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Preface

Water is a crucial element on Earth for all living and non-living components. Climate change is

an alarming issue for managing and sustaining life on Earth. Given climate change, water resources

worldwide have been under drastically stressed conditions, as is evident from the uneven weather

patterns, droughts, floods, and cloud bursts. Only three percent of the water resources on Earth are

fresh, and two-thirds of the freshwater is locked up in ice caps and glaciers. Of the remaining one

percent, a fifth is in remote, inaccessible areas. Much of the seasonal rainfall in monsoonal deluges

and floods cannot be easily used. Only about 0.08 percent of all the world’s freshwater is exploited

by humankind, with an ever-increasing demand for sanitation, drinking, manufacturing, leisure, and

agriculture. The ever-increasing water exploitation has intensively degraded freshwater ecosystems,

notably rivers.

Furthermore, the climate extremes and water scarcity that are enhanced by climate change

induce additional stress on the freshwater ecosystems and may stimulate conflicts among water users.

In addition, we know that water is needed for several vital human activities, of which agricultural

and industrial activities are the primary water consumers. In the context in which we observe more

frequent droughts and incidences of water scarcity in the world, water systems’ management requires

the most advanced approaches and tools to rigorously address all of the dimensions involved in the

sustainability of its development.

Therefore, this Topic Collection’s main objective is to contribute to the understanding of

water systems’ management, and to provide science-based knowledge, new ideas/approaches, and

solutions for water resources’ management. Water demand for irrigation has been steadily increasing

during in recent decades. However, other water users have simultaneously been competing with

agricultural sectors for water resources. The conservation of freshwater ecosystems also needs special

attention, such as the sufficient allocation of environmental flows. In addition, in terms of the

projected climate change caused by warmer temperatures and shifting precipitation patterns, water

availability is expected to decrease, and water demand to increase, in many areas of the world.

Consequently, soil productivity and, thus, crop production could be drastically reduced.

These trends raise concerns highlighting the role of water and natural resources’ management

and their conservation to ensure the sustainability of irrigated agriculture. How well-irrigated

agriculture adapts to water scarcity scenarios, particularly by increasing water use efficiency and

better-estimating evapotranspiration, will directly affect the future and sustainability of the sector.

The 89 papers published in this Topic Collection encompass a diverse range of critical issues and

potential solutions concerning the sustainable management of water resources. We anticipate that

this collection will serve as a source of inspiration for engineers, scientists, policymakers, and

decision-makers worldwide, helping them to identify appropriate solutions and make informed

decisions regarding their specific water-related challenges.

Alban Kuriqi and Luis Garrote

Editors
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Abstract: Agricultural water demands are mainly dependent on the supply from groundwater
withdrawals and the supply from agricultural reservoirs. To understand the water cycle of the
agricultural catchment, it is necessary to consider the actual situation of the water cycle of paddy
fields in catchments through accurate hydrological modeling. In this study, streamflow simulations
were implemented in consideration of the levee height of paddy fields and the irrigation period
for one sub-catchment of the Boryeong Dam catchment using the integrated surface–groundwater
model, CAT (Catchment Hydrologic Cycle Assessment Tool). To consider the agricultural reservoirs
in modeling, the catchment was divided into the reservoir sub-catchments, upstream sub-catchments,
downstream sub-catchments, and irrigated districts of each sub-catchment. This study aims to analyze
the hydrological effects of agricultural reservoirs and groundwater pumping on the hydrological
cycle of the catchment and on the soil moisture and groundwater level. As a result of the simulations,
we found that the direct flow, baseflow, and groundwater recharge of the catchment increased with
the agricultural reservoir supply water. In addition, the effect of drought on soil moisture content
and groundwater level in the irrigated paddy fields from agricultural reservoirs was evaluated. The
soil moisture increased by about 10% according to the water supply of agricultural reservoirs. The
groundwater level rapidly decreased due to the groundwater abstraction during the irrigation period;
however, it was analyzed that the water supply from agricultural reservoirs is significantly effective
in preventing the decrease in the groundwater level in the irrigation season.

Keywords: hydrological responses; irrigation; paddy fields; groundwater; soil moisture; CAT model

1. Introduction

Rice paddies in monsoon Asian regions account for 87% of the global paddy rice
harvested area and 90% of rice production [1]. Since rice is a staple food in Korea, the
agricultural industry is active and paddy fields represent more than 8% of the territory [2].
Generally, agricultural catchments consist of paddy fields, where crops are cultivated and
produced, as well as forest areas and residential areas, and nearby water supply facilities
artificially supply the water necessary for crop growth [3]. The sources of water supply
for agricultural activities can be divided into agricultural reservoirs and groundwater
pumping. Water shortages due to the excessive pumping of groundwater in rural areas
cause water problems for domestic consumption and can also cause a shortage of water
needed for agricultural activities, affecting the amount of streamflow in a catchment [4].
In addition, agricultural water supply is an essential resource for agricultural water con-
sumption, accounting for more than 50% of the total water resource consumption, and
it is highly dependent on the water supply of agricultural reservoirs [5]. There are cur-
rently 17,629 reservoirs nationwide, of which 17,516 are agricultural purpose reservoirs,
accounting for the largest proportion [6]. In addition, as 65% of Korean land is composed

Water 2022, 14, 460. https://doi.org/10.3390/w14030460 https://www.mdpi.com/journal/water
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of mountainous areas and the river slopes are steep, runoff occurs in a short period, with
a low flow rate during the dry season. As the runoff rate variability is relatively large in
Korea [7], it is important to manage water resources through the adequate scale of agricul-
tural reservoirs to meet agricultural water consumption requirements in the catchment.
The agricultural reservoir stores the streamflow from the upstream basin and supplies agri-
cultural water to the paddy fields during the irrigation period. A portion of the agricultural
water supplied to the paddy fields returns to the stream, and the hydrological cycle in the
agricultural catchment works in a complex way with the upstream, the downstream, the
irrigation districts, and the reservoirs by the operation of the agricultural reservoirs [3].
Therefore, to understand the hydrological cycle processes of the agricultural catchments,
each element should be connected. However, there is a high possibility that they will
have difficulties in supplying water during drought because the storage capacity of the
agricultural reservoirs is low compared to that of the multi-purpose dams [8]. As the
research related to the utilization of water supply is insufficient, the high-accuracy estima-
tion of runoff discharges of reservoir catchment, upstream catchment, and downstream
catchment should be preceded for stable water supply and drought response of agricultural
catchments. In the agricultural catchments, rice is sensitive to growth periods, the climatic
environment, and water content situations. In particular, the soil moisture content is an
essential factor in the hydrological modeling of agricultural catchments as crops grow
by absorbing soil moisture, the main hydrological component of the agriculture indus-
try [9]. The soil moisture content is the amount of retained water in a soil layer, which
could be directly affected by drought. Many drought indices have been developed in the
agricultural hydrology field, using variables such as precipitation, evapotranspiration, soil
moisture, reservoir, and groundwater level that could directly affect crop growth in drought
periods [10]. Representative drought indices indicating agricultural drought include the
Reservoir Drought Index, which uses the amount of water stored in agricultural reservoirs;
the Soil Moisture Index (SMI), which uses the effective moisture percentage of the soil
moisture; and the Integrated Agricultural Drought Index [11]. Bae et al. [12] developed the
Agricultural Drought Analysis Model and performed drought analysis on soil moisture
and agricultural areas. Shin et al. [13] evaluated daily soil moisture estimation and agri-
cultural drought by linking active- and passive-based soil moisture and a soil moisture
data assimilation technique. In this study, the SMI index, often applied for agricultural
drought evaluation, and the Standardized Precipitation Index (SPI) and the Standardized
Groundwater level Index (SGI), using meteorological data and groundwater level [14],
are used to select the drought and normal years within the study period to compare the
changes in hydrological components by drought. Research on the hydrological changes of
Korean catchments according to agricultural reservoirs has been conducted continuously.
Lee et al. [15] analyzed the streamflow changes according to the discharge amount of
agricultural reservoirs using the Soil and Water Assessment Tool. Kim et al. [16] evaluated
the effect of agricultural reservoirs on streamflow in the Anseong-cheon catchment. Lee
et al. [17] evaluated the effect of groundwater consumption and reservoirs on streamflow,
and Lee and Noh [18] evaluated the streamflow downstream according to the operation of
the agricultural reservoir considering climate change scenarios. In addition, Cho et al. [19]
evaluated changes in the river ecological environment and the hydrological environment
following the construction of multipurpose dams. However, existing studies on the hy-
drological changes of catchments according to agricultural reservoirs have been mainly
conducted on the streamflow of downstream rivers and ecological changes. Applying
the conceptual hydrological model has limitations in considering the infiltration and the
streamflow changes by the land use of the catchments. To analyze the water cycle on
a catchment scale, hydrologic modeling is required considering streamflow changes in
evapotranspiration, direct runoff, and baseflow. In this study, the change in water cycle
according to the water supply of the agricultural reservoirs in one sub-catchment of the
Boryeong Dam catchment was evaluated, and the changes in the soil moisture content and
the groundwater level according to the drought period were analyzed using the integrated
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surface–groundwater model, which can consider the actual situation of the paddy fields in
Korea. In addition, the sub-catchment where the agricultural reservoirs are located was
divided into smaller sub-catchments to analyze the hydrological responses considering
the agricultural water supplies. Changes in the soil moisture contents and groundwater
elevation in paddy fields according to irrigation and non-irrigation periods were compared
and analyzed by considering groundwater withdrawals and agricultural reservoir supplies.

2. Materials and Methods

2.1. Study Area Description

The Boryeong Dam catchment is located in the West Sea basin of the Geum River
watershed in Korea. The catchment area is about 162.84 km2, and the average slope of the
catchment is about 29.8%. The catchment has steep and mountainous terrain characteristics,
including paddy field areas. Even though this catchment is not a regional-scale catchment,
it has complex interactive hydrological cycle processes due to human activities, such as
groundwater abstraction, agricultural reservoirs, and water intake supply systems from
outside the catchment. Administratively, the Boryeong Dam catchment includes Oesan-
myeon of Buyeo-gun and Seongju-myeon and Misan-myeon of Boryeong-si. The Ungcheon
Stream flowing through the Boryeong Dam catchment has a separate branch from the
Geum River, originating from Oesan-myeon of Buyeo-gun and Seongmyeon of Boryeong-
si, respectively; they join together at Misan-myeon of Boryeong-si and flow directly into
the west sea of Korea. The total length of the Ungcheon Stream is about 36 km, with 23 km
located in the Boryeong Dam catchment. About 8.11% of the total area of the Boryeong
Dam catchment comprises paddy fields, about 2.26% is urbanized area, and more than 82%
is mountainous area (remaining indicates the area of water surfaces in the catchment) [20].
The average annual precipitation in the catchment is about 1244 mm, and the average
monthly temperature during the study period is from −4.5 ◦C to 27.3 ◦C [21]. The surface
soil texture of the Boryeong Dam catchment is dominated by sandy loam and silty loam,
and the subsoil texture is mostly composed of loamy sand. The drainage grade of soil is
suitable throughout the catchment [22]. The groundwater is abstracted by public electric
pumping stations in the catchment. The amount of water supply of agricultural reservoirs
was discharged in the Korean irrigation period between April and September.

The Boryeong Dam, which serves as a major water source in the middle-western region
of Korea, recorded its lowest storage volume in 2015 due to the continuous shortage of
precipitation since 2014. The water storage volume of the Boryeong Dam in 2015 decreased
to 18.87% due to the extreme drought that occurred in the central region of Korea. The
drought in the central region continued, and the water storage rate reached 8.29% in 2017,
which is the lowest water storage level since the construction of the Boryeong Dam [23,24].

Figure 1a shows the location of the three rainfall gauging stations: one water level
station at the outlet of the Boryeong Dam, and two agricultural reservoirs over the catch-
ment [25]. Figure 1b shows the Boryeong Dam catchment divided into three sub-catchments,
SC_1, SC_2, and SC_3, according to the previous study [24]. The CAT system for the
Boryeong Dam catchment was constructed by dividing the catchment into three sub-
catchments and then dividing the paddy field areas of each sub-catchment. The sub-
catchments’ information, such as the areas, slopes, and impervious area ratio, were calcu-
lated as the input data of CAT using the DEM map with 30 × 30 m resolution and of the
land use map of the National Geographic Information Institute [26]. Figure 2 shows the
Samsan Reservoir and the Hwasung Reservoir, which are agricultural purpose reservoirs
located in the upstream of Ungcheon Stream in the Boryeong Dam catchment [25], which
are located in the SC_2 sub-catchment according to the catchment division of the previous
study [24]. In this study, the SC_2 sub-catchment, in which the agricultural reservoirs are
located, is the target area for the streamflow simulation using CAT. The total water storage
capacity and the effective water storage capacity of Samsan Reservoir are 546,200 m3 and
543,200 m3, respectively. The total water storage capacity and effective water storage ca-
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pacity of the Hwasung Reservoir are 724,400 m3 and 720,900 m3, respectively [5]. Detailed
information on the Samsan and Hwasung reservoirs is shown in Table 1.

Figure 1. (a) Location of the rainfall stations, the water level station, and the agricultural reservoirs;
(b) sub-catchments and paddy fields of Boryeong Dam catchment.

Figure 2. Location of the Samsan reservoir and the Hwasung reservoir in the SC_2 sub-catchment of
the Boryeong Dam catchment.

Table 1. Geographic locations, areas, storage capacities, and embankment information of the Samsan
and Hwasung reservoirs.

Reservoir Latitude
(DMS)

Longitude
(DMS)

Catchment
Area
(km2)

Maximum
Surface Area

(m2)

Total
Storage

Capacity (m3)

Effective
Storage

Capacity (m3)

Height of
Embankment

(m)

Samsan 36◦20′14′′ 126◦43′10′′ 1.8 52,000 546,200 543,200 25.7
Hwasung 36◦20′07′′ 126◦45′13′′ 2.05 85,800 724,400 720,900 24.7

4
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For the streamflow simulation considering the agricultural reservoirs located in the
SC_2 sub-catchment, the sub-catchment was divided into 10 smaller sub-catchments ac-
cording to the Samsan Reservoir catchment, Hwasung Reservoir catchment, upstream
catchments, downstream catchment, and the irrigated paddy fields of each sub-catchment.
The irrigated districts by two agricultural reservoirs are the target paddy fields for the
analysis of soil moisture and groundwater level in this study. The irrigated paddy field
by Samsan reservoir is denoted as P_Samsan node; the irrigated paddy field by Hwasung
reservoir is denoted as P_Hwasung node in the CAT system. The reservoir nodes each
have the upstream sub-catchments (S1 and S2), and paddy fields in S1 and S2 were also
created (P1 and P2). In addition, the downstream sub-catchments of the P_Samsan and
P_Hwasung were created as S3 and P3, respectively. The CAT system setup considering
the division of sub-catchments and paddy fields is shown in Figure 3.

Figure 3. CAT system setup with reservoir sub-catchments, upstream sub-catchments of each reser-
voirs, downstream sub-catchment, and paddy fields considering Samsan and Hwasung Reservoirs.

The Samsan Reservoir and Hwasung Reservoir nodes were created to input the
agricultural water supply data of the reservoirs. The areas, the slopes, and the ratio of
impervious area for each sub-catchment were calculated using GIS processes. The paddy
fields supplied the agricultural water from the Samsan Reservoir and Hwasung Reservoir
are located in the downstream catchment outside each reservoir’s sub-catchments. Detailed
descriptions of sub-catchments and nodes are shown in Table 2.

Table 2. Description of each node of CAT modeling of SC_2 sub-catchment of Boryeong Dam catchment.

Node Description Node Description

Samsan Samsan reservoir
catchment S1 Upstream catchment of

P_Samsan

Samsan rsv. Samsan reservoir P1 Paddy field in C1

P_Samsan Irrigated paddy field by
Samsan reservoir S2 Upstream catchment of

P_Hwasung

Hwasung Hwasung reservoir
catchment P2 Paddy field in C2

Hwasung_rsv. Hwasung reservoir S3 Downstream catchment

P_Hwasung Irrigated paddy field by
Hwasung reservoir P3 Paddy field in C3
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Table 3 shows the areas, slopes, impervious area ratio, and the amount of ground-
water withdrawals by pumping in each sub-catchment and paddy field. About 90% of
the groundwater withdrawals in the Boryeong Dam catchment is used for agricultural
purposes, and the remaining 10% is used for domestic and industrial water demands. Agri-
cultural water consumptions in the sub-catchments were input to the irrigated paddy fields
of each sub-catchment, and water consumptions for domestic and industrial demands were
input to the remaining forest sub-catchments, except for paddy fields.

Table 3. Area, slope, impervious area ratio, and annual amount of groundwater abstraction in
sub-catchments and paddy fields.

Sub-Catchments Samsan Hwasung S1 S2 S3

Area (km2) 1.8 2.05 12.25 30.70 2.21
Slope (%) 0.354 0.282 0.281 0.277 0.302

Impv_a (%) 1.02 2.46 5.48 7.84 3.11
GW_pump
(m3/day) 19.58 22.30 133.24 333.93 23.98

Paddy Fields P_Samsan P_Hwasung P1 P2 P3

Area (km2) 0.8 0.80 2.5 0.20 3.12
Slope (%) 0.122 0.110 0.095 0.088 0.079

Impv_a (%) 0.00 0.00 0.00 0.00 0.00
GW_pump
(m3/day) 1384.91 1388.37 4327.84 342.77 5401.14

Impv_a refers to the ratio of impervious area; GW_pump refers to observed daily groundwater abstraction.

2.2. CAT Model

CAT is a physical parameter-based and distributed hydrological model that allows
the quantitative evaluation of the long- and short-term water cycles of the catchment. CAT
is a node- and link-connecting model designed to estimate the hydrological components,
such as runoff, infiltration, soil moisture content, evapotranspiration, and baseflow, for
each spatial unit. It divides the hydrological cycle process into pervious and impervious
areas. The model simulation can be conducted with minute, hour, day, month, and year
time step data. The basic concept of the model is based on the unconfined aquifer and
single soil layer assumptions. The model categorizes the incoming rainfall into falling on
pervious, impervious, and paddy field areas, yielding the surface flow, infiltration, or evap-
otranspiration (Figure 4). The major physical parameters required for the initial simulation
are area, slope, soil type, land use, aquifer, and river information. The basic concept of
the model is based on the unconfined aquifer and single soil layer assumptions [27]. In
addition, the CAT simulation can be carried out taking into account the actual agriculture
situation, such as water supply from agricultural reservoirs, irrigation period, and levee
height in the paddy fields of the catchment.

The CAT model has been applied in various hydrological studies for different catch-
ments. Jang et al. [28] analyzed the long-term hydrological responses of agricultural reser-
voirs in the Idong catchment; Jang et al. [29] assessed the future climate change impacts on
the hydrological components in the Gyeongan–Cheon River Basin. Birhanu et al. [30] ana-
lyzed and compared the results of five hydrological models, including CAT, applying them
in 10 catchments of Korea. Choi et al. [31] carried out a short-term CAT runoff simulation
and a sensitivity analysis of soil parameters using three infiltration methods provided in
CAT. Lee and Cho [32] analyzed the hydrological cycle in four catchments in Ulsan City
using CAT. Miller et al. [33] evaluated stormwater runoff characteristics according to the
transformation of rural landscapes into peri-urban areas in the U.K. using CAT.

6



Water 2022, 14, 460

Figure 4. Schematic diagram of water cycle process in CAT model [34].

2.3. Water Cycle Processes of Reservoir and Paddy Field in CAT

In the CAT model, the storage facility node (or reservoir node) can be applied as an
online reservoir when the reservoir is located within the stream channel, or as an offline
reservoir when the reservoir is located outside the stream channel. In this study, the
reservoir node was applied as an online reservoir by reflecting the field situations of the
Boryeong Dam catchment. The reservoir node considers the amount of evaporation from
the surface of the reservoir and intake amount of water to calculate the amount of outflow
discharged through the outlet (Figure 5).

Figure 5. Schematic diagram of hydrological cycle in reservoir in CAT model.
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The governing equation is:

dS
dt

= Qin − Qout − Qsp + P − E (1)

where S is the storage volume (m3), Qin is the inflow to the reservoir (m3/s), Qout is the
outflow of the reservoir (m3/s), Qsp is the spillway overflow (m3/s), P is the precipitation
to the surface of reservoir (mm), and E is the evaporation from the surface of the reservoir
(mm) [34].

To simulate the runoff process in the paddy field (Figure 6), the soil and groundwater
layers were divided in the same way as the pervious area of the watershed. Artificial
drainage facilities can be included in the soil layer to accommodate underground culvert
drainage and pipe drainage; however, only surface drainage by levee height was considered
in this study according to the field situation of the catchment. Surface drainage occurs
when the ponding depth is greater than the height of the surface drain water threshold.

Figure 6. Schematic diagram of the hydrological cycle in the paddy field in CAT model.

The surface drain equations are:

Qs = α
√

Hs − Hp
(

Hs > Hp
)

(2)

Qs = 0
(

Hs ≤ Hp
)

(3)

where Qs is the discharge from the surface (m3/s), α is the drainage coefficient of the
surface drain levee in the paddy (mm0.5/h), Hs is the ponding depth of the paddy (m), and
Hp is the height of the surface drain levee of the paddy (m) [34].

The hydrological interrelation between surface water and groundwater was calculated
according to Darcy’s Law, with flows based on the hydraulic conductivities, river stage,
and groundwater level. The interrelation between the river level and the groundwater level
was calculated using Equations (4) and (5). Equation (5) was applied when the river level
was higher than the groundwater level in the vicinity; otherwise, Equation (4) was applied.

Qr = Ksr Ar (4)

Qr = Ksr

(
h − Hr

br

)
Ar (5)
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Qg = Ksr
∂h
∂x

·l·T (6)

Qin − Qout = A·S dh
dt

(7)

where Qr is the inflow into the river or recharge from the river (m3/s); Qg is the groundwa-
ter flow (m3/s); Qin and Qout are the inflow and outflow of the aquifer (m3/s), respectively;
Ksr is the saturated hydraulic conductivity of the riverbed (m/s); Ar is the area of the
riverbed (m2); br is the riverbed thickness (m); h is the groundwater level (m); Hr is the
riverbed elevation (m); ∂h/∂x is the slope of the groundwater level; l is the connected
length between catchments (m); T is the average aquifer thickness (m); A is the catchment
area (m2); S is the storage coefficient; and dh/dt is the rate of level change [34].

2.4. Data Collection

The daily precipitation, streamflow, and meteorological data from 2000 to 2019 were
already collected for a previous study [24]. The daily precipitation data were gathered
from the three rainfall gauging stations operated by K-water [23]. The daily meteorological
data used for the Penman–Monteith evapotranspiration estimation, such as minimum and
maximum temperature (◦C), humidity (%), sunshine hours, and wind speed (m/s), were
gathered from the Boryeong Meteorological Station located a relatively short distance from
the Boryeong Dam catchment [21]. Evapotranspiration is a critical factor of hydrological
processes, especially in arid or semiarid catchments. Generally, to choose the relevant PET
(potential evapotranspiration) estimation method for hydrological modeling, researchers
often recommend the Penman–Monteith method as the standard for reference the evapora-
tion estimation, which is a physically based combination equation that is able to describe
the evaporation processes [35,36]. Therefore, the Penman–Monteith method was applied
to estimate PET in this study. Figure 7a shows the observed precipitation and streamflow;
Figure 7b shows the simulated actual and potential evapotranspiration in 2000–2019.

Figure 7. (a) Observed rainfall and streamflow data for 2000–2019; (b) estimated potential and actual
evapotranspiration in the Boryeong Dam catchment.
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The monthly agricultural water supply data from 2012 to 2018 were collected [5] as
input data for agricultural reservoirs. The daily observed water storage data for Samsan
and Hwasung reservoirs [5] were collected from May 2012 to December 2018 to compare
with the simulated reservoir storage. For groundwater pumping data, the annual data
for 2008–2017 were collected and applied [23]. Water balance analysis of the SC_2 sub-
catchment was performed for 2012–2017, which included all data. The soil parameter
data were extracted using the 1:25,000 scale soil map provided by the Rural Development
Administration [37]. The land use map of the Ministry of Environment [20] was applied to
classify forest area and paddy field area of the catchment. All model input data for CAT
simulation were input by dividing the catchment into pervious and impervious areas. Most
of the agricultural water is supplied during the irrigation period, from April to September.
In 2018, both reservoirs supplied agricultural water from May to August. The monthly
amount of agricultural water supply usually varies depending on the rice growth process in
paddy fields. In the Samsan Reservoir and Hwasung Reservoir, agricultural water supply
was the highest in May and lowest in April (Figure 8).

Figure 8. Average monthly amount of agricultural water supply of Samsan Reservoir and Hwa-
sung Reservoir.

In April, the total amounts of agricultural water supply of the Samsan Reservoir and
Hwasung Reservoir were 36,007 m3 and 44,670 m3, respectively, and the total agricultural
water supply amounts in May were 201,431 m3 and 199,541 m3, respectively, indicating
that the largest consumption of agricultural water is in May when rice planting begins. The
total agricultural water supply by year of each reservoir is shown in Table 4.

Table 4. Annual agricultural water supply of the Samsan and Hwasung reservoirs.

(Unit: 103 m3)

Year Samsan Rsv. Hwasung Rsv. Year Samsan Rsv. Hwasung Rsv.

2012 944.8 953.33 2016 338.63 642.17
2013 814.6 822.8 2017 685.64 415.72
2014 782.6 899.33 2018 625.26 579.79
2015 553.93 873.49 Avg. 677.92 740.95

In the case of Samsan Reservoir, the annual average of 677,920 m3 of the agricultural
water was supplied to the irrigation district from 2012 to 2018; for the Hwasung Reservoir,
an annual average of 740,950 m3 of agricultural water was supplied.

The daily observed storage data, the monthly agricultural water supply data, and
the specification of the Samsan and Hwasung reservoirs were collected from the Rural
Agricultural Water Resource Information System (RAWRIS) [38] managed by the Korea
Rural Community Corporation [5].
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2.5. Model Performance Indicators

The multi-objective functions used for evaluating model performances in this study
were the Kling–Gupta Efficiency (KGE), Nash–Sutcliffe Efficiency (NSE), LogNSE, the
determination coefficient (R2), and the root mean square error–observations standard
deviation ratio (RSR).

NSE is a normalized indicator that determines the relative magnitude of the residual
variance compared to the observed data variance; however, it has the disadvantage that the
peak value is often overestimated or the valley value is often underestimated by comparing
the variance of the error and the variance of the observed values in a relative volume.
LogNSE is the logarithm-transformed NSE often applied to put more importance on low
flow simulations in hydrological modeling [39]. KGE is an index that aims to overcome
the disadvantages of NSE by considering the correlation coefficient and the mean as well
as variance. RSR was developed to standardize RMSE using observations in standard
deviation, combining the error index and the additional information [40].

The values of the model performance evaluation index closer to 1, excluding RSR,
indicate better model performance; in the case of RSR, the closer to 0, the better the model
performance. When the NSE > 0.5 and RSR < 0.6, it can be judged as a satisfactory model
performance [41].

KGE = 1 −
√√√√(R2[Qobs, Qsim]− 1)2 +

(
SD[Qsim]

SD[Qobs]
− 1

)2

+

(
M[Qsim]

M[Qobs]
− 1

)2
(8)

NSE = 1 − ∑(Qobs − Qsim)
2

∑(Qobs − Qmean)
2 (9)

R2 = 1 − ∑(Qobs − Qsim)
2

∑
(
Qobs − Qobs

)2 (10)

RSR =
RMSE

SD[Qobs]
=

√
∑(Qobs − Qsim)

2√
∑(Qobs − Qmean)

2
(11)

where Qobs, Qsim, and Qmean are the observed, simulated, and mean observed streamflow,
respectively. SD and M are the standard deviation and mean, respectively.

In this study, the daily simulated streamflow was compared to the daily observed
streamflow for the CAT model performance evaluation.

3. Results and Discussions

3.1. Model Performance of CAT

The model performance of the CAT simulation for the SC_2 sub-catchment of the
Boryeong Dam catchment was evaluated by model performance indicators. As there are no
observed streamflow data in the SC_2 sub-catchment, the streamflow data were estimated
by dividing the total streamflow from the outlet of the entire Boryeong Dam catchment by
the area ratio of the SC_2 sub-catchment according to the drainage area ratio method [42].

The CAT runoff simulation was carried out during the period of 2012–2017, including
both the agricultural water supply data and the groundwater abstraction data of Samsan
and Hwasung reservoirs. As a result of the daily runoff simulation, the simulated stream-
flow was well-matched to the observed one (Figure 9a). The KGE, NSE, R2, and RSR values
were 0.88, 0.79, 0.80, and 0.42, respectively, indicating the satisfactory accuracy of the CAT
model (Figure 9b). The simulated streamflow tended to be slightly underestimated against
the observed one when the streamflow was small, and it tended to be slightly overestimated
when the streamflow was large.
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Figure 9. (a) Comparison of the estimated observed streamflow and the CAT simulated streamflow.
(b) Scatter plot of observe and simulated streamflow and the model performances by statistical
indicators.

The observed storage data of the Samsan Reservoir and Hwasung Reservoir for May
2012 to December 2018 [5] were compared with the CAT simulated storage (Figure 10).
Comparing the sum of observed and simulated daily storages during the study period,
the simulated storage of the Samsan Reservoir was 99.84% of the observed storage, and
the simulated storage of the Hwasung Reservoir was 99.1% of the observed storage. The
CAT simulated storage was underestimated or overestimated by year; however, the annual
inflow calibration was not performed in the Samsan and Hwasung nodes, as this study aims
to analyze the water balance through long-term runoff simulation and the soil moisture
and groundwater level in the paddy fields, according to the agricultural water supply of
the reservoir.

Figure 10. Comparison of the observed and the simulated water storage of Samsan Reservoir and
Hwasung Reservoir from May 2012 to December 2018.

3.2. Water Balance Analysis

To analyze the change in water cycle in the catchment according to the presence
or absence of the agricultural reservoirs, two models with and without the reservoirs
were constructed, and the simulated water balances were compared. The model without
reservoirs and the model with reservoirs were constructed with the same conditions, except
for the amount of water intake from the agricultural reservoirs.

Figure 11a shows the simulated water balance of the SC_2 sub-catchment to which
agricultural reservoirs were applied. Figure 11b shows the simulated water balance to
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which agricultural reservoirs were not applied. When the agricultural reservoirs were
applied in the CAT simulation, the amount of inflow due to the supply of agricultural water
from the reservoirs was considered. The results showed that the total amount of streamflow
and the groundwater recharge increase because the reserved water from Samsan and
Hwasung reservoirs was supplied to the soil surface of the catchment.

Figure 11. (a) Simulated water cycle of the CAT model with application of agricultural reservoirs. (b)
Simulated water cycle of the CAT model without application of agricultural reservoirs.

By applying the agricultural reservoirs, the total amount of runoff in the Boryeong
Dam catchment increased by about 4.72% over the study period due to the supply of
agricultural water. The surface runoff, interflow, and baseflow increased by 1.27%, 4.44%,
and 6.81%, respectively, and the amount of groundwater recharge increased by about
5.67% (Table 5). Therefore, as the amount of total runoff and groundwater recharge of the
catchment increase according to the application of the agricultural reservoirs in the CAT
simulation, it can be effective in improving the water cycle soundness of the catchment by
proper operation of reservoirs.

Table 5. Increase rate of amount of runoff and groundwater recharge after application of agricultural
reservoirs compared to the amount of runoff and groundwater recharge before the application of
agricultural reservoirs.

(Unit: %)

Year Total Runoff
Surface
Runoff

Interflow Baseflow Recharge

2012 3.71 3.01 2.98 5.57 3.95
2013 4.35 1.84 3.81 6.39 4.95
2014 7.35 0.36 6.91 11.40 8.82
2015 5.48 0.88 5.38 7.48 6.94
2016 2.96 0.61 3.20 4.27 4.13
2017 4.45 0.93 4.37 5.78 5.23

Avg. 4.72 1.27 4.44 6.81 5.67

3.3. Soil Moisture Content of Paddy Fields

As the soil moisture content is a hydrological component that directly affects crop
growth, the accurate estimation of soil moisture content in paddy fields should be preceded
in the hydrological analysis of agricultural watersheds. In this study, to analyze the
effect of drought on the soil moisture content in paddy fields, the representative drought
and normal years were divided and analyzed within the study period. Comparing the
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drought index in Buyeo-gun [14], where the SC_2 sub-catchment is located, the SGI and SPI
drought indices in 2013 were confirmed to be the normal year, and the SMI drought indices
indicated frequent dryness. In 2015, SGI indicated the caution drought level, SPI indicated
the extreme drought level, and SMI indicated the frequent dry or normal drought level.
Therefore, 2013 was selected as the WET period and 2015 as the DRY period, representing
the year of severe drought. For soil moisture content analysis, the models with and without
the reservoirs were compared according to the WET and DRY periods.

Figure 12a,b show the change in soil moisture content at the P_Samsan node according
to the WET and DRY periods when the Samsan Reservoir was applied. Figure 12c,d show
the change in soil moisture content at the P_Hwasung node according to the WET and DRY
periods when the Hwasung Reservoir was applied. The CAT simulation indicated that
the soil moisture content increases during the irrigation period from April to September
when the agricultural reservoirs were applied to the CAT model. In the WET period, the
difference in soil moisture according to the application of the reservoirs is significant from
April, when the irrigation season begins, until the end of June, when the rainy season starts.
In the DRY period, the difference in the soil moisture content according to the application
of the reservoirs is significantly large until November due to the lack of precipitation. There
was no significant difference in the trends of soil moisture content changes in the Samsan
Reservoir and Hwasung Reservoir. The analyses of the change in soil moisture content by
irrigation and non-irrigation periods are shown in Figure 13.

Figure 12. (a) Soil moisture content changes of P_Samsan in the WET year by applying reservoir
nodes in CAT. (b) Soil moisture content changes of P_Samsan in the DRY year by applying reservoir
nodes in CAT. (c) Soil moisture content changes of P_Hwasung in the WET year by applying reservoir
nodes in CAT. (d) Soil moisture content changes of P_Hwasung in the DRY year by applying reservoir
nodes in CAT.

The increase rate of the soil moisture content according to the application of the
agricultural reservoirs was higher in the irrigation period than in the non-irrigation period,
and was higher in the DRY period than in the WET period. In the WET period, the average
soil moisture content during the irrigation period increased by 5.25% for P_Samsan and
by 5.14% for P_Hwasung, according to the operation of the agricultural reservoirs. The
average soil moisture content for P_Samsan and P_Hwasung during the non-irrigation
period increased by 0.44% and 0.43%, respectively. In the DRY period, the average soil
moisture content during the irrigation period increased by 8.91% for P_Samsan and 10.92%
for P_Hwasung, according to the operation of the agricultural reservoirs. The average soil
moisture content for P_Samsan and P_Hwasung during the non-irrigation period increased
by 2.49% and 2.59%, respectively (Table 6).
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Figure 13. The changes in soil moisture content of P_Samsan and P_Hwasung in the irrigation period
and the non-irrigation period by WET and DRY years.

Table 6. Average soil moisture in irrigation and non-irrigation periods and the increase rate by
applying agricultural reservoirs.

Period
P_Samsan P_Hwasung

w/o w Increase (%) w/o w Increase (%)

WET
Irrig. 0.381 0.402 5.25 0.381 0.402 5.14

Non irrig. 0.362 0.364 0.44 0.362 0.364 0.43

DRY
Irrig. 0.356 0.391 8.91 0.356 0.400 10.92

Non irrig. 0.360 0.369 2.49 0.360 0.370 2.59

Irrig. refers to the irrigation period of April to September. Non_irrig. refers to the non-irrigation period. w/o
refers to the modeling without the reservoirs, and w refers to the modeling with the reservoirs.

The increase rate of soil moisture content during the DRY period was relatively higher
than that during the WET period because the soil layer dried due to drought and lack of
precipitation; therefore, it responded sensitively to the reservoir agricultural water supply
and absorbed more water. Soil moisture is the retained water in the topsoil layer and has
direct effects on the growth of rice during the irrigation period. Analyzing the changes
in soil moisture content during the irrigation period in Korea from April to September,
we can see that the agricultural water supplies of reservoirs significantly affected the soil
moisture increase in the paddy fields, especially in the drought period. Therefore, in order
to secure the soil moisture demands for agricultural activities in the paddy catchments, it
is necessary to supply sufficient amounts of agricultural water through the installation of
agricultural reservoirs.

3.4. The Groundwater Elevation in Paddy Fields

The groundwater elevation changes in P_Samsan and P_Hwasung according to the
application of the Samsan Reservoir and Hwasung Reservoir were compared for the WET
and DRY periods. Figure 14 indicated that the increase rate of the groundwater elevation
due to the operation of the agricultural reservoirs was higher in the WET period than in the
DRY period because the rate of groundwater abstraction was lower in the drought period
than that in normal period in the catchment [24].

The increase rate of the soil moisture content according to the application of the
reservoirs was higher during the DRY period; however, in the case of the groundwater
elevation, the increase rate in the WET period was higher than in the DRY period, according
to the application of the agricultural reservoirs.
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Figure 14. (a) Changes in groundwater elevation of P_Samsan and P_Hwasung, according to the
application of agricultural reservoirs in the WET period. (b) Changes in groundwater elevation of
P_Samsan and P_Hwasung, according to the application of agricultural reservoirs in the DRY period.

In the WET period, the difference in groundwater elevation reached 6.11 m in the
P_Samsan node and 6.24 m in the P_Hwasung node according to the application of the
agricultural reservoirs; the difference in May was the largest of the year. In the DRY period,
the difference in groundwater level was 1.77 m in the P_Samsan node and 2.39 m in the
P_Hwasung node according to the application of the agricultural reservoirs; the difference
in June was analyzed to be the largest of the year (Table 7). During the DRY period, the total
amount of groundwater consumption was smaller than in the WET period; therefore, the
decrease in the groundwater elevation due to groundwater pumping was not significant in
the DRY period. The amount of groundwater abstraction in 2013 was 2255 m3/day and
2261 m3/day for P_Samsan and P_Hwasung, respectively; in 2015, it was 457 m3/day and
458 m3/day, respectively. Therefore, the difference in groundwater elevation according
to the application of the agricultural reservoirs was larger in the WET period than in the
DRY period. If the reservoir is not operated, the groundwater level in the paddy field will
decrease rapidly as irrigation begins in April. The supply of agricultural water from the
reservoirs to the paddy fields seems to prevent the decrease in the groundwater elevation
in irrigation period.

Table 7. Increased monthly groundwater elevation of P_Samsan and P_Hwasung after applica-
tion of agricultural reservoirs compared to monthly groundwater elevation before application of
agricultural reservoirs.

(Unit: m)

Month
WET DRY

P_Samsan P_Hwasung P_Samsan P_Hwasung

Jan 0.20 0.28 0.00 0.03
Feb 0.15 0.23 0.00 0.02
Mar 0.07 0.19 0.00 0.03
Apr 1.82 2.04 0.43 0.56
May 6.11 6.24 0.83 1.41
Jun 6.09 5.92 1.77 2.39
Jul 4.44 4.19 1.74 2.31

Aug 1.42 1.48 0.40 1.43
Sep 0.94 1.04 1.08 1.74
Oct 0.25 0.29 1.59 1.71
Nov 0.04 0.14 1.41 1.44
Dec 0.12 0.34 0.13 0.17

Avg. 1.81 1.87 0.78 1.11

4. Conclusions

The effect of agricultural reservoirs on improving the water cycle of the SC_2 sub-
catchment of the Boryeong Dam catchment was evaluated by applying agricultural reser-
voir nodes in the CAT model, and the soil moisture content and groundwater elevation
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changes in paddy fields were compared and analyzed according to the division of normal
and drought periods.

As a result of the CAT runoff simulation for the SC_2 sub-catchment, the KGE, NSE, R2,
and RSR indicators were 0.88, 0.79, 0.80, and 0.42, respectively, indicating the satisfactory
performance of the CAT model. The observed streamflow was estimated by the area ratio
and total discharge at the outlet of the entire Boryeong Dam catchment. Comparing the
simulated water storage of the Samsan Reservoir and the Hwasung Reservoir with the
observed water storage, there is a match of more than 99% in terms of the total water
storage volume during the study period; however, it was either under or overestimated
by year. In this paper, as the long-term streamflow simulation for 2012–2017 is performed,
the yearly calibration for the reservoirs’ storage was not conducted. To analyze the water
balance of the SC_2 sub-catchment, the results were compared by simulating the model
that applied the agricultural reservoirs in the catchment and the model that did not apply
the agricultural reservoirs. As a result of the streamflow simulation, the total amount of
streamflow and the groundwater recharge of the catchment increased when considering the
agricultural water supply, according to the application of the agricultural reservoirs. The
total streamflow increased by 4.92% per year on average, and the groundwater recharge
increased by 5.96% per year on average. In addition, to analyze the soil moisture content
and groundwater elevation in the reservoirs irrigated districts, WET and DRY periods
were selected during the study period according to the SGI, SPI, and SMI drought indices.
Analyzing the soil moisture content in WET and DRY periods according to the agricultural
reservoirs’ application, it is evident that the soil moisture content in the irrigation period
from April to September increased when the reservoir was applied. The increase in soil
moisture content was significant during the DRY period and was analyzed to be higher
during the irrigation period than the non-irrigation period. In particular, the high rate of
increase in the soil moisture content during the DRY period is likely due to the sensitive
response of the dried soil layer to the water supply of the agricultural reservoirs. On the
other hand, it was analyzed that the increase rate of the groundwater elevation with the
application of the agricultural reservoirs was higher in the WET period than the DRY period.
During the drought period, the groundwater elevation decreased significantly as irrigation
began in April, and the groundwater elevation decreased significantly during the drought
period due to groundwater pumping. It was analyzed that the reservoir intake prevents
the decrease in the groundwater elevation in paddy fields. There were differences in the
groundwater elevation of about 6 m depending on the reservoirs during the WET period.

Therefore, the installation of agricultural reservoirs has the effect of improving the
water cycle of the catchment by increasing the streamflow and groundwater recharge,
the soil moisture content, and the groundwater elevation. In particular, the soil moisture
content in paddy fields provides the water necessary for crop growth during the irrigation
period; therefore, the increase in soil moisture content according to the supply of agricul-
tural reservoirs is meaningful. Due to the application of the reservoirs, the soil moisture
content during the irrigation period in the DRY period increases by about 10%, indicating
that the impact of the agricultural reservoir on the irrigated districts is significant. As the
agricultural water demands mainly depend on the supply of groundwater pumping and
reservoir intake, accurate analyses of the water cycle, soil moisture content, and groundwa-
ter level in the watershed through the hydrological model should precede the designing of
relevant agricultural reservoirs for the adequate conservation of groundwater.
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Abstract: Water conservation is essential to sustainable development, and among human activities,
buildings are responsible for a significant portion of total water consumption. Therefore, we present
a systematic review that aims to search for valuable contributions from benchmarking and their
potential significance to water conservation. The relevance of performing such a review is to support
the research in the field, organise information, and highlight both the lack of data and valuable
results in specific building types. Benchmarking highlights best performance buildings, while it also
classifies performances, which allows developing interventions for different buildings. Seventy-two
documents on the environmental performance of buildings were reviewed, and a variety of methods,
metering procedures, and indicators were found as valuable data for water-saving initiatives. In
addition to a systematic search in SCOPUS, searches were made in Science Direct and Google Scholar
databases. Although the main challenge in this matter lies in the lack of procedures standardisation,
it was found that performing benchmarking is relevant for accurately developing water conservation
initiatives. Gains of over five million m3 per year in a set of buildings or above 151 thousand m3 per
year in a single factory were found, which indicate the existing potential for water conservation.

Keywords: benchmarking; water consumption; water conservation; educational buildings; commer-
cial buildings; residential buildings

1. Introduction

Environmentally friendly buildings are essential for sustainable development and
require standardisation. In that sense, there are building rating systems, such as LEED
(Leadership in Energy and Environmental Design), BREEAM (BRE Environment Assess-
ment Method), and Green Star, which mainly focus on energy efficiency. Although the
concern over minimum water supply levels remains, water efficiency is more and more
considered in sustainable building assessment.

Due to their high heterogeneity, benchmarking systems could be used to evaluate
buildings efficiency, which could be implicated in improving overall resources conservation,
such as water and energy. Benchmarking is a methodology that can be used for comparing
similar processes of a given activity to highlight the one with the best performance [1],
which can be used to assess the management of organisations. Even in presenting slight
variations in data acquisition (e.g., sample definition), such practice has its core linked
to comparative procedures and optimisations based on knowledge acquired in each or-
ganisation [2]. Benchmarking differs from a benchmark, as the first one is a process for
comparison, and the other is a reference value of the ideal situation obtained from such a
process [3,4].

Benchmarking methods can identify references (benchmarks) and determine sys-
tematic manners to compare all data to those references. Thus, benchmarking water
consumption allows both highlighting the most efficient building and analysing such
performance. Benchmarking is mainly done in three approaches: processes comparison,
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performance analysis, and strategies comparison [5]. Such approaches are necessary to
establish an efficiency border where each element occupies a relative position compared to
others, highlighting differences. A benchmark could be taken as a target, and in some way,
it allows users to move from where they are to where is considered the ideal position in
terms of sustainable water-use performance [6]. The criteria for sample selection are crucial
for these techniques’ success [7]. The rules differ in the results and indicators validation.
Therefore, benchmarking establishes criteria to represent a given phenomenon with optimal
performance, providing indicators and performance goals as optimal references to evaluate
similar phenomena [3].

In buildings assessment, benchmarking highlights best performance buildings while
it classifies performances, which allows developing interventions for different buildings,
and these properties can be used to assess how water is consumed in different types of
buildings. Studies on water consumption in buildings generally consider specific indicators
for each building type. These indicators could be “litres per inhabitant per day” for
residential buildings [6,8]; “litres per guest per night” for hotels and other accommodation
sites [9,10]; and “litres per student per day” for educational buildings [11–13]. There is
also a dimensionless index ranging from 0 (the lowest performance) to 300 (the highest
performance) for measuring water efficiency in dwellings, such as the one developed
by Vieira et al. [14]. In addition to developing indicators, several techniques to perform
evaluations on water efficiency in buildings have been developed [3,15–18]. Comparison
evaluations, such as benchmarking, could use these methods and indicators to identify
ideal situations in terms of water efficiency in buildings. Benchmarking systems including
strategies such as cluster analysis can overcome such heterogeneity, as buildings can be
assessed through their equivalents in resulting clusters. This procedure has been carried
out in several studies, such as the study presented by Lara et al. [19], which was performed
to assess energy consumption in a set of school buildings in Italy. The authors pointed out
that a relevant issue when assessing a set of buildings is its correct definition and argued
that a possible solution is the use of data mining techniques, such as the K-means clustering
method. According to the authors, this allows the division of a large and heterogeneous
sample into more homogenous and small groups, which facilitates finding benchmarks.
Although many publications on water benchmarking are on agricultural sciences, as this
sector accounts for most of the water consumption globally, the consumption in buildings
is a significant portion of total water consumption among human activities. Buildings in
non-industrial facilities represent 25.5% of all water withdrawn from nature in developing
countries, such as Brazil (529 m3/s) [20]. In developed countries, water consumption
in buildings shows higher values. In Austria, 27% of total withdrawal is consumed in
urban buildings (33% of total water consumption) [21]. To assess how efficiently such an
important amount of water is consumed in different building types, benchmarking could
be used. Thus, this review paper aims to analyse benchmarking methods considering
residential, commercial, and educational buildings. These three types compose the most
common buildings and should represent the majority of urban facilities that are related to
the water consumption mentioned.

As water consumption data are essential to designing sustainable buildings, the
literature presents several studies that compare water efficiency levels in commercial,
residential, and educational buildings [10,13,15,17,22,23]. Despite that, the development
of standardised indicators is still an obstacle to ranking water consumption efficiency
in residential buildings, as simple normalisation with a single parameter may not be
enough [9]. On the other hand, complicated benchmarking systems may impose difficulties
for the user to adapt to novel procedures [6,17]. Therefore, is possible to question whether
performing benchmarking could support the development of water-saving measures for
increasing water conservation. This question was investigated by reviewing benchmarking
methods in buildings to highlight results that could be valuable for water conservation
initiatives. Studies on buildings benchmarking focusing not only on water but also on
energy and other resources were reviewed.
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2. Review Method

The potential of benchmarking methods as a tool for developing water-saving mea-
sures and increasing water conservation in buildings was investigated in the literature
available. A systematic review was conducted to find as many documents that have used
the terms of interest as detailed below. The topics searched were benchmarking techniques
to measure environmental performance, including water consumption in residential, com-
mercial, and educational buildings. Buildings were searched as residential, commercial,
and educational buildings for the different user behaviour found and water usage in each
one. It is far different from how water is consumed in a factory or a dwelling. The same
premise is adopted regarding educational buildings, such as universities and schools. For
that reason, results from each type of building are categorised in this review.

The initial terms often appeared in exploratory searches on water benchmarking topics.
The search on buildings by type (commercial, educational, and residential) comes from the
way that buildings appear in publications. Most of the studies do not present “buildings”
in their publications but the finality of such buildings instead. Examples are hotels, schools,
and dwellings. They are all buildings; however, they are not presented as defined this way
but as what those buildings are for. For that reason, buildings were also searched under
these forms.

The search on SCOPUS focused on the terms “water consumption”, “water use”,
“benchmarking”, and “buildings” found in the title, abstract, or keywords of publications
according to the query string below. These four terms refer to the main review objective:
how water is consumed in buildings. The final search term was then performed in SCOPUS
using Boolean operators as follows:

TITLE-ABS-KEY ((“water consumption” OR “water use” OR “water consumption”)
AND “benchmarking” AND (“buildings” OR “hotel*” OR “school*” OR “household*” OR
“dwelling*”) AND NOT (“plants” OR “crops” OR “agriculture”))

• OR: finds all the documents that contain any of the terms;
• AND: presents only the documents that contain all the terms;
• AND NOT: excludes the specific terms;
• *: replaces multiple characters (e.g., hotel* = hotel, hotels).

Studies on water consumption in agricultural sciences presenting terms such as agri-
culture, crops, or plants were excluded, as this review focus on water benchmarking in
buildings. The term “benchmarking” maybe be hidden when searched, as many studies on
water-use assessment are useful for reviewing water benchmarking but do not mention
“benchmarking” in title, abstract, or keywords. This gap was overpassed through supple-
mentary topics and by searching in databases other than SCOPUS. In addition to SCOPUS,
Science Direct and Google Scholar were searched. Previous searches showed that in 2000,
relevant documents on the field were published. For that reason, this year was taken as the
base timeline for the review.

An initial survey on benchmarks led to definitions and performance studies on build-
ings. These studies concentrate on the energy area, and benchmarking methods there
appear more often than in the water efficiency area. Water benchmarking methods were
investigated as the main topic of the review alongside supplementary searches, including
water consumption drivers, user behaviour, and water efficiency in buildings.

The strategy searched valid results and methods considering commercial, educational,
and residential buildings. Based on both results and methods, opportunities for overall
water conservation were highlighted. Including documents on supplementary topics,
the final number of documents used in this review originated from the searches in the
three databases mentioned. This strategy was used to answer two questions: “Which
benchmarking methods are used to assess water consumption in buildings?” and mainly
“Can benchmarking methods for building performance assessment can support initiatives
for improving water conservation?”
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The review strategy considered firstly general benchmarking methods to find applica-
ble systems to the water research field. This led to a review of several energy benchmarking
systems, as they mainly appear when benchmarking in buildings is searched. Thus, to
understand buildings performance was necessary to review several energy benchmarking
methods. Then, water benchmarking systems became clearer, as studies suggested that it is
possible to use energy benchmarking in water assessment in buildings. This understanding
was aided through comprehensive supplementary topics, such as water consumption
drivers, user behaviour, and water efficiency in buildings.

The review framework used throughout the study is shown in Figure 1. One can see
that performing a systematic review includes reviewing supplementary topics, and that
is the reason they appear in the review framework. This helped to build concepts and
definitions in such a limited field that presents few studies published.

Figure 1. Review framework for the main and supplementary searches.

This review framework is not mandatory to perform this type of review. Nevertheless,
it aided the review to explore the field, as the availability of publications is still limited. To
divide buildings into three types helped to organize the results as well as the discussions.
The supplementary topics supported necessary concepts and definitions. Finally, results
from practical research highlighted opportunities for water conservation.

3. Results

The search in SCOPUS alone resulted in 44 documents on benchmarking methods
in buildings that could contribute to water conservation from their results. These docu-
ments are included in the total number of documents reviewed, which was 72 if searches
through the other databases are considered. The documents not included in these results
are on studies that do not mention the search terms in their title, abstract, or keywords
(e.g., benchmarking, water consumption) but present valuable results on the topic. These
results correspond to 28 documents that refer to those valuable results mentioned. Ex-
amples of such results are the energy assessment methods for buildings presented in the
studies of Dascalaki and Sermpetzoglou [24], Desideri and Proietti [25], Filippín [26], and
Santamouris et al. [27]. Other examples are studies with results from which benchmarks
for water consumption in school buildings could be extracted, such as the work of Antunes
and Ghisi [12] and Melo et al. [15].

The year 2015 presented the most significant number of publications. However, the
majority of papers concentrate on recent years. Although the number of publications on
this topic is still limited, Figure 2 shows a growing number of published documents since
2000, especially from 2014 onwards. This topic is considered interesting even without a
large number of publications, as it could establish novel methodologies and references to
support water conservation in buildings.
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Figure 2. Publications on the topic over 2001–2021.

The areas with the most publications are Engineering and Environmental Sciences,
and the majority of papers have been published from studies carried out in Canada and
the United States as Figure 3 shows. These numbers could be related to the language
spoken in those countries, as benchmarking in English can refer to a comparison between
indicators without a deeper search for references. In any case, the normalised values of such
numbers could not represent an interest in the topic, as in non-English speaking regions,
many documents are published in the local language. As for the type of publication,
conference papers (17.6%) and journal papers (73.5%) were the most representative type
of publications. Table 1 shows the most relevant documents found in terms of Cite Score,
SNIP, and SJR, which could measure their relevance in journal assessment patterns. The
journals in which some publications have been published illustrates that, despite their
limited number, studies have been published in relevant journals.

 

Figure 3. Search results analysis. (a) The number of documents by country or territory; (b) Documents
by type; and (c) Documents by subject area.
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Table 1. International journals in which the majority of journal papers were published.

Journal
Number
of Papers

Cite
Score SNIP 1 SJR 2

Energy and Buildings 2 10.7 1.737 2.129
Building and Environment 2 9.7 1.736 2.36
Journal of Water Resources Planning and Management 2 5.1 0.917 1.401
Sustainability 2 3.9 0.612 1.242
Building Services Engineering Research and Technology 2 3.2 0.534 1.004

1 SNIP, Source Normalised Impact per Paper; 2 SJR, SCImago Journal Rank Indicator.

3.1. Benefits of Performing Benchmarking in Buildings

The literature shows the influence on future projections from data obtained in bench-
marking procedures. A relevant water-saving potential through rainwater harvesting
systems was highlighted through correlations between water use and variables related
to water supply from 62 cities [28]. Benchmarks were found for non-potable water sup-
ply alternatives, and their potential impact on water availability was discussed. Rainfall
data, roof areas, water demand, and inhabitants per dwelling ratio were surveyed. The
comparative assessment showed possible savings ranging from 32–95% of total water use
(70–190 L/day). When considering future water availability, there is a significant difference
between adopting such a strategy regarding annual per capita water availability [28].

Benchmarking uses measure systems and performance models to compare buildings
efficiency using various methods [22,29]. In the construction sector, sustainable bench-
marks define the minimum requirements to minimise the environmental impacts that
are associated, including energy demand, water use, and emissions during construction,
maintenance, and operation [30]. An environmental assessment that manages to isolate a
financial analysis achieves better results [31], and benchmarking is shown in the literature
as evaluating processes without considering financial aspects that can result from the
actions taken. In that sense, benchmarking methods have been performed on energy and
water efficiency. Alongside computer simulations, benchmarking is an essential resource
performance assessment tool for buildings [8,22,32].

For performance evaluation of buildings with various indicators, measurement proce-
dures require standardising the sample [22]. Benchmarking starts by collecting valuable
data, and depending on what information is necessary, surveys are developed for differ-
ent benchmarking purposes [33], including criteria definition to compose the sample. To
evaluate water consumption, Duverge et al. [34] defined aquatic centres to compose their
sample as public or community locations with at least one indoor pool and three different
services, such as a gym, sauna, and cafe. That is a clear and objective definition to even
the sample. The guidelines for benchmarking are the exact definition of sample buildings,
which follows previously established criteria, being an essential step for comparative eval-
uation of buildings. In that sense, standards are suitable to divide the sample into groups
for employing clustering analysis to identify representative buildings and parameters for
reducing heterogeneity. The work of Lara et al. [19] showed a procedure to find clusters in
a heterogeneous sample of school buildings aiming to assess energy consumption in Italy.
To overcome an identified issue related to such heterogeneity, authors used data mining
techniques to perform clustering analysis. The K-means clustering method was used to
find clusters in a sample of 60 school buildings, which allowed to find suitable benchmarks
to be compared to other elements. In addition to overcoming heterogeneity in a sample
and performing an environmental assessment, benchmarking is also suitable to rank the
efficiency of water utilities, whether concessionaires or state agencies. Their benchmarking
is an analytical instrument for water conservation and allows obtaining valuable data
from institutions [3,7]. Consequently, these organisations may raise their performance to
improve indicators and increase water efficiency levels for evaluating both distributors and
regulations [29]. In this context, Corton and Berg [3] assessed water services in Central
America by surveying indicators, techniques, and cost-efficiency from organisations related
to water services. Results showed institutional fragmentation as the main challenge to
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achieve better service performance due to inconsistent data from different water utilities
operating within the same regions. A similar effort in the United Kingdom showed that
many original standards for energy efficiency were inadequate, demanding the sector to be
restructured for establishing suitable benchmarks [35].

3.2. Energy Benchmarking

The interest in comparing the performance of buildings on resources consumption
comes from energy crises (e.g., the 1979 oil crisis), which led to efforts to design energy-
efficient buildings [36,37]. As buildings account for 20−40% of total energy consumption in
developed countries [37], their environmental assessment is critical. Human development
processes increase water and energy stress due to a closed link between higher development
and higher resource demand [38]. As performance benchmarking in buildings first gained
prominence in the energy area and then in water conservation studies [37], it is necessary
to briefly review energy benchmarking methods to understand their influence over water
benchmarking in buildings.

Energy benchmarking methods require consumption forecast and use physical prin-
ciples to calculate thermal dynamics and energy behaviour in the building, either in its
entirety or in its sectors [8]. This procedure is done to compare a sample of buildings with
a reference building or indicator [39]. Other methods use physical or thermal dynamic
functions to calculate the energy consumption of all building components [40] and use the
weather, construction system, building operation, service utilities, and air conditioning
systems as inputs of prediction models. Due to rules established to evaluate each element
based on performance, benchmarking allows resources consumption assessment even in
large heterogeneity samples, such as hotel buildings [9,10,41].

Statistical regression, computer simulations, and score classification systems are the
most used performance benchmarking methods [22,33]. The first one uses models de-
veloped through existing data to find correlations between several variables, such as the
weather and building characteristics (e.g., age, size, number of floors, occupancy rate, and
behaviour of occupants) [33]. Computational models calculate benchmarks from the simu-
lated performance of a reference building [39,42]. The scoring classification methods use
ranking systems, in which buildings are not compared to each other but assessed against
best practice standards instead (e.g., Green Star, LEED, United Kingdom Code for Sus-
tainable Homes—CSH) [6,22]. Alternatively, the hierarchical and end-use metrics method
develops performance metrics from the highest level (entire building) to the underlying
system performance data [33]. As for water consumption, score systems are found in the
environmental performance evaluations of school buildings and are applied to measure
the user perception index [13,15,43,44].

Energy efficiency indicators support energy benchmarking and sustainable policies,
such as energy codes [22,37], and include the ratio of measured usable area and either use of
equipment in hours or the water volume consumed, which is known as energy intensity [45].
Data found for each use are registered in a reference table and then compared with field
measurements [37,46] to rank buildings resources consumption. Machine learning has been
used to rank buildings and select and analyse specific energy datasets for cities. In that
sense, the study of Papadopoulos and Kontocosta [47] cross-validated input normalised
data for nearly 7500 buildings in the city of New York with optimal parameters, and then, a
clustering algorithm was applied to rank energy use.

Energy benchmarking in buildings allows comparing benchmark residuals from both
regression models and evaluated buildings regarding differences instead of similarities [48].
Residuals analysis was also used to develop a suitable model to explain the variability
in city-specific energy data compared to the Energy Star benchmarking system [49]. The
residuals are, in these cases, a measure of inefficiency, and their quantity should be minimal
in the design process. Strategies on benchmarking often require statistical analysis of data
collected before the evaluation [11], and alternatively, some methods use actual meter-
monitoring data from buildings [8].
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According to the transparency in evaluation processes, benchmarking methods are
classified into white-box, grey-box, and black-box [50]. Physical constraints exist in white-
box modelling, and a large amount of data is required, i.e., there is less empirical knowledge
and more modelling processes to perform the assessment. Grey-box and black-box methods
grade the amount of available data. Thus, a black-box method presents data adjustment
instead of knowledge of physical data and needs a statistical model pre-selected besides
data (e.g., Artificial Neural Networks). Reference lines are adopted in four ways: previous
performance of similar buildings; current performance of similar buildings; previous
performance of the same building; and intended performance of the same building [50].

Although benchmarking supports the understanding of environmental impacts in
different building phases, results are limited to that specific building. Nair et al. [51]
showed how efficient water conservation measures can save energy at an Irish university
building through the assessment of hot water usage, heating water energy, pumping water
energy, carbon emissions, and solar power potential. Nonetheless, their findings would be
only applicable to similar conditions.

As has been seen, benchmarking not only allows highlighting best practices and results
but can also build rankings on efficiency or other characteristics. It also can be applied
to evaluate organisations, such as water and energy utilities, rather than only buildings
to reach major levels of service quality. Benchmarking methods need data, and any more
information represents more accuracy on results. However, not only is the quantity of data
important, but mainly quality data are required, as one can see in the work of Duverge
et al. [34]. As they can vary on procedures involved, all benchmarking systems so far
require particular care on data collection phases.

3.3. Water Benchmarking in Buildings

Although related to high monitoring costs, initiatives in water benchmarking, green
buildings, and water-efficient facilities have been encouraged in recent years, as they
represent long-term solutions for water and energy savings [52]. Water efficiency has more
often been included in key performance indicators for buildings performance assessment
alongside energy efficiency [53]. This section focuses on residential, commercial, and
educational buildings. A table at the end of each section summarises methods and results
for water conservation.

3.3.1. Residential Buildings

Due to the relevance of urban residential water consumption [54], evaluation methods
on domestic water efficiency are needed. Such evaluation uses performance assessment
functions that include converting state variables (e.g., water flow ratio, volume) in the
performance index to be classified in standard water devices. As benchmarking depends
on accurate building definition, the existence of alternative water supply systems, such as
rainwater harvesting and greywater use systems, could strongly influence results [28,45,55].
In the United Kingdom, the Code for Sustainable Homes (CSH) [51] establishes maximum
daily values of 80 L/person for the best-performing benchmarks, 105 L/person for mid-
range benchmark levels, and 125 L/person for lowest-performing benchmarks [6,56].
Although domestic consumption is traditionally determined by the per capita approach,
it may present high variability due to climate, culture, economy, individual demands,
occupation characteristics, and building typology besides water end-uses [18].

Excluding toilet flush, the variation in daily per capita consumption is 65–175 L in
Europe, 105–237 L in the United States, and 150–380 L in Asia [17]. Regarding this reality,
the study of Wong and Mui [18] assessed 60 flats in Hong Kong with a mean distribution of
water consumption as input for the estimative model. Results were compared to regional
standards to generate suitable benchmarks. The highest 5% consumption was equal to or
higher than 108 m3 per person per year. Both higher and lowest 5% consumption were
used to evaluate consumption. Results showed that according to adjustments to reach
benchmarks in different scenarios, the official yearly consumption in Hong Kong (61 m3
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per person per year) could be 43, 47, and 50 m3 per person per year for the first, second,
and third posterior predictions, respectively [18]. For comparison, in 2005, surveys showed
82, 75, and 70 m3 per person per year, respectively. The third mean found was 50% of Hong
Kong total freshwater consumption (140 m3 per person per year).

In the pursuit of better understanding, researchers have been applying different
analysis tools, such as Adaptive Logic Networks (ALN). In the work of Chen et al. [8],
ALN has been used with sociodemographic information as input for developing water-use
prediction in twenty homes in Sosnowiec, Poland, and ten in Skiathos, Greece. This was
done by comparing baseline under two approaches: household water consumption against
its consumption over time and comparing several households in the same region. Inputs
were the city size, age, the income of inhabitants, and their education level, allowing water
consumption prediction in similar cities. This benchmarking system exemplified the use
of on-site metering data in addition to statistical procedures, showing that real-world
measurements require fewer data to infer useful conclusions. Predicted means can be
compared to measurements, and in the case of measurement larger than predicted values,
that particular household is using more water than necessary [8].

Performance indicators for individual water-use devices could be dimensionless, rang-
ing from zero to 300 for calculating a general index by weighting each device for the
correspondent water use. In the study of Vieira et al. [14], water-use and socioeconomic
variables nexuses were analysed in 43 households through dimensionless indicators to
highlight measures to enhance water efficiency. In that sense, valuable data for benchmark-
ing can also be obtained from studies that aim to estimate water consumption, as their
results highlight the most influential variables. Examples are the influence of building age
and its distance to the central city area on the water consumption [57] as well as the number
of inhabitants per dwelling, their educational level, building characteristics, number of
bathrooms, building age and floor area, the existing water-saving systems, and water
conservation habits [58].

In residential buildings, water and finance savings could be reached from bench-
marking as the studies of Ghajarkhosravi et al. [33,59] have shown. Water consumption
data—among other services (gas, electricity, and waste treatment)—from 2007 to 2011 were
used to perform a benchmarking in a set of 105 multi-family residential buildings in Toronto,
Canada. Results were classified to identify the top performer, the 25th percentile, the 50th
percentile, and the 75th percentile, highlighting the possibility of saving 5,102,089 m3 of
water per year (CAD 12,721,671 based on the 2012 price of water in Canada).

Although studies have shown the benefits of benchmarking techniques, they do not
only present positive aspects in the water efficiency context. By highlighting benchmarks,
decision makers could impose desired behaviour over regular users in the pursuit of water
conservation. Thus, it is critical to understand practical aspects of adopting a benchmarking
system in residential buildings by considering the feedback of users related to what is
achievable [6]. Reaching benchmarks requires knowing how much it is possible to seek
lower consumption without compromising comfort, safety, and hygiene. Therefore, more
research on user behaviour in benchmarking the environmental performance of buildings
should be carried out [60].

The sensitivity of water indicators is measurable by detecting changes in user be-
haviour and technology, such as rainwater harvesting, greywater utilisation, and the
inclusion of gardening demands [55]. Benchmarking depends on the roof area, gardening
area, building location, daily occupancy rates, rainfall parameters, and conventional water
supply quality [6]. Available technology and user behaviour, associated with socioeco-
nomic factors, are critical elements in bringing consumption closer to benchmarks. Table 2
summarises findings from benchmarking procedures discussed above that could be applied
in sets of buildings for improving their water conservation.
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Table 2. Procedures and results related to benchmarking water use in residential buildings.

Reference Methodology Findings

Wong and Mui [18]
Comparison between consumption standards
and mean distribution analysis in 60 flats in

Hong Kong.

Water consumption could be as low as 50% of
total consumption if all buildings

reached benchmarks.

Chen et al. [8] Adaptive Logic Networks with drivers for water
use in 30 homes.

Water consumption prediction models to be
compared with local measurements for

controlling water usage.

Vieira et al. [14] Cluster analysis in 43 households to
generate indicators.

Dimensionless indicators with lowest and
highest performance.

Dias et al. [57] Variables analysis for determining drivers and
description models.

Water consumption is related to the age of
buildings and their distance from the

central area.

Garcia et al. [58] Socioeconomic questionnaires in 108 homes. Water consumption is related to the number,
habits, and education level of inhabitants.

Ghajarkhosravi et al. [33] Benchmarking in a set of 105 multi-family
residential buildings.

Potential savings of 5,102,089 m3 per year in a set
of buildings.

Hunt and Rogers [6]
Band-rating benchmarking system for measuring

domestic water-use performance in the
United Kingdom.

Discussion on user behaviour imposition by
managers to reach water conservation goals.

Benchmarking water use in residential buildings highlights the heterogeneity of this
type of building. In general, the number of buildings investigated is low when compared
to the actual building number in the cities where the studies have been carried out. It is
understandable that researches have limitations, but it is interesting to note that bench-
marking procedures can originate useful results from samples. Even the sample results
for water conservation are considered a great contribution, such as the potential savings
pointed out by Ghajarkhosravi et al. [33]. In addition, from residential buildings come
discussions on how the user will react if as a target for low water consumption is imposed.
Residential use is far different from factory use or that in a hotel, which is why residential
water benchmarking should be addressed separately from other types of buildings.

3.3.2. Commercial Buildings

Benchmarking in non-residential buildings has also been performed, and applications
in specific buildings, such as sports centres, hotels, and factories, are found in the literature.
In this section, publications were reviewed to assess the relevance of benchmarking on
water consumption in high-heterogeneity buildings. An example of a benchmarking
system was found in the study of Alkaya and Demirer [61], which was applied to an
internal production chain to assess a polyethene terephthalate factory. It was found the
possibility of saving 151,428 m3 of water per year by identifying the most intense water-use
processes and implementing suitable measures. Gains in energy consumption were also
highlighted in cooling systems due to less heat generation from machines and less CO2
emitted per year. This shows the potential for water conservation of benchmarking in a
particular activity.

In the tourism industry, water scarcity is a primary environmental concern [9,10]. As a
highly water-consuming sector, despite driving development for many regions, this activity
is also a driver of negative impacts on water resources [62]; i.e., water consumption in
hotels is much higher than in dwellings [63]. Consequently, rational water use is a key
sustainability challenge for such an industry. Researchers have often focused on direct
(on-site) consumption, with tourism water management based almost exclusively on direct
water-use benchmarks [9].

As benchmarking supports rational water-use programmes by setting indicators and
goals, water efficiency has been surveyed in the accommodation sector. Styles et al. [10]
found consumption greater than or equal to 140 L per guest per night at full-service hotels
and 94 L per guest per night at camping sites. Suitable benchmarks were then established,
and simulations were performed to estimate gains in water efficiency in a 100-room hotel
and 60-lot camping site. Potential water savings found was 228 and 127 L per guest
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per night in the hotel and the camping site, respectively, representing 16,573 m3/year
(422 million m3/year if adopted in all Europe) [10].

However, depending on the approach, the use of some indicators can be inappropriate.
Although indicators such as “litres per guest per night” could be suitable for benchmarking
purposes, they do not indicate whether abstraction levels are sustainable compared to
the available renewable water resources [9]. As an example, there is a vast amount of
renewable geothermal and heated water in Iceland, and the use of water by tourism is
mostly irrelevant. On the other hand, in water-scarcity locations, consumption impacts are
highly dependent on the season [62].

Sustainable programmes could be originated from favourable results in benchmarking
water use in hotels. The work of Bohdanowicz and Martinac [41] investigated the influence
of hotel standards, building area, number of accommodations sold, and number of meals
served on water consumption; variable regression analysis was carried out for 184 hotels
in Europe. Significant differences in water consumption were observed between Hilton
and Scandic hotels, highlighting the need for smaller and more representative classification
groups with comparable properties for establishing suitable benchmarks. It was also found
that “guest nights” sold was the most influential variable, with each additional guest
consuming 0.16 m3 of water followed by total hotel floor area (0.38 m3/m2). Furthermore,
the pool facility increases annual consumption by approximately 1000 m3/year, and each
meal sold uses an additional 0.006 m3 and if irrigation is required, 0.088 m3/m2/year.
Researchers concluded that the floor area could be more relevant than guest nights for
consuming water in water-stressed locations, such as Mediterranean regions, where there
is intensive irrigation [41].

A similar effort was made in a hotel in Barbados by correlating the number of accom-
modations, hotel standard, building size, and employees quantity for developing a unit
water consumption model [63]. It was found that in terms of unit consumption (i.e., litres
per guest night); there is a high water use when compared to international benchmarks.
Another concerning finding is that in a water-stressed place such as Barbados, the daily
consumption in hotels was about three times greater than the average consumption of the
general population (756 vs. 240 L per capita) [63].

Office buildings are included in benchmarking studies as consumption measures
and demand drivers could define a database for their assessment, including guidelines
to generate suitable benchmarks. In the benchmarking carried out by Bint et al. [64], the
inputs were a letter of acceptance from the manager to survey legal documentation on
building characteristics, an information sheet of the history of changes (installations in the
last five years and most recent consumption metering), and historical water collection data.
On-site surveys were used to validate the information through a generic visiting protocol
with all necessary building aspects: number and type of bathroom and kitchen equipment;
cooling systems standards; details on the water metering; and building location. Regarding
office buildings, flushing toilets and sink taps could be the most contributing pieces of
equipment to water consumption, presenting acceptable compatibility between measured
consumption and estimates based on user interviews [23]. Such findings could represent
useful benchmarks for office buildings.

However, the lack of standardised classification and metering systems is an obstacle
to spreading water-saving measures based on benchmarking. Although the efforts to
extend such measures increase homogeneity in groups, significant variations in drivers
for water-use remain. Energy benchmarking methods could overcome such a gap. They
use the principle of the least-squares and multiple linear regressions to enhance simple
normalisation, which allows the modelling of numerous use drivers [29]. Thus, it is possible
to standardise measurements and increase statistical significance to determine independent
variables. Alternatively, data enveloping methods include many observations to set an
efficient boundary, from which the deviation measures choose efficiencies of all other
elements. Their usability was demonstrated by applying both techniques for studying
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water efficiency and generating benchmarks on data from 17,187 commercial, industrial,
and institutional facilities in Austin, United States [29].

Benchmarking methods develop suitable indicators for many different situations.
However, there is little consensus on which indicator is most appropriate. To overcome
this divergence, the initial criteria for choosing the sample could be critical. In that sense,
Duverge et al. [34] performed a benchmarking on water use in Australian sports centres
and applied pre-established standardised guidelines and procedures. The sample was
composed only of sports centres with indoor pools and at least three services, such as
a fitness centre or snack bar. Such guidelines allowed sample selection and elements
standardisation to compare water consumption in different variables and indicators.

The methods and findings discussed in this section are summarised in Table 3, which
also shows different contributions to water conservation. It should be noted that several
studies had no intention to explore benchmarking methods but identified benchmarks
and drivers.

Table 3. Results from water-use benchmarking in commercial buildings.

Reference Methodology Findings

Alkaya and Demirer [61] Water use processes benchmarking in a
polyethene terephthalate factory. Potential water savings of 151,428 m3 per year.

Styles et al. [10] Performance simulations from suitable
benchmarks in a hotel and a camping site. Potential water savings of 16,573 m3 per year.

Bohdanowicz and Martinac [41] Variable regression analysis in 184 hotels. Significant water consumption differences
between hotel brands.

Charara et al. [63] Regression analysis on water consumption
drivers in a hotel.

High consumption in Barbados in comparison
with international benchmarks.

Bint et al. [64]
Measurements and demand drivers

identification to compose a database for
buildings assessment.

Guidelines for benchmarking office buildings.

Proença and Ghisi [23] User interviews and water consumption
measurements in office buildings.

Suitable benchmarks with high compatibility
between user information and measurements.

Morales and Heaney [29] Use of methods from energy benchmarking to
study water efficiency.

Water efficiency benchmarking in
17,187 buildings.

Duverge et al. [34] Benchmarking system on sports centres
buildings in Australia.

Proper guidelines and criteria for building
sample selection.

In commercial buildings, benchmarking could identify references that can be used in
simulations that show interest numbers of water-saving potential. Examples are given by
Alkaya and Demirer [61] as well as by Styles et al. [10]. In addition, guidelines appear to
be more important to benchmark this type of building, as they are generally larger than
residential buildings. In larger buildings or facilities, protocols to survey data are important,
as such surveys must be equivalent in all buildings for comparison purposes.

3.3.3. Educational Buildings

As buildings in the educational sector are highly heterogeneous, benchmarking meth-
ods have been addressed to assess their performance in the energy efficiency
area [24–27,42,51,65,66]. The usability of such methods for water efficiency assessment has
been demonstrated [29]. In educational buildings, studies have addressed how indicators
are produced as well as the influence of both alternative water supply systems and methods
for assessing user behaviour [11,12,60,67]. Although benchmarking could support decision
making on rational use of water in buildings, the lack of consensus on the most influential
drivers for water consumption remains. This reality leads to initiatives that attempt to
assign more accurate indicators by multivariate regression and score systems applied to
user behaviour [13,44].

Cluster analysis methods, such as Complete Linkage and the Method of Ward, are
used to organise benchmarking data. In that sense, Almeida et al. [11] found significant
water and energy consumption variability in 23 Portuguese schools with similar phys-
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ical characteristics due to non-constant user behaviour in similar environments. Water
consumption assessment in schools is within an evaluation system that includes other sus-
tainability variables, such as lectures addressing solid waste production and classification,
noise pollution, food waste, and traffic density around the school [43], which could be
regarded as drivers for water consumption in benchmarking systems.

Another interesting alternative to rank buildings by their environmental performance
is Fuzzy clustering. This approach is useful to overcome uncertainties in evaluation
systems [68], such as the definition of where is the efficiency borderline in such buildings.
In that sense, higher educational institutions in Canada were ranked regarding water and
energy consumption and greenhouse gases emissions [60]. Seventy-one buildings were
grouped in three clusters based on their reported energy and water consumption as well
as carbon emission: Cluster 2 obtained the best environmental performance (33 buildings,
average area 10,051 m2); Cluster 1 showed a typical performance (30 buildings, average
area 11,528 m2); and Cluster 3 obtained the lowest environmental performance (8 buildings,
average area 5843). The average water-use intensity found was 1.01 m3/m2 for Cluster
1, 0.80 m3/m2 for Cluster 2, and 1.72 m3/m2 for Cluster 3 [60]. These findings represent
different degrees of membership of each group to the so-considered efficient condition, and
the environmental performance was then benchmarked. The results were highlighted as
potential realistic targets to concentrate efforts in low-performance buildings.

Heterogeneity tends to be more prominent when drivers for a particular phenomenon
are less known. This trend becomes clear in developing countries, where the lack of data
is often a reality. In Brazil, daily water consumption in schools varies from 3.79 to 81.1 L
per student [13]. A more recent study indicates a disparity between 0.81 and 35.43 L per
student per day [12]. Internationally, this variability, through different indicators, can
range from 11 L per student per day to 547 L per person (not only student) per day [13,69].
However, the main obstacle to overcoming such disparity, other than the high variability in
consumption data, could be the poor standardisation of indicators. Some studies consider
only students [12,67], others find general occupants of the school [11,13,44], and even
consumer agents per day (water users other than the regular school population, such as
parents of students) have been considered [15].

The influence of user perception has been investigated as a driver for improving water
efficiency in schools. The analysis of data from 140 schools in Brazil showed 47.14% ranging
between 10–20 L/student/day, 25.71% ranging from zero to 10 L/student/day, and 16.43%
ranging from 20–30 L/student/day [70]. Using questionnaires, interviews, and on-site
observations, this research has also found greater user perception over water consumption
in areas inside buildings rather than outside. The study of Melo et al. [15] in twelve public
schools distributed in six cities in south-eastern Brazil showed a great variation in water
consumption, ranging from 13.6–27.3 L per consumer per day. In another study, a survey of
water sanitation facilities was used to calculate a monthly indicator in a technical education
building, which found consumption ranging from 6.28–22.78 L/student/day between 2012
and 2015 [71]. An assessment of user perception index applied to different cities revealed
that previous studies [44,72] had shown an increase in such index from water users in
schools [71]. The variability of water consumption indicators in educational buildings is
shown in Table 4.

As for the educational buildings, the main challenge appears to be the lack of standard-
isation on indicators and information found. This could be linked to education standards
around the world, which implicates students as well as the type of buildings where schools
and universities are located. Nevertheless, in the same countries, such as Brazil, there are
significant differences between such indicators and values, which generates concern about
the quality of data available. The availability of data is another concern, as many countries
on the globe present a lack of information on water use in educational buildings, as can be
seen in Figure 4, which shows the proportion of schools with a basic drinking water service
by country, 2016 (%).
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Table 4. The water consumption variability in schools.

Reference Value Indicator Location

Keating and Lawson [69] 17.4 L/student·day The United Kingdom
Cheng and Hong [32] 56.4 L/person·day Taiwan (Taipei)
Cheng and Hong [32] 59.5 L/person·day Taiwan (Kau-Shong)

Pedroso [13] 3.79–81.1 L/student·day Campinas, Brazil
Pedroso [13] 547 L/person·day Canada

Melo et al. [15] 13.6–26.3 L/consumer·day Minas Gerais, Brazil
Antunes and Ghisi [12] 0.81–35.43 L/student·day Florianópolis, Brazil

Moraes et al. [71] 6.28–22.78 L/student·day Recife, Brazil

Figure 4. The lack of information on water use in schools [73].

3.4. Potential Water Savings from Initiatives Based on Benchmarking

There are three approaches for water savings in buildings that are more often explored:
environmental education for rational use of water programmes, installation of water-saving
technologies, and supplementary water supply systems (mainly rainwater harvesting
and greywater utilisation). Benchmarking should consider those, as they are increasingly
found in current and future building designs. However, it is important to highlight that
alternative water supply systems should be considered in buildings design and assessment
with concern to the water quality obtained. Moreover, it can complement such approaches
by highlighting and organising data so that technologies and programmes can reach
better results.

As the review highlights the relevance of benchmarking methods in buildings for
water conservation, Table 5 summarises the potential water savings found in each type
of building reviewed. The role of benchmarking in promoting overall water conservation
shows that relevant amounts of water could be saved even if not adopting best practices
but targeting intermediate benchmarks.
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Table 5. The potential savings found in studies from water-use benchmarking in buildings.

