficients: 0.165,
0.155, and 0.116, respectively. Concerning the socio-economic variables, poverty (−0.221),
education particularly illiterate people (−0.040), and the socio-professional categories
(SPC), especially farmers (0.108), are also very significant. Finally, variables related to food
habits (Expenditures and Food waste) are also significant at the 1% level.

In terms of the relative importance of the effects on the dependent variable, based on
beta coefficients, food expenditure per capita (0.456), household size (−0.157), and poverty
(−0.151) have the largest contributions across the model. We also find that the centre-east
(0.125) and centre-west (0.114) regions have the largest effects on the water footprint. This
is followed by food waste, represented by the number of dishes thrown away with a
beta coefficient equal to 0.069, the socio-professional category “farmer” (0.064), the age of
household head (0.056), the education level of the household head, and, finally, the variable
“City size” determining the size of the city of residence. The City size variable is linked
to the degree of the economic development of the city. According to Souissi et al. [18],
the evolution and increase in water footprint during the last thirty years in Tunisia is
more rapid in urban regions. The more developed the city is and the better the economic
situation, the higher the household water footprint. A 1 TND (US$ 0.69) increase in food
expenditure is associated with 0.04% increase in the average water footprint. This can
be explained by the increased consumption of animal products, which are usually more
expensive than plant products [49]. Meat and dairy products have a significant impact on
the water footprint. This is an alarming sign, especially since the measured footprint is
mainly internal (more than 70% of the water footprint of the main food products comes
from local production) [18]. In other words, Tunisia is severely depleted of internal water
resources by consumption habits.

A one-unit increase in the size of the household implies a 4% decrease in the average
food consumption water footprint, controlling for food expenditure. Poor households have
a 22% lower water footprint than other households. Wealthier households seem to consume
products with a large water footprint.

Region is also an important factor to determine the water footprint of households. The
average water footprint is, respectively, higher by 16%, 15%, 11%, and 8% for households
living in the centre-east, the centre-west, the northeast, and the southwest of the country
than for people living in Tunis. The centre-east and northeast regions are characterized by
high economic development and tourism. Households’ incomes are higher and access to
more expensive food products, especially of animal origin, is better. Concerning the centre-
west and the southwest, these regions are characterised by sheep and goat production,
resulting in meat being both available and culturally important. Meat consumption is the
highest in the southwest of the country. The average water footprint for people living in the
northwest is 6% lower than for people living in Tunis. The diet in the northwest is based
on cereal products, which has a lower water footprint. This region is less economically
developed and has substantial cereal production. There is no significant difference between
the water footprint for households living in the southeast and those living in Tunis. These
results can be explained by the variation in culinary habits from one region to another.
Regional food patterns are often very pronounced in Tunisia, particularly for meats [49].

Regarding food waste, all other variables being constant, we found that for each
dish thrown away by the household the water footprint increases by 1.5%. Li et al. [33]
found similar results showing that the increase in food waste contributes to a higher water
footprint. For the socio-professional categories of the head of the household, the average
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water footprint is, respectively, higher by 10%, 5%, 4%, and 3% for farmers, freelance jobs,
industry and commerce independents, and employees than for labourers.

Considering the effect of the head of the household’s age, the unstandardized coef-
ficient for the variable age is equal to 0.002. This means that for each one-year increase
in the age, there is an increase in the average water footprint of 0.2%, all other variables
held constant. It is hard to explain this small but very significant effect of age on the water
footprint. On one hand, the increase with age may imply the presence of children, whose
food consumption is characterised by incorporation of dairy products, meats, and cold
cuts [50]. On the other hand, studies in other countries have shown that the oldest con-
sumers ate more vegetables and fruits as well as less meat and fewer sugary desserts [50,51].
For education, the average water footprint is 4% lower for illiterate heads of households
than for those with primary education. There is no significant difference between the other
categories. Finally, regarding the city size, results show that the average water footprint is
3% lower in medium and small cities than in big cities. The effect of urbanization should
not be overlooked. Urbanization was involved in our analyses due to the association of
urbanization and the structure of the diet in many studies [52–56]. The literature examined
shows that, unlike rural diets, urban diets are more characterized by the consumption of
flour, more fat and animal products, more processed food, more sugar, and more food
consumed outside the home. All of these elements necessarily impact the water footprint,
which continues to climb in urban areas.

4. Conclusions and Policy Implications

The determinants of a consumer’s water footprint depend on the water footprint of the
goods produced. It also depends on what the consumer chooses to consume and the con-
sumed quantities. Until now, studies related to the water footprint have not highlighted the
factors affecting these choices nor their contributions to the water footprint of consumers.

In this paper, to better understand the factors that influence the food water footprint
of Tunisian consumers, we used a semi-log multiple regression model. Results show that
the increased consumption of animal origin products is necessarily linked to the increase in
food expenditure per household and has a significant role in the water footprint increase.
Demographic and economic characteristics such as household size and poverty are among
the factors that contribute to the decrease in the consumer’s water footprint. Moreover,
regional disparities in food choices mean substantial differences in water footprints. Res-
idents of the most developed cities and coastal cities in the centre-east, centre-west and
northeast are more likely to have a large water footprint than residents of Tunis. Significant
variability in water footprints, due to the different modes of food consumption and socio-
demographic characteristics, was also noted. Food waste is one of the determining factors
of households with a large water footprint.

This study contributes to the literature on the water footprint of food consumption
using household level data. Estimates of the food water footprint can be used to assess
potential scenarios for water demand as food consumption patterns change. Reducing the
water footprint to sustainable levels is possible if consumption patterns change.

Analysis at geographic and social levels helps inform policy makers by identifying
realistic dietary changes, taking into account socio-economic and regional disparities to
effectively plan interventions and recommendations for a sustainable diet. It would be
important to encourage more sustainable diets rich in vegetables and fruits, in particular
through schools and advertising campaigns. In addition, in accordance with sustainable
development goals and, in particular, objectives two (SDG2), six (SDG6), and twelve
(SDG12), namely, to end hunger, ensure availability, and sustainable management of water
and reduce food waste, it will be necessary to reconsider import and export strategies
for food/agricultural products as well as food subsidy policies. For example, the wheat
import strategy is effective during years when world prices for cereal products are lower
than the cost of production. This allows Tunisia to save very important volumes of water.
However, for reasons of food security and food sovereignty, the cultivation of wheat should
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be encouraged especially in more humid areas, especially in the north-west where the diet
depends mainly on these products.

Several economic and political mechanisms aimed at reducing the water footprint of
food consumption are possible. On the one hand, this may be achieved by relying on supply
chain marketing strategies such as labeling. On the other hand, on an international scale,
the ISO 14046 standard specifying the principles, requirements, and directives relating
to the evaluation of the water footprint of products and processes has been established.
Other measures based on food price and subsidy policies as well as consumer awareness
campaigns can yield tangible results. Agricultural policies can also be an effective tool to
reduce the water footprint of food consumption.

However, conclusions and recommendations should be viewed with caution since
several limitations are noted in the use of this concept. The main limitations are the
imprecision of the estimates, which is due to the difficulty of estimating water consumption
at all stages of the food chain. Water volumes for products vary depending on production
systems, rainfall, soil quality, yields, irrigation, etc. Other factors affect other aspects of
the food chain, so imprecision accumulates. In addition, only the main food groups are
considered and the data do not include fish products. In addition, the insufficiency of
the volumetric approach should not be overlooked, since in addition to the volume of
water consumed, the quality and conditions of access to water also play a role in decision-
making regarding the use of resources. Another difficulty is the evaluation of grey water;
determining the volumes of water “hypothetically” necessary to dilute the pollution to a
tolerable level is quite arbitrary and very complex. To conclude, we can say that the use
of the water footprint must take into account several limits depending on the context and
the objective.

Finally, the absence of previous work that models the factors influencing the water
footprint of food consumption opens up several perspectives for future research. The
exploration and identification of new influencing variables (such as diet diversity, processed
food consumption, etc.) and the use of more recent data that take into account post-
revolutionary political and social changes in Tunisia are a priority.
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Appendix A

Table A1. Akaike’s information criterion and Bayesian information criterion.

Model Obs ll(null) ll(model) df AIC BIC

4853 −3574.867 −2194.987 22 4433.975 4576.696
Note: N = Obs used in calculating BIC.

Appendix B

estat hettest, rhs
Breush–Pagan/Cook–Weisberg test for heteroscedasticity

Ho: Constant variance
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Variables: AgeChefMe Nombredeplatsjetes vuln taille DAP 1b.newstrate 2.newstarte
1.DNiveau 2b.DNiveau 3.DNiveau 4.DNiveau 1b.region 2.region 3.region 4.region 5.region
6.region 7.region 1.DCSP 2.DCSP 3.DCSP 4.DCSP 5b.DCSP 6.DCSP 7.DCSP
Chi2(21) = 467.20
Prob > chi2 = 0.0000

Appendix C

Table A2. Estat vif.

Variable VIF 1/VIF

AgeChefMe 1.79 0.560112
Nombredelp~s 1.07 0.932759

vuln 1.23 0.813381
taille 1.29 0.773943
DAP 1.43 0.699650

2.newstrate 1.68 0.594018
DNiveau

1 1.75 0.570375
3 1.37 0.728827
4 1.79 0.559360

region
2 2.00 0.499027
3 2.34 0.428069
4 2.02 0.494502
5 2.28 0.437904
6 1.89 0.529240
7 1.91 0.523663

DCSP
1 1.85 0.540077
2 1.21 0.828135
3 1.23 0.815850
4 1.29 0.773944
6 1.70 0.588099
7 1.59 0.630741

Mean VIF 1.65
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Abstract: Transboundary water cooperation (TWC) is an important theme of international cooper-
ation. We conducted macro-level research on TWC from the perspective of inter-country relations
and constructed a theoretical framework in which multidimensional proximity influences the forma-
tion of global TWC. We explained how multidimensional proximity and the constituent elements
comprehensively influence the cooperative willingness and ability of actors, which directly drive the
generation of global TWC. During the empirical research phase, we constructed the TWC frequency
and intensity networks based on historical TWC events data from 1992 to 2013. By using social
network analysis and QAP regression analysis, the spatial structure and proximity effect of water
cooperation linkages are examined. It can be found that: (1) the reconstruction of territorial space
on the eve of the end of the Cold War led to the peak of water cooperation events in 1992. The
overall scale of events in the Post-Cold War era was relatively high and fluctuated steadily. (2) Water
cooperation linkages have distinct spatial heterogeneity and are concentrated in the Eurasian and the
African continents. Water cooperation is sensitive to geographical distance, and high-intensity water
cooperation linkages exist in only a few areas. (3) China, Egypt, Germany, the United States, and
Russia have prominent positions in the network. The United States, Japan, and other extra-regional
powers actively participated in TWC in the Eastern Hemisphere. (4) The regression results show that
geographical, economic, organizational, and colonial proximity significantly affect the intensity of
water cooperation among countries.