Research Object Specific Results Reference

Performance
clusters in 71
educational
buildings

Cluster No. of Buildings
Avg. Area

(m2)
WUI 1

(m3/m2) Relative Water Use Potential
Savings Alghamdi

et al. [60]1 33 11,528 1.01 58.72% 11,643 m3

2 30 10,051 0.80 46.51% 8040 m3

3 8 5843 1.72 100% 10,049 m3

Per capita water use
in multi-family

residential
buildings

Cluster Annual water consumption (m3/capita) Relative water use Potential
savings Ghajarkhosravi

et al. [33]Poor performer set 79–124 64.71–100.00% Up to
5,102,089 m3

per year
Typical set 58–79 46.77–63.71%

Top performer set 28–58 46.77–22.58%

Hotel (100 rooms)
and camping site

(60 lots)

Set Suitable
benchmarks

Specific potential
savings

Potential water
conservation

Potential
savings Styles et al. [10]100-room hotel 140 L/guest night 228 L/guest night 22 million m3/year if

adopted in all Europe
16,573 m3

per year60-lot camping site 94 L/guest night 127 L/guest night

Water-use processes
benchmarking in

a factory

Results Intervention Secondary results Potential
savings Alkaya and

Demirer [61]Most intense identification processes in
the production chain

Water-saving policies
and technologies

Energy-saving and
fewer CO2 emissions

151,428 m3

per year

1 WUI, water-use intensity.

Clusters found through fuzzy methodology [60] demonstrate that potential water
savings could range from 41.28–53.49% if practices adopted in Clusters 1 and 2 were
adopted in Cluster 3, which contains the set of buildings with the lowest performance. For
Clusters 1, 2, and 3, this represents potential savings of 11,643 m3, 8040 m3, and 10,049 m3,
with performance similar to the benchmarks in all buildings. Similar conclusions could
be made over the performance groups found for multi-family residential buildings [33],
where water savings up to 5,102,089 m3 per year could be reached. In the accommodation
sector, 22 million m3 per year of water could be saved if benchmarks and best practices
were adopted all over Europe [10]. Finally, a single factory showed possible water gains
of more than 151 thousand m3 per year by identifying the most water-intense processes
applying water-saving alternatives and optimising such processes [61].

4. Discussion

4.1. Advantages and Disadvantages of Performing Benchmarking to Assess Buildings

Benchmarking is such a great tool to find useful references when assessing water
distribution networks. It allows identifying those elements that present high consumption
values or those with excessively low consumption. In both cases, these references are useful
because they allow the network manager to accurately direct efforts to control network
issues, such as issues or under-measuring buildings. In addition, after implementation,
benchmarking-based monitoring models are low cost to maintain and make possible remote
monitoring of such networks. This is a huge positive aspect and must be pointed out, as they
only need to be fed with more and updated data on buildings and network characteristics.

Although benchmarking is useful to identify and compare similar elements to search
for best performance references, the lack of indicators and the heterogeneity in procedures
could make it difficult to choose the most appropriate method for each evaluation. Bench-
marking systems could include clustering analysis, which can overcome heterogeneity,
as clusters are similar, and valuable information could be obtained from their internal
comparative assessment. This procedure included in benchmarking systems can be used
to overcome heterogeneity in a set of buildings. In general, statistical procedures are the
most common techniques to build a benchmarking system. On the other hand, some
designs use real-world data obtained using smart meters. Both are applicable to assess
water consumption, but each one has limitations.

The common benchmarking processes are comparisons between a standard or a bench-
mark and other elements that can be done using a reference base rule. This common type of
benchmarking has limitations related mainly to the specific variables that could be involved.
Examples of such variables are climatic conditions, cultural behaviours by users, and tech-
nological limitations. This reality could limit average buildings to reach benchmark’s water
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consumption or even to approximate to an ideal efficiency. Therefore, the results from
benchmarking procedures and their limitations should be considered in the process of
supporting water-conservation initiatives. This review summarises benchmarking methods
that have generated valuable results for promoting water-conservation initiatives. Their
use has been increasing in recent years, as water use evaluation requires good-quality data
to identify drivers for water consumption. Hence, benchmarking allows researchers to
gauge measurements, compare results, and find references of efficiency. Benchmarks can
be used as consumption goals for users, which in the very process of trying to approach
that level, lower their water consumption.

4.2. Benchmarking and Actual Water Conservation

Even though benchmarking systems present all the advantages mentioned, their con-
tribution to overall water conservation depends on the concrete development of initiatives
that promote this benefit. This means that the answer on whether benchmarking systems
are capable of promoting water savings would be negative if such concrete terms were
considered. However, in indirect terms, it is possible to say that these systems promote
water conservation, as they detect issues in distribution networks as well as in industrial
production chains and are a tool for setting goals that would help achieve these goals. The
gains in water conservation would depend not on benchmarking but on what actions are
taken from the information provided by such systems.

In that sense, not performing benchmarking would be the issue, and such an action
needs to be discussed. In the absence of benchmarking, rational water-use programmes
and water-saving technologies in buildings may show negligible effects due to improper
design or, for being applied to an unknown efficient building, not resulting in measurable
improvement. This poor initiative implementation is frequent in educational and com-
mercial buildings. Thus, it is important to consider factors that influence the pursuit of
benchmarks: socioeconomic, technological, cultural, and climatic aspects. Benchmarking
does not directly guarantee lower water consumption rates, as the imposition of consump-
tion targets can have controversial effects on user comfort. However, the assessment of
buildings through benchmarks could highlight drivers that should be addressed to improve
water efficiency.

4.3. The Relationship between Benchmarking and Regular Water-Saving Initiatives

Water consumption studies results are far from absolute definitions, as indicators
may be unsuitable in addition to depending on cultural, socioeconomic, climatic, and
technological factors. Benchmarking could be a starting point for an overview of water
consumption in buildings by accurately addressing water conservation efforts. Although
not being the most water-withdrawing sector or human activity from nature, buildings
represent a significant challenge for water conservation due to their high heterogeneity of
types and purposes.

Benchmarking water consumption could be as efficient for water conservation as
water-saving systems in buildings on a large scale, especially if the implementation of such
systems lacks information on which buildings need to be improved. In addition, it has
been demonstrated that water-conservation measures supported by benchmarking systems
could increase water savings in buildings. In that sense, benchmarking should be performed
before installing water-saving systems or implementing educational programmes.

In conclusion, there is less chance of success if such efforts do not have references or
benchmarks. Initiatives based on benchmarking are similar to the idea of sustainable devel-
opment in setting goals that may be challenging or even impossible to achieve. However,
the very attempt to improve the indicators leads to improvements in sustainability and
water-conservation processes.

Through this review, the potential of benchmarking to support water-saving initiatives
becomes clear. This could inspire research on the reasons why such initiatives are less
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popular than they should be. Water conservation is critical to a sustainable future, and the
application of novel technologies and methodologies is desirable to address it.

As for general environmental concerns, reducing water consumption in buildings is
mandatory for sustainable development, as it can significantly contribute to overall water
conservation. Buildings are often considered in environmental discussions as a single
system. However, regarding many buildings as a single environmental system highlights
the massive potential for water conservation. Such procedures could assist in decision
making in terms of cities’ management.

4.4. Research Opportunities

Alternative water supply systems (rainwater harvesting and greywater utilisation)
could be included in the characterisation of buildings for benchmarking systems. The
literature does not often address such systems on this topic, which are becoming more
popular and promote physical modifications in buildings, making them highly relevant in
water-consumption studies. Future research could identify specific conditions in bench-
marking systems and define protocols for each technology to be classified according to its
influence on the evaluation. It must be pointed out that including alternative water supply
systems in future buildings should be done with an awareness of the water quality from
these sources, which could be also evaluated in benchmarking procedures.

The literature has not often mentioned the relevance of establishing partial efficiency
criteria in water use. Partial efficiency refers to methodologies that are not based on classical
logic and do not establish “efficiency” and “not efficiency” conditions for buildings. Fuzzy
logic can define efficiency levels that are between those classic logic conditions. This is
useful for deeper efficiency evaluations. Determining the relationship between benchmarks
and other relative efficiency definition outcomes is essential for establishing efficiency
levels that fluctuate between lower- and higher-efficiency scenarios. The establishment of
an efficiency ranking could consider such intermediate levels to support decision making
and enrich the database on the subject.
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Abstract: In the last few decades, groundwater has been the main water supply to the Nuweiba
alluvial fan. However, currently, the main water supply is a desalination plant. The desalination plant
might be vulnerable to malfunctions resulting in a severe drought. In addition, the aquifer type in the
fan is coastal. Hence, replenishing the groundwater is necessary on a long-term basis to overcome
drought events in the case of emergency. To replenish the groundwater using flash-flood water, a
Managed Aquifer Recharge (MAR) system could be installed. This study applies the Geo-Information
System–Multi-Criteria Decision Analysis (GIS-MCDA) method to delineate the feasible locations for
installing a MAR system. To delineate the feasible MAR sites via a potential map, four steps were
performed: problem definition, constraint mapping, suitability mapping, and sensitivity analysis.
The results show that nearly 52% of the study area is suitable for installing MAR. Additionally, around
6% of the study area shows high potential for installing MAR, whereas nearly 20% falls under the
moderate potential class. The potential map shows that the high-potential MAR sites are located at
the western portion of the study area, near the ephemeral stream outlet. The map could be utilized as
a tool for decision-makers to plan a future sustainable development strategy.

Keywords: water resources sustainability; arid climate coastal aquifer; MAR; GIS-MCDA

1. Introduction

The Sinai Peninsula (located in the north-eastern portion of Egypt) has been devel-
oped socio-economically in the last four decades [1]. Thus, sufficient sustainable water
resources should meet the future water demand in order to cope with this socio-economic
development. One of the cities located in Sinai is Nuweiba City. The city was completely
dependent on groundwater as a source of drinking water, and limited agriculture for the
local population many years ago. Recently, a desalination plant has been constructed to
supply the city and touristic resorts with potable water. The city is currently witnessing
an accelerating in development in all urban and social fields. Therefore, it is necessary
to develop the available water resources (conventional and non-conventional) such as
desalinated seawater and storm water, in order to meet the water demand requirements.

The city is located in the Nuweiba alluvial fan between the main ephemeral stream
outlet of the Wadi Watir catchment in the west and the Gulf of Aqaba in the east [2]
(Figure 1). Various features are present in the city: an international harbor, touristic resorts,
and small agricultural farms.

Water 2022, 14, 475. https://doi.org/10.3390/w14030475 https://www.mdpi.com/journal/water
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Figure 1. Location map of the Nuweiba alluvial fan. The figure shows the fan location in Wadi Watir
catchment and the location of the catchment in Egypt.

In light of the city’s rapid growth, desalinated seawater is the main sustainable source
that can meet the consumption requirements. However, it is necessary to search for another
suitable water source to meet the requirements during drought periods. In other words, it
is impossible to rely solely on desalinated seawater to meet the consumption requirements
during emergency periods. In addition, the current water supply in the study area is subject
to the following risks: desalination plant malfunction, petroleum leakage in the sea, and
malfunction of the main intake pipeline to the desalination plant.

Hence, sustainable water resource plans are essential to cope with any future emergent
drought. Thus, most previous studies have demonstrated the feasibility of sustaining
water resources by focusing on either surface water or groundwater in the future. Previous
researchers applied different methods, but most studies lack solutions related to sustaining
water resources in the case of emergencies.

Regarding surface water, Masoud [3] quantified the runoff and recharge volumes for
the main active catchments using the Soil Conservation Service (SCS) model. Milewski
et al. [4] calculated the runoff and recharge volumes for the active catchments in Sinai using
the Soil and Water Assessment Tool (SWAT) model via Remote Sensing (RS) data. Zayed
et al. [5] evaluated water harvesting potential by imposing Integrated Water Resources
Management (IWRM) guidelines based on physical, socioeconomic, environmental, and
institutional data analyses.

Regarding groundwater, Abuzied et al. [2] delineated the groundwater potential zones
in the study area by creating a groundwater potential map using remote sensing (RS) and
geoinformation system (GIS) tools to assess the groundwater resources. Eissa et al. [1]
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modeled the groundwater system using Modular Finite Difference Groundwater Flow
(MODFLOW), Net Geochemical Reactions Along a Flow Path (NETPATH), and Simulation
of Three-Dimensional Variable-Density Groundwater Flow and Transport (SEAWAT) mod-
els to understand the recharge sources to the aquifer. Sallam [6] modeled the suitability
of Aquifer Storage Recovery (ASR) to the system using the linkage between MODFLOW,
MODPATH, and Three-Dimensional Multi-Species Solute Transport (MT3DMS) to evaluate
the recovery efficiency when injecting freshwater into the aquifer. Elewa and Qaddah [7]
mapped the groundwater potential for Sinai using RS and GIS in order to assess the
groundwater resources.

The aforementioned studies focused on sustaining water resources in the future in
relation to the current situation; however, the studies did not address the water resources’
vulnerability to future droughts. Hence, techniques such as MAR could be applied to act as
a back-up system to supply water in the case of emergency. Groundwater management can
mitigate the water scarcity problems and sustain water resources supply in the future [8].
As such, MAR has been applied as a groundwater management tool, especially in arid
and semi-arid regions [9,10]. MAR is defined according to Dillon et al. [11] as the artificial
injection of freshwater into groundwater aquifers to recover water or to gain environmental
benefits. It seeks to replenish the aquifer such that the groundwater is the secondary water
supply, which could be utilized in the case of emergency. To effectively install MAR, the
feasible site locations should be assessed.

Thus, the main objective of this study is to delineate MAR sites. To achieve the
objectives, the following steps were taken: (1) reviewing the literature related to the study
area and delineation methods; (2) acquiring data from previous studies and field trips;
(3) preparing data before applying the delineation method; (4) generating potential maps
showing the MAR delineation locations.

2. Materials and Methods

2.1. Nuweiba Alluvial Fan Aquifer

The total area of the Nuweiba alluvial fan is around 30 km2. The surface elevation
ranges from 0 to 48 m above mean sea level (MSL). The fan is characterized by a steep surface;
the surface’s slope ranges from around 0.3 to 5%, with an arithmetic mean of about 1.4%.
Most of the study area is covered by alluvial dunes in the presence of clastic sediments [12],
whereas the rest is surrounded by urban buildings, roads, and agricultural sites.

Regarding aquifer geometry and formation, Figure 2 shows the hydrogeological cross-
section and the aquifer thickness. The Nuweiba alluvial fan comprises quaternary fine
to coarse sands, gravels, and boulders intercalated by a silty and clayey matrix [13]. The
quaternary deposits form an unconfined heterogeneous water-bearing aquifer. According to
Abbas et al. [12], the aquifer is divided into five layers. The two upper layers consist of fine
to coarse alluvial deposits with a thickness lower than 10 m each. The intermediate layer
consists of Pleistocene sandy clay with 30 to 45 m thickness. The fourth layer comprises
sand and gravel with a thickness ranging from 20 to 40 m. The bottom layer consists of
sand with clay intercalation, and is 20 to 50 m thick. A granitic rock basement under-lays
the bottom layer. Figure 3 represents the aquifer’s geometry.

Regarding aquifer properties, the saturated hydraulic conductivity was determined
by different methods (geo-electrical fieldwork, pumping tests, slug tests, and groundwater
flow model calibration). The hydraulic conductivity values were estimated by Khalil [14]
as 54 m/day by interpreting geo-electrical data, and 1 to 12 m/day by Himida [15] via
interpolating the pumping test analysis results. These results were calibrated using ground-
water flow models by Eissa et al. [1] and Salam [6] as 4 m/day for the three upper layers,
11 m/day for the fourth layer, and as 0.001 for the lowermost layer. Additionally, Him-
ida [15] calculated the transmissivity parameter such that the value ranged from around 65
to 500 m2/day.
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Figure 2. Hydro−geological cross−section of the study area (source: Abbas et al. [12]).

Regarding the unsaturated zone’s properties, its vertical permeability was measured
and interpolated by Himida [15] by applying infiltration tests at specified points, and this
was found to range from approximately 1.75 to 9.18 m/day. Besides this, Eissa et al. [1]
measured the vertical permeability at five different locations, with a geometric mean of
0.19 m/day. The porosity and tortuosity were determined by Khalil [14] via geo-electrical
analysis as 0.3 and 1.348, respectively. The storativity parameter ranges from around 0.0003
to 0.01 according to field pumping tests [15].

Regarding groundwater recharge and discharge, the aquifer is naturally recharged by
rainfall precipitation [16]. The mean annual recharge volume has been estimated, respec-
tively, by Himida [15], Eissa et al. [1], and Eissa et al. [13] as 1.83, 1.58, and 2.16 Mm3. In ad-
dition, groundwater pumping started in the year 1982 with a pumping rate of 870 m3/day,
and increased slightly from the year 1982 to 1998, reaching a rate of 3900 m3/day, followed
by a slight decrease until the year 2013, reaching a rate of 1400 m3/day [13].

Regarding groundwater characteristics, the groundwater table level was measured,
respectively, in 1994 and 2013 by Himida [15] and Eissa et al. [1]. The groundwater level
varies from 0.23 to 1.75 m above MSL (Figure 3). Himida [15] calculated the groundwater
hydraulic gradient, and found that it varies from 0.00023 to 0.0027, with an arithmetic
mean of 0.0015 [15]. Since the aquifer is classified as a coastal aquifer, the Total Dissolved
Solids (TDS) concentration of the groundwater is relatively high if it is compared to the
fresh groundwater of the in-land aquifers (higher than 1000 mg/L) (Figure 3). The TDS
concentration was found to range from around 2000 to 8000 mg/L in 1994 [15], and from
about 100 to 14,000 mg/liter in 2009 [1].
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Figure 3. Aquifer and groundwater characteristics.

2.2. Data Acquisition and Preparation

Delineating the MAR sites depends on many factors, such as aquifer hydrogeology,
topography, water quality, hydrometeorology, and management (Figure 4) [8]. Thus,
data related to the aforementioned fields should be acquired. Our data were collected
from the previous studies, except surface water quality, flow discharge hydrographs, and
environmental impact assessment, due to the lack of data availability.

 

Figure 4. Data required for delineating MAR sites. (Source: Sallwey et al. [8]).
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Regarding the aquifer’s properties, aquifer geometry data were acquired from geo-
physical fieldwork and analyses conducted by Abbas et al. [12]. Additionally, aquifer
hydrogeology information was collected from Himida [15] in the form of contoured maps
based on field measurements. Himida [15] mapped the vertical permeability, groundwa-
ter table, transmissivity, and storativity. In addition, hydraulic conductivity data were
collected from Eissa et al. [13] and Sallam [6] by calibrating the groundwater flow model.
The groundwater hydraulic gradient was processed by ArcGIS 10.7.1 (developed by ESRI
(Environmental Systems Research Institute) located in Redlands, California, USA) by using
the groundwater table as input data.

Surface topography was prepared by downloading the Digital Elevation Model (DEM)
raster file of type Shuttle Radar Topography Mission (SRTM) from the surface elevation
data of Consortium for Spatial Information (CGIAR-CSI) geospatial community with a
resolution of 30 m. Additionally, the spatial data (surface slope, distance from the shore)
were processed by analyzing the acquired DEM data using ArcGIS10.7.1 software. In
addition, LULC were classified by downloading Landsat 7 images from USGS, followed by
image processing using ArcGIS 10.7.1 software.

The groundwater quality data were acquired from Himida [15] and Eissa et al. [1],
taking into account the spatial variability. Regarding hydro-meteorological data, precip-
itation and runoff data were obtained from Al Zayed et al. [5] and Khalil [14], whereas
the groundwater natural recharge was estimated by Himida [15], Eissa et al. [1], and Eissa
et al. [13]. However, the hydro-meteorological data are not spatially distributed in the study
area. Thus, hydro-meteorological data were excluded from the gathered data.

Since the groundwater level and salinity were last measured in the year 2009, a field
trip was performed on 24 July and 25 July 2020 (Appendix A). The main objective of the trip
was to check the data collected from the previous studies. Additionally, it was necessary to
investigate the current land use and the main water supply in the study area.

2.3. GIS-MCDA Method Set-Up

To apply a MAR system at a specific site, feasibility studies should be carefully con-
ducted to check the suitable elements required for a successful MAR installation. The
elements include water source for recharge (surface, storm, reclaimed, potable, desalinated),
aquifer for storing and recovering water (geological strata type, hydrogeological characteris-
tics, groundwater hydro-chemistry characteristics, aquifer mineralogy), and a suitable site
location for installing MAR (hydrogeology, topography, soil type, land use, climate).

RS and GIS tools have been widely used in the field of hydrogeology. These tools are
powerful for use in acquiring, representing, and analyzing thematic layers characterized by
spatial variability (topography, hydrogeology, hydro-chemistry, etc.) [16]. Researchers have
created potential maps to manage groundwater by applying the aforementioned tools to
give the necessary information to decision-makers in order to achieve the following objec-
tives [16]: (i) exploring and assessing the groundwater resources, (ii) delineating artificial
recharge sites, (iii) assessing the groundwater’s vulnerability to pollution, (iv) estimating
natural recharge distribution, (v) analyzing and monitoring hydrogeological properties,
(vi) modeling the groundwater flow and pollution.

Therefore, potential maps could be utilized as a tool to delineate the most feasible MAR
sites for the decision-makers. Different decision-making methods have been applied to
create potential maps: statistical methods [17–19], machine learning [20–22], multi-criteria
decision analysis [9,10,23] and groundwater numerical modeling [24].

Most researchers have combined the two methods to delineate feasible MAR sites: GIS
and Multi-Criteria Decision Analysis (MCDA). The combination of the aforementioned
methods was firstly introduced by Malczewski [25] as GIS-MCDA. It is defined as a group
of methods applied by overlaying and aggregating the spatial thematic layers to provide
the necessary information for the decision-making process [26]. Despite the presence of
several method combinations (as mentioned above) for creating potential MAR site location
maps, GIS-MCDA is the most common method among researchers [8].
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Most studies applied a specific methodology to select the best MAR sites [27–29].
However, in this study, the locations of the best sites are delineated by classifying the
study area into different zones according to site feasibility. This study adopted a GIS-based
holistic approach. This approach was introduced by [9] and encompasses the following
steps (Figure 5): (i) problem definition (checking the elements and specifying the methods),
(ii) constraint mapping (screening out unfeasible sites), (iii) suitability mapping (calculating
overall score by combining criteria via a weighting factor), (iv) sensitivity analysis (checking
the robustness of the weighting factors).

 

Figure 5. Flowchart showing GIS-MCDS framework (source: Rahman et al. [9]). The figure depicts
that 4 major steps should be implemented before delineating the MAR location.

2.3.1. Constraint Mapping

In this study, an intersection operator was chosen for this process. The criterion value
of the intersection operator is unity and zero. An intersection operator is practiced by
assigning a unity value when the criteria satisfy the logical conditions, and vice versa [9].

Before applying this method, the constraint criteria were validated using the criteria
reviewed by Sallwey et al. [8] (Table 1). Afterwards, the chosen criteria were converted
from contoured maps to thematic raster layers with a 250 m pixel size using ArcGIS10.7.1
software. The pixel size was assigned based on grain size classification (medium sand in
this study), as represented by Lagacherie et al. [30]. Appendix B shows the criterion of
thematic layers for the constraint mapping.

Table 1. Validating the criteria reviewed by Sallwey et al. [8] for constraint mapping in the study area.

Constraint Criteria Validity Reason

LULC (Land Use Land Cover) Valid Presence of different LULC classifications (bare soil, urban areas, Sabkha, and vegetation)
Surface Slope Valid High slope values in some areas (>3%)

Geology Invalid Homogenous surface layer (medium sand)
Unsaturated Thickness Valid Low unsaturated thickness in some areas (<5 m)

Soil Infiltration Rate Invalid High vertical permeability in all areas (>0.65 m/day)

Distance from the Pollution Source Valid Presence of sea as a pollution source in the study area. Rahman et al. [9] recommended that any
area at a distance less than 500 m from the pollution source is unsuitable for installing MAR.
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2.3.2. Suitability Mapping

The primary function of suitability mapping is classifying the potential for installing
the site at a specific location. During this process, weights are assigned to the criteria
and combined to get a score for each area [26]. The assigned weights are estimated by a
technical expert or a decision-maker based on field experience [8]. Suitability mapping
comprises four steps: (1) choice of criteria, (2) hierarchy of criteria, (3) standardization of
criteria, (4) relative weights of criteria and (5) combination of criteria.

Choice of Criteria

Choosing the criteria depends on the problem statement and site conditions [8]. The
more complex the problem is, the more criteria are chosen. To determine the criteria to
be selected, Sallwey et al. [8] reviewed previous studies to collect all possible criteria that
could be applied for this process. We screened out the criteria to choose the most suitable
ones for the problem and the case study (Table 2). Appendix B shows the chosen criterion
thematic layers for suitability mapping.

Table 2. Validating the criteria for suitability mapping as reviewed by Sallwey et al. [8] in the study area.

Type Criteria Validity Reason

Aquifer hydrogeology

Flow capacity
(vertical permeability) Valid -

Storage capacity
(unsaturated thickness) Valid -

Storage capacity
(saturation thickness) Valid -

Flow capacity
(hydraulic gradient) Valid -

Hydrological system Precipitation Invalid Small scale area where the spatial distribution of precipitation
cannot be applied

Runoff Invalid Lack of data related to the spatial distribution of runoff coefficient

Management Economic benefits Invalid Lack of cost–benefit analysis study
Environmental impact assessment Invalid Lack of environmental impact assessment study

Surface

Geology Invalid Homogeneity of the surface layer
Geomorphology (surface slope) Valid -
Hydrography (drainage density) Invalid The study area scale is small

LULC Invalid Unfeasible sites were eliminated in the constraint mapping process
Soils Invalid Homogeneity of the surface layer

Water quality Groundwater quality (salinity) Valid -
Surface water quality Invalid No presence of perennial stream or lake in the study area

Hierarchy of the Criteria

After selecting the criteria, the criteria should be divided into three groups in a
hierarchical order. Most of the previous studies adopted the following hierarchy according
to the priority of the following criteria: (1) aquifer hydrogeology (unsaturated thickness and
vertical permeability), (2) topography (surface slope) and groundwater quality (salinity),
and (3) aquifer hydrogeology (saturated thickness and hydraulic gradient).

Standardization of Criteria

To combine the criteria for suitability mapping, the criterion value should be converted
to a uniform scale. The method is known as standardization. Standardization is applied
by different methods: linear and step functions. In this study, the linear method was
practiced. The results range from 0% (assigned for the lowest suitable criterion value) to
100% (assigned for the highest suitable criterion value). Appendix B shows the criterion
thematic layers after standardization.
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Relative Weights of the Criteria

Relative weights of the criteria were conducted by applying the Analytical Hierarchy
Process (AHP) using a pair-wise matrix. AHP was used because it is the most common
method in the literature. The matrix was calculated based on the proposal assigned by
Saaty [31], as shown in Equations (1) and (2) [21]. Additionally, a consistency check has
been performed to verify the assigned relative weights.

A =

⎛⎜⎝ 1 · · · a1n
...

. . .
...

1
a1n

· · · 1

⎞⎟⎠ (1)

where A is the pair comparison matrix, and 1 to a1n is the scale of importance determined
by an expert [25].

W =
n

∑
j=1

wjaij/N (2)

where W is the vector of weighting factors w1, w2, . . . ..wn, aij is the normalized scale of
importance determined by an expert, and N is the number of the criteria [25].

Combination of Criteria

After assigning weighting and standardizing processes, the overall score is calculated
by combining the weighting factors. Weighted Linear Combination (WLC) and weighted
average methods were chosen for combining the thematic layers. WLC is an overlay-
weighted method applied in most studies before selecting the most suitable MAR site
location [27].

2.3.3. Sensitivity Analysis

Sensitivity analysis was conducted to check the results’ robustness and determine
the uncertainty in the hierarchy and the assignment of relative importance [31]. Ordered
Weighted Averaging (OWA) was utilized for the analysis, as OWA is characterized by the
presence of a fuzzy linguistic quantifier, which is capable of manipulating the weighting factor.
OWA was first proposed by Yager [32] and can be calculated using Equation (3). Table 3
represents the weighting values of weighted average, WLC and the sensitivity analysis.

OWAi =
n

∑
j=1

⎛⎝( j

∑
k=1

uk

)α

−
(

j−1

∑
k=1

uk

)α
⎞⎠Wij (3)

where Wij is the weighted factor for the criterion value i, uk is the criteria weight reordered
according to Wij, and α is the parameter linguistic quantifier. α equals 0 when at least one
of the criteria is satisfied, resulting in no trade-off, whereas α = 1 corresponds to WLC. If
α = ∞, then most of the criteria are satisfied, resulting in no trade [32].

Table 3. The weighting values at different linguistic quantifier values.

Criteria\α Weighted Average WLC 0.50 1.00 2.00 5.00 10.00 20.00

Unsaturated thickness 0.1667 0.32 0.56 0.32 0.10 0.00 0.00 0.00
Vertical permeability 0.1667 0.32 0.23 0.32 0.30 0.10 0.01 0.00

Surface slope 0.1667 0.13 0.08 0.13 0.18 0.16 0.06 0.00
Salinity 0.1667 0.13 0.07 0.13 0.22 0.31 0.26 0.10

Saturated thickness 0.1667 0.05 0.03 0.05 0.10 0.19 0.25 0.23
Hydraulic gradient 0.1667 0.05 0.03 0.05 0.10 0.24 0.42 0.67

Sum 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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3. Results

Constraint mapping, suitability mapping and sensitivity analysis were performed
(Figure 6). Suitability mapping was undertaken using two methods: WLC and weighted
averaging. High suitability scores indicate high potential for installing MAR and vice
versa. WLC involves applying the AHP hierarchy according to its priority based on field
experience. Regarding the WLC map, the overall suitability scores are 6.34% (high potential
MAR sites), 20.73% (moderate potential MAR site), and 24% (low potential MAR site).
The most suitable locations are situated in the western portion of the study area near
the ephemeral stream outlet. The most suitable locations are zoned (Zone I). They are
characterized by good hydrogeological and groundwater quality conditions (Table 4).

Table 4. The range of aquifer parameters under high potential MAR conditions.

Criteria Range Status Reason

Unsaturated thickness (m) 32.45–42.89 Satisfied High unsaturated thickness
Vertical permeability (m/day) 6.96–9.17 Satisfied High vertical permeability

Surface slope (%) 0.94–1.27 Satisfied Low surface slope
Salinity (mg/L) 2368.22–3443.26 Satisfied Low salinity

Saturated thickness (m) 31–37.24 Unsatisfied Low saturated thickness
Hydraulic gradient (%) 0.071–0.05 Satisfied Low hydraulic gradient

The sensitivity analysis is defined as a change in the overall suitability score due
to a change in the weighting factors assigned by the decision-makers or experts. In this
study, sensitivity analysis was performed using the OWA method, whereby the weighting
factor was changed to determine the effect of changing the criterion’s value on the results
using quantifier α. Quantifier α ranges from 0.5 to 20. The results show a close agreement
between the sensitivity analysis map and the suitability map in the case of a high potential
MAR site location (Zone I) (Figure 6).

Table 5 shows the GIS-MCDA results summary. The table represents the fractions of
the total area occupied by each potential MAR class.

Figure 6. Cont.
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Figure 6. Study results showing the constraint mapping, suitability mapping using weighted averag-
ing, WLC, and sensitivity analysis.

Table 5. GIS-MCDA results summary. (Note: the values represent the area proportion in a percentage).

High Potential Moderate Potential Low Potential Unfeasible

Constraint mapping 51.21 48.79
Suitability mapping (weighted average) 5.85 27.56 17.80 48.79

Suitability mapping (WLC) 6.34 20.73 24.14 48.79
Sensitivity analysis (α = 0.5) 9.02 18.04 24.15 48.79
Sensitivity analysis (α = 2.0) 4.87 23.90 22.44 48.79
Sensitivity analysis (α = 5.0) 10.73 34.38 6.10 48.79

Sensitivity analysis (α = 10.0) 15.61 31.82 2.78 48.79
Sensitivity analysis (α = 20.0) 30.73 17.7 2.78 48.79

4. Discussion

Firstly, the study area is suitable for installing the MAR system because MAR elements
are satisfied (source of water, adequate aquifer, land for construction). Additionally, the
following MAR structures are feasible to use for the study area: infiltration pond, controlled
flooding, percolation pond, recharge releases, open wells and shafts, percolation tanks.
However, further socio-economic and technical studies are required to decide on the most
suitable structure. In addition, environmental studies are necessary to check whether the
installed structure positively affects the environment of the hydrogeological system.

The suitability map has indicated that the high potential sites for installing MAR are
located in the western portion in the vicinity of the study area, near the ephemeral stream
outlet. Additionally, the constraint map has shown that sites near the shoreline are unfeasible.

The suitability map has been compared with the criterion thematic layers, and it has
been observed that a close agreement occurs between the suitability map and the criterion
thematic layers, except for the saturated thickness, where low criterion values are found in
high potential scoring areas, and vice versa. This means that the suitability map reflects not
only the potential sites for installing MAR, but also the locations of areas characterized by
good aquifer hydrogeological conditions.
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The sensitivity analysis indicates that the change in assigned weights does not signifi-
cantly affect the results at zone I (high potential MAR site), which ensures the robustness of
the suitability map at high potential sites.

The suitability map has been compared with the previous study conducted by Sal-
lam [6], who studied the feasibility of installing ASR in the study area. The comparison
shows that the highly potential MAR site locations on the suitability map are near to the
suggested ASR site locations “A1”, “A2” and “A3” proposed by Sallam [6] (Figure 6).
Sallam [6] concluded that the “A1”, “A2” and “A3” site locations are characterized by a
high recovery efficiency at low dispersivity compared to the latter, especially “A1”, using
the numerical modeling method. This strongly agrees with the results obtained from the
GIS-MCDA method in this study.

The suitability map is a tool for decision-makers, and it can be utilized along with
other maps in the study area, such as the groundwater potential map, the water allocation
map, the flood plain map, etc. Even though the suitability map could contribute to deciding
the location of MAR, it has been created without considering the decision rules set by the
decision-maker, economic benefits (cost–benefit analysis), risk assessment studies, and
environmental benefits (environmental impact assessment). In addition, this study has
applied just one approach (GIS-MCDA); however, different methods can identify MAR
locations (statistical methods, machine learning, groundwater numerical modeling).

The MAR structure can be applied for the conjunctive use of the surface, groundwater,
reclaimed water, and desalinated seawater. Hence, further studies are needed to impose
the conjunctive use of water resources using an IWRM framework.

5. Conclusions

The main aim of this research is to delineate the most feasible sites for installing
MAR using the GIS-MCDA approach. To delineate the feasible sites, a constraint map and
suitability maps have been created. The criteria utilized for screening out the unfeasible
sites in the constraint mapping process are as follows: LULC, surface slope, unsaturated
thickness, and distance from shore. The constraint map depicts that around 48% of the
study area is inappropriate for use as MAR (located mostly in the eastern portion of
the study area). Additionally, the criteria utilized to develop a suitability map include
vertical permeability, unsaturated thickness, surface slope, salinity, hydraulic gradient,
and saturated thickness. The suitability map is divided into four zones according to the
feasibility of installing a MAR site: zone I (high), zone II (moderate), zone III (low) and
zone IV (infeasible). The suitability map shows that the high and moderate potential areas
constitute, respectively, around 6% and 20% of the study area.

To sum up, the suitability map indicates that MAR could be installed at zone I (lo-
cated in the western portion of the study area near the ephemeral stream outlet), where
most conditions for installing MAR are fulfilled, as the zone is characterized by high
vertical permeability (6.96–9.17 m/d), high unsaturated thickness (32.45–42.89 m), low sur-
face slope (0.94–1.27%), low salinity (2368.22–3443.26 mg/L), and low hydraulic gradient
(0.071–0.05%).

Further studies should be conducted to check the efficiency of replenishing the aquifer
after installing the MAR system at the best locations by modeling the groundwater flow and
transport. In addition, it is important to identify the risks that may cause MAR malfunction,
such as clogging problems and hydro-geochemical reactions during operating MAR. A
pilot project should be constructed to perform fieldwork (injection tests, infiltration tests).
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Appendix A
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Figure A1. (a) Dug wells. (b) A basin located beside the hand-dug well for storing the extracted
groundwater after the pumping phase. (c) Drilled well. (d) Forest trees irrigated from groundwater.
(e) Nuweiba desalination plant. (f) Storage tank in Nuweiba desalination plant.
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Appendix B

 

Figure A2. Constraint map criteria thematic layers.

Figure A3. Cont.
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Figure A3. Suitability map criteria thematic layers before and after standardization.
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Abstract: The ecological restoration projects in the Loess Plateau (LP) has significantly altered the
underlying surface conditions, coupled with a warming–wetting climate, which has profoundly
affected the regional water cycle. Evaluating the response of runoff to external environmental change
and quantitatively identifying the contribution of anthropogenic interference and climate change are
prerequisites for efficient utilization of water resources in arid/semi-arid regions. Daily recorded
data of hydrological and meteorological elements between 1969 and 2019 and the elasticity coefficient
method based on Budyko hypothesis were used for attribution analysis of runoff change in the
Yanhe River basin. The results show the following: (1) the measured runoff decreased significantly
(p < 0.05, –0.2845 mm year−1), and suggested substantial difference before and after 2000; (2) the
area of woodland and grassland had a sharp increase from 2000, while the elasticity of runoff to
precipitation, potential evapotranspiration (ET0), and vegetation all decreased; (3) the improvement
of underlying surface conditions has become the leading factor of runoff reduction with a contribution
of 96.78%; (4) the impact of vegetation restoration on runoff reduction is effective within a certain
threshold. We consider that more attention should be paid to the afforestation scale and its possible
negative eco-hydrological effects in future ecological restoration.

Keywords: Loess Plateau; anthropogenic disturbance; runoff; elasticity coefficient; Budyko
hypothesis; warming–wetting

1. Introduction

A changing environment strongly influenced by climate and anthropogenic inter-
ference can directly affect the land surface process [1] and alter the mechanism of runoff
generation and concentration [2]. Decreasing trends in runoff and sediment loads have been
observed in approximately 50% of the world’s rivers, due to the effects of climate change,
when coupled with the impacts of other natural and anthropogenic disturbances [3]. The
middle reaches of the Yellow River (YR) in China, which is located in an arid/semi-arid
region, have undergone particularly profound declines in runoff, and have gradually be-
come areas of considerable research [4]. Moreover, the sharp reduction of runoff has led to
new problems such as the serious shrinkage of the channel in the lower reaches and the
reduction of the flood capacity [5].

As one of the common concerns in the field of global water cycle research, runoff
dynamic change is particularly sensitive to climate [6,7]. The variation of meteorological
elements such as precipitation, temperature, wind speed, and radiation change the cycle
and distribution of water resources, and then affect river runoff [8]. China has experienced
significant climate change, with the warmest 20 years since the 20th century. Studies have
found that the temperature and precipitation have increased in the past 10–15 years in
northwest China, exhibiting a trend of warming–wetting [9,10]. In particular, the tempera-
ture in the source of the YR [11] and part of the LP [12], showed a faster increase than the
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average level for China and the world. The ecological environment and human lives may
be adversely affected by extreme climate. Extreme temperature events may lead to glacier
melting, reducing ice and snow reserves located upstream, then weakening the ability of
glaciers to recharge runoff [13]. Extreme precipitation events may result in infiltration-
excess runoff production, causing surface scour and then destroying vegetation roots.

As another important factor, human activities affect hydrological processes mainly
through the construction of water conservancy projects [14], the change of underlying
surface caused by vegetation restoration [15], etc. Vegetation is an important part of the
terrestrial ecosystem and also the most sensitive component of climate change. Since 1999,
because of the implementation of ecological restoration projects such as the Grain for Green
Project (GGP), the vegetation coverage in arid/semi-arid areas of northwest China has
been significantly improved [16], having a profound impact on the underlying surface
conditions and hydrological processes in the YR basin. Some scholars believe that the
ecological restoration measures have played an absolute leading role in the reduction of
runoff and sediment loads in the YR basin [17,18]. However, due to the diversity of the
ecosystem, the resources required by vegetation growth cannot be met without limit, while
the impact of ecological restoration measures on hydrological processes depends on the
scale and coverage of vegetation.

At present, monitoring vegetation dynamics and quantifying the response of vege-
tation growth to climate has become an important field of global change research in the
context of frequent extreme climate events [19,20]. Some scholars have studied the corre-
lation between normalized difference vegetation index (NDVI) variation characteristics
of different vegetation types and climate factors at different scales. The results showed
that vegetation growth was very sensitive to temperature and precipitation, and climate
change has a significant impact on vegetation growth [21], especially in arid/semi-arid
areas [22], where extreme climate leads to a decrease in vegetation coverage. In recent
years, under the background of large-scale vegetation restoration, have the changes of
climate and underlying surface conditions had new effects on runoff in the Loess hilly-gully
region with complex geographical conditions? How does the passive remodeling process of
hydrological connectivity caused by dramatic changes in underlying surface, affect runoff?
The revelation of these concerns will be beneficial in understanding the geographical
differentiation of the hydrological effects caused by vegetation and climate change.

Several methods have been applied to quantitatively distinguish the impact of climate
and anthropogenic disturbance on runoff, such as the hydrological model [23], the elasticity
coefficient [24], the watershed comparative analysis [25], etc. Among them, the elasticity
coefficient, based on the Budyko hypothesis, has been widely used in the study of the law
of runoff variation, due to its good performance in distinguishing the sensitivity and contri-
bution of the potential factors. For half a century, many scholars have carried out theoretical
derivation and empirical research on the Budyko empirical model [26,27].Current studies
mainly tend to modify the control parameters in the empirical model, and some research
conclusions directly attribute the coupling parameters of precipitation and temperature to
the contribution of the underlying surface [28].The research results obtained by using this
method have also been widely reported. Zheng et al. [29] analyzed runoff variability in the
alpine region (source of the YR) by using the elasticity coefficient method, and found that
the contribution of land-use and climate to runoff change were 70% and 30%, respectively.
Liu et al. [30] analyzed the variation of the streamflow in a water diversion project in the
semi-humid region by using six different elasticity coefficient models based on the Budyko
hypothesis, and found that climate change was the main factor leading to the decline of
streamflow, contributing 84.1–90.1%. Li et al. [4] analyzed runoff changes in 12 semi-arid
basins (the middle reaches of the YR), based on the Choudhury–Yang model and the elastic
coefficient, and found that vegetation was the leading factor of runoff decline. However,
under the background of climate fluctuation and frequent extreme climate, the application
of the Budyko model in the attribution analysis of runoff change in the ecologically fragile
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Loess hilly-gully region requires further consideration of the specific conditions of the
underlying surface of the study area.

Above all, it is of theoretical and practical significance to quantitatively distinguish
the effects of anthropogenic disturbance and climate variation on runoff, so as to deeply
appreciate the process of water cycle and improve the management measures of water
resources. The main objectives of this paper are to (1) investigate the trends of the main
hydrological and meteorological elements in the Yanhe River basin from 1969 to 2019,
and study the substantial difference before and after the change point; (2) analyze the
transfer of land-use structure caused by the GGP; (3) calculate the elasticity of runoff to
precipitation, ET0, and vegetation; and (4) distinguish the contributions of the above factors
to the variation of runoff. This study is structured as follows: In Section 2, the study area,
data sources, and methods used in our study are introduced in detail. In Section 3, the trend
and elasticity of runoff are evaluated, the land-use transfer processes are identified, and the
contributions of climate and anthropogenic interference are calculated. In Section 4, the
eco-hydrological effect of vegetation restoration and the uncertainty in attribution analysis
of runoff change are discussed. The conclusions are proposed in the final section.

2. Materials and Methods

2.1. Basic Data

This study primarily focuses on the area above the control section of the Ganguyi
Hydrological Station in the Yanhe River basin, encompassing an area of 5891.64 km2

(Figure 1), with a relative altitude difference of 972 m. From 1969 to 2019, the annual
average precipitation was 489.79 mm, the maximum precipitation was 844.60 mm, and the
minimum was 296.46 mm. The annual precipitation distribution was mostly concentrated
in the flood season (from June to September), accounting for more than 70% of the total
annual precipitation. The annual average temperature was 9.4 ◦C, the annual average wind
speed was 1.3–3.3 m s−1, the annual average sunshine was 2418 h, the accumulated ≥0 ◦C
annual total temperature was 3878.1 ◦C, the annual average frost-free period was 172 days,
and the annual average evaporation was about 1000 mm.

(a) (b)

Figure 1. Location of the study area: (a) location of Yanhe River Basin on the Loess Plateau,
(b) distribution of hydrological and weather stations.

The daily measured runoff data used in the paper were recorded by the Ganguyi
Hydrological Station in the middle reaches of the YR. The meteorological records, such as
precipitation, temperature, etc., were obtained from five stations: Ansai, Jingbian, Yan’an,
Yanchang, and Zhidan.
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Land-use changes were determined using remote sensing images from 1985, 1995,
2000, 2008, and 2015 (resolution 30 m × 30 m). Land-use was mapped by conducting
supervised classifications on the images and through manual visual interpretations, using
ERDAS 9.2 and ArcGIS 10.2 software.

2.2. Data Processing and Analysis
2.2.1. Potential Evapotranspiration

The ET0 was calculated according to the following equation [31]:

ET0 =
0.408Δ(Rn–G) + γ 900

Tα+273 u2VPD
Δ + γ(1 + 0.34u2)

(1)

where ET0 is the daily potential evapotranspiration (mm·d−1), Δ is the slope of saturated
vapor pressure in relation to air temperature (kPa·◦C−1), Rn is the net radiation at the
canopy surface (MJ·m−2·d−1), G is the soil heat flux density (MJ·m−2·d−1), γ is the psy-
chrometric constant (kPa·◦C−1), Tα is the mean daily air temperature at 2 m height (◦C),
u2 is the wind speed at 2 m height (m·s−1), VPD is the vapor pressure deficit (kPa). The
annual ET0 was obtained by the accumulative daily values.

2.2.2. Time-Varying Trends in Hydrological and Meteorological Elements

The daily measured runoff (calculated by dividing the total annual volume of stream
flow by the upstream basin area, mm), precipitation, and ET0 data were collected, sorted
and counted on an annual basis from 1969 to 2019. The Mann–Kendall (MK) method [32,33]
and a double mass curve were also applied to identify the abrupt change of runoff. The
fluctuation of each factor was evaluated by the variation coefficient, calculated according
to the following equation:

Cv = σ/D (2)

where σ and D are the standard deviation and average of time series records, respectively.

2.2.3. Attribution Analysis of Runoff Change

For a closed watershed, the water balance equation at the multi-year scale can be
expressed as follows:

R = P − ETa − ΔS (3)

where R is the runoff (mm), P is the precipitation (mm), ETa is the actual evapotranspiration
(mm), ΔS is the change in soil water storage (mm). The variation of soil water storage can
be considered constant over a long-time scale (more than 10 years), so Equation (3) can be
simplified into the following equation:

R = P − ETa (4)

The Budyko hypothesis holds that, there is a coupling equilibrium between water and
heat in a watershed under certain climate and vegetation conditions [34]. The relationship
between annual mean precipitation, ET0 and ETa can be described by an empirical curve.
The ETa over a long-time scale can be estimated by the Budyko models. Among them,
the Choudhury–Yang [27] model (as follows), obtained through empirical or analytical
methods, was widely used with better application effect.

ETa =
P × ET0

(Pn + ET0)
1/n (5)

where n is the parameter reflecting the characteristics of the underlying surface, includ-
ing landform, soil, and vegetation. The landform, soil, and other factors in the study
area did not change significantly during the study period. Therefore, the parameter n
was mainly determined by land-use/vegetation cover change and can be calculated by
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Equations (4) and (5). It is generally believed that the increase of n was caused by the
improvement of vegetation cover in the basin.

The elasticity coefficient refers to the sensitivity of the dependent variable to indepen-
dent variable [35]. The elasticity of runoff regarding potential factors can be expressed by
the following equation:

Ex = lim
Δx/x→0

[
ΔR/R
Δx/x

]
=

∂R
∂x

× x
R

(6)

where R is the runoff (mm) and x is a factor (such as precipitation, ET0 or vegetation) that
can influence the runoff. A positive (negative) elasticity coefficient of the x factor suggests
that an increase (decrease) in the x variable will cause an increase (decrease) in runoff. The
greater the absolute value of the elasticity coefficient, the higher the sensitivity.

Combining Equations (4)–(6), we can derive:

ΔR = ∂ f
∂P dP + ∂ f

∂ET0
dET0 +

∂ f
∂n dn

=
[

∂R
∂P

P
R

]
ΔP
P R +

[
∂R

∂ET0

ET0
R

]
ΔET0
ET0

R +
[

∂R
∂n

n
R

]
Δn
n R + δ

= εP
ΔP
P R + εET0

ΔET0
ET0

R + εn
Δn
n R + δ

= CP + CET0 + Cn + δ

(7)

where CP, CET0 , and Cn make up the contribution of precipitation, ET0 and n to the change
of runoff, respectively, εP, εET0 , and εn make up the elasticity of runoff to precipitation, ET0
and n, respectively, δ is the systematic error.

3. Results

3.1. Identification of Abrupt Change in Runoff

The result of the MK method showed that the UF(k) and UB(k) statistical curves
generated for runoff had an intersection in 2000 (Figure 2a). The intersection was within the
critical value (α = 0.05, Y = ±1.96), indicating that the temporal sequence abruptly changed
in 2000.

(a) (b)

Figure 2. Analysis of runoff abrupt change: (a) MK mutation test, (b) double mass curves of
precipitation-runoff.

Based on the result of MK analysis, the study period was divided into a reference
period (1969–2000, PI) and a change period (2001–2019, PII), then a double mass curve
was performed on the precipitation-runoff (Figure 2b). As shown, the correlations (R2) of
the fitted trend line of the above cumulative quantities were all relatively high (p < 0.001)
whether during PI or PII. The slope of the fitting curve changed significantly in 2000, which
was consistent with the conclusion of the MK method.

3.2. Inter-Annual Alteration in Hydrological and Meteorological Elements

Annual hydrological and meteorological records indicated that the observed runoff
(Figure 3a) significantly decreased (p < 0.05, –0.2845 mm year−1) from 1969 to 2019, while the
ET0 (Figure 3b) exhibited an insignificant upward trend (p < 0.001, 4.6696 mm year−1). The
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precipitation (Figure 3c) also showed an overall upward trend (p > 0.05, 1.3795 mm year−1),
but only 3.48% of the total variance can be explained by the timing of the measurement.

(a) (b)

(c)

Figure 3. Evolution law of hydrological and meteorological elements: (a) runoff; (b) ET0;

(c) precipitation.

The different performance of hydrological and meteorological elements in PI and PII
are shown in Figure 4. The precipitation increased from 472.27 mm (PI) to 519.30 mm
(PII), with a relative change rate of 9.96% (Figure 4a). The variation range of precipitation
narrowed in PII, but the data points were denser away from the median and there were
outliers deviating greatly from the box, indicating the frequency of extreme precipitation.
The ET0 increased from 1298.07 mm (PI) to 1422.79 mm (PII), with a relative change rate
of 9.61% (Figure 4b). The variation range of ET0 expanded considerably in PII, almost all
data points were distributed away from the median, close to the extrema. This suggested
that the ET0 fluctuated greatly during PII, which may be related to the surface disturbance
caused by the GGP.

Compared with PI, the runoff in PII decreased by 8.82 mm, with a relative change of
–25.42% (Figure 4c). Especially in the early 21st century (2000–2009), the average runoff
decreased to 24.90 mm, 28.24% lower than that before 2000, while the decline trend has
slowed down since 2010. The variation range of runoff narrowed significantly during PII,
but there were many outliers far away from the box, which was considered to be related to
the occurrence of extreme precipitation events.

The statistics of the intergenerational level changes of each element (Table 1) showed
that the variation coefficient of runoff and precipitation both initially decreased before
subsequently increasing, reaching their maximum between 2010 and 2019. The variation
coefficient of ET0 experienced a gradual increase and then decreased slightly, with a
maximum between 1990 and 2010.
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(a) (b)

(c)

Figure 4. Characteristics of hydrological and meteorological elements during reference period and
change period: (a) precipitation; (b) ET0; (c) runoff.

Table 1. The variation coefficient of hydrological and meteorological elements in the past 50 years.

Period Runoff Precipitation ET0

1969–1979 0.318 0.217 0.024
1980–1989 0.250 0.198 0.032
1990–1999 0.245 0.184 0.038
2000–2009 0.300 0.177 0.038
2010–2019 0.414 0.253 0.028
1969–2019 0.340 0.074 0.222

3.3. Elasticity of Runoff to Climate and Vegetation

As shown in Table 2, during the whole study period (1969–2019), the elasticity coeffi-
cient of runoff to precipitation and ET0 were 0.166 and –0.039, respectively. This indicates
that, when precipitation or ET0 increased by 10%, runoff would increase by 1.66% or
decrease by 0.39%, respectively, and vice versa. The elasticity coefficient of runoff to the un-
derlying surface parameter n, which represented vegetation change, was –1.738, indicating
that runoff would be decreased by 17.38% when vegetation coverage increased by 10%.

Parameter n increased from 1.896 (PI) to 2.244 (PII), with a relative increase of 17.3%,
indicating that the vegetation condition experienced a profound change during PII. The
elasticity coefficients of runoff to precipitation and ET0 changed from 0.189 (PI) to 0.133 (PII),
and –0.043(PI) to –0.033(PII), respectively, indicating that the effect of precipitation and ET0
on runoff has weakened in the 21st century. Overall, the sensitivity of runoff to precipitation,
ET0, and underlying surface conditions all decreased during the change period.
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Table 2. The elasticity of runoff regarding each factor in different periods.

Period n εP εET0
εn

Reference period (PI, 1969–2000) 1.896 0.189 –0.043 –2.033
Change period (PII, 2001–2019) 2.244 0.133 –0.033 –1.339

Study period (1969–2019) 2.025 0.166 –0.039 –1.738

3.4. Composition and Transfer of Land-Use

According to the interpretation results (Figure 5) of remote sensing images in 1985,
1995, 2008, 2010, and 2015, the area proportions of each land-use type in the Yanhe River
basin were calculated. The area of farmland, woodland, and grassland accounted for 99.29%,
99.22%, 99.16%, 99.05%, and 95.91%, respectively, of the total area in the years above.

Figure 5. Composition of land-use from 1985 to 2015: (a) 1985; (b) 1995; (c) 2000; (d) 2008; (e) 2015.
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The land-use transfer matrix (Table 3) was constructed based on the spatial analysis
toolbox of ArcGIS. It can be found that agriculture was the main mode of production in
the study area in 1985–2000, with slow transfer among different land-use types. Since
2000, the balance of original land-use structure fundamentally changed, and the obvious
transfer among farmland, woodland, and grassland was the dominant process during this
period. The area of farmland in 2015 decreased by 2259.11 km2 (88.07%) compared with
2000, of which 161.24 km2 and 2010.58 km2 were converted to woodland and grassland,
respectively. The area proportion of woodland and grassland increased to 91% of the total
area, caused by the implementation of the GGP. The increase of grassland and woodland
has greatly altered the underlying surface, effectively improving the capacity of the soil to
conserve water and maintain a low level of runoff in the watershed.

Table 3. Land-use transfer matrix from 1985 to 2015 (km2).

Period Land-Use Farmland Construction Land Other Land Woodland Grassland Waters

1985–1995

Farmland 2513.95 2.72 0.1 13.04 33.95 1.33
Construction land 0.1 22.18 0 0 0.1 0.05

Other land 0 0 2.5 0 0 0
Woodland 14.94 0.38 0 498.69 40.84 0.07
Grassland 57.83 0.17 0 18.93 2652.82 0.47

Waters 0.23 0 0 0.15 0.32 15.78

1995–2000

Farmland 2359.47 4.05 0.53 42.67 177.91 2.42
Construction land 2.09 22.08 0 0.4 0.79 0.09

Other land 0.75 0 1.75 0.01 0.09 0
Woodland 24.93 0.33 0.01 479.7 25.6 0.24
Grassland 156.96 1.79 0.04 47.72 2520.54 0.98

Waters 1.75 0.15 0.03 0.13 0.75 14.89

2000–2008

Farmland 1023.16 8.13 0 75.28 1438.6 0.78
Construction land 2.56 25.37 0 0.21 0.21 0.05

Other land 0.13 0.17 2.06 0 0 0
Woodland 0 0.26 0 570.37 0 0
Grassland 0 0.76 0 0 2724.45 0.47

Waters 0.8 0.86 0 0.03 0.02 16.91

2008–2015

Farmland 295.23 51.66 18.44 85.96 571.98 3.38
Construction land 0.54 30.7 0.15 0.43 3.62 0.11

Other land 0.01 0.03 0.04 0.18 1.8 0
Woodland 1.13 8.54 4.33 437.39 193.81 0.69
Grassland 8.95 68.25 38.08 753.17 3287.44 7.39

Waters 0.12 4 0.32 0.53 8.33 4.91

3.5. Attribution Analysis of Runoff Change

The contribution of precipitation, ET0, and vegetation to runoff change can be obtained
by Equation (7), and the results are shown in Table 4. Since runoff was positively correlated
with precipitation change, the upward trend of precipitation during PII did not contribute
to the decrease of runoff. On the contrary, precipitation increased runoff by 0.461 mm with
a contribution of –5.23%. The contribution of ET0 was 6.15%, which reduced runoff by
0.542 mm during the whole study period.

Table 4. Contribution of hydrological and meteorological elements to runoff change.

CP CET0
Cn δ

Variation/mm 0.461 –0.542 –8.536 –0.203
Contribution/% –5.23 6.15 96.78 2.30

On the whole, the vegetation contributed the most of runoff decline, reaching 96.78%,
and the corresponding runoff variation was –8.536 mm. The change of underlying surface
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conditions caused by vegetation restoration resulted in a significant decrease of runoff and
offset the effect of precipitation increase.

In addition, we noticed that the systematic error was only 2.30% in the process of attri-
bution analysis, indicating that the elasticity coefficient method was feasible for application
in the typical arid/semi-arid region. However, at the same time, it also suggested that there
were still one or more unknown factors affecting the change of runoff, besides precipitation,
ET0 and vegetation.

4. Discussion

4.1. Variation of Hydrological and Meteorological Elements in the Yanhe River Basin

Ren et al. [36] found that with the reduction in precipitation, runoff and sediment load
in the Yanhe River basin declined between 1961 and 2008. Li et al. [37] reached a similar
conclusion by analyzing hydrological records in the Yanhe River basin between 1952 and
2003. Our study found that the decline in runoff (p < 0.05) became more significant as the
study period was expanded from 1969 to 2019. Additional temporal data, however, showed
that the change of precipitation turned into an insignificant upward trend. This finding
about precipitation is different from the research conclusions of other scholars. With the
ET0 also showing an extremely significant upward trend (p < 0.001), we suggest that the
hydrological and meteorological situation within the Yanhe River basin has changed during
the past 10 years, and there are also signs of warming–wetting.

The precipitation data points were highly discrete and far away from the median
during PII, accompanied by outliers, and the variation coefficient reached its maximum
in 2010–2019. All this indicates that, since the 21st century, especially the past 10 years,
precipitation has experienced severe fluctuation, with more extreme precipitation events.
The variation coefficient of runoff also showed the maximum in 2010–2019, which may have
resulted from the extreme precipitation events and long-term accumulation of the GGP.

4.2. Attribution Analysis of Runoff Change

The obvious decrease of runoff in the Loess Plateau has been widely reported, but
the dominant factors causing the change have been different in different periods. Zhang
et al. [38] analyzed the runoff change and its leading factors in 11 basins of the Loess Plateau
since the 1950s and concluded that the change of land use/cover caused by anthropogenic
disturbance contributed more than 50% of the runoff reduction in eight basins, and climate
factors played a more important role in the remaining three basins. Since the 21st century, it
has been recognized that anthropogenic disturbance, represented by ecological restoration
measures, have significantly reduced runoff in the Yanhe River basin. However, due to
different research periods and methods, the contribution of anthropogenic disturbance
has not exactly been the same. Gao et al. [39] believed that the contribution of climate
factor to runoff change in the Yanhe River basin was almost equal to that of anthropogenic
disturbance, while Wang et al. [40] concluded that the contribution of anthropogenic
disturbance was much higher than that of climate factor, reaching 77.4%. We also consider
that the change of underlying surface conditions caused by anthropogenic disturbance
was the leading factor of runoff reduction in the Yanhe River basin, but its contribution
was more than 95%, which is different from previous studies. At the same time, we also
found that the frequent occurrence of extreme climate in the last five years has led to a
certain recovery of runoff in the basin with time, which has not been reported yet. Whether
this trend can continue in the future needs to be tested by more measured data of longer
time series.

4.3. The Eco-Hydrological Effects of Vegetation Restoration

In recent years, some scholars have carried out a series of studies on vegetation
change and its eco-hydrological effect. Since the 1980s, a significant greening trend has
been observed over 25% to 50% of the global area, which has changed the process of the
global surface water cycle [41]. The vegetation coverage in China has been also improved
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significantly since 2000, due to the impact of climate change and human activities [42]. The
vegetation restoration projects have reduced sediment loads (about 90%) and measured
runoff in the LP, resulting in an obvious decrease in the runoff coefficient in the middle
reaches of the YR. Some scholars suggested that the vegetation restoration should be slowed
down, otherwise it will lead to regional shortage of food and water resources.

In order to analyze the impact of the GGP on the eco-hydrological effect of vegetation,
the PII was further divided into two periods (2001–2009 and 2010–2019) with a 10-year
cycle to compare parameter n and its corresponding elasticity coefficient. The parameter
n decreased in the 2010s, compared with that in 2001–2009 (Table 5), and the sensitivity
of runoff to vegetation coverage has been reduced since the 2010s. It can be concluded
that, although the area of woodland and grassland has still increased since 2010, it may
not achieve the expected effect of vegetation restoration. Xia et al. [43] compared the
underlying surface parameters and vegetation coverage in the Yanhe River basin from 2002
to 2016 by using the equation derived from the Budyko hypothesis. They found that the
increasing trend of vegetation coverage has slowed significantly since 2010, which was
not synchronized with the increase in woodland and grassland area, and the underlying
surface parameters obviously showed the same performance. This opinion coincides with
the conclusion of this article. In the initial stage, the vegetation restoration measures have a
sharp impact on runoff, but with the vegetation restoration reaching a stable period, the
impact may tend to moderate. The long-term effects of vegetation restoration on runoff
need to be further studied.

Table 5. The change of parameter n and elasticity during the change period.

Period n εn

2001–2009 2.271 –1.398
2010–2019 2.224 –1.215

The GGP would theoretically increase the vegetation coverage, but the planted trees
may consume more water, while the poor water resources in arid/semi-arid areas of the LP
may aggravate the water shortage in a short period, thus adversely affecting the vegetation
diversity. Cao et al. [44] took five demonstration counties as examples in northern Shaanxi
Province to study the influence of the GGP on vegetation coverage, and the results showed
that the GGP resulted in a 30.5% decrease within vegetation coverage in afforestation areas.
Improper selection of tree species or high planting density was considered to be the main
cause of the negative effects above. How to increase the survival rate of afforestation is also
the focus of further research.

4.4. Uncertainty in Attribution Analysis of Runoff Change

The original study from Budyko did not consider the factors such as underlying surface
and watershed area, so the evapotranspiration rate and drought index calculated from
measured data could not be fully projected on the Budyko curve in accordance with ideal
conditions but were scattered around the curve. The method of interpreting these discrete
points is mainly reflected by the control parameters in a series of empirical equations. In
this paper, we applied the Choudhury–Yang coupling equation in the Yanhe River basin
located in the Loess hilly-gully region, but there might still be some uncertainties resulting
in systematic error.

In the process of calculating the contribution of the potential factor, the systematic error
was 2.3%, indicating that the uncertainty has a limited influence on the final conclusion. The
changes in runoff documented in this study would not be detectable in many humid regions
having abundant vegetation, so the approach is likely to be applicable to basins in other
arid/semi-arid regions which are sensitive to short-term (decadal scale) climatic shifts.
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5. Conclusions

The Chinese government has implemented a number of ecological conservation and
protection projects in arid/semi-arid regions to control soil erosion. In this paper, the
Yanhe River basin was selected as the study area. We analyzed the variation trends of
major measured hydrology and meteorology elements and identified the factors influenc-
ing runoff with the elasticity coefficient method based on the Budyko hypothesis. The
results showed the following: (1) Between 1969 and 2019, the measured runoff showed an
obvious downward trend (p < 0.05), with an abrupt change in 2000, and the average runoff
in the change period decreased by 25.42% compared with that in the reference period.
Precipitation and ET0 showed an upward trend (p > 0.05) and a significant decreasing
trend (p < 0.001), respectively. The climate condition showed a trend of warming–wetting.
(2) Farmland, woodland, and grassland were the three main land-use types, accounting
for more than 95% in total. Due to the GGP, the proportion of woodland and grassland
has gradually increased to 91% since the 21st century, compared with that in 2000. (3) The
underlying surface parameter n increased from 1.896 in the reference period to 2.244 in the
change period, with a relative increase of 18.35%. The vegetation was the leading factor
resulting in the decline of runoff with a contribution of 96.78%, while the ET0 followed with
a contribution of 6.15%. Precipitation increased runoff with a contribution of 5.23%. (4) By
analyzing the periodic change of parameter n and the elasticity coefficient, we suggest that
the response of runoff to vegetation restoration measures has a certain threshold effect in
an arid/semi-arid area, and the runoff reduction will not remain for a long time. It may
be related to the short-term water shortage caused by large-scale vegetation restoration,
thus affecting the survival rate of afforestation. Large-scale vegetation restoration needs to
be carried out carefully under the premise of assessing a reasonable threshold to avoid an
ecological disaster.
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Abstract: Understanding how socio-ecological systems respond to environmental variability is an
important step in promoting system resilience. In this paper, we asked: How do the frequency
and amplitude of water availability variation affect both the social-ecological regimes present and
how the system transitions between them? How do these transitions differ under flood-prone and
drought-prone conditions? We modified a dynamical systems model of a complex watershed to
directly link environmental variability to system-level outcomes, specifically the livelihoods present
in the system. The model results suggest that flood-prone systems exhibit more drastic regime shift
behavior than drought-prone systems, with abrupt shifts from the complete participation to complete
abandonment of livelihood sectors. Drought-prone systems appeared to be more sensitive to the
amplitude of water variability, whereas flood-prone systems exhibited more complex relationships
with amplitude and frequency, with frequency playing a bigger role compared to drought-prone
systems. Lower frequency variations with sufficient amplitudes exposed the system to extended
periods of environmental hardship, reducing the system’s ability to recover. Our analysis also
highlighted the importance of environmental stochasticity: the deterministic version of the model
that assumed no stochasticity overestimated system resilience. The model and analysis offer a
more systematic framework to investigate the linkages between sustainability of social-ecological
systems and environmental variability. This lays the groundwork for future research in systems with
significant current or predicted environmental variability due to climate change.

Keywords: regime shifts; resilience; dynamical system modeling; variability; water availability

1. Introduction

Understanding how social-ecological systems respond to environmental variability
is critical for ensuring their sustainability. Many parts of the world are seeing changes
in the frequency and the magnitude of extreme environmental events [1]. Studies in
ecological systems have shown that environmental variability can result in changes in the
number and nature of system stable states [2–4]. However, few studies in social-ecological
systems have explored the effects of variability on such regime shifts, instead focusing
on sudden shocks or disturbances and long term trends [5,6]. This work fills this gap by
incorporating stochastic fluctuations with a range of frequencies and amplitudes into a
dynamical model of a social ecological system and analyzing the effects of such fluctuations
on system resilience.

Many existing studies focus on identifying resilience indicators and early warning
signs of regime shift [7–10]. These approaches are useful when evaluating social-ecological
systems with particular vulnerabilities. For instance, a system experiencing increasingly
severe droughts might want to evaluate how close they are to a regime shift, or a region
prone to large storms will want to know what the potential outcomes of the next big one are.
These approaches are, however, less helpful when investigating the effects of variability. A
system may respond to a large storm in one way, but to a series of large storms in another.
This work uses dynamical systems modeling to directly link environmental variability to
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system-level regimes and examine how the system moves between these regimes under
different conditions.

The dynamical systems model was previously developed based on a Northwest Costa
Rican watershed (the Tempisque-Bebedero watershed) [11], resulting in the establishment
of clearly defined social-ecological regimes. However, it did not incorporate fluctuations
in water availability. This paper incorporated these fluctuations and directly related their
frequency and amplitude to the system state, examining the transition between system
states to answer the following research questions: How do the frequency and amplitude of
water availability fluctuations affect both the social-ecological regimes present and how the
system transitions between them? How do these transitions differ when induced by water
surplus versus water shortage?

2. Materials and Methods

2.1. Model Structure

The model was developed with a goal of capturing the social and eco-hydrologic
dynamics in a complex social-ecological system. The model focuses on a type of social-
ecological system where human and environmental activities are strongly linked with
the possibility for nonlinear dynamics. In this system, residents’ livelihoods come from
either the agricultural sector or an alternative industry (e.g., tourism), local governance
infrastructure reacts to extreme environmental conditions (e.g., flooding), all impacting a
downstream wetland. Six dynamical variables were chosen accordingly, with three eco-
hydrologic variables and three social variables, summarized in Table 1 and Figure 1 (see [11]
for more details on dynamical variable selection). Water in the river (W) represents the
available pool of water for industries and the environment. The amount of water (WPV) and
invasive cattail (C) in the downstream wetland indicate environmental health. The percent
of the population with agricultural livelihoods (U) represents the persistence or collapse
of the agricultural sector in the watershed. The water governance capacity indicates the
ability of the institutional systems to provide assistance to farmers in times of drought (GD)
or flood (GF). This model was built on a previous model [11] with the major modification
being the inclusion of the negative impact of too much water (flooding) and the governance
capacity to deal with flooding (GF).

Figure 1. A conceptual diagram of the model. Directed links represent causal effects from one
dynamical variable to another. Dynamical variables GD and GF are distinct, but interact with the
model in essentially the same way depending on if the system is experiencing drought or flood.
IM(t) is the variable incoming water, modeled using a marked Poisson process.
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Table 1. Dynamical variables and parameters of the model.

Symbol Unit Definition

Dynamical Variables

W L3 Water in river
WPV L3 Water in downstream wetland

U - % of population participating in the agricultural sector
G - Governance capacity: the ability to mitigate adverse effects of drought
C - Cattail coverage as % of the wetland area

Parameters

IM L3/T Inflows of water, including the portion transferred/imported into the basin
Ag 1/NT Per capita water allocation rate to farmers
To 1/T Water allocation rate to alternative industry
q 1/T Rate of water leaving the river and entering the wetland
q′ 1/T Rate of water leaving the wetland
r N/$ Population responsiveness to difference in profit
n N Population size in the system

πT $/NT Per capita income stream for people in alternative industry
πA $/NT Per capita income stream for people in the agricultural sector
p $/(L3)2 Factor converting agricultural water allocation to profit
b $/NT Base per capita agricultural profit
c L3/NT Per capita farmer allocation threshold, below which drought occurs
f L3 flood cutoff
D 1/T Decay rate of governance capacity
β - % Damage by birds to agricultural products

mD N/L3 Rate of improvement of governance capacity dependent on severity of drought
mF 1/TL3 Rate of improvement of governance capacity dependent on severity of flood
g 1/T Natural growth rate of cattail

gA 1/([M/L3]T) Additional cattail growth rate induced by increased nutrient concentration due to agricultural activities
k M/L3 Nutrient concentration in agricultural runoff
F 1/T Rate of mechanical cattail removal

The symbols for unit/dimension are as follows: L for length; T for time; M for mass (e.g., mg of nutrients); N =
number of people; $ for monetary unit.

The dynamics of W and WPV reflect a simplified mass balance. Water enters the system
and exits to the agricultural sector, alternative industry, and the wetland, WPV . The growth
of invasive cattail in the wetland, C, is increased by agricultural runoff (determined by W, U,
and WPV) and inhibited by management practices. Participation in the agricultural sector,
U, is modeled using a replicator equation borrowed from evolutionary game theory [12]:
people choose an agricultural livelihood when the payoff is better than the alternative
industry. The payoff of agriculture depends on the state of the system: whether there is a
flood or a drought (determined by W), whether there is the governance capacity to help
when there is a flood or a drought (GF and GD), and the severity of the degradation of the
wetland (C). Both governance capacity variables, GF and GD, operate on an assumption of
institutional memory. When the system experiences an event (flood or drought), they gain
experience and are thus better equipped to handle the next event that comes along. When
an event does not occur for an extended period of time, the capacity drops. This dynamic
was incorporated to explore how the frequency as well as magnitude of events can affect
the system’s resilience. These dynamics are captured in Equations (1)–(6). (Further details
can be found in Appendices A and B.)
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dW
dt

= IM(t)− (Ag · n · U + To + q) · W (1)

dWPV
dt

= q · W − q′ · WPV (2)

dC
dt

=

(
g +

Ag · n · U · W · k
q′ · WPV

· gA

)
· C · (1 − C)− F (3)

dGD
dt

= IAg·W<c · mD · (c − Ag · W) · (1 − GD)− D · GD (4)

dGF
dt

= IW> f · mF · (W − f ) · (1 − GF)− D · GF (5)

dU
dt

= r · U · (1 − U)(πA − πT) (6)

where,
πA = [p(1 − G′)(Ag · W − c)( f − W) + b](1 − βC)

G′ =

⎧⎪⎨⎪⎩
GD if Ag · W < c
GF if W > f
0 otw.

2.2. Introducing Variable Water Availability

To investigate system resilience under environmental variability, we incorporated the
stochasticity of the incoming water, IM(t). This is a key modification: In the previous
deterministic model [11], the incoming water was a constant parameter. For any one
value of this parameter, there could be only one model outcome. In this work, incoming
water is a stochastic dynamical variable. With the addition of stochasticity, we are able to
explore how a single mean value can produce different model outcomes depending on the
nature of the fluctuations. To model variations in incoming water, we considered a suite
of marked Poisson IM(t). A marked Poisson model of incoming water has been used to
capture hydrological fluctuation [13–15] while keeping the simplicity of the original model.
To map the model outcomes, parameters of the marked Poisson process were varied to
create incoming water signals with an array of frequency and amplitude. For each set of
parameters, a marked Poisson process was used to generate IM(t) and the model was run
until it reached equilibrium—i.e., when the system no longer exhibited directional changes.
This was repeated for 500 realizations. The model outcome of interest is the persistence or
collapse of the agricultural sector as defined by a collapse cutoff. When the participation
in agriculture (U) was below a collapse cutoff of 2%, the sector was considered to have
collapsed. The results, especially those associated with the flood-prone conditions, are
quite robust against reasonable choices of the cutoff values (low values to define a collapse).
For each parameter set, the percent of the 500 realizations where the agricultural sector
collapsed was mapped. To explore the effect of drought-prone and flood-prone conditions,
this process was repeated for a range of mean incoming water values, each resulting in
a model outcome map (Figure 2). These resilience–amplitude–frequency maps help us
understand how both changes in the mean water availability and changes in the occurrence
and severity of extreme events can influence how regime shifts occur.
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Figure 2. Resilience–amplitude–frequency maps under different hydrological conditions, ranging
from drought-prone to flood-prone. The color represents the fraction of realizations where the
agricultural system collapsed at equilibrium. In (A,E), with too low or too high a mean value of
IM(t), the agricultural sector cannot support itself at any frequency or amplitude. Between these
extremes (C), the system survives at all frequencies and intensities. The system transitions between
these states of full collapse and full survival with different behavior depending on whether collapse
is driven by a shortage of water (B) or a surplus of water (D).

3. Results and Discussion

Figure 2 includes model results associated with a value of amplitude close to zero,
representing the model outcome without fluctuation: These results represent “deterministic
benchmarks” that highlight the effects of the environmental variation. In this deterministic
case, the agricultural sector survives the mean incoming water in Figure 2B–D. Without
taking environmental variation into account, the model overestimates the ability of the
system to withstand changes in incoming water—Figure 2B,D allows us to explore system
dynamics that would otherwise be overlooked in a deterministic model.

Under drought-prone conditions, the transition from agricultural sector survival to
collapse is gradual and largely dependent on the amplitude of variation, with the system
surviving low-amplitude variation at any frequency (Figure 2B). The histogram of W
(Figure 3A, rightmost panel) is highly concentrated at a value near, but above, the drought
cutoff. These values of W correspond to an agriculture payoff competitive with the payoff
of alternative industry. When the payoff to agriculture fluctuates between being the more
profitable option and the less profitable option, it drives fluctuations in U. The time series
of U accordingly fluctuates near, but above, collapse.

Increasing the amplitude (comparing Figure 3B to Figure 3A) resulted in a more dis-
persed histogram of W, with some values falling below the drought cutoff. The histogram
of U exhibits a dramatic shift: it is no longer concentrated around a mean; rather it becomes
bimodal, with the primary peak at U = 0. While the histogram of U in this case (Figure 3B,
second panel from left) may appear similar to those in Figure 3C–F, it is important to note
that a mixed strategy (0 < U < 1) is still possible, even with a peak at U = 0; that is, there
are some, although relatively few, realizations with U in the intermediate range. This is not
the case with a flood-prone system.

When a drought occurs, the payoff of agriculture becomes less appealing than alternative
employment, driving U towards 0. Due to the replicator dynamics of U, the more time U
spends approaching 0, the harder it becomes to recover. The higher the amplitude of variation,
the more likely it is that the system will encounter a drought. The more time the system
spends in a drought, the more likely it is for the agricultural sector to collapse. This leads to the
gradient from survival to collapse along the amplitude dimension seen in Figure 2B.

The frequency of variation affects how much time the system has to respond to
fluctuations. High frequency oscillations move quickly with respect to other processes,
meaning that if a drought occurs, the system may not have time to fully collapse before the
drought ends and conditions become more favorable. Low frequency oscillations subject
the system to water stress for a more extended period of time. A minor drought that lasts
longer gives U more time to decline towards 0, eventually leading to a collapse of the
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agricultural sector. This means a lower amplitude of variation is needed to cause a system
collapse when the frequency is low, which can be seen in Figure 2B.

Figure 3. Sample time series of U, and histograms of U, payoff to agriculture, and W values at
equilibrium from 500 realizations under different hydrological conditions. The dashed line in
the histograms of payoff to agriculture represents payoff to alternative industry—when payoff to
agriculture is above this line, it is the more appealing livelihood option. In (A,B), the dashed line and
change in color in the histograms of W represents the drought cutoff; in (C–F), they represent the
flood cutoff.
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Frequency plays a bigger role in the transition to collapse under flood-prone conditions
(Figure 2D). At lower frequencies, the system experiences either near complete survival (the
percentage of realizations below the collapse cutoff is near 0%) or near complete collapse
(near 100% below collapse cutoff), with a very sharp transition between the two (compared
to the transition under drought-prone conditions). At higher frequencies, the transition
is much more gradual and moves between less extreme states. Additionally, from the
time series and histograms of U in Figure 3C–F, we see that U demonstrates bimodal
behavior under flood-prone conditions. Under any frequency and amplitude, participation
in agriculture at equilibrium is concentrated near 0% and 100%.

With low-amplitude variation (Figure 3C,E), the histograms of W display a bimodal
distribution—W can be concentrated above or below the flood cutoff. In other words, the
system can move to either a flooding or non-flooding regime. When the system moves
to a flooding regime, the payoff to agriculture is driven down, and vice versa. Unlike
in the drought-prone case, the payoff to agriculture is not fluctuating around the payoff
to alternative industry in either flooding or non-flooding regime. Instead, the payoff is
fluctuating entirely below or entirely above the payoff to alternative industry. Fluctuations
fully below the alternative payoff will not result in fluctuations of U, but will affect how
fast U collapses. The time series in Figure 3C and E highlight the “legacy effect”: where
the system ends up at equilibrium (full collapse or full survival of the agricultural sector),
depends on which path was taken at the outset: towards a flooding regime or towards a
non-flooding regime.

Higher amplitude variation blurs the lines between flooding and non-flooding regimes:
the histograms of W in Figure 3D,F do not display the strong bimodality seen in cases with
low-amplitude variation. Higher amplitude variation allows transition between the two
system states of collapse and survival. The time series in Figure 3D shows that even if
agriculture reaches near full participation, the system can still collapse later on. In Figure 3F,
the system can not only collapse later on, but can recover as well. Just as in the water
shortage case, lower frequency oscillations subject the system to a more extended period of
time with near 0% participation, making it increasingly harder for the system to recover.
Higher frequency oscillations allow for more movement between the two alternatives,
resulting in less extreme collapse and survival conditions.

4. Conclusions

Changes in the frequency and amplitude of environmental events can have serious
impacts on the sustainability of social-ecological systems. In this paper, we asked: How
do the frequency and amplitude of water availability variation affect both the social-
ecological regimes present and how the system transitions between them? How do these
transitions differ under flood-prone and drought-prone conditions? A dynamical systems
approach allowed us to explore the qualitative behavior of the system under different
conditions, rather than predict the outcome of a particular system. Our analysis resulted in
a more systematic framework to investigate the linkages between sustainability of social-
ecological systems and environmental variability, e.g., the resilience–amplitude–frequency
maps. These maps allowed us to examine system dynamics that would be missed using a
deterministic model.

In both flood- and drought- prone systems, resilience was overestimated when varia-
tion was not considered. We found that survival or collapse of the agricultural sector is
largely determined by the magnitude of the events. Under both flood- and drought-prone
conditions, the system survives frequent events better than infrequent, but prolonged,
unfavorable conditions. Agricultural sector collapse due to water shortage happens more
gradually, with the possibility for a mix of livelihoods. Collapse of the agricultural sector
due to water surplus, however, happens more suddenly, and without the possibility of a
mix of livelihoods—once conditions become severe enough, the system transitions from
fully agricultural to full abandonment.
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The frequency of flooding events was found to be more impactful than the frequency
of drought events. The agricultural sector could still bounce back after collapse caused by
more frequent flooding, whereas less frequent, but longer flooding episodes will lead to
a more permanent collapse of the agricultural sector. Low-amplitude variation does not
facilitate much transition between the two system outcomes, whereas higher amplitude,
higher frequency variation allows the system to move back and forth. High amplitude,
low frequency variation allows the system to move from survival to collapse, but it is more
difficult to move back once flooding is established.

Incorporating stochastic environmental variation into a dynamical model of a social-
ecological system allowed us to directly link the frequencies and severity of environmental
events (water surplus and shortage) to system-level outcomes (livelihood choices) in a
systematic and quantitative way. This direct link can be difficult to achieve with more
highly-parameterized models. Stylized dynamical systems models such as this offer a
different perspective on complex problems, with potential to be adapted to similarly
interconnected social-ecological systems. Insights and lessons from this approach may
be applied to a range of future research, including model development with the goal of
predicting social-ecological outcomes. This lays groundwork for future research in systems
with significant current or predicted environmental variability due to climate change.
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Appendix A. Site Description

The dynamical model used is based on the The Tempisque-Bebedero watershed in
Northwest Costa Rica, a complex social-ecological system: water transfer connects elec-
tricity generation, irrigated agriculture, and an internationally recognized migratory bird
habitat, in addition to a growing tourism industry [16–18]. Variability of water availability
in the Tempisque-Bebedero watershed exists on multiple time scales and for different rea-
sons. The area has well-defined wet and dry seasons that create intra-annual variability [19].
El Niño Southern Oscillation (ENSO) events create inter-annual variability [19]. Climate
change trends predict changes in the frequency and severity of extreme events as well as
changes in the overall water availability [1,19]. Additionally, in a water subsidized system,
management of water transfer can dampen or exacerbate environmental variation.

Appendix B. Nondimensionalized Model

To ease analysis, the model was simplified using nondimensionalization. Dimension-
less groups are listed and defined in Table A1 and yield the following model.
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dw
dτ

= 1 − (θAU + θT + 1) · w (A1)

dwPV
dτ

= w − λwPV (A2)

dC
dτ

= (γ +
γAθAwU

wPV
)C(1 − C)− φ (A3)

dGD
dτ

= IθA ·w<αD · μD(αD − θAw)(1 − GD)− δGD (A4)

dGF
dτ

= Iw>αF · μF(w − αF)(1 − GF)− δGF (A5)

dU
dτ

= U(1 − U)(π̂A − π̂T) (A6)

where,
π̂A = [ρ(1 − G′)(θAw − αD)(αF − w) + ψ](1 − βC)

G′ =

⎧⎪⎨⎪⎩
GD if θAw < αD

GF if w > αF

0 otw.

Table A1. Dimensionless group definitions and interpretations.

Symbol Definition Interpretation

w W·q
IM Rescaled water availability in the basin

wPV
WPV ·q

IM Rescaled water in downstream wetland
τ t · q Rescaled time
θA

Ag·n
q Relative water allocation rate to agriculture compared to the natural draining rate of the

watershed
θT

To
q Relative water allocation rate to alternative industry compared to the rate at which water

leaves the watershed
λ

q′
q Ratio of water exiting to water entering wetland

π̂T
rπT

q Rate of people entering alternative industry relative to the rate at which water leaves the
watershed

ρ
pr·IM2

nq2 Rescaled profit factor for agriculture

αF
f q

IM Rescaled flood threshold
αD

cn
IM Rescaled drought threshold

ψ rb
q Potential rate of people entering the agricultural sector relative to the rate at which water

leaves the watershed
μD

mD IM
qn Rescaled maintenance/improvement rate of drought governance capacity

μF
mF IM

q2 Rescaled maintenance/improvement rate of flood governance capacity

δ D
q Decay rate of governance capacity (due to loss of institutional memory) relative to the rate at

which water leaves the watershed
γ

g
q Natural cattail growth rate relative to the rate at which water leaves the watershed

γA
kgA
q′ Additional cattail growth due to nutrient pollution relative to the rate at which water leaves

the wetland
φ F

q Mechanical cattail removal rate relative to the rate at which water leaves the watershed
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Abstract: The San Juan-Taxco River system is situated in the Taxco mining district, which is a well-
known international producer of silver, jewelry and precious metal handicrafts. The population
and biota in the area have been affected by inappropriate disposal of anthropogenic activities that
pollute the hydric resources and threaten their health and sustainability, since the inhabitants use
the groundwater and river water for human consumption, domestic water supply and irrigation.
This study was conducted to assess the pollution in the river system, human health implications and
ecological risk in the aquatic environment (groundwater, surface water and superficial sediment). This
evaluation was done on the base of hydrochemical, textural, mineralogical and geochemical analysis
supported by calculation of human health risk using chronic daily intake (CDI), hazard quotient (HQ)
and hazard index (HI) with environmental and geochemical indices for ecological risk evaluation. The
health risk assessment indicated increasing non-health carcinogenic risk to the exposed population to
the river water and dug wells (HI > 1), and thus, these resources are not recommended for human
consumption, domestic activities and prolonged ingestion. The results demonstrated a high degree
of pollution due to toxic elements and geochemical indices. The Pollution Load Index indicated
potential risk that will cause harmful biological effects in the riverine environment.

Keywords: PTE; water quality; health risk assessment; ecological risk assessment; sediment; contamination
factor; pollution load index; enrichment factor

1. Introduction

Potential Toxic Elements (PTE) pollution in the fluvial system is one of the major
threats for aquatic life and human population due to the abundance, persistence, inherent
toxicity, non-degradability, ubiquity, bioaccumulation and biomagnification in the food
chain [1–3]. The concentration of these toxic elements as heavy metals has increased in
the environment due to their anthropogenic inputs. Numerous rivers and aquifers have
been polluted with PTE from industrialization processes and mining activities, especially
from the inappropriate disposal of wastewater and mine tailings, resulting in negative
effects [4,5]. PTE persist in the environment and can remain for a very long time; they can
potentially accumulate and concentrate in aquatic organisms and cause serious harms and
finally exhibit high toxicity and bioaccumulation features. A toxic effect is directly linked
to human health through the food chain and drinking water resources [6–8].

Risk assessment is a method of evaluate the impacts of pollutants [9] and can be
separated into human health risk assessment and ecological risk assessment according to the
different protection targets [9,10]. Several studies have developed an integral assessment
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of water quality linked to human health and potential risks posed by PTE in aquatic
environments [8]. Some PTE, such as Cu, Co, Zn, Fe, Ca, Se, Ni and Mn, are beneficial
to humans at low concentrations, but intake of some others, namely As, Cd, Pb and Hg,
are highly poisonous to humans, even at a low concentration. Human health risks will
be increased due to the intake of excess PTE contents through three pathways: inhalation,
oral ingestion and dermal absorption; the ingestion and dermal absorption routes are
considered as more common for the accumulation of those toxic metals into the human
body [5,11]. Many studies have focused on the ecological risk assessment of PTE in
sediments [2–4,6,7,12,13]. Sediments are an appropriate indicator of fluvial ecosystem
health due to its main role in transport and storage of pollutants and its peculiarity to
release them to the water column [3].

The San Juan-Taxco River system (Guerrero, Mexico) represent a key resource in
terms of providing water for drinking supply, agricultural activities and ecosystem ser-
vices [14–16]. The mining industry, the increase of jewelry and handmade manufacturing
workshops and population growth have caused serious pollution in this area [14,17]. Sev-
eral studies in the region refer the presence PTE as Pb, As, Zn and Fe in the San Juan-Taxco
River that exceeded the aquatic life criteria and the presence of Pb concentrations in human
blood [14,16–18]. However, these studies have not integrated the effects from sediment,
river water and groundwater on human health. There has not been performed a human
health risk assessment or an ecological risk assessment and they can be considered di-
agnostic studies. Therefore, the difference of this investigation is to obtain a complete
perspective of ecological and human health risk and impact of mining and jewelry on the
San Juan-Taxco River system to improve the hydric management.

The specific objectives of this study are as follows: (1) to analyze the pollution status by
PTE in the water and sediments of the San Juan-Taxco River system; (2) to assess the health
risk in two population groups (adults and children) using the chronic daily intake, hazard
quotient and hazard indices in river water and dug wells; (3) to evaluate the ecological
risks using geochemical indices. This study provides a more profound comparison of PTE
pollution in this river system for health risk assessment and the basis for better resources
management from an ecological health perspective.

2. Study Area

The San Juan-Taxco River system belongs to the Middle Balsas Basin [19]. It is located
in the Taxco and Iguala municipalities in the northern part of the state of Guerrero within
the mining district of Taxco (Mexico) Figure 1. In Taxco, the climate is warm and sub-
humid with an annual average temperature of 21.9 ◦C; the warmest month is April with
a mean temperature of 24 ◦C and the coolest month is December with a mean of 20.3 ◦C.
Precipitation is in the order of 1000 mm/year; the rain is concentrated in the period from
June to October with maximum values of 254 mm in September, and the driest month
is February, with 7.6 mm [14,19]. The Iguala climate is warm sub-humid. The annual
mean temperature is 26.1 ◦C, with a maximum of 38 ◦C and a minimum of 14 ◦C; the
warmest months are April and May and the coolest months are December and January.
The precipitation is moderate during June to September, with annual mean precipitation of
1100 mm/year, with maximum values of 226 mm in July, and the driest month is March,
with 4.2 mm of precipitation [19].

Intensive mining produced large quantities of liquid and solid mining wastes contain-
ing EPT [15–17]. Historical solid wastes were buried or re-worked during the 20th century,
but modern (1940 to present) wastes are accumulated in tailings dumps (Antonio, El Fraile,
La Concha, El Solar, Guerrero I, Guerrero II and Los Jales, etc.), which contain moderately
to highly oxidized material, sulfides and PTE, such as lead, barium, cadmium, zinc, iron,
arsenic and strontium. These waste dumps were deposited on rocks of the Mexcala and
Taxco Schist formations [16]. These formations are considered essentially impermeable
units, although secondary porosity can be locally important. These characteristics prevent
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the infiltration of large volumes of Acid Mining Drainage (AMD) to aquifers, but enable
surface drainage of metal-rich leachates, affecting the quality of effluent water [14,16].

Figure 1. Map of the sampling points (groundwater, river water and fluvial sediment) and location
of mining tailings and handicrafts and jewelry workshops in the San Juan-Taxco River system.

This district has been recognized for years of mining and processing of precious metals
since pre-Hispanic times until the closure of the mining activities (2009). At present, it is
a famous touristic destination and international producer of precious metals handcrafts
and jewelry [20]. The extraction of silver was the main activity of Taxco region, leading the
inhabitants to undertake the task of working this metal as artisans [20]. The manufacture
of jewelry and handicrafts became a key source of income in the region after the closure
of the mines; this local industry has been developed through small workshops, which
were diversified, including different processes of raw materials besides silver (Ag), such

85



Water 2022, 14, 518

as alpaca (Zn-Cu-Ni), brass (Cu-Zn), tumbaga (Cu-Au), for local and international trade.
In 2019, 1085 workshops were officially recorded in the municipality of Taxco de Alarcon;
these are mainly distributed in Taxco, Acamixtla and Taxco el Viejo localities inside the
region (Figure 1) [21].

The metal processing has brought negative impacts on natural resources, with rivers
being the most affected resources by the waste from these activities [16]. The San Juan-Taxco
River system is composed of three rivers. The San Juan (length of 10 km), Cacalotenango
(length of 45 km) and Taxco (length of 29.3 km) rivers jointly discharge at the southern
portion of the city of Taxco, also in the town of Taxco el Viejo, forming the Iguala or Cocula
River (length 75 km), and finally discharge into the Infiernillo reservoir [14,17].

The San Juan River receives wastewater from nearby towns, as well as chemical
waste from silversmiths for the manufacture of silver crafts and mining tailings [22]. The
Cacalotenango River receives mine waste from La Concha and El Fraile tailings, as well
as urban wastewater without treatment [23]. The Taxco River receives mine waste from
several tailing piles along its flow, chemical waste from silversmiths and untreated urban
wastewater [14,15].

Geological and Hydrogeological Setting

The Figure 2 summarized the geological map of the San Juan-Taxco River system
showing the lithology. The bedrock in the area consists of Lower Cretaceous metamorphic
rocks of the Taxco Schist Formation, Albian-Cenomanian limestone of the Morelos For-
mation, Upper Cretaceous sandstone and shale of the Mexcala Formation, Lower Tertiary
red beds of the Balsas Formation and Middle Tertiary acidic volcanics of the Tilzapotla
Formation [15,16].

Mineralization structures are 1 to 3 m wide, although a few reach 10 m, and 700
to 2000 m long, these structures appear as hydrothermal veins, replacement ores and
stockworks hosted in limestones of the Morelos and Mexcala formations, and more rarely
in the Taxco Schists and Balsas formations [16]. The San Juan-Taxco River system is part
of the recharge zone of the regional aquifer (Buenavista and Iguala aquifers); this zone is
immersed in a mountainous region with a rugged in portion of Taxco municipality and the
Iguala valley. Therefore, the population uses surface runoff, dug wells and springs that are
distributed throughout the region for drinking water, domestic consumption, agriculture
and livestock [24].

The regional aquifer is composed by rhyolites from Tilzapotla Formation, gravels
and sandstones from Balsas Group and limestones from Morelos Formation. The storage
section of the groundwater is made up of the alluvial and fluvial sediments, such as clay,
silt, sand and gravels, in the Iguala Valley. The groundwater drains into the lower parts
of the study area, a portion of this water discharges into the main streams and another
portion is released as a groundwater flow into the Tuxpan Lake [24].
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Figure 2. Geological map of the San Juan-Taxco River system.

3. Materials and Methods

3.1. Sample Collection and Analytical Procedure

For this analysis, a total of 21 samples were taken; seven groundwater (two dug wells
and five springs), seven river water and seven surface sediment samples were collected in
the dry season on May of 2019 to reduce the dilution of the effect of PTE concentrations
in the rainy season. These samples were taken from the San Juan River system before its
confluence with Taxco River, along the Cacalotenango and Taxco rivers and above and
below their confluence, as shown Figure 1. The selection of the sampling points was made
considering the spatial and geographical distribution along the river system, the proximity
to handicraft and jewelry workshops sites and accessibility of the sites.

Water samples were collected in 1 L polyethylene sampling bottles, pre-cleaned with
10% HNO3, soaked overnight and rinsed thoroughly with Milli-Q water. The pH, temper-
ature, electrical conductivity (EC) and total dissolved solids (TDS) measurements were
performed during sampling using a Hanna multi-parametric sonde. For PTE analysis,
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the water samples were filtered using 0.40–0.45 μm membrane, acidified to pH < 2, with
HNO3 at the time of collection to prevent element precipitation and adsorption to the
surface of the container during transportation; the samples were then stored at a suitable
temperature awaiting analysis (water < 4 ◦C). The levels of Al, As, Ba, B, Cu, Fe, Pb, Zn,
Mn, Ni and Cd in water samples (surface water and groundwater) were analyzed by In-
ductively Coupled Plasma Emission Spectrometry (ICP-OES) and Liquid Chromatography
high performance (HPLC) at the Laboratory of Geosciences at the National Autonomous
University of Mexico (UNAM).

The sediment samples were collected using polyethylene spoons and bags to deter-
mine physical and geochemical characteristics, kept at 4 ◦C until further analysis. In the
laboratory, sediment samples were air-dried and ground to a fine powder with an agate
mortar and then sieved through a 230 ASTM mesh at the Laboratory of Nutrition and Plant
Physiology Campus Tuxpan of the Faculty of Agricultural and Environmental Sciences of
the Autonomous University of Guerrero (UAGro).

For determining the PTE content (Al, As, Ba, B, Cu, Fe, Pb, Zn, Mn, Ni and Cd), dry-
sediment samples were digested in a 1:1 HCl: HNO3 mixture inside a CEM MarxXpress
microwave oven [25]. The PTE quantification was conducted using an Inductively Cou-
pled Plasma Optical Emission Spectrometer (ICP-OES) Thermo iCAP 6500 Duo in the
Environmental Geosciences Laboratory of UNAM. The grain size analysis was carried
out to determine the sediment textural classes according to the Unified Soil Classification
System (USCS) [26]. The sediments were classified into gravel, sand, silt and clay. The
characterization of mineralogical phases in sediment samples was determined by X-ray
diffraction, in a Bruker AXS D8 Advance diffractometer to identify the major minerals;
this analysis was performed at the Geochemistry Laboratory of Regional School of Earth
Sciences of the UAGro.

3.2. Quality Controls and Calibration Curves for Analytical Equipment

Analytical blanks were implemented throughout the field campaign and analytical
process. Replicate samples and standards were processed to determine the precision, and
spiked samples were employed to determine accuracy.

The analysis by ICP-OES was made using two calibration curves with six standards,
which were prepared from certified mono-elemental standards from the Inorganic Ventures
brand and an ICP-200.7 multi-element standard from the High Purity Standards brand.
Two types of blanks are analyzed, the calibration blank and the reagent blank, in addition
to analyzing three laboratory control samples (MCL), all made from certified standards
with traceability to NIST.

HPLC calibration curve is carried out with a standard certificate from Inorganic
Ventures IF-FAS-1A, which consists of seven concentrations, and for the drift control of
the instrument, it is carried out by means of a Laboratory Control Sample (MCL) pre-
pared from the standard certificate Seven Anion Standard of Dionex, which was analyzed
every 10 samples.

The acid digestion of aqueous samples and sediment is carried out with a microwave
MARS Xpress CEM, for its calibration, it uses a blank and a sample added with a known
concentration of a high purity certified standard (QCS-26) analyzed by ICP-OES.

To establish laboratory accuracy and precision, the limits of the results were calculated
from the upper and lower control limits based on the mean and standard deviation of the
percent recovery for at least 20 data points.

3.3. Non-Parametric Statistics

All datasets were checked for outliers and assessed for normality (surface water,
groundwater and sediments), first objectively using a Shapiro–Wilk test. The calculations
were performed using Excel.
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3.4. Health Risk Assessment

Risk assessment is a methodology which identifies, characterizes and analyzes the
toxic element to qualify the adverse effects in a specified time and estimates risk levels [27].
This approach was applied to identify the exposure and tendency of toxic elements in
San Juan-Taxco River system’s water with reference to the human body. There are two
central ways of metal exposure and pathways in human organism, either through water
consumption as ingestion or through dermal absorption [7].

The health risk assessment was computed through the chronic daily intake (CDI;
mg kg−1/day). It helps in assessing the health risk caused by exposure to PTE (heavy
metals) through different pathways. For this study, ingestion and dermal exposure (CDI)
were computed by Equations (1) and (2) [27]. The receptors were categorized into two
categories, infants (<6 years old children) and adults (<30 years old).

CDIingestion−water =
EC·IR·EF·ED

BW·AT
(1)

CDIDermal =
EC·SA·AF·ABDSd·ET·ED·CF

BW·AT
(2)

where EC is the concentration of TEs in the water, IR is the ingestion rate (L day−1), EF
is the exposure frequency (days/year), ED is the exposure duration (years), BW is the
average body weight (kg), AT is the averaging time (days), SA is the surface area of
skin in contact (cm2), AF is the skin adherence factor, ABSDSd is the dermal absorption
factor ET is the exposure (h day−1), CF is the conversion factor (kg mg−1) and ET is the
exposure (h day−1) (Table 1).

Table 1. Exposure factors used in chronic daily intake (CDI) estimation for non-carcinogenic risk.

Symbol Name Unit
Recommended

Symbol Name Unit
Recommended

Values Values (Adult)

Cw Element
concentration

mg L−1 SA exposed skin
area cm2 adult 5700,

child 28,00 *

IR Ingestion rate L day−1 adult 2.5
AF adherence

factor
- 0.07 *child: 0.78

EF Exposure
frequency day y−1 350 ABSd

dermal
absorption

fraction
- 0.03

ED Total exposure
duration

year adult 30;
ET

exposure
time h day−1; 0.58child 6

BW Average body
weight

Adult 52 kg
children 15 kg CF conversion

factor kg mg−1 10−2 +

AT
Average

exposure time day adult 10,950,
child 2190

RfDingestion

Reference
Dose of PTEs

mg kg−1

day−1

RfDingestion
Al = 1, Cu = 0.04,

Fe = 0.7, Mn = 0.00096,
Pb = 0.00042

RfDD Zn = 0.06, As = 0.0003
RfDDerlmal

Al = 0.01, Cu = 0.00184,
Fe = 0.14, Mn = 0.024,

Pb = 0.0035
Zn = 0.3, As = 0.003,

Ba = 20

RfDs values from USEPA * [27], + [28].
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The hazard quotient (ingestion and dermal) and hazard index (HI) are computed by
Equations (3) and (4) [27]:

HQingestion =
CDIingestion

R f Dingestion
(3)

HQDermal =
CDIDermal
R f DDermal

(4)

where RfD denotes the reference dose (ingestion and dermal) based on the guidelines of the
US Environmental Protection Agency [28] and for health risk assessment calculation (RfD
differs for each PTE). The hazard index (HI) represents the cumulative non-carcinogenic
risk. It is the sum of HQs for similar toxic effects and all pathways. It can also be calculated
by Equation (5):

HI = ∑ HQi = HQ(ingestion) + HQ (dermal) (5)

where i is the HQ value of each element. In the context of human health, the HI values < 1
are low risk, while the values > 1 are high risk with long-term health hazard effects [5].

3.5. Assessment of PTE in the San Juan-Taxco River System (Water and Sediment)

Water quality was evaluated according to the criteria established for human consump-
tion by the World Health Organization [29]. PTE risk in sediments was assessment using
Sediment Quality Guidelines (SQG), probable effect level threshold (PEL), threshold effect
concentration (TEC) and probable effect concentration (PEC) [30–32]. These guidelines
allowed a simple, comparative mean for assessing the potential risk of pollution in a fluvial
aquatic ecosystem.

3.6. Assessment of PTE Enrichment in Sediments
3.6.1. Geoaccumulation Index (Igeo)

The Igeo allows for the assessment of PTE sediment contamination and can be used to
evaluate the environmental pollution status compared with background values [13,33,34].
The Igeo is calculated by Equation (6):

Igeo =
Log2(Cn)

1.5(Bn)
(6)

where Cn is the content of elements in the sediment samples, Bn is the concentration of
geochemical background for the same elements (n) and factor 1.5 is the background matrix
correction factor due to lithological variations. The Igeo, according to Muller [33], includes
seven classes, summarized in Table 2 and the background values used are presented in
Table 3 [35,36].

3.6.2. Enrichment Factor (EF)

Enrichment factor (EF) is an indicator that reflects the degree of anthropogenic pollu-
tion [37]. The EF is calculated using the relationship in Equation (7):

EF =

(
Metal

Al

)
sample(

Metal
Al

)
background

(7)

In this case, aluminum (Al) was employed as the reference element for geochemical
normalization; this element in sediments is useful to eliminate the effect of grain size, since
it is a major element and exhibits relatively small content variations and a large distribution.
The interpretation provided by Malvandi [2] from the EF values was used for this study
and is presented in Table 2 [2,38].
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Table 2. Enrichment and contamination categories base don Igeo, EF, CF, PLI and RI.

Geoaccumulation Index (Igeo)
Enrichment Factor

(EF)
Contamination Factor

(CF)

Value Categorization Value Categorization Value Categorization

<0 Unpolluted <1 indicates no
enrichment <1 low contamination

0–1
Pristine to

moderately
contaminated

3–5 moderate
enrichment 1–3 moderate

contamination

1–2 Moderately
contaminated 5–10 moderately

severe enrichment 3–6 considerable
contamination

2–3
Moderately to

strongly
contaminated

10–25 severe enrichment >6 very high
contamination

3–4 Strongly
contaminated 25–50 Very severe

enrichment

4–5
Strongly to

extremely strongly
contaminated

>50 Extremely
severe enrichment

>5 extremely strongly
contaminated

Potential ecological risk factor (Ei
r) Potential ecological risk index (RI) Pollution Load Index (PLI)

Value Categorization Value Categorization Value Categorization

<40 low ecological risk <150 low ecological risk <1 Unpolluted

40–80 moderate ecological
risk 150–300 moderate ecological

risk 1–2 Moderately polluted

80–60 appreciable
ecological risk 300–600 considerable

ecological risk 2–3 Heavily polluted

160–320 high ecological risk >600 very high ecological
risk >3 Extremely polluted.

>320 serious ecological
risk

3.6.3. Contamination Factor (CF)

Sediment contamination was also assessed by using the contamination factor (CF) and
degree of contamination. The CF index values were calculated by dividing the concentration
of each PTE in the sediment by the baseline or background values [39]. CF values were
explained according to Hakanson [39] in Equation (8) and summarized in Table 2:

CF =
Cheavy metal

Cbackground values
(8)

3.6.4. Pollution Load Index (PLI)

Pollution load index (PLI) represents the number of times by which the toxic element
concentrations in the sediment exceeds the background concentration, and gives a sum-
mative indication of the overall level of PTE toxicity in a particular sample. For the entire
sampling site, PLI has been estimated by the n-root from the product of n CFs of the studied
elements included (Equation (9)):

PLI = (CF1 x CF2 x CF3 x . . . . . . xCFn)
n (9)

The PLI is a multi-elemental index used to assess the degree of PTE pollution and, hence,
to evaluate the environmental quality. The PLI for the entire study area (Equation (10)) can be
estimated using the same calculation principle for each sampling point; substituting the CF
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values for the PLI value of each point, it is determined as the nth root of the product of the
n CF (Contamination Factors) according to Tomlinson [40]:

PLIglobal = (PLI1 × PLI2 × PLI3 · · · ..x PLIn)1/n (10)

The index permits a simple, comparative means for assessing PTE pollution levels. A
PLI of >1 is contaminated, whereas <1 indicates no contaminated site [39]. Corami et al.,
(2020) [13] used other evaluation criteria for classifying the degree of contamination for
PLI, as shown in Table 2.

Table 3. Potential Toxic Element concentrations (PTE in waters (mg L−1) compared with World
Health Organization limits and sediment (mg kg−1) compared with background values [35,36],
Sediment Quality Guideline values (SQGs), PEL, TEC and PEC.

Sites Nature pH Al As B Ba Cd Co Cr Cu Fe Mn Ni Pb Zn

W
at

er
s

(m
g

L
−1

)

S1

River
water

6.8 0.0071 <l.q. 0.0223 0.0942 <l.q. <l.q. <l.q. <l.q. 0.0137 0.0822 <l.q. <l.q. 0.0191
S2 8.1 0.0084 0.0725 0.1173 0.1217 <l.q. <l.q. <l.q. 0.0046 0.0755 0.3622 <l.q. 0.0182 0.2335
S3 7.9 0.0912 0.0291 0.0159 0.1162 <l.q. <l.q. <l.q. 0.0044 0.1759 0.1346 <l.q. 0.0149 0.0573
S4 7.3 0.2525 <l.q. <l.q. 0.1224 <l.q. <l.q. <l.q. 0.0061 0.3164 0.0541 <l.q. 0.0165 0.0858
S5 7.2 0.0455 <l.q. 0.5284 0.0646 <l.q. <l.q. <l.q. 0.0070 0.0396 0.5343 0.0181 <l.q. 0.0843
S6 7.2 0.0397 <l.q. <l.q. 0.0722 <l.q. <l.q. <l.q. <l.q. 0.0818 0.0073 <l.q. <l.q. 0.0069
S7 8.1 0.0125 <l.q. 0.5791 0.0914 <l.q. <l.q. <l.q. 0.0078 0.0175 1.4482 0.0174 <l.q. 0.0503

GW1 Dug
well 7.0 0.0183 <l.q. <l.q. 0.081 <l.q. <l.q. <l.q. 0.004 0.146 0.032 <l.q. 0.0245 0.0770

GW2

Springs

6.6 <l.q. <l.q. <l.q. 0.111 <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. <l.q.
GW3 6.7 0.0125 <l.q. <l.q. 0.023 <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. 0.0235 0.0053
GW4 8.2 0.1127 <l.q. 0.017 0.048 <l.q. <l.q. <l.q. <l.c. 0.021 0.009 <l.q. <l.q. 0.0149
GW5 7.2 0.0097 <l.q. 0.068 0.081 <l.q. <l.q. <l.q. 0.111 0.022 0.006 <l.q. <l.q. 0.2442
GW6 6.9 0.0059 <l.q. <l.q. 0.040 <l.q. <l.q. <l.q. 0.010 <l.q. <l.q. <l.q. <l.q. 0.0130

GW7 Dug
well 7.9 0.0135 <l.q. <l.q. 0.069 <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. <l.q. 0.0277

WHO (2008) 6.5–8.5 0.200 0.025 0.300 0.700 0.050 1.300 0.300 0.400 0.010 3.000

se
di

m
en

t(
m

g
kg

−1
)

S1

River
sediment

16,771.0 <l.q. 15.8 154.0 2.1 5.2 5.0 209.0 18,637.0 231.0 18.7 35.6 351.0
S2 16,610.0 39.3 16.8 151.0 1.8 6.1 2.5 68.3 20,009.0 362.0 16.6 94.2 144.0
S3 18,313.0 48.8 12.8 173.0 16.2 7.2 <l.q. 78.4 20,526.0 795.0 15.7 265.0 2008.0
S4 20,303.0 25.5 31.2 278.0 50.4 7.8 5.5 393.0 20,614.0 2710.0 111.0 244.0 4509.0
S5 19,032.0 24.7 15.9 104.0 5.5 7.2 <l.q. 41.8 23,223.0 334.0 18.6 160.0 967.0
S6 22,982.0 <l.q. 19.9 143.0 2.0 9.0 9.4 117.0 20,930.0 105.0 24.2 13.9 142.0
S7 12,086.0 21.3 13.8 88.0 9.4 6.3 <l.q. 55.9 22,301.0 660.0 20.0 189.0 1763.0

PEL a 17 a 3.53 a 90 a 196.6 a 75 a 91.3 a 314.8 a
TEC b 9.79 b 0.99 b 43.4 b 31.6 b 22.7 b 35.8 b 121 b
PEC c 33 c 4.98 c 111 c 149 c 48.6 c 128 c 459 c

Background
values 81,500 4.8 17 628 0.09 17.3 92 28 50,400 774 47 17 67

Note: l.q. (limit of quantification).

3.6.5. Potential Ecological Risk Index (RI)

The maximum contamination in sediments caused by PTE is screened by the Potential
Environmental Risk Index (PERI or RI); this method is widely used to evaluate quantita-
tively the level of the ecological risk degree of PTE. This index was proposed by Hankson in
1980 [39] and it is founded on Sedimentation Theory. The RI value is computed following
the formula (Equation (11)) [39]:

RI =
n

∑
i=1

Ei
r, Ei

r = Ti
r x CF (11)

where Ei
r is the potential ecological risk factor for a given contaminant (i), Ti

r is the toxic
response factor of each element, including Cr = 2, Cu = 5, Cd = 30, As = 10 and Pb = 5 [39],
and CF are the contamination factors, which have already been described above. This
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scheme not only assesses the pollution status in sediment, but also combines ecological and
environmental effects with toxicology, providing a better evaluation of the potential risk of
PTE contamination with the index level. RI is a set of potential risks for each element, is an
integrated potential environmental risk index for several PTEs and is classified based on
the description summarized in Table 2.

4. Results

4.1. Non-Parametric Statistics

An exploratory analysis with Shapiro–Wilk′s method to test the normality was applied
to the concentration data. It was found that Ba, Fe and Zn in surface water followed
a normal distribution, with R2 values equal to 0.89, 0.82 and 0.81, respectively; Ba in
groundwater had a correlation coefficient of 0.97. For sediments, Al and Ba followed the
normal distribution, with R2 values of 0.97 and 0.87, respectively. For other elements, some
outliers were present in the data, which reduced the correlation coefficient. Those outliers
were analyzed in the whole context of geographical distribution to correlate them with the
presence or absence of an important source of pollution.

4.2. Water
4.2.1. Hydrochemical Characterization

pH is an important factor that influences the solubility of toxic elements (PTE) in
water [11]; lower values of pH indicate higher solubility and vice versa. The pH values in
the groundwater ranged from 6.75 to 8.1, and that in river water fluctuated from 6.16 to
8.2 (Table 3). In general, the pH varies in water from neutral to slightly alkaline, where the
reactivity of PTE was low and their concentration loadings oscillated between low and high
concentration. Almost all the collected samples of water (groundwater and river water)
have detectable concentrations of PTE.

Water quality was assessed according to criteria established for human use and con-
sumption by the World Health Organization [29]. In case of groundwater, Al, B, Ba, Cu, Fe,
Mn, Pb and Zn were measured, and only Pb exceed the criteria (0.03 mgL−1) for human
use and consumption of the WHO in samples GW1 and GW3. Al, As, B, Ba, Cu, Fe, Mn, Pb
and Zn were detected in the river water (Table 3).

Although Al was measured in all the samples, only S4 showed a concentration above
the WHO limit of 0.2 mg L−1; two samples (S2 and S3) showed As concentrations above
the WHO limit (0.025 mg L−1). B was present in S1, S2, S3, S5 and S7, but only in S5 and
S7 did it exceed the recommended limit for human use and water consumption. Fe and
Mn were detected in all the samples; S4 and S5 surpassed the WHO limit of 0.3 mgL−1

for Fe and Mn was above the 0.4 mgL−1 recommended limit for S7. On the other hand,
Ba and Zn were found in all the samples, but were always below the WHO limits (0.7
and 3 mg L−1, respectively).

4.2.2. Health Risk Assessment in Water Samples

The potential health risk to human beings by water for human use and consumption
was calculated by assessing the PTE concentration in water (groundwater and river water)
and by assessing the pathways through which humans are exposed to these elements. In
this study, non-carcinogenic risk was determined by estimating the daily intake index (CDI),
which represents the daily exposure of a population to contaminants, hazard quotient (HQ),
to estimate the non-carcinogenic risk by toxic elements, and cumulative hazard index (HI),
to show the potential health risk possess by multiple elements, considering the additive
effect of PTE in HQ were determined. The studied exposure pathways were ingestion and
dermal absorption in children and the adult population; the receptors were categorized in
children (<6 years old) and adults (>30 years old).

CDI ingestion values for both groups were under limit (<1) and at present poses no
serious threat to human health, although Mn values were one of the highest values as
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compared with other PTE analyzed for both adults and child (in sample S7), though values
of Cu were highest for children in sample GW5 (Figures 3 and 4).

Figure 3. CDI Ingestion values along the sampling sites for each PTE assessed.

Figure 4. CDI dermal values along the sampling sites for each PTE assessed.

The CDI and HQ dermal values in adults were above the limit 1 for Al, Pb, Mn and
As. Specifically, the values with a high impact on the indices for each element and the
corresponding samples are as follows: (1) Al in samples S3, S4 and GW4; (2) Pb in samples
S2, S3, S4, GW1 and GW3; (3) Mn in samples S1, S2, S3, S5 and S6; and (4) As only in
samples S2 and S3. On the other hand, for children the CDI and HQ dermal values were
above the limit of 1 for Pb, Mn, and Cu. The samples GW1 and GW3 were above the limit
for Pb; whereas for Mn were the samples S5, S7; and finally, for Cu only in the sample GW5
(Table 4 and Figure 4).
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Table 4. Chronic daily intake (CDI), hazard quotient (HQ) and hazard index (HI) for adult and child
groups for non-carcinogenic risk assessment.

River Water Groundwater

Oral Dermal Oral Dermal

Mean Min Max Mean Min Max Mean Min Max Mean Min Max

Adult

HQ Al 0.0044 0.0005 0.0171 0.8715 0.0943 3.3710 HQ 0.0017 0.0000 0.0076 0.3290 0.0000 1.5041
Cu 0.0072 0.0000 0.0132 0.0143 0.0000 0.0259 0.0303 0.0000 0.1883 0.0596 0.0000 0.3702
Fe 0.0100 0.0013 0.0307 0.0981 0.0130 0.3017 0.0026 0.0000 0.0141 0.0257 0.0000 0.1388
Pb 0.1375 0.0000 0.3536 2.2537 0.0000 5.7946 0.1330 0.0000 0.4747 2.1805 0.0000 7.7800
Mn 1.0599 0.0208 4.0964 5.2114 0.1022 20.141 0.0189 0.0000 0.0902 0.0930 0.0000 0.4436
Zn 0.0174 0.0016 0.0528 0.0165 0.0004 0.0519 0.0123 0.0000 0.0553 0.0012 0.0000 0.0054
Ba 0.1750 0.0000 0.5616 0.2657 0.1760 0.3334 0.0628 0.0221 0.1078 0.1765 0.0620 0.3029
As 3.2849 0.0000 16.400 0.6461 0.0000 3.2255

HI 4.6963 0.0330 17.960 9.3773 0.9090 20.610 HI 0.2617 0.0588 0.6838 2.8656 0.2214 8.8439

Children

Al 0.0034 0.0004 0.0135 0.1484 0.0161 0.5741 0.0013 0.0000 0.0060 0.0560 0.0000 0.2561
HQ Cu 0.0042 0.0000 0.0094 0.0528 0.0000 0.0959 HQ 0.0238 0.0000 0.1479 0.2207 0.0000 1.3706

Fe 0.0078 0.0010 0.0241 0.0167 0.0022 0.0514 0.0021 0.0000 0.0111 0.0044 0.0000 0.0236
Pb 0.1080 0.0000 0.2778 0.3838 0.0000 0.9868 0.1045 0.0000 0.3729 0.3713 0.0000 1.3249
Mn 0.8327 0.0163 3.2183 0.8624 0.0174 3.4299 0.0149 0.0000 0.0709 0.0061 0.0000 0.0214
Zn 0.0136 0.0012 0.0415 0.0028 0.0001 0.0088 0.0097 0.0000 0.0434 0.0021 0.0003 0.0042
Ba 0.0743 0.0492 0.0932 0.0396 0.0044 0.0568 0.0494 0.0173 0.0847 0.0021 0.0003 0.0042
As 2.5808 0.0000 12.884 0.1100 0.0000 0.5493

HI 3.6249 0.0873 14.102 1.6166 0.0422 3.6014 HI 0.2056 0.0462 0.5372 0.6623 0.0042 1.4523

The hazard index (HI) for ingestion in children ranged from 0.05 to 14.1, with a mean
value of 2.04, and for adults 0.03 to 17.96, with mean value 2.48 (Table 4). The HI dermal for
adults was more significant than the HI in children. These values demonstrated a health
risk for the use and consumption of river water. HI dermal in adults ranged from 0.22
to 20.61 with a mean value of 6.12 and ranged from 0 to 3.61 with mean 1.14 in children
(Table 4). HI dermal values suggest that both adult and child population were significantly
affected by PTE presence in river water and groundwater by the notable concentrations of
Al, Mn, Pb and As.

Based on the USEPA criteria [27], HI ingestion values in adults and children presented
a high health risk in S2, S3, S5 and S7. HI dermal values for adults and children presented
high risk in river water and groundwater with high values well above the criteria (<1) in
samples S1, S2, S3, S4, S5, S7, GW1, GW3 and GW4 for adults and S2, S3, S4, S5, S7, GW1,
GW3 and GW5 for children; the samples either have unusual geological enrichment or are
under heavy anthropogenic influence (Figure 5).

The results showed that even though there were not much variability in the HI for
children and adults, adults generally seem to be at higher non-cancer risks compared with
children. In addition, in both children and adults, dermal contact of EPT in river water
poses higher non-cancer risks compared to ingestion values.

Similar values of hazard potentials were reported in the literature [41–45]. The results
show that Al, Pb, Mn and As pose a non-cancer risk through the dermal pathway to resident
adults and children, while Mn and As pose a non-cancer risk to residents that use and
consume the river water.

Prassad et al. [11] reported higher HI values for Mn, Zn and Pb in the Ganga River
than the reported in the present investigation, suggesting that both the adult and child
population were significantly affected.
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Figure 5. Hazard index (HI) for each site and population group. (a) Adult and (b) child through the
ingestion pathway and (c) adult and (d) child through the dermal pathway.

The results from Bodrud-Doza et al. [42] are consistent with this study, which also
stated, based on the average values of HQ and HI, that the concentration of PTE might pose
little health effects to the adults and children of Dhaka city via oral ingestion. They also
reported that HQs of metals were lower than the unity via dermal absorption of ground-
waters in Dhaka city, which suggests that these pollutants could pose a minimum hazard
to the local residents. However, the calculated mean HI dermal value for groundwater
was 0.0372, while the same value for surface water was 0.0530. Thus, it can be inferred
that surface water possessed more potential non-carcinogenic harmful health risks to the
residents compare to groundwater.

PTE toxicity could be acute, while others could be chronic after long-term exposure,
which may lead to the damage of several organs in the body, such as the brain, lungs, liver
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and kidney, causing diseases in the body. Alternative sources of water supply, including sit-
ting of boreholes (after accurate geochemical surveys) for potable water for the community
dwellers, should be facilitated.

4.3. Sediments
4.3.1. PTE Concentrations in Sediments

The concentrations of PTE in sediment samples were contrasted with the TEC, PEC
and probable effect level (PEL) values [30–32]. The results are summarized in Table 5.
Compared with SQG for aquatic life protection, PTE were above the probable effect level
(PEL) for As, Zn and Pb in five samples (71%), for Cd in four samples (57.1%), for Cu in
three samples (42%) and for Ni in one sample (14.28). All sites exceeded the TEC levels for
As, Cd, Cu, Pb and Zn, demonstrating a high level of pollution; for Pb, only S1 was below
the TEC value, while in the case of Ni, two sites exceeded the TEC values (S4 and S6). The
concentrations of Ni were below the TEC values for 50% of the samples, indicating that
there are no adverse effects in these samples (S1, S2, S3 and S7 samples). For As and Cu,
only two samples exceeded the PEC values (S2 and S3 for arsenic and S1 and S4 for copper).
The results also showed values higher than PEC for Pb, Zn and Cd in 57% of the samples
(S3, S4, S5 and S7), indicating that adverse biological effects often can occur (Table 3).

Table 5. The values of the geoaccumulation indices (Igeo) and enrichment factor (EF) of PTE in fluvial
sediments in the San Juan-Taxco River system.

Geoaccumulation Indices (Igeo)

S1 S2 S3 S4 S5 S6 S7 Mean Max Min
Al −2.87 −2.88 −2.7 −2.59 −2.68 −2.41 −3.34 −2.787 −2.41 −3.34
As - 2.45 2.76 1.82 1.78 - 1.56 2.074 2.76 1.56
B −0.69 −0.6 −1 0.29 −0.68 −0.36 −0.89 −0.56 0.29 −0.99
Ba −2.61 −2.64 −2.4 −1.76 −3.18 −2.72 −3.42 −2.681 −1.76 −3.42
Cd 3.96 3.74 6.91 8.54 5.35 3.89 6.12 5.5014 8.54 3.74
Co −2.32 −2.09 −1.9 −1.73 −1.85 −1.53 −2.04 −1.916 −1.53 −2.32
Cr −4.79 −5.79 - −4.65 - −3.88 - −4.778 −3.88 −5.79
Cu 2.32 0.7 0.9 3.23 −0.01 1.48 0.41 1.29 3.23 −0.01
Fe −2.02 −1.92 −1.9 −1.87 −1.7 −1.85 −1.76 −1.857 −1.7 −2.02
Mn −2.33 −1.68 −0.6 1.22 −1.8 −3.47 −0.81 −1.346 1.22 −3.47
Ni −1.91 −2.09 −2.2 0.65 −1.92 −1.54 −1.82 −1.543 0.65 −2.17
Pb 0.48 1.89 3.38 3.26 2.65 −0.88 2.89 1.9529 3.38 −0.88
Zn 1.8 0.52 4.32 5.49 3.27 0.5 4.13 2.8614 5.49 0.5

Enrichment factor (EF)

Al 1 1 1 1 1 1 1 1 1 1
As - 40.17 45.3 21.33 22.04 - 29.92 31.742 45.25 21.33
B 4.52 4.85 3.35 7.37 4.01 4.15 5.47 4.8171 7.37 3.35
Ba 1.19 1.18 1.23 1.78 0.71 0.81 0.94 1.12 1.78 0.71
Cd 113.39 98.13 801 2248 261.7 78.81 704.3 615.05 2247.9 78.81
Co 1.46 1.73 1.85 1.81 1.78 1.84 2.46 1.8471 2.46 1.46
Cr 0.26 0.13 - 0.24 - 0.36 - 0.2475 0.36 0.13
Cu 36.27 11.97 12.5 56.34 6.39 14.82 13.46 21.673 56.34 6.39
Fe 1.8 1.95 1.81 1.64 1.97 1.47 2.98 1.9457 2.98 1.47
Mn 1.45 2.29 4.57 14.05 1.85 0.48 5.75 4.3486 14.05 0.48
Ni 1.93 1.73 1.49 9.48 1.69 1.83 2.87 3.0029 9.48 1.49
Pb 10.18 27.19 69.4 57.62 40.3 2.9 74.97 40.366 74.97 2.9
Zn 25.46 10.55 133 270.2 61.81 7.52 177.4 98.044 270.15 7.52

4.3.2. Grain Size

According to the grain size analysis results of the surface sediments in the San Juan-
Taxco River system, sand is the overall dominant grain size. At most sites, the sand content
exceeds 80%, the contents of gravel and fine particles (clay and silt) were very small

97



Water 2022, 14, 518

(averaging 6.25 and 2.38%, respectively). The flow rate and flow velocity of the surface
water have high influence of grain size; the textural parameters derived from the grain size
analysis reflect the energy conditions in the sedimentation environment. In a low-energy
environment, the sediments are fine, although in a high-energy environment, the sediments
are coarse [46]. In this analysis, the distribution of grain size explains the high-energy in
the stream producing the dominance of sand size particles, in which the water flux is high,
and the slope is steep, thereby preventing the sedimentation of fine-grained particles along
the stream.

4.3.3. Sediment Mineralographic Composition

XRD studies revealed the presence of different minerals as: Quartz, Calcite, Sanidine,
Albite, Biotite, Wickenburgite, Lipsconmbite, Phengite, Gypsum and Muscovite. In all the
samples, a predominance of Quartz crystals (36 to 51%) and Calcite (6 to 18%) were shown
by XRD; Albite was present in four samples (11.5 to 19.2%), while Sanidine was present in
three samples (11.8 to 13.9%). In the sediment samples, minerals were found that are com-
posed of aluminum oxide and silicon dioxide, such as Albite, Sanidine, Biotite, Muscovite
and Wickenburgite. These minerals are by products of igneous and metamorphic rocks,
which are generally unstable in earth-surface due to weathering conditions; these minerals
are transformed into stable products (crystalline clay minerals, oxides and hydroxides) that
largely conserve aluminum and iron [47]. Therefore, the presence of aluminum and iron in
sediments in the study area is associated with an anthropogenic origin.

4.3.4. Degree of PTE Enrichment and Ecological Risk

Geoaccumulation index (Igeo) values are summarized in Table 5. According to the
calculation of each sampling point, the order of the TPE from the Igeo assessed is as
follows: Cd > Zn > Pb > Cu > As > Mn > Ni > B > Fe > Co > Ba > Al > Cr. S3 and
S4 are the most critical points by the Igeo (with four metals in the range of heavily to
very heavily contaminated). The Igeo values of Al, B, Ba, Co, Cr and Fe at all sampled
were less than zero, suggesting that these sites were not polluted. Cd was the metal
that presented the highest contamination in all the sampled sites, the sediment samples
were grouped in heavily contaminated for S1, S2 and S6, and heavily and extremely
contaminated for S3, S4, S5 and S7. Zn, Pb and Cu are the three PTE that have the greatest
influence on the contamination of the river sediments, since they present the highest
contamination values of the Igeo. In the case of Zn, these Igeo values were classified as
uncontaminated to moderately contaminated (S2 and S6), moderately contaminated (S1),
moderately to heavily contaminated (S5), heavily to very contaminated (S3 and S7) and
extremely contaminated (S4).

Igeo for Pb were categorized as uncontaminated in S6, uncontaminated to moderately
contaminated in S1, moderately contaminated for S2, moderately to heavily contaminated
in and S7 and heavily to very contaminated for S3 and S4. For Cu, Igeo values were
classified as uncontaminated in S5, uncontaminated to moderately contaminate in S3, S4
and S7, moderately contaminated for S6, moderately to heavily contaminate in S4. The
values of Igeo for As were greater than 1 but less than 2 in the samples of S4, S5 and S7,
which were classified as moderately contaminated, while the samples S2 and S3 were
considered as moderately to heavily contaminated.

The average EF (Table 5) of Cr, Ba, Co, Fe and Ni are found to be less than 3, indicating
minor enrichment, although the average enrichment factors of B and Mn are found between
3 and 5, suggesting that contaminations are currently not a major concern, although
moderate enrichment is indicated. The average EF of Cu was 21.67, indicating severe
enrichment (10 < EF < 25). As and Pb presented very severe enrichment (25 < EF < 50)
and Zn and Cd presented extremely severe enrichment (EF > 50); the average enrichment
factors for these PTEs were 31.74, 40.36, 98.04 and 615.05, respectively. The Cd presents
extremely high enrichment in all the points evaluated.
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The results of CFs and individual and global PLI are summarized in Table 6. The level
of CF values for each PTE in the sediment was in the order: Cd > Zn > Pb > Cu > As > Mn
> Ni > Fe > Co > Ba > Cr. Among all metals, contamination by Cd is the highest in all the
sediment samples in a range of CF values from 20 to 560 The CF values for Cd were >6
in all the sediments samples, indicating very high contamination. The CF values for Zn,
Pb, Cu and As present very high contamination and considerable contamination. The CF
values for Al, Ba, Co, Cr and Fe in all the samples denotes low contamination for all the
samples. These results indicated that the contamination is relatively high; there are serious
impacts of pollution related to PTE in the Taxco River System coming from abandoned
mining tailings, metals processing (jewelry) and untreated sewage.

Table 6. PTE contamination factors (CFs) and pollution load indices (PLIs) for sediments of all sites
studied in the San Juan-Taxco River system.

Sites
Contamination Factors (CFs)

PLI
Al As B Ba Cd Co Cr Cu Fe Mn Ni Pb Zn

S1 0.21 - 0.93 0.25 23.33 0.3 0.05 7.46 0.37 0.3 0.4 2.09 5.24 0.80
S2 0.2 8.19 0.99 0.24 20 0.35 0.03 2.44 0.4 0.47 0.35 5.54 2.15 0.86
S3 0.22 10.17 0.75 0.28 180 0.42 - 2.8 0.41 1.03 0.33 15.59 29.97 2.08
S4 0.25 5.31 1.84 0.44 560 0.45 0.06 14.04 0.41 3.5 2.36 14.35 67.3 2.83
S5 0.23 5.15 0.94 0.17 61.11 0.42 - 1.49 0.46 0.43 0.4 9.41 14.43 1.43
S6 0.28 - 1.17 0.23 22.22 0.52 0.1 4.18 0.42 0.14 0.51 0.82 2.12 0.72
S7 0.15 4.44 0.81 0.14 104.44 0.36 - 2 0.44 0.85 0.43 11.12 26.31 1.59

Mean 0.22 6.652 1.06 0.25 138.73 0.4 0.06 4.916 0.42 0.96 0.68 8.417 21.07 1.47
Max 0.28 10.17 1.84 0.44 560 0.52 0.1 14.04 0.46 3.5 2.36 15.59 67.3 2.83
Min 0.15 4.44 0.75 0.14 20 0.3 0.03 1.49 0.37 0.14 0.33 0.82 2.12 0.72

In many studies, where the CF index has been calculated, CF values ranged from 0.03
to 2.31 for Cr, As, Fe, Al, Co, Ni, Zn and Mn, CF values in the Zarrin-Gol River ranged from
0.14 to 6.08 for Fe, Mn, ZN, Cr and Ni and CF values in the Yauri River ranged from 0.44 to
2.47 for Cr, Fe, Ni and Zn [2,7].

The PLI values estimated by sampling points ranged from 0.72 to 2.83 (Table 6). These
indicate that samples S1, S2 and S6, where PLI was below 1, were unpolluted, the samples
S5 and S6 were moderately polluted, while samples S3 and S4 were polluted. For computing
the global value, it was necessary to consider all the samples and correct for points S1,
S3, S5, S6 and S7, which do not contain As and Cr; therefore, n = 12. The global value of
PLI for the entire study area was 1.29, which makes it a moderately contaminated area
(Figure 6). This indicates that the San Juan, Taxco and Cacalotenango rivers are in a state of
contamination due to the influence of the 13 PTEs evaluated, with Cd, Zn, Pb and Cu being
the most influential elements.

The ecological risk of PTE in superficial sediments was assessed through the potential
ecological risk index (Ei

r and RI) and summarized in Table 7. Ei
r values for Cd in almost

all the samples indicated very high ecological risk (666 to 16,800), except for S2, which
was classified as considerable ecological risk (600); for As, the values Ei

r were classified as
moderate ecological risk in samples S4, S5 and S7 (44.38 to 53.1) to appreciable ecological
risk in samples S2 and S3 (81.88 to 101.67). For Cr, all the values of Ei

r in the studied
sediments were assessed with low ecological risk.

The Ei
r values for Pb showed low ecological risk in samples S1, S2 and S6, and moderate

ecological risk in samples S3, S4, S5 and S7. In the case of Cu, the values in almost all
the samples showed a low ecological risk, but S4 showed a moderate ecological risk. The
values of RI in all the studied sites were above 600 (RI > 600), which indicated very high
ecological risk for the studied area. In summary, the Ei

r and RI indices for the studied
elements in the surface sediment at all sites showed that San Juan, Cacalotenango and
Taxco river pose considerable to high potential ecological risk with major contribution of
As and Cd (Table 7 and Figure 7).
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Figure 6. Spatial distribution of the pollution load index (PLI) in fluvial sediments of the San
Juan-Taxco River system.

Table 7. Potential ecological risk index in the San Juan-Taxco River system.

Sites
Ei

r
RI Risk Grade

As Cd Cr Cu Pb

S1 700 0.109 37.32 10.47 747.9 very high
S2 81.88 600 0.054 12.2 27.71 721.83 very high
S3 101.67 5400 14 77.94 5593.61 very high
S4 53.13 16,800 0.12 70.18 71.76 16,995.19 very high
S5 51.46 1833.3 7.46 47.06 1939.31 very high
S6 666.7 0.204 20.89 4.09 691.85 very high
S7 44.38 3133.3 9.98 55.59 3243.28 very high

Mean 66.504 4161.9 0.12175 24.576 42.0886 4276.1386
Max 101.67 16,800 0.204 70.18 77.94 16,995.19
Min 44.38 600 0.054 7.46 4.09 691.85
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Figure 7. Spatial distribution of the potential ecological risk index in the San Juan-Taxco River system.

Summarizing, the degree of pollution from PTE decreased in the following sequence
Cd > Zn > Pb > As > Cu > Mn > Ba > Ni. It is worth noting that the investigations carried out
revealed a considerable loading of the surface sediment with Cd. Consequently, Cd, Zn and
Pb may originate from mining, jewelry wastes and agricultural sources, such as pesticides
and chemical fertilizers (phosphate fertilizer). The indices exhibited very high pollution in
S4 and S3, and considerable contamination in S7 and S5. The results revealed the degree
of PTE pollution with PLI in the study area is moderately contaminated and RI values
demonstrated very high ecological risk for the five metals assessed (As, Cd, Cr, Cu and Pb).

The concentrations of PTEs in the San Juan-Taxco River system were compared with
other major polluted rivers in Mexico and worldwide and summarized in the Table 8. The
comparison of the PTEs concentrations with other Mexican rivers showed that this system
presents higher concentrations of As, Cd, Ni, Fe, Cu and Zn than those reported in the

101



Water 2022, 14, 518

Atoyac river; Cd, Cu and Zn higher than those reported in the Panuco River and exceeds
the concentrations of As, Fe, Cu, Ni and Zn measured in the Coatzacoalcos River [4,48,49].

Table 8. Comparison of PTE concentrations with other riverine environments worldwide.

PTE
As Ba Cd Cr Cu Ni Pb Zn Fe

(mg kg−1)

Present study 17.1–48.8 1.8–50.4 2.5–17.1 4.3–502 15.4–111 2.5–13.9 45.09–142 15,366–23,223
Yangtze River [50] 9.1 0.19 79.1 24.7 31.9 23.8 82.9 -
Yellow River [51] - 0.1–0.3 61.3–139.5 14.1–30.3 19.3–34.6 15.5–24.6 39.9–74.6 -
Tinto River [52] 1130 2.75 56 805 17 2230 901 11,500
Tigris River [53] 7.9 - 2860 66 1061 -
Ganga River [54] - 1.7 69.9 29.8 372 26.7 67.8 31,988.60

Euphrates River [55] - 1.9 58.9 18.9 67.1 22.6 48 2249.50
Zarrin-Gol River [7] 21.91 - 37.67 - 12.39 - 32.68 13,751

4.3.5. Comparison of PTE Concentrations with Other Riverine Environments Worldwide

The worldwide comparison showed higher concentrations, the comparison with
Zarrin-Gol River in Iran in As, Ni, Zn and Fe, and the sediment concentrations of Cd, Cu,
Ni, Pb and Zn in the present study exceed those reported in the Yantze, Yellow, Ganga and
Euphrates Rivers [7,48,55]. The concentration of Fe was found to be higher than the values
in the Tinto River and Euphrates River (Table 8). The Fe abundance in sediments has been
attributed to weathering, erosion and other natural sources, as well as large-scale human
activities (mining release, municipal solid waste and agricultural activities).

Cadmium values are considerably high, compared to the other rivers of Mexico and
the world; the results showed concentrations in all study sites to be above the background
values, and these vales are associated with wastes from mining and urban and agricultural
runoff. The concentration of Pb in this study was found to be lower than the concentra-
tion reported in the Atoyac, Panuco, Coatzacoalcos, Yangtze, Yellow, Tinto, Ganga and
Euphrates Rivers [7,48–55]. This metal is mainly associated with Fe oxide fraction and
shows high retention in sediments. Pb and Zn concentrations is attributed that tailings
are being washed down by the action of rain towards the riverbed. Zn is one of the most
abundant elements in the sediment of the San Juan-Taxco River system (Table 8). Those
values are higher than the values reported in the Atoyac, Panuco, Coatzacoalcos, Yangtze,
Yellow, Ganga, Euphrates and Zarrin Rivers [7,48–55].

The results of PTE pollution in surface sediments of the San Juan-Taxco River system
indicated that the contamination is relatively high. Several authors have documented the
contamination until the closure of the mines and after the abandonment of the mining
tailings [14,15,56,57]; the closure of the mines brought with it an increase in formal and
informal crafts and jewelry workshops not only made of silver, but also of other alloys,
such as alpakar, brass and tumbaga. The results indicate that the concentrations previously
reported in the sediments do not coincide in order of abundance or in the same elements;
in this work, the toxic elements present in order of abundance are Cd > Zn > Pb > Cu > As
and before they were Pb > As > Zn > Fe [17,56].

The manufacturing process of handicrafts and handmade jewelry include refining
and alloying with other metals, such as Cd, Zn and Cu, the smelting process, framing
the metals, soldering, platinating, polishing or etching the piece. Each task is generally
accomplished by the use of some substances and actives of PTEs, such as Cd, Zn and Ni;
traditionally, Cd and Zn have been used in jewelry solders or galvanized [20]. The rivers in
the mining region of Taxco constantly receive trace amount of PTEs from weathering of
rocks. Continuous or intermittent but relatively higher input of heavy metals to rivers and
streams is linked to anthropogenic sources [56].

The release of PTE may change between different points depending on the local
concentrations and physicochemical conditions and the sources. The contributions of these
elements can be from the piles of mining tailings dust, the discharges of the municipal
network and water contributions from the jewelry and handicraft workshops, the dust
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produced by the metal processing of these workshops and pollution from regular municipal
discharges. These toxic elements may be mobilized by rain and air towards the riverbed.

5. Conclusions

PTEs in water resources is a severe threat due to their toxic nature and tendency to
bio-accumulate and amplify in higher trophic levels, altering the ecological functions of
the river and soil, poisoning the aquatic environment and putting at risk the populations
dependent on the river system. This study determined the concentrations of nine PTEs in
water samples; the concentrations in water (river water and groundwater) in almost all of
the samples were below the standards of the WHO. The concentrations of Mn, As, Al and Pb
in water posed health risks based on the CDI, HQ and HI method and USEPA criteria (2005).
The human health risk assessment indicated that the water of San Juan-Taxco River system
is not recommended for human consumption, domestic activities and prolonged ingestion.

The San Juan-Taxco River system has a potential health risk in both population groups
for the two pathways. Non-healthy risk was determined in groundwater; the risk to
human health in the river water can be attributed to the dissolution of minerals, trace
metals from direct sewage discharge, agricultural runoff, tailings dams and increasing
concentration due to bioaccumulation downstream. Therefore, it can be established that the
population living in the riverine landscape and using untreated surface water for drinking
are vulnerable to the health risk from TPE pollution. Proper monitoring in the area should
be implemented to control the pollution and to identify alternative sources of drinking
water. It is recommended to implement a proper treatment and management policies of
water to reduce the health risk.

Anthropogenic sources have contributed significantly to PTE concentrations in the
study area, while natural sources have contributed only small amounts. Cd, Zn and Pb may
originate from mining and jewelry wastes, wastewater and agricultural sources, such as
pesticides and chemical fertilizers. The analyses also indicate that the main processes that
control the pollution are mining tailings erosion with discharge processes and proportional
dilution related to grain-size distribution processes (this is a high-energy stream with
dominance of sand size particles). Thus, PTE concentrations tend to accumulate in banks
and in backwaters with fine sediments with reduced flow rate and flow velocity.

PTE concentration in water and sediments pose a severe threat to the human popula-
tion due to erratic disposal and rapid discharge of PTE in the river environment by mining
tails, numerous jewelry workshops and human settlements in this riverine landscape.

This study provides the environmental knowledge in identifying the contaminants
in the sedimentological substrate and locates the sites in need of immediate assistance. In
addition, it is necessary to identify the number of handicrafts and jewelry workshops and
to know the amount of PTE waste that is generated.

It is also very important to establish the PTE waste concentration in water and the
environment to establish regulation, conservation and treatment measures. The infor-
mation generated from the present study would serve to establish public policies for an
effective management of this fluvial system in Mexico. Moreover, sensitization and aware-
ness of the health risk of the consumption of water sources affected with PTE should
be carried out intensively.

To reinforce the results of this study, it is recommended to increase the number
of samples in those critical areas. Future research should include the risk analysis of
the entire population. An isotopic analysis of strontium could provide a more detail
source of contaminants.
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Abstract: It has been reported that significant quantities of greenhouse gases are emitted from
wetlands, from which emissions and their contributions to global warming have received much
less attentions. Thus, a refinement to the previous published guidelines has recently been made
to provide an updated and sound scientific basis for the purpose of supporting the preparation of
national inventories. This study is aimed at demonstrating the applicability of the refinement for
estimating methane emissions from reservoirs in the Republic of Korea. It is desirable to take the direct
measurement of total methane fluxes across the reservoir surface, which may require a substantial
amount of research efforts though. Alternatively, methane emissions from individual reservoirs may
be estimated with relevant parameters accounting for the regional environmental characteristics.
The assessment of trophic state has been employed to better represent the emissions behavior of
reservoirs, based on which the methane emissions from local reservoirs in Korea are estimated.
It is noted that the country has developed its own water quality index with the consideration of
environmental characteristics. The seasonal variations in methane emissions are tested for their
statistical significance and it is proposed that the emission estimates can be predicted from the trophic
state assessment with the application of regression analysis. Following the guidelines prescribed
by the refinement and procedures outlined in this study, the results from emissions estimation and
prediction can be effectively used for the improvement of national inventories.

Keywords: methane emissions from reservoirs; trophic state assessment; IPCC guideline; emissions
estimation; climate change

1. Introduction

The world’s water reservoirs are annually emitting carbon dioxide (CO2), methane
(CH4), and other greenhouse gases (GHGs) in significant quantities, depending on a
variety of different characteristics such as age, land-use prior to flooding, climate, upstream
catchment and management practices [1]. It is estimated that the GHG emissions from
reservoirs are roughly equivalent to 1.07 gigatons of CO2 [2], which surprisingly approach
to 14% of the annual CO2 emissions of 7.8 gigatons from fossil fuel combustion [3]. With
the exception of CO2, CH4 is considered the most important greenhouse gas because its
global warming potential is 34 times greater than that of CO2, though its atmospheric
concentration is approximately 200 times less. Especially, wetlands including reservoirs
are the largest natural source of methane accounting for roughly one third of total natural
and anthropogenic CH4 emissions. It is argued that the global fossil fuel emissions would
have to be reduced by as much as 20% more than previous estimates to achieve the Paris
Agreement targets because of the natural GHG emissions from wetlands and permafrost,
which is thus critical in the assessment of emission pathways to limit global warming [4].
However, CH4 emissions from wetlands and their contribution to global warming potential
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were poorly assessed before mainly due to the paucity of available data [5–7]. Most
attempts are centered on upscaling the GHG emission rates from individual waterbodies to
the regional or global estimates and simply multiplying an average emission rate by the
total waterbody surface area in the region of interest [8–11]. It is pointed out in [12] that
this upscaling approach can be highly biased unless the emission rate measurements come
from a representative sample of lakes or reservoirs in the region of interest.

Providing an updated and sound scientific basis to support the preparation and
continuous improvement of national inventories, the 2019 Refinement to the 2006 IPCC
Guidelines for National Greenhouse Gas Inventories [3] (hereafter referred to as ‘2019
Refinement’) has been adopted to embrace recent scientific advances and technological
developments. Scientists recognized the importance of including reservoir emissions in the
nation’s GHG inventory to better understand their climate impacts, and thus a significant
refinement has been made to the estimation of GHG emissions from wetlands, especially
from flooded lands, which is described in Chapter 7.3 of Volume 4. An exhaustive collection
of related research efforts is well reviewed and presented in [3] emphasizing the urgency of
accounting methane emissions from wetlands from the perspective of reporting inventories.
The refinement for estimating CO2 and CH4 emissions from reservoirs provides the average
emission factors for six major climate zones; boreal, cool temperate, warm temperate/dry,
warm temperate/moist, tropical dry/montane, and tropical moist/wet. The emission
factors for each climate zone are derived from an extensive literature survey and they are
multiplied by the total area of water surface to estimate the emissions from reservoirs. Even
though the region may be classified as the aggregated climate zone of ‘Cool Temperate’, it
may exhibit different climatic characteristics from season to season due to the noticeable
seasonal variations in temperature and precipitation. In addition, the emissions estimation
can be adjusted based upon the assessment of trophic state of reservoirs. Even though
feasible to obtain the region-specific estimates of emissions from reservoirs by assessing
the tropic status of individual reservoirs, there hardly exists such an attempt to adopt the
2019 Refinement for estimating the GHG emissions from wetlands with the consideration
of regional climatic characteristics. The objective of this study is to estimate the amount of
methane emissions from reservoirs as per the procedure outlined in the 2019 Refinement.
Further, it is also proposed to predict the methane emissions based on the country-specific
trophic state assessment by employing the statistical regression analysis. For the purpose
of this study, selected are six reservoirs in the Republic of Korea, which is recognized
as the 9th largest emitter of GHG emissions with more than 700 million tons of carbon
emissions in 2019 [13]. It was reported that the methane emissions from wetlands are
merely 0.283 million tons equivalent to about 1% of the total methane emissions, which
may seem negligible. However, the refinement has not yet been adopted to obtain the
emissions estimation in the report and it is extremely probable that the refinement yields a
much greater amount of total emissions from wetlands. To the best of authors’ knowledge,
this study is the first attempt, at least for Korea, to apply the refinement for estimating
the methane emissions from individual reservoirs. The defining aspect of this study is
that the estimation of methane emissions has been carried out based on the region- or
country-specific trophic state assessment method to better account for regional climatic
characteristics and the trophic state assessment may also be used to predict the emissions
from different reservoirs. The remainder of this manuscript is organized as follows: First,
the methodology prescribed in the 2019 Refinement is briefly summarized and the index
for country-specific trophic state assessment is introduced in the next section. Section 3
describes the results from the assessment of trophic state of individual reservoirs and
their emissions estimation. It is also discussed that the results may be used to predict the
methane emissions from reservoirs based on the trophic state assessment. The conclusions
will follow in the last section.
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2. Methods

2.1. Methodology Based on IPCC Guidelines

The carbon emissions from wetlands are traced from three different source categories:
managed peatlands, flooded land, and inland wetland mineral soils. No refinements
have been made to the categories of managed peatlands and inland wetland mineral soils.
Major developments with regard to the emissions from flooded lands are included in the
refinement and described in a greater detail based on the collation of extensive literature
survey. The usage of guidelines for the emissions estimation is contingent upon the types
of flooded lands; land converted to flooded land, flooded land remaining flooded land, and
other constructed water body. All the reservoirs under investigation here can be classified
as the type of flooded land remaining flooded land since all of them are more than 20 years
old. It is advocated that only methane emissions are estimated in this category to avoid
the double counting of CO2 emissions [3]. Annual total emissions estimation from flooded
land remaining flooded land may be obtained by the following as given in [3]: First, the
annual emissions from reservoir surface, denoted by FCH4res, are estimated by

FCH4res =
j

∑
j=1

nresj

∑
i=1

αi
(
EFCH4age>20,j·Atotj,i

)
(1)

where i and nresj are the index for individual reservoirs and the number of reservoirs
more than 20 years old in climate zone j, respectively. The total area of water surface
in hectare is denoted by Atotj,i and the CH4 emission factor from reservoirs more than
20 years old located in climate zone j by EFCH4age>20,j measured in kg CH4/year. The
emission factors may be adjusted by αi, if appropriate, depending upon the trophic state of
individual reservoirs. In addition, FCH4downstream denotes the annual emissions from CH4
originating from reservoirs but emitted downstream of corresponding reservoirs, which
can be estimated by multiplying the emissions from water surface of individual reservoirs
by the ratio Rd of total downstream methane emission to the total flux of methane from the
reservoir surface as follows:

FCH4downstream =
j

∑
j=1

nresj

∑
i=1

αi
(
EFCH4age>20,j·Atotj,i

)·Rd,i (2)

The total annual emissions of CH4 from all reservoirs under study, denoted by FCH4tot,
is simply the sum of emissions from water surface and downstream, that is,

FCH4tot = FCH4res + FCH4downstream (3)

If sufficient data are lacking, the default values for parameters, such as Rd and αi, may
be used in a blanket manner even though acknowledged in [3] that it is good practice to
develop the country-specific emission factors to reduce overall uncertainty. The procedure
outlined in [3] is certainly useful to estimate the methane emissions from wetlands, but
a certain degree of ambiguity is inevitable without a sufficient amount of data especially
related to trophic states. This study uses the default value of 0.09 with the 95% confidence
interval (0.05, 0.22) for Rd as recommended in [3] due to the lack of relevant data. On the
other hand, the adjustment factor αi is derived from the seasonal trophic state assessment
of individual reservoirs as outlined in the below. It is most desirable to employ the Tier 3
approach by taking the direct measurement of CH4 diffusion and ebullition fluxes across the
reservoir surface or applying Greenhouse Gas Reservoir Tool (G-Res) model [14]. However,
it may require a great deal of efforts and resources to capture both the spatial and temporal
variability of emissions from a reservoir. As an alternative, the methane emissions from
individual reservoirs may be estimated with the relevant parameters adjusted for trophic
status and water withdrawal depths of reservoirs. For example, different values of the
emission factor adjustment αi are recommended in [3] depending upon trophic index (TI),
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surface concentration of chlorophyll-a (Chl-a), total phosphorus (TP), total nitrogen (TN),
Secchi depth (SD), and trophic class. The emission factor adjustment of 10.0 is to be used
for a eutrophic reservoir in lieu of its default value of 1.0. It is also noted that the emissions
estimation needs to take environmental circumstances as well as properties of individual
reservoirs into account. The methane emission factors are highly variable in different
climate zones, and it is reasonable to apply different emission factors from season to season
where the average temperature and precipitation are greatly fluctuating across the year.
The Republic of Korea has four distinct seasons and a significant variation in seasonal
weather may be observed. For example, one of the reservoirs investigated here is located
near the city of Boryeong where the annual average temperature is 12.7 degrees Celsius
and the difference in monthly average temperature between hottest and coldest months is
25.9 degrees Celsius. Further, the annual rainfall total is 1191.4 mm and the precipitation is
mainly concentrated in summer with the average rainfall of 652.4 mm. Six reservoirs in the
central region of Korea are investigated to demonstrate the applicability of the methodology
described above for estimating the methane emissions with the consideration of seasonal
climatic characteristics and the trophic state of individual reservoirs.

2.2. Country-Specific Trophic State Assessment

There are about 18,000 reservoirs and dams of various sizes in the Republic of Korea
and most of them are more than 20 years old [15]. The country is relatively small in terms
of the land area and ranked 109th in the world with the land area of 97,230 km2. River Act
of Korea designates five major river systems as National Rivers, along which a significant
number of reservoirs and lakes are located. It is noted that the spatial variations in climatic
characteristics are slightly noticeable, if any, compared to the seasonal variations mainly
due to the small land area of Korea, and this study rather focuses on the temporal variations
in methane emissions. Located in the central region of Korea, the third longest river system
from the central region of Korea, called Geumgang, is selected for analysis in this study.
From the perspective of data availability and readiness for the country-specific trophic
state assessment, six reservoirs of different sizes, from the surface area of 59 to 7419 hectare,
along the Geumgang river system are taken as shown in Table 1.

Table 1. Information of Six Reservoirs.

Name
(Abbreviation)

Basin Area
(ha)

Surface Area
(ha)

Water Storage
Capacity (103 m3)

Main Use

Bunam
(BN) 15,720 3560 21,100 Agriculture

Boryeong
(BR) 16,360 217 116,900 Water Supply

Daeho
(DH) 31,215 7419 112,000 Agriculture

Sapgyo
(SG) 163,950 2017 84,082 Agriculture

Seokmun
(SM) 1750 59 975 Agriculture

Tapjeong
(TJ) 21,880 636 31,927 Agriculture

As mentioned earlier, the assessment of trophic states is crucial to better estimate the
emissions from reservoirs by adjusting the emission factors. Carlson [16] proposed the
use of a trophic state index (TSI) based on the measurement of SD, TP, and Chl-a from
reservoirs, which is widely adopted for water quality assessment in the literature. On
the other hand, it is argued in [17] that the trophic state assessment should be carried out
in such a way to better represent environmental characteristics of the region of interest
and the trophic state index suitable for Japanese river systems is proposed by modifying
Carlson’s index. Considering regional environmental characteristics of Korea, NIER [18]
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also developed the water quality assessment method and proposed the trophic state index
named ‘Korean Trophic State Index’ (TSIKR), which is basically based on the measurement
of chemical oxygen demand (COD), TP, and Chl-a from individual reservoirs [19–23]. It
is pointed out in [20,23] that the Korean index adopts the measurement of COD in place
of SD used in the Carlson’s and Japanese indices with the consideration of Korean river
systems characterized by relatively short detention times and a higher intake of organic
matters. The index TSIKR separately evaluates the water quality of reservoirs in terms of
COD, TP, and Chl-a as shown in Equations (4)–(6), respectively.

TSIKR_COD = 5.8 + 64.4 log(COD mg/L) (4)

TSIKR_TP = 114.6 + 43.3 log(TP mg/L) (5)

TSIKR_Chl-a = 12.2 + 38.6 log
(

Chl-a mg/m3
)

(6)

where TSIKR_COD, TSIKR_TP, and TSIKR_Chl-a denote the trophic state indices assessed from
the measurements of COD, TP, and Chl-a, respectively. Then, the overall TSIKR is derived
by taking the weighted average of three sub-indices in the above. The weights of 0.5, 0.25,
and 0.25 are assigned to TSIKR_COD, TSIKR_TP, and TSIKR_Chl-a, respectively, as follows:

TSIKR = 0.5(TSIKR_COD) + 0.25(TSIKO_TP) + 0.25(TSIKR_Chl-a) (7)

It should be noted that the trophic state assessment is twice more influenced by
TSIKR_COD than the others considering the characteristics of regional reservoirs which are
highly affected by allochthonous and autochthonous organic matters [20]. The trophic state
of individual reservoirs is to be determined by the value of TSIKR as shown in Table 2. The
index has been adopted as the official index for trophic state assessment designated by the
Ministry of Environment of Korea in Ministry Notice 2013-134 since 2013. The reasoning
behind the development of TSIKR is beyond the scope of this study, and interested readers
are referred to [17] for more detailed discussions on TSIKR.

Table 2. Classification of Trophic Class Based on the Value of TSIKR.

Range of TSIKR Trophic Class
Range (Recommended Value)

for Adjustment Factor αi

0~30 Oligotrophic 0.7 (0.7)
30~50 Mesotrophic 0.7~5.3 (3.0)
50~70 Eutrophic 5.3~14.5 (10.0)

70~100+ Hypertrophic 14.5~39.4 (25.0)

3. Results and Discussion

3.1. Seasonal Trophic State Assessment of Reservoirs

Based on the water quality data on COD, TP, and Chl-a, the trophic state of each
reservoir can then be assessed season by season to capture the seasonal variations. The
seasonal assessment of trophic state for individual reservoirs has been performed by [18].
Collecting data on the water quality for almost 15 years, the seasonal averages of mea-
surement data are used to determine the trophic state season by season. In addition, the
emission factors need to be adjusted for the trophic state to estimate the methane emissions
from individual reservoirs. For each trophic class, the range and recommended value
for adjustment factor are provided as shown in Table 2 [3]. For example, the range of
adjustment factor for mesotrophic state is from 0.7 to 5.3 and it is recommended to use
3.0 when sufficient data are not available. On the other hand, the range of TSIKR value is
from 30 to 50 for mesotrophic reservoirs, and it seems reasonable to use the interpolated
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adjustment factor. Provided that TSIKR = 45, the interpolated adjustment factor can then
be calculated as

αi = 0.7 +
(45 − 30)
(50 − 30)

× (5.3 − 0.7) = 4.15. (8)

Table 3 presents the result of trophic state assessment along with the TSIKR values, their
standard errors, and corresponding adjustment factors. As observed from the standard
errors of TSIKR values, the trophic state indices do not fluctuate much throughout the data
collection period. On the other hand, a relatively large seasonal variations of indices may
be observed especially for such reservoirs as DH, SM, and TJ as shown in Figure 1. It is
obvious that the trophic state index should be closely related to the adjustment factor, which
is depicted in Figure 2. The Pearson’s correlation coefficient between them corresponds to
0.98 indicating that there exists a strong positive correlation and the seasonal variations in
trophic states are well reflected in the interpolated adjustment factors.

Table 3. Seasonal Assessment of Trophic State and Corresponding Adjustment Factor.

Reservoir Season
TSIKR

Trophic Class
Interpolated

Adjustment FactorMean (Std. Error)

BN Spring 68.57 (2.63) Eutrophic 13.84
Summer 71.30 (2.91) Hypertrophic 15.58
Autumn 70.00 (1.90) Eutrophic 14.50
Winter 68.69 (2.14) Eutrophic 13.90

BR Spring 26.81 (1.30) Oligotrophic 0.63
Summer 31.92 (1.62) Mesotrophic 1.14
Autumn 30.68 (0.94) Mesotrophic 0.86
Winter 27.07 (0.71) Oligotrophic 0.63

DH Spring 50.81 (1.08) Eutrophic 5.67
Summer 59.80 (1.13) Eutrophic 9.81
Autumn 64.86 (2.80) Eutrophic 12.14
Winter 52.49 (1.40) Eutrophic 6.45

SG Spring 71.34 (2.01) Hypertrophic 15.61
Summer 72.31 (1.88) Hypertrophic 16.42
Autumn 70.93 (1.99) Hypertrophic 15.27
Winter 70.17 (1.72) Hypertrophic 14.64

SM Spring 62.34 (2.46) Eutrophic 10.98
Summer 73.74 (6.11) Hypertrophic 17.60
Autumn 67.86 (1.88) Eutrophic 13.52
Winter 55.60 (0.73) Eutrophic 7.88

TJ Spring 39.19 (2.63) Mesotrophic 2.81
Summer 50.59 (1.30) Eutrophic 5.57
Autumn 51.01 (1.91) Eutrophic 5.76
Winter 41.28 (2.06) Mesotrophic 3.29

3.2. Estimation and Prediction of Methane Emissions from Reservoirs

Derived from the G-Res model, the unadjusted emission factors EFCH4age>20,j are
provided for each climate zone in [3]. Most of the regions in the Republic of Korea are
classified as ‘Cool Temperate’ zone except for southern and eastern coastal areas, and
it is recommended to use the average emissions factor of 54.0 with the 95% confidence
interval (48.3, 59.5). The refinement recommends using the default value of 0.09, unless
otherwise specified, for the ratio of downstream emissions to the total flux of methane
from reservoir surface [3]. Using Equations (1)–(3), the methane emissions from individual
reservoirs under investigation can then be estimated with the parameters outlined above.
For example, the methane emissions estimation from the reservoir BN over the spring
season can be obtained with the following parameters: EFCH4age>20,j = 54.0 for the climate
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zone of ‘Cool Temperate’, Atotj,i = 3560 for the surface area, αi = 13.84 for the adjustment
factor, and Rd = 0.09 for the ratio of total downstream methane emission to the total flux of
methane from the reservoir surface. The surface emissions of methane are 665,150 kg CH4
and the downstream emissions are simply 59,863 kg CH4 by adopting the default value
0.09 for Rd due to the lack of data availability, which sums up to 725,013 kg CH4. Table 4
presents the seasonal methane emissions from individual reservoirs along with the annual
per hectare emissions.

Figure 1. Seasonal Trophic State Assessment of Individual Reservoirs.

Figure 2. Relationship between Trophic State Index and Adjustment Factor.
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Table 4. Estimates of Annual Methane Emissions from Reservoirs (103 kg CH4).

Reservoir Spring Summer Autumn Winter Total Per Hectare

BN 725.0 816.2 759.6 728.2 3028.9 0.851
BR 2.0 3.6 2.7 2.0 10.4 0.048
DH 619.0 1071.0 1325.3 704.2 3719.4 0.501
SG 463.3 487.3 453.2 434.5 1838.4 0.911
SM 9.5 15.3 11.7 6.8 43.3 0.735
TJ 26.3 52.1 53.9 30.8 163.1 0.256

Note that the amount of per hectare methane emissions from the reservoir BR is
significantly less than others, which may be contributed to the fact that the reservoir BR
is mainly used for drinking water supply and the management of water quality is fairly
rigorous. A relatively moderate variation is observed among the other reservoirs mainly
used for agriculture. The reservoir SG exhibit the largest per hectare annual emissions of
911 kg CH4. Rim and Shin [24] pointed out that the water quality of SG is deteriorated
because of increased phytoplankton biomass with rich nutrient flowing from the upper
stream of watershed. It is also confirmed that the reservoir SG exhibits consistently higher
adjustment factors across the year. Since the emissions are affected proportionately to
the surface area, the seasonal estimates of per hectare methane emissions from individual
reservoirs are compared to reduce the scale differences, which is depicted in Figure 3.
Noticeable differences in seasonal estimates can be observed for the reservoirs BR, DH,
SM, and TJ whereas the methane emissions from BN and SG do not much differ season
by season.

Figure 3. Comparison of Seasonal Estimates of Methane Emissions from Individual Reservoirs.

Statistical analysis can be useful to determine whether there exist statistically signifi-
cant differences in methane emissions season by season. For the sake of demonstration,
the confidence intervals (CIs) of seasonal emissions estimation from DH and SG are de-
rived and depicted in Figure 4. As shown in Figure 4a, the largest amount of methane is
emitted in Autumn with mean 1,325,331 kg CH4 and 95% CI of (1,185,435, 1,460,318). The
annual total emissions from DH sum up to 3,719,442 kg CH4 and its 95% CI is (3,326,834,
4,098,274). It should be noted that the pairwise comparison of CIs reveals the existence of
statistically significant differences in seasonal emissions with the significance level of 5%.
To the contrary, all the 95% CIs of seasonal estimates of methane emissions from SG overlap
with each other, as shown in Figure 4b, implying that the amount of methane emission
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does not differ significantly from the statistical point of view with the significance level
of 5%. While emissions from DH are fluctuating seasonally to a great extent, a relatively
stable amount of methane emissions is observed across the year. It is concluded that the
seasonal behavior of methane emissions is quite different from one reservoir to another
and it is closely related to the seasonal trophic states of individual reservoirs.

(a) 

(b) 

Figure 4. Mean and 95% CI of Methane Emissions by Season. (a) Reservoir DH. (b) Reservoir SG.