Keywords: transboundary water cooperation; Post-Cold War era; social network analysis; QAP
analysis; proximity

1. Introduction

Transboundary water is an important resource and a natural link that maintains
relations between countries in the basin; this is also related to regional economic and social
progress, world peace and stability, and the rapid development of human civilization.
As of 2018, there are 310 international river basins in the world, shared by 150 countries,
which cover 47.1% of the world’s land surface and have 52% of the world’s population
residing within their boundaries [1]. However, shared water can indeed lead to regional
tensions, threats, and even localized violence [2], and the unsustainable use of freshwater
resources worldwide creates enormous challenges for human societies [3,4]. The excessive
consumption of water resources in human production and life and the variation in water
volume caused by climate change make international river basins face a great risk of conflict,
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and transboundary water resources are increasingly becoming the source of inter-country
violent conflicts [5].

In 2014, the IPCC’s (Intergovernmental Panel on Climate Change) Fifth Assessment Re-
port made a serious estimate of the risks for global freshwater resources caused by climate
change. It emphasizes that the risks for freshwater related to climate change and extreme
events will increase significantly under the scenario of global warming of 1.5 ◦C [6]. As en-
vironmental changes will eventually lead to an increase in the economic and political value
of water resources, this will increase the possibility of disputes between countries around
transboundary water resources, and even the risk of military conflicts [7]. Furthermore,
international river basins extend beyond national jurisdictions and their policy-making
structures, making effective policy responses to them more difficult and prone to failure [4].
In the face of this dilemma, many basin countries facing water stress urgently call for
international collective action to strengthen the rational control and effective governance
of transboundary water resources. In the context of the in-depth development of world
multi-polarization and economic globalization, and the unprecedented deepening of inter-
dependence among countries, actively developing transboundary water cooperation (TWC)
has become an inevitable choice for basin countries to enhance mutual trust. Therefore,
we focus our research on the spatial pattern and generation mechanism of TWC between
countries, which could substantially further our understanding of TWC issues.

This research may contribute to the literature in three ways. First, we applied the
social network analysis method to TWC on the global scale, and quantitatively evaluated
the status of the countries in the TWC networks and the connections between countries.
Additionally, we visualized the networks geographically to better reveal the spatial pat-
tern of TWC. Second, with the help of the multidimensional proximity framework, we
studied whether the specific four relationships between countries (geographical, economic,
organizational, and colonial proximities) have an impact on the intensity of TWC among
countries. Third, we proposed a model that proximities further affect the willingness and
ability of actors to cooperate, and ultimately leads to the emergence of the TWC intensity
network pattern among countries. Which also extends the previous analysis of the TWC
generation mechanism between countries. This also extends the previous analysis of the
TWC generation mechanism between countries. Besides that, we have also expanded the
current TWC events database to 2013. This is helpful for further research on the progress of
TWC.

The research is structured as follows. Section 2 presents the literature review and the
theoretical framework in this article. Section 3 introduces the research areas, the data, and
research methods. Our main findings and discussion are reported in Section 4, and the final
section offers conclusions and future research directions.

2. Literature Review and Theoretical Framework

2.1. Literature Review
2.1.1. Transboundary Water Cooperation

Various organizations have provided definitions of TWC. The UN-Water [8] considers
TWC to be an “arrangement” established between transboundary basin countries, which
may include bilateral or multilateral treaties or other formal arrangements. The European
Union [9] believes that TWC and diplomatic issues are closely linked, aiming to urge
countries to reach an agreement on the distribution and management of international
shared water resources, and promote broader regional cooperation. The International
Centre for Water Resources and Global Change [10] pointed out that although there is no
singular definition of TWC, it can be regarded as a mutually beneficial exchange of two or
more parties instead of competing for the same water resources. In academia, some scholars
pointed out that water cooperation based on the signing of treaties is more effective. For
example, Brochmann [11] and Dinar [12] emphasized the dominance of water treaties in
TWC. Kistin [13] called on the academic community to go beyond the notion of cooperation
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as treaties and emphasized the important role of state and non-state actors. In general,
there is currently no unified definition of TWC.

In this study, TWC, as the research object of the article, we believe that it should
have four basic connotations. First, its essence involves the exchanges or mutual relations
between multiple international political actors in the international community. Second,
the actors include state actors and non-state actors, among which state actors occupy
a dominant position. Third, the exchange or mutual relationship between actors is a
cooperative relationship. Fourth, the object of cooperation is transboundary water resources,
including two spatial forms that flow across national borders and form national borders by
themselves. Therefore, we define TWC as “the actions of varying degrees of coordination,
joint and mutual support between state actors, or between state and non-state actors, to
ensure the realization of transboundary water resources development needs or related
interest goals”. In this article, unless otherwise specified, TWC between state actors will be
our focus for discussion.

Compared with attempts to define the concept, there has been abundant empirical
research on TWC. The existing studies are mainly distributed in the fields of political science
and geography, and there are some connections and differences in paradigms and research
methods. From the perspective of the research paradigm, political scholars dominate the
discussion on this topic. In particular, international relations scholars analyze regional
water cooperation cases from the perspectives of liberalism, functionalism, constructivism,
and institutionalism [14–19], in order to clarify the broader mechanism of international
cooperation behind them. Compared with political scholars, geographers pay more atten-
tion to the response of TWC under climate change and the ecological challenges [20,21]
that river basins may face, and they also emphasize the geographical complexity [22,23] of
water cooperation in the process. Some scholars conducted research from the perspective of
water supply and demand, and pointed out that under the pressure of freshwater resources,
the sustainable development of transboundary basins and regional water cooperation are
facing great uncertainty [12,24–26]. Although there are differences in research paradigms
here, geographers generally agree that a broader political and historical background needs
to be fully considered in TWC research [27].

From the perspective of research methods, most of the current TWC studies focus
on individual international freshwater basins and emphasize policy options for solving
the challenges of the region, such as case studies from the Mekong [28–30], Indus [31,32],
Nile [33,34], or La Plata [35] River Basin. Some scholars have developed concepts and
research methods to evaluate TWC and explore its driving forces, such as integrated water
resources management (IWRM) [36,37], water diplomacy [38–40], and water-energy-food
nexus [41–43], which deepens our understanding of TWC from the perspective of social
science research. Among them, the Transboundary Freshwater Dispute Database (TFDD)
project developed by Wolf et al. [44,45] has provided reliable spatial data and events data for
quantitative assessment of global risk basins and water cooperation and conflicts, leading
the trend of quantitative research in this field. By applying different research perspectives
to water events, the basins with the potential for political stresses or conflicting interests
on a global scale have been identified, trends in hydropolitics of transboundary basins
have been discussed, and the most concerning areas of water cooperation have been
confirmed [46–48]. Nevertheless, there have been three characteristics in this field for a
long time: the paradigm focuses on qualitative research from political science, while spatial
analysis from geography is relatively limited; the spatial perspective focuses on the basin
or regional scale, while some global scale evaluations also mostly use basins as the analysis
unit; and compared with qualitative research or policy review, quantitative research is less
and lacks analysis from the perspective of social networks.

With the state as the basic unit of analysis, this article attempts to explore the coop-
erative relationships behind the global TWC events in the Post-Cold War era from the
perspective of space, network, and relations. Complementing related studies, this article
focuses on more general answers to several key questions: what kind of spatial linkages
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feature in global TWC, and what role do some key state actors play in it? With the profound
evolution of globalism and interdependence, to what extent does the relationship between
countries have an impact on TWC, and what mechanism does the process contain?

2.1.2. Multidimensional Proximity

Seeking to relate spatial analysis with the analysis of international relations to address
these questions is particularly complex. Similar to geographical research, many interna-
tional relations issues also emphasize the importance of multidimensional factors analysis,
such as the understanding of history, geography, politics, economy, diplomacy, and factors
related to religion [49]. The essence of TWC is the concrete manifestation of the relationship
between countries in a specific practical activity. The production and deepening of this
activity are bound to be affected by the comprehensive influence of political, economic, and
cultural relations between countries. Therefore, it is feasible to apply the multidimensional
perspective of geographical research [50] to the study of TWC relations, which has practical
significance for crossing the current paradigm barriers in this field and making up for the
lack of a single analytical perspective.

Multidimensional proximity provides an effective research framework for this attempt.
Proximity is a concept widely used in geography and regional science [51]. The perspective
for observing proximity is usually divided into monadic and dyadic. Proximity at the
monadic level refers to the spatial proximity or coverage of a region, which emphasizes
a phenomenon of spatial agglomeration. Proximity at the dyadic level focuses on the
proximity between two regions or individuals, which emphasizes the distance (or differ-
ences and similarities) between two interactive regions or individuals. The latter is more
commonly discussed in academic research. Proximity initially only refers to geographical
proximity, that is, the distance between things [52]. It is generally considered to come
from the observation of industrial agglomeration and knowledge spillover by economic
geographers [53]. The spatial agglomeration of innovation activities makes people first
realize the importance of geographical proximity to innovation. There is a substantial body
of work on the relationship between geography and innovation, which explains that close
geographical distance between actors is more conducive to face-to-face communication
and interaction [54–56]. Additionally, frequent exchanges help to create a good cooperative
relationship between actors, thereby enhancing the circulation of tacit knowledge and the
production of innovative activities [57].

As research progressed further, scholars found that single geographic proximity could
not fully explain the generation of innovation. Therefore, the multidimensionality of the
research perspective has received attention and discussion. The French school of proximity
proposed that proximity should include multiple dimensions, and suggests that proximity
in other dimensions also had an important impact on the research object [58]. In addi-
tion to physical proximity, socioeconomic interdependence should also be considered [51].
Boschma systematically defined the concepts of cognitive and organizational, while lan-
guage, and cultural proximity were also widely mentioned by other researchers [59–62].
What these dimensions have in common is that being proximate in any of them enhances
coordination and reduces uncertainty, thereby contributing to knowledge production and
innovation [53,60].

The flourishing of the theory of multidimensional proximity has resonated with other
disciplines and broken through its early spatial scale perspective that focused only on
local activities. On the one hand, a major research direction focuses on the geographical
constraints of network formation and its evolution. This approach is based on the findings
that geographic proximity tends to facilitate the formation of networks, which increases
social contact, information exchange, and the creation of social relationships [57]. This also
influences some scholars to classify these explanations as part of the geographical theories
of networks [63]. Furthermore, criticism of the early concept of localized networks pointed
out that such networks may not bring the expected effects of innovation, and “spatial
myopia” or “lock-in” would reduce the explanation of localized networks [60,64,65]. In
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contrast, global relations based on economic globalization and the adjustment of production
relations revealed that this theory can be applied to a wider range of spatial scale studies,
such as global production networks or global value chains [66,67]. On the other hand,
multidimensional proximity is recognized in other disciplines or studies that emphasize
relational and geographical perspectives, and one of the important areas is international
relations. Using geopolitics as a link, some scholars have provided linkages between the
disciplines of political science and geography through the integration of international
relations and political geography [68]. For example, Harvey Starr [68] advocated proximity
in his research on international conflict, emphasizing the importance of geography, distance,
and spatiality in theoretical and empirical work on international relations. Some scholars
have also pointed out that proximity is a strong factor in predicting dyadic conflict, and the
greater the “distance” between states, the greater the probability of conflict [69]. Although
multidimensional proximity has been applied in many research fields, for transboundary
water cooperation, there is still a lack of discussion on its generative mechanism from this
perspective.