The procedure prescribed in [3] emphasizes the influence of trophic states on emissions
estimation from wetland, which is further investigated by way of regression analysis. The
estimates of seasonal methane emissions are regressed against surface area and the results
from trophic state assessment. It is assumed that the surface area of reservoirs is constant
over the years, which seems unreasonable but can be accounted for whenever sufficient data
are provided. The omnibus analysis of variance (ANOVA) table and corresponding model
coefficients are provided in Tables 5 and 6, respectively, all of which indicate the statistical
significance of regression model. The coefficient of determination R2 is 0.872 implying
that 87.2% of variations in the emission estimates can be explained by the model. One of
the advantages of regression model is that it can be used for the purpose of prediction.
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The marginal means plot with respect to TSIKR is constructed for a reservoir with the
average surface area as depicted in Figure 5. The straight line and gray area represent the
predictions on emission estimates and their 95% CI, respectively. The estimated marginal
means of emission estimates are summarized in Table 7. For example, the emission estimate
for a reservoir with average surface area and the mean TSIKR is predicted to be 367 with
the 95% CI of (303,430) measured in 103 kg CH4.

Table 5. Omnibus ANOVA Table.

Sources of
Variation

Sum of
Squares

Degree of
Freedom

Mean Square F-Value p-Value

Surface Area 2.22 × 106 1 2.22 × 106 98.7 <0.001
TSIKR 266,863 1 266,863 11.9 0.002

Residuals 472,579 21 22,504

Table 6. Summary of Regression Model Coefficients.

Predictor Estimate Standard Error
95% CI

t-Value p-Value
Lower Upper

Intercept −320.023 115.3802 −559.9692 −80.077 −2.77 0.011
Surface Area 0.123 0.0124 0.0976 0.149 9.94 <0.001

TSIKR 7.127 2.0696 2.8230 11.431 3.44 0.002

Figure 5. Estimated Marginal Means Plot.

Table 7. Estimated Marginal Means Table.

TSIKR Marginal Mean Standard Error
95% CI

Lower Upper

40.4 (1) 254 44.8 161 347
56.2 (2) 367 30.6 303 430
72.1 (3) 480 44.8 386 573

(1) mean (TSIKR)–stdev (TSIKR); (2) mean (TSIKR); (3) mean (TSIKR) + stdev (TSIKR).
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4. Conclusions

The GHG emissions from wetlands including reservoirs have received less attention
from researchers in spite of their enormous impact on global warming mainly because
of the low data availability. The 2019 Refinement has been adopted to embrace recent
technological development and scientific advances in improving the national GHG invento-
ries. This study is aimed at demonstrating the application of refinement for estimating the
methane emissions from reservoirs in Korea. More specifically, the results from tropic state
assessment for individual reservoirs are accounted for by deriving the adjusted emission
factors. The Korean trophic state index TSIKR is used for identifying the trophic class of
reservoirs to take regional environmental characteristics into account. Additionally, the
trophic state assessment is performed season by season in an effort to include the seasonal
variations in the estimation of methane emissions from reservoirs. It is observed that the
magnitude of seasonal variations greatly differs among reservoirs and the emissions are
highly dependent upon the main use of reservoirs which affect their management prac-
tice for water quality. The differences in methane emissions are tested for their statistical
significance by means of confidence intervals, and the statistically significant differences
are confirmed for the reservoirs which exhibit greater seasonal variations in the trophic
state assessment. Furthermore, it is shown that the emission estimates can effectively be ob-
tained by employing the regression analysis, which may render the functional relationship
between emission estimates and trophic state indices. It is thus expected that, given the
surface area and seasonal trophic state index, the emission estimates of methane from the
reservoir can be predicted from the statistical perspective.

To the best of authors’ knowledge, this study is one of the first attempts to apply
the refinement for estimating methane emissions from wetlands. However, one of the
major limitations of this study comes from the lack of validation procedure for emission
estimates. Even though carried out as per the guidelines provided by IPCC, the emissions
estimation still needs to be validated against the actual measurement data on the methane
emissions from reservoirs. Another limitation of this study is the deficiency of uncertainty
assessment to explain the sources of variations in emission estimates except for the trophic
states of reservoirs. Further research efforts thus need to be directed towards securing
data availability from a wide variety of different geographical contexts. In addition, more
accurate estimations and even predictions on methane emissions from wetlands may be
enabled by applying advanced analysis methods of statistics and data analytics. Despite
unaccounted for uncertainties and opportunities for potential improvement, the proce-
dure outlined above may provide useful tips and guidelines for an effective estimation
of methane emissions from reservoirs with the considerations of regional and seasonal
variations in emissions behavior.
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Abbreviations
ANOVA Analysis of Variance
BN Bunam Reservoir (Name)
BR Boryeong Reservoir (Name)
Chl-a Chlorophyll-a
CI Confidence Interval
COD Chemical Oxygen Demand
DH Daeho Reservoir (Name)
GHG Greenhouse Gas
G-Res Greenhouse Gas Reservoir Tool
IPCC Intergovernmental Panel on Climate Change
SD Secchi Depth
SG Sapgyo Reservoir (Name)
SM Seokmum Reservoir (Name)
TI Trophic Index
TJ Tapjeong Reservoir (Name)
TN Total Nitrogen
TP Total Phosphorus
TSI Trophic State Index

Nomenclature
αi Emission adjustment factor for trophic state in reservoir i within a given climate zone
Atotj,i Total area of water surface for reservoir i located in climate zone j (in hectare)
EFCH4age>20,j Methane emission factor from reservoirs more than 20 years old located in climate

zone j (in kg CH4/year/hectare)
FCH4res Annual reservoir surface emissions of methane from all reservoirs more than

20 years old (in kg CH4/year)
FCH4downstream Annual emissions of methane originating from all reservoirs but emitted their

downstream (in kg CH4/year)
FCH4tot Total annual methane emission from all reservoirs more than 20 years old

(in kg CH4/year)
nresj Number of reservoirs more than 20 years old in climate zone j
Rd Ratio of total downstream emission of methane to the total flux of methane from

the reservoir surface
TSIKR_Chl−a Korean Trophic State Sub-Index based on the measurement of Chl-a
TSIKR_COD Korean Trophic State Sub-Index based on the measurement of COD
TSIKR_TP Korean Trophic State Sub-Index based on the measurement of TP
TSIKR Overall Korean Trophic State Index
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Abstract: Research has revealed that summer fallow sowing improves the water use efficiency (WUE)
and grain yield of winter wheat. However, wheat yields differ yearly with crop management. A field
experiment over 8 years was established in the Loess Plateau to determine the role of precipitation
and soil water storage in wheat yield formation under conservation tillage. The average WUE values
were 7.8, 11.0, and 12.6 t·ha−1, while the average evapotranspiration (ET) values were 334.7, 365.5,
and 410 mm when the yields were 3.0, 3.0–4.5, and over 4.5 t·ha−1, respectively. Compared to drill
sowing (DS), high water consumption during early growth increased the spike number, grain number,
and yield. In years of intermediate or low yields, wide-space sowing (WS) and furrow sowing (FS)
improved the ET, WUE, spike number, grain number, and yield of wheat compared to (DS) drill
sowing. When the wheat yield was 3.0–4.5 t·ha−1, higher soil water intake during jointing, anthesis,
and anthesis–maturity increased the tiller number, 1000-grain weight, and yield, related to the use
of suitable tillers. Synchronous increases in grain number per spike and 1000-grain weight were
observed with increased soil water content at jointing, maturity, and anthesis, as well as consumption
of soil water in the latter part during the growing season.

Keywords: evapotranspiration; precipitation; soil water storage; water; wheat yield level

1. Introduction

The Loess Plateau is the dominant region for cereal crop production in China. In this
region, wheat (Triticum aestivum L.) covers about 56% of the arable land [1], restricted by
the extraordinary variability in precipitation and evaporation during the summer fallow
period [2,3]. Agriculture has been exploited in this area to guarantee food security, which
has accelerated ecological deterioration, including soil physical structure degradation,
water and soil pollution, and reduced crop productivity [4–6].

The production of winter wheat in dryland is important for regional food security [7,8].
In the Loess Plateau dryland, irrigation is not available, and rainfall is the only source of
water for the production of wheat. Precipitation levels are low and unevenly distributed,
whereby summer rainfall accounts for approximately 60% of the annual precipitation [9,10].
Furthermore, annual precipitation fluctuates considerably [11]. Because of the limited
water resources, the main planting approach in this area is to plant one crop (winter wheat)
per year and leave the land fallow in the summer [12,13].

Many agricultural management plans have been established in the past few years to
improve crop production in dryland regions, with one of the most successful methods being
conservation tillage, with permanent organic soil cover and mechanical soil disturbance [7].
Conservation tillage approaches include DS (drill sowing), FS (furrow sowing), and WS
(wide-space sowing), and they play an active role in increasing crop yield. FS, which
usually includes straw mulching, leads to reduced soil degradation and farmland erosion
caused by intensive agriculture [14,15]. Previous studies reported the adverse effects of
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FS on soil properties such as improved soil bulk density and reduced total porosity and
penetration resistance. Additionally, “reduced tillage” practices, such as WS, whereby
soil is usually chisel-plowed to a depth of 25 cm, or DS, in which case soil is frequently
chisel-plowed to a complexity of 20 cm, are used to alleviate soil compaction by breaking
hardpans [16,17].

These reduced sowing practices have a positive outcome on rain penetration into
the soil and water storage, thus improving the soil water content and increasing the tiller
number, wheat grain yield, and plant WUE. The excessive use of nitrogen (N) fertilizers
can have several negative effects on the environment [18]. A previous study showed that
the use of controlled-release nitrogen fertilizers at sowing increased the crop yield, WUE,
and economic returns by 8.5%, 10.9%, and 11.3%, respectively [19]. Another study on N
fertilizers in the Loess Plateau reported that the application of an appropriate amount of N
fertilizer increased the content of total wheat protein and composition of protein, leading
to an improvement in the baking quality of wheat flour [20].

With an increase in the N application rate, the investment in N application should be
determined to optimize economic return [21]. Soil fertility in the Loess Plateau dryland is
low, especially the N level [22]. The application of N fertilizers can significantly increase
the grain yield and WUE of wheat [23]. Wheat yield components include the number of
tillers, grain number per spike, and 1000-grain weight. Increased coordination among yield
components is required to improve crop yield potential [12–14]. However, some studies
have shown that the contribution of the various yield components differs with the yield
level, and correlation analysis between any single variable and yield does not fully explain
the importance of each component [23–25].

Furthermore, some studies have shown a significant correlation influenced by field
water consumption between wheat yield and soil moisture status over multiple growth
stages from sowing to maturity [26,27]. Apparently, the sowing methods applied by farmers
in the area exceed the level of sowing required to achieve high yield. The effects of water
on yield, as well as the response of yield to sowing, vary with the annual precipitation level.
A study on different sowing approaches in the Loess Plateau for eight consecutive years
showed that, when 150 kg N·ha−1 was applied, wheat yield in the dry years increased by
14.0% relative to no nitrogen application, whereas it increased by 32.8% in the wet years [18]
Therefore, the optimization of sowing methods based on precipitation is important to
achieve high wheat yield in dryland while improving grain quality, economic return, and
WUE (water use efficiency).

In this study, the main objectives were to determine the correlation between yield
and soil water content and water consumption at different yield levels, thereby allowing
(1) clarification of the correlation between soil water content at different yield levels and
plant growth stages, (2) a comparison of the differences in yield components and WUE,
and (3) an evaluation of the relationship between grain yield or yield components and field
water consumption during key plant growth stages.

2. Materials and Methods

During the winter, field experiments were conducted for the winter wheat growing
seasons in the years 2009–2017 at the experimental station of the Shanxi Agricultural Wenxi
region, China. The study area was located in the Wenxi region (34◦35′ N; 110◦15′ E), Shanxi
province, in the southeast of the Loess Plateau is shown in Figure 1.

This region is characterized by a distinctive semiarid, warm temperate continental
climate with an annual mean precipitation of 491 mm, annual mean temperature of 12.9 ◦C,
annual sunshine period of 2242 h, and open pan evaporation of 1839 mm. Although the
annual precipitation tends to be concentrated in the months of July through September, it
displays great annual variability. The precipitation distribution over the years 1981–2017 is
shown in Figure 2.
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Figure 1. Location of experiment site in the Loess Plateau. The regional distribution of annual
precipitation is shown in different colors on the map.

Figure 2. Precipitation distribution in the study area from 2009 to 2017, during the growth stage of
winter wheat and the fallow season. PF, PS-J, PJ-A, and PA-M denote the precipitation during the
fallow, sowing, anthesis, and maturity stages of wheat, respectively.

2.1. Experimental Design and Field Management

This experiment featured a single-factor randomized block design. Winter wheat
(Triticum aestivum L.) cultivar ‘Yunhan 20410′ was acquired from the Shanxi Agriculture
Bureau, Wenxi, China. The trial comprised three different sowing methods: (1) wide-space
sowing (WS) (sowing spacing and row spacing of 8 and 25 cm, 2BMF-12/6, with auto-
fertilization and tillage), (2) furrow sowing (FS) (ridge height 3/4 cm, furrow depth 6/7 cm,
narrow and wide spacing 10/12 cm and 20/25 cm, and 2BMFD-17/14 multi-resolution),
and (3) drill sowing (sowing spacing and row spacing of 3 cm and 20 cm, 2BXF-12 seed
drill) (Figure 3).
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Figure 3. Illustration of sowing methods with row spacing (FS, furrow sowing; WS, wide-space
sowing; DS, drill sowing), at different growth stages of wheat in the study area, Shanxi Wenxi, China.

Each plot had an area of 300 m2 (6 m × 50 m). Before planting, 150 kg N·ha−1 (urea 46%),
P2O5 (38 kg·ha−1), and K2O (75 kg·ha−1) were applied consistently to the soil is shown in
Table 1. During each cropping season, the planting density was 315 × 104 plants·ha−1. During
each year, all plants were machine-harvested in late June. Throughout the growing season,
weeds were manually controlled, and no irrigation was applied at any time during the entire
experimental period.

Table 1. Basic soil properties of the 0–20 cm layer in the study area from 2012–2017.

Year
Organic Matter

(g·kg−1)
Total N

(g·kg−1)
Alkali-Hydrolysis N

(mg·kg−1)
Available Phosphorus

(mg·kg−1)

2012–2013 8.63 0.71 32.89 15.73
2013–2014 9.18 0.70 39.32 16.62
2014–2015 9.55 0.68 37.65 17.64
2015–2016 8.54 0.67 32.79 19.23
2016–2017 9.62 0.69 32.22 15.28
2017–2018 8.07 0.69 33.42 16.26

2.2. Measurements
2.2.1. Soil Moisture

Soil water storage (SWS, mm) and soil gravimetric moisture content (GSW%) were
measured gravimetrically at each plant growth stage. Soil samples were collected from a
depth of 300 cm at 20 cm intervals [28]. One sample was measured as one replicate. GSW
and SWS were obtained using Equations (1) and (2), respectively.

GSW(%) =
Mw Md

Md
× 100, (1)
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SWS (mm) = GSW (%)× ρb
(

g cm−3
)
× SD (cm), (2)

where Mw and Md are the weights (g) of dry and wet soil, respectively, pb is the soil bulk
density of the given soil layer, and SD is the soil depth.

2.2.2. Evapotranspiration (ET), Precipitation, and Water Use Efficiency (WUE)

Precipitation (mm) and consumption of stored soil water (mm) in the 0–300 cm layer
were used to calculate the c WUE, PUE, and evapotranspiration (ET) rate for a given
cropping season using Equations (3)–(5).

ET = SW0 − SW1 + P − R − D, (3)

WUE
(

kg·ha−1·mm−1
)
= grain

yield
ET

, (4)

PUE
(

kg·ha−1·mm−1
)
= grain

yield
P

, (5)

where SW0 is the soil water storage before sowing, and SW1 is the soil water storage
after harvest. P is the precipitation during the wheat growth period, R is the soil surface
runoff, D is the deep percolation, and Pt is the total precipitation from tillage to harvest.
The experimental field was flat, and the experimental plots were surrounded by ridges to
inhibit runoff; in this research, R was estimated to be 0. The ground water table was deeper
than 50 m in the study area, and no water was percolated to the deep soil layers; therefore,
D was also considered to be 0.

Precipitation (mm) and intake of soil water for storage (mm) in the 0–300 cm layer
were used to calculate the crop water consumption during different growth periods. The
sum of precipitation (mm) and intake of soil water for storage (mm) in the 0–300 cm layer
from sowing to plant maturity was taken as the evapotranspiration (ET) rate for a given
cropping season.

2.2.3. Yield and Yield Components

Fifty plants per plot were randomly sampled at maturity from the inner rows to
determine yield components including ear number and grain number per ear. Plot grain
yield was determined by harvesting all plants in an area of 20 m2 and shelling them
mechanically. Then, the grain was air-dried for determination of grain yield.

2.3. Statistical Analysis

The data of winter wheat growth and yield formation were processed and statistically
analyzed using SAS-8.6 (SAS Institute Inc., Cary, NC, USA). In this study, two-way ANOVA
was used to determine the main soil water storage and types of yield formation. When
there was a significant interaction effect between soil water and yield, the least significant
difference (LSD) method was used for differential analysis, while the F-test was used
to determine independence; the significance level was set to α = 0.05. Differences were
considered statistically significant when p ≤ 0.05.

3. Results

3.1. Soil Water Storage

The association between yield development and soil water storage fluctuated with the
yield level (Figure 4). Yield was not significantly related to soil water storage at the jointing
or anthesis stages; however, with increasing soil water storage, yield first decreased and
then increased. This indicated that soil water storage was higher than 388.2 mm, 331.2 mm,
and 258.0 mm at the sowing, jointing, and anthesis stages, respectively (Figure 4A–C). At
the intermediate yield level, yields increased with soil water storage, with the maximum
soil water storage at the jointing stage (Figure 4B). Lastly, at a high yield level, yields were
mostly correlated with soil water storage at the jointing, anthesis, and maturity stages.
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This trend was similar to that observed for the intermediate yield level (Figure 4A–C). Our
results indicate that higher soil water storage during the late stages of growth is crucial for
a higher yield.

 

 

 

y1 x
R²

y2 x
R²

y3 x
R²

y1 x
R² 

y2 x
R²

y3 x
R²

y1 x
R²

y2 x
R²

y3 x
R²

y1 x
R²

y2 x
R²

y3 x 
R²

Figure 4. Correlation between soil water storage and sowing stage (y2 = FS, furrow sowing; y3 = WS,
wide-space sowing; y1 = DS, drill sowing); * and ** indicate differences at the 0.05 and 0.01 proba-
bility levels, respectively. (A) Sowing stage soil water storage (B) Jointing stage soil water storage
(C) Anthesis stages soil water storage (D) Maturity stages soil water storage.

3.2. Correlation between Yield Formation and Field Water Consumption

During growth, the correlation between water consumption and yield formation was
different at each yield level (Figure 5). At a low yield level, yield increased with increasing
soil water consumption during each growth stage, although the differences were not
significant (Figure 5A–C). Yield increased with field water consumption during the jointing
to anthesis stages at the intermediate yield level, as shown in Figure 5B. On other hand,
at the high yield level, yield increased with water consumption during the anthesis and
maturity stages (Figure 5A–C). These results indicate that higher field water consumption
during late growth stages is essential to high yield.

3.3. Water Use Efficiency (WUE) and Yield Components

During the research period from 2009–2017, the lowest yield was recorded under the
DS treatment in 2012–2013, while the highest yield was recorded under furrow sowing
(FS) in 2015–2016, as shown in Table 2. Moreover, yield composition was different at the
different yield levels. In 2012–2013, at a low yield level, the 1000-grain weight and grain
number per spike were highest under the WS treatment, while the lowest yield was noted
under drill sowing, with values of 300.25 × 104 ha−1 and 2.14 kg·ha−1 recorded for grain
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yield and tiller number, respectively. Meanwhile, at the intermediate yield level, the yield,
number of tillers, and grain number per ear were highest under DS in 2016–2017. At
the lowest yield recorded in 2015–2016, the tiller number was also lowest. FS and WS
treatments increased the number of tillers, grain number per spike, and 1000-grain weight,
thereby increasing grain yield by 26.5%, and 24.5%, respectively, compared to DS. At the
low yield level, the average field water consumption, WUE, and PUE were 334.7 mm,
7.8 t·ha−1, and 7.6 t·ha−1·mm−1, respectively, while the water consumption was highest
in the year with the highest yield, and the WUE was also relatively high. In addition,
compared with DS, FS and WS effectively improved the WUE by 11.7% and 11.9% and the
PUE by 26.7% and 24.2%, respectively, in the same year.

 

y1 x
R²

y2 x
R²

y3 x
R²

y1 x
R²
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y2 x 
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Figure 5. Correspondence between field water intake at different growth stages and yield using
different sowing methods (y1 = DS, drill sowing; y2 = FS, furrow sowing; y3 = WS, wide-space
sowing); (A) Jointing stage soil water storage, (B) Jointing stage- anthesis stages soil water storage,
(C) Anthesis stages-maturity stages soil water storage; * and ** indicate differences at the 0.05 and
0.01 possibility levels, respectively.
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Table 2. Differences in yield components and WUE under DS, FS, and WS treatments.

Sowing
Methods

Tillers
(104 ha−1)

Grain Number
per Spike

1000-Grain
Weight (g)

Yield
(t·ha−1)

Evapotranspiration
(mm)

Water Use Efficiency
(WUE; kg·h−1·mm−1)

Precipitation Use Efficiency
(PUE; kg·h−1·mm−1)

2009–2010 DS 407.71 a 20.38 c 36.14 c 2714.96 b 311.98 c 8.70 a 8.10 b

2012–2013 DS 300.25 d 20.37 c 36.46 c 2140.25 d 310.17 c 6.90 d 6.24 d

2012–2013 FS 341.50 c 22.29 b 38.81 b 2608.30 c 354.10 b 7.37 c 7.61 c

2012–2013 WS 350.25 b 23.17 a 40.67 a 2915.32 a 362.43 a 8.04 b 8.50 a

Mean 349.93 21.55 38.02 2594.71 334.67 7.75 7.61

2009–2010 FS 427.18 c 21.70 f 39.04 c 3639.82 f 344.88 d 10.55 f 10.87 b

2009–2010 WS 453.72 b 23.78 e 42.08 a 3923.57 c 354.37 c 11.07 e 11.71 a

2010–2011 DS 401.04 e 26.22 c 40.51 b 3705.67 e 301.65 g 12.28 a 6.93 f

2011–2012 DS 485.50 a 24.33 d 35.44 d 4155.60 b 525.20 a 7.91 g 6.17 g

2013–2014 DS 386.65 f 27.55 b 39.12 c 3866.73 d 334.05 e 11.58 c 8.15 d

2014–2015 DS 417.00 d 27.48 b 39.14 c 3956.22 c 325.22 f 12.16 b 7.66 e

2016–2017 DS 452.12 b 33.36 a 35.66 d 4274.00 a 373.02 b 11.46 d 10.52 c

Mean 431.89 26.35 38.71 3931.66 365.48 11.00 8.86

2010–2011 FS 446.58 k 28.24 g 40.59 c,d 4588.15 h 340.81 j 13.46 c 8.58 i

2010–2011 WS 481.08 h 28.38 f,g 42.58 a 4794.56 g 361.01 i 13.28 c 8.97 h

2011–2012 WS 603.00 b 26.56 h 37.15 f 5412.04 d 549.04 b 9.86 h 8.04 k

2011–2012 FS 616.50 a 26.74 h 38.63 e 5612.45 c 575.02 a 9.76 h 8.34 j

2013–2014 FS 454.41 j 28.31 f,g 41.04 b,c 4575.40 h 379.48 f 12.06 f 9.65 f

2013–2014 WS 466.00 i 29.63 e 41.55 b 4818.74 f,g 409.82 c 11.76 g 10.16 e

2014–2015 FS 488.33 f,g 28.79 f 40.30 d 4806.55 f,g 380.16 f 12.64 e 9.30 g

2014–2015 WS 522.98 c 29.72 e 41.01 b,c 4999.96 e 391.54 e 12.77 d,e 9.68 f

2015–2016 DS 425.75 l 34.78 d 39.06 e 4812.00 f,g 371.90 h 12.94 d 12.44 c

2015–2016 WS 484.50 g,h 36.23 b 39.11 e 5719.08 b 396.09 d 14.44 b 14.79 b

2015–2016 FS 493.25 e,f 37.80 a 41.26 b 6009.75 a 408.60 c 14.71 a 15.54 a

2016–2017 WS 496.25 e 35.57 c 33.12 h 4892.00 f 390.33 e 12.53 e 12.04 d

2016–2017 FS 503.36 d 35.54 c 34.21 g 5032.00 e 376.52 g 13.36 c 12.38 c

Mean 498.61 31.25 39.20 5082.51 410.02 12.58 10.76

ANOVA
Sowing (S) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Year (Y) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
S × Y <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Note: DS = drill sowing, FS = furrow Sowing, WS = wide-space sowing. Significant differences between different
yield levels are indicated by different letters in the same treatment (p < 0.05).

3.4. Correlation Analysis of Yield Components and Contribution of Water Sources

The contribution of the different yield components to yield varied with yield level
(Table 3). Thus, at a low yield level, the number of tillers and 1000-grain weight were
positively correlated with yield. Meanwhile, at the intermediate yield level, the 1000-grain
weight was negatively associated with yield, while the number of tillers and number of
grains per spike were the key mechanisms for increasing yield. The association between
the 1000-grain weight and yield was nonsignificant, whereas the yield was significantly
improved by the number of tillers.

Table 3. Correlation between yield and components.

Sowing Methods Tillers Number per Spike 1000-Grain Weight Simulation Equation

DS 0.676 ** 0.661 * 0.634 * Y = 5.694 × Y1 + 111.949 × Y3 − 3653.974,
R2 = 0.999

FS 0.626 ** 0.641 ** −0.700 ** Y = 4.558 × Y1 + 42.942 × Y2 + 831.857,
R2 = 0.999

WS 0.540 ** 0.375 * −0.088 Y = 8.836 × Y1 + 111.52 × Y2 + 93.9 × Y3 −
6489.48, R2 = 0.999

Note: DS = drill sowing, FS = furrow sowing, WS = wide-space sowing. * p < 0.05. ** p < 0.01.

At the low yield level, fallow precipitation and the jointing to anthesis stages were
positively correlated with the number of tillers; however, this correlation was negative
during the anthesis to maturity stages (Table 4). The number of grains per spike and the
1000-grain weight were negatively correlated with precipitation. Soil water consumption
during the sowing to jointing stages was positively correlated with the number of tillers.
The grain number per spike and the 1000-grain weight were positively correlated with
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soil water consumption during the jointing to anthesis stages and during the anthesis to
maturity stages. At the intermediate yield level, precipitation during the sowing to jointing
stages was positively correlated with the number of tillers; however, this correlation was
negative during the jointing to anthesis stages and during the anthesis to maturity stages.
Precipitation during the sowing to jointing stages was negatively correlated with the grain
number per spike. Lastly, the correlation between precipitation and the number of tillers
at the high yield level was similar to that detected at the low yield level. Furthermore,
fallow precipitation and precipitation during the sowing to jointing stages were negatively
correlated with the grain number per spike, whereas this correlation was positive during
the jointing to anthesis stages and during the anthesis to maturity stages. On the other hand,
soil water consumption during the sowing to jointing stages and during the jointing to
anthesis stages was positively correlated with the number of tillers, whereas the correlation
with water consumption was negative during the anthesis to maturity stages.

The equations in Table 4 show that soil water intake from anthesis to maturity mostly
influenced the number of grains per spike and 1000-grain weight under drill sowing.
Furthermore, the number of tillers was positively affected by soil water consumption from
jointing to maturity, the grain number per ear was affected by soil water consumption from
anthesis to maturity, and the 1000-grain weight was affected by precipitation from seeding
to jointing and by soil water consumption from anthesis to maturity. Lastly, the number
of tillers was positively affected by fallow precipitation from seeding to anthesis at a high
yield level, the grain number per spike was affected by water consumption from seeding
to anthesis and by precipitation from jointing to maturity, and the 1000-grain weight was
affected by fallow precipitation and precipitation during each growth stage.
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4. Discussion

4.1. Wheat Grain Yield and Yield Components

Precipitation is the only source of water in arid and semiarid areas; therefore, it is
the main preventive factor for the production of winter wheat [29]. Field water consump-
tion, precipitation use efficiency, and water use efficiency were affected by the tillage
treatment, thereby affecting the winter wheat yield [30]. In addition, wheat yield was
significantly correlated with soil water status at numerous developmental stages from
sowing to maturity [31]. In a previous study, it was reported that soil water storage from
jointing to maturity was the key factor for increasing winter wheat yield in the Loess
Plateau region [32], with the main stages for the water demand of winter wheat being
sowing, jointing, and anthesis [33].

Soil moisture during the jointing and heading stages is particularly important in
determining yield formation. The correlation between yield and soil water storage during
each growth stage was different, not only related to regional differences but also to yield
level [34]. In a previous study, when yield was lower than 3.00 t·ha−1, it was more strongly
related to soil water storage at sowing, jointing, and anthesis [35]. When yield reached
between 3.10 and 4.51 t·ha−1, it was more related to soil water storage at jointing, whereas,
when it reached over 4.50 kg·ha−1, it was more related to soil water storage at jointing,
maturity, and anthesis [36]. In the fallow period, tillage improved the soil water storage
and field evapotranspiration, which was conducive to the improvement of yield [37].
Optimizing the spike number per hectare is a key method to maximize yield in most cereal
crops because it can increase plant vigor and, hence, plant grain yield [38].

Both the number of tillers and the yield were positively correlated at different yield
levels, indicating that a larger number of tillers may guarantee a higher yield from winter
wheat. These results are consistent with previous studies [39]. However, the grain number
per ear and 1000-grain mass were correlated with yield at different levels of yield. Thus, for
example, [39] reported that, at a low yield level (less than 7.50 t·ha−1), yield was positively
correlated to grain number per spike ear but negatively correlated with 1000-grain mass,
whereas, at a high yield level (i.e., greater than 7.50 t·ha−1), yield was correlated with
grain number per ear, but not with 1000-grain weight. In the present study, a significant
relationship was found between yield and tiller number. However, when the yield was
lower than 3.00 t·ha−1, it was correlated with 1000-grain weight, whereas, when the yield
was 3.00 and 4.50 t·ha−1, it was significantly and negatively correlated with 1000-grain
weight. In addition to the number of tillers, at low and intermediate yield levels, the
1000-grain mass and the number of grains per spike were the key yield components
responsible for increasing crop yield. Similarly, at a high yield level, higher values of
grain number per spike, 1000-grain weight, and number of tillers were the key to high
crop yield.

4.2. Wheat Yield Formation and Water

The key yield components responsible for the formation of yield are well known to be
affected by soil moisture during each growth stage and to influence each other [40]. The
early growth stage is conducive to improving the spike number, while the latter growth
stage is important for the spike number and 1000-grain weight [41]. The number of tillers
was reported to be more closely related to water content at the early stage of growth at
different yield levels, and the number of grains per ear and 1000-grain weight were more
closely related to growth stage, although the specific correlation varied, especially the
relative contribution to the formation of the different yield components [42]. Thus, at low
yield levels, the key to improving tiller number and 1000-grain weight was soil water
consumption during the period from anthesis to maturity [43]. At the intermediate yield
level tested here, tiller number was affected by soil water consumption during jointing,
and the effect was positive; the number of grains per spike was positively affected by
water consumption during the period from anthesis to maturity [44]. In this study, the
fallow period ranged from the last 10 days of June to the last 10 days of September, the
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sowing–jointing stage) ranged from the first 10 days of October to the first 10 days of April
in the following year, the jointing–anthesis stage ranged from the middle 10 days of April
to the first 10 days of May, and the anthesis–maturity stage ranged from the middle 10 days
of May to the middle 10 days of June.

Soil erosion has disastrous consequences on local agricultural creation and socioeco-
nomic improvement, thereby affecting people’s lives and property, and posing a significant
threat to safety. Loess erosion is a main environmental topic that has been addressed
in many studies [45–47]. The results of previous studies revealed large differences in
soil temperature and moisture across tillage and sowing treatments in wheat [48,49]. In
agriculture systems, the method of sowing is an important factor governing the soil mi-
croclimate [50,51]. Unlike tillage systems, crop residues are not incorporated in sowing
systems [52,53]. The amount of soil water stored at sowing can be used as a guide when
applying the basal amount of N. Additional N fertilization as top dressing can be applied
when rainfall is higher than expected in the growth season [54,55]. The annual precipitation
level fluctuates considerably in the Loess Plateau, as observed in this study [56].

Precipitation is also unevenly distributed within a year. Summer rainfall accounts for
approximately 60% of the yearly precipitation [57,58]. The yield increase is largely because
optimal sowing promotes tiller and panicle formation, leading to an increased number of
spikes per unit area (Table 4). The application of optimal rates of N in years with different
precipitation levels can also reduce production cost and environmental pollution [59,60].
In turn, the 1000-grain weight was found to be affected by precipitation from sowing to
jointing and by soil water consumption from anthesis to maturity. Lastly, at the high yield
level, the number of tillers was positively affected by fallow precipitation during the sowing
and anthesis periods, the number of grains per ear was affected by water consumption
during the jointing–maturity stages and by precipitation from sowing to anthesis, and the
1000-grain weight was affected by fallow precipitation during each growth stage.

4.3. Water Impact on Wheat Yield

This study showed that sowing method had no significant effect on the grain protein
content. Compared to drill sowing, the protein yield of wheat could be significantly
increased by wide-space sowing, and the soil moisture could be significantly increased
by furrow sowing. Furthermore, the regulation ability of wide-space sowing was higher
than that of furrow sowing. The results showed that the difference in protein yield was
mainly caused by yield, in contrast to the results in Tai’an, Shadong province [61], where,
compared to drill sowing, wide-space sowing could reduce wheat grain protein content
and increase protein yield. This may be due to the differences in regional climate and
soil type or may be related to wheat genotypes, which need to be verified by years of
research. Analysis showed that nitrogen fertilizer could significantly increase grain protein
content and yield, and its regulation ability increased with the increase in nitrogen fertilizer.
This was consistent with previous studies showing that nitrogen application increased the
nitrogen content in grains [62,63], thus increasing the protein content. It was also shown
that the sowing method and nitrogen application rate had independent effects on nitrogen
accumulation in dryland wheat [64]. This may be due to the different response of grain
protein content and yield to the seeding method and nitrogen application rate; thus, further
research is needed.

This study showed that the contribution rate of pre-flowering translocation to grains
was more than 75%. Compared to drill sowing, the nitrogen accumulation, transshipment
volume, and N harvest index of wheat plants were significantly increased by wide-space
sowing and trenching tillage sowing, whereas the contribution rate of post-flowering ac-
cumulation to grains was significantly decreased by wide-space sowing and trenching
tillage sowing, along with a higher regulation ability than trenching tillage sowing. This
is consistent with previous studies. The large population [64] produced by wide-space
sowing and double-row sowing is accompanied by an increase in plant nitrogen accumula-
tion [65], while the premature aging phenomenon [66,67] results in accelerated filling, high
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pre-flowering transshipment volume, transshipment rate [68], and eventually high grain
nitrogen content and harvest index [69,70]. The agent quantity of furrow sowing with the
buffer effect of temperature [71] is advantageous to plant nitrogen accumulation and delays
the grouting by 5–6 months at high temperatures [72]. Additionally, it increases the grain
nitrogen content and harvest index [73]; however, of the land utilization rate is low, and
the nitrogen accumulation and transportation are lower than under wide refined sowing.
In conventional single-row seeding, the lack of seedlings and ridging at the early stage [74]
reduces the wheat population, resulting in low nitrogen accumulation in plants and weak
resistance to the external environment in smaller groups at the later stages [75]. A high
temperature at the filling stage further reduces the transport of nitrogen to grains, resulting
in a lower nitrogen content and harvest index in grains. Experimental results in the Loess
Plateau showed that soil water storage before sowing was significantly and positively
correlated with wheat yield in dryland. In the Weibei region of Shaanxi province and the
Jinnan region of Gansu province, soil water storage before sowing showed a significant
linear positive correlation with wheat grain yield, especially in dry years. The distribution
of precipitation is closely related to wheat yield. If precipitation is insufficient in the early
stages of the critical wheat growth period and a soil water deficit occurs, the growth and
development of wheat will be significantly affected, resulting in a reduction in yield.

5. Conclusions

It can be concluded from the present study that, compared to the drill sowing method,
furrow sowing and wide-space sowing were influenced by field evapotranspiration within
the same year. At a low yield level, the average field water consumption, WUE, and PUE
were highest in the year with the highest yield. Wide-space sowing in the fallow period
improved the precipitation use efficiency, while yield components that were negatively
affected by precipitation were also improved. Wide-space sowing was mainly responsible
for a reduction in 1000-grain weight and grain number per spike. Therefore, in high-yield
years, fallow cultivation can help adjust the relationship among the components, promote
a reasonable distribution, and improve yield.
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Abstract: In the context of global climate change, many countries have taken corresponding measures
to cope with the stormwater problems in urbanization. The Chinese government introduced the
concept of Sponge City to improve the urban water ecological security, which is a systematic project.
Taking the urban community as our research object, we studied the combination application of LID
(low-impact development) measures and retention ponds in the community and then discussed the
practicability of the systematic application of Sponge City facilities in the construction of community
drainage systems. There are four simulation scenarios in SWMM (stormwater management model):
traditional drainage scenario, LID scenario, retention pond scenario, and LID-retention pond scenario.
By comparing the effects of different facilities on runoff and outflow under the six return periods of
1a, 2a, 5a, 10a, 20a, and 50a, we find that LID measures have evident effects on runoff and outflow
reduction. Still, they are greatly affected by the return period. The retention pond has no noticeable
impact on runoff, but it reduces the peak value of outflow and is less affected by the return period.
The combination of LID and retention pond can combine their advantages, reduce the peak flow rate
of the site stably and relieve the pressure of the urban drainage system. This study provides a basis
for the graded implementation of Sponge City, especially for community-scale rainwater regulation.

Keywords: Sponge City; urban community; stormwater management; SWMM; LID; retention pond

1. Introduction

Urban stormwater management has become a global problem. In the urbanization pro-
cess, the increase of underlying impervious surfaces has brought water quality and quantity
issues exacerbated by extreme rainfall events caused by climate change, complicating ur-
ban runoff management [1]. Many countries have taken measures to achieve sustainable
stormwater management to deal with urban stormwater problems caused by urbanization.
Since the 1970s, many developed countries, such as the United States, Germany, Japan, the
United Kingdom, Australia, and other countries, have developed sustainable stormwater
management ideas [2]. Some countries have proposed sustainable stormwater management
measures, such as the sustainable urban drainage systems (SuDS) in the U.K. [3], the water
sensitive urban design (WSUD) in Australia [4], the best management practices (BMPs), the
low impact development (LID), and the green infrastructure (G.I.) in the United States [5].
Some countries have put forward regulations on stormwater management to promote the
development of sustainable rainwater measures, such as the German Federal Water Act
(Wasserhaushaltsgesetz, WHG) that came into force in 2010 (WHG 2009) [6], and the law
for promoting rainwater utilization of Japan in 2014 [7]. In general, LID mainly refers to the
small, decentralized facilities at the scale before access to municipal pipelines to address
the insufficient capacity of traditional channels during heavy storms [8]. On the other
hand, from the perspective of urban planning, such as controlling the water permeability
of the underlying surface of the city [9], and from the perspective of technology, such as
conveying the rainwater to large and deep stilling basins [10], also provide a new direction
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for urban stormwater management. In recent years, EPA (U.S. Environmental Protection
Agency) has tended to replace LID with G.I. [11]. At the same time, the WSUD in Australia
coordinates the relationship between land use, multi-water cycle, and stormwater system
from urban planning and urban design to improve urban elasticity.

Since the 1980s, China has experienced large-scale urbanization. In recent years, the
problem of waterlogging appeared in Beijing, Wuhan, and other cities, which has got much
social attention. How to protect urban water ecological security and improve the resilience
and sustainability of the city has become a research hotspot in the relative professional
field. To solve the problem of urban waterlogging and protect the safety of people’s lives
and property, the Chinese government put forward the concept of ‘Sponge City’ at the end
of 2013. It officially launched this project at the end of 2014. The construction of Sponge
City takes infiltration, stagnation, storage, purification, utilization, and emission as the
“six-words” principle [12], hoping to adapt to climate change and reduce natural disasters
through the combination of green infrastructure and gray infrastructure. Therefore, it pays
attention to stormwater treatment and site measures and pays more attention to the regional
water cycle process, which needs to design large-scale solutions and build undertaking and
cooperation between different scales [13].

Since implementing the ‘Sponge City’ policy, Chinese scholars have made many
explorations from the perspectives of hydraulics and hydrology [14], ecology [15], urban
planning [16], urban drainage engineering [17], urban landscape [18], and application of
materials [19]. Solving complex urban water problems and constructing a multi-objective
modern urban stormwater system requires multi-professional collaboration that faces many
obstacles and challenges [20]. Therefore, it is necessary to comprehensively recognize the
urban ecological relationship and consider landing ecology to obtain the highest economic
benefits at a nominal possible ecological cost [21]. Achieving this aim requires integrating
urban flood risk assessment, land drainage guidance, climate forecasting methods, and
long-term sustainability assessments [22]. The use of stormwater quantity models in
simulated urban environments promotes this goal [23], such as SWMM, HEC-HMS, MIKE
URBAN. As open-source software, SWMM is widely used for urban stormwater runoff
simulation and drainage systems, watershed planning, water-sensitive urban design, and
Sponge City construction [24]. At the urban or catchment scale, researchers use SWMM to
estimate the surface runoff of urban secondary catchment and evaluate the effectiveness of
the urban drainage system [25], or combine with ArcGIS to build an urban waterlogging
model for urban waterlogging risk assessment [26]. Other studies have focused on specific
projects, such as Sponge City renovation, a residential area [27], an urban road [28], or a
waterlogging site [29]. On a smaller scale, SWMM is used to evaluate the effectiveness of
single or combined LID measures such as green roofs [30], grassed swales, and permeable
pavement [31].

Since the urban water ecological problems are complex, it is necessary to protect the
hydrological pattern of the city and improve the efficiency of the regional hydrological
cycle in the stage of comprehensive urban planning. Therefore, to relieve the pressure
of the urban drainage system and optimize urban stormwater management, it requires
systematic planning in the process of the Sponge City construction, including overall
planning at the urban scale, comprehensive regulation, and storage at the community scale,
and source control at the residential scale. However, most existing studies only focus on
one scale [9,24–29] and lack systematic research on two or more scales. To address this
shortcoming of previous studies, this study creatively takes the urban community as the
research object. This study discusses how to coordinate the source control of a single project
and the overall regulation and storage of the community to realize the systematization of
the Sponge City construction of urban community.

Taking the Airport Garden Community as an example, this study explores methods of
realizing systematic allocation of Sponge City at the community scale to relieve the pressure
of the urban drainage system and improve the city’s resilience. Using the advantages of
the SWMM model in runoff generation and concentration calculation, drainage system
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simulation, and LID measures simulation, combining its geographical conditions and
functional configuration, the runoff and outfall flow of this community under different
scenarios of the layout of facilities in Sponge City are simulated to provide a basis for
community-scale Sponge City system construction.

2. Materials and Methods

2.1. Study Area

The Airport Garden Community, located in Xixian New Area of Shaanxi Province,
China, between Xi’an City and Xianyang City, is a national development zone and one of
China’s first Sponge City pilot areas. Under the combined action of atmospheric circulation
and topography, this region is hot and rainy in summer and cold and dry in winter.
According to the statistical analysis of the maximum daily rainfall from 1960 to 2014 and
the monthly average rainfall from 1981 to 2010 recorded by the national benchmark weather
station in Qindu District, the annual average rainfall in this area is about 520 mm, of which
the rainfall from July to September accounts for 50% of the yearly rainfall. Most of the
heavy rain (daily precipitation of 25.0–49.9 mm) and rainstorms (daily precipitation of
50.00–99.9 mm) occurred during this period, which is very easy to cause natural disasters
such as floods and soil erosion [32].

The total area of the study area is 54.5 hectares. Located on the loess plateau and in the
north of Weihe riverbank, the terrain of the study area is flat, and the overall slope is less
than 1%. According to the actual needs of this study, we selected four street areas and four
roads connected with them as the research object. The overall terrain of the chosen area is
high in the northwest and low in the southeast, including four independent residential areas,
a commercial service area, a community service center, a primary school, two kindergartens,
and a community park (Figure 1a). The park, located in the south of the community, is an
essential prerequisite for undertaking the community’s stormwater and flood regulation
and storage function. Before development, the land use of the study area was farmland
with good hydrological conditions. After completion, the drainage in the site is a separate
system that only one of the four blocks and their surrounding facilities introduced LID
application, in response to the requirements of Sponge City construction, and other projects,
including the park, have adopted traditional gray infrastructure. Therefore, the focus of
this study is to reconstruct the local LID facilities combined with the original stormwater
pipe network in the study area and how to introduce the regulation and storage tank in the
community park to improve the overall elasticity of the community.

2.2. Rainfall Scenario

The rainstorm intensity formula is an essential basic model for rainstorm disaster
management. It is a necessary basis for the urban rainwater drainage network design and
directly relates to the reliability of urban drainage works [33]. According to The Technical
Guide for Sponge City Construction in Xixian New Area, the rainstorm intensity formula
in this area is [34]:

i =
16.715(1 + 1.16581lgP)

(t + 16.813)0.9302 , (1)

where i is the average rainfall intensity (mm/min), P is the return period of design rainfall
(a); t is the rainfall duration (min). In this study, the Rain-Model-Chicago (Version 2.06)
was used to calculate the rainfall time series by rainstorm intensity formula, return period
(1a, 2a, 5a, 10a, 20a, and 50a), rainfall duration (t = 120 min), and the time-to-peak ratio r
(0.35 [35]). Table 1 shows the design rainfall for different return periods.
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Figure 1. The situation in the study area: (a) Overview of the study area (base map from Google
Earth); (b) The drainage system before the adjustment; (c) The drainage system after the adjustment;
(d) The drainage system including a retention pond.

Table 1. The design rainfall for different return periods.

Return Periods Rainfall (mm)

1a 20.75
2a 28.03
5a 37.65

10a 44.93
20a 52.21
50a 61.84

2.3. Establishment of the Model

In this study, the drainage network generalization and sub-catchments division is
based on the adjusted data to drain more rainwater through the community park. Accord-
ing to the elevation difference of the community, the original drainage design principle
is to discharge the rainwater in every block into the drainage network of the nearby road
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in the south. This rainwater flows out of the community from west to east along the road
stormwater pipeline, forming two outlets in the east of the community (Figure 1b). After
the adjustment, we changed the flow direction of some road drainage pipes and took the
community park as the main drainage channel. All rainwater in the community flows into
the drainage pipes under the community park and then flows out the community from the
outlet on the south of the site (Figure 1c). The purpose is to discharge the rainwater into
the retention pond in the community park (Figure 1d). That is a more suitable design for
the current situation than the existing drainage system in this community.

The sub-catchment areas are divided according to the drainage organization. The pipe
network distribution of the site and the drainage network generalization are based on the
pipe diameter and slope of the pipe and the branches of the pipe network. Pipe network
generalization and sub-catchment division are completed in AutoCAD 2017. The CAD file
is exported as a SWMM (Version 5.1.015) model file (.inp) with HS-data (Version 1.2.51) (a
CAD plug-in developed by Huishui Technology). The pipe network in the study area is
generalized into 58 nodes (57 junctions and one outfall), 57 conduits, and 45 sub-catchments
(Figure 1c).

In the AutoCAD, we calculated the area, width of the overland flow path, average
surface slope, and percent of impervious area of every sub-catchment, obtained the eleva-
tion of junction’s invert and maximum water depth of the nodes, the maximum depth of
cross-section, and length of the conduit, inlet offset, and outlet offset. Each junction is a
rainwater manhole, so the maximum water depth of a node is the depth of the manhole.
Since the drains of all projects in this study are circular pipes, the maximum depth of the
cross-section of a link is the inner diameter of these pipes. The value of each link’s inlet and
outlet offset is the altitude difference between the bottom of both ends of the pipeline and
the bottom of the manhole at the corresponding locations. The above values can determine
the node water storage and the flow of rainwater in the drains. According to the drawing
of the projects, the stormwater pipes with a diameter less than 1 m are PVC pipes, and their
Manning coefficient is 0.009. The stormwater pipe with a diameter greater than or equal to
1 m is made of concrete, and its Manning coefficient is 0.013. All the above parameters are
input into the SWMM model after calculation. According to the previous research results
and the characteristics of the study area, the dynamic wave is selected for the flowing
routing within a conduit, and Horton’s method is used to calculate surface runoff. The
parameters of Horton method, Mannings N and Depth of Depression Storage are listed in
Table 2.

Table 2. The parameters of Horton method, Mannings N and Depth of Depression Storage.

Name Property Value

Horton Parameters

Max. Infil. Rate 76.2
Min. Infil. Rate 3.81
Decay Constant 2

Drying Time 7
Max. Volume 0

Mannings N * Mannings N for the impervious area 0.015
Mannings N for the pervious area 0.21

Depth of Depression Storage * Depth of depression storage on the impervious area (mm) 2.3
Depth of depression storage on the pervious area (mm) 3.81

* The values of Mannings N and Depth of Depression Storage are determined according to former studies with
cases in Xi’an and Xianyang [35–47]. Mannings N for the impervious area, Mannings N for the pervious area,
and Depth of Depression Storage on the impervious area are the average value of these studies [35–47], since
these three parameters are inconsistent. Depth of Depression Storage in the pervious area is also based on former
studies [44,46].

2.4. Set Simulation Scene

The realization of Sponge City at the community level includes two-level measures:
adopting LID measures for source reduction in a single project and using existing conditions
in the community to store. To study the role of these two-level measures in stormwater
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management, four scenarios were designed in this study: (1) no Sponge City infrastructure
in the study area (noted as scenario 1), (2) LID infrastructures in each block and on the roads
for source control (noted as scenario 2), (3) no LID infrastructure, and a 5199.3 m3 retention
pond in the community park (noted as scenario 3), (4) LID infrastructure in each project
and on roads, and a 4592.7 m3 retention pond in community park (noted as scenario 4).

On the residential scale, LID measures, which are most commonly used locally, have
been selected to modify projects in the site, such as the bio-retention cell, permeable
pavement, and vegetation swale. In the scenario without LID measures, runoff from
impervious and pervious areas flows directly to the outlet. In the scenario with LID
measures, runoff from impervious flows to the pervious area. For the municipal roads with
green belt in the center or on both sides, the rainwater is discharged into the bio-retention
cell in the green belt and then overflowed. In each block, the rainwater from roofs and
green spaces flows into the bio-retention cells, the rainwater from roads and squares flows
into the vegetation swales, and the parking spaces and the pavements are transformed into
a permeable surface (Figure 2). The bio-retention cells and the vegetative swales areas were
correlated with the green land area, accounting for 15% and 25% of the total green land
area, respectively. The LID controls module in the SWMM model is applied to the effect
evaluation of LID measures. The parameters we used are in Table 3.

Figure 2. Drainage path in the blocks under different scenarios: (a) The drainage path without LID
measures; (b) The drainage path with LID measures.
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Table 3. Parameters of LID measures.

Layer Parameter
Bio-Retention Cell

in Residential Areas
Bio-Retention
Cell on Roads

Permeable
Pavement

Vegetative
Swale

Surface

Berm height (mm) 200 300 0 300
Vegetation volume fraction 0.2 0.2 0 0.2

Surface roughness 0.15 0.15 0.013 0.15
Surface slope (%) 1 1 1 1
Swale side slope 50

Pavement

Thickness (mm) 100
Void ratio (voids/solids) 0.15

Impervious surface fraction 0
Permeability (mm/h) 360

Clogging factor 187.5

Soil

Thickness (mm) 500 600
Porosity 0.43 0.43

Field capacity 0.321 0.321
Wilting point 0.221 0.221

Conductivity (mm/h) 100 100
Conductivity slope 10 10
Suction head (mm) 90 90

Storage

Thickness (mm) 300 450 400
Void ratio (voids/solids) 0.75 0.75 0.75

Seepage rate (mm/h) 250 300 400
Clogging factor 0 0

Drain
Flow coefficient (mm/h, use 0 if there is no drain) 0 20 0

Flow exponent 0.5
Offset (mm) 0

At the community level, a retention pond is used to collect rainwater to prevent
flooding and erosion. The retention pond is a landscape water body that can combine with
green space in the park and other open urban areas, and take the stormwater as the primary
water source to make up water. It has the function of stormwater storage and purification
and can beautify the landscape and provide a resting place for residents. This study set the
retention pond in a community park with a relatively low location in combination with the
topography and landform of the community. The rainwater in the community enters the
pond and is discharged when the water level reaches a certain height. The storage unites
modules expressed in the parameters of the retention pond in the community park. The
volume of the retention pond is determined by the volumetric method, and the formula is
as follows:

V = 10HϕF, (2)

where H is the design rainfall (mm), ϕ is the rainfall comprehensive runoff coefficient, F is
the catchment area (hm2). According to the overall goal of the Sponge City construction
in the Xixian New Area, the total annual runoff control rate in this area should be 80%,
corresponding to 15.9 mm as the design rainfall, which is daily rainfall coming from the
statistical data of local multi-year data. According to the Technical Guide for Sponge
City Construction (Trial), the comprehensive rainfall-runoff coefficient is calculated by the
weighted average method. After calculation, ϕ is 0.60 when there are no LID measures
in the community, and 0.53 when the LID measures are set; the corresponding storage
volume is 5199.3 m3 and 4592.7 m3, respectively. The storage units in SWMM simulated the
operation of the retention pond. However, it has some limitations because it can simulate
the water storage capacity of the retention pond and ignores its infiltration capacity.

SWMM simulated the runoff and the outflow of each scenario in the return periods
of 1a, 2a, 5a, 10a, 20a, 50a, respectively, and scenario 1 was used as the control group to
compare and analyze the runoff generation and outflow of each scenario in different return
periods. In the simulation, the rainfall duration is 120 min and the base time of runoff
concentration is 240 min.
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3. Results and Discussion

3.1. Effect Evaluation of LID Measures and Retention Pond

LID measures can delay the time of runoff generation and reduce runoff peak value
and surface runoff, while the retention pond has little effect on runoff (Figure 3).

Figure 3. Runoff control effect under different return periods: (a) When return period is 1a; (b) When
return period is 2a; (c) When return period is 5a; (d) When return period is 10a; (e) When return
period is 20a; (f) When return period is 50a.

In scenario 2 with LID measures, the occurrence time of runoff under six return periods
(1a, 2a, 5a, 10a, 20a, 50a) was delayed by 27 min, 24 min, 21 min, 19 min, 17 min, and 15 min,
respectively. With the increase of the return period, the surface runoff depth reduced by
LID measures was 61.6%, 44.5%, 31.5%, 27.0%, 25.2%, 24.3%, and the peak value of runoff
decreased by 69.9%, 56.5%, 44.7%, 39.1%, 35.3%, 31.9%, respectively. The occurrence time of
peak runoff was delayed by 6 min, 6 min, 5 min, 4 min, 4 min, and 3 min. LID measures can
well reduce the surface runoff and reduce the peak runoff, and delay the generation time
of runoff and the peak runoff. However, with the increase of the return period, the ability
of LID measures to reduce runoff will be weakened when it reaches saturation. When the
return period is 1a and 2a, the runoff of scenario 2 is less than that of scenario 1 (Figure 3a,b)
for almost all the production time. Still, when the return period is greater than or equal to
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5a, the curves of scenario 2 and scenario 1 gradually coincides after their respective peak
(Figure 3c–f). It shows that the effect of LID measures on rainfall storage will decrease
with the rise of rainfall intensity. When the return period is about 5a, the capability of LID
measures is close to saturation.

Both LID measures and retention ponds can reduce total outflow, reduce peak outflow,
and delay the outflow time and the peak outflow time (Figure 4). At the return periods of
1a, 2a, 5a, 10a, 20a, 50a, LID measures can delay the outflow time by 20 min, 20 min, 20 min,
19 min, 18 min, and 17 min, while the outflow time by the retention pond is delayed by
24 min, 24 min, 24 min, 23 min, 22 min, and 21 min. With the return period from low to
high, LID measures postponed the peak outflow by 7 min, 7 min, 7 min, 6 min, 6 min,
and 4 min, and the peak outflow time by the retention pond was postponed by 8 min,
9 min, 11 min, 12 min, 14 min, and 18 min. Both LID measures and retention ponds can
effectively delay the outflow time and peak outflow time, and the regulating effect of the
retention pond is better than LID measures. Especially in the regulation of peak outflow
time, the retention pond can better postpone peak outflow time with the increase of the
return period.

Figure 4. Outflow control effect under different return periods: (a) When return period is 1a; (b)
When return period is 2a; (c) When return period is 5a; (d) When return period is 10a; (e) When
return period is 20a; (f) When return period is 50a.
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The effects of LID measures and retention pond are significantly different in total
outflow and peak outflow. Although both of them will decrease with the increase of return
period, the reduction of LID measures is much faster than that of the retention pond, and
the regulating effect of the retention pond is relatively stable. When the return period is
1a, LID measures can reduce 61.9% of the total outflow, while the retention pond can only
reduce 19.8%. LID measures reduced the peak flow by 70.3% at the same return period,
while the retention pond was 42.6%. When the return period is 2a, the capability of LID
measures is still better than that of the retention pond. However, when the return period is
greater than or equal to 5a, the curve of scenario 2 and scenario 1 tends to coincide after the
peak flow is reached. After the return period is more than 20a, the peak flow of scenario 2
is close to scenario 1. When the return period is 50a, LID measures can reduce 14.6% of
total outflow and 1.3% of peak outflow, while the retention pond can reduce 14.0% of the
total outflow and 30.0% of peak outflow.

LID measures improve the infiltration rate of stormwater by increasing the permeable
area, and retaining and purifying some stormwater through the bio-retention cells and the
vegetation swales. Therefore, LID measures can significantly reduce surface runoff and
delay the generation time of runoff peak, thus reducing the total outflow and peak outflow,
which better reduces the source. However, when the LID measures are close to saturation,
its retention capacity to rainfall decreases significantly, so the adjustment ability of LID
measures is limited in high-intensity rainfall.

The retention pond is set before the outlet, which is the secondary regulation of
rainwater in the site. Its regulating effect results from the comprehensive influence of the
cross-section of the pond, the elevation of inlet and outlet, and the pipe diameter of inlet
and outlet. Although the retention pond will not affect the runoff, it can reduce the total
outflow and the peak outflow steadily, and delay the outflow time and peak outflow time.
The retention pond can further postpone the peak outflow time even in high return period
scenarios. Setting the retention pond in the parks at the low point of the community can
regulate rainwater, enrich the regional landscape, and increase landscape diversity.

3.2. Effect Evaluation of Comprehensive Measures

Since the retention pond cannot affect the runoff, the runoff curves of scenario 4
with both LID measures and retention, and scenario 2 with only LID measures coincide.
However, under the combined action of LID measures and retention pond, the regulating
ability of scenario 4 to outflow is further improved. Specifically, compared with scenario 2
and scenario 3, in scenario 4, the outflow time and peak outflow time are further delayed,
and the total outflow and peak outflow are further reduced (Figure 4). When the return
period is 1a, 2a, 5a, 10a, 20a, and 50a, the outflow time is delayed by 34 min, 33 min,
33 min, 32 min, 32 min, and 31 min, and the total reduction rate of outflow is 79.1%, 58.7%,
41.0%, 33.4%, 29.2%, and 27.1%, far exceeding the adjustment effect of using LID measures
or retention pond. In terms of peak flow, with the increase of return period, scenario 4
postpones peak outflow time by 23 min, 17 min, 15 min, 15 min, 17 min, and 20 min, with
the reduction rates of 87.6%, 71.2%, 52.9%, 44.1%, and 33.9%, respectively (Table 4). It can
be seen that scenario 4 with LID measures and retention pond can reduce the peak value
of outflow under different return periods. In terms of time adjustment of outflow peak,
due to the combined effect of LID measures and retention pond, the delay of peak outflow
time will decrease first and then rise later with the increase of return period. Even in the
higher return periods, the peak time occurs later, so the comprehensive measures used in
scenario 4 can better reduce the peak outflow and further postpone the peak outflow time,
and relieve the overall pressure of the urban pipeline network. Compared with the single
measures, the combined LID measures and the retention pond have a better impact on
runoff and outflow.
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Table 4. The simulation of outfall in different scenarios.

Return
Period

Simulated
Scenario

Hour of
Outflow

Generation

Peak
Outflow
(CMS)

Hour of Max.
Outflow

Total Outflow
Volume
(106 L)

1a

scenario 1 0:24:00 3.544 0:52:00 6.101
scenario 2 0:44:00 1.053 0:59:00 2.326
scenario 3 0:48:00 2.036 1:00:00 4.89
scenario 4 0:59:00 0.44 1:15:00 1.276

2a

scenario 1 0:21:00 4.63 0:50:00 8.493
scenario 2 0:41:00 2.3 0:57:00 4.727
scenario 3 0:45:00 2.882 0:59:00 7.045
scenario 4 0:54:00 1.334 1:07:00 3.508

5a

scenario 1 0:18:00 5.5 0:49:00 11.465
scenario 2 0:38:00 4.036 0:56:00 8.186
scenario 3 0:42:00 3.63 1:00:00 9.703
scenario 4 0:51:00 2.591 1:04:00 6.762

10a

scenario 1 0:17:00 5.844 0:49:00 13.56
scenario 2 0:36:00 5.048 0:55:00 10.774
scenario 3 0:40:00 3.935 1:01:00 11.547
scenario 4 0:49:00 3.264 1:04:00 9.031

20a

scenario 1 0:16:00 5.966 0:48:00 15.568
scenario 2 0:34:00 5.693 0:54:00 13.034
scenario 3 0:38:00 4.115 1:02:00 13.328
scenario 4 0:48:00 3.741 1:05:00 11.02

50a

scenario 1 0:15:00 6.089 0:46:00 18.035
scenario 2 0:32:00 6.011 0:50:00 15.405
scenario 3 0:36:00 4.26 1:04:00 15.504
scenario 4 0:46:00 4.024 1:06:00 13.139

4. Conclusions

Since the city is a complex system, the construction and implementation of Sponge
City needs to comprehensively consider the effects of the drainage system, the road system,
the green space system, the urban geomorphic features, and the water network in the
city, etc. More precise and site-specific guidelines are necessary for guiding Sponge City
construction in China from local scale, i.e., a residential area; to mesoscale, i.e., a community;
to macroscale, i.e., a city.

So far, there are many studies that take a city [9,25,26,35,36], or a district [24,38,41,45],
or a single project, i.e., a residential quarter [27,32], a university [14,37,47], or a road [29]
as the research objects. However, most of these studies lack systemic measures since
they all take a single scale as their research perspective. Furthermore, in studies of urban
communities or some local areas, a single block is mostly generalized as a sub-catchment
area, and its parameters are set according to their land-use type, which is difficult to meet
the diversified needs of Sponge City construction in different regions. For example, in
these studies, residential land is often given the same parameter setting; however, the
actual runoff and the flow discharging into the drainage network in each residential land
are different, determined by the floor area ratio and the greening rate. These neglected
differences will have a significant impact on the simulation results. This study has fully
considered the characteristics of each block and refined the sub-catchments and drainage
networks in the block, which can make the research results closer to reality.

Taking the Airport Garden community as our research area, this study discussed the
systematic application of the Sponge City facilities on the community scale. After the re-
construction of the community’s current drainage system, the community’s SWMM model
is established. It should emphasize that if we completely redesign, our transformation
scheme may be unrealistic, but as an adjustment to the current situation, this scheme is
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more implementable and suitable. Subsequently, the LID measures and a retention pond are
applied to the community. The LID measures are applied to each independent residential
area and the supporting projects in the community. The retention pond is set before the
rainwater outlet of the community to realize further regulation and storage.

The simulation results show that LID measures significantly reduce the source of
runoff. However, with the increase of the return period, LID measures tend to be saturated,
and the effect of flow regulation decreases significantly. It is difficult to relieve the pressure
of the urban drainage network in the high return period. This result is consistent with
previous studies [28,32,35,48,49]. Although the retention pond cannot regulate runoff,
it can regulate the rainwater to reduce the total outflow and the peak outflow, delay
the time of peak outflow, and relieve the overall pressure of the city pipeline network.
Although the infiltration function of the retention pond is not considered due to software
limitations, this has a weak impact on this study due to the limitation of collapsible
loess. However, combining the two can exert their respective advantages and make
the community rainwater drainage system more stable and efficient, thus achieving the
expected effect of Sponge City construction. Therefore, the research results are of reference
value to Sponge City construction in Northern China.
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Abstract: The ecological environment and water resources of the Han River Basin (HRB) are incredibly
susceptible to global warming. Naturally, the analysis of future runoff in HRB is believed to offer a
theoretical basis for water resources management and ecological protection in HRB. The purpose of
this study is to investigate and forecast the effects of climate change and land use change on runoff
in the HRB. This study uses CMIP6 data to simulate three future climate change scenarios (SSP126,
SSP245 and SSP585) for changes in precipitation and temperature, a CA-Markov model to simulate
future land use change scenarios, and the Budyko framework to predict future runoff changes. The
results show that: (1) Between 1974 and 2014, annual runoff (R) and annual precipitation (P) in the
HRB decline not so significantly with a rate of 1.3673 mm/a and 1.2709 mm/a, while maximum
temperature (Tmax) and minimum temperature (Tmin) and potential evapotranspiration (E0) show
a non-significantly increasing trend with 0.0296 ◦C/a, 0.0204 ◦C/a and 1.3313 mm/a, respectively.
Precipitation is considered as main contributor to the decline in Han River runoff, accounting for
54.1%. (2) In the HRB, overall precipitation and temperature are estimated to rise in the coming years,
with all other hydrological variables. The comparison of precipitation rise under each scenario is as
follows: SSP126 scenario > SSP585 scenario > SSP245 scenario. The comparison of the temperature
increase under each scenario is as follows: SSP585 scenario > SSP245 scenario > SSP126 scenario.
(3) In the HRB, farmland and grassland land will continue to decline in the future. The amount of
forest acreage is projected to decline but not so significantly. (4) The future runoff of the HRB shows
an increasing trend, and the future runoff varies in different scenarios and periods. Under the land
use scenarios of maintaining LUCC1992–2014 and LUCC2040 and LUCC2060, the R change rates in
2015–2040 are 8.27–25.47% and −8.04–19.35%, respectively, and the R in 2040–2060 are 2.09–13.66%
and 19.35–31.52%. At the same time, it is very likely to overestimate the future runoff of the HRB
without considering the changes in the land use data of the underlying surface in the future.

Keywords: Han River Basin; Budyko framework; runoff change; land use; cover change

1. Introduction

In recent years, global warming has swept through most parts of the world [1]. In
some regions, climate change and human activities have induced substantial changes in
land use/cover (LUCC), precipitation, and temperature, resulting in significant changes in
watershed runoff over the years [2–5]. These changes may probably cause a wide range of
natural, environmental, and economical destruction [6]. The spatial and temporal variability
in runoff is an essential component of the hydrological cycle [7,8]. Therefore, it is crucial for
regional water resources management and planning to analyze the response of watershed
hydrology to LUCC changes caused by climate change and human activities, and to assess
the impacts of climate change and land use on runoff and water cycle changes [9–11]. In
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the context of a changing climatic environment, watershed ecohydrology research and
watershed soil and water resources management are facing new challenges [12]. The
challenge of predicting and responding to the effects of future climate change and human
activities on water resources quantity and ecology in Han River Basin (HRB) of China is
particularly prominent [13].

Climate change and LUCC change have essential impacts on precipitation and runoff
processes [14,15]. In recent years, a great deal of research has been carried out in China
on runoff prediction and attribution analysis in changeable environments [16,17]. There
are many quantitative calculations about the contribution of runoff change, such as us-
ing the Budyko framework to calculate the elastic coefficient of each driving factor and
quantitatively evaluate the contribution rate of climate change and human activities to
runoff change [18]. In these studies, precipitation and potential evapotranspiration are the
dominant factors influencing runoff, regardless of other factors affected by many water-
shed characteristics [19,20], such as vegetation and anthropogenic impacts, which have
significant regional differences in their effects on runoff variability [21,22]. The current
widely used method for predicting the runoff response to climate change is the hydrologi-
cal model method [23–25], which mainly uses the global climate models (GCMs) model
data input into the hydrological model for hydrological simulation [26,27]. Hydrological
models can be essentially divided into Newtonian models and Darwinian models. The
Darwinian model treats the hydrological system as a whole by identifying spatial and tem-
poral correlations [28]. The Budyko hydrothermal coupling model is one of the Darwinian
models. Usually, Budyko assumes that there is a coupled equilibrium relationship between
water and energy in the watershed (called the hydrothermal equilibrium relationship) [29].
Therefore, the future runoff can be predicted through the Budyko water balance equation.
In addition, its calculation is simple, the data input is small, and its physical meaning is
clear. It is equivalent to other hydrological models under certain conditions. It has been
widely used to analyze the impact of climate change on runoff for a long time and has been
verified in many river basins. It has been widely used for the impact of climate change
on runoff [30,31]. Therefore, the future runoff can be predicted through the Budyko water
balance equation.

The Han River, China, is the source area of the South-North Water Diversion Project [32],
and future changes in water resources in the HRB will directly affect the efficiency of the
development and utilization of the South-North Water Diversion Project [33]. The Han
River’s middle and lower reaches, on the other hand, are hearty grain and cotton production
centers in China [34]. Affected by global warming, the trend in annual extreme precipitation
at the Han River stations has shown variable performance over the last 50 years [35], but
the average annual runoff in the HRB shows a declining trend [36]. Form some experts’
perspective, changes in land use in the HRB have a higher impact on runoff throughout
the year than during flood season [37]. There have been some previous studies for runoff
prediction in the HRB, however, the results are inconsistent due to discrepancies in study
indicators, global climate model selection, and other factors. Changes in runoff are actually
the result of multiple factors [38]. In previous studies on Budyko, an empirical link between
the parameter n and vegetation attributes was created using the Budyko framework [18].
The Budyko parameter n, to a great extent, is influenced by many environmental factors
besides vegetation traits (e.g., soil, geology, topography, etc.) [39]. Given these factors, we
established an empirical relationship between the Budyko parameter and subsurface land
use change, based on which future hydrological changes were predicted.

Therefore, the overall objectives of this study are: (1) analysis of historical hydrological
variables in the HRB from 1974–2014, attribution analysis of runoff changes in the HRB
using the Budyko framework, and exploration of the causes of runoff changes; (2) a future
scenario of the HRB was constructed to establish a semi-empirical relationship between the
Budyko parameter n and LUCC, and the Cellular Automata-Markov (CA-Markov) model
was used to simulate the land use data in 2040 and 2060 under the current conditions and to
calculate the parameter n under the future land use scenario; (3) three shared socioeconomic
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pathway (SSP) scenarios (SSP126, SSP245, and SSP585) based on global climate models and
the Budyko water balance method were used to predict future runoff. The overview of
this paper is as follows: The materials and methods section introduces the Budyko theory,
the bias correction method, and the CA-Markov model, and the results section presents
the analysis of historical hydro-meteorological elements and attribution analysis, climate
and land use change scenario setting, and future runoff prediction of the HRB. Then, the
discussion and conclusion are presented in Sections 4 and 5.

2. Materials and Methods

2.1. Study Area

The basin is located within 106◦15′~114◦3′ E and 30◦10′~34◦20′ N with an area of
about 159,000 km2. The Han River, as the largest tributary of the Yangtze River, has a
total length of 1577 km [26]. The basin’s average yearly temperature is 12–16 ◦C, average
yearly precipitation ranges from 600 to 1100 mm, decreasing from southeast to southwest
to northwest, while average annual runoff depth in HRB ranges from 100 to 600 mm. The
Han River has a subtropical monsoon climate and abundant water resources. The HRB’s
geography is high in the west and low in the east, high in the north and low in the south.
The Qinling Mountains to the north and the Daba Mountains to the south define the rugged
upper reaches; the Fuyu Mountains to the north, the Wudang Mountains to the south, and
the Nanyang Basin to the center lead to the flat middle reaches [40]. The lower reaches of
the Han River are the Jianghan Plain with its flat terrain. The basin’s runoff is irregularly
distributed throughout the year, with the majority concentrated from May and October, and
there will be substantial inter-annual volatility, making it vulnerable to droughts and floods.
Figure 1 depicts a schematic representation of the river system and a digital elevation
model (DEM) of the HRB.

Figure 1. The geographical position of the HRB and meteorological grid points.

2.2. Variables and Data Sources

(1) Huangzhuang hydrological station is the primary control station for the lower
sections of the Han River, its geographical location is shown in Figure 1. The Huangzhuang
station runoff data utilized in this study were sourced from the Yangtze River Water
Resources Commission’s Hydrological Bureau (http://www.cjh.com.cn/, accessed on 2
March 2021).
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(2) Precipitation and temperature data were obtained from the China Meteorological
Science Data Sharing Service (CMSDSS). The 0.5◦ × 0.5◦ grid point dataset of daily surface
precipitation values in China and the 0.5◦ × 0.5◦ grid point dataset of daily surface temper-
ature values in China (http://data.cma.cn/, accessed on 4 January 2021) (1961–2020) were
used in this study.

(3) LUCC data were obtained from the Environmental Science Data Centre of the
Chinese Academy of Sciences land use remote sensing monitoring data with a resolution of
1 km in years 1980, 1990, 1995, 2000, 2005, 2010, and 2015 (http://www.resdc.cn/, accessed
on 5 March 2021). Combined with the actual situation of the study area from 1980–2015,
farmland, forestland, grassland, water, built, and unused land were identified as the six land
uses in the research region. The DEM data were obtained at a resolution of 1 km from the
Chinese Academy of Sciences’ Environmental Science Data Centre (http://www.resdc.cn/,
accessed on 5 March 2021), and the slope data were generated by processing the DEM with
the ArcGIS10.8 toolbox Slope. Referring to the study of Yuan et al. [41], the relevant data
were preprocessed in ArcGIS 10.8 software, converted to the same projection and unified at
a resolution of 1 km.

(4) The grid data of the mean daily precipitation outputted from 5 global climate mod-
els (CanESM5, MRI-ESM2-0, IPSL-CM6A-LR, NESM3, KACE-1-0-G) of CMIP6(Coupled
Model Intercomparison Project Phase (6) were used in this paper (https://esgf-node.llnl.
gov/search/cmip6/, accessed on 30 May 2021). We have selected these five models to be
able to simulate precipitation performance well [42], and provide complete daily climate
data (including precipitation, maximum temperature, minimum temperature, etc.) for the
future from 2015–2060. Climate models is shown in Table 1. Among the multiple scenar-
ios provided by CMIP6, this study selected the historical (1961–2011) and three shared
socioeconomic pathway scenarios (2015–2060): SSP126, SSP245, and SSP585, representing
low, medium, and high emission forcing scenarios, respectively. Due to the low spatial
resolution of the five selected climate models and the differences between the models, the
spatial resolution of all models was standardized to 0.5◦ × 0.5◦ using inverse distance
weight interpolation, and the interpolated model data were corrected for bias on each grid,
the time scale chosen for bias correction in this study is 1961–2011.

Table 1. Basic information on the five global climate models in CMIP6.

Model Research Institutions Country Resolution (Lon × Lat)

CanESM5 Canadian Environment Agency (CCCma) Canada 2.8125◦ × 2.8125◦

MRI-ESM2-0 Meteorological Research Institute, Japan Meteorological
Agency (MRI) Japan 1.875◦ × 1.875◦

IPSL-CM6A-LR Pierre-Simon Laplace Institute (IPSL) France 2.5◦ × 1.259◦
NESM3 Nanjing University of Information Technology (NUIST) China 1.875◦ × 1.875◦

KACE-1-0-G Institute of Meteorology, Korea Meteorological
Administration (NIMS-KMA) Korea 1.875◦ × 1.25◦

For ease of reading, the following hydrologic variables are selected in this paper, as
you see in Table 2. At the same time, according to the research content, it is divided into
two periods, and the specific division is as follows. This study takes 1974–2014 as the
historical period to evaluate the historical hydrological variables. The historical period is
divided into two sub-periods, 1974–1991 as the base period, and 1992–2014 as the change
period, see Section 3.1.1. This study takes 2015–2060 as the future period to evaluate the
future hydrological variables. The future period is divided into two sub-periods: the near-
term (2015–2040) and the long-term (2040–2060). The historical period of climate model
bias correction is 1961–2011, and the future period is 2015–2060.
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Table 2. Hydrological variables and definitions.

Abbreviation Definition Units

Tmax Maximum temperature ◦C
Tmin Minimum temperature ◦C

E0 Potential evapotranspiration mm
P Precipitation mm
R Runoff depth mm

2.3. Methods

The critical steps in the Budyko-based runoff evolution and prediction in the HRB
are as follows: (1) collection of hydro-meteorological data, DEM data, LUCC data, and
CMIP6 data. (2) Future climate change scenarios prediction by using statistical downscal-
ing and multi-model ensembles to forecast future climate change sequences. (3) LUCC
change prediction by using a CA-Markov model to determine the Budyko parameter n in
connection to land use under future change scenarios. (4) Prediction of annual runoff in the
HRB from 2015 to 2060 under several future change scenarios based on Budyko framework.
The specific procedure is shown in Figure 2.

 

Figure 2. Evolution and prediction of runoff in the HRB based on Budyko hypothesis.

2.3.1. Quantitative Identification of Runoff Changes Based on Budyko’s Hypothesis

(1) Budyko hypotheses-based water balance method.
Budyko’s theory, based on the hydrothermal equilibrium equation, is commonly

utilized in ample watershed water and energy balance investigations [43]. Many scholars
have introduced subsurface parameters to characterize the influence on the state of coupled
hydrothermal equilibrium in watersheds [39]. The Choudhury–Yang equation is used
in this paper and its application is relatively broad [8,44], of which Choudhury–Yang is
the hydro-energy equation that contains watershed characteristics (including vegetation
changes) and their differences in the equilibrium analytic equation [45]. It can be expressed
in the following formula:

E =
PE0

(Pn + E0
n)1/n (1)
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where E is the average annual actual evapotranspiration, n is the subsurface parameter
related to the land use type; P is the precipitation, and E0 is the potential evapotranspiration,
which can be calculated according to the Hargreaves formula recommended by FAO56 [46].

Combining the water balance equation:

R = P − E (2)

A water balance equation such as the following formula can be used to compute the
average annual runoff of the basin R:

R = P − PE0

(Pn + E0
n)1/n (3)

where the parameter n can be obtained from the R, P, and E0 for a given period by
Equation (3).

(2) Runoff elasticity based on the Budyko’s hypothesis.
Runoff elasticity, defined by Schaake et al. [47] as the degree of change in runoff per unit

change in climate factors, was originally presented in 1990. The precipitation elasticity of
runoff is expressed as εP = dR/R

dP/P , and similarly, we define the potential evapotranspiration
elasticity of runoff as εE0 = dR/R

dE0/E0
, and the landscape elasticity of runoff as εn = dR/R

dn/n . The
elasticity coefficients for each variable are calculated as follows:

εP =
1 −

[
(E0/P)n

1+(E0/P)n

]1/n+1

1 −
[

(E0/P)n

1+(E0/P)n

]1/n (4)

εE0 =
1

1 + (E0/P)n
1

1 −
[

1+(E0/P)n

(E0/P)n

]1/n (5)

εn = A−B

[1+(P/E0)
n]

1/n−1

A = Pn ln(P)+E0
n ln E0

Pn+E0
n

B = ln(Pn+E0
n)

n

(6)

(3) Runoff attribution based on the Budyko’s hypothesis.
In this study, the annual runoff series at Huangzhuang Station (Figure 1) in the HRB

was analyzed using the non-parametric Mann–Kendall test and the Pettitt mutation test.
The study cycle is divided into two sub-periods based on the mutation points. Changes in
runoff computed as a result of changes in precipitation, potential evapotranspiration, and
LUCC are stated as:

ΔRP = εP
R
P

ΔP (7)

ΔRE0 = εE0

R
E0

ΔE0 (8)

ΔRl = εn
R
n

Δn (9)

where: ΔP = P2 − P1, ΔE0 = E0,1 − E0,2, Δn = n2 − n1. The relative contribution of each
factor to runoff is calculated as follows.

ηP = ΔRP/ΔR × 100%
ηE0 = ΔRE0 /ΔR × 100%

ηl = ΔRl/ΔR × 100%
(10)

where ηP, ηE0 and ηl represent the contributions of precipitation, potential evapotranspira-
tion, and landscape change, respectively.
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2.3.2. Climate Change Future Scenario Setting

(1) Bias correction.
GCMs output data are often prone to high systematic biases and may not be directly

used in basin-scale hydrological simulations [48]. Hence, after inverse distance weight
interpolation, the CMIP6 daily data were corrected using two bias correction methods:
the local intensity scaling (LOCI) method and the quantile mapping (QM) method. Of
which the LOCI can successfully correct precipitation data: the precipitation day frequency
and precipitation intensity. The threshold of simulated precipitation occurrence is set at
0.1 mm in this paper to determine that the threshold of simulated precipitation occurrence,
so that the frequency of simulated precipitation occurrence in the historical base period is
consistent with the measured series. The threshold is used in future periods to correct the
frequency of precipitation occurrence in future periods. The QM is a frequency distribution-
based method that considers observed and simulated precipitations to be consistent in
frequency distribution [49] and uses empirical cumulative distribution functions (ecdfs)
to correct precipitation and temperature in future periods, as well as the frequency of
precipitation and temperature occurrences [50]. In this paper, two methods, LOCI and
QM, were used to correct the frequency and magnitude of occurrence of daily precipitation
series in turn, and the QM was used to correct the temperature.

(2) Taylor diagram.
In order to comprehensively evaluate the simulation effects of climate models before

and after bias correction, this paper selects the Taylor diagram to evaluate the simulation
effects of the five models’ annual average precipitation, maximum temperature and mini-
mum temperature. The Taylor diagram can intuitively judge the simulation ability of the
five models to the measured precipitation, maximum temperature and minimum tempera-
ture. Taylor diagrams are essentially an ingenious combination of the model’s correlation
coefficient (R), centralized root-mean-square error (RMSE), and standard deviation σ (SD)
onto a polar graph. The cosine relationship between the three indicators is based on [51]:

R =

1
N

N
∑

n=1

(
fn − f

)
(rn − r)

σf σr
(11)

RMSE =

⎡⎣ 1
N

N

∑
n=1

[(
fn − f

)
− (rn − r)

]2
⎤⎦1/2

(12)

σf =
1
N

N

∑
n=1

(
fn − f

)2
(13)

σr =
1
N

N

∑
n=1

(rn − r)2 (14)

where f, r represent the measured and simulated values, respectively, f and r represent the
measured and simulated mean values, respectively. σf and σr represent the measured and
simulated standard deviation, respectively.

2.3.3. Future Land Use Scenario Setting Based on the CA-Markov Model

The ideas behind Markov forecasting come from the work of the mathematician
Markov on stochastic processes. The Markov prediction principle is now widely used in
studies of the evolution of land patterns. In the study of land cover evolution, a given
period’s land use category can correspond to the possible conditions in a Markov process
that is only related to the previous period’s land use category [52,53].

The steps in this article that use CA-Markov are as follows:
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(1) Firstly, the measured LUCC 2005 and LUCC 2010 of the HRB were cropped respec-
tively, and the transfer probability matrix and transfer area matrix were obtained based on
the Markov module in the IDRISI 17.0 software.

(2) The suitability atlas for different LUCC types is obtained by inputting data infor-
mation, such as elevation, slope, and the fixed ecological red line to constrain and limit
the transformation of different LUCC types, taking into account factors, such as the actual
topographical and geomorphological conditions of the watershed and the development of
urban areas.

(3) Based on the measured LUCC 2010, the modified transfer probability and area
matrices, and the suitability atlas for each LUCC type transfer, 5 × 5 CA filter (a rectangular
space within 5 km × 5 km around a cell has a significant effect on the change in the state of
the cell) was used for 5 cycles to simulate the LUCC 2015 for the HRB. The CA-Markov
model simulates that land use in 2040–2060 will maintain the trend in 2010–2015 and finally
get the LUCC 2040–2060 for the HRB.

Typically used in studies on the accuracy of LUCC change simulation and the eval-
uation of the accuracy of remote sensing image interpretation, the Kappa coefficient can
check the consistency of the simulated image results with the observed image data as a
whole. The Markov model can extrapolate time series while the CA model can forecast
the spatiotemporal dynamic evolution of complex systems, comprehensive utilization of
both models may extrapolate the spatial changes of landscape patterns scientifically and
reasonably. In this paper, the Kappa coefficient is utilized to assess the precision of land
pattern evolution predictions. The calculation formula is as follows [54,55].

Kappa =
(P0 − Pc)

(Pp − Pc)
(15)

where P0 is the proportion of correct simulations, Pc is the proportion of correct predictions
in the case of random model, Pp is the proportion of correct predictions in the ideal
case. Kappa < 0.4 indicates a low degree of similarity between the two images, when
0.4 ≤ Kappa ≤ 0.75, the two images are generally similar, and when Kappa > 0.75, the
two images have a significant consistency, indicating a good simulation effect.

Among them, the parameter n, according to the Budyko equation, is mostly related to
subsurface circumstances such as land use. An attempt was made to establish the empirical
relationship between land use type and model parameter n in the HRB, so as to reveal
the quantitative relationship between land use and model parameters and to identify the
influence of land use change on runoff. Because forestland, grassland, and farmland occupy
more than 95% of the total area of the HRB, this study exclusively considers these three
land use types for the empirical equation of the model parameter n.

nt = β1x1 + β2x2 + β3x3 (16)

where nt is the parameter in the Budyko equation at time t; βi and is the regression
parameter of each land use type; xi is the percentage of land use types (i = 1,..., m). Based
on P, R and E0, the Budyko parameters n (six 5-year periods) were inversed against the
HRB during the period 1980–2014, and the βi was fitted by multiple linear regression.

3. Results

3.1. Historical Hydrometeorological Analysis and Attribution Analysis
3.1.1. Assessment of Climatic and Hydrological Variables during 1974–2014

To better understand the runoff processes during the historical period 1974–2014, linear
regression and MK trend tests were used to analyze the trend of hydrometeorological series,
as shown in Table 3. Figure 3 shows the linear fitting curves, annual mean lines, and 5-year
sliding averages of hydrometeorological variables in the HRB during 1974–2014. From the
linear fit curve analysis, it can be seen that temperature and potential evapotranspiration
show a non-significant upward trend, which is generally consistent with the results of

158



Int. J. Environ. Res. Public Health 2022, 19, 2393

the MK trend test, increasing at the rates of 0.0296 ◦C/a, 0.0204 ◦C/a and 1.3313 mm/a,
respectively. While P and R show a downward trend, which is generally consistent with
the results of the MK trend test, decreasing at the rates of 1.3673 mm/a and 1.2709 mm/a.
The maximum values of average annual P and R from 1974 to 2014 occurred in 1983, at
1255.8 mm and 593.6 mm, respectively. The fluctuations of E0 were roughly the same as
those of temperature. From 1974 to 2014, the average annual P was 906.97 mm, the average
annual E0 was 1061.47 mm, and the average annual R was 290.47 mm. The potential
evapotranspiration is higher than the precipitation in the HRB during the historical period.

Table 3. Results of hydrometeorological trend analysis.

Series Linear Fitting Z (MK) Trend

P −1.3673 −0.9174 down
E0 1.3313 1.2489 up

Tmax 0.0296 0.0303 up
Tmin 0.0204 0.0213 up

R −1.2709 −1.5036 down

Figure 3. Change trends in climate and hydrology in the HRB 1974–2014: (a) average annual
precipitation (P); (b) average annual potential evapotranspiration (E0); (c) average annual maxi-
mum temperature (Tmax); (d) average annual minimum temperature (Tmin); (e) average annual
runoff depth.
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The MK test and Pettitt’s mutation test were used to determine the mutation years of
the HRB runoff, as shown in Figure 4, to better attribute the HRB runoff. The intersection
of the MK test UF and UB curves between the two critical levels α = 0.05 was first used to
determine the year of mutation, and then, the Pettitt test was used to further verify the
reasonableness and significance of the MK test for the year of mutation. The UF curve
of the average runoff series of the HRB from 1974 to 2014 shows irregular fluctuations,
with a decreasing trend from 1984 to 2002, though they are within the confidence interval
of the significance level α = 0.05 (−1.96). This indicates a decreasing trend in the HRB
runoff in these years, but the decrease is not significant. The UF and UB curves in the
confidence interval intersected between two significance level lines in 1979, 1991, 2003,
2007, and 2008, preliminarily identifying the year of mutation, while the Ut, N curve after
Pettitt test identified the year of mutation of runoff in the HRB as 1991. Based on the abrupt
change test, the study period 1974–2014 can be divided into two segments: the base period
1974–1991 and the change period 1992–2014, both of which provide a foundation for the
subsequent attribution analysis.

 

(a) (b) 

Figure 4. Runoff mutation analysis for 1974–2014 in the HRB: (a) M-K mutation test (b) Pettitt
mutation test.

3.1.2. Analysis of Runoff Elastic Coefficient

According to the analysis in Section 3.1.1, it can be determined that the year of
a sudden change of runoff in the HRB is 1991, which is consistent with the results of
Peng Tao et al. [34]. Based on the results of the mutation analysis, the historical period was
divided into the base period (1974–1991) and change period (1991–2014). Based on the
average potential evapotranspiration, average runoff depth, and average precipitation of
the two periods at Huangzhuang station, the corresponding Budyko parameter n of each
period was calculated using Equation (3). Combining Equations (4)–(6) to calculate the
elasticity coefficients εP, εE0 and εn corresponding to the two periods, we obtained the
results as shown in Table 4.

Table 4. Hydroclimatic characteristics of the HRB.

Data
Period

Long-Term Mean Value Elasticity of Runoff
Annual P

(mm)
Annual E0

(mm)
Annual R

(mm)
E0/P n εP εE0 εn

1974–1991 932.95 1039.05 319.99 1.11 1.469 1.882 −0.882 −0.900
1992–2014 887.49 1078.29 265.75 1.21 1.554 1.994 −0.994 −1.026
1974–2014 906.97 1061.47 288.98 1.17 1.515 1.942 −0.943 −0.969
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The HRB has a subtropical monsoon climate that is both mild and humid. In compari-
son to previous studies, the E0 range is 800–1200 mm, the P range is 800–1900 mm, and n
primarily ranges from 1.0 to 2.0 in China’s humid regions [56]. Comparing the two periods
before and after the mutation, P decreased by 4.87% in the change period (1992–2014)
compared to the base period (1974–1991), while potential evapotranspiration and n showed
an increasing trend compared to the base period (1974–1991), increasing by 3.77% and
5.77%, respectively, or resulting in a 16.95% decrease in the runoff. The precipitation elastic
coefficient εP, potential evapotranspiration elastic coefficient εE0 and landscape elastic
coefficient εn in the change period (1992–2014) are 1.944, −0.944 and −1.026, respectively,
indicating that when the P increases by 1%, the runoff will increase by 1.944%, the E0 will
increase by 1%, it will lead to a 0.994% reduction in runoff, and when the Budyko parameter
n increases by 1%, it will lead to a 1.026% reduction in runoff. It can be seen that the change
in runoff at HRB is positively correlated with precipitation and negatively correlated with
potential evapotranspiration and subsurface changes, which reflects the strong influence of
climate on the change in the runoff. The absolute magnitude of the elasticity coefficient
reflects the sensitivity of runoff to the various influencing factors. The effects of climate
change and subsurface on catchment hydrology described above can also be explained by
the Budyko curve. With the rise in drying index E0/P, the precipitation elasticity coefficient
of runoff εP will increase, while the potential evapotranspiration elasticity coefficient of
runoff εE0 will decrease. In comparison with the base period, |εP|

∣∣εE0

∣∣ and |εn| increase
during the change period, demonstrating an increasing susceptibility of runoff to changes
in these three factors. Overall, runoff in the HRB is most susceptible to precipitation and
least susceptible to changes in potential evapotranspiration.

3.1.3. Runoff Attribution Analysis

Table 5 shows the contribution of each influencing factor to the change in runoff in
the HRB. We can learn from Table 5 that the variations of runoff caused by precipitation,
potential evapotranspiration and underlying surface are −29.34 mm, −10.66 mm, and
−16.66 mm, respectively. Both climate change and human activities contribute to the
decrease in the runoff, with precipitation changes accounting for 54.1%, subsurface changes
accounting for 30.7%, and potential evapotranspiration accounting for 19.7% for the change
in runoff. We can conclude that precipitation is the primary cause of decreased runoff in
the HRB.

Table 5. Analysis of runoff attribution in the HRB.

Period
Change from Base Period

to Change Period
P/E0/n Induced Runoff

Change (mm)
Contribution to Runoff

Change (%)
Base

Period
Change
Period

ΔR ΔP ΔE0 Δn ΔRP ΔRE0 ΔRl ηP ηE0 ηl

1974–
1991

1992–
2014 −54.24 −45.46 39.2 0.085 −29.34 −10.66 −16.66 54.1% 19.7% 30.7%

3.2. Climate Change Scenario Setting
3.2.1. Evaluation of Statistical Downscaling and Bias Correction Results

Taylor diagrams of simulated P, Tmax, and Tmin versus observed ones were made
to assess the ability of each CMIP6 model to affect measured data after bias correction.
Figure 5 illustrates that after bias correction, the correlation coefficients for P are in the
range of 0.1–0.6, with MRI-ESM2-0, IPSL-CM6A-LR correlation coefficients more than 0.4,
mean squared deviation ratios at 0.98–1.01, and standard deviation ratios at 0.98–1.01.
The correlation coefficients for Tmax after bias correction ranged from 0.3 to 0.99, with
MRI-ESM2-0, IPSL-CM6A-LR and NESM3 having correlation coefficients greater than 0.95,
ratios of mean squared deviations between 0.2 and 0.4, and ratios of standard deviations
between 0.2 and 4. The correlation coefficients for the Tmin after bias correction ranged from
0.3 to 0.99, with MRI-ESM2-0, IPSL-CM6A-LR and NESM3 having correlation coefficients
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greater than 0.95, ratios of mean squared deviations between 0 and 0.2, and ratios of
standard deviations between 0 and 0.2. By integrating the three indices, we can see that
the order of CMIP6 models, after simulation and after bias correction, is Tmax, Tmin, and
P, from strongest to worst. MRI-ESM2-0, IPSL-CM6A-LR, and NESM3 are the CMIP6
models offering better simulation ability after bias adjustment. Overall, it is found that the
simulation of precipitation and temperature in the HRB by this correction method is better
than the simulation of precipitation in the HRB. Nevertheless, the modeled average annual
precipitation trends and multi-year averages are reasonably consistent with the observed
values. This suggests that the correction method can be applied to future hydrological
simulations of the basin and assess future runoff changes in the HRB.

   

Figure 5. The 1961–2011 mean CMIP6 model-corrected Taylor diagram: (a) precipitation (P) (b) maxi-
mum temperature (Tmax) (c) minimum temperature (Tmin); OBS indicates measured values, A, B,
C, D, E represent the five models CanESM5, MRI-ESM2-0, IPSL-CM6A-LR, NESM3, KACE-1-0-G,
respectively.

The bias-corrected approach has a significant correcting effect on the regional distribu-
tion of P, Tmax and Tmin. The multi-model mean can reappear the pattern of decreasing
annual mean precipitation and average annual temperature from southeast to northwest in
the HRB by comparing bias-corrected simulated data with observed data from 1961 to 2011
(Figure 6). The correction for the multi-year mean values in the basin was good, with the
mean P deviation reduced from 30.2% to 0.85%, the mean Tmax deviation reduced from
53.53% to 0.71%, and the mean Tmin deviation reduced from 5.68% to 0.57%. The effect
of model bias correction on total annual precipitation and average annual temperature
grid point bias correction was also compared. Before and after correction, the model P
grid point correlation increased from 0.68 to 0.99, the Tmax grid point correlation increased
from 0.62 to 0.83, and the Tmin grid point correlation increased from 0.75 to 0.99. For the
simulation of the effect of precipitation and temperature extremes in the basin, it can be
seen that the interval correction for P is from 1011.7–1430.1 mm to 677.9–1435.8 mm, the
interval correction for Tmax is from 8.39–8.56 ◦C to 9.75–23.3 ◦C, and the interval correction
for Tmin is from 8.19–8.4 ◦C to 1.56–13.5 ◦C, all of which are more in line with the actual
values observed in the basin. The bias correction is effective with a good correlation in both
space and time, and is anticipated to be applied in subsequent hydrological simulations of
the basin.

3.2.2. Analysis of Future Changes in Hydrological Variables

Figure 7 shows the average annual P, average annual Tmax, and average annual Tmin
variations of the HRB in the future period under the SSP126, SSP245, and SSP585 scenarios.
It can be seen from Figure 7 that the overall P is estimated to increase in the coming
years, with the increase amplitude under SSP126 scenario > SSP585 scenario > SSP245
scenario, and the increase amplitude of P is estimated to enlarge with time. Temperatures
are rising, with Tmax and Tmin increase amplitude under SSP585 scenario>SSP245 scenario
>SSP126 scenario, and the increase amplitude is estimated to enlarge with time. The change
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rates of hydrological variables in the HRB relative to historical period (1974–2014) under
different scenarios are shown in Table 6. Under the SSP126 scenario, P in the future period
(2015–2040) increases by 22.38%, Tmax and Tmin decrease by 2.04% and 3.75% compared
to the historical period (1974–2014). Under the SSP245 scenario, P in the future period
(2015–2040) increases by 4.27%, Tmax and Tmin decrease by 2.25% and 4.89% compared
to the historical period (1974–2014). In the SSP585 scenario, the P in the future period
(2015–2040) increased by 10.64%, Tmax and Tmin decreased by 3.95% and 7.23% compared
to the historical period (1974–2014). However, in the future period (2040–2060), its P
increases by 22.86%, 10.57% and 16.96%, Tmax increases by 2.28%, 2.83% and 5%, and
Tmin increases by 4.37%, 5.97% and 9.03% for SSP 126, SSP 245 and SSP 585 scenarios,
respectively. Compared to the historical period (1974–2014), the increase in average P is
more pronounced under the SSP126 scenario and the SSP245 scenario has the smallest
increase. The SSP585 scenario has the greatest increase in multi-year average temperature,
while the SSP126 scenario has the smallest increase.

Figure 6. Spatial distribution between multi-model average simulated, corrected and observed
values in 1961–2011: (a–c) pre-corrected multi-model average precipitation (P), corrected multi-model
mean value, observed value; (d–f) pre-corrected multi-model average value of maximum tempera-
ture (Tmax), corrected multi-model average value, observed value; (g–i) pre-corrected multi-model
average value of minimum temperature (Tmin), corrected multi-model average value, observed value.

Table 6. Rates of change of hydrological variables in the HRB in future periods under different scenarios.

Period 2015–2040 (%) 2040–2060 (%)
Variables 126 245 585 126 245 585

P 22.38 4.27 10.64 22.86 10.57 16.96
Tmax −2.04 −2.25 −3.95 2.28 2.83 5.00
Tmin −3.75 −4.89 −7.23 4.37 5.97 9.03

163



Int. J. Environ. Res. Public Health 2022, 19, 2393

Figure 7. Hydrological variables predicted for 2015–2060 in the HRB: (a) average annual precipita-
tion (P); (b) average annual maximum temperature (Tmax) (c) average annual minimum tempera-
ture (Tmin).
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3.3. Land Use Change Scenario Setting

Based on LUCC2010 data, the land use transition probability and adaptability atlas
of LUCC2005-LUCC2010 were input into the CA-Markov model to predict LUCC2015,
LUCC2040 and LUCC2060. The future land use simulation in the HRB is shown in Figure 8.
Among them, the actual LUCC2015 (Figure 8a) and the simulated LUCC2015 (Figure 8b)
were evaluated by the IDRISI 17.0 software, and the Kappa coefficient of the simulation
result was 0.96, which confirmed that the model has a good prediction effect and the
prediction results are credible. Based on this, further predictions were made for LUCC2040
(Figure 8c) and LUCC2060 (Figure 8d). According to the analysis of land use types in
different periods of the HRB in Table 7, it can be seen that the changes of farmland,
grassland and forest land between the measured LUCC2015 and simulated LUCC2015
land use types in the study area are not much different, which can accurately describe the
land use situation in the study area and can be used for a follow-up analysis. At the same
time, according to the analysis of the proportion of land use in LUCC2015, LUCC2040 and
LUCC2060, it can be seen that from 2015 to 2040, the built areas in the study area increased
from 3.12% to 7.34%, and the overall change from 2040 to 2060 was not significant. From
2015 to 2040, farmland and grassland will continue to decrease, from 34.95% to 32.78%,
and from 19.48% to 17.54%, respectively. From 2015 to 2060, although there is a decreasing
trend in forest land, the overall change is insignificant. It is worth noting that there is an
increasing trend of unused land, indicating that there may be a trend of land degradation
in the future.

Figure 8. Land use in the HRB: (a) LUCC2015 observed; (b) LUCC2015 simulated; (c) LUCC2040
simulated; (d) LUCC2060 simulated.

According to the simulation results of LUCC2040 and LUCC2060 in Table 7 above,
inputting the HRB model parameters, land use data into Equation (16), the multiple linear
regression method was used to obtain an empirical formula as below, applicable to the
study basin.

n = −1.693x1 + 15.602x2 − 21.290x3 (17)

Substituting future land use data into this equation, it can be determined that the n
value is 1.866 for 2015–2040 and the n value is 1.871 for 2040–2060. They are then substituted
into the Budyko framework to predict future runoff. After regression analysis, it was found
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that in the HRB, farmland and grassland had a negative effect on parameter n, while
forestland had a positive impact.

Table 7. Proportion of land use types (%) in the HRB in different periods (%).

Period Farmland Forestland Grassland Water Built Unuse Land

2015 observed 34.95 39.59 19.48 2.82 3.12 0.05
2015 simulated 32.93 39.46 17.53 2.75 7.20 0.13
2040 simulated 32.78 39.46 17.54 2.75 7.34 0.12
2060 simulated 32.76 39.49 17.55 2.75 7.30 0.14

3.4. Future Runoff Forecast

This study uses an ensemble of climate models (multi-model averaging) from five
CMIP6 GCMs combined with the Budyko water balance method to predict future runoff.
We used Equation (17) to calculate the Budyko parameter n in the future period, see
Section 3.3, which represents the land use maintenance LUCC2040 and LUCC2060 land use
scenarios. The Budyko parameter n in 1992–2014 was calculated using Equations (1)–(3),
shown in Table 3, representing the land use maintenance LUCC1992-2014 land use scenario.
Based on Equation (3), the simulation forecast of the future runoff (R) of the HRB from
2015 to 2060 is carried out, as shown in Figure 9. According to Figure 9, it can be seen
that the future R of the HRB will increase under the SSP126, SSP245 and SSP585 scenarios.
The rate of change for future periods (2015–2040, 2040–2060) relative to historical periods
(1974–2014) is shown in Figure 10.

Figure 9. Annual runoff (R) predicted for 2015–2060 in the HRB; (a) 2015–2040: n = 1.866, 2040–2060:
n = 1.871, (b) 2015–2040: n = 1.554, equivalent to the corresponding parameter n in 1992–2014.

To predict future runoff based on the Budyko water balance method, the most im-
portant thing is to determine the Budyko parameter n. This study estimates the Budyko
parameter n based on land use scenarios. In Figure 10a, it is assumed that the land use
maintains the LUCC2040 and LUCC2060 land use scenarios. Figure 10b assumes that the
land use maintains the land use in the change period during 2015–2060. That is, the land
use maintains LUCC1992-2014. Based on this, the effect of future runoff forecasting in
the HRB was compared and analyzed. When the land use maintains the LUCC2040 and
LUCC2060 land use scenarios, compared with the historical period (1974–2014), the runoff
in the HRB increased by 8.77% under the SSP126 scenario from 2015 to 2040, and under the
SSP245 scenario, the runoff in the HRB decreased 8.04%, under the SSP585 scenario, the
runoff of the HRB increased by 4.97%, under the SSP126 scenario from 2040 to 2060, the
runoff of the HRB increased by 5.79%, under the SSP245 scenario, the HRB runoff increased
by 2.09%, under the SSP585 scenario. The runoff of the HRB increased by 13.66%.
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Figure 10. Rate of change of runoff (R) in different future periods (2015–2040, 2040–2060) against the
historical period; (a) 2015–2040: n = 1.866, 2040–2060: n=1.871, (b) 2015–2060: n = 1.554, equivalent to
the corresponding parameter n in 1992–2014.

When the land use is maintained under the LUCC1992-2014 land use scenario, com-
pared with the historical period (1974–2014), the runoff in the HRB increased by 25.47%
under the SSP126 scenario from 2015 to 2040, and under the SSP245 scenario, the HRB
runoff increased by 25.47%. 8.27%, under the SSP585 scenario, the runoff of the HRB
increased by 21.84%, under the SSP126 scenario from 2040 to 2060, the runoff of the HRB
increased by 23.27%, under the SSP245 scenario, the HRB runoff increased by 19.35%, under
the SSP585 scenario. The runoff of the HRB increased by 31.52%. When the land use is
maintained under the LUCC1992-2014 land use scenario, compared with the historical
period (1974–2014), the runoff in the HRB increased by 25.47% under the SSP126 scenario
from 2015 to 2040, and under the SSP245 scenario, the HRB runoff increased by 25.47%.
8.27%, under the SSP585 scenario, the runoff of the HRB increased by 21.84%, under the
SSP126 scenario from 2040 to 2060, the runoff of the HRB increased by 23.27%, under the
SSP245 scenario, the HRB runoff increased by 19.35%, under the SSP585 scenario. The
runoff of the HRB increased by 31.52%.

Overall, the future R of the HRB will show an increasing trend. Compared with
the historical period, under the SSP126 scenario, the R increased significantly. Under the
SSP585 scenario, the future R increase in the HRB is less. Under the SSP245 scenario,
the future R variation in the HRB ranges from −8.04% to 19.35%. At the same time, by
comparing the future R under the two ways, it can be found that the estimated future runoff
of maintaining LUCC1974-2014 is generally higher than the R calculated by maintaining
LUCC2040 and LUCC2060. Based on the assumptions in this paper, it is very likely to
overestimate the future runoff in the HRB without considering the changes in the land use
data of the underlying surface in the future.

4. Discussion

4.1. The Observed Impacts of Climate Change on Water Resources in the HRB

The current study results show that there is a decreasing trend for the annual runoff
(R) and annual potential evapotranspiration (E0) in the HRB from 1974 to 2015, while
there is an increasing trend for the annual temperature and potential evapotranspiration,
overall consistent with the results of other studies [57]. According to the trend analysis in
Section 3.1.1, the HRB experienced an extremely dry era following the 1990s, followed by a
relatively dry spell in 2014.

Climate change and human activities lead to changes in key elements of the water
cycle, such as precipitation, temperature, and substratum, in the future. The current study
forecasts an increasing trend in overall precipitation and temperature in the future period.
This is generally consistent with the results of other studies [58,59]. It has been shown
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that there is a consistent correlation between annual temperature and runoff, with a global
temperature increase of 1 ◦C resulting in a 4% increase in runoff [60]. In this paper, an
attribution analysis based on the Budyko equation for the historical period of the HRB can
also further corroborate the influence of three factors on the future runoff of the HRB [61].

According to Zhai et al. [62], climate change is the most important risk factor for
the hydrological risk of water supply in the South-North Water Transfer Central Line.
According to Li et al. [63], climate change leads to a 15% reduction in runoff in the upper
Han River. Meanwhile, climate change affects water quality and ecosystems. For example,
increased temperature in climate change can lead to algal blooms in the Han River [64],
while reduced flow can lead to deterioration of water quality in the middle and lower
reaches of the Han River [65]. If this situation continues consistently, it will seriously affect
the water transfer and transmission process in the HRB and have a serious impact on the
South-North Water Transfer Project in China. This study provides some insights into the
development of water resources and water quality management in the South-North Water
Diversion by conducting an attribution analysis of the declining runoff in the HRB.

4.2. LUCC Change Impacts on Watershed Water Resources

Regarding the effect of LUCC on runoff variability, this is related to the parameter n in
the Choudhury–Yang equation, where LUCC variability changes the vegetation retention,
soil water content, and surface evapotranspiration involving hydrological factors [60].
Therefore, in this study, we assume that the change of parameter n is related to LUCC,
etc. According to the actual LUCC in the HRB, which is mainly forestland, grassland and
farmland, and the area of three land use types accounts for more than 95% of the total area
of the HRB, so in this paper, we assume that the Budyko parameter n is related to three
land use types in LUCC.

In a previous study, it was found that vegetation cover can weaken the water supply
capacity of the South-North Water Transfer to some extent. For example, Zhang et al. [66]
found that vegetation greening may exacerbate the degree of hydrological aridity. The
increase in forest cover can reduce runoff in the HRB by as much as 0.19%, thus affecting
river health to some extent [63]. In addition, the analysis of LUCC effects on water resources
in the HRB may provide some suggestions for crop production in the HRB. Vegetation
cover can, to some extent, weaken the water supply capacity of the South-North Water
Transfer. The greening of vegetation may aggravate the severity of hydrological drought.
For example, cotton crops in the HRB are highly dependent on irrigation water and are
highly affected by the South-North Water Transfer Project [67].

According to the analysis of land use transfer changes in the HRB in Table 8, the
number of transfers of the 3 types of land use, farmland, water and built, was the most
obvious from 1980 to 2015. The net transfer out of farmland is 1876 km2, and the net
transfer in water and built is 1092 km2 and 996 km2, respectively. The transfer of farmland
to water is the highest transfer, 1064 km2, and built is mainly converted from farmland,
937 km2. There is a decreasing trend of forestland and grassland, which is not apparent.

Table 8. Land use area transfer matrix for the HRB 1980–2015 (km2).

Type of Land Use Farmland Forestland Grassland Water Built Unused Land 2015

Farmland 53,191 102 180 98 3 35 53,609
Forestland 136 60,397 169 16 1 60,719
Grassland 148 54 29,648 28 1 29,879

Water 1064 70 25 3057 5 100 4321
Built 937 165 32 29 3610 5 4778

Unuse land 9 1 2 1 64 77
1980 55,485 60,789 30,056 3229 3618 206 153,383
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Overall, land use changes will likely lead to significant changes in evapotranspiration
in the HRB, which in turn will lead to a decrease in HRB runoff. In this study, there is a trend
of decreasing grassland, forested and farmland in the future period, indicating a decrease
in future evapotranspiration, further corroborating the increase in future runoff [60]. As
future climate warming may lead to an increase in future evapotranspiration, it affects the
availability of water resources. Therefore, this study predicts future runoff in the HRB can
provide a basis for future water resources management and can also promote benefits such
as soil and water conservation and ecological restoration.

4.3. Limitations of This Study

Of course, there are also some limitations in the experiment design. This study, for
example, exclusively evaluates the effect of land use change on the subsurface parameter
n, neglecting the impact of other hydrological variables. The currently available studies
assume that the parameter n is related to climate change, vegetation, and many other
factors, such as mean storm depth, precipitation seasonality, soil, vegetation cover [61,68],
etc. In addition to this, there are interactions between various factors, such as the interaction
between CA (farmland area as a percentage of total watershed area) and ASD (average
storm depth). Many models (e.g., multiple stepwise regression, neural networks) [69]
have been proposed to estimate the Budyko parameter n under specific conditions. In
addition, during the land use simulation, all data were processed to a spatial resolution
of 1 km, without considering the scale effect of land use. Further research is needed on
how to maximize the mechanisms of natural and human influences on the geospatial
system [70]. Therefore, in future studies, the impact of climate change and human activities
on runoff should be input into the model to provide a more realistic picture of future
runoff predictions in the HRB. The results expected to provide a basis for managing water
resources in the changing environment of the HRB.

5. Conclusions

The impact of climate change and land use change on the reduction of runoff in the
HRB was first analyzed, followed by an attribution analysis of the HRB based on the
Budyko runoff elasticity coefficient method and a prediction for future runoff in the HRB
based on the Budyko water balance method in combination with CMIP6 global climate
model data. The following conclusions can be derived from the study’s findings:

(1) From 1974 to 2014, annual runoff and annual P in the HRB decreases non-significantly,
with decline rates of 1.3673 mm/a and 1.2709 mm/a, respectively, whereas temperature and
potential evapotranspiration increases non-significantly. Based on the mutation test, the
year of mutation is confirmed to be 1991. According to the attribution analysis, precipitation
is considered as the most critical factor leading to the drop in Han River runoff, with a
contribution rate of 54.1%, followed by the lower bedding surface with a contribution rate
of 30.7%.

(2) The overall simulation effect of temperature in the HRB after bias correction is better
than P. The simulated annual average P trends and multi-year averages are reasonably
consistent with the observed values, indicating a good spatial correlation. For the analysis
of the bias-corrected future hydrological data, the overall P trend in the future period is
increasing, with the increase amplitude under SSP126 scenario > SSP585 scenario > SSP245
scenario, and the precipitation increase amplitude also increases with time. Temperatures
are estimated to rise, with Tmax and Tmin rises in the SSP545 scenario > SSP245 scenario >
SSP126 scenario, and the temperature rise amplitude increases with time.

(3) For the future land use evaluation, there is a continuous trend of decreasing
farmland and grassland in the future. Forestland has a decreasing trend, though the overall
change is not significant. It is worth noting that there is an increasing trend of unused
land, indicating that there may be a trend of land degradation in the future. The n value is
determined to be 1.866 for 2015–2040 and 1.871 for 2041–2060.
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(4) The future R of the HRB will show an increasing trend. The future runoff of the
HRB shows an increasing trend, and the future runoff varies in different scenarios and
periods. Under the land use scenarios of maintaining LUCC1992-2014 and LUCC2040 and
LUCC2060, the R change rates in 2015–2040 are 8.27–25.47% and −8.04–19.35%, respectively,
and the R in 2040–2060 are 2.09–13.66% and 19.35–31.52%. At the same time, by comparing
the future R under the two scenarios, it can be found that the estimated future runoff
of maintaining LUCC1992-2014 is generally higher than the R calculated by maintaining
LUCC2040 and LUCC2060. Based on the assumptions in this paper, it is very likely to
overestimate the future runoff in the HRB without considering the changes in the land use
data of the underlying surface in the future.
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Abstract: Municipal solid waste management (MSWM) systems in developing countries adopt prac-
tices from developed countries to reduce their environmental burdens. However, several complex
issues specific to developing countries hinder the full implementation of these practices. The future
of MSWM in Davao City, Philippines, is envisaged as a notable example of the combination of new
infrastructure and local MSWM practices. A linear programming model was developed, following
material flow analysis and life cycle assessment, to design an optimal system for Davao City. The
performance of the system was evaluated in terms of greenhouse gas emissions, energy and revenue
generated, and the amount of landfill waste. The results show that the proposed system positively
affects the environment compared to the current system, due to additional treatment options. How-
ever, the main allocation concern transitions from organic waste in the current system to plastic waste
in future scenarios. Furthermore, the mitigation of greenhouse gas emissions and the extension of
landfill life will be heavily influenced by trade-offs between sorting operations and the management
of incinerated wastes with high calorific values. Therefore, plastic-waste-specific treatment options
will be critical for future MSWM systems. The results herein underscore the need for sustainable
MSWM in the study area, considering the region-specific conditions.

Keywords: greenhouse gases; integrated solid waste management; life cycle assessment; linear
programming; material flow analysis; separation rate

1. Introduction

Municipal solid waste management (MSWM) has become an important environmental
issue in many developing countries. The threat of global climate change has prompted
changes in MSWM systems as one way to reduce greenhouse gas (GHG) emissions. In
response, a modernization trend is emerging in the urban areas of developing countries to
adopt the experience of developed countries and their integrated solid waste management
systems as global best practices [1]. There is also a growing interest in creating environmen-
tally friendly MSWM and resource conservation through improved infrastructure systems,
the application of technologies such as incineration, and the use of scientifically derived
process networks [2–4].

However, applying current methodologies from developed countries to developing
countries presents many obstacles to full implementation, due to the complexity of the
situation in developing countries. These complexities include rapid economic growth,
high urbanization rates, differences in waste composition, a lack of proper governance,
the presence of an informal sector, and a lack of financial resources [1,5–10]. Therefore,
MSWM systems need to be adapted to best suit the socio-economic conditions of the region
wherein these future improvements will be realized [11,12].

Davao City is a notable example of this current and future waste situation. As the
capital of the third-largest metropolitan area in the Philippines, Davao is expected to face
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the consequences of rapid waste generation and a lack of waste-related infrastructure.
With a projected population of 1.7 million in 2017, the city’s waste generation has already
reached 991 tons per day (TPD) and is expected to increase further as its population and
economy grow. The emergence of this new threat led to a plan to integrate MSWM services,
as indicated in the Davao City Ecological Solid Waste Management Plan (ESWMP) for the
10-year period from 2018 to 2027 [13]. Some of the goals identified to support this plan are
improving waste separation and reduction at source, increasing waste diversion toward
composting and recycling facilities and enhancing MSWM through new waste-to-energy
(WTE) and sanitary landfill facilities.

This plan shall follow the waste categorization for separation set forth in the Ecological
Solid Waste Management Act of 2000 (RA 9003). These categories are biodegradable
waste, recyclable waste, residual waste, and special waste. Biodegradable waste is organic
waste that undergoes biological degradation under controlled conditions and can then be
converted into compost. On the other hand, recyclable wastes are collected from the waste
stream and converted to appropriate beneficial uses. Residual wastes are solid wastes that
are neither compostable nor recyclable and that must be disposed of through long-term
disposal or sanitary landfilling. Special wastes are hazardous wastes generated by domestic
households [14]. In addition, the proposed infrastructure that is needed and targets for
MSWM to be implemented within the next 25 years [15] include the expansion of collection
areas, the introduction of landfill gas recovery [13], and incineration [16]. Recycling and
composting at the barangay (the smallest political unit in the Philippines) or village level
will also play an important role in achieving the target waste diversion rates. Therefore,
villages without material recovery facilities (MRFs) are encouraged to form market linkages
with the nearest and most suitable waste product storage sites to meet their collection and
recovery needs [13].

The proposed system relies heavily on the success of source-separated collections,
which are as yet not widely practiced in the Philippines. In addition, there are limited
studies on the impact of the proposed MSWM system on cities and municipalities. The
maximum capacity of each treatment facility and a market for valuable outputs (e.g., recy-
cled materials, compost, and energy generated from waste) is necessary for the proposed
MSWM system to function sustainably in the city. Hence, qualitative and quantitative
information on current and future MSWM systems will provide valuable supporting re-
sources for policy formulation and appropriate waste treatment, and for the development
of disposal facilities in Davao City and other areas with similar conditions.

Material flow analysis (MFA) and life cycle assessment (LCA) are often used to analyze
the environmental burdens that need to be considered as part of the decision-making
process to better understand current and proposed MSWM systems. In recent studies, LCA
has been used to assess the environmental impacts of existing and potential improvements
to MSWM systems [2,3]. LCA has also been used to compare different MSWM scenarios
regarding mixed MSW [17,18] and individual waste fractions [8,19].

Furthermore, several models have been developed by which to design the ideal
MSWM system and waste management system solutions, based on various waste manage-
ment technologies, most of which are oriented toward economic optimization [4,20–25].
Some have also taken into consideration the GHG emissions of MSWM systems, the limita-
tions of the current treatment technologies, and the demand for MSWM by-products in the
respective study area (see Table S1 in the Supporting Information). However, despite the
realities of separation, as presented in some system assessment models, most optimization
models generally set the waste separation rate at 100%. There is also limited literature
published that discusses the impact of local waste separation categories and separation
success rates on the proposed systems’ functioning. This is especially significant when
adding new technologies that require a prescribed amount and quality of waste inputs,
such as in the case of incineration.

This study attempts to integrate the proposed treatment/disposal options, taking into
account the waste separation categories, local demand for the useful outputs of MSWM,
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and the minimization of GHG emissions in the Philippines. Hence, this study aims to assess
whether adopting the proposed management system in 2027 will reduce GHG emissions
compared to the baseline MSWM system, set in 2017. In addition, the performance of the
future system, assuming varying degrees of success in implementing the source separation
and collection system, will be evaluated. Therefore, LCA and linear programming (LP)
optimization are utilized to determine the ideal MSW treatment network for Davao City.
Furthermore, a stepwise approach was used to (1) compare the current MSWM system
with future scenarios, (2) examine the environmental performance of future scenarios based
on different management priorities, and (3) establish a greener future system for Davao
City by changing the existing waste separation categories.

2. Materials and Methods

2.1. Study Area

Davao City is the third-largest city in the Philippines and the most populous city
in Mindanao. The total waste generation in the city in 2017 was 991 TPD, 80% of which
was from residential sources, followed by public markets at 7%. The per capita waste
generation from all sources was 0.58 kg. As shown in Table 1, biodegradable and recyclable
components account for 50% and 18% of total waste generation, respectively, while residual
and special waste account for 29% and 2%, respectively [13].

Table 1. The physical composition of MSW in Davao City.

Material Composition
Composition

(%)

MSW Separation Categorization (%)

Biodegradable Recyclable Residual Special

Food 43.40 43.40
Yard, wood 6.68 6.68

Glass, ceramic, stone 4.26 3.51 0.75

Metals
Steel 2.52 2.52

Aluminum 0.29 0.29
Paper 17.29 6.88 10.41

Plastic, rubber 20.14 5.22 14.92
Textile 3.11 3.11
Others 2.31 2.31
Total 100.00 50.08 18.42 29.19 2.31

Data source: 10-year ESWMP of Davao City (2018–2027) [13].

By 2027, total waste generation in the city is projected to reach 1209 TPD, or 441 kilotons
(kt), of MSW annually. The 10-year ESWMP assumes that the waste composition in 2027 will
be consistent with that in 2017.

2.2. Methodology

MFA and LCA were used to quantify MSW flows and estimate the GHG emissions
for MSWM systems in both current and future scenarios. The LCA results were then used
to identify the emission factors per ton of waste in processes associated with this study.
Finally, these values were used as input data for the LP optimization model, to identify
potential improvements or solutions for the 2027 scenario.

2.2.1. MFA

Field visits and interviews were conducted from February 2020 to March 2020, to
collect primary and secondary data for the study area. Following these initial studies, a
city-level waste flow analysis was conducted to establish a baseline for Business-as-Usual
(BAU) practices and future MSW flow upon implementing the local waste diversion plan.

2.2.2. LCA

Following the implementation of MFA, LCA is used as an assessment tool. The
technical framework of the LCA methodology is as outlined here. This part of the study
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aims to assess GHG emissions from the existing and future MSWM systems in Davao City.
The current research has been limited to assessing the emissions of CO2, CH4, and N2O
from the studied MSWM systems.

The relevant processes for the current and future scenarios will be included in the
MSW management system boundary. However, as shown in Figure 1, the collection and
transportation of MSW from the source in each scenario are not included in the system
boundary. Apart from the direct processes related to the waste management system, other
related processes involved in the waste management system are included. Furthermore, a
system expansion or an avoided burden approach (as employed by Nakatani, 2014 [26])
is used to assess whether products recovered from the MSWM system can be used as a
substitute for products from virgin resources in other systems.

 

Figure 1. The system boundary of LCA in this study.

This phase was undertaken to compile the input and output data associated with all
relevant processes included in the system boundary onto worksheets in Microsoft Excel.
Emission factors related to current and future MSW treatment options were calculated
using local government information and emission factors drawn from various databases
and the literature. Emission factors for open dumping, landfilling, and LFGRS were
calculated according to Manfredi et al. (2009) [27], using the Intergovernmental Panel on
Climate Change (IPCC) default values for methane emissions and diesel and electricity
demand. Emission factors for material recycling were obtained from the work of Friedrich
and Trois (2013) [28]. Fossil carbon dioxide emissions from incineration systems were
calculated using the lower heating values reported by Dong et al. (2013) [3] and diesel and
electricity requirements reported by Astrup et al. (2009) [29]. In the case of composting, the
compost produced can be used as a low-quality fertilizer (or soil conditioner). Diesel fuel
and electricity requirements for composting were calculated using the values reported by
Boldrin et al. (2009) [30].

The emission factors for combined conventional power generation in the Mindanao
grid were collected from the Department of Environment and Natural Resources (0.468 kg
CO2-eq/kWh) and were used to calculate the avoided emissions from recovered electricity
with waste-to-energy facilities. In addition, the emissions related to diesel combustion were
calculated using emission factors reported by Fruergaard et al. (2009) [31].

The GHG emissions calculated in this study are expressed in terms of global warming
potential (GWP). The equivalency factors of global warming were obtained from the
IPCC [32]. For example, CO2 has a GWP of 1, whereas CH4 and N2O have GWPs of 28 and
265, respectively.
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2.2.3. LP Optimization

In this study, an LP model was applied to project the structure of the MSWM system in
Davao City in 2027, comprising waste treatment technologies widely implemented in many
developing countries. We considered four performance indicators in line with the goals
of the 10-year ESWMP for Davao City [13], i.e., environmental (GHG emissions and the
amount of landfill waste), economic (revenue), and energy (energy produced from waste)
indicators. Moreover, we considered the potential demand for the products recovered from
waste as the upper limit constraint, and their sales prices were estimated based on the City
Government of Davao (2017) [13] and Asian Development Bank (2013) [33] (see Figure S1
in the Supporting Information).

The objective functions applied in the model correspond to the scenarios analyzed
in this part of the study. This includes minimizing the GHG emissions of the system,
maximizing the revenue from the system, and minimizing the MSW allocated for final
disposal at the sanitary landfill.

System GHG emissions. This refers to the GHG emission of the system (t CO2-eq/year)
shown in Equation (1) as GWP. Here, j is the type of treatment facility, i is the type of waste,
qij is the quantity of waste i (t/year) assigned to treatment process j, and emfij is the
emission factor of waste i for treatment j (t CO2-eq/t).

GWP = ∑
j

∑
i

qij·emfij (1)

Energy generated by the system. This refers to the cumulative energy generated by
the waste incineration plant and landfill gas recovery system. In Equation (2), ERPij refers
to the energy recoverable from waste, i, in treatment j.

Energy = ∑
j

∑
i

qij·ERPij (2)

Revenue generated by the system. Revenue shall be limited to the sale of recovered
MSWM products, k, such as compost, electricity, and recyclables. Waste disposal costs
that are paid to treatment facilities, i.e., revenue from the facilities other than the sales of
recovered products, are not considered because we focus on the quantity of the useful
outputs that can be obtained from waste in this study.

Revenue = ∑
k

qk·PRICEk (3)

Furthermore, the model is subject to the constraints described below.
Mass balance constraints. This refers to the amount of waste to be transported to the

disposal or treatment process, j. In Equation (4), qij refers to the amount of waste, i. qij
refers to the amount of waste, i, (t/y) allocated to the treatment facility.

∑
i

qi = ∑
j

∑
i

qij (4)

Maximum capacity constraints. The amount of waste resource for each facility should
be less than or equal to the maximum allowable amount for that facility. In Equation (5), Zj
refers to the planned capacity (units/y) of facility j.

∑
i

qij ≤ Zj (5)

Waste allocation constraints. Each type of waste should be treated only in an appropri-
ate treatment facility. In Equation (6), aij refers to the waste availability coefficient (%) of
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waste i in treatment process j. The waste composition, following the conditions of waste
categorization under RA 9003, governs this variable.

qj ≤ aij·∑
i

qi (6)

Recovered product demand. The production rates of electricity, compost, and recycling
materials must fulfill the product demands. The demand for compost products should
be dictated by the total agricultural area of the study area, where 5 t/ha of compost will
be allocated. The electricity demand shall be subject to the design generation capacity of
the WTE plant, as defined in the local policy. On the other hand, the demand for recycled
materials shall be subject to the capacity of the material recovery/recycling facilities in the
study area. In Equation (7), qk refers to the production rate of product k (units/y), while dk
refers to the demand for product k (units/y).

qk ≤ dk (7)

Non-negativity constraints. This constraint means that only positive amounts of MSW
will be considered in the solution.

qij ≥ 0 (8)

The model formulated in this study has been developed and implemented using Excel
Solver.

2.3. Description of Alternative Scenarios

This study utilized a stepwise approach to understand the impacts of change on the
waste situation in Davao City and identify possible improvements. Various scenarios were
proposed and evaluated, as follows.

2.3.1. Examining the Effectiveness of Additional Treatment and Disposal Methods, and
Source-Separated Collection

Two scenarios are considered to establish whether a local waste diversion plan can
reduce GHG emissions from the existing MSWM system.

Scenario 1. This scenario is defined as the baseline scenario of the MSWM system in
2017. Source-separated collection practices are not considered, and the waste management
options are composting, recycling, and landfilling. Due to limited collection compliance,
a significant fraction of the waste generated is disposed of by open dumping. Losses in
existing collection areas are also assumed to be openly dumped.

Scenario 2. By 2027, source-separated collection will be considered to occur according
to the local waste diversion plan. The municipal collection covers all barangays except
one because of poor road conditions in the area. Therefore, it is assumed that waste in this
excluded barangay is disposed of via open dumping. Waste management options include
composting, recycling, landfilling (including gas recovery), incineration, and household
hazardous-waste storage.

2.3.2. Establishing an Environmentally Friendly Future MSWM System

In order to improve the MSWM system in Davao City, a 10-year ESWMP was prepared
for the period 2018–2027 [13]. The goals outlined in the plan include maximizing the
generation of power from waste, extending the life of the sanitary landfill, and minimizing
the GHG emissions of the MSWM system. In this section, we evaluate how choosing an
optimization goal that corresponds to the goals of the local waste management plan can
change the environmental performance of alternative scenarios. The same MSW categories
and quantities generated, as in Scenario 2, are considered. The following three scenarios
are subject to the upper limit constraints of disposal/treatment options and the estimated
demand for valuable outputs in the study area.

Scenario 3. The 2027 system is optimized to minimize GHG emissions.
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Scenario 4. The sale of useful outputs is maximized to generate the most revenue. As
a result, the power generation capacity of WTE facilities and the recycling and composting
processing capacity can be maximized.

Scenario 5. Minimizing landfill waste is a priority when allocating waste to disposal
and treatment facilities.

2.3.3. Examining the Effectiveness of Waste Separation

Changes in the local recycling market, such as market standards for recyclable mate-
rials, can result in differences in the ratio of recyclable to residual fractions of the waste
stream. In this part, the impact of the increase in the recyclable fraction on the performance
of the MSWM systems, as described in Scenarios 3 to 5, will be discussed. The same amount
of MSW is assumed to be generated as in Scenario 2, taking into account the upper limit con-
straints of the waste treatment facilities and the demand for useful outputs. Scenarios 3 to
5 are optimized by turning off the upper limit constraints for the recyclable fraction.

2.4. Sensitivity Analysis

The performance of the future MSWM system may be greatly affected by various
factors, including the performance of the separation rate in the segregated collection. Hence,
a sensitivity analysis was conducted on the change in the separation rate of biodegradable
and recyclable wastes in the 2027 system, considering the upper limits of various treatment
methods in the study area. In addition, we investigated the sensitivity in GHG emissions
of the 2027 scenario to the amount of plastic waste generation, which was considered to be
one of the most influential factors on GHG emissions from waste incineration and on the
avoided emissions from recycling.

3. Results and Discussion

3.1. MFA of Current and Future Scenarios
3.1.1. MFA of the MSWM System in 2017

In the BAU scenario, municipal collection services are provided to only 65% of the
population, most of whom reside in the city’s relatively flat and densely populated areas.
The estimated waste generation within the collection area was 835 TPD in 2017 [13], of
which only 611 TPD (Figure 2) was collected by the local government [34]. The uncollected
waste and losses in the collection area are estimated at 156 TPD and 188 TPD, respectively.
Out of 182 barangays in the city, there are four barangays with functioning MRFs, of which
two barangays have vermiculture composting facilities. The current processing capacity of
the MRFs is 1 TPD [15], mainly processing organic waste.

The material flow in the BAU scenario is shown in Figure 3. The collection activities
by the private waste sector can be further divided into formal and informal sectors. The
material recovery system in the city is mainly established by the informal waste sector
(IWS), which supplies the recovered waste as raw materials to the formal private sector.
Due to the limited available data, direct flows from non-residential sources to recycling
facilities exist but are excluded from this study. The IWS includes roving waste buyers,
street collectors, the municipal collection crew, and waste pickers at landfills. The estimated
amount of waste recovered for recycling by IWS is about 50 TPD [15,16], 15 TPD of which
is contributed by the municipal collection crew. This total value excludes the yield of waste
pickers at landfills. As of August 2017, there are 44 registered junk shops in the city, with an
estimated total yield of 73 TPD [13]. According to a JICA survey (2008) [35], the recyclables
collected in the city comprised 29.1% plastic, 28.5% paper, 25.0% metal, 17.0% glass, and
0.4% other materials. These recyclables were then consolidated in waste product storage
facilities and sold to their primary buyers, such as plastic recycling plants, steel mills, and
paper mills.
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Figure 2. Current status of MSWM in Davao City, Philippines (tons/day: TPD).

There is only one sanitary landfill (SLF) in Davao City, located in Barangay New
Carmen. It covers an area of 3.8 ha and has a capacity of 2.85 million m3 [36]. The landfill
started operation in 2010, and the remaining service life of the landfill is estimated to be
about 6 years (after the publication of this report in 2018) [34]. The landfill received an
estimated amount of 596 TPD in 2017. The landfill site has a composting facility with three
rotary composters, which process 3.5 tons per month (TPM) of biodegradable waste to
produce 1.5 TPM of compost. The compost generated is used for greening and beautification
programs in the city and is distributed free of charge to institutions and small farms upon
request [13]. There are also about 200 waste pickers at the landfill. Data on the breakdown
of waste recovered by the waste pickers were collected through the receipts used by them
to receive payment from buyers. Twenty-two receipts were collected by the researchers.
The results showed that the 22 waste pickers collected a total of 3054 kg of waste materials
(an average of 139 kg per person), which consisted of plastics (42.22%), metals (28.16%),
paper and cardboard (24.82%), glass (4.14%), batteries (0.59%), and coconut shells (0.07%).
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Figure 3. Material flow in the BAU scenario (2017) (unit: kt/yr).

3.1.2. MFA of the MSWM System in 2027

Figure 4 shows the waste flow in the city, according to material composition, for
the proposed MSWM system based on the local waste diversion plan. The outline of the
proposed MSWM system is shown in Figures S2 and S3 in the Supporting Information.

One of the fundamental changes in the proposed future MSWM system is that the
Davao City Environment and Natural Resources Office (CENRO) aims to collect 100% of
MSW by 2025 [36]. They intend to implement a segregated collection and transport system
by establishing an MRF in each village or a cluster of villages to receive, sort, process, and
store compostable and recyclable materials. The following calculations assume that all
villages except Barangay Gumitan, which has poor road conditions, will have a village-level
MRF capable of receiving and sorting 100% of the waste generated in the village. By 2027,
a 50-TPD composting facility and an 18-TPD centralized MRF will also be established. The
local waste diversion plan also acknowledges the activities of IWS by allocating recyclable
waste diversion by a scavenging crew.

Davao also proposes to operate the Philippines’ first WTE facility in 2022 [34,36],
which is projected to have a capacity of 600 TPD and to generate 9.7 MW of electricity,
or 74,688 MWh/yr [16]. This amount corresponds to about 2% of the demand forecast of
the Davao Light and Power Company for 2027 [37]. The city has also acquired land for
establishing new sanitary landfills, with an estimated capacity of 3 million tons [34]. In
addition, according to the local plan, a private developer has expressed interest in setting
up a gas-to-energy project at the New Carmen disposal facility [13]. However, due to the
limited information available on this project, details such as the power generation capacity
of the proposed project are based on the Payatas disposal facility in Quezon City, which is
referenced in the 10-year ESWMP of Davao City (2018–2027) [13].
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Figure 4. Material flow of the future scenario (2027) (unit: kt/yr).

3.2. Comparison of Current and Future Scenarios

In the BAU scenario, 58.6% of the waste generated was allocated to landfills, 15.7%
was uncollected, 6.6% was recovered for recycling by the private formal and informal
sectors, and 0.1% was composted. Losses within the existing collection area accounted for
19%, and there was no energy production activity from MSW. The BAU scenario generated
an estimated emission amount of 271 kt CO2-eq/yr (Figure 5). In addition to the emissions
shown in Figure 5, diesel consumption for waste collection leads to an estimated 1.2 kt CO2-
eq/yr of GHG emission, which is much smaller than the emissions from landfilling and
open dumping. The most significant contributor to GHG emissions in this scenario is the
release of methane from landfills and open dumps, due to the degradation of organic waste.
It must be noted that the current landfill system is not equipped with a gas collection system.

Future scenarios were designed to anticipate trade-offs between the separation process
and additional MSW treatment/disposal options. Based on the local waste diversion plan,
39.2% of the total waste will be allocated to incineration, 29.6% to composting, 12.2% to
LFGRS, and 2.3% to hazardous waste storage; only 0.1% will remain uncollected. Therefore,
in the 2027 scenario, the system is expected to emit 73 kt CO2-eq per year, with the
incinerated plastic fraction of the residual waste being the main contributor to emissions
(Figure 6). Taking this into account, the system’s emissions will decrease from 0.75 t CO2-eq
per ton of MSW in the 2017 scenario to 0.17 t CO2-eq per ton of MSW.
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Figure 5. Estimated annual GHG emissions in the 2017 scenario.

Figure 6. Estimated annual GHG emissions of the 2027 scenario.

However, in the local plan for the 2027 scenario, the challenge is that the maximum
power generation of the incineration plant will be reached before the maximum annual
throughput of MSW is reached. Furthermore, the upper limit of the local demand for recy-
clable materials has been estimated. As a result, it is anticipated that a significant amount of
MSW will be diverted from the recycling and incineration processes to the sanitary landfill.
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Such a change in the allocation of MSW will result in changes in the expected performance
of the MSWM system. Here, the net GHG emissions from incineration and landfilling
become 46 and 60 kt CO2-eq/yr, respectively, and the avoided emissions from recycling
and composting become −45 kt CO2-eq/yr. Consequently, the volume of system GHG
emissions can decrease to 60 kt CO2-eq/yr.

3.3. Sensitivity Analysis

The performance of the 2027 MSWM system mentioned earlier is greatly affected
by the performance of the separation rate in the segregated collection. As a result of the
sensitivity analysis considering the upper limits of various treatment methods in the study
area, the target separation rates in the 2027 local plan will be 59% for biodegradable wastes
and 91% for recyclable wastes.

3.3.1. Sensitivity Analysis of Landfill Waste to Separation Rate

One of the major impacts of the change in separation rate can be seen in the annual
amount of landfill waste. It is assumed that the future landfill facility will have a capacity of
3 million tons and will be operational from 2022 to 2045. Therefore, to achieve sustainable
waste management during this 24-year period, it is assumed that the annual amount of
landfill waste will not exceed 125 kilotons. Therefore, to prolong the sanitary landfill’s life,
it is necessary to achieve adequate separation rates for both waste categories in the city
(shown in Table 2 as underlined values).

Table 2. Sensitivity of landfill MSW to separation rate (kt/yr).

Biodegradable Waste Separation Rate

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
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0% 258 242 226 210 194 178 163 148 133 119 105
10% 250 233 217 201 186 170 155 140 126 111 98
20% 240 224 208 193 177 162 147 132 118 104 90
30% 231 215 200 184 169 154 139 125 110 97 83
40% 222 206 191 175 160 145 131 117 103 89 76
50% 213 197 182 167 152 137 123 109 95 82 69
60% 204 188 173 158 143 129 115 101 88 75 63
70% 195 179 164 149 135 121 107 93 80 68 56
80% 185 170 155 140 126 112 99 86 73 61 49
90% 176 161 146 132 118 104 91 78 66 54 43

100% 166 151 137 123 109 96 83 70 58 47 36
Note: Underlined values ≤ 125 kt MSW/yr; estimated upper limit of local demand for recyclables at 74%.

This problem is exacerbated by the limited estimated demand for recyclable materials
in the study area, requiring higher separation rates for biodegradable waste. In addition,
the local waste diversion plan still relies heavily on the support of a network of formal and
informal private waste sectors, suggesting the need to promote the capacity-building of
these establishments (e.g., waste product storage facilities).

3.3.2. Sensitivity Analysis of System GHG Emissions to Separation Rate

Increasing the separation rate of biodegradable and recyclable wastes will reduce the
GHG emissions of the system. However, as shown in Figure 7, a significant decrease in
emissions is expected with increasing the biodegradable waste separation rate compared to
that of recyclable waste.
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Figure 7. Sensitivity of system’s annual GHG emissions to separation rate.

GHG emissions in the 2027 scenario will be heavily affected by the relationship
between separation rates and the management of lower calorific value (LCV) of MSW for
incineration. Without an efficient source separation of biodegradable and recyclable waste
fractions, the maximum power generation of the incineration facility will be reached before
the annual amount of processed MSW is capped, leading to an increase in landfill waste.
On the other hand, one of the main influencing factors for the high LCV of incinerated
MSW is the high percentage of residual plastic waste that is not affected by the improved
separation rate. Hence, improving the separation system according to the individual
material composition will benefit future MSWM systems, which will be discussed in the
following section.

3.3.3. Sensitivity Analysis of System GHG Emissions to Plastic Waste Generation

When the amount of plastic waste generation changes in the range of ±50%, the
net GHG emission from incineration in the 2027 scenario, considering the upper limit
constraint of the facilities to be 46 kt CO2-eq/yr, is expected to proportionally vary between
34 and 51 kt CO2-eq/yr. Similarly, the net GHG emission from landfilling is expected
to vary between 16 and 103 kt CO2-eq/yr, and the avoided emission from recycling and
composting also varies between −49 and −27 kt CO2-eq/yr. As a result, the amount of
system GHG emissions can decrease to 1 kt CO2-eq/yr when the plastic waste generation
is halved, whereas it is expected to increase to 127 kt CO2-eq/yr when the plastic waste
generation increases by 50%.

3.4. LP Optimization of the 2027 Scenario

As shown in Figure 8, the optimal solution for organic wastes, such as food and paper,
is incineration to minimize the resulting system emissions. This is because the incineration
of these components emits biogenic CO2, while the incineration of textiles and plastics emits
fossil-fuel-derived CO2. Therefore, recyclable plastics, metals, and paper are allocated to
recycling. On the other hand, residual plastics, glass, and the remaining unprocessed waste
are disposed of in landfills, thus minimizing the use of composting facilities. Furthermore,
the energy recovery performance of this scenario is influenced by the avoidance of the
incineration of high-calorific-value wastes. Therefore, even though the system emissions
are estimated to be about −81 kt CO2-eq/yr, the amount of landfill waste in this scenario
exceeds 125 kilotons, which may shorten the operational life of the sanitary landfill.

As shown in Figure 9, under the maximum revenue scenario, the power generation
capacity of the WTE facilities and the processing capacity for recycling are maximized.
As a result, the revenue from the sale of MSWM recovered products, including power
generation of 82,688 MWh/year, is estimated at PHP 1.49 million. Thirty-nine percent of
the total revenue will come from the recycling of plastics, followed by 37% from the sale
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of electricity. To achieve this, plastic waste will be used for incineration, increasing the
LCV of incinerated waste. As a trade-off, the GHG emissions for this scenario will be 19 kt
CO2-eq/yr. Therefore, landfill waste is reduced to about 84 kt/yr in this scenario.

 

Figure 8. Optimization results: minimization of GHG emissions.

 
Figure 9. Optimization results: maximization of revenue.
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As shown in Figure 10, wastes with high calorific value, such as plastic and paper, are
redirected to recycling activities, in line with maximizing food composting to minimize
landfill waste. As a result, except for some plastic waste, all the remaining MSW would be
incinerated, with an estimated emission of −5 kt CO2-eq, a revenue of PHP 1.37 million,
and landfill waste of 67 kt/yr. This scenario involves minimal landfill gas recovery.

 

Figure 10. Optimization results: minimization of landfill waste.

3.5. Implications of the Ratio between Recyclable and Residual Fractions of MSW

One of the common MSW allocation procedures observed in the three scenarios is the
specific allocation of plastic waste to manage the LCV for incineration. This is achieved
either by maximizing recyclable plastics for recovery or by minimizing the residual plastic
waste to be incinerated. This is especially noticeable in all three scenarios studied, where
landfill plastic is significantly high. Therefore, the recovery or the recycling of this plastic
waste with different objective functions is beneficial for revenue generation, the avoidance
of emissions, and the diversion of waste from landfills.

As a result, we inputted the data into the LP model and optimized it by turning off
the upper limit constraint for the recyclable fraction. This changed the distribution of the
conventionally classified recyclable and residual fractions of each material (see Figure S4 in
the Supporting Information). All three scenarios prioritized recycling plastic waste, causing
a decrease in incinerated plastic and an increase in the incinerated MSW. This causes a
decrease not only in the energy generated but also in the system emissions and landfilled
waste. The results in Table 3 indicate that prioritizing the collection of waste plastics at
the MRFs and expanding the local definition of recyclable plastics will bring additional
environmental and economic benefits to future MSWM systems.
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Table 3. Summary of the optimization results (the upper limit constraints for the recyclable fraction
are disabled).

Performance Indicator Local Plan Min GHG Max Rev Min LF

GHG emissions (kt CO2-eq/yr) 73.5 −88.7
(−80.6)

6.1
(19.0)

−19.5
(−5.0)

Recovered energy (GWh/yr) 106.8 * 69.5
(54.5)

82.7
(82.7)

52.0
(67.2)

Revenue (million PHP/yr) 1631 * 1830
(1203)

2274
(1488)

1603
(1366)

Landfill waste (kt/yr) 71.0 163.9
(168.2)

67.3
(83.8)

67.3
(83.8)

Note: The values in parentheses have upper limit constraints. * Exceeds the upper limits of the incineration power
generation capacity and local recyclable demand. USD 0.021 = PHP 1.

4. Conclusions

In this study, an LP model was developed to optimize the future MSWM system in
Davao City, Philippines. The results indicate that increased MSW treatment options, includ-
ing incineration, LFGRS, composting, and MRFs, with significant source separation, will
offer positive energy and environmental benefits compared to the current MSWM system.

The main emphasis regarding treatment and disposal shifts from organic waste alloca-
tion in the BAU scenario to the plastic fraction of MSW in the 2027 scenario. The mitigation
of GHG emissions in future scenarios will be heavily influenced by the trade-offs between
separation and incineration activities. Without significant separation to manage the LCV of
MSW to be incinerated, the capacity of the incineration facility for the annual MSW that is
processed will not be maximized. This results in increased landfill waste and a shortened
operational life of landfills. Hence, the modified separation scheme may be more beneficial
to the future MSWM system, including the specific allocation of plastic waste. This means
maximizing the recovery of recyclable plastics and/or minimizing the amount of plastic to
be incinerated. Furthermore, the optimization results show that treatment options dedi-
cated to the recovery and recycling of plastics may solve the problems identified so far in
the sustainable implementation of the 2027 scenario.

This model could be extended to include additional treatment and disposal options
and the related investment, land procurement, and operation and maintenance costs of
treatment and disposal facilities. This is because the new MSWM infrastructure, while
environmentally beneficial, may be restricted by high transportation costs, local budget
constraints, and land availability. Moreover, future MSW processing networks need to
improve the circulation of waste materials in the selected study areas, incorporating the
capacity and the limitations of other relevant industries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su14042419/s1 [4,13,20–22,24,25,33,37], Figure S1: Process network
of MSWM for 2027 in Davao City, Philippines. Figure S2: MSW collection, separation, and treat-
ment/disposal options in the 2027 scenario. Figure S3: Supply and demand for the recovered MSWM
products in the 2027 scenario. Figure S4: Changes to the material flow in optimization scenarios
when the availability coefficient is disabled. Table S1: Comparison of the optimization models for
solid waste management.
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Abstract: It is urgent to improve the prediction accuracy of precipitation in the preflood season (PFS)
over South China (SC) under the background of global warming, and thus the research of water
vapor conditions is the key. For the period of 1960–2012, using the daily precipitation data from
60 meteorology stations in SC and National Centers for Environmental Prediction (NCEP) reanalysis
data, the synergistic effect of PDO (the Pacific Decadal Oscillation) &IOD (the Indian Ocean Dipole
Mode) on water vapor transport process to frontal/monsoon precipitation is revealed, based on
the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT_4.9). For the frontal
precipitation, the positive PDO phase (PDO+) compared with the negative PDO phase (PDO−), there
is more water vapor over the West Pacific (WP), the northern South China Sea (SCS), and the Bay
of Bengal (BOB). Water vapor for frontal precipitation mainly comes from WP and SCS. When PDO
and IOD are in phase resonance, the water vapor transport tracks from the SCS, WP are shorter and
westward, so more water vapor is transported to SC, the precipitation efficiency of water vapor to
PFS precipitation is higher too. For the summer monsoon precipitation, the tropical Indian Ocean
(IO)-BOB is rich in water vapor, especially for PDO−& IOD+. The main water vapor transport tracks
are the cross-equatorial flows in the IO, BOB and SCS. The precipitation efficiency of water vapor
from the IO-BOB is higher for the positive IOD phase (IOD+) than that for the negative IOD phase
(IOD−); however, the precipitation efficiency of water vapor from SCS is higher for the IOD− than
that for IOD+. Compared with frontal precipitation, the strong westerly anomaly in the northern
IO increases the water vapor transport from the north IO, BOB to SC during monsoon precipitation.
For the PDO+&IOD+, the stronger Indian Low and cyclonic anomaly in the WP increases the water
vapor transported from the IO-BOB to SC, improving the precipitation efficiency of water vapor.
Understanding the synergistic effect of the PDO and IOD on water vapor transport will help to
improve the accuracy of precipitation prediction, and reduce the negative impact of drought and
flood disasters.

Keywords: preflood season in South China; frontal precipitation; summer monsoon precipitation;
PDO; IOD

1. Introduction

Precipitation falling over a given area is an aggregation of water molecules over
a period of time. Some water molecules may come from the vicinity, some water may
be transported from farther sources [1]. There is rich precipitation in the PFS (April–
June) over SC, and its variability is enhanced under the background of global warming,
but the prediction for PFS precipitation is still a great difficulty for meteorologists [2].
Sufficient water vapor is a necessary condition for the PFS rain formation. The study on
the water vapor source of PFS rain, the characteristics of water vapor transport and its
formation mechanism, are helpful to deeply understand the occurrence law of drought and
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flood disasters over SC, thus providing a reference for government decision-making and
precipitation prediction [3–5].

There are two common approaches for analyzing water vapor transport. The La-
grangian method is better than the Eulerian method because it can calculate the air trajec-
tory, and clearly determine the source of water vapor transport [1,6–8].

Thus, based on the HYSPLIT model [9–11], the characteristics of water vapor transport
in the PFS over SC can be obtained by statistical and quantitative analysis. The WP, SCS,
IO, BOB and Eurasian landmass are the main water vapor sources for rain in SC [12,13].

Studies have also shown that [14,15], before and after the onset of SCSSM, the charac-
teristics of water vapor transport for the PFS over SC are quite different. Before the onset
of SCSSM, the WP is the largest source of water vapor contributing to the PFS precipi-
tation, the IO is the largest source of water vapor after its onset. Previous studies have
shown [16,17] that the water vapor transport in the PFS also has obvious interdecadal
variation characteristics. A further study [18–23] shows that the interdecadal variation of
water vapor transport in PFS is closely related to the PDO. By affecting low-level water
vapor transport, the IOD has a greater contribution to the variation of precipitation in SC
on both interdecadal and interannual scales [24–31].

Multi-factor synergy refers to the combined effect of two or more influencing factors,
and the variability of precipitation in SC is the result of multi-factor synergy [32–36]. On
the interdecadal scale, the summer precipitation in SC is affected by the tropical IO SST,
spring snow cover over the Tibetan Plateau [37], summer intraseasonal oscillation in the
Northern Hemisphere [38], and summer convective activity in the SCS [39], a synergistic
effect of external forcing factors.

The results of these studies have contributed to a deeper understanding of the com-
plexity of precipitation variability, and also showed that the SST anomaly of the IO and WP
has an important impact on the water vapor transport for the PFS. There have been many
valuable studies and meaningful results on the relationship between the PFS precipitation
variability and SST anomaly of the WP and IO, respectively. On the interdecadal time scale,
how does the interdecadal variability of the SST in WP and IO cooperatively affect the
water vapor transport for PFS precipitation? In this study, the mechanism of the PDO and
IOD synergistically affecting the variability of water vapor transport for the PFS in SC is
discussed. Our findings will provide a theoretical basis for an in-depth understanding of
the factors governing the PFS precipitation, provide additional information for analyzing
drought and flood disasters.

2. Data and Methods

2.1. Data

Our study is based on, daily precipitation data of 60 meteorology stations over SC
(20◦–26◦ N,107◦–120◦ E; Figure 1) from 1960 to 2012 provided by CMA. The NCEP reanal-
ysis data available every six hours (00, 06, 12 and 18 UTC), provided by NOAA covers
the period from 1960 to 2012, with a resolution of 2.5◦∗2.5◦, including 17 layers of tem-
perature, wind and relative humidity (1000~10 hPa). The definitions and data of PDO
and IOD indicators are from the NOAA website (https://psl.noaa.gov/ accessed on 24
February 2022).
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Figure 1. Schematic diagram of the South China (the green box represents the area where the
precipitation is studied, the blue box is the judgment area of South China Sea summer monsoon
onset, and the red spot is the meteorology stations).

2.2. Methods

The Lagrangian particle dispersion model (HYSPLIT 4.9) developed by Draxler and
Hess [9,10] is used to simulate the trajectories of air parcels formed during PFS rain events
for the period of 1960–2012. The air parcels at three levels (1000 m, 1500 m, and 3000 m,
most water vapor converge) over 60 meteorology stations are selected. The backward
trajectory is calculated by taking 02UTC and 14UTC of every day as the starting time point,
the position of the trajectory point is output every hour, and the air block specific humidity
at the position is obtained by interpolation. Air parcels are traced 240 h into the past, which
is the average lifespan of water vapor in the atmosphere [40], to analyze the water vapor
sources for SC, 716,416 tracks are selected from 60 stations with rain recording periods.
The water vapor trajectories are analyzed by clustering method, to identify the main water
vapor channels [41].

2.3. Division of Frontal Precipitation and Monsoon Precipitation for PFS over SC

The atmospheric circulation in PFS over SC is significantly different before and after
the establishment of the SCSSM, and the precipitation characteristics are also different [2,42].
It is necessary to determine the beginning date of summer monsoon precipitation in SC,
and then divide the water vapor transport process into two stages: frontal precipitation and
monsoon precipitation. Climatological mean, SCSSM advances to SC about one week after
its onset, when monsoon precipitation begins. According to the definition of Zheng et al. [2],
if the 100 hPa over the region (20◦–23◦ N, 110◦–120◦ E) changes from westerly to easterly
and lasts for more than 5 days, the first day is the beginning day of monsoon precipitation.
Based on the NCEP reanalysis data, the mean onset date of monsoon precipitation is May 16
from 1960 to 2012 over SC. In this study, the period from April 1 to May 15 is defined as the
frontal precipitation, and the period from May 16 to June 30 is the monsoon precipitation.

3. Results

As previously mentioned, the PDO and IOD are interrelated and have a synergistic
effect on precipitation [43,44]. It is necessary to discuss the role of the PDO in detail when
paying attention to the impact of the IOD on the water vapor transport in the PFS over SC.

3.1. Cold and Warm Phase of PDO

The PDO index has obvious interdecadal variation characteristics. The monthly PDO
index is 12-yr low-pass filtered by the CMA [45]. After filtering, the positive (negative)

193



Water 2022, 14, 722

PDO index corresponds to the warm (cold) phase. The period of 1960–2012 can be divided
into three phases: 1961–1976 (cold), 1977–1998 (warm), and 1999–2012 (cold). When the
PDO is in a warm phase, SST in the northern, northeastern and southeastern parts of the
North Pacific has a positive anomaly, while the central, western and southern parts have a
negative SST anomaly; the PDO cold phase is on the contrary.

3.2. Phase Combinations of PDO and IOD

Using the COBE SST data of NOAA and referring to the definition of Saji et al. [46],
the tropical western IO (50–70◦ E, 10◦ S–10◦ N) is called the western IOD region, and the
tropical eastern IO (90–110◦ E, 10◦ S–0◦N) is called the eastern IOD region. The Dipole Mode
Index is the west region SST anomaly average minus the IOD East region SST anomaly
average. The IOD positive (negative) phase events occur when the index is greater (less)
than 0.5 standard deviations in autumn (from September to November). The classification
results of phase combinations of PDO and IOD are obtained, as shown in Table 1.

Table 1. Phase combinations of PDO and IOD.

PDO Positive Phase PDO Positive Phase

IOD positive phase 1977, 1982, 1987, 1994, 1997 1963, 1972, 2006, 2007, 2011, 2012
IOD negative phase 1989, 1992, 1995, 1996, 1998 1964, 1971, 1974, 1975, 1999, 2010

The Pacific Decadal Oscillation (PDO); the Indian Ocean Dipole Mode (IOD).

3.3. Synergistic Effects of PDO and IOD on the Water Vapor Transport Process of Precipitation in
PFS over SC

The synergistic effects of PDO and IOD on the water vapor transport process are
introduced from three aspects: water vapor distribution, water vapor transport trajectory,
and characteristics of atmospheric circulation.

3.3.1. Distribution of Water Vapor

For frontal precipitation, the WP-SCS has rich water vapor from 10 days to 2 days
before the water vapor arrives at SC. Water vapor over the WP-SCS-BOB is more for the
PDO+ (Figure 2a–f) than that for PDO− (Figure 2m–r). Although the initial position of
water vapor transport from the WP is more eastward during the IOD−, the water vapor
is more abundant in the WP-SCS-BOB for IOD+ than that of IOD−, and water vapor of
PDO+&IOD+ is the most abundant (Figure 2a). For monsoon precipitation, water vapor
gathers in IO-BOB (Figure 2m–x), and water vapor maximum covers a larger area in the
middle tropical IO for the PDO−&IOD+ (Figure 2s).

3.3.2. Water Vapor Transport Trajectories

The main atmospheric water vapor source regions that involved the PFS rain events
over SC are the Mediterranean-Eurasian interior, IO, BOB, SCS, WP, and East China
(Figure 3), which is consistent with the previous results presented in the introduction.
The differences between clustering water vapor transport tracks for four combinations of
the IOD and the PDO phases are shown in Figure 3.
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Figure 2. Distribution of cumulative specific humidity of each 1◦ × 1◦grid on the water vapor
transport trajectories in the preflood season (1960–2012) 10 days, 5 days, 2 days before the water
vapor reaches South China.((a–l) for the frontal precipitation, (m–x) for the monsoon precipitation;
(a–f,m–r) for PDO positive phase, (g–l,s–x) for PDO negative phase; (a–c,g–i,m–o,s–u) for IOD
positive phase, (d–f,j–l,p–r,v–x) for IOD negative phase, unit: g/kg/grid).

For the frontal precipitation, when the PDO and IOD are in phase resonance, most
water vapor transport tracks from the WP-SCS (trajectories labeled 3 and 4 in Figure 3a)
are shorter and westward, so more water vapor is transported to SC, the precipitation
efficiency of water vapor is higher (Table 2). The track of the PDO+&IOD+ (blue track
3) is shorter and more westward than that of the PDO+&IOD− (red track 3), the track of
PDO−&IOD− (purple track 3) is shorter than that of the PDO−&IOD+ (green track 3). For

195



Water 2022, 14, 722

water vapor from the WP, the percentages of the PDO+&IOD+ (with 23.97% track number
and 25.96% precipitation efficiency) are higher than that of the PDO+&IOD− (with 17.15%
track number and 11.91% precipitation efficiency). The percentages of the PDO−&IOD−
(with 21.35% track number and 22.67% precipitation efficiency) are higher than that of the
PDO−&IOD+ (with 18.22% track number and 17.82% precipitation efficiency).

Figure 3. Clustering path of water vapor transport trajectories of precipitation for positive/negative
phase of IOD in the preflood season over SC with the synergy of PDO (1960–2012) ((a) the frontal
precipitation, (b) the monsoon precipitation, blue line: clustering trajectories for PDO positive phase
and IOD positive phase, red line: clustering trajectories for PDO positive phase and IOD negative
phase, green line: clustering trajectories for PDO negative phase and IOD positive phase, purple line:
clustering trajectories for PDO negative phase and IOD positive phase, the number at the start of the
trace is the trace number).

Table 2. Percentage of track number for clustering path in the total number of water vapor transport
tracks and effective precipitation track number for clustering path in its total track number in the
preflood season over SC for phase combinations of IOD and PDO (1960–2012) (unit: %).

PDO Positive Phase PDO Negative Phase

Track Number 1 2 3 4 5 1 2 3 4 5

Frontal
precipitation

IOD+
Track amount 23.99 15.98 30.52 23.97 5.54 4.94 12.36 26.11 18.22 38.37
precipitation 23.77 12.90 33.48 25.96 3.9 2.51 8.75 30.07 17.82 40.86

IOD− Track amount 26.23 27.9 6.08 17.15 22.63 15.1 28.49 26.28 21.35 8.78
precipitation 28.91 29.63 2.91 11.91 26.65 12.08 28.52 29.37 22.67 7.36

Monsoon
precipitation

IOD+
Track amount 32.00 33.64 19.67 6.30 8.39 20.74 17.25 7.39 13.06 41.56
precipitation 36.02 35.71 17.03 5.57 5.68 25.64 15.96 4.26 9.52 44.62

IOD− Track amount 9.58 11.88 36.12 22.97 19.45 8.26 7.74 19.94 34.16 29.91
precipitation 5.71 8.37 43.30 25.56 17.06 6.1 6.55 19.26 35.05 33.04
The Pacific Decadal Oscillation (PDO); the Indian Ocean Dipole Mode (IOD); the positive IOD phase (IOD+); the
negative IOD phase (IOD−).

For the summer monsoon precipitation, the main water vapor transport tracks are the
cross-equatorial flows in the IO, BOB and SCS (trajectories labeled 1, 2 and 3 in Figure 3b),
the cluster tracks of four cases for the same region are similar, but the water vapor transport
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is quite different. The contribution rate of water vapor from the IO-BOB is higher for the
IOD+ than that for the IOD−. For example, for water vapor from the IO, the percentages
for the PDO+&IOD+ (with 32.00% track number and 36.02% precipitation efficiency) are
higher than that of the PDO+&IOD− (with 9.58% track number and 5.71% precipitation
efficiency). However, the contribution rate from the SCS is higher for the IOD− than for
the IOD+. For example, the percentages for the PDO+&IOD− (with 36.12% track number
and 43.30% precipitation efficiency) are higher than that of the PDO+&IOD+ (with 19.67%
track number and 17.03% precipitation efficiency).

3.3.3. Characteristics of Atmospheric Circulation

The differences of 850 hPa geopotential height and integrated water vapor flux for
the PFS over SC between four PDO&IOD phase combinations are shown in Figure 4. For
frontal precipitation (Figure 4a,b), the PDO+&IOD+ compares with the PDO+&IOD−,
the western Pacific subtropical high is weaker (Figure 4a), there is a cyclonic anomaly in
the WP, which causes a northerly anomaly near South China, and further shortens the
length of water vapor transport track from the WP to SC. Similarly, for the PDO−& IOD+
minus PDO−&IOD− (Figure 4b), there is a stronger cyclonic anomaly in the WP, which
makes a shorter water vapor transport track from the WP to SC. Compared with frontal
precipitation, the strong westerly anomaly in the northern IO increases the water vapor
transport from the north IO, BOB to SC during monsoon precipitation (Figure 4c,d). The
PDO+&IOD+ compares with the PDO+&IOD−, there are strong westerly anomalies in
the north IO and BOB (Figure 4c), which causes abundant water vapor to be transported
eastward from the IO and BOB, and the Indian Low is stronger, which makes the path of
water vapor transport to move northward, and more water vapor arrives at SC. Meanwhile,
SC is located in the west of the cyclonic anomaly of WP, which increases the water vapor
transported from the WP to SC. For the PDO−&IOD+ (Figure 4d), there is still a strong
westerly anomaly in the IO and BOB, which enhances the water vapor eastward transport.
However, the Indian Low is weaker, which makes less water vapor enter the SCS through
BOB. At the same time, the cyclonic anomaly in the WP is weaker and more easterly, which
makes less water vapor over the WP be transported to the SCS too, resulting in the lowest
precipitation efficiency of water vapor from the SCS.

Figure 4. Difference of 850 hPa geopotential height field (red contours, unit: gpm), integrated water
vapor flux (blue vector, unit: kg·m·s−1) between four PDO&IOD phase combinations in the preflood
season over South China during 1960–2012 ((a,b) for the frontal precipitation, (c,d) for the monsoon
precipitation; (a,c) for PDO positive phase &IOD positive phase minus PDO positive phase &IOD
negative phase, (b,d) for PDO negative phase &IOD positive phase minus PDO negative phase &IOD
negative phase).
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4. Conclusions and Discussion

Valuable research on the respective links between SST anomaly of IO, WP and water
vapor has provided a framework within which to understand coupled air-sea processes
and tropical circulations that produce PFS precipitation variability on different time scales.
HYSPLIT 4.9 is used to simulate the trajectories of air parcels formed during PFS precipi-
tation events, cluster analysis is conducted on the trajectories to identify the main water
vapor channels. This study reveals some basic facts of the synergistic effect of the PDO and
IOD on the water vapor transport process under the background of global warming, to
improve the accuracy of precipitation prediction, reduce the negative impact of drought
and flood disasters.

For frontal precipitation, the PDO+ compared with PDO−, there is more water vapor
over the WP-SCS-BOB, regardless of the PDO phase, the IOD+ has more water vapor over
this region than that of the IOD−. Water vapor for frontal precipitation mainly comes from
the WP and SCS. When the PDO and IOD are in phase resonance, the water vapor transport
tracks from the SCS, the WP is shorter and westward, so more water vapor is transported
to SC, the precipitation efficiency of water vapor is higher too. It may be due to the western
Pacific subtropical high being weaker, resulting in a northerly anomaly near SC, which
shortens the length of the water vapor transport track from the WP to SC but is conducive
to the formation of precipitation.