2.2. Theoretical Framework: Towards Global TWC

In our analysis, we conduct macro-level research on TWC from the perspective of
inter-country relations and select four different proximity forms of geographical, economic,
organizational, and colonial, to analyze the general mechanism which affects the intensity
of global TWC (Figure 1).

 

Figure 1. The theoretical framework for the formation of global TWC.

2.2.1. The Relations of Proximities and Global TWC

Geographical proximity. The influence mechanism of geographical proximity on TWC
is mainly manifested in three aspects: water resources endowment, geographical position,
and natural environment difference between state actors. Countries with favorable water
resources endowment tend to have weaker willingness to cooperate, such as countries
with a high water supply and low water demand. Conversely, countries with a low water
supply and high water demand will show a high willingness to cooperate. In terms of
geographic position, as Tobler’s [70] first law of geography revealed, the distance between
things in space is inversely proportional to the closeness of relationships, and the closer
geographical distance between countries or the direct existence of basin links is more
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conducive to communication and interaction. Besides the factor of geographical distance,
the actor in the same transboundary basin should be taken into account. Geographical
proximity will also affect countries’ understanding of the environment and further affect
their diplomatic behavior, prompting them to formulate foreign policies consistent with
the environment [71].

Economic proximity. The effect of economic proximity on TWC is mainly manifested in
the economic foundation, market demand, and attention of domestic society. The economic
foundation is the basis of each actor’s behavioral ability. Although some countries have
a high willingness to cooperate, their economic development level is relatively weak,
and they are unable to undertake international responsibilities or take effective actions
in cooperation, which restricts the development of TWC between themselves and other
countries or international organizations. Market demand emphasizes the attraction of
other countries’ water markets to one country. Positive demand, negative demand, and
potential demand have different degrees of influence on the country’s TWC cooperative
willingness and ability. Trade flows and trade-based interdependence among countries also
contribute to the promotion of peace and cooperation among countries [72]. The domestic
social environment, interest groups, and other factors will affect national policymakers in
formulating foreign policy [73]. Furthermore, the pursuit of seeking economic benefits on
TWC drives interest groups to lobby the government to water cooperation [74].

Organizational proximity. As Boschma pointed out, organizational proximity includes
the similarities that participants are connected by sharing the same reference space and
knowledge [60]. Additionally, it often means the same space of relations based on the
effective interactions of various nature [75]. It includes a relation of similarity and a relation
of membership. Organizational proximity mainly affects the formation of TWC from three
aspects: international water law, information exchange, and international regime. Interna-
tional water law refers to a series of treaties or practices reached among the international
actors to solve international water resources development and protection. Strictly speaking,
there is currently no unified international water law [76]. However, international water
law emphasizes the goal of equitable development and sustainable use of transboundary
water resources, regulates the rights and obligations of international actors, and helps to
safeguard and enhance the cooperative ability of all actors. The information exchange
helps to ensure the effectiveness of communication among the actors in the organization.
The higher the level of information exchange and the more formalized and institutional-
ized the process, the more conducive to the smooth flow of tacit knowledge, which could
influence the actors to reach a consensus on cooperation. The international regime is a
series of principles, norms, rules, and decision-making procedures formed around the
expectations of actors in a given field of international relations. Neoliberal institutional-
ists, such as Keohane, emphasized that an effective regime can promote official contacts
and establish cross-governmental communication networks [77]. The more international
regimes established between countries means that they not only have more options for
cooperation channels in dealing with specific issues, but can also avoid the possibility of
losing cooperative participation due to the failure of a single rule.

Colonial proximity. Colonial proximity also affects the formation of TWC mainly from
three aspects: historical relations, international habitus, and conceptual cognition. Histori-
cally, the close relationship between the colonizers and the colonized was derived from the
decolonization policy adopted by the colonizers after World War II, which emphasized that
the actions taken by colonial countries in the process of the collapse of the colonial empire
were aimed at maximizing their interests. Compared with historical relations, international
habitus emphasizes the current behavioral tendencies of the countries. The habitus of the
actor derives from its long-term practice, is acquired through lasting experience in its social
status, and is the practical logic of its action [78]. Although in the post-colonial system,
countries have gained sovereign independence and equality in the sense of international
law [79], under the influence of international habitus, the former colonial powers still
actively dominate international affairs and reshape the international order by their strength.
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Additionally, the former colonies, influenced deeply by their politics, economy, as well as
culture, not only maintain direct contact and cooperation with the former colonial powers
in many affairs, but also have been indirectly affected in the practice of cooperation with
other countries. Conceptual cognition is another factor that affects TWC between former
colonial powers and colonies, as well as between colonies. Lu [80] pointed out that some
former colonial powers, out of compensation for their historical responsibilities, strength-
ened rectification justice or political reconciliation in their interactions with former colonies,
so as to carry out cooperative activities with a nature of assistance in many fields, including
water cooperation. From the perspective of constructivism, since countries that have been
colonized by the same colonial power may have similar language, norms, and culture, they
can help countries to shape identity [72]. Therefore, these countries can form more effective
communication and promote water cooperation activities in dealing with water affairs.

2.2.2. Actors and Driving Force

Global TWC is the result of conscious and purposeful interaction between actors.
Under the influence of multidimensional proximity, the cooperative subjects jointly promote
the deepening of water cooperation. This process has shaped the spatial patterns of TWC in
the Post-Cold War era. The formation and deepening of TWC is usually a bilateral or even
multilateral process. Cooperation among and within various actors, including the states,
international organizations, and other organizations, shapes the pattern of global TWC.
Among them, we argue that the states are the most important actors, which have a rational
behavior, and their participation in global governance is based on the analysis logic of “cost-
benefit”. International organizations are also the basic unit of global governance and have
independent status in participating in international affairs, but they have a certain degree
of “idealism” in their goals and behaviors, so they are slightly less rational. Compared with
state actors and international organizations, other organizations or agencies are usually
affiliated with states and have limited participation in water cooperation. For example,
private actors represented by companies or corporations are actually representatives or
executors of the will and decision-making of the states in TWC affairs, and the TWC issue
will ultimately be resolved at the national, regional, or international level. Therefore, we
argue that the success of TWC depends on the willingness and ability of state actors to
cooperate in this field.

The cooperative willingness is the inclination or preference shown by the actor after a
comprehensive analysis of the benefits and costs in achieving the goal of making coopera-
tive commitments or fulfilling cooperative obligations in TWC affairs; and the cooperative
ability is the actual conditions and level of the actor in undertaking costs in order to obtain
benefits. When actors cooperate in transboundary water issues, their willingness and ability
to constitute the independent variables of the result together, and the combination of the
two constitutes sufficient conditions for this result. Thus, ability without willingness, or
vice-versa, is logically and practically insufficient to produce TWC behavior. For example,
the reason why China and the EU can play a leading role in regional TWC is closely related
to their high willingness and ability to cooperate; while many emerging countries have a
high willingness to participate in TWC, their limited cooperation ability makes it impossi-
ble to achieve effective water cooperation with relevant actors. Cooperative willingness
and cooperative ability drive the establishment and formation of TWC among and within
state and non-state actors, but both of these are affected by multidimensional proximity.
Geographical, economic, organizational, and colonial proximity are sufficient conditions
for the willingness and ability of the actors to cooperate. That is, proximities not only
act individually on TWC, but also promote the development of the actor’s cooperative
willingness and cooperative ability through appropriate combinations, which could further
have a positive effect on the formation and intensity of TWC.
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3. Data and Methods

3.1. Research Area

As more and more countries participate in the TWC, the geographic coverage of TWC
events spans the globe. The main analysis of the article focuses on water cooperation
activities in the Post-Cold War era, mainly involving 152 countries. Except for historical
countries including Czechoslovakia, SFR Yugoslavia, FR Yugoslavia, as well as Serbia
and Montenegro, other countries are shown in Figure 2. These countries are divided by
continents: Asia (45 countries), Africa (45 countries), Europe (35 countries), North America
(11 countries), South America (10 countries), and Oceania (two countries).

Figure 2. Spatial distribution of countries participating in TWC.

3.2. Data
3.2.1. Water Cooperation Events Data

Interaction events reflect the relationship between countries, and events data analysis
is a basic method to quantitatively measure bilateral relations [81]. The research object of
this article is global TWC, therefore, the basic analysis unit is global TWC events. Data on
global TWC and conflict events from 1948 to 2008 have been collected by the International
Water Event Database (IWED) of Oregon State University [46,48,82], while establishing
a coding system based on the nature and intensity of events. The nature of the event is
divided into three categories, and the intensity is assigned to 15 levels, which represent
negative water events (intensity level from −7 to −1), neutral water events (intensity is 0),
and positive water events (intensity level from 1 to 7) (Table A1). The absolute value of the
level is proportional to the intensity of the event. The database provides a solid grounding
for the success of earlier TWC research [2,45,83].

However, the database has not been further updated since its release, and the pattern
and law of TWC in the past 10 years need to be described urgently. According to the IWED
data retrieval rules, we retrieved news event materials related to freshwater resources
from 2009 to 2013 through the World News Connection (WNC) database, and a total of
80,783 news events were obtained. After conducting two different levels of data filtering
and coding, 303 TWC events were finally confirmed.

Based on the above process, the article obtained a total of 1423 TWC events, including
4756 cooperation linkages. The data covered 22 years (from 1992 to 2013) and 152 countries
(including historical countries).

3.2.2. Multidimensional Proximity Data

The dependent variable measured by the multidimensional proximity model in this
article is the total intensity of TWC between state actors from 1992 to 2013. To avoid
statistical differences caused by territorial changes, state actors do not include historical
countries and the newly independent country South Sudan, which ultimately contains
147 national actors.
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For the independent variables, the study selects six specific indicators to quantify
the proximities among countries, including the distance between capitals of countries,
whether both countries are members of the same one international organization involved
in TWC, their bilateral trade volume, whether they have the same water organization,
whether they had a colonial link, whether they had a common colonizer (Table 1). These
indicators are used to reflect the four proximities: geographical, economic, organizational,
and colonial proximity.

Table 1. Definition of proximity indicators and their data sources.

Proximity Name Indicator Name Abbreviation Definition Source Years

Geographical
proximity

Geographical
distance dist

The geographical distance
between the capitals of the two
countries and standardize it

CEPII 2019

Same
transboundary

basin
basin

Dummy variable that is 1 if
two countries belong to the
same transboundary basin,
and 0 otherwise

IWED 2019

Economic
proximity

Bilateral trade
volume trade

The cumulative value of bilateral
trade volume between the two
countries and standardize it

UNCTAD 1992–2013

Organizational
proximity Water organization organ

The frequency that the two
countries are in the same
water organization

IWED 1948–2013

Colonial proximity

Colonial link colony

Dummy variable that is 1 if
two countries had a colonial
relationship after 1945, and
0 otherwise

CEPII 1945–2019

Common colonizer comcol

Dummy variable that is 1 if
two countries had a common
colonizer after 1945, and
0 otherwise

CEPII 1945–2019

Notes: Water organization is an international organization that participates in TWC and currently exists. When the
actors in a certain water event involve at least one international organization and it effectively plays a cooperative
role, we regard it as a “water organization”. The statistics include not only its member states but also its observer
states or dialogue partners.

Based on the above process, the study established a multidimensional proximity
database of global TWC, including one dependent variable matrix and six independent
variable matrices, with a total of 151,263 analysis units. The data covered 22 years (from
1992 to 2013) and 147 countries.