For the summer monsoon precipitation, the tropical IO-BOB is rich in water vapor,
the water vapor maximum covers the largest area over the tropical IO for the PDO−&
IOD+. The main water vapor transport tracks are the cross-equatorial flows in the IO, BOB
and SCS. The precipitation efficiency of water vapor from the IO-BOB is higher for the
IOD+ than that for the IOD−; however, the precipitation efficiency of water vapor from the
SCS is higher for the IOD−than that for the IOD+. Compared with frontal precipitation,
regardless of the phase of the PDO and IOD, the strong westerly anomaly in the northern
IO increases the water vapor transport from the north IO, BOB to SC during monsoon
precipitation. For the PDO−&IOD+, the Indian Low Pressure is weaker, which causes less
water vapor to enter the SCS through the BOB. At the same time, the cyclonic anomaly in
the WP is weaker and more easterly, which reduces the water vapor transport from the WP
to the SCS, resulting in the lowest precipitation efficiency of water vapor from the SCS.

The results presented in this study are mainly on the interdecadal time scale. Neverthe-
less, the linkage between the SST anomaly of the Pacific, Indian Ocean and the water vapor
transport over SC on an interannual time scale is also an interesting issue and deserves
further study in the future.
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Abstract: Simulating the hydrological process of a river basin helps to understand the evolution
of water resources in the region and provides scientific guidance for water resources allocation
policies between different river basins and water resources management within the river basin.
This paper provides a scientific basis for the sustainable development of regional water resources
and an accurate grasp of the future change trend of runoff by analyzing the hydrological process
response of runoff in typical watersheds in Changbai Mountains, China, to climate change. The
applicability of the HEC-HMS (The Hydrologic Engineering Center’s-Hydrologic Modeling System)
hydrological model in the watershed is verified by calibrating and verifying the daily rainfall-runoff
process in the watershed during the wet season from 2006 to 2017. The daily rainfall data of the
two scenarios SSP2-4.5 and SSP5-8.5 under the BCC-CSM2-MR model in the 2021–2050 CMIP6 plan
were downscaled and interpolated to in-basin stations to generate future daily precipitation series to
predict runoff response to future climate change. The daily rainfall data of the two scenarios were
downscaled and interpolated to the stations in the basin to generate future daily rainfall series to
predict the runoff response under future climate changes. The average certainty coefficient of the
HEC-HMS model for daily runoff simulation reached 0.705; the rainfall in the basin under the two
climate scenarios of SSP2-4.5 and SSP5-8.5 in the next 30 years (2021–2050) will generally increase,
and rainfall will be more evenly distributed in the future; the outlet flow of the basin will increase
during the wet season (June–September) in the next 30 years, but it is lower than the historically
measured value; the peak flow of the future will appear at most in August and September. The peak
flow current time mostly appears in July and August. The time of peak occurrence has been delayed.

Keywords: HEC-HMS model; runoff simulation; future scenarios; Changbai Mountains

1. Introduction

As the foundation of human survival and development, water resources are irreplace-
able natural resources for sustainable economic and social development. Global climate
change inevitably and significantly affects the water cycle of the river basin, which in turn
affects regional water resources security and sustainable development. In the context of
continued climate warming in the future, the structure of the water resources system will
continue to change. Risks related to freshwater resources, such as water supply and water
utilization, will increase significantly. The response to hydrological processes under climate
change has become a hot spot in the field of hydrology and water resources research [1–3].
Climate change scenarios are a collection of possible future climate change situations.
Simulating the impact of possible climate scenarios on river runoff will help to effectively
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reduce floods, droughts, water shortages and pollution through rational and effective use
of water resources and adapt the impact of climate change on water resources.

Currently, in making predictions and assessments based on the evolution of the
hydrological cycle under different future climate change scenarios [4–8], medium and long-
term runoff forecasting has become increasingly important [9,10]. Research usually selects
future climate scenarios and climate models or uses mathematical model calculations and
downscaling methods to process the data and then analyzes the evolution of future climate
and hydrology [11–13], while carrying out prediction and response research on hydrological
elements [14,15]. Among them, the uncertain factors of future scenarios and hydrological
models are the most difficult points in the research [16]. In recent years, the research on
global climate models has made great progress. Among them, the International Coupled
Model Comparison Program (CMIP) organized by the World Climate Research Program
(WCRP) has been widely used in climate change simulation and projection data. In 2019,
WCRP announced the data of the sixth phase of the pilot program (CMIP6), and the analysis
results based on these data will form the basis of future climate assessments. Jiang et al. [17]
selected five CMIP6 global models including seven combined scenarios (SSP1-1.9, SSP1-
2.6, SSP4-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0 and SSP5-8.5) for downscaling; analyzed the
temporal and spatial evolution of the average temperature and precipitation in the Huaihe
River Basin from 2021 to 2100; and compared with CMIP5 forecast results; they found that,
under the CMIP6 scenario, future temperature growth in the Huaihe River Basin will be
faster, and the increase in precipitation will be even greater. Pokhrel et al. [18] used the
cumulative distribution function transformation method to correct the deviation of CMIP6
data. Considering future climate scenarios, it predicts the flow of the New River in North
Carolina and assesses flood risk. Based on the RBF neural network downscaling model.
Wang et al. [19] used two climate scenarios of RCP8.5 and RCP2.6 under the CanESM2
model from 2020 to 2099 to predict runoff in the upper reaches of the Han Jiang River.
The results showed that the annual runoff in the upper Han Jiang River did not increase
significantly. Based on the HEC-HMS model, Tang et al. [20] predicted that the future runoff
in the Lanjiang River Basin will show a significant upward trend, and the increase degree
will increase synchronously with the increase in radiative forcing. Li et al. [21] used the
Yellow River Water Balance Model (YRWBM) hydrological model to predict future natural
runoff and its temporal and spatial changes and used future climate scenarios as input. The
forecast results show that the runoff of the Yellow River will decrease in the future.

Hydrological models are considered to be effective tools for water resources utilization
and integrated river basin management. They can be used for river management planning;
reservoir integrated operation and utilization; and river basin water environmental man-
agement in areas with little data. They can be used to simulate the water cycle process
of the river basin and changes in climate and human activities. It is an important tool
and method to reveal the law of runoff changes in response to water resources [22,23].
The HEC-HMS hydrological model is a basin hydrological simulation system developed
by the Hydrological Engineering Center of the U.S. Army Corps of Engineers. It is a
distributed hydrological model with a physical concept. Previous studies have shown that
the HEC-HMS model can simulate and predict runoff based on data sets and watershed
types at different time scales [24]. Most of these studies clearly show that the results of
the model simulation are for data at specific locations and at different time scales, because
the model contains different combinations of rainfall loss, direct runoff, base flow and
channel confluence model sets. The degree of response in different regions is different [25].
Al-Abed et al. [26] used monthly runoff to study the Zhaka Basin in Jordan and showed
that the HEC-HMS model has better results than other models. Radmanesh et al. [27]
performed the HEC-HMS model in the Yellow River Basin in Southwestern Iran. Calibrated
and verified, Sardoii et al. [28] used HEC-HMS and geographic information system GIS to
simulate the rainfall-runoff process in the Amirkabir watershed and concluded that the
runoff loss method of Green and Ampt can be applied in similar areas and conditions.
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Changbai Mountains is the highest mountain system on the eastern edge of Eurasia.
Located in the northeast of China and the southeast of Jilin Province, it is the birthplace of
the Yalu River, Songhua River and Tumen River in Northeast China. It is also an important
water source protection area and ecological function area. Water resources account for
78.6% of Jilin Province. It is an important water conservation area in Jilin province and
even the entire Northeast. The Changbai Mountains area has abundant mineral water
resources and high quality. It is listed as the world’s three major high-quality mineral water
production areas alongside the European Alps and the Russian Caucasus. Affected by the
climate of the alpine mountainous area, there are about 5 months of the year in the icy
period where the temperature is below zero, and rainfall is extremely uneven during the
year where it is mainly concentrated in the wet season from June to September. Changbai
Mountains is located in the core area of the Northeast China Transect of the Global Change
Land Transect. It is significantly affected by global climate change. However, there is
a lack of relevant research on the evolution and development trends of regional water
resources. Carrying out rainfall and runoff simulation and prediction of typical watersheds
in Changbai Mountains during the wet season and studying the response relationship
between regional climate and runoff under different climate change scenarios in the future
can provide scientific support for water resource management in the watershed to cope
with climate change and to maintain regional ecological security.

2. Materials and Methods

2.1. Study Area

Changbai Mountains is located in the southeast of Jilin Province, with geographic
coordinates of 127◦40′–128◦16′ east longitude and 41◦35′–42◦25′ north latitude, with a total
area of 196,400 hectares. The source area of the Three Rivers of Changbai Mountains can be
divided into the following: Erdao Songhua River Basin, Toudao Songhua River Basin, etc.
The Erdao Songhua River Basin is located at the north source of the Songhua River and
northwest slope of Tianchi Lake in Changbai Mountain. The various tributaries, including
Toudaobai River, Erdaobai River, Gudong River, Lushui River, etc., account for about 50%
of the total area of the source area. In this study, Erdao Songhua River Basin was selected as
the study area. The Erdao Songhua River has steep mountains along the two banks, and the
terrain is relatively complex. The altitude ranges from about 300 to 2700 m. The terrain has
a large amplitude. The river valleys are distributed radially, and flow velocity is turbulent.
It has a mid-temperate continental monsoon climate, with a multiyear average temperature
of 3.25 ◦C and a multiyear average rainfall of 655 mm. Rainfall is mainly concentrated in
the wet season from June to September. In addition, river floods in the basin are mainly
formed by heavy rains. Heavy rains and floods mostly occur from July to August and most
often in August, accounting for more than 80% of the total. Figure 1 is an overview map of
the basin.
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Figure 1. Study area. (a) Map of China. (b) The Yalu River, the Tumen River, and the Second
Songhua River originate from Changbai Mountain, of which the Second Songhua River is located in
Jilin Province. (c) The location of the study area. (d) Elevation map of the study area, as well as a
schematic diagram of the site and water system.

2.2. Data Source and Processing
2.2.1. Geospatial Data

Geospatial data include watershed digital elevation, land use and soil distribution
data. Digital elevation data comes from the 30-m resolution GDEMV230 M product data
set of the geospatial data cloud platform (http://www.gscloud.cn accessed on 8 December
2021). The land use data are the global land use 10 m data set interpreted by Tsinghua
University and extracted by the basin vector boundary, and soil distribution data comes
from the HWSD data set of the World Soil Database, as shown in Figure 2.

2.2.2. Meteorological and Hydrological Data

The hydrometeorological data for constructing the HEC-HMS (The Hydrologic Engi-
neering Center’s-Hydrologic Modeling System) model comes from the China Hydrological
Yearbook over the years. Selected actual measurement daily rainfall data from June to
September in wet season of 2006–2017 from 10 stations (Hanyangtun Station, Erdaobaihe
Station, Dadianzi Station, Liangjiangkou Station, Liushuhezi Station, Yongqing Station,
Gudonghe Station, Sandaogou Station, Xinhe Station and Songjiang Station) combined
with the daily flow data of the Hanyangtun station of the basin’s outlet hydrological sta-
tion during the wet season simulate rainfall and runoff during the 12-year wet season.
In order to predict the future runoff trend in the study area, this paper selected CMIP6
experimental data, which are downloaded from https://pcmdi.llnl.gov/CMIP6/ (accessed
on 8 December 2021).What the download obtains is the grid data, and we use the Make
NetCDF Feature Layer tool in ArcGIS for downscaling. Then, the desired study area is
cut out.
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(a) (b) 

Figure 2. (a) Land use map of the study area. (b) Soil type map of the study area.

CMIP6 is being organized by the World Climate Research Project (WCRP). As one of
the institutes participating in the CMIP6, the National Climate Center, China (Meteorolog-
ical Administration), has three latest version of models to utilize in the project through
model development in recent years. This article applied the middle-resolution climate
system model, BCC-CSM2-MR, and the 2021–2050 daily rainfall sequence of two climate
scenarios, SSP2-4.5 and SSP5-8.5, was selected. The SSP2-4.5 scenario represents a moderate
level of greenhouse gas emissions that is compatible with social and economic development,
with the goal of the effective radiative forcing value reaching 4.5 W/m2 by the end of the
21st century. SSP5-8.5 is the scenario with the highest greenhouse gas concentration, with
monotonically increasing greenhouse gas emissions. The trend is to stabilize the effective
radiative forcing value at 8.5 W/m2 by the end of the 21st century. The corresponding
social background is a large population, high energy consumption in social development,
lag in clean energy technology and lack of measures to deal with climate change. This
scenario is less likely to occur.

2.3. Research Methods

HEC-HMS is a distributed rainfall-runoff model with physical concepts. Most of the
rainfall in the Changbai Mountains occurs from June to September, and extreme weather
such as rainstorms and floods is prone to occur during this period. Thus, this model
is suitable for use, and temperature changes have little effect. It includes four parts: a
watershed module, a control module, a weather module and a time-series management
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module. The operation can use different calculation schemes to simulate hydrological
processes of the basin.

In this study, DEM data of the study area were processed by HEC-Geo HMS, and
water system characteristics and topographic parameters of the watershed are extracted;
the watershed is divided into 15 sub-basins. The Thiessen polygon method is used to
calculate the weight of the rainfall station in each sub-basin, and the HEC-HMS project file
is generated on this basis. (Figure 3). The runoff generation module uses the SCS curve
numerical method, the confluence module uses the SCS unit line method, the base flow
module uses the exponential backwater method and the river confluence module uses the
Muskingum method. The parameters include CN value, impervious and flow lag. Time
(tlag), attenuation coefficient (RC), peak ratio (Ratio), storage constant (K) and flow specific
gravity factor (X) are also considered. Considering that the simulation effect of the initial
parameters value, input into the model is poor, and the manual trial and error method
combined with the built-in peak-weighted root-mean-square objective function method
of the model was used to determine the optimal parameters in the parameter calibration
process. The verification model uses five indicators, namely, peak-to-current time difference
(Δt), peak flow relative error (REp), total flow relative error (REv) and certainty coefficients
DC and R2 to comprehensively evaluate simulation results. We formulate evaluation
criteria according to the analysis results of rainfall and runoff forecasting in “Hydrological
Information Forecasting Specifications” (GB/T 22482-2008). Among them, the predicted
peak flow and the measured value change within 20% are qualified; the predicted peak
occurrence time and the measured peak occurrence time interval are within 30%; the
predicted total flow and the measured flow value error are within 10%. The assessment
of the certainty coefficient DC as DC ≥ 0.70 can be used to issue a formal hydrological
forecast; that is, forecast is relatively accurate.

Figure 3. HEC-HMS model construction.

According to the above method, the HEC-HMS model of the typical watershed in
Changbai Mountains was constructed. Daily runoff data from 2006 to 2011 were selected
to calibrate the model parameters, and daily runoff data from 2012 to 2017 verified the
simulation effect of the model.
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3. Results and Discussion

3.1. HEC-HMS Hydrological Modeling

The following parameters were determined: CN value, impervious rate (impervious),
flow lag (tlag), attenuation coefficient (RC), peak ratio (Ratio), storage constant (K) and flow
specific gravity factor (X). The results are shown in Tables 1 and 2.

Table 1. Parameter optimization results of calibration period model.

CN Impervious tlag RC Ratio

W280 10 8 450 0.8 0.1
W350 35 8 400 0.8 0.1
W380 28 8 300 0.8 0.1
W390 10 8 60 0.8 0.1
W400 15 8 60 0.8 0.1
W410 20 8 300 0.8 0.1
W420 22 8 60 0.8 0.1
W430 15 8 150 0.8 0.1
W440 15 8 400 0.8 0.1
W450 23 8 200 0.8 0.1
W460 15 8 400 0.8 0.1
W470 28 8 150 0.8 0.1
W480 15 8 400 0.8 0.1
W490 32 8 400 0.8 0.1
W500 20 8 300 0.8 0.1

Table 2. Parameter optimization results of regular channel confluence model.

R130 R140 R150 R160 R170 R180 R190

K 10 10 10 20 20 30 10
X 0.01 0.5 0.05 0.3 0.25 0.1 0.2

Note: W280–W500 are divided into 15 sub-basins, and R130–R190 are river confluence areas.

Table 3 shows the application of the HEC-HMS model in the evaluation of the daily
runoff simulation results of the basin during the wet season. The rate regular qualifying year
DC averaged to 0.704, and the average DC of the qualified years of the verification period
is 0.71; the simulation effect of peak present time and peak flow is the best. Qualification
rate reached 91.7%. In terms of comprehensive evaluation indicators, the total qualification
rate was 75%, and the DC average of the qualified year reached 0.705.

From the comparison between simulated and measured flow results (Figure 4), it can
be observed that the model simulated rainfall-runoff process in the wet season is basically
consistent with the measured process trend. The model simulates extreme runoff simulation
values well. There is a large deviation in the peak time in 2011 in the rate period, and all
other years are within the allowable error range. The simulated peak present time in 2008
is one day after the actual measured peak present time. The rest of the years are consistent
with the actual measured value, which is the regular rate in all years. The absolute value of
the relative error of the peak flow rate is within 20% of the allowable error, and the average
relative error is 8.2%; the relative error of the total flow at the outlet of the basin during
the wet season in 2009 and 2011 is −19.9% and −17.9%, respectively. The absolute value is
greater than the allowable error by 10%. During the verification period, the peak times of
2014, 2016 and 2017 are on the same day as the actual situation. The simulated peak times
of 2012, 2013 and 2015 are only one day away from actual peak times, and the pass rate is
100%. Except for the relative error of the peak flow rate in 2014, which is 20.2%, the other
verification years are all within the allowable error of 20%, and the pass rate is 83.3%; the
absolute value of the relative error of the total export flow in 2013 and 2014 exceeds 10% of
the flow forecast. In the allowable error range, the pass rate is 66.7%.
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Table 3. Simulation results of HEC-HMS model.

Period Year Peak Current Time
Difference (ΔT)

Relative Error
of Peak Flow

(REp)

Relative Error of
Total Flow (REv)

Coefficient of
Certainty

(DC)
R2 Whether It Is

Passed

Rate regulation

2006 0 17.8% −8.2% 0.710 0.763 yes
2007 0 −5.9% −4.5% 0.609 0.777 yes
2008 1 −4.7% −9.4% 0.660 0.700 yes
2009 0 −8.5% −19.9% 0.636 0.706 yes
2010 0 −4.2% −4.2% 0.906 0.907 yes
2011 75 −8.1% −17.9% 0.303 0.429 no

Verification
period

2012 1 15.0% −9.8% 0.288 0.521 no
2013 1 −17.4% −15.1% 0.739 0.749 yes
2014 0 −20.2% −12.4% 0.450 0.485 no
2015 1 −17.0% 1.2% 0.603 0.639 yes
2016 0 −5.7% 3.6% 0.720 0.824 yes
2017 0 −18.5% 8.9% 0.760 0.774 yes

Figure 4. Cont.
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Figure 4. The simulation process of the runoff rate during the wet season and the verification period.

3.2. Future Runoff Simulation

The downloaded CMIP6 future climate scenario data are spatially interpolated to a
resolution of 0.25◦ × 0.25◦, and grid point data in the basin are extracted to obtain the
rainfall simulation value in the historical period from 1957 to 2014 in the basin, as well as
the future under the two climate scenarios. The predicted value of rainfall is taken from
2021 to 2050. As there will be a certain deviations between climate model forecast data
and actual weather station data, this paper compares the data of the two historical periods
from 1957 to 2014 for verification (since CMIP6 plans to simulate numerical differentiation
scenarios from 2015, the simulation values before 2014 are selected for comparison and
verification), and the average error is only 7%, which proves that the simulated value can
be directly used to predict future rainfall.

The rainfall under the two future climate scenarios is brought into each rainfall station
in the basin through spatial interpolation and input into the previously built HEC-HMS

209



Water 2022, 14, 792

model, and the calibrated parameters are used to simulate and predict future SSP2-4.5 and
SSP5-8.5. The flow conditions are at the outlet of the Erdao Songhua River basin during
the wet season (June–September) under the two climate scenarios from 2021 to 2050. It is
possible to predict changes in the flow during the wet season in the next 30 years in order
to effectively prevent flood disasters and fully understand the future runoff of the basin.
The change trend and rational management of water resources provide a scientific basis.

Figure 5 shows the change trend of average runoff during the drainage period (June–
September) at the outlet of the basin from 2021 to 2050 under SSP2-4.5 climate scenarios
and SSP5-8.5 climate scenarios. The runoff presents an insignificant upward trend. Under
the SSP2-4.5 climate scenario, it rises at a rate of 1.77 m3/s per year, and under the SSP5-8.5
climate scenario, it rises at a rate of 1.51 m3/s per year. The SSP2-4.5 climate scenario is
higher than the SSP5-8.5 climate scenario. The scenario rises slightly faster. By calculating
the average flow during the wet season from 2021 to 2050, it shows that it is 101.7 m3/s
under the SSP2-4.5 climate scenario and 100.3 m3/s under the SSP5-8.5 climate scenario,
which is the same as the measured average flow during the wet season from 2006 to 2017
during the simulation period of the model to 152.6 m3/s. Compared with the flow, it has
decreased, which is directly related to a decrease in rainfall from June to September in the
next 30 years during the wet season compared to the historical period.

Figure 5. Changes in annual runoff during the wet season under two climate scenarios from 2021
to 2050.

Figure 6 shows the changes in daily average flow during the wet season from 2021 to
2050 under the two scenarios. It can be observed from the graph that the flow from June
to August gradually increased, the largest average flow was concentrated in August and
gradually decreased in September. The maximum daily average flow under the SSP2-4.5
climate scenario is 7.2% higher than that under the SSP5-8.5 climate scenario, and the
maximum overall flow occurs in August.

From the evaluation and analysis of the model simulation results, it can be observed
that the model has a good simulation effect on the peak flow rate and the peak present
time. Therefore, the two characteristic values of the next 30 years are output. The analysis
found that the future peak flow will occur the most in August, accounting for 40% and
46.7% of the two scenarios, followed by September. Compared with the peak time of the
historical period, most of them appeared in July and August, both accounting for 33.3%. It
was found that the peak time of the next 30 years will be delayed to a certain extent. In the
next 30 years, the maximum flow rate under the SSP2-4.5 scenario will be 2130.6 m3/s in
2050, and the maximum flow rate under the SSP5-8.5 scenario will be 2340.7 m3/s in 2047.
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Figure 6. Changes in daily average runoff during the wet season under two climate scenarios from
2021 to 2050.

3.3. Discussion

The Changbai Mountains are affected by the climate of the alpine Mountainsous area.
There are about 5 months of the year in the icy period, the temperature is below zero and
rainfall is mainly concentrated in the wet season from June to September. The rainfall lasts
for a short period of time, intensity is high and rainfall is concentrated; there are many hills
and mountains in the basin, the upstream slope of the river is steep, confluence speed is
fast and propagation time is short; thus, it is easy to form a flood process of steep ups and
downs. Therefore, studying the runoff process in the Changbai Mountains during the wet
season, analyzing the historical-future change trend of runoff, establishing a corresponding
hydrological model for runoff simulation and improving the accuracy of runoff prediction
and the foreseeable period can provide effective theoretical support for the formulation of
water resources allocation plans in the basin. In order to improve the water conservation
capacity of the regional ecosystem, it is possible to strengthen the temporal regulation of
the uneven distribution of water resources of surface runoff during flood and dry periods
and spatially regulate the distribution and circulation of surface runoff, soil runoff and
underground runoff, etc. At the same time, it is also possible to estimate the situation in
response to the synchronization of droughts and floods and other water conditions in the
Changbai Mountains Basin or to make an early response to the situation.

On a regional scale, Changbai Mountains constitute a stable snow-covered area in
China. Seasonal snow cover can last up to half a year. Therefore, it will be an important
source of water supply for river runoff and groundwater during the snowmelt period. The
reduction in runoff has suppressed extreme flooding. The occurrence of the incident also
reduced the overall water capacity. Therefore, we should pay attention to issues such as
global warming. From the perspective of hydrogeological conditions, the lava platform in
the Sandaobai River and Songjiang River in the basin contains basalt holes with abundant
water. Fissure water provides abundant storage space and good migration channels for
groundwater, and it gushes out of the ground in the form of springs where geological faults
are exposed. With abundant spring water resources, such as nipple springs, Changbai
Mountains springs are the main sources of runoff replenishment. In less rainfall or dry
seasons, the replenishment of groundwater and spring water makes a greater contribution
to runoff. Therefore, relevant managers should formulate reasonable mineral water mining
indicators in this area. Moreover, the relevant thresholds are reasonably calculated to
ensure the efficient use of water resources.

In this study, the change trend of runoff in the typical watershed of Changbai Moun-
tains was studied by analyzing future precipitation changes and combined with hydro-
logical models. However, it is difficult to explain that the overall runoff changes in the
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watershed have been accurately restored by calibrating and verifying the model only
through the single-outlet observation flow rate. With further analysis, the evolution trend
of runoff in different regions will be the focus of future research. At the same time, changes
in land use types will have a significant impact on runoff in the watershed. Full considera-
tion of the impact of future land use, soil distribution and human activities in the watershed
on runoff is a scientific issue worthy of further study.

4. Conclusions

• The HEC-HMS model has good applicability in the Erdao Songhua River Basin of
Changbai Mountains. By constructing the HEC-HMS model suitable for the watershed
and calibrating the model, the total qualified rate of the daily rainfall runoff simulation
in the watershed during the wet season is 75%, and the DC average of the qualified
year reaches 0.705. The model can accurately restore hydrological processes in the
study area.

• By conducting the analysis of the comparison chart between the simulation and the
actual measurement, it can be observed that in the years with better simulation results,
such as 2010, 2013 and 2017, the DC value in these years all reached above 0.7, and in
2010, it reached 0.9. The flow changes in these years were relatively gentle, but the
peaks were obvious. Statistics on rainfall data found that rainfall in these years was
large; it was 688.9 mm in 2010, 652.5 mm in 2013 and 542.3 mm in 2017. During the
abundant rainfall period, the river runoff is obviously controlled by the rainfall process.
The HEC-HMS hydrological model is mainly driven by precipitation. Thus, the greater
the precipitation, the greater the contribution of the surface runoff process to the entire
water cycle, and the model’s interpretation of runoff flow is more accurate. For the
years 2011, 2012 and 2014 with poor simulation results, the simulated value in June
was much smaller than the actual flow value, and runoff fluctuated greatly, resulting
in inaccurate overall simulation results for that year. Further analysis of the reasons
may be related to the geographical location and topographical conditions of the study
area. There are many production processes and forms of surface runoff in this area,
including melting of ice and snow, and groundwater discharges to river valley runoff
in the form of springs. Therefore, when discussing the water cycle process in this
region, especially in dry years and dry seasons, various recharge sources such as
precipitation, surface water, groundwater and springs should be comprehensively
considered.

• In the next 30 years (2021–2050), under the two climate scenarios of SSP2-4.5 and
SSP5-8.5, rainfall in the basin will generally increase, and rainfall will be more evenly
distributed in the future. The flow of the basin’s outlet during the wet season in the
next 30 years was simulated, and it was found that the SSP2-4.5 and SSP5-8.5 scenarios
have decreased by 33.3% and 34.2%, respectively. This may be related to the decrease
in rainfall from June to September during the wet season in the next 30 years compared
with the historical period.

• Analysis of the simulated future runoff eigenvalues shows that the peak future runoff
occurs most in August, accounting for 40% and 46.7% of the two scenarios, respectively,
followed by September. Compared with the peak time in the historical period, most of
them appeared in July and August, both accounting for 33.3%, indicating that there
will be a certain delay in the peak time in the next 30 years. In the next 30 years, the
maximum flow rate under the SSP2-4.5 scenario will be 2130.6 m3/s in 2050, and the
maximum flow rate under the SSP5-8.5 scenario will be 2340.7 m3/s in 2047.
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Abstract: The service function of freshwater ecosystem is of great significance for ensuring the water
security and the sustainable development of the social economy. However, it is vague how land-use
change can influence freshwater ecosystem service flows. In this paper, we analyzed the land-use
changes in the Lianshui River Basin from 2000 to 2018, built an ecosystem service flow model, and
quantified the supply, demand, and flow of freshwater ecosystems under land-use change. The most
intensified shifts of land-use change were the transfer of woodland to arable land and the transfer
of arable land to built-up land. Urbanization and deforestation have increased water output by
0.06 billion m3, but water demand has increased by 2.42 billion m3, resulting in a 6% reduction in
the flow of freshwater ecosystem services. Our study provides detailed information on freshwater
ecosystem services flow from providers to beneficiaries within a watershed, showing how land-use
change and ecosystem service flows can be integrated at the watershed scale to provide information
for land-use management and the availability of freshwater ecosystems. Sustained development
provides a scientific basis.

Keywords: ecosystem service flows; land-use change; supply; demand; Lianshui River Basin

1. Introduction

Life originates from water, and water is also an important component of all living
things, and its importance is self-evident. Freshwater supply is closely related to human
well-being and is one of the most important ecosystem services [1]. Aquatic ecosystems
were the main providers of ecosystem services, especially in the area south of the Yangtze
River [2]. Freshwater ecosystem services have great constraints on the sustainable devel-
opment of many river basins in the south. With the rapid economic development and
intensification of land-use, excessive resource development has caused serious damage to
the environment. The research on ecosystem services has become a hot spot and frontier,
which is of great significance to regional ecology and sustainable development [3,4].

Land-use is one of the most important factors affecting ecosystem services [5,6]. Land-
use affects ecosystem services with its type, pattern, and intensity changes [7]. Scientific
assessment in the impact of regional land-use changes on the water production function
of ecosystems is of great significance to the use of regional water resources [8–11]. The
large-scale urban construction activities or conversion of cropland to forest will lead to the
change of the underlying surface of the basin, which affects the infiltration process and sink
flow process of vegetation evaporation and precipitation entering the soil aquifer and then
affects the hydrological cycle interaction process of the whole basin [12,13]. In addition,
land-use may also have an impact on the annual runoff, dry season runoff, and flood peak
discharge in the basin, which are mainly reflected in the change of water resources in the
water cycle and the change of spatial and temporal distribution pattern, which will lead
to significant changes in the relationship between water supply and demand in different
regions, thus indirectly affecting water ecosystem services [14,15]. Many studies have
analyzed the impact of land-use changes on freshwater ecosystem supply, but few studies
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have conducted quantitative analysis on the flow of freshwater ecosystem services under
land-use changes [16,17].

Land-use changes such as urban sprawl increase the supply of freshwater but also
greatly increase the demand for it, which poses new challenges for freshwater resource
management [18]. Several attempts have been made to map the spatial dynamics of
freshwater ecosystem service supply/demand [19–22]. However, its assessment often has
a mismatch between supply and delivery to beneficiaries. Existing studies on quantifying
the impact of land-use of ecosystem service flows mostly achieve their goals by scoring
land-use cover types or mapping services and benefit areas at the landscape scale [23–25],
without knowing the specific information of freshwater ecosystem service flows.

Introducing the flow characteristics of water resources into the evaluation of freshwater
ecosystem services can comprehensively analyze the supply, flow path, and demand
response mechanism of freshwater ecosystem services to land-use changes, while avoiding
the spatial mismatch between supply and demand areas of ecosystem services [26]. The
research of ecosystem service flow usually adopts the model method; the Integrated
Valuation of Ecosystem Services and Tradeoffs (InVEST) model is applied to quantify
the supply of ecosystem service, and the digital elevation model (DEM) can be used to
determine the direction of water flow, coupled with the Service Path Attribute Networks
(SPANs) model, in which artificial intelligence captures the spatial relationship of ecosystem
service flow [17].

The objectives of this study were to map land-use pattern changes, construct a spa-
tial flow model for ecosystem services, and quantify the impact of land-use changes on
freshwater ecosystem service flows. For the aim of this study, we used the InVEST model
to quantify the supply of freshwater ecosystem services, calculated the water demand
of various industries, and combined the SPANs model to construct a spatial watershed
model for ecosystem services, quantifying the impact of land-use change in the study area
from 2000 to 2018. Impacts on supply, demand, and flow of freshwater ecosystem services.
This study can provide a scientific basis for water resources management and ecological
protection in the Lianshui River Basin and similar ecosystem basins.

2. Materials and Methods

2.1. Study Area

The Lianshui River Basin is located in the central part of Hunan Province, China, and
is a primary tributary on the left bank of the lower Xiangjiang River. The study area is above
the Xiangxiang Hydrological station with a catchment area of 5919.03 km2, including 35 sub-
basins, and is located between Shaoyang City, Loudi City, and Xiangtan City (Figure 1). The
basin has an average annual temperature of 17.5~18.5 ◦C and average annual precipitation
of 1368 mm. The Shuifumiao reservoir and Baima reservoir are the main sources of
freshwater supply [27]. With the rapid economic development, urbanization has led to a
series of problems such as water shortages and habitat destruction. Therefore, studying the
freshwater ecosystem service flow is of utmost importance to local water security.
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Figure 1. DEM and location (a) and river system and sub-basin division (b) of the Lianshui River
Basin from 2000–2018.

2.2. Data Sources

The digital elevation model (DEM) data were downloaded from the geospatial data
cloud website with a resolution of 30 m. The land-use data in 2000 and 2018 were obtained
from the Center for Resources and Environment of the Chinese Academy of Sciences with
a resolution of 30 m. The soil data were provided by the Harmonized World Soil Database
produced by the Food and Agriculture Organization of the United Nations (FAO), and
processed by the Institute of Soil Science, Chinese Academy of Sciences. The daily data
of five meteorological stations in the research area from 2000 to 2018 were obtained from
China Meteorological Data. Due to the sparse distribution of meteorological stations, the
Hunan Hydrological Bureau supplemented the daily rainfall data of nine rainfall stations
and the continuous hydrological observation data of the Xiangxiang Hydrological Station.
The statistical data came from the “Water Resources Bulletin” and the “Statistical Yearbook”
(Table 1). All data were resampled to a resolution of 1 km by the Nearest Neighbor Method
(NEAREST) in ArcGIS10.5 [28].

Table 1. The data type and data sources.

Type Data Sources

Digital elevation model (30 m
resolution)

Geospatial Data Cloud (https://www.gscloud.cn/)
(accessed on 23 January 2022)

Land-use/cover data Chinese Academy of Sciences Resource and
Environmental Science Data Center

(http://www.resdc.cn/)
(accessed on 23 January 2022)

Meteorological data (precipitation,
temperature)

Hydrological data (runoff) The Hydrological Bureau of Hunan Province

Water demand data Water Resources Bulletin of Hunan province

Socioeconomic data (county scale) Statistical Yearbook(http://slt.hunan.gov.cn/)
(accessed on 23 January 2022)

2.3. Analytical Methodology
2.3.1. Land-Use Dynamic Change

The study basin and 35 sub-basins were divided through the processing of depression,
flow direction, and flow with the Spatial Analyst in ArcGIS10.5 based on the DEM. Based
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on the National Current Land-use Standards (GB/T 21010-2017), land-use in the study area
was classified into seven types including woodland, arable land, grassland, water, built-up
land, wetland, bare land, and the Kappa coefficient was used to evaluate the results of
reclassification [29].

The essence of the land-use transfer matrix is the Markov model [2,30], which can not
only quantitatively indicate the conversion between different land-use types but also reveal
the transfer rate between different land-use types, so it is widely used in the analysis of
land-use changes. The transition matrix model is as follows:

Aij =

⎡⎢⎢⎢⎣
A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

...
...

An1 An2 · · · Ann

⎤⎥⎥⎥⎦ (1)

where Aij represents the area of the land type i before the transfer is converted to the land
type j after the transfer; n represents the total number of land-use types; i, j (i, j = 1, 2, . . . ,
n) is the land-use types before and after the transfer, respectively.

2.3.2. Quantification of Freshwater Ecosystem Service Supply

We used water supply, which is projected by the InVEST model to represent freshwater
ES supply [1]. This model was jointly developed by Stanford University, the Nature Con-
servancy (TNC), and the World Wide Fund for Nature (WWF) [31]. The water production
module was based on the water balance formula, ignoring the interactive flow between the
surface and groundwater, and calculated the water production through parameters such as
precipitation, plant transpiration, surface evaporation, root depth, and soil depth [21]. The
main algorithm was as follows:

Yxj =

(
1 − AETxj

Px

)
·Px (2)

where Yxj is the annual water production of the j-th land-use type in the grid x, mm; AETxj
is the actual annual evapotranspiration of the j-th land-use type in the grid x, mm; Px is the

average annual precipitationthe in grid x, mm;
AETxj

Px
is an approximation of the Budyko

curve estimated by [32] as follows:

AETxj

Px
=

1 + ωxRxj

1 + ωxRxj +
1

Rxj

(3)

ωx = Z· AWCx

Px
+ 1.25 (4)

where ωx is an unrealistic parameter that describes the soil properties under natural climatic
conditions; Rxj is the aridity index of the j-th type of land-use type in the grid x, defined as
the ratio of potential evaporation to precipitation; AWCx is the available water content of
the vegetation the in grid x, mm, which is used to determine the amount of water provided
by the soil for plant growth; Z is the Zhang coefficient, and the more rainfall in the study
area, the greater the Zhang coefficient.

Precipitation is first averaged over many years, and then the multi-year average
precipitation grid data is obtained through inverse distance-weighted interpolation. Based
on daily meteorological data, the FAO-modified Penman–Monteith formula is used to
calculate the potential evaporation, and the multi-year average potential evaporation raster
data are obtained through the spatial interpolation method [33]. The soil depth data come
from the World Soil Database constructed by the FAO. Based on the percentage content of
the soil texture, the reference crop evapotranspiration is calculated in the SPAW software
using the empirical formula of soil effective water content [34]. The root restricting layer
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depth can be replaced by approximate soil depth [35]. The operating parameters of the
InVEST water yield model are shown in Table 2.

Table 2. Biophysical table used for the baseline InVEST water yield model run, giving the information
about vegetation, plant evapotranspiration coefficient Kc, and root depth for each LULC class.

Lucode LULC_Desc Root_Depth Kc LULC_Veg

1 arable land 1600 1.055 1
2 woodland 4500 1.008 1
3 grassland 2000 0.865 1
4 wetland 1000 1 1
5 water 10 1.05 0
6 built-up land 0 0.2 0
7 bare land 500 0.15 0

2.3.3. Quantification of Freshwater Ecosystem Service Demand

According to the definition of ecosystem service by the Millennium Ecosystem Assess-
ment [36], we regarded actual water consumption as the demand for freshwater ecosystems,
including agricultural water, industrial water, and domestic water (urban resident domestic
water and rural resident domestic water). The formula was as follows:

Wdem = Wagr + Wind + Wdom = Cagr·Lagr + Cind·Lind + Cdomu ·Ldomu + Cdomr ·Ldomr (5)

where Wagr, Wind, and Wdom are agricultural, industrial, and domestic demand for water,
respectively. Cagr represents water requirement per unit quality of crop products, Lagr
represents crop yield, Cind is the water indicator per 10,000 yuan of the GDP, Lind is the
GDP, Cdomu stands for the domestic water quota of urban residents, Ldomu stands the number
of urban residents, Cdomr is dthe omestic water quota for rural residents, and Ldomr is the
number of rural residents. Table 3 shows details for these indices of water demand in the
study area.

Table 3. Average annual water use of agriculture, residents, and industry.

Year City Cagr (m3/ha)
Cind (m3/104

GDP)
Cdomu

(L/d·Person)
Cdomr

(L/d·Person)

2000
Shaoyang 9015 483 156 114

Loudi 8209 326 163 118
Xiangtan 8955 295 163 120

2018
Shaoyang 9044 158 153 92

Loudi 8544 96 150 95
Xiangtan 8990 96 150 101

2.3.4. Quantification of Freshwater Ecosystem Service Spatial Flow

Following [37], we defined the freshwater ecosystem flow as the water flowing down-
stream after the water resources meet the upstream demand by the SPANs [38]. Given
the difficulty of obtaining groundwater data, we only consider surface water in the model.
The spatial relationship was identified as the path and direction of water flow, which were
tracked in ArcGIS10.5 based on the DEM and river water system data. Figure 2 showed the
schematic diagram of freshwater ecosystem service flow under land-use change.
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Figure 2. Schematic diagram of freshwater ecosystem service flow model.

2.3.5. Calculation of the Influence of Land-Use Change on Ecosystem Services Flows

We obtained the land-use change matrix during the study period from the 2000–2018
land-use map. In the calculation of the InVEST water supply module, the climatic condi-
tions were fixed and only the land-use data set was changed. Additionally, the slope of the
trend line of water supply/demand and land-use area change was used to characterize the
response of water supply/demand to land-use change.

3. Results

3.1. Land-Use Change

The Google Earth Quick Bird decimeter-level high resolution images were used as
reference for remote sensing interpretation. Among them, 225 and 198 training samples
were selected for the data of each year in 2000 and 2018, respectively. All the training
samples were greater than 1.8, and the purity of the sample points was higher. The
calculated Kappa coefficients were all greater than 0.85 with a good consistency, and the
overall classification accuracy was higher than 90%, which met the research requirements.

Table 4 and Figure 3 showed that the land-use types in the study area were mainly
arable land and woodland, accounting for about 78% of the basin. From 2000 to 2018, the
change in land-use was mainly manifested in the acceleration of urbanization. The built-up
area increased from 67.08 to 168.61 km2, with a growth rate of 151%. At the same time,
4.09 km2 of bare land appeared in the basin. During the study period, there were 36 types of
land-use transfer, among which the transfer of arable land to built-up land and the transfer
of woodland to arable land were the most intense (Table 5). Therefore, we focused on the
impact of urbanization, deforestation, and reclamation (comprehensive technical process
for the regeneration of damaged or degraded land and the restoration of its ecosystem) on
the flow of ecosystem services in this study.
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Table 4. The structure of land-use in Lianshui River Basin in 2000, 2018.

2000 2018 2000–2018

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Arable
land 2288.27 38.66 2259.25 38.17 −29.02 −0.49

Woodland 2478.95 41.88 2409.20 40.7 −69.75 −1.18
Grassland 1010.94 17.08 988.41 16.71 −22.53 −0.37
Wetland 2.67 0.05 0.10 0.002 −2.57 −0.048

Water 71.12 1.2 89.36 1.5 +18.24 +0.3
Build-up

land 67.08 1.13 168.61 2.85 +101.53 +1.72

Bare land 0.00 0 4.09 0.068 +4.09 +0.068

Figure 3. The map of land-use changes in Lianshui River Basin from 2000 to 2018.

Table 5. Land-use transfer matrix in Lianshui River Basin from 2000 to 2018 (km2).

2018

Arable Land Woodland Grassland Wetland Water Build-Up Land Bare Land

2000

Arable land 2182.47 25.07 3.98 0 28.20 69.58 0.86
Woodland 70.33 2354.37 21.87 0 2.92 19.82 1.93
Grassland 11.86 17.35 945.44 0 0.49 19.96 1.29
Wetland 0.44 0.05 0.04 0.09 2.05 0 0

Water 9.55 3.36 2.35 0.01 55.13 0.61 0
Build-up land 4.32 3.09 0.52 0 0.57 58.57 0

3.2. Freshwater Ecosystem Service Supply

We verified the water production of the InVEST model using measured flow data
(measured runoff at Xiangxiang Hydrological Station), which proved to be suitable for
studying the water production of the basin. The total water supply volumes of the Lianshui
River Basin were 4.15 and 4.21 billion m3 in 2000 and 2018, respectively, and the changes in
water production capacity showed a slight upward trend from a numerical point of view.
The temporal and spatial heterogeneity of freshwater supply was shown in Figure 4. It can
be clearly seen that the water yield capacity of the upper and lower reaches of the Lianshui
River Basin was relatively strong, while that of the central region was weak.
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Figure 4. Spatial distribution of water supply.

Keeping climate data fixed at 2000 values and only incorporating the effects of land-
use change, we modeled the water supply in 2000 and 2018 (Figure 5). The total water
supply changed from 4.15 to 4.20 billion m3, an increase of 0.05 billion m3. The increase in
the area of arable land, woodland, grassland, wetland, and water area all led to different
degrees of reduction in water yield, while the increase in the area of built-up land and bare
land increased water supply. The reason was that the impervious layer of construction land
was formed, and rainfall infiltration capacity became weaker. Similarly, the water-locking
capacity of bare land was weak, and most of the precipitation flowed away directly.

Figure 5. Changes in water supply under land-use changes.
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3.3. Freshwater Ecosystem Service Demand

From 2000 to 2018, the total water demand showed an increasing trend, reaching 9.67
and 12.09 billion m3, respectively. And the spatial distribution has shown in Figure 6. As
can be seen in Figure 7, agricultural water demand, industrial water demand, and domestic
water demand have increased to varying degrees, and the spatial distribution was different.
Agricultural water demand was the largest type of water use in the basin. The high-value
areas for agricultural water demand use were located in the lower reaches of the basin,
and those for industrial water use were located in the middle and upper reaches of the
basin, while domestic water demand was concentrated in several central counties and cities.
Various types of water demand were closely related to the local population, socio-economic
development, and land-use types.

Figure 6. Spatial distribution of water demand.

Different from changes in water supply, all land-use changes and water demand
from 2000 to 2018 have a positive correlation, even some small land-use changes, such
as wetlands and water. Changes in construction land and grassland have the greatest
correlation with water demand, mainly because urbanization has led to an increase in
population and a substantial increase in water demand (Figure 8).
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Figure 7. Spatial distribution of water consumption in different industries.
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Figure 8. Changes in water demand under land-use changes.

3.4. Freshwater Ecosystem Service Flows

In our research into the freshwater ecosystem service flow based on the flow water
security index, the sub-catchment that cannot meet the actual water demand by its water
supply and needs to be supplemented by the upstream sub-catchment water was called the
beneficiary area; otherwise, it was called the supply area, and the direction of the service
flow was consistent with the direction of water flow. In 2000, sub-basins 11, 12, 15, 19,
and 28 have all experienced freshwater shortages (Figure 9). This situation intensified in
2018, and the area of freshwater shortages has expanded (sub-basin16). Compared to 2000,
freshwater ecosystem service flows decreased by 6% in 2018 under land-use change.

Figure 9. Spatial distribution map of freshwater ecosystem service flow in Lianshui River Basin.
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4. Discussion

We quantitatively assessed the impact of land-use change on freshwater ecosystem
service flows in the Lianshui River Basin between 2000 and 2018. Deforestation and urban
expansion have shifted land-use from cultivated land and forest land to construction land.
Changes in land-use had a small positive impact on the supply of freshwater ecosystem
services, but the increased industrial and agricultural water demand had a larger impact,
resulting in a 6% reduction in the flow of freshwater ecosystem services across the study
area. Land-use change influences the flow of freshwater ecosystem services by affecting hy-
drological processes and human water use. In the past 20 years, China’s development speed
has been unprecedented, and the trend of urbanization is obvious. Its main manifestation
was the decrease of woodland and the increase of built-up land [39]. The land-use change
in Lianshui River Basin has this obvious characteristic. Through this research, we found
that, from 2000 to 2018, the most intense land-use transfer method in the Lianshui River
Basin was the transfer of forest land to cultivated land and cultivated land to construction
land, which was related to local urban intensification, deforestation, and other human
behaviors. The Louxing District of Loudi City has developed rapidly in recent years, with
a GDP growth rate of 4.4%, and the expansion of its surrounding towns was also very
obvious. Overall, the supply of freshwater ecosystem services in the Lianshui River Basin
increased under land-use changes.

The increase in impervious surface due to urbanization may lead to a decrease in soil
water retention and soil moisture. However, additional water supplies caused by changes
in more impermeable surfaces were limited, suggesting that land-use change had little
positive impact on freshwater supplies. Water demand is strongly influenced by changes
in land-use and associated changes in domestic, agricultural, and industrial water use,
compared with a slight impact on water supply. During the study period, the area of
agricultural land decreased, but the irrigation water demand per mu increased gradually.
It was also mentioned before that the rapid economic development of Louxing District of
Loudi City is closely related to the increase of its industrial enterprises. From 2016 to 2018
alone, Louxing District added 57 new industrial enterprises above designated size, which
greatly increased the demand for industrial water. For domestic water demand, under
the control of the water quota policy, the average annual water consumption of residents
has declined, but the water demand is related to the population. The population of the
study area has been increasing steadily, which also increases the domestic water demand.
These combined have resulted in a substantial increase in water demand in the study area.
Changes in demand have a far greater impact on the flow of freshwater ecosystem services
than changes in water supply due to land-use changes. Therefore, we should pay more
attention to the management of water demand, especially in the downstream areas, than
the management of the landscape pattern.

At present, the most widely used quantitative methods in the research of ecosystem
service flow include the matrix method, the distributed model method, and the ecosys-
tem cascade framework method [40–42]. The InVEST model has obvious advantages
in stimulating the supply of freshwater ecosystems, such as few parameters and good
adaptability [43,44]. However, the spatial role of water supply services was very compli-
cated. Although measured data were used for model verification, there were still certain
uncertainties and limitations. The simulation process ignored the loss of water resources
during the flow period and does not consider groundwater, which may underestimate
the water supply capacity. At the same time, due to the difficulty of data acquisition, the
model simulation process did not consider the impact of man-made infrastructure (such as
reservoirs, retaining dam, and water diversion projects) on the regulation and control of
water resources. In future research, the uncertainty of the model should be strengthened,
and researchers should attempt to integrate more human activities’ influencing factors and
conduct research on ecosystem service flows at various temporal and spatial scales.

Watershed freshwater supply increases with land-use changes and responds differently
to changes in land-use types. This is due to the internal flow and base flow generated
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by different land cover surfaces [16]. In the past, there have been many studies on the
impact of land-use change on water supply [21,43], but most of them did not distinguish
between the impact of climate change and land-use. We fixed the meteorological data in
2000, stripped off the impact of land-use change, and found that the land-use change in
the river basin expanded the impervious layer area and increased the water supply by 0.01
billion m3 from 2000–2018. This conclusion is consistent with the conclusions of [16,45] and
others. The increase in construction area has led to an increase in water demand. Compared
with the increase in water supply, the water demand has increased more to 2.42 billion m3.
The flow of freshwater ecosystem services varies with the relationship between supply and
demand, reducing by 6%.

While urbanization promotes the supply of freshwater ecosystem service flows, the re-
sulting increase in water demand and water pollution problems cannot be ignored [46]. The
increase in water consumption means an increase in the amount of sewage. The impervious
ground can allow nutrients, chemicals, and other pollutants to enter the waterbody along
with the surface runoff, resulting in a decline in water quality. The government should
weigh regional development and ecological protection, evaluate the priority of ecological
compensation, and carry out targeted ecological compensation. For example, the freshwater
ecosystem service beneficiary area should compensate the supply area, and the upstream
area should compensate the downstream area for water pollution. The government should
also have an in-depth understanding of the characteristics of regional water resources and
the structure of water resources development and utilization and conduct key supervision
on certain areas with low water efficiency, find out the reasons for the low efficiency, and
improve the water security of the river basin.

5. Conclusions

Under rapid economic development and urbanization, land-use changes have a pro-
found impact on the supply, demand, and flow paths of freshwater ecosystem services. The
response relationship between changes in different land-use types and changes of fresh-
water ecosystem services flows are discussed in this paper, which can provide scientific
reference and support for basing measures to suit local conditions and strengthen ecological
protection and governance. As a study area, the Lianshui River Basin has a unique geo-
graphical advantage in the Hengyang-Shaoyang-Loudi Arid Corridor, which can be used
for reference. We found that, under the rapid economic development, the urbanization area
of the Lianshui River Basin gradually expanded from 2000 to 2018. Changes in land-use
types have different impacts on freshwater supply and demand. During the study period,
the supply of freshwater ecosystem services increased slightly with the increase of built-up
land, but the demand increased significantly, and the spatial distribution was uneven, espe-
cially the urban population agglomeration, causing the water demand to greatly exceed the
supply. The proportion of benefited areas in the basin increased, which was detrimental
to the sustainable development of the watershed. We suggest that the upstream should
focus on water conservation in agriculture, and the downstream cities should control the
per capita water consumption quota, build a water-saving society in an all-around way,
and raise the nation’s awareness of water conservation.
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Abstract: This article presents selected flow modeling indices of the Bystra River catchment area (east
Poland) obtained using the SWAT model simulations for three regional climate models driven by
the EC-EARTH global climate model for 2021–2050 and both RCP4.5 and RCP 8.5 scenarios. The
research area was selected due to the large relief of the terrain, the predominance of soils made of
loess and the agricultural nature of the Bystra River catchment area, which is very sensitive to climate
change, has very valuable soils, and can be used as a test area for modeling land use-based adaptation
measures to climate change. The calibration and validation using the SUFI-2 algorithm in the SWAT
CUP program was carried out in order to determine the water balance. After obtaining satisfactory
results, the SWAT-CUP program simulated the best parameter values for climate change projections.
In analyzed climate projections, the monthly mean sums of actual evapotranspiration and potential
evapotranspiration will be higher compared to the simulation period of the 2010–2017 model. The
exception is the month of June, where actual evapotranspiration in most climate projections is lower
compared to the years 2010–2017. The average monthly total runoff for the Bystra River basin will be
lower in most of the 2021–2030 climate change projections for most months compared to the reference
period. Also, in the 2031–2040 and 2041–2050 periods, the average monthly total runoff will be lower
for the RCP 4.5 scenarios (except for one RCP 4.5 scenario in 2031–2040). Additionally, in the case
of the RCP 8.5 for the two scenarios in 2041–2050, the average monthly total runoff will be higher
compared to the reference years. We determine that the analysis impact of climate change will result
in 31 recognized and different small sub-catchments of the Bystra River, which result from higher
precipitation and less evapotranspiration for RCP 8.5 in 2041–2050. All of the above changes in the
individual components of the water balance may have a negative impact on the vegetation in the
coming decades. The temperature increase and the variable amount of precipitation in individual
months may lead to an increased number of extreme phenomena. Increased mean monthly sum of
actual and potential evapotranspiration, as well as changes in monthly sums of total runoff, may
disturb the vegetation in the studied area at every stage of growth. The above components may
also influence changes in the amount of water in the soil (especially during the growing season).
Counteracting the effects of future climate change requires various adaptation measures.

Keywords: climate change; water deficit; SWAT; SWAT-CUP

1. Introduction

Climate change for the next few decades to come and the related unpredictability
of extreme weather phenomena are currently the subject of many studies. This is due
to concerns about the environmental, social, and economic risks that may arise in the
coming decades. These changes will also apply to agriculture in Poland [1]. The analysis
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of the climate for the years 1970–2010 shows a statistically significant increase in the
sum of evapotranspiration in the growing season [2]. The increase in evapotranspiration,
temperature, and precipitation in the coming decades will also apply to the Vistula basin [3]
and Europe as a whole [4,5].

Moreover, the amount of precipitation increases in winter and early spring and de-
creases in spring and summer. This contributes to the reduction of the climatic water balance
(i.e., the increase in the deficit of precipitation in relation to the potential evaporation) [2].

The observed increase in air temperature contributed to the increase in potential
evapotranspiration. In particular, in the 2011–2020 period, a large increase in potential
evapotranspiration was found and the variability of this indicator increased (Figure 1).

Figure 1. Potential evapotranspiration in Pulawy with error bars calculated according to the
Doroszewski formula [6].

In recent decades, changes in the climate have been observed in Poland, resulting from
warming, changes in precipitation, and a number of extreme weather events [7–9]. Climate
change scenarios developed by the IPCC [10] indicate a 10-fold increase in the occurrence of
droughts in Poland in the coming decades [11]. According to NOAA, 2017 was the second
warmest year of meteorological recording and analysis (since 1880) in the world [12]. By
analyzing the climate scenarios for the years 2021–2050, it has been shown that the growing
season in Poland, defined by the number of days with the daily air temperature 5 ◦C
higher in the years 2021–2050, will be longer than in the years 1971–2000 by 16 days. The
predicted higher temperature in the growing season of plants will significantly accelerate
their development [2]. Therefore, it is necessary to look for solutions to minimize the
negative impact of climate change [13], e.g., the occurrence of weather extremes and
droughts [6,14–17] in the Bystra catchment areas, in the coming decades. In order to assess
the effectiveness of the proposed solutions, it is necessary to develop boundary conditions,
indicating a baseline representing the behavior of the Bystra catchment hydrosystem
in the ‘business as usual scenario’ (i.e., taking into account changes in the hydrological
cycle caused only by climate change with unchanged conditions of human activity). The
above-mentioned boundary conditions for the 2050 horizon must be based on simulation
modeling, calibrated on archival data. One of the many mathematical models suitable for
the analysis of the water balance of the catchment area and the analysis of the impact of
predicted climate changes in the future decades is the SWAT model.

This study uses large scale application SWAT for Vistula and Odra large catchment-
based analysis to determine increases of both low and high river flows [18]. It was also
shown that soil moisture and soil physical properties add valuable information for the
prediction of climate change impact on yield variability [18].

The purpose of this article is to prepare an appropriate SWAT model and to study
spatial assessment of hydrological indices obtained in three varied climate projections
for two representative concentration pathways (RCPs) in order to analyze differences
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in the results of regional climate models based on the same global climate model [19].
These models are characterized by different parameterization of physical processes while
running on the same spatial domain, covering the European continent, and benefiting
from the boundary and initial conditions of the same global model (EC-EARTH). Such
assessment attitudes matter for future research on the effectiveness of agricultural land
use change adaptation practices in terms of reducing water erosion and increasing water
retention in the landscape, including small retention, introduced in various variants related
to land consolidation.

The developed model, after calibration and validation, was used for research related
to the prepared projections for the RCP 4.5 and RCP 8.5 scenarios.

The study area was selected due to the large relief and the predominance of soils made
of loess. The agricultural nature of the catchment area and loess soils with good retention
properties [20] will be used in subsequent publications to assess adaptation scenarios. The
Bystra catchment area has been the target of many studies and statutory re-search by IUNG.
The results of these studies have been used in this present study.

Due to the observed temperature increase, which also contributes to the increase in
potential evapotranspiration in recent years, the years 2010–2017 were adopted for the
SWAT model.

The aim of the article is to analyze the hydrology of the Bystra River basin in the
2021–2050 climate projections for the RCP 4.5 and RCP 8.5 climate change scenarios, as
well as to provide an assessment against the background of the current state of knowledge
related to research covering the European continent and small regional catchments.

2. Study Area

The Bystra River, which is the right tributary of the Vistula River, 33 km long and
306.9 km2 in area, is located in the Lubelskie Voivodeship (Figure 2). The Bystra River
basin is a second order hydrographic unit (Code PLRW2000923899) [21]. According to the
generated SWAT model, the lowest point of the catchment area is 123 m above sea level,
while the highest point is 246 m above sea level. The catchment area is 296.6 km2.

 

Figure 2. The catchment area of the Bystra River (own study).
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The Bystra River basin part of the Lublin Upland [22–24] The relief of the Bystra River
valley and its tributaries is very large and consists of many valley forms with a constant
or episodic inflow. There are few valleys with a constant tributary. The largest of them,
the Bystra valley, is 35 km long. In the section where the Bystra River valley flows into the
Vistula, it cuts up to 35 m in marl and rocks [21,25,26].

Virtually the entire catchment area is built of a deep loess (up to 20 m). In the deeper
layers there are Quaternary Pleistocene deposits, glacial sands and gravels, and slightly
deeper tilts. Paleocene Paleogene deposits lie under the clay (i.e., geoses). On the other
hand, under the geezes there are upper Cretaceous deposits (i.e., rocks with limestone
inserts) [27].

The upland nature of the catchment area with a predominance of loess soils and the
high slopes of the slopes at the mouth of the Bystra River pose a significant threat to the
catchment area in terms of medium and very strong water and surface erosion [28].

According to the raster soil map prepared for the SWAT model (Figure 3), the study
area consists mainly of podzolic and pseudo-polygonal soils (49%) as well as leached brown
soils and acid soils (47%) (Table 1).

Figure 3. Soil map introduced to the SWAT model with division into soil types (own study).

Overall, 32 grain size groups were separated. Podzolic soils extend mainly in the
south-eastern area of the catchment area, while brown soils dominate in the north-west
area. Loess (73%) [29–31] and ordinary dust (18%) dominate in the soil cover of the Bystra
River catchment area.

According to the map of the cover and land use of the Bystra River catchment area,
arable lands (78%) and forests (16%) dominate (Figure 4).
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Table 1. Division into soil types and species and the percentage share of soils in the Bystra basin
gener-ated in the QSWAT interface (own study).

Soil
Agricultural

Complex
Type of Soil

Type of
Fraction

[%] Part
Soil

Agricultural
Complex

Type of Soil
Type of
Fraction

[%] Part

2 A l 24.8 5 Bw plz:ps 2.7
4 A plz:ps 7.6 7 Bw ps 2.1
2 A l:.ps 4.7 6 Bw pgl.ps 2.0
2 A l:.gsp 2.5 5 Bw pglp:ps 1.8
2 A plz.pli 2.5 1z Bw l 1.3
4 A plz:glp 1.5 3 Bw l:w 0.7
2 A l:w 1.5 2 Bw l:.glp 0.7
4 A plz 0.9 5 Bw pgmp:ps 0.7
8 A l 0.7 2 B l 1.9
4 A pglp:gs 0.7 2z F plz 1.7
5 A pgmp 0.6 2z D l 0.8
2 A l:pgl 0.6 2z D plz 0.7
1 A l:.psp 0.6 - W 0.3
4 A plz.pglp 0.5 - R s 0.2
2 Bw l 30.2 - T n 0.2
2 Bw l:ps 2.9 2z G pli 0.1

[%] Share of Haplic Podzols and Albic Luvisol soils (A) 49

[%] Share of Haplic Cambisol, Brunic Arenosols and Haplic Cambisol Eutric soils (Bw) 47

[%] Share of loess 73

[%] Share of silt 18

Figure 4. Land cover and use map of Bystra basin (own study).
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The largest part of agricultural land is arable land beyond the range of irrigation
facilities (52%), a large area is also orchards and plantations (11%), complex systems of
cultivating plots (9%) and meadows and pastures (6%) (Table 2).

Table 2. Division of the cover and use as well as the percentage of use in the Bystra basin generated
in the QSWAT interface (own study).

Corine Land Cover Legend
CLC SWAT [%]

Code Code Part

Discontinuous urban fabric 112 URML 0.9
Industrial or commercial units 121 UCOM 1.6

Mineral extraction sites 131 UIDU 0.1
Sport and leisure facilities 142 FESC 0.1

SUM= 3

Non-irrigated arable land 211 CRDY 52.4
Vineyards 221 GRAP 0.1

Fruit trees and berry plantations 222 ORCD 10.9
Pastures 231 PAST 5.9

Complex cultivation patterns 242 AGRL 9.0
Land principally occupied by agriculture, with

signifi-cant areas of natural vegetation 243 CRGR 0.1

SUM= 78

Mixed forest 313 FRST 16.3
Transitional woodland-shrub 324 SHRB 2.4

Inland marshes 411 WEHB 0.3
Water courses 511 WATR 0.3

3. Methods

3.1. SWAT and SWAT-CUP

In order to examine the water balance of the Bystra River catchment area, the soil and
water assessment tool (SWAT) model was used [32]. The SWAT model can be used with a
variety of computer programs. For the purpose of this article, the QSWAT3 v1.1 model with
interface in Quantum GIS 3.10.13 Coruna [33] was used. SWAT Editor 23 October 2012
software [34] was used for model calculations. The SWAT model is a deterministic model
developed for the US Department of Agriculture [35] that is based on mapping physical,
chemical, and biological processes using mathematical formulas, developed to predict
the effects of management practices on water and agricultural chemical yields on a basin
scale [36,37].

The water balance is the basis and the driving force behind all of the processes that
take place in the catchment area, regardless of the type of analysis performed with the
use of the SWAT model [38]. The modeling of the watershed is carried out in two phases:
a land phase and routing phase. The land phase of the hydrological cycle [39] controls
the amount of water, sediment, nutrients and pesticides entering the main canal in each
catchment area. The land phase of the hydrological cycle controls the amount of water,
sediment, nutrients, and pesticides introduced into the main canal in each catchment area,
covering long periods of time with a time resolution of one year, month, or day (Figure 5).

Routing phase of the hydrologic cycle which can be defined as the movement of water,
sediments, etc. through the channel network of the watershed to the outlet. The hydrologic
cycle can be defined as the movement of water, sediments, etc. through the channel network
of the watershed to the outlet [40]. The simulated processes include the cycles of nitrogen,
phosphorus, carbon, pesticides, bacteria, and metals. Above the processes are related
in the SWAT model with the plant growth cycle and catchment management practices
(e.g., plowing, fertilization, harvesting plants, irrigation of fields, collection and transfer
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of water, drainage of water and sewage, use of home sewage treatment plants, and buffer
zones along watercourses) [32,41].

 

Figure 5. Schematic illustration of the conceptual water balance model in SWAT (own study).

The land phase estimates the runoff for each of these HRUs using the water bal-
ance equation:

SWt = SW0 +
t=T

∑
i=1

(
Pd − SURQ − E − wseep − GWQ

)
where SWt is the final soil water content (mm); SW0 is the initial soil water content (mm);
t is time in days; Pd is precipitation (mm); SURQ is surface runoff (mm); E is the evapo-
transpiration (mm); wseep is amount of water entering the vadose zone from the soil profile
(mm); and GWQ is groundwater flow (mm) [40].

The SWAT model used the Penman–Monteith method to assess potential evapotranspiration.
To better adjust (calibrate) the SWAT model to the actual conditions in the Bystra

river catchment area, SWAT Calibration and Uncertainty Programs 5.2.1 [42] were used.
The SWAT-CUP program is an instrument used to calibrate, analyze the uncertainty and
sensitivity of the SWAT model [42,43]. The SUFI-2 algorithm was used since it works well
for small catchments [44–46].

3.2. Data Used in the SWAT Model

To simulate the water balance in the SWAT model, spatial data were obtained from
many sources, including:

- A digital elevation model covering the catchment area with a resolution of 5 m,
obtained from the Central Geodetic and Cartographic Documentation Center [47];
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- Data on the hydrography of the area (e.g., rivers, lakes, partial catchments), which were
obtained from the Polish Hydrological Division Computer Map with descriptions [48];

- Data on sewage treatment plants [49];
- Digital soil and agricultural maps in digital form (scale 1:25,000 and 1:100,000) [50];

which were obtained from the Institute of Soil Science and Plant Cultivation in Pu-
lawy [51];

- Geological data describing lithology obtained from the Polish Geological Institute in
the form of a Detailed Geological Map of Poland [27];

- Types of land cover and land use, digital data obtained from Corine Land Cover
databases [52];

- A high-resolution orthophoto map published on the Geoportal in the form of WMS [53];
- Open Street Map data [54];
- Meteorological data obtained from IUNG in Pulawy and the Institute of Meteorology

and Water Management [55].

3.3. Adaptation of the SWAT Model for the Study Area

In the first stage, the input data for the precipitation-outflow system was prepared
for SWAT modeling. Based on the digital elevation model and the location of the lakes
in the studied area and water discharges from the wastewater treatment plant, a division
of the Bystra River basin into partial catchments was generated in the SWAT editor. The
editor generated 31 partial catchments (Figure 6). According to MPHP, the catchment area
of the Bystra River consists of 21 sub-basins. The increased number of partial catchments is
related to selecting points representing reservoirs and points source, for which additional
data will be entered at a later stage. The above points must be located as close as possible
to the line representing the river network. There are also many water reservoirs, ponds,
and ponds in the sub-catchments that are not related to the watercourse line. These are the
objects for which additional data will also be entered, representing all water reservoirs in
the sub-catchment.

In the next stage of creating the SWAT model, hydrologic response unit (HRU) areas
had to be generated, HRUs are homogeneous hydrological areas created on the basis of
overlapping land cover maps, soil maps and slope maps [40].

For the needs of the SWAT model, a soil map of the Bystra catchment was developed
based on digital soil and agricultural maps (scale 1:25,000 and 1:100,000) and geological
data describing lithology. Data describing the parameters of the soils in the Bystra river
catchment area were obtained as part of the statutory projects of IUNG-PIB [21].

During the preparation of soil data, it was also taken into account that the available
water capacity and wilting point values were appropriate for the soils of the Bystra catch-
ment area. These values were obtained from the study “Assessment of Water Retention
in Soil and the Risk of Drought Based on the Water Balance for the Area of the Lower
Silesia Voivodship”, developed in 2013 by the employees of the Department of Soil Science,
Erosion, and Land Protection IUNG-PIB in Pulawy [20].

Due to the low detail of the Corine Land Cover map, additional vectorization of the
cover and land use of the Bystra River catchment area was performed in order to increase
the resolution of land use using an orthophoto map and Open Street Map data.

For the Bystra River catchment area, a division was also made due to the decline in the
area in the following ranges: 0–6%, 6–10%, 10–18%, 18–27%, >27%. Slope ranges originate
from the PWER and AWER indicators [56] for soil erosion risk, remaining as standard in
terrain relief visualization in Poland. The Bystra River catchment area is similar to that of
the Grodarz catchment area to the south, which has the same slope distribution. [57,58]. The
Bystra River basin is similar in relief to the Grodarz River basin. In the studied catchment
area, flat and slightly undulating areas with slopes up to 6% (72% of the catchment area)
prevail. Steep slopes, from 6% to 10%, account for 11% of the catchment area. A small area
of the catchment area is represented by land with falls from 10% to 27% (11%). A total of
6% of the catchment area are falls over 27%.
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Figure 6. Study area: Bystra River basin with marked main tributaries and their catchments
(own study).

After preparing the rasters for soil, land cover, and slopes, the catchment area was
divided into HRU areas in the SWAT program.

During the creation of HRU in the SWAT program, the percentage of arable land
outside the range of CRDY irrigation devices was separated from winter crops WWHT
(43%), spring BARL crops (31%), canola CANP (14%) and other CRDY (12%), based on
the publication Agriculture in the Lubelskie Voivodeship in 2019 [59]. From fruit orchards,
ORCD was separated on the basis of the above-mentioned APPL apple orchards publication.
Forests, on the other hand, were divided into coniferous FRSE forests (49%), deciduous
FRSD forests (13%) and mixed FRST forests (38%) according to information obtained from
the Regional Directorate of State Forests in Lublin [60].

A total of 484 HRU areas were generated. The HRU areas will be used at a later stage
to build the SWAT model.

3.4. Meteorological Data

In the next stage of creating the SWAT model, the following meteorological data
had to be loaded: sums of daily precipitation [mm]; daily minimum and maximum air
temperature [◦C]; average daily wind speed [m/s]; daily mean relative humidity; daily
sums of total solar radiation [MJ/m2]. Meteorological data were obtained from Pulawy
weather station (Table 3). The data were prepared in SWAT Weather Database 0.18.03 [61].
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Table 3. Meteorological data for the Bystra river basin (own study).

Weather Station

Measurement Period

Rainfall [mm] Temperature [◦C] Wind Speed [m/s] Humidity
Solar Total
Radiation
[MJ/m2]

Pulawy 2005–2017 2005–2017 2005–2017 2005–2017 2005–2017
Rogalow 2005–2017 – – – –

Lublin Radawiec 2005–2017 2005–2017 2005–2017 2005–2017 –

In the last stage of the SWAT model construction, some parameters related to point
sewage discharges concerning water reservoirs outside the river network, concerning
reservoirs, and parameters scheduled management operations for non-irrigated arable land
were supplemented and corrected.

The parameters of rivers in the sub catchments were also improved on the basis of
data obtained as part of the statutory projects of IUNG-PIB, as the automatically generated
parameters of rivers regarding the length, depth, and width of the rivers were overestimated.

The current value of CO2 concentration was also inserted in the prepared SWAT model.
After entering all of the necessary data into the SWAT model, a simulation of the water

cycle in the Bystra River catchment was performed for 2010–2017 with a five-year model
start-up period, in a monthly step.

3.5. SWAT CUP Calibration and Validation Results

After the SWAT simulation, the obtained model had to be calibrated in the SWAT-CUP
program [62–64] to obtain a more accurate representation of the model with reality. For this
purpose, data on average monthly flow velocities [m3/s] in the vicinity of the estuary of
the Bystra River basin to the Vistula for the years 2010–2014 were used, obtained under the
statutory projects of IUNG-PIB. After receiving a satisfactory calibration, the model was
validated using the data on the monthly average flow velocities [m3/s] near the mouth of
the Bystra River basin to the Vistula for 2015–2017, obtained under the statutory projects of
IUNG-PIB. Calibration and validation were performed in a monthly step.

As a result of the calibration in the SWAT-CUP software, the best-fit parameter ranges
were obtained that meet the accuracy requirements of calibration and validation [43,65,66].

The figure shows only the months which the water discharge was recorded and
compared to the values simulated in 95 Percent Prediction Uncertainty (Figure 7). For the
performed calibration and validation, there are data gaps in the measurements covering
the periods from December 2010 to March 2013, September 2013 to January 2014, March
2015, July and August 2016, and from October 2016 to February 2017 and September 2017.

In addition to the above-mentioned best fit parameters, there are other parameter sets
that can also give a good calibration result [63].

The Nash-Sutclif model efficiency coefficient (NSE) for calibration is in the range of
0.5 < NSE ≤ 0.65 and is a satisfactory result. The coefficient of determination R2 is also
within the acceptable range of 0.5 < NSE ≤ 0.65 [65]. The Nash-Sutclif model efficiency
coefficient for the validation is in the range of 0.65 < NSE ≤ 0.75, which is good result. The
coefficient of determination R2 is in the range of 0.5 < NSE ≤ 0.65. This is also a satisfactory
result [65].

For the performed calibration and validation, there are data gaps in the measurements
covering the periods from December 2010 to March 2013, September 2013 to January 2014,
March 2015, July and August 2016, from October 2016 to February 2017 and September 2017.

An important aspect is the appropriate consideration of the flow measurement period
for validation and calibration. When preparing the data, the measurement data should
be selected so that they cover a homogeneous period of time in terms of constant weather
conditions. When preparing the data for the SWAT model, a distinction is made between
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the so-called dry and wet years. If there are measurement series covering dry and wet
years, then calibration and validation may be difficult [67].

 

Figure 7. 95ppu plot and observed streamflow during calibration and validation (own study).

During the analysis of the results, the obtained values of potential evapotranspiration
were also compared with the results of statutory IUNG-PIB research conducted as part
of the Agricultural Drought Monitoring System project [68]. The SWAT model is a good
representation of potential evapotranspiration in the studied area. In addition, the results
of soil water content were compared with the available water capacity and wilting point
values obtained from the study “Assessment of Water Retention in Soil and Drought Risk
Based on the Water Balance for the Lower Silesian Voivodeship”, developed in 2013 by
employees of the Department of Soil Science, Erosion and Land Protection. IUNG-PIB in
Pulawy [20].

3.6. Climate Change Scenarios

The daily gridded climate data for the period (2020–2050) with a spatial resolution of
0.11◦ were obtained from the EURO-CORDEX database that are openly available through
the ESGF (Earth System Grid Federation, https://esgf-data.dkrz.de/search/cordex-dkrz,
accessed on 10 February 2022) for Europe [69,70]. Climate projections (of daily minimum
and maximum air temperature, precipitation, surface downwelling shortwave radiation,
wind speed, relative humidity) that were used in SWAT model were extracted from grid
cells that corresponds to the weather station’s location. The projections are based on three
regional climate models (RCMs) and two Representative Concentration Pathways (RCP).
The RCMs (Regional Climate Models) were: RACMO22E, HIRHAM5 and RCA4 driven by
one GCM (General Circulation Model): EC-EARTH. The RCPs correspond to a radiative
forcing value in the year 2100 relative to pre-industrial values of +4.5 W m−2 (RCP4.5),
while RCP8.5 to + 8.5 W m−2 (RCP8.5) [71,72] (Table 4).

In total we used six climate projections (three RCMs × two RCPs). The air temperature
and precipitation data were additionally bias adjusted by the SMHI (Swedish Meteoro-
logical and Hydrological Institute) using DBS (distribution-based scaling) method [73]
and regional reanalysis MESAN (mesoscale analysis) dataset from period 1989–2010 [74].
Since the downloaded data were performed on the rotated polar grid, we applied bilinear
interpolation to remap this dataset to regular geographic latitude/longitude grid by using
CDO (climate data operators) software [75].
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Table 4. Description of the climate scenarios (own study).

Models Scenario Assumptions
Brief Description of Climate Projections for

Radiative Forcing

GCM/RCM simulation
Increase in the maximum

daily temperature Increase in rainfall
RCP4.5 RCP8.5

+4.5 W m−2 +8.5 W m−2

EC-EARTH/RACMO22E +1.3 ◦C +9% RCP 4.5.1 RCP 8.5.1

EC-EARTH/HIRHAM5 +0.6 ◦C +3% RCP 4.5.2 RCP 8.5.2

EC-EARTH/RCA4 +0.9 ◦C +5% RCP 4.5.1 RCP 8.5.3

For the control period of the results of climate projections (RCP 4.5, RCP 8.5), validation
was performed with existing observation data of temperature and precipitation (Table 5).
The range of differences between the temperatures varies from 0.3 to 0.7 degrees Celsius in
the plus. On the other hand, the differences for the climate projections in the control years
2010–2017 are smaller than 11% to 22% percent compared to the observational data.

Table 5. Validation of meteorological data (temperature and precipitation) (own study).

Temperature [◦C] Precipitation [mm]

Climate
model

O
bservation

data

R
C

P
4.5.1

R
C

P
4.5.2

R
C

P
4.5.3

R
C

P
8.5.1

R
C

P
8.5.2

R
C

P
8.5.3

Climate
model

O
bservation

data

R
C

P
4.5.1

R
C

P
4.5.2

R
C

P
4.5.3

R
C

P
8.5.1

R
C

P
8.5.2

R
C

P
8.5.3

Time
interval 2010–2017 Time

interval 2010–2017

Annual
average 9.1

9.5 9.6 9.7 9.6 9.7 9.9 Annual
sum

604
543 560 512 549 517 491

+0.3 +0.5 +0.5 +0.5 +0.5 +0.7 −14% −11% −19% −13% −18% −22%

The prepared model, after calibration and validation, was used for research related to
the RCP 4.5 and RCP 8.5 climate change scenarios (changes in carbon dioxide concentration
in the future decades) [70,76,77] which scenarios have been accepted by the International
Panel on Climate Change [78].

For each of the projections, there is a certain confidence interval of the flow result
obtained in the SWAT-CUP program. In order to compare the climate change scenarios
for individual climate projections (RCP 4.5.1, RCP 8.5.1, RCP 4.5.2, RCP 8.5.2, RCP 4.5.3
and RCP 8.5.3), one iteration was carried out in SWAT-CUP for the best calibration pa-
rameters for 2020–2050 for prepared scenarios (Table 4). Additionally, for the RCP 4.5 and
RCP 8.5 scenarios, changes in CO2 concentrations in individual decades were adopted:
2021–2030, 2031–2040 and 2041–2050, developed by the Potsdam Institute for Climate
Impact Research [79,80].

4. Average Annual Prospects of Climate Scenarios RCP 4.5 and RCP 8.5 for the
Period 2020–2050

The average annual sum of precipitation and the average annual temperature in the
years 2000–2050 are different for different projections in the RCP 4.5 and RCP 8.5 climate
scenarios (Figure 8). For the projection RCP 4.5.1, RCP 8.5.1, and RCP 8.5.2 the trend of
average annual precipitation will be slightly increasing in the following years. On the other
hand, for the RCP 4.5.2 projection, the trend of average annual precipitation totals will be
slightly decreasing. For the RCP 4.5.3 and RCP 8.5.3 projection, the trend of average annual
precipitation totals will be increasing.
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Figure 8. The average annual sum of precipitation and the average annual temperature in the Bystra
River catchment area in the years 2000–2050 for individual climate projections in the RCP 4.5 and
RCP 8.5 scenarios with trend lines (own study).

For the RCP 4.5 and RCP 8.5 scenarios, all three forecasts will see an increase in the
annual mean temperature trend in the coming decades.

The trend of the average annual number of days without precipitation for the RCP 4.5
scenarios for all projections and for the RCP 8.5.2 projection are positive. However, in the
case of RCP 8.5.1 and RCP 8.5.3 there is no trend line (Figure 9).

The trend of the average annual number of days with an average temperature above
5 ◦C in the years 2020–2050 for most climate projections is positive, apart from the RCP
4.5.1 projection.

The average monthly sums of precipitation for the Bystra River basin in the simulation
years 2010–2017 and change in the individual climate change projections in the years
2021–2030, 2031–2040, and 2041–2050 are shown in Table 6. These changes are especially
visible in March, August, and November, where for most of the projections there is an
increase in the average monthly precipitation.
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Figure 9. The average annual sum of days without precipitation and the average annual sum of days
with temperatures above 5 ◦C in the Bystra River basin in the years 2020–2050 for individual climate
projections in the RCP 4.5 and RCP 8.5 scenarios together (own study).

On the other hand, the decrease in average monthly sums of atmospheric precipitation
will occur in most of the projections in January, May, July, and October.

For most of the projections, the average annual precipitation will be lower in the next
decades as compared to 2010–2017. Larger annual mean sums will appear in the forecasts
RCP5.1 (2031–2040), RCP 4.5.2 (2021–2030), RCP 4.5.3 (2021–2030, 2031–2040, 2041–2050),
RCP 8.5.2 (2021–2030, 2041–2050), RCP 8.5.1, and RCP 8.5.3 (2041–2050).

Annual averages for RCP 2041–2050 for RCP 4.5 are lower by 3%, while for RCP 8.5
they are higher by 11% compared to the lower period.
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By analyzing the spatial distribution of changes in the average annual precipitation
total in 31 sub-catchments for the simulation period in 2010–2017 compared to the period
2041–2050 (Figure 10) in the RCP 4.5.1 and RCP 4.5.3 climate projections, the precipitation
total will decrease by several percent in north-west and south-east region. In the RCP 4.5.2
projection, a reduced amount of precipitation will occur in the entire catchment area, while
in the RCP 8.5.2 projection it will occur only in the northwestern part. In projections 8.5.1
and 8.5.3, an increased amount of precipitation, up to 23%, will be present in the entire area
in the period 2041–2050. Most of the RCP 8.5.2 area will also have an increased amount
of precipitation.

 

Figure 10. Comparison of the average annual sum of precipitation in 31 sub-catchments for the SWAT
simulation period for 2010–2017 and 2041–2050 for individual climate projections in the RCP 4.5 and
RCP 8.5 scenarios (own study).

The average monthly temperature distributions for the Bystra River basin in the
2010–2017 simulation years also change compared to the individual climate change pro-
jections in 2021–2050 (Table 7). These changes are especially visible in November and
December, where for most of the projections the average monthly temperature is lower than
in the 2010–2017 simulation period. On the other hand, in January, April, May, September,
and October, the average monthly temperatures are higher for most of the projections. For
the RCP 8.5.2 (2031–2040, 2041–2050) and RCP 8.5.3 (2041–2050) projections, the average
monthly temperatures for most months are higher than in the 2010–2017 simulation years.

The temperature in the 2041–2050 decade for RCP 4.5 will be higher by an average
of 0.4 ◦C, while for RCP 8.5 it will be higher by an average of 0.8 ◦C compared to the
simulation period.
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5. Results

The trend of the average annual sum of actual evapotranspiration in the years 2021–2050
in most of the projections (except for RCP 8.5.3) decreases slightly in the coming decades
(Figure 11).

Figure 11. Average annual actual evapotranspiration and potential evapotranspiration in the catch-
ment area of the Bystra River in the years 2021–2050 for individual climate projections in the RCP 4.5
and RCP 8.5 scenarios together with trend lines (own study).

The trend of the average annual sum of potential evapotranspiration in RCP 4.5.1,
RCP 8.5.1 and RCP 8.5.2 projections will decrease in the coming decades. However, for the
RCP 4.5.2 and RCP 4.5.3 projections, the trend is growing. The trend line for the RCP 8.5.3
projection does not change significantly.

The average monthly sum of actual evapotranspiration increases for all projections
for most months compared to the simulation period 2010–2017. In June, for most projec-
tions, the average monthly sum of evapotranspiration will be lower than the average for
2010–2017 (Table 8).

The average annual potential evapotranspiration in the 2041–2050 decade for RCP 4.5
will be higher by an average of 8%, while for RCP 8.5 it will be higher by an average of 8%
compared to the simulation period.

For potential evapotranspiration, the average monthly sum increases for most of the
projections in all months compared to the 2010–2017 simulation period (Table 9).
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The average annual potential evapotranspiration in the 2041–2050 decade for RCP 4.5
will be higher by an average of 12%, while for RCP 8.5 it will be higher by an average of
17% compared to the simulation period.

By analyzing the spatial distribution of changes in the average annual sum of actual
evapotranspiration in 31 sub-catchments for the simulation period in 2010–2017 compared
to the period 2041–2050 (Figure 12) for most projections, actual evapotranspiration will
increase. Only for the projection of RCP 8.5.2 in the central part of the Bystra catchment
area, the sum of actual evapotranspiration will be lower than in the simulation period.

 

Figure 12. Comparison of the average sum of actual evapotranspiration in 31 sub-catchments for the
SWAT simulation period for 2010–2017 and 2041–2050 for individual climate projections in the RCP
4.5 and RCP 8.5 scenarios (own study).

Spatial distribution of changes in the average annual sum of potential evapotranspira-
tion in 31 sub-catchments for the simulation period in 2010–2017 compared to the period
2041–2050 (Figure 13) for all projections, the potential evapotranspiration will increase. The
largest increase will be recorded in the RCP 4.5.1 and RCP 8.5.1 projections, reaching even
27% in the north-western part of the catchment area.

The trend of the average annual total runoff consisting of surface runoff, lateral flow
and baseline flow in the RCP 8.5.1, RCP 8.5.2, and RCP 8.5.3 projections will increase over
the years 2021–2050 (Figure 14). For the RCP 4.5.2 projection, the trend will be downward.
However, for the RCP 4.5.1 and RCP 4.5.2 projections, the trend will not change significantly.

The average monthly total runoff for the Bystra River basin will be lower in most
climate change projections in the years 2021–2030, 2031–2040, and 2041–2050 (Table 10).
The exceptions will be the RCP 4.5.3 (2031–2040) and RCP 8.5.2, RCP 8.5.3 (2041–2050)
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projections, where the average total monthly runoff will be higher compared to the 2010–
2017 simulation years.

 

Figure 13. Comparison of the average sum of potential evapotranspiration in 31 sub-catchments for
the SWAT simulation period for 2010–2017 and 2041–2050 for individual climate projections in the
RCP 4.5 and RCP 8.5 scenarios (own study).

Figure 14. Average annual sum of total runoff in the Bystra River basin in the years 2021–2050 for
individual climate projections in the RCP 4.5 and RCP 8.5 scenarios with trend lines (own study).
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The average annual total runoff in the decade 2041–2050 for RCP 4.5 will be lower by
an average of 23%, while for RCP 8.5 it will be higher by an average of 13% compared to
the simulation period.

When analyzing the spatial distribution of changes in the average annual total runoff
in 31 sub-catchments for the simulation period in 2010–2017 compared to the period
2041–2050 for the RCP 4.5.1 and RCP 4.5.2 projections, the average annual total runoff
amount will be lower in the entire catchment area, even reaching up to 52% (Figure 15).
For RCP 4.5.3, total runoff will be lower in the northwest and southeast. It will be higher in
the central part. RCP 8.5.1 and RCP 8.5.2 will have runoff volumes varying depending on
the catchment area. On the other hand, the projection of RCP 8.5.3 for the whole area will
have the average annual total runoff higher than in the simulation period.

 

Figure 15. Comparison of the average annual sums of surface runoff in 31 sub-catchments for the
SWAT simulation period 2010–2017 and 2041–2050 for individual climate projections in the RCP 4.5
and RCP 8.5 scenarios (own study).

6. Discussion

The analysis of the climate for the years 1970–2004 shows a statistically significant
increase in the sum of evapotranspiration in the growing season. In the years 2021–2030,
2031–2040, and 2041–2050, an increase in potential evapotranspiration during the growing
season is also shown (Table 8) [81]. Moreover, the amount of precipitation increases in
winter and early spring and decreases in spring and summer. Changes in the temporal
structure of precipitation may cause an increase in soil moisture in spring, which may
affect areas at risk of water erosion where surface runoff should be regulated (especially
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on dirt roads). This contributes to lowering the climatic water balance (i.e., increasing
the precipitation deficit in relation to potential evaporation) [2,82]. Reducing the amount
of precipitation, evapotranspiration, and extending the growing season caused by the
temperature increase in the summer period may increase water shortages for plants [1,2].

The climate projection for Poland [82] for the years 2021–2030, 2031–2040, and 2041–2050
shows increased values of precipitation in summer (except for 2041–2050) and in autumn
for the RCP 4.5 scenario compared to the period 2011–2020. However, in spring, pre-
cipitation will be lower for all decades (Table 11). Similar results were obtained for the
average precipitation data in the RCP 4.5 scenario for the years 2021–2030, 2031–2040, and
2041–2050 in the SWAT model compared to the 2010–2017 simulation period. The amount
of precipitation in winter is different for the SWAT and KLIMADA models for the RCP 4.5
scenario, except for the period 2031–2040, where changes in precipitation are convergent
for all seasons.

The RCP 8.5 scenario for KLIMADA for the years 2021–2030, 2031–2040, and 2041–2050
shows an increased amount of precipitation for most seasons compared to the period
2011–2020. However, in the case of SWAT modeling, the years 2021–2030 and 2031–2040
show a lower amount of precipitation compared to the 2010–2017 simulation period. The
exception is the period 2041–2050, where for all seasons there is an increased precipitation,
similar to the RCP 8.5 scenario for KLIMADA.

The climate forecast for Poland [82] for the years 2021–2030, 2031–2040, and 2041–2050
shows increased temperatures in winter, spring, summer, and autumn (except for the
period 2041–2050 for RCP 8.5). (Table 12). Similar results were obtained for averaged
temperature data for winter, spring, and autumn. In summer, however, for most scenarios,
temperatures will be lower in the coming decades.

In the work on a small lowland agricultural catchment in Kujawy in central Poland,
the results of potential evapotranspiration, precipitation, and total runoff in 2007–2011 were
presented [37,83]. The average annual potential evapotranspiration is 679 mm, the average
annual precipitation is 558 mm, and the total runoff is 3.2 L·s −1·km−2. The above results
are similar to the results of the 2010–2017 simulation in this publication, while the total
runoff is higher and amounts to 6.3 L·s −1·km−2. This is due to the location of the tested
objects. According to an academic textbook [84], the runoff value for the highlands ranges
from 5 to 10 L·s −1·km−2. For the lowlands, it is slightly lower.

Climate change scenarios indicate a 10-fold increase in the occurrence of droughts in
Poland in the coming decades [11]. According to NOAA, 2017 was the second warmest year
of meteorological recording and analysis (since 1880) in the world [12]. Climate changes in
the future will also affect the territory of Poland. By analyzing the climate scenarios for
the years 2021–2050, it has been shown that the growing season in Poland defined by the
number of days with the daily air temperature 5 ◦C higher in the years 2021–2050 will be
longer than in the years 1971–2000 by 16 days. The predicted higher temperature in the
growing season of plants will significantly accelerate their development [2]. The trend of the
average annual number of days with an average temperature above 5◦ Celsius in the years
2020–2050 for most climate projections will be increasing, apart from the 4.5.1 projection
(Figure 9).

Another publication describes, among others changes in temperature and precipitation
in the near future 2021–2050 and further 2051–2100 for two hydrological models, in different
climate projections for eight catchments located in Poland [85], which are similar in size
to Bystra. Research shows that in the near future, warming will be ubiquitous and quite
uniform spatially. In addition, there is a slight difference between the seasonal temperature
increases over the period 2021–2050. In the case of precipitation, changes in the near future
depend on the location of the studied catchment. For temperature and precipitation, greater
differences in the results are noted for the years 2051–2100. Similar research results were
obtained for the Narew River catchment for the years 2040–2069 [86].
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Agriculture is strongly related to the prevailing climatic conditions but also has a large
impact on them. The risk of an increase in the frequency of unfavorable climatic conditions
in agriculture may result in yield variability from year to year. Water shortages during the
growing season provided for in climate change scenarios will become more frequent and
more severe. Other threats will include: droughts, heavy precipitation, erosion [87], floods,
landslides, and strong winds [7]. The decreased precipitation from March to May is shown
for most SWAT model projections for 2021–2030, 2031–2040, and 2041–2050 compared to the
2010–2017 simulation period. Increased actual evapotranspiration for the growing season
may also contribute to unfavorable phenomena related to plant growth. Total runoff can
also disrupt plant growth, both in terms of deficiency (e.g., RCP 4.5.1, RCP 4.5.2, RCP 4.5.3
for 2041–2050) and excess (e.g., RCP 8.5.2, RCP 8.5. 3 for the years 2041–2050).

The changes in the water balance of the Bystra River catchment in the years 2041–2050
were compared to the “Horizon 2050” variant, prepared for the Reda river catchment in
the north of Poland, the waters of which flow into the Puck Bay [88]. The average monthly
sums of precipitation in the “Horizon 2050” variant will be higher for the following months:
February, March, April, July, September, and December compared to the calibration and
validation period 1998–2006. On the other hand, the decline will cover May and November.
The average monthly sums of precipitation in the remaining months will not change
significantly as compared to the simulation results in the “zero” variant. The average
monthly increase in precipitation in the Bystra basin in 2041–2050 will be higher in March,
August, September, and November for most climate forecasts. The average monthly fall in
precipitation will cover May, July and October compared to 2010–2017.

In the publication concerning the Reda catchment area, the total runoff was also
analyzed. In the perspective of “Horizon 2050” compared to the calibration and validation
period 1998–2006, there was an increase in total runoff for all months. Similar results were
obtained for the RCP 8.5.2 and RCP 8.5.3 climate projections for the years 2041–2050, where
the total runoff increased for most months, compared to the 2010–2017 simulation period.

Evapotranspiration for the Reda River catchment area in “Horizon 2050” will be higher
compared to the zero variant. The increase in evapotranspiration will also occur in the
years 2041–2050 compared to 2010–2017 for the Bystra River basin.

Differences between future climate changes in the Reda River basin and in the Bystra
River basin may result from the location of both catchments, the calibration and validation
period (for Reda it is 1998–2006; for Bystra it is 2010–2017), the climate of a given region,
and prepared projections of predicted climate changes.

The publication on hydrological modeling of the Parseta River catchment area cali-
brated and validated the Parseta catchment area (area 2866 km2) and two smaller catch-
ments (area 1224 km2 and 899 km2) located in the Parseta catchment area [89]. The analysis
of the obtained statistical coefficients (R2, NSE) shows that the smaller the catchment supply
area, the worse these coefficients were. The observed relationship between the catchment
area and the applied R2 and NSE statistics was also analyzed in other studies [90,91].

An analysis of the publication on the impact of climate change on the water resources of
three Ukrainian catchments in 2040–2071 was also carried out, using the SWIM model [92].
One of the studied catchments is the Bug [93]. The research showed an increase in pre-
cipitation in 2040–2071, their seasonal variation for climate scenarios and an increase in
temperature for most climate change scenarios, which is also confirmed in this article.

Similar results regarding the increase in precipitation, variation in seasonal precip-
itation and temperature for the climate change scenarios for the years 2071–2100 were
obtained in studies of three catchments in Estonia using the SWAT model [94].

The discrepancies in the results are probably due to the higher resolution IUNG-PIB
soil map (1:25,000) and the vectorized land use map used. When preparing the soil data, it
was also taken into account that the available water capacity and wilting point values were
appropriate for the soils of the Bystra catchment area. These values were obtained for the
study titled “Assessment of Water Retention in Soil and the Risk of Drought Based on the
Water Balance for the Area of the Lower Silesia” Voivodship”, developed in 2013 by the
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employees of the Department of Soil Science, Erosion, and Land Protection IUNG-PIB in
Pulawy [20].

7. Conclusions

All climate change projections for the RCP 4.5 and RCP 8.5 scenarios show a trend of
an increase in temperature.

The temperature for the coming decades will be higher for winter, spring, and autumn
compared to the simulation years 2010–2017. In summer, however, temperatures will be
lower in most projections in the coming decades.

The number of days with an average temperature above 5 ◦C will be higher for all
projections (except for the RCP 4.5.1 projection).

On the other hand, the trend of the average annual number of days without rainfall for
the RCP 4.5 scenario for all projections and for the RCP 8.5.2 and RCP 8.5.3 projections will
increase slightly in the coming decades. For RCP 8.5.1, the trend will be downward. In the
coming decades, most climate scenarios are projected to have less precipitation in spring
and more in fall compared to simulation years 2010–2017. The remaining seasons show
mixed results. The trend line of the average annual sum of potential evapotranspiration
in the RCP 4.5.1 and RCP 8.5.2 projections will decrease in the next decades. However, in
the case of RCP 4.5.2, RCP 4.5.3, RCP 8.5.1 and RCP 8.5.3 projections, the potential evapo-
transpiration trend line will increase. I The trend line of the average annual total actual
evapotranspiration in the projections of RCP 4.5.2, RCP 8.5.3 will slightly change in the next
decades. However, in the case of the RCP 4.5.1 projection, the actual evapotranspiration
will decrease. For RCP 4.5.3, RCP 8.5.1 and RCP 8.5.3, the trend will be upward. In most
climate projections, the monthly mean sums of actual evapotranspiration and potential
evapotranspiration will be higher compared to the simulation period of the 2010–2017
model. The exception is the month of June, where actual evapotranspiration in most climate
projections is lower compared to the years 2010–2017.

The total runoff will be higher for the RCP 4.5.3 (2031–2040) and RCP 8.5.2, RCP 8.5.3
(2041–2050) projections compared to the 2010–2017 simulation period. For the remaining
projections, total runoff will be lower in the coming decades. The size of the total runoff
depends on, e.g., climate and anthropogenic changes [88]. The higher total runoff may be
due to increased precipitation and lower evapotranspiration in 2041–2050.

All of the above changes in the individual components of the water balance may have
an adverse effect on plant vegetation in the 2021–2050 period. The trend of temperature
increase and the variable amount of precipitation in individual months may lead to long-
term climate changes as well as an increased number of extreme phenomena. Increased
average monthly sum of evapotranspiration as well as changes in monthly sums of total
runoff may disturb the vegetation of plants grown in the studied region at every stage of
its growth, from sowing to harvesting. Probable increase in water deficits in the middle of
growing season will foster substantial share of farms to adapt irrigation, which will grow
in area compared to Poland’s current share of irrigated fields.
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1. Kozyra, J.; Żyłowska, K.; Nieróbca, A.; Matyka, M.; Smagacz, J.; Jadczyszyn, T.; Wawer, R. Zmiany Klimatu a Rolnictwo w Polsce
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względem fosforu- studium przypadku. In Rolnictwo XXI Wieku–Problemy i Wyzwania; Łuczyckiej, D., Ed.; Idea Knowledge
Future: Wrocław, Poland, 2018; pp. 143–154. ISBN 978-83-945311-9-5.
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i Nauk o Ziemi: Kraków, Poland, 2009.
31. Piest, R.F.; Ziemnicki, S. Comparative erosion rates of loeass soils in Poland and Iowa. Trans. ASAE. 1979, 22, 822–827. [CrossRef]
32. Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Theoretical Doc-

umentation. Version 2012. Available online: https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf (accessed
on 15 December 2021).

33. QGIS. Quantum GIS 3.10.13 Coruna. 2020. Available online: http://www.qgis.org/pl/site/index.html (accessed on
3 March 2020).

34. Winchell, M.; Srinivasan, R. SWAT Editor for SWAT2012—Documentation; Blackland Research Center: Temple, TX, USA, 2012;
pp. 1–14.

35. USDA. United States Department of Agriculture. 1996. Available online: https://www.usda.gov/ (accessed on 1 December 2020).
36. Arnold, J.G.; Srinivasan, R.; Muttiah, R.; Williams, J. Large area hydrologic modeling and assessment. P. I: Model development.

J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]
37. Miatkowski, Z.; Smarzyńska, K. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a

small agricultural watershed in central Poland. J. Water Land Dev. 2016, 31–47. [CrossRef]
38. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool. Theoretical Documentation Version. 2005.

Available online: http://swatmodel.tamu.edu/media/1292/swat2005theory.pdf (accessed on 2 January 2020).
39. Bajkiewicz-Grabowska, E.; Mikulski, Z. Hydrologia Ogólna; Wojtala, K., Ed.; Polish Scientific Publishers PWN: Warszaw, Poland,

2010; ISBN 978-83-01-14579-8.
40. Neitsch, S.I.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation. Version 2009; Texas

Water Resources Institute: College Station, TX, USA, 2011.
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52. CLC. CORIN–Land Cover-CLC. Główny Inspektorat Ochrony Środowiska. 2018. Available online: http://clc.gios.gov.pl/index.
php/clc-2018/o-clc2018 (accessed on 25 June 2018).
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60. Lasy Regionu (The Forests of the Region), Regionalna Dyrekcja Lasów Państwowych w Lublinie. Available online: https:
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Abstract: Wetland plays a pivotal role in sustaining ecosystems and adapting to climate change. This
paper used remote sensing images from 1990, 2000, 2010, and 2020 to investigate the changes in
wetland in the Dongting Lake Basin (DLB) and their possible causes. The land-use conversion matrix
and contribution rate were calculated in 1990–2000, 2000–2010, and 2010–2020, and results showed
that the total wetland area displayed an increasing trend, especially the reservoir ponds and channels
across DLB from 1990 to 2020. Forest and agricultural land conversion into wetland accounted for the
main proportion, with the greatest contribution rate (234.13%) of forest land and the smallest rate
(−117.46%) of agricultural land between 1990 and 2000. On the contrary, agricultural land had the
highest contribution rate (47.96%) for wetlands compared to other land-cover types from 2000 to 2010,
followed by forest land (39.03%). The contribution rates of forest and agricultural lands to wetlands
were 60.17% and 39.02% from 2010 to 2020, respectively. Wetlands showed a more significant net gain
(a total of 259 km2) in Central and Southern Hunan Province. More specifically, the wetlands area in
North Hunan Province decreased by 45 km2 from 1990 to 2000. It increased over the next two decades
(155 km2 and 22 km2, respectively). Southern Hunan Province continued increasing from 1990 to
2010 (a total of 149 km2) while decreasing from 2010 to 2020 (a total of −297 km2). Forestation was
the principal driving force promoting the continuous increase in wetlands. In addition, agricultural
land was mainly related to wetland change in this region, characterized by reclaiming land from
lakes in the earlier period and returning agricultural land to wetland in the later period. Built-up land
occupied a small area of wetlands over the study period. The study is beneficial to understanding the
wetlands’ dynamic changes in the past and present, as well as being useful for wetland management,
consistent with sustainable development.

Keywords: wetland; temporal and spatial change; land-use change; Dongting lake basin

1. Introduction

Wetlands play significant roles in mitigating floods, serving as natural habitats to
support biodiversity, safeguarding human welfare, maintaining the regional and global
ecological balances, and maintaining carbon sequestration [1–4]. The wetlands ecosystem
service value accounts for more than 40% of the global ecosystem’s value among all kinds
of ecosystems [5,6]. The World Resources Institute produced the Millennium Ecosystem As-
sessment Report, stating that wetlands provide invaluable ecosystem services and value for
human well-being and poverty alleviation [7]. Recently, wetland conservation and restora-
tion have attracted much attention, such as the Ramsar Convention, the wetlands bank
program in the United States, and the NWCP (National Wetland Conservation Program)
in China.
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The loss of global wetlands is currently a priority issue on the international political
agenda [8,9]. According to an OECD/IUCN (Organization for Economic Cooperation and
Development/International Union for Conservation of Nature) report, the world may have
lost 50% of its wetlands, mainly due to the development of agriculture since 1900. It has
been estimated that the area of global wetlands decreased by 64% to 71% over the course
of the 20th century, and losses and degradation of global wetlands have continued [10,11].
Davidson notes that wetlands have degraded by about 87% worldwide since 1700, and
the loss of wetlands has mainly occurred during the 20th and early 21st centuries [12].
China’s wetland protection policies and measures have continued to advance in recent
years, including returning agricultural land to lakes. Gong et al. [13] reported that the total
wetland area ranged from 3.552 × 105 km2 in 1990 to 3.048 × 105 km2 in 2000, with a net
loss of 5.036 × 104 km2 in China. Chen et al. [14] pointed out that the change mode of
wetland was mainly the increase and decrease in the area and the conversion of types, and
the wetlands in the Yangtze River Basin increased by 5.172 × 103 km2 from 1975 to 2007.
Some studies showed that nearly 30% of China’s natural wetlands vanished between 1990
and 2000 [15], while Tong et al. [16] proposed that the wetland area of the Yangtze River
basin increased from 1990 to 2012. The middle and lower reaches of the Yangtze River were
the central region for wetland loss [17], and as the main component of the Yangtze River
Basin, the Dongting Lake Basin was a significant area of wetlands in China. Whether the
change in the wetlands in the Dongting Lake Basin is consistent with that of the middle
and lower reaches of the Yangtze River remains to be studied.

Wetland changes were caused by various factors, such as climate change and severe
weather, geological events, agriculture and aquaculture, urbanization, and human intru-
sions and disturbances [18]. Some research showed that China’s wetlands had a total
net gain of 1548 km2 in 2010–2015 due to wetland restoration projects, climate change,
dam construction, and other reasons, mainly distributed in the Qinghai Tibet Plateau, the
northwest, and the southwest of China [17]. Gong et al. [19] demonstrated that temper-
ature, precipitation, and agricultural production were closely related to the changes in
the wetlands of inland China, especially at the end of the 20th century. Food problems
and economic benefits encouraged people to reclaim wetlands to expand agricultural
land. Lu et al. [20] demonstrated that agricultural encroachment was the most impor-
tant driving factor for the degradation and loss of wetlands in the Wusuli River Basin in
China. Gong et al. [13] proposed that the loss of wetlands in China was mainly due to
human activities, and climate warming mainly affected wetlands in Western China due to
glaciers melting. Zhao et al. [21] discovered that the wetlands of Dongting Lake decreased
by 49.2% from 1930 to 1998 due to human activities, such as extensive land reclamation.
Mao et al. [22] pointed out that the acceleration of urbanization was expected to encroach
on more wetland, thus exacerbating the degradation of wetlands in China between 1990
and 2010, which contradicts the viewpoint of Xu et al. [17] mentioned above.

Currently, wetland conservation and restoration have become important sustainable
development goals of the United Nations. Many countries, including the United States,
have adopted “no net loss” of wetlands as a critical indicator for evaluating and measuring
wetland change [17]. The Ramsar Convention encouraged academia to quantify wetlands
to promote the sustainable development and utilization of regional wetlands, and spatially
explicit information became necessary for sustainable wetland management. Therefore,
the relevant research on quantifying the net change in wetlands needs to be supplemented.
The reasons for wetland change can be divided into wetland transformation and wetland
destruction. However, most of the research focuses on wetland destructions and less on
the perspective of land transformation to analyze the mechanism of wetland destruction
deeply. The Ramsar Convention claimed that wetland management implies the need to
understand the past and current human use of wetlands and ways to achieve sustainable
utilization of wetlands. This study fills the gap above. On the one hand, this paper can help
us understand wetlands’ dynamic changes in the past and present to achieve sustainable
wetland management better in the future. On the other hand, the study can provide
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essential insights to wetland conservation and rational utilization of wetland in the DLB,
thereby promoting the sustainable development of wetland and the coordination and
stability of the ecosystem. The main objectives of this study were to: (i) characterize the
mutual conversion between wetland and other land-use types by using remote sensing
image monitoring data from 1990 to 2020; (ii) comprehensively analyze the contribution
rate of different land-use types to wetland; and (iii) further reveal the spatial and temporal
change in characteristics of wetland and its main driving factors in the past 30 years.

2. Methods and Data

2.1. Study Area

Dongting Lake Basin, once the largest freshwater lake in China, is located in the middle
latitude between 24◦38′ and 30◦26′ N, and between 107◦16′ and 114◦17′ E. It crosses the
second and third gradient terrain of China’s terrain, with a subtropical monsoon climate,
with various wetland types. As for spatial distribution, it covers most of Hunan Province,
the south of Hubei Province, the west of Guizhou Province, the northwest of Guangxi
Province, and the north of Guangdong Province (Figure 1).

 

Figure 1. Location of the study area.

Considering that about 80% of the basin area and more than 85% of the wetland area
in DLB are distributed in Hunan Province, this paper selected Hunan Province as the
vital research object district and further divided it into five partitions: Northern, Western,
Central, Eastern, and Southern Hunan (Table 1), to better reveal the spatial differences and
the zoning characteristics of wetland changes. A few parts of Changsha, Yueyang, Huaihua,
Chenzhou, Yongzhou, and Shaoyang cities are not covered by the DLB. This paper took the
basin coverage as the research scope. Given that the DLB does not completely overlay the
five subareas, this paper focused on the intersection of Hunan Province and the DLB. It
explored the basic spatial pattern and change process of wetland change.

Table 1. Distributions of Hunan Province covered by the DLB.

Research Distribution Covered Cities

Northern Hunan Yiyang city, Changde city, Yueyang city
Western Hunan Zhangjiajie city, Xiangxi autonomous prefecture, Huaihua city
Southern Hunan Hengyang city, Chenzhou city, Yongzhou city
Central Hunan Loudi city, Shaoyang city
Eastern Hunan Zhuzhou city, Xiangtan city, Changsha city

As an essential commodity grain base in China, the wetland area of the DLB shrunk
significantly before the 1990s, which seriously limited the function of wetlands in reducing
flood peaks, regulating the seasonal runoff, reducing flow variability, and maintaining
maintenance biodiversity [23]. Since the 1990s, it has become an urgent issue to restore
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the function and value of wetland in the DLB and realize the balance of the wetland
ecosystem. The wetlands in the DLB were listed in the National Nature Reserve and the
list of internationally important wetlands. In 1998, following the great flood disaster of the
Yangtze River, the State Council further clarified returning agricultural land to the lake. At
the beginning of the 21st century, aiming at the conservation and sustainable utilization
of wetlands, the government promulgated the regulations of Hunan Province on wetland
protection, which improved the wetland ecosystem in the basin. The spatial change of
wetland reflected the human–land relationship in different regions [24].

2.2. Land-Cover Data

The data of Landsat TM/ETM Remote Sensing Images in 1990, 2000, 2010, and 2020
were acquired from the Resource and Environment Science and Data Center (https://
www.resdc.cn/, accessed on 8 May 2020). The study rectified the geometric accuracy
of remote sensing images and extracted land-use-type information from remote sensing
images by manual visual interpretation to form four-phase 1:100,000-scale vector data of
land-use type. The comprehensive evaluation accuracy was more than 85% for the first
land-use types and over 90% for the secondary wetland-cover types using the relevant
field survey data [25]. The wetland classification used in this paper was derived from the
LUCC classification system table of the Institute of Geographical Sciences and Natural
Resources Research, CAS. Based on the concept of wetlands and the basic characteristics of
the research area, the land surface in the DLB was classified into six types: agricultural land,
grassland, forestland, wetlands, built-up land, and unutilized land. This paper classified
the wetlands into five categories: river plus canal, lake, reservoir plus pond, beach, and
marsh. Supported by remote sensing image data and ArcGIS technology, a grid network of
1 km was created, reducing errors and improving accuracy effectively on the vector graphic
of the DLB with a 30 m × 30 m satellite image (i.e., Landsat TM/ETM). Then, land-use
types of the identical blocks in different periods were compared through spatial overlap.
Land-change information was obtained by direct interpretation so that land-use-change
types in this process had an average qualitative accuracy of more than 90%.

Then, land-use-type conversion matrices of the DLB from 1990 to 2000, 2000 to 2010,
and 2010 to 2020 were created using the information of land-use area and transformation
status in different periods carried by each grid. Additionally, land-use-type conversion
matrices were produced by applying the information on land-use area and conversion
situation in different periods of each grid. Eventually, the conversion between wetland and
other land-use types was emphatically investigated, and the change direction, extent, and
main driving factors of wetland were explored.

2.3. Methods

The study calculated the land-use conversion matrix using the ArcGIS 10.6 software
package. The areas converted from wetlands to other land-use types and from others to
wetlands were identified, and the conversion patterns were shown in a spatial distribution.
The land-transfer matrix could clearly show wetland increase, decrease, and net change.
The study defined wetland gain as conversion from other land-cover types to wetlands.
In addition, wetland loss was considered a conversion of wetlands to other land-use
types. Furthermore, wetland net change was equal to wetland gain minus wetland loss.
In order to comprehensively and scientifically reflect the number, direction, magnitude,
and distribution of wetland changes, and the contribution of other land-cover types to
wetlands in the DLB in the past 30 years, the study introduced three indicators of wetland
net increase and net decrease, increase and decrease percentage, and contribution rate.

The contribution rate (Ci) of different land cover types to wetland is a comprehensive
and simple index for wetland source and loss quantitatively. It reflects the direction
and magnitude of conversion from another land type to wetland and better measures
the main driving factors of wetland net change. Therefore, it is beneficial to discuss the
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net contribution of a specific type of land use to wetland change, which could help us
understand the role of different types of land use in the process clearly and precisely.

Ci =
ΔSi, j
ΔSj

× 100% (1)

where ΔSi,j indicates the net change of j converted from land-cover type i. The value is
equal to the area of i minus the area of j from the beginning to the end of the study. ΔSi
is the total net change of i converted with all other land-cover types from the beginning
to the end of the monitoring period, that is, the total increase in wetlands minus the total
decrease during the study period. Ci refers to the contribution rate of land-use type i to j.

3. Result

3.1. Temporal Change in Wetland in the DLB from 1990 to 2020

As shown in Figure 2, there was an apparent increasing trend in the wetland area of
8322 km2 in 1990, 8448 km2 in 2000, 8717 km2 in 2010, and 9006 km2 in 2020 in the DLB. In
total, the net gain in wetlands was 395 km2 over the 30 years. The wetland increased by
126 km2, with a growth rate of 1.51% in the first 10 years. Meanwhile, the period between
2000 and 2010 experienced a more apparent increase, with a wetland area expansion of
269 km2 and a growth rate of 3.18%, the net gain in wetland was 2.14 times that of the first
10 years. The most significant increase in wetland area in the study time frame was from
2010 to 2020. The data showed a total expansion of 289 km2 and a growth rate of 3.32%.
In the first 10 years, the net wetland appreciation was 2.20 and 1.04 times greater than
from 2000 to 2010 and 2010 to 2020. The reservoir plus ponds and river plus canal showed
an apparent net gain of 58.99% and 31.90% of the total wetland net increase from 1990 to
2010, with the lake and beach areas displaying a slight change. Furthermore, the increase
in reservoir-plus-pond and river-plus-canal areas from 2010 to 2020 exceeded the total
net increase. The net gains in river plus canal and reservoir plus pond were key survival
traits for the first 10 years, which accounted for 89.68% and 81.75% of the total wetland
net gain in this period, respectively. In addition, the beaches showed a relatively balanced
change. The net loss between 1990 and 2000 was 122 km2, while the net gain between 2000
and 2020 was 179 km2. The research documented that the increase in vast wetlands was
closely related to the net gain in reservoir plus pond and beach from 2000 to 2010, which
accounted for 90.33% of total net wetland increase. The most significant increase occurred
in the river-plus-canal area type (540 km2) from 2010 to 2020, followed by marsh (177 km2).

Figure 2. Area (km2) changes in different wetland categories in DLB from 1990 to 2020.
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The conversion of agricultural land and forest land to wetland was the primary change
in wetland from 1990 to 2000. Among them, the area of agricultural land converted into
wetland was 3480 km2 (no net increase), while that of wetland converted into agricultural
land was 3628 km2. In comparison, the total net change in wetland was only 126 km2 during
this period. Figure 3 demonstrates that the net gain in wetlands was mainly attributed to
forest land, whose contribution rate was 234.13%. However, other land types inevitably
encroached on many wetlands, and the contribution rate was negative, especially the
agricultural land. The conversion of wetland to agricultural land was the main factor that
led to the loss of wetland from 1990 to 2000. Approximately 148 km2 of the wetlands
that disappeared owing to agricultural land were quantified. Ccontribution rate was a
minimum of −117.46%. Many forest land areas were converted into wetlands, which,
remarkably, made up for the occupation of wetland caused by agricultural land and further
drove a significant increase in wetlands in general between 1990 and 2000.

Figure 3. Contribution rates (%) of different land types to wetland changes in DLB from 1990 to 2020.

From 2000 to 2010, the net gain area of wetland was higher than that of the previous
period. However, the dynamic degree of wetland decreased from 71.88% to 18.54%, indi-
cating that wetland fluctuation became more stable in the first decade of the 21st century.
In this study, built-up land was the only type occupied on wetlands. Furthermore, the net
gain in wetlands triggered by agricultural land was the largest, accounting for 47.96% of
the total wetland net gain. Secondly, forest land contributed 39.03% to wetlands.

The contribution of other land-use types to wetlands from 2010 to 2020 was relatively
balanced compared to the previous 20 years, with the highest contribution from forest
land, followed by agricultural land. The conversion of forest land to wetland was the main
factor in increasing wetland over the 30 years. Additionally, the conversion direction of
agricultural land to wetland in 1990–2000 (negative) was diametrically opposite to that in
the next 20 years (positive). During the past 30 years, built-up land showed continuous
occupation of wetland, the contribution rates to wetland were −3.17% in 1990–2000, −5.58%
in 2000–2010, and −12.46% in 2010–2020, respectively.

3.2. Spatial Change in Wetland Change in DLB

As shown in Figure 4, in Hunan Province of DLB, the wetland areas were 7390, 7485,
7722, and 7844 km2 in the four periods. Moreover, the net increased wetland areas were
95 km2 in 1990–2000, 237 km2 in 2000–2010, and 122 km2 in 2010–2020. The wetland in
Southern Hunan increased significantly in the first 10 years, accounting for 123.2% of the
total net change in wetlands in the five zones. The wetland in Northern Hunan increased
obviously, accounting for 65.4% of the total net change in wetlands. From 2010 to 2020, the
most significant net increase in wetland occurred in Central Hunan, with values of 576 km2,
and was 4.72 times the total net increase. Furthermore, the wetland areas in Eastern Hunan
and Southern Hunan decreased significantly, with a net loss of 221 km2 and 297 km2 from
2010 to 2020, respectively.
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Figure 4. Changes in wetland area (km2) in research region from 1990 to 2020.

Figure 5 shows the spatial distribution of different wetland changes in Hunan Province
covered by the DLB. In Figure 5a, wetland had a net decrease from 1990 to 2000 (−31 km2)
and a net increase from 2000 to 2020 (a total of 223 km2) due to changes in agricultural land
area. Forest land was the primary source of wetland growth and contributed to the net
gain in wetlands.

Figure 5. Conversion between wetlands and other land types in each subregion of DLB from 1990 to
2020; (a) Hunan Province, (b) Northern Hunan, (c) Western Hunan, (d) Central Hunan, (e) Eastern
Hunan, (f) Southern Hunan; WIAL refers to the net conversion between wetland and agricultural
land; WIFL refers to the net conversion between wetland and forestland; WIGL represents the net
conversion between wetland and grassland, and WIBL represents the net conversion between wetland
and built-up land (km2).

In Northern Hunan (Figure 5b), the net change in wetlands showed a decreasing trend
in the first 10 years and then increased in the next 20 years. From 1990 to 2000, the net
reduction in wetland area was 45 km2, mainly due to the expansion of forest land to invade
wetland, resulting in a reduction of 74 km2 in wetland. The expansion of built-up land
was also an important factor in wetland loss. Although agricultural land promoted the
restoration of the wetland area of 68 km2, the surplus did not make up for the deficit, and
the wetland showed an evident trend of decrease. From 2000 to 2010, the net increase
in wetland area was 155 km2, of which 73.55% of the increase came from agricultural
land. In addition, grassland and forest land changed from the previous encroachment of
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wetland into an essential factor in promoting the restoration of wetland areas. Both of them
contributed 27% of the total net increase in wetlands. From 2010 to 2020, agricultural land
contributed to a net increase in wetlands (29 km2), with 1.1 times the total net increase
in wetlands.

In Western Hunan (Figure 5c), the total net increase in wetland area was 19 km2 in
the first 10 years, and mutual conversion between forest land and wetland was the most
frequent. Agricultural land was the primary wetland source, with a net conversion of
20 km2 of wetland in the interim. Simultaneously, forest land became the second-largest
source of wetland increase, with a net change of 16 km2. From 2000 to 2010, the wetland
increase was significantly greater than in the previous period, with a net increase of 29 km2.
Meanwhile, agricultural land, forest land, and grassland all contributed to the wetland,
with net increases of 14 km2, 12 km2, and 3 km2 in wetlands, respectively. Similarly, all
land-use types contributed to a net increase in wetlands from 2010 to 2020 except for
built-up land.

In Central Hunan (Figure 5d), wetlands showed a continuous net gain with the
contribution of forest land. Agricultural land contributed more significantly to wetlands
from 2010 to 2020 (30 km2). The wetland change in Eastern Hunan (Figure 5e) was mainly
due to the conversion of agricultural land, which led to a net increase of 32 and 12 km2

in wetlands in the first two decades, but a net decrease of 9 km2 in wetlands from 2010
to 2020. In Southern Hunan (Figure 5f), forest land contributed 107 km2 of wetland area,
accounting for 91.45% of the newly added wetland from 1990 to 2000. The adjustment
of built-up land resulted in a net increase of 9 km2 in wetland. In the next 10 years, the
growth rate of wetlands slowed down. Therein, 65.62% came from the conversion of forest
land, 31.25% stemmed from the conversion of agricultural land, and 6.25% derived from
the contribution of grassland. Nevertheless, the built-up land showed a weak trend of
invading wetlands. From 2010 to 2020, the primary manifestation was the net reduction in
wetlands due to the expansion of built-up land (−20 km2).

4. Discussion

4.1. Wetland Increase Due to Forest Loss

There was a close correlation between wetland and forest land [10]. From 1990 to 2020,
forest land was the main reason for the increase in the wetland area, contributing a total
of 571 km2 in the previous three decades. As Figure 6 shows, forest land had different
contribution levels to different types of wetlands. Furthermore, the net gain in wetlands in
the first 10 years was 2.8 times and 1.7 times that of the next two decades, respectively. The
net conversion of forest land to lakes was the most significant, with a net gain of 132 km2,
followed by river plus canal and reservoir plus pond, with a net gain of 101 km2 and 64 km2,
respectively. From 2000 to 2010, forest land was mainly converted into river plus canal
and beach, with a net gain of 48 km2 and 46 km2. Generally, in the past 30 years, forest
land mainly contributed to the growth of the river plus canal, accounting for 58.49% of the
total net increase in wetlands. On the one hand, the river-plus-canal areas were important
water conservancy facilities for the development of agriculture [26]. Simultaneously, with
the improvement in people’s living standards, there was a growing demand for varieties
of crop species, which led to the development of suburban agriculture, thus occupying a
part of the wetland. Moreover, the construction and matching of river water conservancy
facilities could improve agricultural infrastructure and irrigation conditions, thus increasing
food production, especially in the 1990s when China’s agriculture accounted for a large
proportion. On the other hand, because the forestry industry had a long development cycle
and low output value, and the importance of forest carbon sequestration was not fully
recognized early, the phenomenon of expropriation of forest land to respond to wetland
conservation occurred. As the government and academics paid more attention to forest
land, society was increasingly aware that forests were the most significant carbon reservoir
in terrestrial ecosystems and had a vital and unique role in reducing greenhouse gas
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concentrations and mitigating global warming [27], which was an essential reason for the
diminishing contribution of forest land to wetland.

Figure 6. The net conversion area (km2) of forestlands and wetlands in the DLB from 1990 to 2020.

4.2. Wetland Change Due to Agricultural Land

Over the three decades, the direction of change between agricultural land and wetland
was inconsistent. Reclaiming land from lakes was a prominent feature in the early stage
from 1990 to 2000. However, returning agricultural land to wetland was the main feature in
the later stage from 2000 to 2020. It was indicated that the population increased significantly,
leading to a greater demand for grain at the end of the 20th century, which promoted crop
cultivation and stimulated the transformation of wetlands [28]. Besides, people in southern
China prefer rice, resulting in many wetlands being occupied with growing food. The
development of agriculture further accelerated hydraulic engineering construction projects,
which interfered with the stability of the wetland ecosystem and aggravated the loss of
wetland [29,30]. Although the above alleviated the degree of wetland reduction, there
was still a clear trend of agricultural land encroaching on the wetland at the end of the
20th century. As shown in Figure 7, among the various types of wetlands, the main feature
was the occupation of agricultural land by lakes. The reduced lakes area accounted for
54.73% of the wetland loss from agricultural land reclamation from 1990 to 2000. In addition,
the lakes also showed a clear trend of net loss from 2010 to 2020. The occupation of marsh
and beach by agricultural land in the first 10 years was also apparent, accounting for 42.56%
and 39.86% of wetland loss, respectively.

Figure 7. The net conversion area (km2) of agricultural land and wetland from 1990 to 2020.

At the same time, some agricultural land adjustments led to an increase in wetlands.
The area of reservoirs, ponds, and canals was restored under agricultural land conversion to
a certain extent, showing an increasing trend. Wetlands such as reservoirs and canals with
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the purpose for agriculture irrigation were mainly attributed to economic developments,
and the results agreed with Gong et al. [13] and Xu et al. [17]. The main reason for
the wetland loss was the transformation of natural wetlands to agricultural land and
constructed wetlands.

At the end of the 20th century, the 1998 flood attracted the attention of the government
and society. The analysis showed that the “flood of the century” in 1998 in the middle and
lower reaches of the Yangtze River brought huge losses to people’s lives and production.
The State Council pointed out that the destruction of wetland ecological resources was an
important cause of frequent flood disasters and further strengthened the implementation
of returning agricultural land to wetland. At the same time, Premier Zhu Rongji proposed
the “4350 Project” to restore the wetland area of Dongting Lake when he inspected Hunan
Province. Consequently, the conservation and restoration of wetlands have risen to the
country’s strategic height to better realize wetland flood regulation and storage. Moreover,
Dongting Lake National Nature Reserves have been established. The national and local
governments issued a series of wetland protection and restoration policies [13], such as the
National Wetland Conservation Action Plan in 2000 and the National Wetland Conservation
Program (NWCP) (2002–2030) in 2003 [31]. In addition, the Ramsar Convention considered
water regulation as an important impact factor for wetlands [17]. In addition, agricultural
reclamation was an important driving factor for wetland reduction, and the differences in
population trends and wetland conservation policies were primary contributors to wetland
restoration. These results were consistent with Lu et al. [20].

In the 10 years at the beginning of the 21st century, the reduction in agricultural
land resulted in a total restoration of 148 km2 of wetland; thus, the effect of returning
agricultural land to wetland was remarkable. Moreover, in the next 20 years, the total net
gain in wetland showed an increasing tendency. However, the increase in wetlands from
conservation efforts did not offset the human-caused wetland loss. Although the built-up
and restoration promoted the increase in wetlands, high-quality wetlands were taken away
and replaced with inferior wetlands whose ecosystem service function was affected [32].
The increased river plus canal may also cause the fragmentation and isolation of wetlands
between rivers and lakes, affect hydrological connectivity, threaten aquatic organisms,
and lead to the shrinkage and degradation of downstream wetlands [33]. For example,
Japan has constructed many artificial wetlands, but 80% of the lakes have limited carrying
capacity [34,35]. However, returning agricultural land to wetland has been helping to make
up for the wetland losses, which is worthy of our favorable treatment.

At the beginning of the 21st century, our country established a wetland protection
system such as the Dongting Lake wetland reserve at all levels and the National Wetland
Park, promulgated the “Hunan Province Wetland Protection Regulations” and other legal
provisions, and increased the ecological compensation standards for returning agricultural
land to lake year by year. These measures have effectively promoted the restoration and
stability of the wetland ecosystem.

4.3. Wetland Loss Due to Urbanization

Based on previous studies and the sixth IPCC report, the changes in wetlands were
subjected to climate change and agriculture, as well as urbanization and socioeconomic
factors (e.g., population, water demand, transportation, gross domestic product, and con-
sumption patterns) and dietary structure [36,37]. With the rapid development of the social
economy and the increase in China’s population, most cities have experienced unprece-
dented expansion [38]. The urban population in China increased from 301.95 million in
1990 to 459.06 million in 2000, 669.78 million in 2010, and 902.2 million in 2020 (Figure 8),
as well as the rapid growth of population and economy in Hunan Province, the main
coverage area of the DLB. Therefore, human settlement, transportation, construction, and
industrial development occupied many wetlands. At the same time, with the improvement
in people’s living standards, there was an increasing demand for the diversification of crop
types and suburban agriculture developed, thus occupying part of the wetland.
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Figure 8. Demographic changes in China (a) and Hunan Province (b) from 1990 to 2020.

The expansion of built-up land was an important reason for decreasing wetlands
(Figure 9). In the next 10 years, from 2000 to 2010, all types of wetlands showed a decreas-
ing trend from built-up land. The loss of reservoir ponds was the most serious, followed
by a decrease in marshes. Moreover, the number of canals decreased significantly, and
the net change in other wetlands was small. The wetland change may also be affected
by aquaculture development because the DLB is the land of fish and rice [17]. Moreover,
aquaculture was a critical way to promote regional economic development while destroy-
ing the balance of the wetland ecosystem [20]. In this study, the lake area increased by
24 km2 due to land conversion for construction, alleviating the degree of wetland reduction.
This was probably related to the wetland protection policies and other land-conversion
types that urban expansion may occupy rather than wetlands. At the same time, with
the development of urbanization, the construction of urban landscapes also increased the
area of lakes. From the perspective of ecosystem services, the created artificial wetlands
could not compensate for and replace the lost natural wetlands [38]. Our country has been
committed to rapid economic development since the reform and opening up. With the
gradual increase in the number of people and the need to develop production, industrial-
ization and urbanization intensified, resulting in part of the wetland occupied by built-up
land. Lu et al. [39] pointed out that human disturbance had a profound impact on the role
of wetland carbon sequestration, and the contradiction between people and the wetland
remained to be resolved.

Figure 9. Net conversion of different built-up lands and wetlands in DLB from 1990 to 2020 (km2).

4.4. Wetland Change Due to Other Factors

Climate change affected the spatial and temporal variability of wetlands in the basin
through temperature, precipitation, evaporation, extreme events, etc. The IPCC published
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climate change assessment reports in 1990, 1995, 2001, 2007, 2014, and 2021. All six reports
noted that the current stage of global climate change was significantly stronger than the
normal evolution of history, showing a clear warming trend. This changed the hydrological
characteristics of the wetland, increased water consumption, and accelerated the conversion
of wetlands to other land-use types [40,41]. In addition, precipitation variability could lead
to changes in runoff and water levels, thus affecting the wetland area dynamics.

Under global climate warming, intense human activities greatly influenced the spatial
and temporal patterns of wetlands in the basin. With the construction and operation of large
water conservancy projects such as Gezhouba Dam and Three Gorges Dam, the river–lake
relationship between Dongting Lake and the Yangtze River changed significantly [42], and
the hydrological connectivity between rivers and lakes weakened obviously, which had
a greater impact on the wetland ecological process and environment in the basin. On the
one hand, the water level of the Yangtze River decreased when the Three Gorges Dam
was storing water during the flood season, making its top-supporting effect on the water
level of Dongting Lake weaker, thus leading to the lower water level in Dongting Lake,
which adversely affected water resources and wetland loss in the basin [43]. On the other
hand, the construction of water conservancy projects such as the Three Gorges played an
important role in reducing the peak and replenishing the dryness, which was conducive
to alleviating the flooding in the DLB, improving the hydrological environment for the
stability of wetland ecosystems, which was one of the important factors for the increase in
wetlands [44].

5. Conclusions

This paper mainly focused on revealing wetland temporal and spatial change char-
acteristics and driving factors by using remote sensing monitoring data to devise the
land-use-transfer matrix and calculate the contribution rate in the DLB from 1999 to 2020
at the turn of the century. This study can help understanding of the past changes in wet-
lands to guide the current work better and promote sustainable development in the future.
There were many types of wetlands in the DLB. Temporally, the wetland area continued to
increase from 1990 to 2020, with a significant increase in river plus canal (total 666 km2)
and decrease in lakes (total −463 km2). Comparing the three decades, the growth rate of
wetlands increased, with net increase proportions of 1.51%, 3.18%, and 3.32%, respectively.
While the conversion frequency between wetlands and other land types decreased, changes
stabilized. Spatially, wetlands in the DLB were mainly located in Hunan Province (more
than 80%), with the most significant wetlands in Northern Hunan (approximately 70%).
The net change in wetlands was inconsistent among subregions. Wetlands in Northern
Hunan first decreased and then increased. Western Hunan showed a continuous increase,
Central Hunan showed a remarkable net decrease later, and Eastern Hunan decreased in
wetlands from 2010 to 2020.

The spatial–temporal change pattern of the wetland in the DLB resulted from the
combined effect of human activities and natural factors. Human activities tended to have a
more significant impact than climatic conditions in the short term, and their effects were
more pronounced. From 1990 to 2020, forest land was a continuous wetland increase source,
and agricultural land was a fundamental cause of wetland changes. It was mainly charac-
terized by reclaiming land from lakes in the early stage, and it was mainly characterized by
returning agricultural land to wetland later. The expansion of built-up land occupied part
of the wetland, yet the total amount was not significant.

In the past 30 years, the wetland area in the DLB was effectively restored. However,
due to the complexity and comprehensiveness of the wetland ecological environment, the
task of wetland protection and sustainable development still has a long way to go.
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Abstract: This article presents the QDA-System (Sistema Qualidade da Água, from Portuguese), a sys-
tem developed to monitor the quality of surface waters in Brazilian hydroelectric reservoirs using
satellite images and cloud computing services. The development requirements of the QDA-System
considered its use for operational monitoring purposes, with all processing steps automated, and
a user-friendly interface to access and query the data generated automatically by the system. A pilot
application of the QDA-System was customized and implemented for monitoring the Foz do Chapecó
hydroelectric reservoir located in southern Brazil. For the pilot application, the QDA-System was
customized to estimate nine water quality parameters,: five were estimated directly from Sentinel-2
multispectral images and four were estimated indirectly. We expect that in the near future the QDA-
System can be replicated to monitor other Brazilian reservoirs, bringing benefits and cost reduction
related to water quality monitoring, not only for the sector of hydroelectric generation but for other
sectors that also need similar monitoring, such as sanitation and aquaculture production.

Keywords: cloud computing; satellite images; bio-optical modeling; reservoirs; lakes

1. Introduction

The use of remote sensing images for the study of inland water bodies dates back to
the 1970s, initially focusing on the development of local models with temporally limited
studies [1]. Over the last 50 years, the development of information and image collection
technologies has allowed great advances in the field of remote sensing of water, such as
the study of multiple parameters [2], the development and the improvement of different
approaches for bio-optical modeling [3], the expansion of the temporal and spatial scales
of analysis [1], and born of monitoring initiatives such as Satellite earth observations for
lake monitoring (OLakeWatch) [4] in Canada and the Cyanobacteria Assessment Network
(CyAN) in the USA [5]. All of these advances in terms of basic and applied research
have paved the way for us to move forward in the innovation chain through the pilot
development of an automatic system for monitoring water quality parameters from space.

Recently, some solutions were developed that combine the use of remote sensing data
and cloud computing for the monitoring and the forecasting of different environmental
issues. As examples of solutions presented in the literature, we can mention a cloud-based
flood warning system [6], a cloud-based system to monitor land use and land cover [7], and
an algal bloom alert system [8]. The main advantages of this approach are the use of cloud
computing power to process large amounts of data and the absence of a need to download
the data to a local server.

Taking into account the need to modernize and to expand the monitoring capacity
of Brazilian hydroelectric reservoirs, the CERTI Foundation conducted the Research and
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Development (R&D) project “00642-2705/2019-Development of a system for remote moni-
toring of water quality in water reservoirs based on multispectral images,” financed by the
Brazilian Electric Energy Agency (ANEEL), with the main objective of developing a system
based on cloud computing technology for monitoring inland water bodies. This article
aims to present the developed system and its pilot application for monitoring the surface
water of the Foz do Chapecó hydroelectric plant reservoir in southern Brazil.

2. QDA-System Design and Development

The monitoring system (hereafter called the QDA-System) was designed using state of
the art cloud computing and remote sensing techniques applied to inland water monitoring
and bio-optical modeling [3]. The QDA-System was developed to routinely monitor
surface water quality in lakes and reservoirs using satellite images and auxiliary data
(e.g., residence time, bathymetry, and in situ parameters), allowing the emission of alerts
considering rules and thresholds predefined by users. The system was developed in the
Python programming language using different computing and cloud storage services
offered by Amazon Web Services (AWS), but it can also be deployed and run in other
commercial clouds (e.g., Google Cloud or Microsoft® Azure Cloud). For its development,
the following requirements were considered:

1. Operational monitoring: A systematic and routine provision of information of various
water quality parameters;

2. Automated processing: Achieved without the need for interactions or processing
performed by system operators;

3. Customizable: The capacity to use multiple image sources (e.g., Sentinel-2 MSI,
Landsat-8 OLI, Planet®) and implementation of different types of water quality models
according to site-specific needs;

4. Scalable: The capacity to be easily replicated and parameterized for different wa-
ter bodies;

5. User-friendly interface with different access levels: developed for accessing via an in-
tuitive web interface, with different access levels, considering specific needs.

Digital Image Processing, Bio-Optical Modeling, and Water Quality Index Computation

The main digital image processing tasks implemented in the pilot version of the
QDA-System includes: (1) mosaic images of different tiles (if necessary); (2) resample band
images to the same pixel size; (3) the application of scale factors to convert digital number
to surface reflectance value; (4) applying a water mask over the target area; and (5) creating
and applying a cloud or shadow mask.

The QDA-System supports the implementation of empirical and semi-empirical bio-
optical models to estimate optically active and inactive parameters [2,3]. The optically
active parameters are those related to the Optically Active Constituents (OAC) that are
responsible for the absorption and scattering of electromagnetic energy in the water column
and directly related to the satellite measurements. On the other hand, the optically inactive
parameters do not interfere in the underwater light field; consequently, they cannot be
directly related to measurements taken by satellites. Even so, they can be obtained indirectly
from relationships with optically active parameters [2].

The QDA-System also supports the computation of water quality indexes based on
estimated parameters combined with in situ measurements that can be entered into the
system using spreadsheets. Figure 1 shows the workflow of processing tasks and water
quality parameters developed for the first version of the QDA-System based on the use of
MSI Sentinel-2 images (detailed in Section 3.2.2).
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Figure 1. Workflow of processing tasks and water quality parameter retrieval implemented in the
QDA-System: example from pilot case. B1 to B12 refers to Sentinel-2 MSI multispectral bands.

3. Study Case—Foz do Chapecó Reservoir

3.1. Site Description

A pilot version of the QDA-System was implemented to monitor the surface water
quality of the Foz do Chapecó Hydroelectric Reservoir (FCHR) located in southern Brazil
near the city of Chapecó (Figure 2). The FCHR has a latitudinal elongated shape with
79 km2 of surface area and a mean depth of 18.8 m, covering the area of 12 municipalities [9].
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Besides energy production, the FCHR has other uses, such as domestic water supply,
irrigation, recreation, fishing, and navigation [10].

 

Figure 2. Pilot area location and settings.

3.2. Selected Parameters and Available Dataset

For the pilot application, a set of nine water quality parameters were previously
selected, five of which were obtained directly from satellite images (optically active) and
four that were obtained indirectly (optically inactive):

1. Optically active: (1) Chlorophyll-a (Chla-a); (2) Floating macrophytes; (3) Total of
Suspended Solids (TSS); (4) Turbidity; and (5) Water transparency (Secchi Disk
Depth—SDD);

2. Optically inactive: (1) Conductivity; (2) Dissolved oxygen (DO); (3) Nitrate; and
(4) pH.

The dataset available for model calibration and validation included 178 water samples
collected during 11 campaigns (see locations in Figure 1), distributed between February 2019
and May 2021, covering all phases of the hydrological cycle and the different operational
conditions of the FCHR (Table 1). All campaigns had concurrent passages of Sentinel-
2 satellites.
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Table 1. Summary of calibration and validation dataset available for FCHR.

Field Campaign Data Image Acquisition Sampling Points

1 22 February 2019 22 February 2019 14

2 18 April 2019 18 April 2019 14

3 8 August 2019 6 August 2019 14

4 11 October 2019 10 October 2019 17

5 20 December 2019 19 December 2019 17

6 12 February 2020 12 February 2020 18

7 12 February 2020 10 February 2020 and
12 February 2020 17

8 27 May 2020 25 May 2020 and 27 May 2020 18

9 23 November 2020 23 November 2020 18

10 10 December 2020 8 December 2020 13

11 27 May 2021 27 May 2021 18

3.2.1. In Situ Data

The water sample collections were conducted by Aquaeris Engenharia e Soluções Am-
bientais LTDA, a third-party company specializing in this type of service. All the field
surveys followed the specification and the protocols presented in the Brazilian guide for
collection and preservation of samples [11]. Conductivity, dissolved oxygen, pH, and tur-
bidity were measured using a multiparameter probe (Akso www.akso.com.br (accessed on
4 January 2022), model AK88). The water transparency was measured using a Secchi disk.
The remaining parameters were analyzed in the laboratory following the Standard Meth-
ods for the Examination of Water and Wastewater (SMEWW) [12] and U.S. Environmental
Protection Agency [13] procedures.

3.2.2. Satellite Images

The Sentinel-2 mission was chosen for the pilot application [14]. The mission consisted
of two satellites, Sentinel-2A and Sentinel-2B, both carrying the Multispectral Instrument
(MSI). The joint use of the 2 satellites allowed the acquisition of 73 images of the complete
reservoir throughout the year (1 image every 5 days), with spatial resolution ranging from
10 to 60 m depending on the spectral band. The product chosen for the application was
the level 2A satellite which provided systematic surface reflectance ortho-images (more
information about the 2A algorithm is available at: https://earth.esa.int/web/sentinel/
technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 4 January 2022)).

For this pilot application, the QDA-System was configured to access the Copernicus
Open Access Hub (https://scihub.copernicus.eu/ (accessed on 3 January 2022)) using the
application programming interface (API) and to download the images to be processed by
the QDA-System.

3.3. Model Calibration and Validation

For each modeled water quality parameter, the available dataset was analyzed indi-
vidually in order to remove samples with values lower than the limit of quantification and
detection, outliers and samples located in pixels covered by cloud or shadows, or with
low quality. The sample points considered valid for a given parameter were split into two
subsets: one was used for model calibration (between 60 and 70% of valid points) and the
other was used for model validation (between 30 and 40% of valid points).

The model calibration was performed through adjustments using an ordinary least
squares regression method. For the optically active parameter (except for floating macro-
phytes), we tested different univariate models (empirical and semi-empirical) and different
types of adjustments (linear, polynomial, exponential, and power), resulting in more than
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1200 regression analyses. For the optically inactive parameters, we tested empirical uni-
variate models relating them to the optically active parameters, resulting in more than
1000 regression analyses. The criteria used to select the best calibrated model for each
parameter were the p-value and the coefficient of determination (R2).

The model validation was conducted using the validation subset and the metrics
presented by [15] that compare the values estimated by the calibrated models to the
in situ measurements:

R2 = 1 −
(

SSres

SStot

)
where SSres is the residual sum of squares and SStot is the total sum of squares.

MAD =
∑n

i=1|yi − yi|
n

where MAD is the mean absolute deviation, yi is the observed value, yi is the predicted
value, and n is the sample size.

MSE =
∑n

i=1(yi − yi)
2

n

where MSE is the mean squared error.

RMSE =

√
∑n

i=1(yi − yi)
2

n

where RMSE is the root mean squared error.

MAPE =
∑n

i=1

∣∣∣ yi−yi
yi

∣∣∣
n

× 100

where MAPE is the mean absolute percentage error (%).
After the validation procedure, the model with best performance for each parameter

was configured in the QDA-System.

Floating Macrophytes

The automatic detection of floating macrophytes is performed by applying thresholds
and histogram slicing on a Vegetation Index (VI), which is widely used in the literature.
For the pilot application, 4 VI were tested: (1) the Normalized Difference Vegetation
Index (NDVI) [16], (2) the Enhanced Vegetation Index (EVI) [17], (3) the Normalized
Difference Aquatic Vegetation Index (NDAVI) [18] and (4) the Water Adjusted Vegetation
Index (WAVI) [19]. The best VI and threshold to detect floating macrophytes was defined
empirically, by comparing values extracted from seven selected images where floating
macrophytes were clearly visible. The performance of the VIs and thresholds used to detect
floating macrophytes were evaluated based on the superposition of the manually vectored
areas and the areas obtained automatically. In addition to the visual assessment, the area
automatically mapped and manually obtained for the different macrophyte polygons were
compared and the validation metrics were calculated for performance evaluation.

4. Results

4.1. System Overview

The QDA-System architecture (Figure 3) was defined taking into account the concept
of micro services. The application was developed considering small services or independent
modules that act together to provide system functionalities, communicating with each
other through APIs. The main advantages of this approach are that it is highly scalable
and easy to develop in the cloud. From a development point of view, it allows parallel
development, making the production process and bug fixing more agile.
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Figure 3. QDA-System architecture.

The architecture of the QDA-System is comprised of substructures each with its
respective modules, as described below:

1. QDA-Results: substructure comprised of a backend and a frontend (with Graphics
User Interface) so that system users can upload auxiliary data to the system;

2. QDA-Models: this substructure is a module, which has become a public domain
project. It has the implementation of bio-optical models found in the literature to
assess water quality through the analysis of satellite images. It can be accessed from
the Python Package Index (PyPI) package repository https://pypi.org/project/qda-
modelos/ (accessed on 5 January 2022);

3. QDA-Backend: substructure comprised of different modules:

� Analysis controller: It is activated by the scheduler module and it performs
the verification and the obtainment of data present in the reservoir module. It
performs the described analysis and it manages the image processing modules;

� Image processor: It performs the pre-processing of images, uses the module
imported from the QDA-Models to estimate the parameters, and it manages
the life cycle of an execution;

� Image controller: It abstracts the image source and it stores and retrieves
preprocessed images (if necessary);

� Reservoirs: This is the module for registering a reservoir;
� Scheduler: It is responsible for activating the analysis controller module and

keeping a schedule of executions.

4. QDA-Frontend: This is a frontend substructure responsible for communicating with
the backend and for showing the user a graphical interface based on React technology
(https://reactjs.org/ (accessed on 20 December 2021)). It is user-friendly and it is easy
to interpret when checking the data processed by the system.
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4.2. System Interface

The pilot version of the QDA-System interface allows the user access to three views of
the monitored water body: (1) dashboard view; (2) alerts view; and (3) analysis view.

The dashboard view allows the user to visualize the current information generated
using the last image acquired, with the visualization being segmented by the sub-area of
the monitored water body. The screen displays the generated alerts, a water quality map,
and a table with a summary of monitored parameters and their trends (worsening, stable,
or improving). It also shows the date of the last image processed and its percentage of
invalid pixels due to the presence of clouds or shadows.

The alerts view allows the user to view and to manage the alerts generated for the
parameters of interest. In this view, it is possible to filter alerts by reservoir sub-area,
parameter of interest, period or date, and alert status (recognized and unrecognized).
Alerts are displayed with their spatial distribution on the reservoir map, and they are
also summarized in a list and a table form. The alerts automatically generated by the
QDA-System can be recognized by the user.

The analysis view allows the user to access different functionalities such as querying
the space–time history of monitored parameters and indices through thematic maps and
time series graphs displayed on the screen, viewing additional layers such as in situ
sampling points and points with other uses (e.g., recreation, catchment for public water
supply, irrigation), and areas covered by floating macrophytes.

4.3. Pilot Application
4.3.1. Model Calibration

The model calibration was considered satisfactory for the nine water quality parame-
ters selected for the pilot application of the QDA-System (Table 2). The models derived
directly from satellite images (optically active parameters) showed results that are corrobo-
rated by the literature [3], being the models with the best performance for SDD, TSS, and
turbidity based on single band relation (red band corrected for sun glint effect). For the
Chl-a concentration, the model with the best fit was based on a polynomial relation with
the Normalized Difference Chlorophyll Index (NDCI) [20]. The R2 values obtained for
optically active parameter models were higher than those reported in the literature [15],
highlighting the turbidity model that showed excellent calibration performance (R2 = 0.94).

Table 2. Summary of model calibration.

Parameter Unit n R2 Model with Best Calibration Performance

Chl-a μg/L 29 0.89 Y = 229.95NDCI2 + 122.58NDCI + 19.964

SDD m 62 0.83 Y = 1.407Ln(B4corr)− 3.1782

TSS mg/L 22 0.73 Y = 3.9215e(66.727B4corr)

Turbidity NTU 62 0.94 Y = 9459.9B42
corr − 238.53B4corr + 6.0006

Conductivity μS/cm 48 0.46 Y = 1.0144SST + 17.075

DO mg/L 30 0.50 Y = 16.213
(

1
SDD

)2 − 3.669
(

1
SDD

)
+ 6.861

Nitrate mg/L 33 0.69 Y = 0.205Turibidity + 1.6134

pH - 99 0.11 Y = 0.0073Conductivity + 6.5858
B4corr refers to Sentinel-2 B4 images corrected for the sun glint effects. The glint effect was removed by subtracting
the values of B11 (short wave infrared) from B4 (red) values [21].

As expected the models derived indirectly from satellite images (optically inactive
parameters) showed lower performance than the models derived directly, with R2 val-
ues between 0.11 and 0.69. The best calibration performances were obtained for nitrate
(R2 = 0.69) and DO (R2 = 0.50) parameters. The nitrate model was based on a linear relation
with SST, whereas the DO model was based on a polynomial relation with the inverse of
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SDD. The electric conductivity and pH models showed the poorest performance during
the calibration procedure.

For the detection of floating macrophytes, the model with the best performance
during the calibration procedure was based on NDAVI using a detection threshold equal
to 0 (R2 = 0.99). In this case, NDAVI values higher than zero are considered floating
macrophytes whereas values equal to or less than zero are considered water.

4.3.2. Model Validation

Regarding the models obtained directly from satellite images, the results of validation
(Table 3) indicate an excellent performance of the adjusted model for the estimation of tur-
bidity, showing a strong agreement between the estimated and observed values (R2 = 0.87),
low absolute mean deviation (MAD = 2.87 NTU) and low RMSE (3.05 NTU). The turbid-
ity model adjusted for the FCHR performed better than those presented in other studies
(except for the MAPE validation metric), even when compared with more sophisticated
models based on neural networks [15].

Table 3. Summary of model validation.

Parameter n R2 MAD MSE RMSE MAPE

Floating macrophytes 18 0.99 - - 0.77 10.13

Chl-a 15 0.00 1.670 4.51 2.12 60.00

SDD 49 0.49 0.83 1.00 1.00 50.31

TSS 10 0.70 17.89 401.48 20.04 43.47

Turbidity 47 0.87 2.87 9.33 3.05 125.16

Conductivity 20 0.11 7.52 136.70 11.69 20.51

DO 44 0.10 0.67 1.05 1.02 9.35

Nitrate 14 0.51 0.253 0.095 0.307 11.64

pH 43 0.11 0.611 0.472 0.687 7.892

The adjusted models for estimation of SDD and TSS showed a low performance
compared to the turbidity model, but they were also considered very satisfactory. The
model for water transparency presented a MAD of 0.83 m and an RMSE of 1 m, whereas
the model for TSS presented a MAD of 17.89 mg/L and an RMSE of 20.04 mg/L.

In turn, for the adjusted model to estimate chlorophyll-a concentration, the valida-
tion results indicated a weak agreement between the estimated and the observed val-
ues (R2 < 0.01). The analysis of the errors obtained with the model adjusted to estimate
chlorophyll-a concentration showed results considered favorable compared to those pre-
sented in the literature [15], with a MAD of 1.84 μg/L and an RMSE of 2.23 μg/L. The
historical data from water quality monitoring indicated low concentrations of chlorophyll-a
in the reservoir, and in 73% of the samples collected between June/2015 and February/2021
the result obtained in the laboratory was less than the quantification limit (1 μg/L).

For the parameters obtained indirectly from images, the best validation performance
was obtained for the nitrate model, with low error metrics (e.g., RMSE = 0.3 mg/L) and
moderate agreement between the estimated and the observed values (R2 = 0.51). The DO
and pH models also presented low errors but a weak agreement between the estimated
and the observed values (R2 = 0.11). Finally, the model to estimate electric conductivity of
water exhibited the poorest performance with a MAPE close to 20% and a weak agreement
between the estimated and the observed values (R2 = 0.10)

The model adjusted to detect floating macrophytes showed a favorable validation
performance, with high agreement between detected and vectorized values (R2 = 0.99) and
a MAPE near 10% (0.77 hectares).
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4.3.3. User’s Interface and Data Access

Figures 4–6 show the three different views developed to access and to query the data
through the user’s interface of the QDA-System: (1) dashboard view, (2) alert view and
(3) analysis view. The dashboard view developed for the pilot application (Figure 4) shows
the actual status of the FCHR water quality based on the last MSI image processed by
the system. In this case, the information is presented for three different reservoir sectors
predefined for the FCHR: “Barramento,” “Central,” and “Cabeceira”.

 

Figure 4. Dashboard view.

 

Figure 5. Alerts view.
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Figure 6. Analysis view.

For the example shown in Figure 4, the “Barramento” sector presented 19 alerts for
chlorophyll-a concentration and 6 alerts for turbidity, considering the image processed
on 4 July 2020. The “Cabeceira” sector presented 13 alerts for turbidity, while in the
“Central” sector no alert was generated by the system. The trophic state presented a steep
gradient between the river zone (“Cabeceira”) and the dam zone (‘Barramento), with low
trophic levels (ultra-oligotrophic) observed in the “Cabeceira” sector and high trophic
levels observed in the “Barramento” sector (eutrophic).

The alert view (Figure 5) allows the user to consult and to manages alerts generated
by the system. The user can filter alerts based on a single or a range of MSI image dates,
the reservoir sector, the parameter of interest, and the alert status (recognized or not
recognized). The alerts can be displayed on the map or in a table format using a color code
for the recognized alerts (blue) and unrecognized alerts (red). For the pilot application,
the alerts are generated for four parameters (chlorophyll-a, nitrate, turbidity, and pH)
based on the water quality standards established for class two freshwaters according to
Brazilian regulations [22]. An example of a query, Figure 5, shows the recognized and
the unrecognized alerts which were generated for chlorophyll-a and turbidity parameters
between 1 July 2020 and 9 July 2020.

Finally, Figure 6 shows the analysis view developed for the pilot application at
the FCHR.

Figure 6 shows an example of a query for spatial distribution of turbidity retrieved
based on the image acquired on 16 February 2022 for the “Barramento” sector. In this
case, turbidity presented a homogeneous pattern with values lower than 5 NTU for the
entire sector.

5. Conclusions

This paper presents the development and the pilot application of the QDA-System,
a cloud-based system to monitor water quality in lakes and reservoirs using remote sensing
images. The QDA-System allows the spatial and the temporal monitoring of water quality
parameters, emission and management of alerts, and calculation of water quality indexes,
such as the trophic state index. The system is an innovative application that combines
state of the art remote sensing applied to inland aquatic environments, cloud computing
techniques, and software development. Two of the main features of the QDA-System
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are its versatility and its scalability, allowing customizations for different areas of interest
according to specific monitoring needs and supporting the use of different images (e.g., MSI
Sentinel-2 and OLI Landsat-8) and types of models (empirical and semi-empirical).

The pilot application of the QDA-System was implemented to monitor the Foz do
Chapecó Hydroelectric Reservoir located in southern Brazil, with the implementation
of nine water quality models calibrated and validated specifically for the reservoir. The
pilot application is in the initial phase of operation for monitoring the selected reservoir;
and, after the testing period, the QDA System will be available to be replicated to other
hydroelectric reservoirs, with considerable potential to bring benefits and cost reductions
related to water quality monitoring for the entire hydroelectric generation sector in Brazil.
In addition, we emphasize that the QDA-System has great potential for application in other
areas that also demand routine monitoring of water quality, such as the sanitation sector
(public supply reservoirs or monitoring of receiving water bodies) and other industrial
applications such as aquaculture.
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Abstract: Water quality is a global concern; it is due to point and non-point source pollution. Non-
point sources for pollution are mainly runoff from Agricultural and forest. To decrease nutrient
inputs, management practices are implemented. Using Soil and Water Assessment Tool, water quality
parameters can be quantified. Yazoo River Watershed is the largest watershed in Mississippi, which
have impact on surface water quality due to large scale agriculture and forest lands. Model has
been calibrated and validated for streamflow, sediment, Total Nitrogen (TN), Total Phosphorus (TP)
for the USGS gauge stations in the watershed. Model efficiency was assessed with Coefficient of
Determination (R2) and Nash-Sutcliffe Efficiency index (NSE). Best Management Practices (BMPs)
were implemented throughout the watershed to simulate the impact of BMPs on streamflow, sediment,
and nutrient yields. Vegetative Filter Strips (VFS), Riparian Buffer, combination of VFS and Riparian
buffer and Cover Crops (CC) were tested for assessing the effective BMP in improving water quality.
VFS, Riparian buffer and both (VFS + riparian) have no effect on streamflow, but they were able to
decrease sediment, TN, and TP yields. Scenario with both VFS and Riparian buffer had the highest
reduction capability as per varying width (5, 10, 15, and 20 m). For CC, Rye grass, Winter Barley
and Winter Wheat (WW) were used, of which Rye grass had highest, 5.3% reduction in streamflow.
WW has the highest Total Nitrogen reduction that is of 25.4%. CC also has significant reduction
ranged between 10% to 11% for TP. This research would assist the Agricultural community to apply
appropriate Management practices to improve water quality.

Keywords: water quality; SWAT; BMP; watershed; hydrology

1. Introduction

Deterioration of Natural resources due to manmade alternations to land-use and land-
cover dates to pre- historic times. Agricultural land-use has first begun in Mesopotamia,
that is known to be the host of human civilization [1]. With growing population and
advancement in civilization and technology, led to improper use of natural resources
which resulted in climate change, sea level rise, water quality impairment, eutrophication,
and several impacts of pollution on environment. To meet the needs of current growing
population, agriculture producers have ramped the use of fertilizers and pesticides to
increase yield. This resulted water quality impairment in several watersheds globally.
Agriculture is considered major non-Point source for pollution [2], other point sources for
pollutions are sewage treatment plants, industrial effluents etc. Precipitation, soil type
and management and slope gradient are the most significant factors in generating runoff
from farmlands, which drains into nearby water bodies. This results in excessive inputs
of nitrogen and phosphorus into surface water. Water quality impairment due to mineral
salts induce the growth of algae that uses N and P as food source, agricultural runoff that
is entering into a stream channel is rich in nitrogen and phosphorus, result in abundant
food source for phytoplankton in the water; phytoplankton (algae) are harmful for human,
aquatic, and other animal species, it also affects other uses of the water bodies such as
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drinking water supply, recreation, aesthetic characteristics etc. [3]. About 2.2 billion people
of the world population has no access to Safely managed water [4], and about 80 percent of
illnesses are caused globally due to consuming impaired water [5]. Impaired water when
consumed as drinking water could result in adverse health issues. To mitigate this water
quality must be maintained by monitoring practices in the region.

Yazoo river Watershed (YRW) is the largest watershed with almost 50% of the water-
shed land-use is agriculture, runoff from these fields drain into Yazoo River and ultimately
into Mississippi river. There is limited research conducted as a watershed scale analysis
for YRW, this study could help in assessing current conditions and projecting for future.
Mississippi river carries sediments, nutrients from several parts of the country and drains
into Gulf of Mexico. Eutrophication in Gulf of Mexico has been a concern, affecting aquatic
life in the area [6].

Inputs such as variety of herbicides, pesticides, and fertilizers are used to maximize
yield. Organic manure is one of the inputs that farmers use as fertilizer, to minimize the
effect of synthetic ones. Crop management inputs such as irrigation, fertilizer, and pesticide
etc. were applied during growing season, although they were applied in prescribed
quantities, there is still a significant amount that plants do not use. Residuals after plant
uptake will eventually either leach into ground or transported through runoff. This process
is quite prominent in parts of the world and in the watershed [7]. Agriculture being a
major non-point source pollution [2], to decrease nutrient inputs from agricultural lands,
USDA has implemented Best Management Practices in lieu of this concern in several states
including Mississippi, but before selecting the appropriate BMP, it is efficient to know the
source of pollutant, and the amount of it released into the water.

To assess the efficiency of various management practices, application of modeling tool
is essential. Numerous modeling tools are used for the analysis of water quality, they are
designed and used based on the applicability of water quality parameters. Soil and Water
Assessment Tool (SWAT) is a conceptual model that is used prominently in watershed
modelling, there are studies that indicate SWAT model is one of the most efficient models
in quantifying hydrologic and water quality parameters at watershed scale [8]. It has also
been used in quantifying Nutrient sources in Big sunflower river watershed which is a
sub watershed of YRW. Therefore, the objectives of this research were to: (i) calibrate and
validate model for streamflow, sediments, total Nitrogen (TN), and total Phosphorus (TP);
and (ii) assess Best Management Practices’ (BMPs) effects on water quality.

2. Materials and Methods

2.1. Study Area

YRW is the largest watershed in the state of Mississippi, with a drainage area of
5.08 million ha, shown in Figure 1. Located in the north-western region of Mississippi.
YRW has two regions that are predominant, the Buff hills where most of the land type
is upland, birthplace for many rivers in the state, located in the northeast region of the
watershed, and The Delta where most of the land is flat with some of the most fertile soils
that are best for Agriculture, located between Yazoo and Mississippi Rivers in the northwest.
YRW covers 30 counties of Mississippi with Interstate 55 crossing across the watershed.

Land use characteristics include Agriculture, forest lands, wetlands, lakes, and urban
areas. Major crops in agricultural land use are Corn, cotton, Soybean, Pasture lands that
accounts to 47.24%. Forest lands are classified as Deciduous, evergreen, and mixed types
that cover majority of the watershed to 49.92%, the remainder land that is of 2.84% is
covered with lakes, forested and non-forested wetlands, and urban areas as shown in
Figure 2. Majority of the soils present in the watershed are Alligator, Dundee, Sharkey,
Dowling, Forestdale, Smith-dale. This watershed is divided into 109 smaller watersheds
(sub-basins) for ease of analysis in SWAT.
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Figure 1. Location of the Yazoo River Watershed showing weather and USGS gage stations.

 

Figure 2. Land use Characteristics in Yazoo River Watershed.
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2.2. Model Description

SWAT—Soil and Water Assessment Tool is a continuous daily time-step watershed
scale model. SWAT can simulate Hydrologic and water quality parameter outputs such as
sediment, total Nitrogen, and total Phosphorus concentrations for each HRU (Hydrologic
Response Unit), Sub-basin [9]. Watershed delineation of YRW resulted in 109 sub-basins
which are reclassified into HRUs with the help of Digital Elevation Model input, land-
use, soil, and slope classifications. This classification helps in applying different crop,
soil, and slope parameters for individual HRU for detailed analysis. Output generated
from SWAT can also be viewed as per sub-basin and HRU level. Sediment and Nutrient
inputs are derived from basin slope, surface lag time etc., for nutrients, Agricultural
management inputs such as fertilizer and pesticide application etc., are used. It is one of
the efficient hydrological models existing, used for estimating long-term effects caused by
agricultural and other management operations. This analysis could be useful in developing
management operations. Arc SWAT is an ArcGIS extension, a joint development by USDA-
ARS and Texas A&M University.

2.3. Model Inputs

Primary data inputs used were Digital Elevation Models (DEM) for 30 m × 30 m
resolution acquired from United States Geological Survey [10], for watershed delineation.
Land-use data is acquired from United States Department of Agriculture–National Agricul-
tural Statistics Service (USDA-NASS) [11] that is Crop Land data layer (CDL) of 30 m × 30 m
resolution. Soils data was obtained from Soil Survey Geographic (SSURGO) database [12].
Weather inputs such as daily minimum and maximum Temperature and Precipitation data
obtained from National Oceanic and Atmospheric Administration [13] from 2000 to 2019
for weather stations in YRW.

Agriculture, since considered as major non-point source of pollution, nutrient inputs
in agriculture such as fertilizer, pesticides, animal manure etc. were applied. Mississippi
State University Agricultural and Forestry Extension Service [14] keeps the information for
different crop, this including Planting date, Fertilizer and Pesticide application date and
type used, Irrigation schedule and amounts, Tillage practices and Harvest dates. These
dates vary for different crop types, respective dates and types were obtained and applied
to the model. Forest Management practices were obtained from Mississippi Forestry
Commission [15].

Manure inputs were estimated with the help of revised standards provided by Ameri-
can Society for Agricultural and biological Engineers [16]. Total dry weight produced by
cattle is estimated to 2.36 kg/day/animal, similarly, for chicken it is 0.03 kg/day/animal
and for swine, it is 0.14 kg/day/animal. Average weight for cattle, chicken and swine are
440 kg, 1.9 kg, and 196 kg respectively. Most of the manure inputs have been given in lieu
of timber production for the forested area.

2.4. Model Accuracy Assessment

Accuracy of the model is estimated using two statistical indices, Nash, and Sutcliff
Efficiency (NSE) [17] index, and coefficient of determination (R2) [18] (1) and (2) respectively.
For each parameter that is calibrated mainly, Streamflow, sediment, Total Phosphorus and
Total Nitrogen both NSE and R2 are evaluated.