3.3. Methods
3.3.1. Social Network Analysis

A social network is a collection of social actors as nodes and their relationships. For
international transboundary water cooperation, it can be abstracted as a network collection
with state actors as nodes and cooperative linkages as social ties. Based on the research
needs, this article eventually established the undirected weighted network:

C = (N, R), (1)

where C is the global TWC network; N is the nodes of state actors; and R is the water
cooperation linkages weighted by connection frequency or connection intensity.

The centrality of a node reflects its influence in the network. According to the theory of
social network analysis, the degree, weighted degree centrality, and weighted betweenness
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centrality [84] are introduced to analyze the individual network characteristics of the TWC
network, so as to quantify the importance and connectivity of the nodes (Table 2).

Table 2. Main analysis indicators of network characteristics.

Indicator Formula Definition Implication

Degree ki
Number of nodes directly connected
to node i

The extent to which the actor
is at the center of the network

Weighted degree
centrality WCRD(i) =

CRD(i)∑n
i=1 wij

(∑n
i=1 wij)

max

The ratio of the number of nodes
directly connected to node i to the
maximum number of nodes that it
may be directly connected.
Weighted by the connection
strength between nodes

The extent to which the actor
is at the center of the network

Weighted betweenness
centrality WCRB(i) =

CRB(i)∑n
i=1 wij

(∑n
i=1 wij)

max

The standardized value of the
probability that node i is on the
shortest path between node j and
node k. Weighted by the connection
strength between nodes

The extent to which the actor
controls the contacts between
other actors

Notes: Where n is the number of nodes in the network, bjk(i) is the probability that node i is on the shortest path
between node j and node k, wij is the connection strength between node i and j.

3.3.2. QAP Analysis

The traditional multiple regression model is based on the ordinary least squares (OLS)
method, and its basic assumption is that there is no correlation between the independent
variables. In the real world, however, “relationships” are usually not independent. To
investigate the determinants of TWC, quadratic assignment procedure (QAP) is used.

QAP analysis is a nonparametric test applied to the “relationship-relationship” level.
Its purpose is to examine the regression relationship between a matrix and other multiple
matrices, as well as to evaluate the influence and significance of each independent variable
on the dependent variable. Different from the OLS regression model, QAP regression
does not require assumptions on the mutual independence between variables. In the
QAP procedure for network analysis, the standard errors are estimated using repeated
permutations of the data set [85]. The calculating logic of QAP is consistent with the
analytical logic of multidimensional proximity, and the essence is to explore the degree of
“proximity” between actors from the perspective of the relationship. Therefore, the QAP
regression model is established as follows:

Y = β0 + β1X1 + β2X2 + . . . + βnXn + μ, (2)

where Y is the dependent variable matrix, depicting the intensity of TWC between countries;
and X1, X2, . . . , Xn as the independent variable matrices, which are specific indicators of
multidimensional proximity between countries.

4. Results

4.1. Time Series of TWC Events

The latest update allows us to analyze the TWC trends more precisely. To capture
their dynamics, the article counted the number of global TWC events by year, as shown
in Figure 3. The latest TWC time series shows that there were 1423 water cooperation
events around the world from 1948 to 2013. The maximum number of events appeared in
1992, which was 114; the minimum appeared in 1948, which was only seven events. The
overall scale of events also increased significantly, from 33 in the Cold War era to 64.7 in the
Post-Cold War era on the annual average level. In a certain period of time, the changes in
the number of events were often not linear, mostly fluctuating. It can be found that sharp
changes occurred around 1991, the number of events rise from 13 in 1986 to 114 in 1992.
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Figure 3. Annual variations of the number of global TWC events.

The key reasons for these characteristics are the disintegration of the bipolar system
and the development of the multi-polarization trend, namely, the change of the interna-
tional system. From 1989 to 1991, major geopolitical events occurred in succession within
three years. In particular, on 25 December 1991, the Soviet Union formally collapsed into
15 countries, resulting in an increase in the number of transboundary rivers and basins,
as well as TWC events. After that, in the Post-Cold War era, peace and development
became the themes of the times. With the ease in international political tension, the scale
of TWC in this stage is higher than that of the Cold War era, and the interaction between
countries has shown steady fluctuations.

4.2. Spatial Differentiation of TWC Linkages Based on Frequency

Taking state actors as nodes, TWC linkages in the Post-Cold War era as edges, and
applying the connection frequency to give weight, a global TWC frequency network C1 is
constructed. The weighted degree centrality and weighted betweenness centrality of nodes
in the network are calculated and Table 3 shows the top countries ranked by them. In terms
of weighted degree centrality, the top 20 countries are all from Europe-North America,
Africa, and Asia, and their distribution is relatively balanced, with eight, seven, and five
countries, respectively. Compared with the former, the ranking of weighted betweenness
centrality differs more among regions. Europe-North America, Africa, and Asia have
five, five, and 10 countries, respectively, and more than half of countries come from Asia.
Specifically, China, Egypt, Germany, the United States, and Russia have always occupied
the top five in the two indicators, with China always occupying the first place. On the
basis that they have the cooperative ability, this result is mainly related to the geographic
and environmental factors of these countries. These countries have longer border lengths
or a larger number of neighboring countries, which naturally determines their needs and
willingness for TWC. However, it can also be found that for some countries with short
borders and few neighboring countries, their status in the network is also prominent. The
reasonable explanation is that this is related to their own specific interest demands, which
include both water-related and non-water-related interests. Some countries have high
water security needs, so they would actively take TWC to meet their water-related interests,
such as Israel. Other countries are more expected to meet other interests through TWC,
such as questing for their international status or enhancing their national image. A typical
case is Japan. After World War II, Japan has long carried out economic diplomacy with
ODA (Official Development Assistance) as the main means and provided assistance to
many countries, and TWC affairs are one of its priorities. Therefore, while exporting its
own successful water management experience, Japan continuously expands its political
and economic interests as well as enhances its international image.
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Table 3. Countries’ hierarchies based on weighted centrality indicators.

C1 C2

Rank Country
Weighted

Degree
Centrality

Country
Weighted

Betweenness
Centrality

Country Weighted Degree
Centrality

Country
Weighted

Betweenness
Centrality

1 China 0.279 China 0.153 China 0.279 China 0.153
2 Germany 0.177 Egypt 0.052 Germany 0.240 Germany 0.068
3 Russia 0.171 Germany 0.050 Russia 0.200 Russia 0.050
4 Egypt 0.156 USA 0.045 Ukraine 0.138 USA 0.044
5 USA 0.121 Russia 0.043 Egypt 0.125 Egypt 0.042
6 Ukraine 0.111 Sudan 0.018 Tanzania 0.123 South

Africa 0.022
7 Tanzania 0.106 Iran 0.017 USA 0.119 Iran 0.017

8 Congo-
Kinshasa 0.095 Congo-

Kinshasa 0.014 Congo-
Kinshasa 0.091 Sudan 0.016

9 Sudan 0.088 Japan 0.013 Moldova 0.091 Congo-
Kinshasa 0.014

10 Moldova 0.080 Jordan 0.013 Sudan 0.077 Tanzania 0.013
11 Thailand 0.071 Turkey 0.013 Tajikistan 0.077 Japan 0.012
12 Turkey 0.067 Tanzania 0.011 Czech 0.076 Turkey 0.011
13 Ethiopia 0.067 South

Africa 0.010 Romania 0.075 Jordan 0.011

14 Czech 0.067 Ukraine 0.007 South
Africa 0.067 Mali 0.009

15 Romania 0.064 Israel 0.006 Thailand 0.064 Ukraine 0.009
16 Jordan 0.063 India 0.005 Bulgaria 0.064 Czech 0.006
17 Tajikistan 0.059 Czech 0.005 Kazakhstan 0.060 Poland 0.006
18 Bulgaria 0.057 Syria 0.005 Turkey 0.059 Zimbabwe 0.006
19 Kenya 0.056 South

Korea 0.005 Ethiopia 0.056 Israel 0.005
20 Uganda 0.055 Laos 0.005 Hungary 0.055 Laos 0.005

To make better sense of the network structure, the spatial pattern of TWC between
countries is illustrated. As shown in Figure 4, the frequency network of TWC in the Post-
Cold War era has obvious topological and spatial structure heterogeneity. First, Asian
countries participate in TWC much more frequently than others, and the local structure of
the network in Asia is also denser and more complex. The highest frequency of cooperation
has occurred between China and Russia, up to 78 times. Among the top 20 partnerships,
there are 14.5 pairs of Asian countries. Second, the network structure consists of triangular
or quadrilateral structures within the continent, which are commonly found in the Nile,
Zambezi River Basin in Africa, Danube River Basin in Europe, Mekong River Basin in Asia,
etc. Clearly this shows that TWC is sensitive to geographical distance, and its geographical
proximity is prominent. Third, extra-regional powers are widely involved in TWC. On
the one hand, intercontinental interaction among countries is obvious, for example, the
United States and Canada are widely involved in TWC in Asia, while European countries
maintain a high level of interaction with African and South American countries. On the
other hand, some island countries actively participate in TWC among continental countries.
For example, Japan has extensive cooperation with countries in East, Southeast, and West
Asia. Additionally, the UK has extensively established cooperative relations with countries
in East and West Africa.

Figure 4. Spatial pattern of transboundary water cooperation linkages based on frequency weighting.
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4.3. Spatial Differentiation of TWC Linkages Based on Intensity

Cooperation frequency can reflect the scale of cooperation, but cooperation intensity
can more effectively reflect the quality of cooperation. Taking state actors as nodes, TWC
linkages in the Post-Cold War era as edges, and applying the connection intensity to give
weight, a global TWC intensity network C2 is constructed. Calculating the weighted degree
centrality and weighted betweenness centrality of state actors (Table 3), on the one hand, it
can be found that among the top 20 countries compared with network C1, the proportion
of Asian countries has remained stable, and the proportion of European countries has
increased. Most of the countries with high centrality are located in the surrounding areas
of China, as well as Eastern and Southern Europe. On the other hand, the status of extra-
regional countries, such as the United States and Japan, has declined.

For the former, its cause is inseparable from the constraints of the geographical en-
vironment and the relatively successful mechanism construction of the areas. In Asia, as
Asia’s water tower, the Tibetan Plateau closely connects China and neighboring countries
through transboundary rivers, making the region have a lot of water cooperation needs and
practices. In Europe, due to the high level of regional integration and the relatively com-
plete construction of cooperation mechanisms, countries usually carry out high-intensity
water cooperation.

For the latter, the cause may be that the cooperative willingness of countries outside
the region is weaker than that inside the region. Although countries such as the United
States, Japan, and South Korea have a prominent centrality in the frequency network, they
are not located in the hot spot basins, and their participation in TWC is mostly in the form
of economic and technical assistance. Therefore, they are less likely to achieve in-depth
and decisive cooperation results with relevant countries than local participants. It is worth
noting that China’s two centrality indicators both rank first in both frequency and intensity
networks, reflecting that China occupies an extremely important position in the network
and is a very important participant in global TWC.

In terms of network linkages, it can be found that the topological and spatial structure
heterogeneity of the TWC intensity network has become more obvious compared with
the frequency network (Figure 5). First, the network hierarchy is obvious and there are
far more low strength linkages than high strength linkages. Linkages with a strength
higher than 10 accounted for only 36.1% of the total. Second, Asia is the continent with
the most complex TWC spatial pattern and the highest concentration of hot spots. High-
intensity water cooperation runs through the Eurasian and African continents. High
strength linkages only exist between geographically neighboring countries within a certain
geographic area. Countries located in the Amur, Mekong, Ganges, Indian, Aral Sea, Jordan,
and the Nile River Basin have carried out high-intensity water cooperation.

Figure 5. Spatial pattern of transboundary water cooperation linkages based on intensity weighting.
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4.4. QAP Multiple Regression Results

By importing the multidimensional proximity variable matrices of global TWC into the
QAP regression model, and then having performed 2000 times matrix random permutations
to estimate the standard errors, the regression results were obtained. Table 4 reports the
results of the QAP regression. The goodness of model fit is 0.272, indicating that the
variables can explain the difference in TWC intensity between countries. The regression
results show that geographical proximity, economic proximity, organizational proximity,
and colonial proximity have significant effects on TWC. This also allows our theoretical
framework to be quantitatively verified.

Table 4. QAP multiple regression results.

Variable
Unstandardized

Coefficient
Standardized

Coefficient
p-Value Standard Error

dist −0.84635 −0.03839 0.0005 0.24382
basin 13.32802 0.47452 0.0005 0.20493
trade 21.97590 0.09077 0.001 2.11566
organ 0.07188 0.04437 0.0005 0.01968
colony 1.43859 0.03712 0.001 0.29427
comcol 0.95653 0.05921 0.0005 0.14187

Intercept −1.00595 0 0 0

R2 0.2722
Adjusted R2 0.27199

First, the significant impact of geographical proximity on TWC has been fully verified.
On the one hand, the capital distance between countries is negatively correlated with the
intensity of TWC, and the result is significant at the 0.1% level, indicating that the closer the
countries are, the greater the likelihood and intensity of TWC. On the other hand, whether
countries belong to the same transboundary basin is positively correlated with the intensity
of TWC. The result is significant at the 0.1% level, indicating that high-intensity TWC is
more likely to occur between countries with spatial connections at the transboundary basins.
Additionally, this result is also clearly reflected in the spatial pattern of the TWC intensity
network (Figure 5). Second, economic proximity has a significant positive effect on TWC.
The bilateral trade volume, as its specific indicator, is significant at the 0.1% level, indicating
that closer trade between countries is more conducive to the development and deepening of
TWC. With the development of globalization, the dependence of economy and trade have
increasingly become the anchor of political relations between countries [86]. The higher the
degree of trade dependence between countries, the more it leads to shared benefits, which
in turn will affect political relations between countries and promote mutual cooperation.
Third, organizational proximity has a significant positive effect on TWC, and the result
is significant at the 0.1% level, which means that the more water organizations exist
among countries, the greater the intensity of TWC. For example, a variety of cooperation
regimes have been formed in the Mekong River Basin [87], including the GMS (Greater
Mekong Subregion Economic Cooperation), the MRC (Mekong River Commission), the
AMBDC (ASEAN-Mekong Basin Development Cooperation), the LMI (Lower Mekong
Initiative), the MGCI (Mekong-Ganga Cooperation Initiative), and the LMC (Lancang-
Mekong Cooperation). These regimes provide various dialogue platforms for the basin
countries and play an important role in promoting transboundary water governance and
economic cooperation in the region. Fourth, colonial proximity is significantly positively
correlated with the intensity of TWC, and the results of each indicator are significant at the
0.1% level. This suggests that former colonies prefer to maintain a high level of cooperation
in transboundary water matters with former colonizers as well as other former colonies. For
example, in 2007, Uganda and the Congo-Kinshasa had to refer to the agreements and maps
reached in Europe in the past to resolve the dispute over the lake islands between the two
countries. Another example is when the UK established a new close bond by transferring
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power to the regime that was most beneficial to its own interests while recognizing the
independence of the colonies, and at the same time incorporated the newly independent
country into the Commonwealth, thus establishing a new kind of close ties. Thus, in
Figures 4 and 5, we can see that the UK is widely involved in African water affairs.

5. Conclusions

Today, globalization and networking characteristics of international collaboration ac-
tivities are particularly prominent. A systematic investigation of global TWC networks will
substantially further our understanding in this field. Based on the mining of cooperation
events data, the article builds the Post-Cold War era global TWC networks. Through the
comprehensive use of social network analysis and QAP analysis methods, the topological
structure and spatial pattern of TWC are revealed, and the multidimensional proximity
mechanism of TWC is discussed. The analysis shows that:

First, in terms of the overall scale of TWC events, the annual change in the number
of events was often not linear, mostly fluctuating. The number of events in 1992 was the
peak over the years since 1948, and then the scale of events experienced a process of rapid
decline and stable fluctuation. However, compared with the Cold War era, the overall scale
of TWC events in the Post-Cold War era has increased significantly. The key reasons for
these characteristics are the reconstruction of territorial space on the eve of the end of the
Cold War and the change in the international system.

Second, in terms of the TWC network structure, the roles of different network actors
are different, and the spatial heterogeneity of the TWC linkages is obvious. In the frequency
network of TWC, the dominant countries are mostly distributed in Asia, Africa, Europe,
and North America, but especially in Asia. China, Egypt, Germany, the United States, and
Russia are the most important network nodes. Network ties are concentrated in the Eastern
Hemisphere, especially the Eurasian continent and the African continent. Additionally, the
extra-regional powers are widely involved in the TWCs of both the Eurasian and African
continents. In the intensity network of TWC, the geographical proximity of the network
has become more obvious, and the high strength linkages are further concentrated in a few
regions. Countries located in the Amur, Mekong, Ganges, Indian, Aral Sea, Jordan, and the
Nile River Basin have carried out high-intensity water cooperation.

Third, in terms of the proximity mechanism, TWC activities among state actors are
not only affected by a single dimension of proximity, but by the comprehensive influ-
ence of multidimensional proximity. Overall, geographical proximity, economic proximity,
organizational proximity, and colonial proximity significantly affect the intensity of wa-
ter cooperation among countries. Specifically, the capital distance between countries is
negatively correlated with the intensity of TWC. Whether countries belong to the same
transboundary basin, the bilateral trade volume, the number of water organizations existing
among countries, whether there is a colonial relationship between countries, and whether
there is a common colonizer have significant positive effects on the intensity of TWC.

Fourth, spatial and regression analysis examined our theoretical framework for the
influence of different dimensions of proximities on the generation of global TWC. This
framework discusses the general process and mechanism of global TWC from the perspec-
tive of proximity, as well as the complex interaction and causal mechanisms. State actors are
the main actors involved in global TWC, and close interaction and cooperation are carried
out among and within the various actors. The formation and deepening of TWC depend
on the willingness and ability of the actors. Both of them are indispensable and constitute
sufficient conditions for TWC results. Cooperative willingness and ability are affected by
multidimensional proximities, which are composed of various constituent elements. Each
proximity can not only play an independent role, but also promote the development of the
actor’s cooperative willingness and ability through appropriate combinations.

The global TWC network is a kind of complex and dynamic network. Based on the
feasibility of data mining and cleaning, the time scale analyzed in this paper mainly covers
the period from 1992 to 2013. It is still necessary to further update the data, especially
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since 2013, since with China’s proposal and implementation of the Belt and Road Initiative,
the international cooperation pattern of Asia, Africa, and Europe is being profoundly
reshaped. Therefore, although the current networks have shown the spatial pattern of
in-depth combination with the core region of the Belt and Road Initiative, it is of positive
significance to further research the new characteristics of TWC under the background of
the Belt and Road Initiative. In addition, with the strengthening of interdependence and
globalism, the deeper economic ties between countries are increasingly shaping both social
and environmental ties, and the systematic correlation between different networks will
become deeper. Therefore, further strengthening the research on the effects of linkage
between TWC networks and other networks, such as energy trading network and food
trading network, will help to understand the systemic effects and global governance
underlying the background of globalization.
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Appendix A

Table A1. The intensity scale of TWC events [47].

Intensity Scale Descriptions

−7 Formal declaration of war
−6 Extensive war acts causing deaths, dislocation or high strategic cost
−5 Small scale military acts
−4 Political-military hostile actions
−3 Diplomatic-economic hostile actions
−2 Strong verbal expressions displaying hostility in interaction
−1 Mild verbal expressions displaying discord in interaction
0 Neutral or non-significant acts for the inter-nation situation
1 Minor official exchanges, talks or policy expressions—mild verbal support
2 Official verbal support of goals, values, or regime
3 Cultural or scientific agreement or support (nonstrategic)
4 Non-military economic, technological or industrial agreement
5 Military economic or strategic support

6 International freshwater treaty; major strategic alliance (regional or
international)

7 Voluntary unification into one nation
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Abstract: River basins in Madagascar are prone to water scarcity and conflicts of use, which are pro-
jected to worsen due to climate change. Therefore, effective integrated water resources management
(IWRM) is key. This review examines the current condition of IWRM in Madagascar, evaluates its sus-
tainability, and compares it with the one in Japan. The effects of climate change were analyzed using
Aqueduct data. Madagascar has established an IWRM legal framework aligned with the Sustainable
Development Goals; however, its application remains limited. For Japan, it was useful to establish
IWRM for floods, water utilization, and environmental conservation. This study analyzes the future
projections of water availability and demand for the 12 major river basins of Madagascar. Climate
change will reduce water availability; the West and the East will experience water stress; the demand
will be higher in the highlands, with less water available in the south. The proposed framework
and Japan’s experience in river basin management can contribute to solving those problems. The
findings of this study serve to enhance the knowledge on IWRM and the impact of climate change in
Madagascar; they also suggest actions to be taken by the Malagasy government.

Keywords: climate change; IWRM; Japan; Madagascar; sustainable development; river basin

1. Introduction

Water is the most important element for the preservation of life. Water resources
underlie the production of agricultural and industrial goods and services; their careful
development and management are essential to generating wealth, mitigating risks, and
alleviating poverty. Water, energy, and food resources are essential for human sustainable
development [1]. Global water demand will increase substantially over the next two
decades in the industrial, domestic, and agricultural sectors [2]. Previous studies have
demonstrated that water is becoming limited, and more careful consumption is needed.
This is partially caused by increasing population coupled with changes in the consumption
pattern and climate change. Recently, considerable attention has been focused on the
implementation of integrated water resources management (IWRM) in global river basins,
including basins in Africa. Addressing the development challenge is an increasingly
important issue in African countries. By 2050, the African population growth is projected
to increase by 108% of the current value [3], while industrial and domestic water demand
will increase by 300% and 800%, respectively [4].

Madagascar is an island country located in southeastern Africa. The country is suffi-
ciently endowed with water resources both in terms of surface water and groundwater, but
water resources are distributed irregularly in terms of seasons and geographical location.
Previous studies have demonstrated that the pressures on water resources in Madagascar
vary between regions [5,6]. In addition to the lack of infrastructure, various pressures on
such resources threaten their existence. Water resources must cope with natural pollution
because of soil erosion due to deforestation, pollution due to wastewater discharge from
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human activities, and practices such as agricultural fires (Tavy). IWRM was incorporated
into Madagascar’s Water Code in 1998 [7]. A policy is needed to ensure adequacy between
the quantities used and the need for water resources to enable socioeconomic development
within the country. Madagascar does not currently experience tensions or wars related to
water resources. However, the island is exposed to various weather and climate phenomena
because of its diverse landscape [8] and climate change. In 2018, the country ranked fourth
among the 10 countries most vulnerable to extreme weather events [9]. Climate change
has impacted virtually every river basin in Madagascar, often degrading the quality and
availability of water and water-related [10,11]. In this paper, we explored the possibility of
managing the major river basins to achieve sustainable development. For that purpose, we
evaluated the existing IWRM policy, legal and strategic frameworks in Madagascar. The
integrated river basin management (IRBM) in Madagascar was compared with Japan to
assess the progress of both countries in the implementation of IWRM/IRBM and possible
strategies for Madagascar to reach the Sustainable Development Goals (SDG) target 6.5.
Japan is one of the largest and most developed economies in the world, whereas Madagas-
car is one of the poorest. There are important differences between Japan and Madagascar,
such as the level of economic development, population density, climate, geography, culture,
etc. Not all Japan’s experience of river basin management can be applied to Madagascar,
but some lessons can be drawn and adapted in Madagascar’s context. We also used Aque-
duct data to analyze the projected effects of climate change on the 12 major river basins to
provide information regarding future water availability and water demand. Further, we
proposed a solution to manage the basins based on the results of the precedent analysis.

2. Materials and Methods

2.1. Study Area

Madagascar is the fourth largest island on Earth. It is situated 300 km east of the
African coast and has an area of 587,295 km2. The island has six large basins, divided into
32 macrobasins and 533 subbasins, all of which are distributed across 22 regions [7]. The
island can be divided into four climatic ecoregions with four forest types: moist in the East,
dry in the West, spiny in the South, and mangrove forests on the west coast [8]. Forest
types are defined based on their inclusion in one of these four ecoregions. Madagascar’s
geographical position coupled with the island’s irregular physical relief makes its climate
extremely varied, which could be more accurately described as several climates differing
by region. On the east coast, the climate is hot and humid, with the annual rainfall of
1100–3700 mm per year and the average temperature between 23 and 26 ◦C. The North
and northwest regions have a tropical climate, with monsoon conditions driving rainfall in
the summer. On the contrary, the southwest part is semiarid, with the annual rainfall of
500–700 mm per year. On the west coast, the climate is tropical, with a hot and dry summer.
The annual average temperature varies between 24 and 27 ◦C. An interannual variation
in temperature and precipitation is observed in the central highlands, with the annual
rainfall of 900–1500 mm per year and the annual temperature range from 16 to 22 ◦C [12,13].
Previous studies pointed out that the annual rainfall decreases from 1500 to 400 mm per
year from north to south across the west coast while the temperatures increased by 0.2 ◦C
over northern Madagascar and by 0.1 ◦C over southern Madagascar [10,12].

This study focuses on the 12 major river basins that cover areas larger than 10,000 km2:
Mangoky, Betsiboka, Tsiribihina, Mananara, Mangoro, Maningory, Mahajamba, Onilahy,
Manambolo, Mahavavy, Sofia, and Mandrare (Figure 1).
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Figure 1. Delineation of catchment boundaries and ecoregions.

2.2. Methods

Initially, we compared the river basin management in Madagascar and Japan by
evaluating the existing framework documents in terms of the effects of climate change, and
then estimated the impacts of climate change on the major river basins. The island country
of Japan was chosen for comparison because of two reasons. The first is similarities between
Japan and Madagascar. Both countries are islands with a diverse natural environment,
prone to natural disasters, suffer from the impact of climate change, but have abundant
water resources in contrast to many other island countries [14,15]. Japan and Madagascar
rank first and fourth, respectively, among the ten countries most vulnerable to extreme
weather events in 2018 [9]. The second reason is Japan’s well-known experience in water
management, as well as mitigation of climate change and water-related disasters. Japan is
among the countries with higher levels of IRBM implementation. This view is supported by
the findings in a comparative study on river basin management in Japan and other island
countries [16,17]. Indeed, the traditional water wisdom of Japan enabled the achievement
of its Millennium Development Goals in 2015; currently, Japan is a global leader in water
technology developed by private companies [18]. In this paper, we focused on water
availability and demand issues on a large river basin scale. The analysis of these issues is
an essential component for water resources assessment, which is, therefore, a significant
component of the evidence and analysis required for IWRM [19]. Unlike most other
countries on the African continent, no river basin management plan has been completed by
Madagascar. Therefore, the next step of the research was to investigate the future changes
in water stress, water supply, and water demand for the major river basins. The data
were obtained from Aqueduct projections using Coupled Model Intercomparison Project
Phase 5 General Circulation Models provided by the World Resources Institute [20]. The
Aqueduct Project is a data platform run by the World Resources Institute, an environmental
research organization (Washington, DC, USA). It provides a global water risk atlas to help
companies, governments, and civil society understand and respond to water risks—such
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as water stress, variability from season to season, pollution, and water access. It intends
to measure, map, and understand water risks around the globe. The Aqueduct Project is
widely used by researchers across the globe because it uses open-source, peer-reviewed
data to map water risks and collaborate with companies, governments, and research
partners through the Aqueduct Alliance [21]. Projections of climate variables were driven
primarily by the CMIP5 Project, and socioeconomic variables were based on the Shared
Socioeconomic Pathways database from the International Institute for Applied Systems
Analysis. The project computed water supply from the runoff values extracted from an
ensemble of CMIP5 data. Herein, the total blue water or renewable surface water is used as
an indicator of water supply. The projected change in the total blue water (the renewable
surface water) is equal to the 21-year mean around the target year divided by the baseline
period of 1950–2010. The data used by the World Resources Institute (WRI) to calculate
the baseline include over 50 years of data across several indicators reported by country
(FAO) to 2010. Water demand is measured as the sum of water withdrawals. The projected
change in water withdrawal is equal to the total withdrawals in the target year divided by
the baseline year of 2010.

Water withdrawals were modeled from the projected size, wealth, and other character-
istics of the countries, for each of the three sectors as defined by the Food and Agriculture
Organization of the United Nations (FAO): agricultural, industrial, and domestic. Wa-
ter stress is an indicator of competition for water resources; it is informally defined as
a societal demand for water, divided by available water. Water stress was computed as
the ratio of water withdrawals to the available blue water on the average annual basis.
We produced maps showing the projected changes in the water stress, water supply, and
water demand from the baseline (1950–2010) to the future using geographic information
systems and Aqueduct future-value data for the year 2040 under the Shared Socioeconomic
Pathway 2 and Representative Concentration Pathway 8.5 scenarios. We also compared the
future water stress scores of Madagascar and Japan using Aqueduct country and province
ranking data (2020, 2030, and 2040). Higher scores on the scale from 0 to 5 correspond to
greater competition among water users relative to the available surface water resources. All
data are available at https://www.wri.org/aqueduct (accessed on 25 May 2020). Finally,
an alternative solution for effective IWRM implementation and sustainable river basin
management was considered based on the above comparisons and projections.

3. Results and Discussion

3.1. Importance of IWRM toward the SDGs

Madagascar is among the 193 countries that signed the 2030 UN Agenda [22]. Mada-
gascar agreed to the water, energy, and food nexus concept in early 2018 within the
framework of the Southern African Development Community. This concept was intended
to be integrated into the discussions of IWRM. The island is one of the countries that did not
reach the Millennium Development Goals by the end of 2015 [23]. The reduction of poverty
by half compared with 1990, Millennium Development Goals targets, and other targets
have not been achieved. Thus, Madagascar continues to be confronted by the unfinished
agenda of the Millennium Development Goals. Madagascar is at the very beginning of the
process of implementing the 2030 Agenda. A great effort is required to address the current
and future challenges, such as eradication of extreme poverty and reduction of inequalities;
protection of the environment; and access to water, sanitation, and hygiene services [24].

Japan is also committed to extensive domestic and international efforts to achieve
SDGs. Japan has led the promotion of SDGs in the national and international community,
building upon its strengths in traditional wisdom, cutting-edge technologies, and infor-
mation. Japan promotes the SDGs on the basis of three aspects: promotion of the society,
vitalization of local areas to make communities more resilient, and empowerment of next
generations and women [25].

Both countries have attempted to promote the SDGs and align them with the national
policies and strategies. The Japanese government sets the SDGs as the focal point of the
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national strategies: SDGs Promotion Guiding Principles and SDGs Action Plan 2018. To
have Madagascar classified as an emerging country, the current government developed a
new strategic document called Plan Emergence Madagascar (PEM) (2019–2023) as a compo-
nent of the General Government Policy (Programme Générale de l’Etat) to ensure tangible
progress toward the SDGs. The IWRM and water, energy, and food nexus approaches are
used to ensure sustainable water management. Each approach has particular advantages
in terms of SDG implementation. However, SDG 6.5 requires nations to “implement IWRM
at all levels, including through transboundary cooperation” (https://sdgs.un.org/goals,
accessed on 10 February 2020). IWRM must give priority to the creation of infrastructure,
construction of local capacity, and development of an information base to provide the
foundation for basin-level planning in fragile economies, such as Madagascar [26].

3.2. Water Resources Management

In Madagascar, only 54% of the population uses an elementary water service, 11%
use basic sanitation, and more than 51% practice open defecation [27]. The management
of water resources was placed under the supervision of the Ministry of Water, Sanitation,
and Hygiene created in July 2008 by Decree No. 2008-829. The Ministry is responsible
for the design, management, coordination, harmonization, and implementation of the
National Development Plan and the General Government Policy in the sector. Under the
provisions of Law No. 98-029 of 20 January 1999, bearing the Water Code, the Malagasy
government created the National Authority for Water and Sanitation (ANDEA), which is an
independent, non-user organization that promotes the participatory process to implement
the Integrated Resource Management Process in Waters [28]. Policy, legal, and strategic
frameworks of Madagascar’s water, sanitation, and hygiene sector are in place and are
generally well-structured. In a clear alignment with the SDGs, those documents outline
the key commitments for increasing access to safe water and sanitation facilities; they also
outline commitments for developing IWRM, emphasizing public–private partnerships, and
growing the water, sanitation, and hygiene sector. The government has also committed to
international frameworks, such as the Sanitation and Water for All initiative, the eThekwini
Declaration, the Ngor Declaration on Sanitation and Hygiene, and the Rio Declarations [29].
Framework documents exist and databases are available, but applications at the field level
for the project implementation remain limited or almost non-existent; thus, they require
an examination. Many projects have begun to experiment with specific tools at the local
scale (e.g., resource inventory) or at the regional or national (master plan) scales, but such
projects are not widely disseminated. At the community level, implementation of the IWRM
concept is considered ineffective [30]. The river basin management is based on the concept
of decentralization. There are four levels of water resources administration depending on
the territory: national (ANDEA), provincial (basin agency), regional (basin committee), and
local (water point committee). Each structure has its role and responsibilities stipulated
by the Water Code (Law No. 98-029 of 20 January 1999 and its 13 application decrees;
https://jwf-legal2.fr.gd/Lois-183.htm, accessed on 5 March 2020).

In contrast, access to drinking water and sanitation is universal in Japan. An improved
water source is available to 98% of the population, and 99% of the population use improved
facilities [27]. The ministries involved in water-related matters are the Ministry of Health,
Labor, and Welfare; the Ministry of Agriculture, Forestry, and Fisheries; the Ministry
of Economy, Trade, and Industry; the Ministry of Land, Infrastructure, Transport, and
Tourism (MLIT); and the Ministry of Environment. Domestic water supply falls under the
supervision of the Ministry of Health, Labor, and Welfare; the Ministry of Environment is
responsible for water quality and environmental conservation. Generally, water policies
in Japan remain fragmented, except for the coordination between the central government
and local governments during droughts and water shortages [17]. With its diverse natural
environment, Japan has developed region-specific IWRM tailored to regional climatic and
social conditions. Japan’s IWRM promotes sustainable water use and effective water cycle
governance through appropriate policy and frameworks involving relevant sectors and
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stakeholders. IWRM is promoted from such perspectives as groundwater and surface water,
water quantity, and water quality (both upstream and downstream); it also promotes water
efficiency and environmental conservation. In Japan, Water Plan 21 is formulated with
three basic objectives: establishment of sustainable water use systems; conservation; and
improvement of the water environment and fostering of a water-related culture. Water Plan
21 identifies long-term water supply and demand prospects, as well as means of improving
water use stability, through water efficiency measures and effective use of the existing
infrastructure [18]. River administration is based on classification of rivers into classes A
and B, which contain, respectively, 109 and 2691 river systems [31]. Rivers are managed
depending on the importance of their roles for the country. Class A river systems are
considered important for the national economy and people’s lives; they are administered
by the MLIT. Class B River systems are administered by prefectural governments. Each
section’s responsibility is stipulated by the River Law (Law No. 69 of 4 June 1997) [32].

Table 1 lists IWRM framework documents, institutional supports, and some examples
of lessons learned from the river basin management in Madagascar and Japan.

Table 1. Difference between IWRM framework documents in Madagascar and Japan.

Country Madagascar Japan Findings

IWRM framework
documents

National Development Plan (Plan National
de Développement/PND):
Axis 4: Adequate human capital for the
development process
Axis 5: Development of natural capital and
strengthening of resilience to disaster risks
Sectoral Program for WASH (Programme
Sectoriel pour l’Eau, l’Assainissement et
l’Hygiène/PSEAH)
Sectoral strategy 2013–2018
Guidelines 2019
Water Code (Law No. 98-029 of 20 January
1999) and its 13 application decrees:
Article 1: Water is part of the common
heritage of the Nation
Article 28: Priority for drinking water in
case of limitation
Article 38: All water delivered for human
consumption must be potable
Articles 29, 31, 32, 33, and 35: Development
of water resources “irrigation water,
industrial water and hydroelectric water”
Article 54: Investment and operating costs,
users’ ability to pay
Article 69: Conservation, mobilization, and
protection of water resources
Article 73: National Water Resources Fund
(FNRE)
Articles 75 and 76: Creation of the National
Water and Sanitation Authority (ANDEA)
Decree 2003-191: Creation of basin agencies
Decree 2003-193/Article 10: Supply of the
universal drinking water service
Decree 2003-793/943: Authorization of
withdrawal and dumping
Decree MECIE: Alignment of investments
with the environment
Masterplans: define the division of the six
large basins into 32 macrobasins and
533 subbasins (Decree 2003-191, chap. II)

National Policy
River Law (Law No.69 of 4 June 1997)
Article 2: River water is public property
and cannot be made the subject of a
private right
Article 23: provides the permission of river
water users
Article 32: provides charging for the use of
river water
Article 34: provides the transfer of
water rights
Article 35: provides consultation with the
concerned administrative organization
Article 36: provides consultation with the
Prefectures and Municipalities
Comprehensive National Water Resources
Plan (1987): Water Plan 21
Specified Multipurpose Dams Law
Water Resources Development, Public
Corporation Law
Law for Special Measures for Reservoir
Areas (1973)
Water Quality Conservation Law
Law for Ground Water
Industrial Water Law (1956)
Factory Effluent Control Law (1958)
Waterworks Law
Law on Execution of the Preservation
Project for Water Supply
National Land Sustainable Plan Law (2005)
Law for the Focused Planning of Social
Infrastructure Improvement (2003)
Forest Law
Sewerage Law (1970)
Water Pollution Control Law (1970)
Basic Law for Environmental Pollution
(1967/1970/1993)

The Water Code and the
River Law set out the
value of water
(public property).
Both legal frameworks
are devoted to managing
and conserving the
water resources
(quantitatively and
qualitatively) and
protecting the
water environment.
Japanese framework
documents are revised
and updated regularly,
contrary to Madagascar.
Public participation in
the planning is required
by law in Japan, not
in Madagascar.
Japan’s river
management system
integrates flood
management, water
utilization, and
environmental
conservation.
Japan has established
many laws aimed at
increasing the resilience
of water systems to
global change pressures
(Dams, Groundwater,
Waterworks; Sewerage,
Water Pollution
Control, etc.).
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Table 1. Cont.

Country Madagascar Japan Findings

Institutional/legislative
supports

National Water and Sanitation Authority
(ANDEA): operates the IWRM mechanisms
Local governments: region, district,
and municipality
Decentralized technical service (Service
Techniques Déconcentrés/STD)

Water Resources Department, Land and
Water Bureau (MLIT)
Japan Water Agency (JWA): promotes
water resources development
Coordination Committee for the Promotion
of a Sound Water Cycle
Local governments: city, prefecture,
municipality

The Decrees of the Water
Code are not
implemented correctly
≥ ANDEA is
nonfunctional.
Japan integrates five
ministries related to
water to ensure better
coordination of the
water resources
(intersectorality).

Lesson learned from
river basin management

Case of the PADAP project:
-Application of the landscape approach
based on the problems of developing
sustainable agriculture through the
combination of agricultural production and
advanced technology.
-Pool the interests of each sector in the
implementation of activities.
-Development of a Landscape Management
Development Plan (PAGDP)
Case of the GIRE SAVA, GIRE Lac
Itasy project:
-Application of the bottom–up approach:
includes all the stakeholders and users to
identify the priorities in terms of need and
management as well as the strategies to
be adopted.
-Establishment of the basin communities at
the municipal level.
-Establishment of the Lake Itasy
management committee (COGELI) in
February 2019.
Case of the KOLORANO project:
-Linkage of all the stakeholders in the
watersheds throughout the process to
avoid recurrent conflicts of usage between
drinking water and agriculture due to
unsuitable and non-concerted practices.
-Development of the watershed
management plan, then validated by
municipal decrees (local level).

Case of the Yodo River, the Tone River, the
Yoshino River:
-Implementation of the basin governance
approach: governance, utilization, and
conservation of the diverse basin resources
achieved through the cooperation of /
partnership between government
departments and stakeholders.
-Creation of the River Basin Committee and
public involvement.
-Information sharing and stakeholder
participation are essential principles and
apply to every successful case of IWRM.
Stakeholders shared data and worked
together for unity.
Case of the Tama River:
-Roundtable conference of the stakeholders,
the river authority, the governors, and
the mayor.
-Active participation of the residents, the
municipalities, the industry, academic
experts, and the administrators from the
initial planning stage.
Case of Lake Biwa:
-Legislative framework for conflict
resolution between the upstream area, the
Lake Biwa basin, and the downstream area:
enactment of the Clean Lake Law in 1984.
-Formulation of a comprehensive
conservation plan with
participation of all the stakeholders in
the basin.

Upstream–downstream
coordination.
Public and stakeholder
participation in
the planning.
Adequate dissemination
of information and
communication at all
levels.
Capacity building of
local communities.
Establishment of IRBM
plans at the local level.

The table shows that both countries have laws and regulations to support IWRM and
IRBM. The institutional support for IWRM implementation in Japan (MLIT) is operational,
in contrast to Madagascar (ANDEA). In Madagascar, ANDEA leads decisions and actions
coordinated at three established basin agencies and the 22 regional basin committees.
However, the framework documents are not applied effectively; this has led to unsuccessful
implementation of basin Agencies and basin committees, as well as non-establishment of
the National Fund for Water Resources. Consequently, there is confusion concerning the
roles and responsibilities assigned to the regional and local basin committees. In contrast,
Japan’s MLIT has 10 regional offices, each of which controls approximately 12 local river
offices. Each organization is independent in its fields and activities and has an autonomous
budget. Notably, the concepts of IWRM and IRBM require major participatory roles
for all the stakeholders involved. Some reports have indicated that difficulties in the
implementation of IWRM in Madagascar are caused by customs, land ownership problems,
and the lack of consultation between the local population and the authorities [33]. In
contrast, Japan’s law requires public participation in the planning process, which makes
river basin management very specific. Stakeholders work together on decentralized sites
at the level of catchment areas or on the national level. The Japanese national IWRM
plan, referred to as Water Plan 21, is formulated for the involvement of more than one
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local government. The establishment of the Coordination Committee for the Promotion
of a Sound Water Cycle, which involves the five water-related ministries, promotes better
integration and coordination of water resources. Nevertheless, a previous study noted
the incompatibility of river basin organizations with the current administrative systems,
which has led to conflicts between the ministries involved in water management [17]. The
example projects presented in Table 1 demonstrated that IRBM represents a key factor for
accelerating local development and managing water resources and their environments.

Madagascar can learn three important strategies from Japan: effective implementation
of the existing IWRM frameworks; intersectoral cooperation at the river basin level and
decentralization of decision-making; and sustainable management of the available water
resources by minimizing adverse environmental and social impacts.

3.3. Impact of Climate Change in Madagascar

Madagascar established the National Climate Change Coordination Office, which
reports to the Ministry of the Environment, Ecology, and Forests, in 2010 [34]. According to
Decree No. 2015-092 of 5 March 2015, this Ministry is responsible for the implementation
and coordination of actions, as well as the mainstreaming of climate change issues in
various social and economic sectors. The impacts of climate change have been severe
during the past two decades: extended drought periods, increased rainfall variability,
cyclones’ intensification, and floods associated with cyclonic disturbances [35]. In addition,
temperatures continue to increase in nearly all the regions, and the precipitation decreases
by 3% per year in some regions [36]. Furthermore, the flooding has considerably increased
over the past few years in coastal cities, which has resulted in crop failures. Indeed, the
maximum temperature is rising faster in the rainy season than in the dry season, except
in the humid tropical climate region and at high altitudes in the center of the country.
Madagascar is one of the least-developed countries with insignificant greenhouse gas
emissions [35]. Primary sectors, particularly agriculture and fisheries, are prominent in
the national economy. However, the country has severe problems with soil erosion and
deforestation, which reduce soil fertility and productivity, thus increasing the vulnerability
of agriculture and fishing-based livelihoods. Therefore, decreased agricultural yields and
poor fishery performance may lead to increased food insecurity, which aggravates poverty.
Moreover, the electrification level is extremely low, such that only approximately 20% of the
households have access to electricity. This explains the nation’s dependence on wood as fuel,
which is expected to persist in the short term. Climate change will affect forests because
increased temperatures and lower rainfall will lead to increased tree die-off, forest fires,
fuel buildup, and insect abundance [37]. By 2050, the temperature is expected to increase
by 1.1–2.6 ◦C across Madagascar [38]. A study conducted by the WHO and the UNFCC [39]
showed that the mean annual temperature is projected to rise by approximately 4.1 ◦C from
1990 to 2100 under the high emissions scenario Representative Concentration Pathway 8.5.
If global emissions decrease rapidly, the temperature rise will be limited to approximately
1.1 ◦C. In addition, the risks of vector-borne diseases (e.g., malaria and dengue) are expected
to increase toward 2070 [40]. The increasing rate of deforestation in Madagascar is most
likely associated with demographic growth and poor environmental law enforcement. If
nothing is done to rapidly curb deforestation, Madagascar risks losing almost all of its
tropical forest and associated biodiversity within the next 50 years [8]. Land use is the
main sector in which large greenhouse gas emissions reductions must be achieved. In this
scenario, biomass, hydropower, solar, and wind energies contribute to most of the electricity
generation from 2030 onward [41]. Previous research suggested that climate change will
increase future risks to health and well-being [40]. Madagascar has a policy framework
to address those challenges: the Disaster Risk Resilience National Strategy for Disaster
Risk Management (2016–2030) and the Intended Nationally Determined Contribution
(2015–2030). Moreover, the country is committed to mitigating climate change (Law No.
98-1068 of 18 December 1998, ratifying the United Nations Framework Convention on
Climate Change; implementation of the Hyogo Framework for Action in 2005; Sendai
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Framework in 2015; Paris Agreement in 2016), reducing the climate change vulnerability,
and promoting effective adaptation measures.

3.4. Future Changes in Water Stress, Water Demand, and Water Supply

Climate change is a significant element in the forward projection of water availability.
The availability of water is a key factor for the development of agriculture and industry,
as well as a requirement in satisfying the increasing needs of populations as standards of
living are improved. Limitations of water availability will often form a major constraint on
development plans [19]. Consequently, inadequate knowledge of the physical, technical,
and socioeconomic aspects of water resources induces degradation of river basins.

The projections presented in Figure 2 indicate that the Maningory (4), Tsiribihina
(6), and Mangoky (8) basins will experience water stress (low-to-medium, 10–20%), most
notably in the central–western and eastern regions of Madagascar. The projected changes in
the total blue water (water supply) in the Mahajamba (1) and Maningoro (4) basins (located
in the northern and eastern regions) are much higher (100–300 cm) compared with changes
in the Mangoky (8), Onilahy (9), and Mandrare (11) basins (10–30 cm). The future water
demand will be higher in the Maningory (4), Betsiboka (3), Tsiribihina (6), Mangoro (7),
and Mangoky (8) basins (10–30 cm), which are located in the central highlands. Overall,
the projections indicate an increasing water demand, water stress, and water supply in
the major river basins. Factors that may induce pressure on water resources include
socioeconomic growth, urbanization, agricultural expansion, and climate change. This
would result in water scarcity for agriculture, drinking, and other domestic purposes in
those river basins.

 
Figure 2. Projected change of water stress, water demand, and water supply from the baseline
(1950–2010) to a future period (2040) under the business-as-usual scenario RCP8.5/SSP2. Source:
WRI Aqueduct projections 2015 (Data available at https://www.wri.org/aqueduct, accessed on
25 May 2020).

Figure 3 shows that the water stress score is higher in Japan than in Madagascar. As
indicated in Table 2, Japan’s water stress score is medium-to-high (20–40%), while it will
remain low-to-medium (10–20%) for Madagascar under the business-as-usual scenarios
for the years 2020, 2030, and 2040. Notably, the agricultural sector has the highest water
stress score in both countries. Thus, the agricultural sector consumes a larger amount of
water, compared with other sectors; there is less competition among users in the industrial
sector than in the agricultural sector. Agriculture is the driver of Madagascar’s economy. In
particular, agriculture dominates the overall use of Madagascar’s land and water resources,
and it provides livelihoods for more than 70% of the population [42]. Although Japan is an
industrialized country, the agricultural sector is considered a very important sector, which
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dominates 65% of water use [43]. These results indicate that action must be taken to ensure
that there is sufficient water in the future for both humans and the environment.

 
Figure 3. Comparison of water stress in Madagascar and Japan. Source: Aqueduct 3.0 Country and
Province Rankings.

Table 2. Water stress score range.

Score Value

0–1 Low (<10%)

1–2 Low-to-medium (10–20%)

2–3 Medium-to-high (20–40%)

3–4 High (40–80%)

4–5 Extremely high (>80%)

3.5. Problem-Solving Based on Japan’s IRBM Experience

Relevant information about the existing IWRM policy, legal and strategic frameworks
and their importance for the SDGs, and climate change in both countries were investigated
in the previous sections. The results indicate that Madagascar has several water resources
and climate change-related issues. We found that climate change induces pressure on water
availability. The projections indicate an increasing water demand, water stress, and water
supply in the major river basins. A reasonable approach to tackle those issues could be the
adoption of effective and sustainable policies as shown in the case of Japan.

The findings of this study show that Japan has decentralized water policies and effec-
tive coordination among the central and local governments [17]. This water plan identifies
long-term water supply and demand prospects, as well as means of improving water use
stability, through water efficiency measures and effective use of the existing infrastruc-
ture [18]. In addition, the country has developed region-specific integrated water resources
management tailored to regional climatic and social conditions. The most important rel-
evant finding was the integration of the five ministries related to water to ensure better
integration and coordination of the water resources. This intersectoral approach helps to
solve the problem of overlapping responsibilities and conflicting decisions.

Regarding the adaptation to climate change through IWRM, the country adopted
an integrated approach to managing surface water and groundwater by considering the
balance between water supply and water demand, as well as between water quantity and
quality. Indeed, stakeholder participation and information sharing help to cope with climate
change and social needs. Japan’s IWRM promotes sustainable water use and effective water
cycle governance through an appropriate policy and frameworks involving relevant sectors
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and stakeholders. IWRM is promoted from perspectives such as groundwater and surface
water, water quantity, and water quality (both upstream and downstream); it also promotes
water efficiency and environmental conservation. Stakeholder integration in water facility
planning, designing, and operation is embedded in the policy framework [15]. Japan’s river
management system integrates flood management, water utilization, and environmental
conservation. The establishment of several laws increases the resilience of water systems
to global change pressures (dams, groundwater, waterworks; sewerage, water pollution
control, etc.). Concrete action must be implemented to preserve water resources and
manage the major river basins. Effective implementation of IWRM now requires all sectors
to work together to achieve the shared vision of peaceful economic development. The
establishment of the IRBM framework is recommended to enable the major river basins to
optimally use their water resources to meet the needs of the people.

On the whole, these findings suggest that successful implementation of the IWRM
approach in Madagascar needs systematic planning and implementation to achieve sus-
tainable and resilient solutions Figure 4. In the context of Japan’s experience, this proposed
framework shows the process from a problem’s discovery to the resolution. First, we
identified the main issues and the elements that caused those issues in terms of river basin
management (Sections 3.2 and 3.3). Then, we considered the structure of the problem by rec-
ognizing the connections among the elements and searched for leverage points to improve
the situation. Finally, we proposed appropriate solutions to solve the problems by using
systematic methodologies. The river basin management in Madagascar has challenges
because of political, environmental, social, and water resources issues. Those issues are
interconnected and affect water resources in terms of quality and quantity. The proposed
framework considers seven important solutions: research and technology prioritization
and usage, infrastructure creation, local consultation and participation, sectoral integra-
tion, effective governance, information and telecommunications technology and capacity
building, and financial resources.

Figure 4. Example of the systemic thinking approach to IWRM in Madagascar.

4. Conclusions and Recommendations

This paper investigated the current condition of IWRM in Madagascar, evaluated its
sustainability, and compared it with the one in Japan. Relevant information about the
existing IWRM policy, legal and strategic frameworks, Sustainable Development Goals
(SDGs), and climate change in both countries were investigated. The effects of climate
change were analyzed using Aqueduct data under SSP2 RCP85 scenarios. This study
revealed two important findings. First, Madagascar and Japan differ greatly in terms of
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IWRM implementation for river basin management. Second, climate change will decrease
the available water resources in Madagascar by 2040. Based on the lessons learned from
river basin management in Japan, our findings suggest reinforcement of water manage-
ment for the major river basins through flexible and adaptive policies, systemic thinking
and planning, and capacity-building programs. We recommend the establishment of the
intersectoral approach that integrates all the ministries related to water to ensure better
coordination of the water resources as shown in the case of Japan. This study suggests a
regular revision and update of Madagascar’s framework documents in terms of the national
and global contexts such as climate change, natural hazards, and population needs. When
using Aqueduct data, our analysis found that the Maningory, Tsiribihina, and Mangoky
basins (in the west and the east) will experience water stress; the demand will be higher in
the Maningory, Betsiboka, Tsiribihina, Mangoro, and Mangoky basins (in the highlands),
while less water will be available in the Mangoky, Onilahy, and Mandrare basins (in the
south). The evidence from these findings suggests that considerable attention must first be
paid to the Maningory, Tsiribihina, and Mangoky basins when implementing IRBM across
the 12 river basins.

We conclude that the implementation of IWRM is operational, but requires clearer pro-
gramming and integrated planning. Japan is internationally recognized for its experience in
IWRM, as well as its effective and resilient IRBM institutions. The country has many tools
available for IWRM planning, monitoring, evaluation, and budgeting. The establishment
of an integrated river management system for flood management, water utilization, and
environmental conservation was helpful for stakeholders at the ground level. Japan’s law
requires public participation during the planning, which makes river basin management
very specific. There is a need for a better understanding of the positioning and relationships
between stakeholders to ensure that they are effectively and efficiently involved in the
process. It was shown that Madagascar established an IWRM legal framework aligned with
the Sustainable Development Goals; however, their application remains limited and should
be re-examined. The results of this study indicate that the unsuccessful implementation of
various structures (basin agencies and basin committees), non-application of framework
documents, lack of coordination and budget have made the current river management
strategies unsustainable. The ground realities for water management in Madagascar in-
dicate that concepts of IWRM or IRBM are not just a myth. Many projects started IWRM
implementation at the catchment and small basin levels. Effective frameworks and policies
are responsible for the implementation of IRBM at the major river basins. The Malagasy
government must implement concrete actions to manage and preserve water resources
more effectively. The proposed framework and Japan’s experience in river basin manage-
ment can contribute to solving the current and future water scarcity. The findings of this
study will serve to enhance the knowledge concerning the link between IWRM implemen-
tation and the impacts of climate change in Madagascar; they may assist in actions taken
by the Malagasy government. A great effort is needed to address the current and future
challenges for river basin management, to achieve SDG 6.5. The present study makes
several noteworthy contributions to the WASH sector in Madagascar. The findings should
be considered for the update of the current Water Code which is currently in process.

There are several issues related to water resources and river basin management. The
current study only examined the issues of water availability and demand across the major
river basins in Madagascar. It is important to note that the comparison with Japan was the
first step of the study because, as highlighted in this paper, these countries have similar
characteristics. Future studies on the current topic should be conducted to investigate
other issues related to river basin management and comparison with other countries
are therefore recommended for implementation of the most appropriate IRBM/IWRM
approaches in Madagascar.
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