NSE = 1 − ∑N
i−1 (Oi − Si)

2

∑N
i−1 (Oi − O)

2 (1)

R2 =

⎛⎜⎜⎝ ∑N
i−1
(
Oi − O

)(
Si − S

)√
∑N

i−1 (Oi − O)
2.
√

∑N
i−1 (Si − S)2

⎞⎟⎟⎠
2

(2)
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where Oi is the Observed data, Si is simulated data, O and S are observed and simulated
means respectively. Coefficient of Determination helps us in understanding the trend
between two sets of data, in this case Observed and Simulated by giving linear relationship
between them. R2 ranges from 0 to 1, if R2 value is close to 1 then it is perfect relationship
between observed and model simulated value. NSE ranges −∞ to 1, result close to 1 depicts
model is accurate.

2.5. Calibration and Validation

Using R2 and NSE statistics, model accuracy was tested for Streamflow, sediments,
total Nitrogen, and total Phosphorus. This is essential, since we are simulating outputs
based on limited field collected observations. Once the statistic had shown positive trend,
conclusions were based for 20 years.

2.5.1. Streamflow Calibration

Flow parameter calibration is the primary step in calibration and validation process.
For a total of 8 USGS Gauge stations in YRW with continuous streamflow data, model was
calibrated and validated. Monthly data from these stations is collected and calibrated from
year 2008 to 2011 and validated from year 2012 to 2015. By using Auto-Calibration tool,
SWAT-CUP (SWAT calibration and Uncertainty Procedures). SWAT_CUP is designed specif-
ically for SWAT calibration procedures, SUFI-2 (Sequential Uncertainty Fitting version 2)
algorithm helps in fitting the best parameter value for the given respective range [19]. Flow
is affected by numerous parameters; this tool was used so that multiple parameters that
are sensitive [8,20–22] that are mentioned in Table 1 for flow were simultaneously changed
until best results were obtained.

Table 1. Streamflow sensitive Parameters.

Parameter Name Fitted Value Min_Value Max_Value

R_CN2.mgt −0.281491 −0.611679 −0.232775
V_ALPHA_BF.gw 0.154628 −0.03763 0.426442

V__GW_DELAY.gw 169.28447 92.200127 278.26578
V__GWQMN.gw 4279.6025 2744.1755 5243.7075

R__ESCO.hru −0.658654 −0.693971 0.130097
R__SOL_AWC(..).sol −0.288483 −0.417682 0.278006
V__GW_REVAP.gw 0.038273 −0.041752 0.077434

R__SURLAG.bsn 3.360117 1.552425 7.054097
R__SOL_K(..).sol 0.406588 −0.061624 0.493882

2.5.2. Sediment Calibration

Best Management Practices can limit sediment transport with the runoff; therefore,
calibration and validation of Sediment was performed. With the limited available data,
model was calibrated and validated for 2 USGS gauge stations, Big Sunflower at Merigold
(USGS-07288280) and Bouge Phalia near Leland (USGS-07288650) respectively. Manual
calibration approach was used with the help of Manual Calibration helper tool in SWAT.
From literature and testing, sensitive parameters [23–26] were selected and used in calibra-
tion and validation process, they are mentioned in Table 2 below. Observed suspended
sediment data obtained from field collected samples, for the period from 2013 to 2016 that
is collected every 15 days for these 4 years. Calibration was performed from 2013 to 2014;
and validation was performed from 2015 to 2016.
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Table 2. Sensitive Parameters in Sediment Calibration.

Parameter_Name Fitted_Value

ch_cov1.rte 0.03
ch_cov2.rte 0.035

ERODMO.rte 0.5
PRF.rte 0.57

spcon.rte 0.0006
SLSUBBSN.hru 137.5
ADJ_PKR.bsn 2
USLE_K.sol 0.2

USLE_C.cropdat 0.2
USLE_P.mgt 1

2.5.3. Total Nitrogen

In the process of nutrient quantification, Nitrogen is considered one of the main min-
eral salts that is deposited in surface water from agricultural runoff. Therefore, Calibration
and validation of Total Nitrogen was performed from 2013 to 2014 and 2015 to 2016 respec-
tively. Data collected at 15-day interval was obtained from MDEQ for this process. Manual
Calibration approach was chosen due to limited data availability and performed with the
help of Manual Calibration Helper tool in SWAT. Sensitive parameters were identified from
numerous journals and performed calibration and validation [27,28] that are mentioned
in Table 3 below, for Big Sunflower at Merigold (USGS-07288280) and Bouge Phalia near
Leland (USGS-07288650) respectively.

Table 3. Sensitive Parameters in Total Nitrogen Calibration.

Parameter Name Fitted Value

RS3.swq 0.11
RS4.swq 0.0076
BC3.swq 0.305
BC2.swq 1.19
RCN.bsn 0.54
CMN.bsn 0.0011
CDN.bsn 1.1

SSDNCO.bsn 0.85
N_UPDIS.bsn 15

NPERCO 0.25

2.5.4. Total Phosphorus

Phosphorus is one other significant mineral that impacts water quality, therefore,
Total phosphorus estimated by the model must be calibrated to achieve accurate results.
Calibration and validation for total phosphorus was performed from 2013 to 2014 and 2015
to 2016 respectively. MDEQ collected field samples at an interval of 15 days. This data
was obtained and used in the process. With the help of Manual calibration helper tool
in SWAT, the model was calibrated for Big Sunflower at Merigold (USGS-07288280) and
Bouge Phalia near Leland (USGS-07288650) respectively. Parameters that affect the total
phosphorus concentration were identified from the literature, and testing [29–31] had used
in the process. They are mentioned in Table 4.
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Table 4. Sensitive Parameters in Total Phosphorus Calibration.

Parameter Name Fitted Value

RS2.swq 0.0965
RS5.swq 0.009
BC4.swq 0.0525
BC2.swq 1.19
RCN.bsn 0.54
PSP.bsn 0.4

PERCOP.bsn 0.8
PHOSKD.bsn 185
P_UPDIS.bsn 1

PPERCO 10.8

2.6. Management Scenarios

After a thorough research, implementation of BMPs is one of the methods to reduce
hydrologic and water quality outputs from Agricultural and Forested land-use. There are
numerous BMPs that are in practice, for this study Vegetative Filter Strips (VFS), Riparian
buffers, Cover Crops were selected.

2.6.1. Vegetative Filter Strips

VFSs are the areas that are located at the edge of Agricultural land and in between these
agricultural lands and streams of rivers, bayous, and lakes [32]. They are implemented in
such a way that runoff from fields is first passed through VFS before entering the streams.
They also provide erosion control locally by trapping sediments, nutrients, and organic
matter. VFS widths of 5, 10, 15, 20 m were applied. Water quality outputs were simulated
by adjusting.

2.6.2. Riparian Buffer

Riparian Buffer if implemented in forested areas. It is land area alongside surface
water streams that is covered with trees, shrubs [33]. For this study, riparian buffer is
applied as an edge of field practice [34] in mixed, deciduous, and evergreen forest land
use types. Buffer lengths of 5, 10, 15, 20 m were used for simulating the sediment, and
nutrient yields.

2.6.3. Cover Crops

Cover Crops (CCs) are considered as BMPs, they provide vegetative cover in agricul-
tural lands, during post-harvest period [35]. CCs are also beneficial in providing organic
matter to the field, increasing soil fertility, porosity, and decrease nutrient loss [36]. CCs
were added Post harvest of main crop for every agricultural land [14]. CCs are not harvested
before the main crop, they are buried in the process of tillage and land preparation for the
main crop to avoid more disturbance in the soil, and leaving them in the soil, improves the
organic content enrichment. CCs such as Winter wheat, winter barley, Rye grass were used
to simulate sediment and nutrient yields.

3. Results and Discussion

3.1. Calibration and Validation

SWAT project for Yazoo River Watershed is created, then calibrated and validated
for all the sensitive parameters that affect the water quality. For a total of 109 Sub-basins,
streamflow data was obtained for 8 Stations, Total Suspended Solids (TSS), Total Nitrogen
(TN), and Total Phosphorus (TP) data were available only for 2 stations in the watershed.

3.1.1. Streamflow (m3/s)

Streamflow calibration and validation was done for 8 USGS gauge stations, in YRW,
they are spread across the watershed with varied sub-basin characteristics. Overall model
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performance resulted in good as shown in Figure 3, the values for R2 and NSE ranged from
0.36 to 0.80 and 0.30 to 0.80 respectively for Calibration. Similarly, R2 and NSE ranged from
0.16 to 0.75 and 0.14 to 0.74 for validation. Table 5 shows Statistical results of Calibration
and validation of all 8 Stations.

 

Figure 3. Monthly observed vs. simulated flow during model calibration and validation from Bogue
Phalia gauge station.

Table 5. Calibration and Validation Results for Streamflow.

Sc. No. Gage Station USGS Gauge Station
Number

Subbasin
No.

Calibration Validation

R2 NSE R2 NSE

1 Yazoo River @ Steel Bayou (Vicksburg) 7288955 107 0.36 0.30 0.76 0.74
2 Tallahatchie River @ Money 7281600 61 0.58 0.41 0.68 0.59
3 Bouge Phalia near Leland 7288650 78 0.80 0.80 0.75 0.74
4 Little Tallahatchie @ Etta 7268000 15 0.65 0.62 0.76 0.69
5 Yalobusha @ Grenada 7285500 54 0.47 0.47 0.16 0.12
6 Skuna River 7283000 40 0.62 0.61 0.69 0.57
7 Big Sunflower @ Merigold 7288280 47 0.62 0.60 0.7 0.59
8 Big Sunflower @ Sunflower 7288500 67 0.73 0.69 0.63 0.57

3.1.2. Sediment Concentration

For sediments, due to limited data availability, the model is calibrated and validated
from 2013 to 2016 for 2 stations, at Leland (USGS07288650) and Merigold (USGS07288280).
Model Performance resulted in Satisfactory, it is due to numerous peaks sediment concentra-
tions due to extreme weather events such as heavy rainfall, snow, hail, and thunderstorms
reported in 2014, 2015 in Washington County, Mississippi where the station is located [37].
The slope gradient in this region is very less, close to flat conditions, that are suitable for
intense agriculture, resulting nominal flow during normal conditions. But, in the event of
extreme weather events, this region is prone to flash floods, and high speed wind gusts
during thunderstorms resulting increased sediment concentrations in the stream channel.
The R2 and NSE values were 0.12 and 0.17 respectively for calibration and 0.17 and 0.14 re-
spectively for Validation. Calibration of the model was done for Big Sunflower at Merigold
(USGS07288280) and validation was done for station Bogue Phalia station (USGS07288650)
as mentioned in Table 6. Figures 4 and 5 show the trend plot.
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Table 6. Calibration and Validation for Sediment Concentration.

Sediment TN TP

Process Station R2 NSE R2 NSE R2 NSE

Calibration Big Sunflower at Merigold 0.17 0.17 0.05 0.10 0.33 0.18
Validation Bouge Phalia near Leland 0.17 0.14 0.08 0.13 0.41 0.33

 

Figure 4. Calibration of Sediment Concentration for station Big Sunflower River at Merigold.

 

Figure 5. Validation of Sediment Concentration at Bogue Phalia Station near Leland.

3.1.3. Total Nitrogen (TN)

Calibration for Total nitrogen is done for Merigold Station (USGS07288280) and Val-
idation for Leland Station (USGS07288650). As we know, Nitrogen concentrations are
extremely difficult to predict, as it is volatile in nature. Model performance was satisfactory.
R2 and NSE values for Calibration 0.05 and 0.10 respectively and validation were 0.08 and
0.13 respectively as shown in Table 6. Concentration of Nitrogen is extremely varied from
one HRU to the other with in the same sub-basin. These stations are in the area where
Agriculture is intensive. Yazoo river watershed is about 50% forest, and field collected data
from forested creeks and streams was very sparse and dis-continuous.

3.1.4. Total Phosphorus (TP)

Similar to TN, model was calibrated at Merigold station (USGS07288280) Validated at
Leland station (USGS02788650). Model performance resulted poor during calibration, but
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the performance was satisfactory in validation. R2 and NSE values for Calibration 0.33 and
0.18 respectively and validation were 0.41 and 0.33 respectively as shown in Table 6.

3.2. Watershed Scale Impact of BMPs

Implementation of BMPs have resulted significant reductions in sediment and Nutrient
concentrations in the watershed. Although most of the BMPs does not have impact on flow,
Cover crop (CC) BMP has shown about 3–5% reduction, depending on the CC that is used.
Results from rest of the BMPs are as following.

3.2.1. Vegetative Filter Strips (VFS)

Sediment and Nutrient trapping from VFS have resulted in proportional to the width
of VFS as shown in Figure 6. Sediment and Nutrient yields for varying widths from 5 m to
20 m with 5 m increments have been simulated. When compared with baseline scenario,
percentage reduction in Sediment and nutrient concentrations were described in Table 7.

 

Figure 6. Comparison of different VFS widths based on water quality outputs.

Table 7. Percentage reduction in Sediment and Nutrient Concentrations at varying widths.

Width (m)
VFS Riparian Buffer Width (m) VFS + Riparian

Sediment TN TP Sediment TN TP Sediment TN TP

5 4.5 21.0 22.1 14.5 1.8 8.2 23.7 22.8 30.3
10 5.8 26.9 27.2 26.6 2.3 10.1 36.9 29.0 37.2
15 7.0 31.0 30.7 32.3 2.6 11.4 44.9 33.6 42.0
20 8.0 34.6 33.4 37.0 2.8 12.4 51.8 37.3 45.7

3.2.2. Riparian Buffer

Riparian buffer has been applied as edge of field practice in Forested land-use, with
width at baseline conditions 0 m to a maximum of 20 m with 5-m increments. Similar to
VFS, increase in buffer width resulted increased reduction in sediment and nutrients con-
centrations as shown in Figure 7. Percent reduction in Sediment, TN and TP concentrations
are listed in Table 7. Although TN and TP reductions were not as good as in case of VFS, it
is expected due to no agricultural or silvicultural management for forested land-use.
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Figure 7. Yield reduction of Sediment and Nutrient due to application Riparian buffer at vary-
ing width.

3.2.3. VFS and Riparian Buffer

This scenario is simulated with the combination of two BMPs, VFS and Riparian buffer
in Agricultural and forested lands. Implementing both BMPs throughout the watershed has
significantly reduced sediment and nutrient yields, shown in Figure 8. Percent reduction
varied with respect to width of VFS and buffer. Reduction in sediment concentrations
ranged between 23% and 52%, similarly TN ranged between 22% and 37% and TP between
30% and 46%. Percent reductions at varying width are listed in Table 7.

 

Figure 8. Reduction in sediment and Nutrient yields when both VFS and Riparian buffer are applied.

3.2.4. Cover Crops (CC)

Cover crops (CC) are used to maintain soil nutrient concentrations and provide veg-
etative cover to minimize impact of rain drop during a storm event. Rye grass, winter
barley and winter wheat had different impact in streamflow, TN, and TP concentrations as
shown in Figure 9. Although there is no significant impact on sediments, it is observed that
reduction in TN is significant, and ranged between 14% to 26%. Reduction in streamflow
and Nutrient concentrations is listed in Table 8.

303



Agriculture 2022, 12, 477

 

Figure 9. Reductions in Flow and Nutrient concentrations due to CC implementation.

Table 8. Percentage Reductions when CC were implemented.

Cover Crop (CC)
Percent Decrease

Streamflow TN TP

Rye Grass 5.3 16.3 10.6
Winter Barley 4.7 14.4 10.6
Winter Wheat 3.7 25.4 10.4

4. Conclusions

From this study, it is evident that implementing BMPs in a watershed have significant
impact in improving water quality. VFS (in agricultural land), Riparian buffer (forested
land) and combination of both have no impact on reducing streamflow, but these BMPs were
effective in reducing the sediment concentration, TN, and TP. As both VFS and Riparian
buffer are edge of field practices [35], size of the width is directly proportional to extent of
reduction. All three scenarios were simulated for five different widths, starting with 0 m, till
20 m with 5-m increments. The highest reduction in sediment and nutrient outputs were at
20 m width for all three scenarios. The results obtained from this study were compared with
other studies conducted in Big Sunflower River Watershed, in Mississippi [38], and Alger
Creek watershed in Michigan [23] which implemented VFS in their respective watersheds to
validate, results from both studies follow similar trend. Combination of VFS and Riparian
buffer throughout watershed had the highest reduction of the three, with width of 20 m, it
is observed that there is about 52% reduction in sediments, 37% reduction in total nitrogen
and 46% reduction in total phosphorus. Therefore, it is recommended to have a combination
of VFS and Riparian buffer for highest sediment, nutrient reduction that could result in
improving water quality.

Cover Crops (CC) used in this study are planted after the harvest of main crop
(Soybean, Corn, Cotton, and Rice). Crop scheduling, and management operations were
applied based on the observations from Mississippi Agriculture and Forestry Extension
Services [14]. Out of the three crops (Rye grass, winter barley, winter wheat) used as CC,
Rye had proved to be reducing streamflow the highest to about 5% compared to other CC,
whereas winter wheat had the highest TN reduction, about 25%. TP reduction ranged
between 10 to 11% for all three CC. These results were validated by comparing the results
from other studies conducted in Alger Creek Watershed in Michigan [23], Eagle creek
Watershed in Ohio [39], Smith fry watershed in Indiana [40]. All of them reported the
similar trend in application of CC as BMP for Flow, Sediment and Nutrient reductions.
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Abstract: In this paper, the authors studied the impact of human activities on the groundwater
environment to reduce the impacts such activities for sustainable groundwater use. The authors took
the monthly water table depth data of 32 long-term observation wells in the Daxing District of Beijing
from 1986 to 2016 as samples. The authors used seven interpolation methods in the statistics module
of ArcGIS by comparing the average error (ME) and root mean square error (RMSE) between the
measured and predicted values so that the authors can select the best interpolation method. Using the
geostatistical variogram model variation, the authors analyzed the nugget effect through time in the
study area. On the basis of the set pair analysis, the main factors causing the increase in groundwater
exploitation intensity were quantitatively evaluated and identified. The results were as follows.
(1) After comparing the simulation accuracy of the seven interpolation methods for water table
depth, ordinary Kriging interpolation was selected as the best interpolation model for the study area.
(2) The spatial correlation of the water table depth gradually weakened, and the nugget effect from
2006 to 2016 was 25.92% (>25%). The data indicated that human groundwater exploitation activities
from 2006 to 2016 greatly influenced the spatial correlation of the water table depth. (3) The average
mining intensity of groundwater from 2006 to 2016 was medium (Level II), and a bleak gradual
deterioration trend was observed. The evaluation results of the subtraction set pair potentials in
2010 and 2013, the years of key regulation of groundwater exploitation intensity, are partial negative
potential and negative potential, respectively. In 2010, three indicators had partial negative potential:
industrial product, tertiary industry product, and irrigated field area. In 2013, five indicators were in
negative potential: irrigated area, vegetable area, facility agricultural area, fruit tree area, and the
number of wells. Herein, the spatial and temporal variations in the water table depth of the study
area are analyzed using a geostatistical method. Moreover, the influence of each water part on the
groundwater exploitation intensity is further diagnosed and evaluated based on set pair analysis. The
obtained results can provide a theoretical and methodological reference for the sustainable utilization
of groundwater in regions where groundwater is the main water supply source, providing a basis for
industrial regulation policies in the region.

Keywords: geostatistical analysis; water table depth; interpolation model; set pair analysis

1. Introduction

As an important freshwater resource, groundwater is significant for urban life and
industrial and agricultural production. Especially in areas lacking surface water, ground-
water may be the only stable water supply source. In Beijing, a city located north of
North China Plain, the average annual rainfall is 585 mm. Its average water resource is
165 m3 per capita, accounting for approximately 8% of China’s water resources per capita.
Moreover, Beijing is located in a semiarid and semihumid region affected by a continental
monsoon climate, and the uncertainty of groundwater exploitable volume increases. These
reflect the dire water resources situation in Beijing. In addition, rapid urbanization in the
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past 20 years has changed the original natural underlying surface and, consequently, the
groundwater recharge and discharge processes. It has caused environmental problems,
such as the continuous water table depth decrease in regional groundwater, settling of the
ground surface, and deterioration of water quality. Even with the South-to-North Water
Diversion Project in Beijing, groundwater still covers a significant proportion of the city’s
water supply. The exploitable amount of groundwater resources refers to the maximum
amount of water that can be obtained from the aquifer without causing deterioration of
the ecological environment, which is mainly related to the recharge and consumption of
groundwater. According to the relevant research results from 1989 to 2000 [1], the average
annual recharge of groundwater in the Beijing plain area was 27.66 × 108 m3/a, in which
rainfall infiltration accounted for 47.92%, lateral recharge in mountainous areas accounted
for 24.74%, irrigation recharge accounted for 12.86%, and canal infiltration recharge ac-
counted for 14.48%. More than 92% of the lateral supply in mountainous areas comes from
the atmospheric precipitation. Furthermore, atmospheric precipitation accounts for a large
proportion of groundwater recharge. According to the Beijing Water Resources Bulletin,
the average rainfall in Beijing from 2006 to 2019 was 549.86 mm, and from 1989 to 2000 was
549.92 mm, a minute difference indicating that the overall change in groundwater recharge
was not considerable. The average annual groundwater consumption in Beijing plain
from 1989 to 2000 was 30.27 × 108 m3/a, in which groundwater exploitation accounted
for 87.64%. The artificial exploitation of groundwater has an absolute advantage over
the consumption of groundwater. Therefore, studying the spatiotemporal variability of
groundwater exploitation intensity is of great practical significance and theoretical value
for reducing the impact of human activities on the groundwater environment and realizing
the sustainable utilization of groundwater.

Changes in water table depth significantly correlate with groundwater exploitation
intensity [2–4]. Thus, these can reflect the intensity of groundwater extraction in a region by
collecting water table depth data from monitoring wells at the water level and establishing
a correlation model. However, because water table data around monitoring wells are
limited, the authors should choose a spatial interpolation model with the slightest error if
the authors must characterize the spatial variation of the water table depth in the whole
region. Deterministic and geostatistical interpolation methods are commonly used for this
purpose [5–9]. On the basis of similarity or smoothness within the study area, determin-
istic interpolation methods create surfaces using known points [10,11]. The deterministic
interpolation methods can be divided into two types: global and local. Global interpola-
tion methods use the sample data set of a whole study area to calculate predictive values
(e.g., global polynomial interpolation [GPI]). In contrast, local interpolation methods use
known sample points within a small spatial area of a large study area to calculate predictive
values (e.g., inverse distance interpolation [IDW], radial basis interpolation, and local poly-
nomial interpolation [LPI]). Geostatistical interpolation methods mainly include ordinary
Kriging interpolation (OK), simple Kriging interpolation (SK), pan-Kriging interpolation,
probabilistic Kriging interpolation, disjunctive Kriging interpolation, and collaborative
Kriging interpolation. These methods are based on the theory of variation function and
structural analysis. These methods are used for the optimal unbiased estimation of region-
alized variables in limited regions [12,13].

As a unique function of geostatistical analysis, semi-variation is a quantitative ex-
pression of the theorem of close geographic resemblance [14,15]. The strength of the
geographical spatial correlation can be reflected by the nugget effect (nugget/sill). The
larger the nugget effect, the greater the variation between samples caused by random fac-
tors [16,17]. Structural factors can enhance the spatial correlation of the water table depth,
such as precipitation, topographic undulations, and water-containing rocks. Contrarily,
human exploitation belongs to stochastic factors, which weaken the spatial correlation.

Although the nugget effect can identify the spatial variability of water table depth
over time, further diagnosing and evaluating the main factors affecting groundwater
exploitation is necessary for controlling it. Some evaluation methods are used in developing
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and utilizing groundwater. These include the water balance method [18,19], numerical
simulation method [20,21], isotope tracer method [22], principal component analysis, fuzzy
comprehensive analysis, risk matrix method, projection pursuit method [23], and set
pair analysis method [24,25]. Among these, set pair analysis can reflect the uncertainty
relationship between evaluation indexes and evaluation standards from the three aspects
of identity, difference, and opposition. Thus, it has unique advantages for treating water
resources systems. The adjoint functions of set pair analysis include subtraction set pair
potential [26], a partial linkage coefficient [27], and a neighbor-joining coefficient [28].

To reduce the impact of human activities on groundwater environment for the sus-
tainable utilization of groundwater, in this study, the Daxing District in Beijing is used
as the research area, and the best interpolation model is selected from the seven interpo-
lation methods in the ArcGIS statistics module. The spatial variability characteristics of
groundwater depth are analyzed using the geostatistical function model. The main source
of water supply in the study area is groundwater, and the types of water use mainly include
agricultural water, industrial water, tertiary industry water and domestic water. Therefore,
this paper uses the agricultural irrigation area, industrial output value, tertiary industry
output value, population, and the number of wells as the evaluation indexes. Using set
pair analysis, the authors quantitatively evaluated and identified the main factors causing
the increase in groundwater exploitation intensity. The research results can provide a
theoretical and methodological reference for the sustainable utilization of groundwater
in areas where groundwater is the main source of water supply, providing a basis for
industrial regulation policies in the region.

2. Materials and Methods

2.1. Study Area

The Daxing District is located in the southern plains of Beijing (39◦26′–39◦51′ N,
116◦13′–116◦43′ E). It has 14 townships and an area of approximately 1036 km2. It has a
warm, temperate, semihumid, semiarid continental monsoon climate with well-defined
seasons: cold and less rainy in winter and spring, hot and rainy in summer, and comfortable
in autumn. The average annual rainfall is 510.1 mm, with large annual and interannual
rainfall distributions. The annual average temperature is 11.7 ◦C, and the maximum
frozen soil depth is 69 cm. The Daxing District belongs to the Yongding River floodplain,
which has a flat topography elevated from 9 to 73 m and a topographic slope of about
0.5–2.0‰. The soil type is predominantly sandy loam with a coarsening gradient from
west to east. The Daxing District is an important strategic node for the Beijing–Tianjin–
Hebei coordinated development. It has four primary industries: metropolitan industry,
modern service industry, cultural creative industry, and urban modern agriculture. With
the construction of the Beijing Daxing International Airport, the Daxing District is slated to
become one of the fastest-growing regions in Beijing.

2.2. Data Sources
2.2.1. Groundwater Water Level Data

Long-term monthly water table depth monitoring data from 32 observational logs in
the study area from 1986 to 2016 were collected to monitor the dynamics of water table
depth. The monitored well locations are shown in Figure 1.
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Figure 1. Geographic location map of the study area.

2.2.2. Statistical Information

The annual statistical data used in this paper were collected from relevant data,
including the Beijing water service statistical yearbook from 2012 to 2017, the Daxing
District statistical yearbook from 2005 to 2017, the groundwater harvest well census results
of the Beijing census of water services from 2013, and the third agricultural census data
compilation from the Daxing District of Beijing in 2016.

2.3. Research Method
2.3.1. Error Calculation Methods for the Interpolation Model

In this paper, seven methods are used to model the groundwater water level: IDW,
GPI, LPI, tension spline interpolation (Tspline), OK, SK, and the universal Kriging method
(UK). The advantages and disadvantages of each interpolation method are shown in Table 1.
The average errors (MEs), root mean square errors (RMSEs), and Nash–Sutcliffe efficiency
coefficient (NSE) of the different methods are compared to select the best model.

Table 1. Advantages and disadvantages of each interpolation method.

Method Advantages Disadvantages

IDW Wide application range and fast calculation speed IDW can produce bullseyes around data

GPI Suitable for surface with slow change in spatial data and
fast calculation speed

The edge position of data has great influence on the
interpolation result

LPI Suitable for reflecting short-range change of spatial data
and medium computing speed Prone to strip phenomenon

Tspline
Suitable for surfaces with flat spatial data. Compared
with GPI, this method provides accurate interpolation

and has medium calculation speed

In a short range, when the data change considerably or
the sampling point data have great uncertainty, the

interpolation results will be greatly affected

OK
The interpolation accuracy is less affected by the sample
density and number, and the interpolation effect is good

with high accuracy
Intensive calculation and slow operation speed

SK
SK is the same as OK, but also the linear estimation of

regionalized variables; the interpolation effect is slightly
worse than OK

Intensive calculation and slow operation speed

UK UK is an extension of OK, which can add explanatory
variables to the model Intensive calculation and slow operation speed

The mean square error, root mean square error, and Nash–Sutcliffe efficiency coefficient
(NSE) are calculated as follows:

1. The mean square error

ME =
1
n

n

∑
i=1

|z∗(pi)− z(pi)| (1)
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2. Root mean square error

RMSE =

√
1
n

n

∑
i=1

|z∗(pi)− z(pi)|2 (2)

3. Nash–Sutcliffe efficiency coefficient

NSE = 1 −

n
∑

i=1
(Z∗(pi)− Z(pi))

2

n
∑

i=1
(Z∗(pi)− Z∗)2

(3)

In these equations, ME represents the mean error, RMSE is the root mean square error,
NSE represents the Nash–Sutcliffe efficiency coefficient, n represents the sample size, Z(Pi)
is the measured value for position Pi, Z*(Pi) is the predicted value for position Pi, and Z∗ is
the total average of measured values. According to formula (1), formula (2), and formula
(3), the average error (ME), root mean square error (RMSE), and Nash–Sutcliffe efficiency
coefficient (NSE) of seven interpolation methods were compared. The interpolation method
with the smallest ME and RMSE and the closest NSE to one was selected as the best
interpolation method.

2.3.2. Calculating the Nugget Effect

The semi-variation coefficient expresses the geographic proximity of similarly quanti-
fied expressions [14].

Figure A1 shows that the semi-variation value r(h) increases with distance h because
the semi-variation function manifests the spatial correlation coefficient of things. These
things are more similar when they are closer to each other and have smaller half mutation
values. At greater distances, their similarity weakens, and the half mutation value increases.

When the sampling site distance is 0, the semi-variation function value should be 0.
However, when two sampling sites are so close because of measurement error and spatial
variation, the semi-variation function value is not 0; that is, these sites form a nugget.
The abutment value is when the sampling point increases with the distance h and the
semi-variation function r(h) reaches a relatively stable constant from the initial nugget
value, called the sill. The spatial correlation does not exist when the variant function value
exceeds the abutment value; that is, the functional value does not change with the sampling
site interval distance. The variable range is the interval distance between sampling sites
when the value of the semi-variation function is taken to reach the abutment value from an
initial tuber value.

The nugget effect, which is the ratio of the nugget to the sill, characterizes the strong
spatial correlation across samples. The smaller the nugget effect, the smaller the impact
of artificial mining on water table depth, and the greater the spatial correlation of water
table depth. The greater the nugget effect, the greater the influence of artificial mining on
water table depth, and the smaller the spatial correlation of water table depth. A nugget
effect <0.25 indicates that the variables are strongly influenced by natural structural factors
and have strong spatial correlations. A nugget effect between 0.25 and 0.75 indicates that
the variable is influenced by both natural structural and stochastic factors, and the spatial
correlation is moderate. When the nugget effect is >0.75, the variables are greatly affected
by stochastic factors and have a weak spatial correlation [29].

The nugget effect is calculated as

Nugget e f f ect =
Nugget

Sill
(4)
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2.3.3. Evaluation and Diagnosis of Groundwater Exploitation Intensity Based on Set
Pair Analysis

The connection number of set pair analysis is calculated, and the grade of exploitation
intensity determined to establish the evaluation and diagnosis model of groundwater
exploitation intensity. Then, subtraction sets are used to identify the main factors affecting
the intensity of groundwater extraction. The main steps are as follows:

1. Establishment of an evaluation index system and classification of regional groundwa-
ter extraction intensity

Because the local natural surface water resources in the study area are insufficient, have
low water quality, and cannot be used directly as a water supply, the regional water supply
is mainly groundwater and regenerated water. Groundwater composes about 70% of the
total water supply. Regenerated water is primarily used for ecological river use, accounting
for about 30%. The types of water used in the study area mainly include agricultural water,
industrial water, tertiary industry water, domestic water, and ecological water. Agricultural
water is used mainly in grain fields, gardens, facility agriculture, and fruit tree irrigation,
and the irrigation area of each type is taken as an evaluation indicator. The industrial
output is taken as an industrial water evaluation indicator. The tertiary industry output is
taken as a tertiary industry water evaluation indicator. The population number is taken
as a domestic water evaluation indicator. In addition, the number of wells in the study
area is used as a groundwater mining index of groundwater extraction intensity. Therefore,
considering practicality, hierarchy, and operability [30], an evaluation index system for
evaluating the intensity of groundwater extraction in the township and town areas of the
Daxing District and jurisdiction is constructed in this paper. The evaluation indicators of
this system are the population (10,000 people), total industrial output (100 million yuan),
tertiary industry output (100 million yuan), irrigated area (10,000 mu), vegetable area
(10,000 mu), facility agriculture area (10,000 mu), fruit tree area (10,000 mu), and number of
machine wells (10,000 eyes).

By referring to the results of previous studies [31] and comprehensively considering
economic, social, ecological, and other factors and expert opinions, the intensity of ground-
water extraction is classified into three levels, namely, Levels 1, 2, and 3, representing
“weak,” “medium,” and “strong” groundwater extraction intensity, respectively.

2. Calculation of connection numbers for evaluation samples

Equation (5) is used to calculate the connection number of evaluation samples. u1i
represents the number of ternary contacts of sample i. na, nb, and nc indicate the number of
evaluation indicators of sample i that are in Levels 1, 2, and 3, respectively. wj is the weight
value of the jth indicator. a1, b1, and c1 respectively denote the sample set pair degrees of
identity, divergence, and antagonism, and their values are v1i1, v1i2, and v1i3, respectively. I
and J denote the coefficient of difference and the coefficient of opposition, respectively.

u1i =
na

∑
j=1

wj +
na+nb

∑
j=na+1

wj I +
na+nb+nc

∑
j=na+nb+1

wj J = v1i1 + v1i2 I + v1i3 J =a1 + b1 I + c1 J (5)

3. Calculation of the connection number of the evaluation index

The number of contact u2ijk of the evaluation index must be calculated to represent the
affiliation degree between the evaluation index xij and the evaluation standard Skj, where i
is the ith sample, j represents the jth indicator, and k represents the rank number.

If the evaluation index is a positive indicator and S0j < xij ≤ S1j or it is a reverse
indicator and S0j > xij ≥ S1j, the index contact number is calculated using equation (6):⎧⎪⎪⎨⎪⎪⎩

u2ij1 = 1

u2ij2 = 1 − 2(S1j−xij)
(S1j−xij)

u2ij3 = −1

(6)
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If the evaluation index is a forward indicator and S1j < xij ≤ S2j or it is a reverse
indicator and S1j > xij ≥ S2j, the index contact number is calculated using Equation (7):⎧⎪⎪⎪⎨⎪⎪⎪⎩

u2ij1 = 1 − 2(xij−S1j)
S2j−S1j

u2ij2 = 1

u2ij3 = 1 − 2(S2j−xij)
S2j−S1j

(7)

If the evaluation index is a forward indicator and S2j < xij ≤ S3j or it is a reverse
indicator and S2j > xij ≥ S3j, the index contact number is calculated using Equation (8):⎧⎪⎨⎪⎩

u2ij1 = −1

u2ij2 = 1 − 2(xij−S2j)
S3j−S2j

u2ij3 = 1

(8)

A forward indicator occurs when the rank value increases with the index value;
otherwise, it is a reverse indicator. S0j, S1j, S2j, and S3j are the minimum, critical value of
Levels 1 and 2, critical value of Levels 2 and 3, and maximum value of index j, respectively.

The degree of membership between the contact number of sample indicators and the
evaluation criteria can be expressed as follows:

v∗2ijk = 0.5 + 0.5u2ijk (9)

In calculating the contact number of sample indicators u2, Equation (9) is first normal-
ized, and the calculation formula is as follows:

v2ijk =
v∗2ijk

3
∑

k=1
v∗2ijk

(10)

u2i =
na

∑
j=1

wjv2ij1 +
na+nb

∑
j=na+1

wjv2ij2 I +
na+nb+nc

∑
j=na+nb+1

wjv2ij3 J = v2i1 + v2i2 I + v2i3 J = a2 + b2 I + c2 J (11)

In the formula, v2ijk represents the contact number component of the jth indicator
in the ith sample. u2i indicates the contact number of sample indicators i. a2, b2, and
c2 respectively represent the sample index set pairs’ degree of identity, divergence, and
antagonism, and their values are v2i1, v2i2, and v2i3, respectively.

4. Calculation of average contact number

The average contact number by sample is obtained by taking the contact number of a
sample and the contact number of an index to sufficiently extract sample information [26]:

vik =
(v1ikv2ik)

0.5

3
∑

k=1
(v1ikv2ik)

0.5
(12)

ui = vi1 + vi2 I + vi3 J (13)

In the formula, vik represents the mean number of contact components of the ith
sample. ui indicates the average number of contacts for the ith sample.

5. Determination of the intensity levels of underground extraction
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The values of groundwater extraction intensity between sample i and index j are
calculated separately using the level eigenvalue method [32], and the calculations are
as follows:

h(i) =
3

∑
k=1

vikk (14)

h(j) =
3

∑
k=1

v2ijkk (15)

In the formula, h(i) represents the value of groundwater extraction intensity for the ith
sample, and h(j) represents the groundwater extraction intensity value of the jth indicator.

6. Diagnosis of groundwater extraction intensity based on the number of linkages

The identification of key indicators affecting the intensity of groundwater extraction
uses subtraction set pair potentials [26].

According to the set pair analysis theory, the subtraction set pair potential for the
number of contacts essentially reflects the relative ascertainment status and developmental
trends of the study subjects. The subtraction set pair potential Sf(u) is defined as

s f (u) = a − c + ba − bc = (a − c)(1 + b) (16)

In the formula, sf(u) ∈ [−1, 1]. According to the principle of uniformity, the subtraction
set pair potentials can be divided into five grades: negative potential, sf(u) ∈ [−1, −0.6);
partial negative potential, sf(u) ∈ [−0.6, −0.2); balanced potential, sf(u) ∈ [−0.2, 0.2]; partial
positive potential, sf(u) ∈ (0.2, 0.6]; and positive potential, sf(u) ∈ (0.6, 1.0]. Positive and
partial positive potentials illustrate that research subjects favorably develop. Negative
and partial negative potentials illustrate that research subjects develop in an unfavorable
direction and thus require focusing on and regulating indicators of these negative states.
The homogeneous potential is an uncertain state.

The total adjacent subtraction is obtained by calculating the difference between the
degree of identity a and the degree of difference b, degree of opposition c, and degree of
difference b, which reflects developmental changes of things [33]. The specific calculation
procedure is as follows:

u3 = (a − c) + (b − c)(a − b) + (b − a)(c − b) (17)

In the formula, u3 ∈ [−2, 1.0625], where, when a = 0, b = 1, and c = 0, u3min = −2; when
a = b = 0, c = 1, and c = 1, u3 = −1; when a = 0.875, b = 0.125, and c = 0, u3max = 1.0625.
When u3 changed from −2 to 1.0625, the trend of the research object gradually changes
from inverse potential to potential, but the critical state cannot be determined.

The potential function can also judge the trend of the set toward the development of
events. Its value is also larger, indicating that the research subjects move toward the same
potential [28]. The specific calculation is as follows:

Shi(u4) = (a/b)/(b/c) = ac/b2 (18)

3. Results and Discussion

3.1. Results of the Interpolation Calculation of Water Table Depth

The parameters selected for each interpolation method to obtain the spatial distribution
characteristics of water table depth in the study area should have minimal errors. The
selection of model parameters and error accuracy is shown in Table 2.
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Table 2. Interpolation model parameters and interpolation error table of water table depth from 1986
to 2016.

Interpolation
Model

Data
Conversion

Maximum Number of
Predicted Points within

the Search Radius

Minimum Number of
Predicted Points within

the Search Radius

Variation
Function

Mean (m)
Root Mean
Square (m)

Nash-Sutcliffe
Efficiency

Coefficient

IDW no 15 10 / 0.1816 4.5373 0.70
GPI no / / / 0.0787 5.2072 0.81
LPI no 20 10 / 0.1309 3.9898 0.83

Tspline no 25 10 / 0.1348 4.2010 0.80
OK no 15 5 Globular model 0.0507 3.9577 0.89
SK no 16 5 Gaussian model 0.0517 4.0492 0.86
UK no 12 5 Globular model 0.0536 3.9865 0.88

Table 2 shows the deterministic interpolation method is less accurate than the geodesic
statistical interpolation method. Among all listed methods, IDW has the largest error and
a poor interpolation effect, which may be due to the existence of some extreme points in
the interpolation process [5,15]. Tspline, similar to IDW, is susceptible to the influence of
extreme value points [7,17], resulting in less effective interpolation, as shown by its ME and
RMSE. LPI, which is suitable for local spatial interpolation, shows high simulation accuracy
for short-range variations [7,11]. However, it predicts a large fluctuation of results for the
analysis of 30 older sequences in the water table depth; thus, its interpolation accuracy
is low. GPI is based on the sample data as a whole [5,7,14]. The higher the number of
interpolations, the better the interpolation effect. However, the complexity and error are
also relatively increased. This high number of interpolations also results in the largest
RMSE and a poor prediction effect.

The ME of OK, SK, and UK differ minimally, but the RMSE of the OK method is
less than those of SK and UK. Furthermore, the NSE of the geostatistical interpolation
method is closer to 1 than that of the deterministic interpolation method, indicating that the
geostatistical method is more reliable than the deterministic interpolation method. Among
the geostatistical interpolation methods, the NSE of the OK is higher than that of SK and
UK, indicating that OK has the highest reliability. Thus, the best interpolation method
selected is the OK method.

3.2. The Spatial-Temporal Distribution Rules of Water Table Depth

The water table depth in 1986, 1996, 2006, and 2016 is spatially interpolated using the
OK method.

Figure 2 shows that the overall water table depth in the Daxing region constantly
decreased. From 1986 to 2016, the water table depth of the regional subsurface decreased
from 8.1 to 17.60 m, with an average annual decline rate of 0.30 m. From 1986 to 1996, the
water table depth decreased from 8.1 to 10.80 m, with an average annual decline of 0.27 m.
From 1996 to 2006, the water table depth decreased from 10.80 to 17.34 m, with an average
annual decline of 0.65 m. From 2006 to 2016, the water table depth decreased from 17.34 to
17.60 m, with an average annual decline rate of 0.03 m.

From the above analysis, the period with the most significant decline rate of water
table depth in the Daxing District is from 1996 to 2006. This indicates that the groundwater
in this period is in a state of overdraft, resulting in a continuous decline of water table
depth. From 2006 to 2016, the water table depth was almost flat, although it decreased
slightly. This indicates that groundwater is basically in the state of mining–compensation
balance, which may be related to the extensive use of regenerated water locally. However,
environmental and geological problems caused by groundwater overmining remained
serious because of the previous continuous years of overdraft.
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Figure 2. Variation of water table depth from 1986 to 2016.

From 1986 to 2016, the decline rates of water table depth in the northern, central, and
southern Daxing District are 0.23, 0.49, and 0.18 m/a, respectively. These indicate that the
central region had the largest rate of water table depth decline, followed by the northern
and southern regions. Groundwater depression funnels can be found in the Qingyundian
and Beizangcun in the central region, with a continuous outward diffusion trend. Thus,
groundwater exploitation control in the region should be strengthened. The deepest water
table depth in the north is always higher than that in the middle and south, which may
be related to population distribution and the industrial layout in the Daxing District.
Compared with those in the northern and central regions, the water table depth and water
table decline rate in the southern region are relatively small. However, from 1986 to 2006,
the water table depth decreased from 6.04 to 11.82 m, and the water table depth continued
to decline. Thus, the southern region is also in a state of continuous overextraction.

316



Sustainability 2022, 14, 4341

3.3. Spatial Variability Analysis of Groundwater Depth

In identifying the main factors causing the decline of water table depth, the nugget
effects of the three periods from 1986 to 1995, 1996 to 2005, and 2006 to 2016 are calculated
to analyze the spatial variability characteristics of water table depth using the OK method.

As shown in Table 3, the nugget effect of water table depth increased from 1986 to 2016,
indicating that its spatial correlation gradually weakened and that the influence of human
activities on water table depth increased. The nugget effect increased from 0.04 to 0.10 in
1986–1995 and 1996–2005. Compared with that in 1996–2005, the nugget effect increased
from 0.10 to 0.26 in 2006–2016 (greater than 0.25), indicating that human extraction activities
have become an essential factor affecting water table depth. Therefore, further evaluating
and diagnosing the existing groundwater exploitation intensity is necessary to reduce the
influence of human mining activities on the water table depth.

Table 3. Semi-variogram model parameters of water table depth from 1986 to 2016.

Name 1986–1995 1996–2005 2006–2016

Nugget value 1.88 5.85 28.03
Partial sill 47.06 45.53 78.95

Sill 48.94 51.38 106.98
Nugget effect 0.04 0.10 0.26

3.4. Determination of Groundwater Exploitation Intensity Levels and Identification of Key Control
Years in the Daxing District Using Set Pair Analysis

An index system and an evaluation standard level of groundwater exploitation in-
tensity in the Daxing District are determined according to the calculation method in
Section 2.3.3 to analyze the spatiotemporal variation of groundwater exploitation intensity
in the Daxing region from 2006 to 2016. The weight of each index is determined using the
entropy weight–AHP method, as shown in Table 4.

Table 4. Evaluation index, standard grade, and index weight of groundwater exploitation intensity
in the Daxing District.

No. Subsystem Evaluation Index Symbol

Evaluation Index
Index

Weight
Weak

(Level I)
Medium
(Level II)

Strong
(Level III)

1 Domestic water Population
(10,000) X1 ≤115.90 115.90–150.70 >150.70 0.1480

2 Industrial water Gross industrial production
(100 million yuan) X2 ≤109.28 109.28–202.48 >202.48 0.1476

3 Tertiary industry water GDP of the tertiary industry
(100 million yuan) X3 ≤189.81 189.81–338.37 >338.37 0.1586

4

Agricultural water

Irrigation area
(10,000 mu) X4 ≤18.42 18.42–19.35 >19.35 0.1132

5 Vegetable field area
(10,000 mu) X5 ≤3.04 3.04–3.15 >3.15 0.1141

6 Facility agricultural area
(10,000 mu) X6 ≤7.87 7.87–7.98 >7.98 0.0862

7 Fruit tree area
(10,000 mu) X7 ≤6.96 6.96–31.33 >31.33 0.0565

8 Number of
underground wells

Number of motorized wells
(10,000 eyes) X8 ≤1.17 1.17–1.23 >1.23 0.1788

The subtraction set pair potential, total adjacent subtraction, and the potential function
can all reflect the trend of event development. Thus, the potential function values and the
total adjacent subtraction of each sample are calculated using Equations (18) and (17), respec-
tively, to verify the rationality of the results of the subtraction set pair potential evaluation.

However, Equation (18) shows that the difference degree b of the potential function
cannot be 0; when the difference degree is 0, the potential function method cannot judge
the trend of event development. Equation (17) shows that the subtraction of all neighbors
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can judge the trend of an event. Still, it cannot judge the critical value of the situation where
it is located. Fortunately, the subtraction set pair potential can deal with situations where
the difference degree b is 0 and determines the critical value of the development trend
of events. Therefore, it is selected for evaluating the potential of groundwater extraction
intensity in this paper.

Figure 3 shows that the evaluation results using subtraction set pair potential, evalua-
tion level, potential function, and subtractive full neighbor connection number are basically
consistent. However, the evaluation level has a trend opposite to those of the other three
methods. With greater development intensity, the evaluation level increased, whereas the
other three methods decreased. Figure 3 shows that the groundwater development intensity
is largest in 2013 in the Daxing District and smallest in 2008. The groundwater development
intensity from 2006 to 2013 had an increasing trend year by year. However, it slightly eased
from 2013 to 2016. The average connection number of groundwater development intensities
for the whole region in 2010 and 2013 had partial negative potential and negative potential,
respectively. In 2006, 2009, 2011–2012, and 2014–2016, they had balanced potential. In
2007–2008, they had partial positive potential. These were consistent with the results of
the comprehensive review of the connection numbers. According to the evaluation results,
the average mining intensity of groundwater in the Daxing District from 2006 to 2016 was
medium (Level II) with a bleak gradual deterioration trend. The evaluation results of the
subtraction set pair potential in 2010 and 2013 were partial negative potential and negative
potential, respectively, and the comprehensive evaluation results were 2.31 and 2.45. The
years 2010 and 2013 were the groundwater exploitation intensity key control years.

Figure 3. Groundwater exploitation intensity in the Daxing District from 2006 to 2016.

3.5. Identification of Main Factors Affecting Groundwater Exploitation Intensity in the Daxing
District Based on Subtraction Set Pair Potential

The authors further identified the main factors affecting the intensity of groundwater
extraction and provided technical support for groundwater management and protection. In
this paper, the subtraction set of each evaluation index was used to diagnose and analyze
the jth index of the ith evaluation sample, which can be obtained as the main index that
caused the increase in groundwater extraction from 2006 to 2016 in the Daxing District.
As shown in Figure 4, in 2010, three indicators had partial negative potential: industrial
GDP, tertiary industry GDP, and irrigation area. In 2013, five indicators had negative
potential: irrigated land area, vegetable field area, facility agriculture area, fruit tree area,
and the number of wells. In Figs. 4 and 5, the trends of the subtracted set pair potential
(evaluation level) of the gross industrial product (X2), gross tertiary industrial product
(X3), and irrigation area (X4) are basically consistent between 2006 and 2016. However, the
subtraction set pair potentials (evaluation grade) of these indicators significantly decreased
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(increased) in 2010, which may be related to the adjustment of the industrial structure in
the Daxing District. The Daxing District began vigorous industrial and tertiary industrial
developments from 2009 to 2010. Its industrial and tertiary industry output values in
2010 increased by 16.12% and 17.54%, respectively, compared with those in 2009. This
rapid development resulted in the rapid increase of industrial water and tertiary industry
water consumption.

Figure 4. Subtraction set potential of each evaluation index in the Daxing District from 2006 to 2016.

The subtraction set pair potential (evaluation rank) of vegetable area (X5) from 2006 to
2016 had a continued decreasing (rising) trend from 2008 to 2013 (Figure 5). These indicate
that the vegetable area (X5) had an increasing trend at this stage, leading to increased
water consumption. The subtraction set pair potential (evaluation rank) of the facility
agricultural area (X6) continued to increase (decrease) from 2008 to 2012, indicating that it
had a decreasing trend at this stage. In 2013, the subtraction set pair potential appeared to
increase, indicating that facility agricultural area (X6) had an increasing trend compared
with that in 2012. The subtraction set pair potential (evaluation rank) of the fruit tree area
(X7) had an increasing (decreasing) trend from 2008 to 2011 and a decreasing (increasing)
trend from 2011 to 2013, indicating that it had an increasing trend in 2011–2013 compared
with that in the previous stage. From these analyses and from Figs. 2 and 3, the authors can
observe that the use of agricultural water has continuously decreased since 2014, which
is considerably related to the implementation of agricultural water policies in Beijing.
This indicates that the Daxing region has achieved good results in its water-saving social
construction practice. The subtraction set pair potential (evaluation grade) of the number
of wells (X8) showed an increasing (decreasing) trend from 2008 to 2012 and a decreasing
(increasing) trend from 2012 to 2014. This indicates that the number of wells (X8) had a
decreasing trend from 2008 to 2012, an increasing trend from 2012 to 2014, and a decreasing
trend since 2014. The initial increasing and the ensuing decreasing trends for the number of
wells (X8) indicate rapid population growth and the development of three major industries
from 2008 to 2014, which continuously increased the demand for groundwater. Conversely,
the number of opportunistic wells (X8) tended to decrease since 2014, which may be related
to the water-affecting evaluation and approval system implemented in Beijing city and the
rigor of new water use. It may additionally be related to the substitution of some subsurface
water sources after the north-to-south water diversion into Beijing.

319



Sustainability 2022, 14, 4341

Figure 5. Evaluation grade of each evaluation index in the Daxing District from 2006 to 2016.

3.6. Research Implications and Limitations

The above analysis shows that from 1986 to 2016, the water table depth of the study
area has been continuously declining as a whole, indicating that groundwater is in a
state of continuous overexploitation and the impact of human exploitation on water table
depth is increasing. Through set pair analysis, the main factors causing the increase in
the groundwater exploitation intensity were further diagnosed and identified, showing
that the groundwater exploitation intensity in this area had a bleak, gradual deterioration
trend. The proposed research method can provide a method and theoretical reference
for the sustainable utilization of groundwater in the region where the groundwater is the
main source of water supply, providing a basis for the industrial regulation policy in this
region. However, there are still some limitations in this paper, such as groundwater quality
problems caused by the decline in the water table depth. Moreover, the best interpolation
method selected in this paper may only be suitable for this area. Therefore, when perform-
ing spatial interpolation in other areas, the actual situation must be considered to reselect
the optimal method.

4. Conclusions

The spatial variability of groundwater table depth in the study area is combined with
the evaluation and diagnosis of groundwater exploitation intensity in this paper. The
authors studied the impact of human extraction activities on the water table burial depth
and identified the main factors affecting the groundwater extraction intensity. This research
can provide theoretical support for sustainable groundwater use and industrial regulation
policies in areas with water shortages. The conclusions are as follows:

1. The OK method is selected as the best interpolation model after comparing the
prediction accuracies of seven interpolation methods for the water table burial depth
in the study area. The OK method had significantly higher accuracy than those of
SK and UK. Its ME did not differ much from those of the other methods, but it had a
significantly smaller RMSE.

2. The spatial interpolation of groundwater table depth in the study area from 1986 to
2016 is conducted using the OK method. The interpolation results showed that the
overall groundwater table depth in the Daxing District increased from 1986 to 2016.
The rate of groundwater decline was fastest from 1996 to 2006, with an annual decline
rate of 0.65 m. The region with the largest decline rate of groundwater table depth in
the Daxing District from 1986 to 2016 is the central area, followed by the northern and
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southern areas. Groundwater downwelling funnels occurred in Qingyundian and
Beizangcun in the central region, which tended to continuously spread outward.

3. The nugget effect from 1986 to 2016 was calculated using the geostatistical variation
function model, which showed that the nugget effect of groundwater table depth
increased continuously. The spatial correlation gradually weakened from 1986 to 2016.
From 1986 to 2005, the effect of natural structural factors on the burial depth played a
dominant role. From 2006 to 2016, human extraction activities have become important
factors affecting the burial depth of the water table.

4. The evaluation grade of groundwater exploitation intensity in the Daxing District
from 2006 to 2016 was calculated using set pair analysis. The subtraction set pair
potential was used to identify the key regulation years and the main factors affecting
groundwater exploitation intensity. The results show that the groundwater extraction
intensity in the Daxing area is moderate (grade II) with a bleak gradual deterioration
trend. The evaluation results in 2010 and 2013, the years of key regulation of ground-
water exploitation intensity, are partial negative potential and negative potential,
respectively. The comprehensive evaluation results are 2.31 and 2.45, respectively. In
2010, three indicators had partial negative potential: industrial GDP, tertiary industry
GDP, and irrigation area. In 2013, five indicators had negative potential: the irrigation
area, vegetable area, facility agriculture area, fruit tree area, and number of wells.

To conclude, in the process of urbanization in the study area, the influence of human
exploitation on the water table depth is increasing. Therefore, to reduce the impact of
human exploitation on the groundwater resources, the regional water table depth moni-
toring system must be improved to understand the dynamic changes in the water table
depth in time. Then, the regional total water consumption and the water consumption
of each water-using sector must be analyzed and evaluated to understand the change in
the groundwater exploitation intensity in that year and the main water-using sector that
caused the change in the groundwater exploitation intensity. Based on the above analysis
results of groundwater consumption and groundwater exploitation intensity, it provides
the basis for groundwater exploitation planning and industrial regulation policy in the
next year. Finally, unconventional water sources should be actively developed, and areas
with water diversion conditions should actively strive for external water sources to reduce
groundwater exploitation.
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Appendix A

The Appendix is as follows:

Figure A1. Curve of the semi-variation function.
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Abstract: Semi-Arid Tropical (SAT) regions are influenced by climate change impacts affecting the
rainfed crops in their productivity and production. Water Footprint (WF) assessment for rainfed
crops on watershed scale is critical for water resource planning, development, efficient crop planning,
and, better water use efficiency. A semi-arid tropical watershed was selected in lower Krishna river
basin having a 4700 ha area in Telangana, India. Soil and Water Assessment Tool (SWAT) was used
to estimate the water balance components of watershed like runoff, potential evapotranspiration,
percolation, and effective rainfall for base period (1994 to 2013) and different climate change scenarios
of Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 for the time periods of 2020, 2050
and 2080. Green and blue WF of rainfed crops viz., maize, sorghum, groundnut, redgram and cotton
were performed by considering rainfed, and two critical irrigations (CI) of 30 mm and 50 mm. It
indicated that the effective rainfall (ER) is less than crop evapo-transpiration (ET) during crop growing
period under different RCPs, time periods, and base period. The green WF under rainfed condition
over different RCPs and time periods had decreasing trend for all crops. The study suggested that
in the rainfed agro-ecosystems, the blue WF can significantly reduce the total WF by enhancing
the productivity through critical irrigation management using on farm water resources developed
through rainwater harvesting structures. The maximum significant reduction in WF over the base
period was observed 13–16% under rainfed, 30–32% with 30 mm CI and 40–42% with 50 mm CI
by 2080. Development of crop varieties particularly in oilseeds and pulses which have less WF
and higher yields for unit of water consumed could be a solution for improving overall WF in the
watersheds of SAT regions.

Keywords: green and blue water footprint; crop evapotranspiration; effective rainfall; rainfed crops;
climate change; watershed

1. Introduction

Natural resources, particularly water and food supply, are at tremendous pressure due
to global population rise and dynamic changes in the consumption pattern of society, and
India, which is projected to be the world’s most populated country by 2027, will be one of
the most impacted countries [1]. This will have a direct impact on water and land resource
availability vis-à-vis agriculture. It is predicted that severe water scarcity is affecting one
billion population in India at least for one month of the year which stresses the need for
efficient water resource development and management [2]. Rainfed (green water) farming
systems in Semi-Arid Tropical (SAT) regions provide diverse food supplies from 51% of net
sown area (139.4 mha) in India [3]. SAT regions contribute 60% of nutritive food grains,
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although is suffering with 20 to 35% undernourished population [4]. As per IPCC report
(AR5), the climate change impacts would lead to global warming by increased temperature
from 2 to 5 ◦C by the end of the century with increased extreme weather events [5]. Indian
agriculture is also affected by changes in the rainfall pattern, high intense rainfall, floods,
and droughts contributing to the overall reduction in the crop productivity, soil quality, and
accelerated land degradation due to erosion, availability of both blue and green water, etc.,
in the SAT regions. The increase in extreme weather events can affect the crop productivity
in the SAT regions of India which contributes to the production of cereals, pulses, oil seeds,
cotton, etc., under rainfed farming [6]. Extreme weather events are the greatest global risk
in the present climate change [1]. The global requirement of cereals would increase by
55–80% by the year 2050 which can be accomplished through expansion of area under crop
or by increasing crop productivity since land and water resources are limited [7].

Agriculture is the highest consumer of global fresh water at 70%. However, India
accounts for 80% of fresh water consumption in agriculture [8]. Rainwater harvesting is
one of the best options considered in the SAT regions of India for improving the water
productivity in the diversified cropping system with improved benefits to the farmer [6].
The Lower Krishna river basin of Telangana, India is of 25.8 million ha, which contributes
to a major irrigation project of Nagarjuna Sagar dam. Integrated watershed management
programmes are implemented extensively in the region and have the scope for improve-
ment in the water resource development and efficient utilization to manage dry spells [9].
The crop water balance analysis for maize and cotton in the SAT regions indicated that
there was decrease in the seasonal rainfall in the normal sowing window and increase in
crop water requirements by 2050 for maize and cotton [10]. Water storage on farm provides
a mechanism for dealing with the variability in rainfall which, if planned and managed
efficiently, increases water security, agricultural productivity, and adaptive capacity to
climate change [11].

Water footprint (WF) within the agricultural sector has been extensively studied,
mainly focusing on the water footprint of crop production. The WF of domestic, indus-
trial, and agricultural sectors has been calculated and reported at the sub-national region
level [12,13] as well as at the national level [14–19] and the global level [20–23]. The green
and blue water footprint of crop production are estimated by using a grid-based dynamic
water balance model considering local climate and soil conditions after calculating the
effective rainfall (ER), potential evapotranspiration (PET), and crop water requirements.
Most of these studies pertain irrigated eco systems under major irrigation systems which
are different from SAT regions that are critically rainfall dependent. Due to weather aberra-
tions in the SAT region with long dry spells during crop growth stages, there is a need to
critically analyse the water supplies for rainwater harvesting on farms and its utilization
during dryspells at critical stages of crop growth and its impacts on water footprints for
rainfed crops in watersheds [24]. Therefore, a Water footprint assessment would help to
make a policy framework for the adaptation of climate-resilient technologies, particularly
rainwater harvesting through on-farm reservoirs and efficient use of water resources in the
rainfed region on a watershed basis [6,25–27].

The Soil and Water Assessment Tool (SWAT) was used for estimating the runoff,
potential evapotranspiration, and percolation apart from other components of groundwater
recharge. The rainfall effectiveness (green water use) was evaluated for different crops in
the Nagarjuna Sagar canal command area of Andhra Pradesh using SWAT [28]. The spatial
optimization of soil and water conservation practices was studied on a watershed scale
using SWAT and evolutionary algorithm [27]. The blue and green proportions of crop ET of
six important crops were quantified [29] and four major land-use types of Kothakunta sub
watershed in Andhra Pradesh for water footprint assessment on a basin scale. The water
footprint for 15 different crops was estimated at basin level in the Indo-Gangetic region [30].
The green, blue and grey Water footprint of 126 crops all over the world for the period
1996–2005 was estimated with a high spatial resolution [22]. Various studies on water
footprint for different climate change scenarios were reported using different downscaling
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models which are region-specific, particularly for irrigated rice [31,32]. Many studies have
been reported representing the impacts of climate change the at global and regional levels
for irrigated crops on a basin scale. The present study focused on WF assessment for
rainfed crops on the watershed scale in SAT regions with adaptation strategies of rainwater
harvesting through on-farm reservoirs in a watershed.

2. Material and Methods

2.1. Study Area and Climate

The present study was conducted in a watershed consisting of 8 tribal villages of
Padara Mandal, Nagarkurnool district of Telangana state (Figure 1). The area lies between
16◦27′ N and 79◦1′ E. The watershed has its automatic weather station in PadaraMandal.
The watershed having an area of 4700 ha was delineated into several sub watersheds with
different land use, soil characteristics and slopes. According to the 20 years observation
data, the average annual rainfall in the watershed is 734 mm, of which the average south
west seasonal rainfall accounts for 86%. Two-thirds of the rainfall occurs during the period
of July to October. The average maximum and minimum temperatures of the area are 33 ◦C
and 12 ◦C. The elevation of the selected area is 145 m above mean sea level.

 

Figure 1. Location map of the watershed.

The area is dominated by sandy clayey loam soils accounting for around 78% with poor
soil health. The major land use consists of agriculture (31%) and small bushes (56%) and
forest (7.6%). Agriculture in the watershed mainly consists of seasonal rainfed crops like
maize, cotton, redgram, groundnut, and sorghum. The watershed has a rolling topography
having slopes from 1–11% on average.

2.2. Data Acquisition

Data required for the study were compiled from different sources. Digital elevation
map from the ASTER Satellite with an accuracy of 30 m was obtained from USGS. Land
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use/land cover map was obtained from IRS-LISS III. Spatial distribution of major soil types
and sand, silt, and clay content of these soils were taken from grid-based Harmonized
World Soil Database (HWSD-FAO) [33]. Crop coefficients at different crop development
stages (initial, middle, and late-stage), were taken from FAO report [34].

Climate Data

The climate data related to monthly average rainfall and temperature of the study area
under various RCPs and time periods are presented in Figure 2.

 

Figure 2. Monthly distribution of average precipitation (Prep) and temperature (Temp) for different
RCP, base period, and time periods.

2.3. Estimation of Water Balance in a Watershed Using SWAT

Soil Water Assessment Tool (SWAT) was used to estimate the watershed surface runoff,
potential evapotranspiration, and percolation rates, stream flows, etc. In this model, a
watershed is divided into multiple sub-watersheds that are then further subdivided into
unique soil/land use characteristics called hydrologic response units (HRUs) using ARC-
GIS. The input layers of daily rainfall, temperature, relative humidity, radiation, wind,
DEM, Land use, Soil cover, etc. were provided to the model (Figure S1). Digital elevation
model (DEM) at a resolution of 30 × 30 m was used as input for delineation. In this study,
three emission scenarios from the IPCC were used as RCP 2.6, 4.5, and 8.5, representing low,
medium, and high radiant energy levels. The long-term data on runoff was generated for
three climate change scenarios of 2020, 2050, and 2080. Using these data, effective rainfall
of different rainfed crops, PET, and crop ET (ETc) were calculated.

2.4. Estimation of Crop Yields in Different Climate Change Scenarios

The crop yields for selected crops namely maize, sorghum, groundnut, redgram, and
cotton were assessed using the AquaCrop using soil, climate, crop, and water use data
under climate change scenarios of RCP 2.6, 4.5, and 8.5 for different time periods of 2020,
2050, and 2080 including base period. The crop yields were estimated for rainfed and two
critical irrigation (CI) levels of 30 mm and 50 mm at critical stages of crops for climate
change scenarios and base period. Based on the experience, the two levels of 30 mm and
50 mm for both deficit and intensive critical irrigations were found optimum for SAT
regions with sandy clay loam soils [6]. These data were used for calculating the WF of
selected crops.

328



Water 2022, 14, 1206

2.5. Water Footprint (WF) Assessment

The base data on crops, and existing land productivity in a watershed were taken to
calculate both green and blue water footprints. The blue and green WF (WFblue and WFgreen)
of rainfed crops were calculated based on the standard methods proposed in the Water
Footprint Assessment Manual [23]. Presently, all the crops are grown under rainfed which
is primarily rainfall-dependent production. As the scope for runoff water harvesting is
seen in the selected watershed, two critical irrigations of 30 mm and 50 mm were taken
to provide as a drought management strategy for improving the yields in the existing
rainfed cropping systems of the watershed. Using this information, the water footprints
were calculated for the existing crops in a watershed. However, the grey water footprint is
neglected in the watershed due to the very low application rate of fertilizers in the rainfed
agriculture in the watershed by the farmers.

2.5.1. Green Water Footprint

The green crop water use (CWUgreen) is estimated by considering two parameters
namely crop evapotranspiration (ETc) and Effective rainfall (Pe f f ) during crop growth
period. Minimum of these values is considered for calculating the water footprint as
given below:

CWUgreen = 10 × ∑ Min
(

Pe f f , ETc

)
(1)

ETc was calculated by using crop coefficients at different growth stages of selected
crops in the watershed as given below

ETc = ET0 × Kc (2)

where ET0 is potential evapotranspiration (mm) and Kc is crop coefficient. Crop coefficients
(Kc) were obtained from FAO [35]. Crop planting dates and lengths of cropping seasons
were obtained from PJTSAU [36] (Table 1).

Table 1. Crop characteristics of different crops.

Crop Kc_Ini Kc_mid Kc_end Date of Sowing
Length of Crop

Growing Period (Days)

Maize 0.3 1.2 0.5 05-July 120

Sorghum 0.3 1 0.55 05-July 115

Groundnut 0.4 1.15 0.6 10-July 120

Cotton 0.35 1.2 0.6 15-July 180

Redgram 0.3 1 0.5 10-July 120
Source: Kc values: FAO (1988) [35], Sowing dates and length of crop periods: PJTSAU (2019) [36].

Effective rainfall for different crops was calculated by using USDA [37] as given below:

Pe f f = R − SR0 − PR (3)

where R is daily rainfall (mm), SR0 is surface runoff (mm) and PR is percolation (mm).

2.5.2. Blue Water Footprint

The blue crop water use (CWUblue) is the amount of surface and groundwater used by
the crop over the entire crop growing period i.e., the amount of water provided as critical
irrigation (Ic) in addition to effective rainfall to the crop during the growing period. The
total green crop water use is the summation of ETc or Pe f f over the crop growth period.

CWUblue = 10 × ∑ Ic (4)
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The crop water uses over the crop growing period (m3 ha−1) were obtained by mul-
tiplying with factor 10 which converts water depths (mm) into water volumes per unit
surface area (m3 ha−1). The green water footprint (WFgreen, m3/t) and blue water foot-
print (WFblue, m3/t) were calculated by dividing the green crop water use (CWUgreen)
and the blue crop water use (CWUblue) by the yield of different crops respectively [23] as
given below:

WFgreen = CWUgreen/Yr (5)

WFblue = CWUblue/YIc (6)

The total water footprint of a crop (WF, m3/t) is the sum of the green and blue compo-
nents:

WF = WFgreen + WFblue (7)

2.5.3. Water Footprints for Climate Change Scenarios

The long-term data on SRO, PET and PR for different RCPs were simulated using
SWAT for the periods of 2020, 2050, and 2080. Crop evapotranspiration and effective rainfall
were calculated for the scenarios of 2.6, 4.5, and 8.5 for future time periods of 2020, 2050,
and 2080. The WF for climate change scenarios of RCP 2.6, 4.5 and 8.5 for the periods of
2020, 2050 and 2080 were calculated by providing downscaled rainfall obtained from global
climate models (GCM) as input to the calibrated SWAT model. It was assumed that there
will be no change in land use for the project area in the future. Climate variables in the
future, such as wind speed, relative humidity, and sunshine hours, were also assumed to
be the same as that of the base period.

3. Results

3.1. SWAT Calibration and Validation

Calibration and validation were carried out using SWAT-CUP. Sensitive parameters
were identified for the selected watershed in the first step. Then the model parameters
were calibrated on daily basis comparing the observed and simulated runoff values in
the watershed. The validated results are presented in Figure 3 with an R2 (Coefficient of
determination) of 0.87. It indicated that there is a close relationship between observed and
simulated runoff in a watershed and the model can be applied to the watershed considered
under the present study.

 

Figure 3. Validation of SWAT model in watershed.
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3.2. Water Balance

SWAT outputs of surface runoff, potential evapotranspiration and percolation were
taken for calculating effective rainfall (ER), crop evapotranspiration (Etc) for all selected
rainfed crops during their crop growth period. These calculations were made for RCPs (2.6,
4.5 and 8.5) with different time periods (2020, 2050, and 2080). The total rainfall during crop
growth stages of different crops has an increasing trend in RCPs and time periods over the
base period (Figure 4). The percentage increase in the total rainfall varied from 1.48–2.26%
in RCP2.6 in 2020 and 23.5–26.85% in RCP 8.5 in 2080 across the crops over the base period.
Accordingly, the surface runoff also increased from 68 mm to 121 mm in maize, 73 mm
to 122 mm in sorghum, 74 mm to 124 mm in groundnut, 120 mm to 240 mm in redgram
and 119 mm to 200 mm in cotton across the RCPs and time periods. The maximum surface
runoff was found under the RCP 8.5 by 2080. During the base period, the surface runoff
was found less varying from 68 mm to 114 mm across the crops. The analysis indicated that
there was potential for rainwater harvesting through on-farm reservoirs for implementing
critical irrigation in watershed for selected crops in both base period and RCPs and time
periods of 2020 to 2080. The effective rainfall was found less than ETc in base period as well
as in RCPs for different time periods. The ER was taken for calculating green WF for the
respective crops. The percolation varied from 52 mm to 96 mm in different crops and the
maximum was noticed in deep-rooted crops like redgram and cotton.

3.3. Water Footprint of Rainfed Crops
3.3.1. Base Period (1994–2013)

The analysis was carried out for five rainfed crops commonly grown in the selected
watershed for a base period of 30 years. The crops considered are maize, sorghum, ground-
nut, redgram and cotton. The crop ET and ER were calculated from SWAT water balance.
All the rainfed crops are considered with two critical irrigations during kharif at two critical
stages of crops. The average estimated crop ET and effective rainfall for their growing
period are presented in Table 2 for base period and for different climate change scenarios.
It is observed that the ER was less than crop ET for all the rainfed crops. Green water
footprint was calculated by taking a minimum of crop ET and effective rainfall for all the
rainfed crops. The average simulated crop yields through AquaCrop are presented in
Table 3 for different climate change scenarios and time periods and for the base period.

Table 2. Crop ET and effective rainfall of different crops during crop growth period.

Maize Sorghum Groundnut Redgram Cotton
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)
ETc

(mm)
ER

(mm)

Base
period 464.57 321.93 455.20 331.88 508.09 319.74 455.33 352.98 705.55 401.62

2020-2.6 465.63 322.62 462.63 332.14 510.16 319.92 456.82 353.24 707.13 401.70
2020-4.5 466.72 323.90 463.74 333.92 511.09 321.74 457.62 354.84 708.59 402.15
2020-8.5 467.68 325.73 464.25 334.95 512.88 322.61 458.12 356.65 709.14 403.12
2050-2.6 469.87 329.26 467.25 339.32 516.76 326.83 461.58 360.64 713.67 407.80
2050-4.5 473.55 330.54 468.76 340.86 517.61 327.57 462.18 361.62 714.37 408.96
2050-8.5 474.16 332.66 470.47 342.64 521.77 330.44 464.32 364.33 718.95 413.33
2080-2.6 471.59 331.99 469.69 341.02 518.72 328.59 462.07 362.08 715.73 409.46
2080-4.5 475.70 334.16 470.50 345.60 521.09 331.43 463.48 365.68 718.01 413.83
2080-8.5 478.37 339.06 476.18 350.48 532.72 338.06 470.31 370.97 728.29 421.82

ETc = Crop Evapotranspiration, ER = Effective Rainfall.
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(a) (b) 

  
(c) (d) 

 
(e) 

Maize Sorghum

Groundnut Redgram

Cotton

Figure 4. SWAT estimated water balance (mm) for selected crops during their growing period for the
base period and climate change scenarios. (PREC, Precipitation; SURQ, Surface runoff; ETc, Crop
evapotranspiration; ER, Effective rainfall; PR, Percolation). (a) Maize, (b) Sorghum, (c) Groundnut,
(d) Redgram, (e) Cotton.
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Table 3. Simulated crop yields under rainfed and critical irrigations using AquaCrop.

Maize (t/ha) Sorghum (t/ha) Groundnut (t/ha) Redgram (t/ha) Cotton (t/ha)

Rainfed
30

mm
50

mm Rainfed
30

mm
50

mm Rainfed
30

mm
50

mm Rainfed
30

mm
50

mm Rainfed
30

mm
50

mm

Base
period 1.50 2.20 4.20 1.00 1.76 2.98 1.30 2.70 4.80 0.80 1.51 2.60 0.90 2.40 4.50

2020-2.6 1.53 2.29 4.51 1.02 1.84 3.17 1.34 2.90 5.19 0.82 1.62 2.80 0.93 2.58 4.87
2020-4.5 1.56 2.39 4.74 1.05 1.91 3.35 1.36 2.99 5.49 0.85 1.66 2.94 0.98 2.66 5.17
2020-8.5 1.60 2.51 4.98 1.09 2.05 3.61 1.39 3.17 5.85 0.87 1.76 3.14 0.99 2.80 5.51
2050-2.6 1.65 2.62 5.25 1.12 2.11 3.92 1.44 3.29 6.27 0.90 1.82 3.39 1.01 2.92 5.91
2050-4.5 1.70 2.76 5.56 1.16 2.21 4.19 1.49 3.41 6.63 0.92 1.89 3.65 1.04 3.04 6.33
2050-8.5 1.74 2.86 6.05 1.18 2.31 4.42 1.52 3.59 7.05 0.94 1.98 3.88 1.06 3.21 6.78
2080-2.6 1.76 2.94 6.42 1.20 2.35 4.73 1.55 3.68 7.58 0.95 2.04 4.09 1.08 3.27 7.09
2080-4.5 1.80 3.05 6.97 1.21 2.46 5.00 1.58 3.84 7.98 0.98 2.11 4.32 1.10 3.39 7.50
2080-8.5 1.83 3.15 7.30 1.24 2.51 5.20 1.61 3.92 8.47 1.00 2.18 4.58 1.13 3.52 8.00

The yields of maize were 1.5 t/ha, 2.2 t/ha and 4.2 t/ha for rainfed, 30 mm and 50 mm
critical irrigations in the base period, respectively. The effective rainfall for maize was
321.93 mm as compared to crop ET of 464.6 mm. The green WF for maize was 2146 m3/t
and blue WFs were 273 m3/t and 238 m3/t for 30 mm and 50 mm CI, respectively (Figure 5).
The yields for the sorghum were 1 t/ha, 1.76 t/ha and 2.98 t/ha under rainfed, with two
critical irrigations of 30 mm and 50 mm, respectively. Effective rainfall for the base period
was 331.88 mm with a green WF of 3319 m3/t for sorghum. The blue WFs for sorghum
were 341 m3/t and 336 m3/t under 30 mm and 50 mm CI, respectively.

The ER calculated during the growing period for groundnut crop was 319.7 mm
against crop ET of 508 mm. The yields of groundnut were 1.3 t/ha, 2.7 t/ha and 4.8 t/ha for
rainfed, 30 mm, and 50 mm CI, respectively. The green WF for groundnut was 2460 m3/t
and the blue WFs were 222 m3/t and 208 m3/t under 30 mm and 50 mm CI’s, respectively
(Figure 5). The ER during the growing period of redgram was 353 mm against crop ET of
455 mm. The yields of redgram were 0.8 t/ha, 1.5 t/ha and 2.6 t/ha under rainfed, 30 mm,
and 50 mm CI’s, respectively. The green WF for redgram was 4412.25 m3/t and blue WF’s
were 397 m3/t and 384 m3/t for 30 mm and 50 mm CI’s, respectively. The effective rainfall
for cotton during its growth period was 401.6 mm as compared to crop ET of 705.6 mm.

The yields of cotton were 0.9 t/ha, 2.4 t/ha and 4.5 t/ha under rainfed, 30 mm, and
50 mm CI, respectively. The green WF was 4462.5 m3/t and the blue WFs were 250 m3/t at
30 mm and 222 m3/t at 50 mm CI (Figure 5). The strategy of critical irrigations two times
during crop season reduced the WF as compared to rainfed which totally depends on the
utilization of ER as green water storage in the root zone. ER contribution to the crop yields
is rainfall-dependent during the crop growing period. The total WF was minimum for
maize as compared to all other crops under rainfed system indicating that the crop has
better utilization of water converting into higher yields than the other crops followed by
sorghum, groundnut, redgram and cotton.

3.3.2. Green and Blue Water Footprints of Rainfed Crops under Different Climate Change
(CC) Scenarios

The green and blue water footprints were calculated for three CC scenarios of RCP
2.6, 4.5 and 8.5 for the time periods of 2020, 2050 and 2080 and the results are presented in
Figure 5.
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Figure 5. Water Footprint (m3/t) of rainfed crops with critical irrigation and different RCPs with time
periods (a) Green WF (b) Blue WF CI: 30 mm (c) Blue WF CI: 50 mm.
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Maize

The crop ET varied from 465.6 mm to 478.4 mm with an increasing trend during its
crop growth period of 117 days in different scenarios with a minimum in RCP 2.6 in 2020
and a maximum in RCP 8.5 in 2080. The ER of maize varied from 322.6 mm to 339 mm with
an increasing trend in different RCP scenarios. However, the ER observed was less in RCP
scenarios for the time periods of 2020 to 2080. Green and blue WF were calculated by taking
the yields of 1.5 t/ha, 2.2 t/ha and 4.2 t/ha in rainfed, 30 mm and 50 mm CI’s strategies for
the base period. There was a slight increase in the maize yield from 1.53 t/ha to 1.76 t/ha
in RCP 2.6 for different time periods. Similar trend was observed in RCP 4.5 and 8.5 with a
range from 1.56 t/ha to 1.8 t/ha and 1.6 t/ha to 1.83 t/ha under time periods. The green
WF of maize reduced from 2106 m3/t to 1886 m3/t in RCP 2.6 during the time period of
2020 to 2080 (Figure 5a). In RCP 4.5, it reduced from 2074 m3/t to 1862 m3/t from2020 to
2080. In RCP 8.5, green WF varied from 2035 m3/t to 1853 m3/t. It was observed that there
was a decrease of 1.88%, 7% and 12.1% of green WF in RCP 2.6 for different periods of
2020, 2050 and 2080 respectively over the base period (Figure 6a). In RCP 4.5 green WF was
decreased by 3.4%, 9.3%, and 13.3% in different time periods (2020, 2050, and 2080) over
the base period. In RCP 8.5, the maximum decrease in green WF (rainfed) was observed
varying from 5.2–13.7% in different time periods as compared to the base period.

The WF of maize with two CI of 30 mm and 50 mm as an adaptation strategy to CC,
the blue WF with 30 mm CI varied from 255 m3/t to 204 m3/t in RCP 2.6, 248 m3/t to
195 m3/t in RCP 4.5 and 235 m3/t to 190.5 m3/t in RCP 8.5 during the time period of 2020
to 2080 (Figure 5b). Similarly, with a 50 mm CI strategy, the blue WF varied from 222 m3/t
to 156 m3/t in RCP 2.6, 209 m3/t to 143 m3/t in RCP 4.5 and 201 m3/t to 137 m3/t in
RCP 8.5 during 2020 to 2080 (Figure 5c). Though the blue WF of maize has decreasing
trend within RCPs from 2020 to 2080, the WF was decreased over rainfed (green WF). The
percentage decrease in blue WF was 6.5–25%, 9–28.4% and 13.7–30.2% in RCP 2.6, 4.5 and
8.5 respectively for different time periods. In 50 mm CI strategy, the blue WF was further
reduced by 6.9% to 35%, 12.3–39.7%, and 15.7–42.5% in RCP 2.6, 4.5, and 8.5, respectively
(Figure 6a) for different time periods indicating the optimum adaptation strategy for maize
in SAT regions.

Sorghum

The crop ET varied from 455 mm to 476.2 mm in different scenarios of climate change
(RCP 2.6 to RCP 8.5) during the time periods of 2020 to 2080. Similarly, the ER for the
sorghum varied from 332.1 mm to 350.5 mm which is less than crop ET. Therefore, ER is
considered for calculating green WF for sorghum in different RCPs and time periods. The
yields estimated in different RCPs and time periods varied from 1.02 t/ha to 1.24 t/ha
under rainfed, 1.87 t/ha to 2.51 t/ha with 30 mm CI and 3.2 t/ha to 5.2 t/ha with 50 mm
CI. The predicted yields had an increasing trend over the RCPs and time periods over the
base period (Table 3). The green WF varied from 3253 m3/t to 2849 m3/t, 3168 m3/t to
2849 m3/t and 3067 m3/t to 2838 m3/t in RCP 2.6, 4.5 and 8.5 respectively for different
time periods (Figure 5).The green WF decreased from 1.98% to 14.2%, 4.5% to 14.2% and
7.6% to 14.5% over the base period in RCP 2.6, 4.5 and 8.5 respectively over time periods of
2020, 2050 and 2080 (Figure 6b).

With the adaptation strategy of CI’s with 30 mm, the blue WF varied from 321 m3/t to
257.6 m3/t, 314 m3/t to 243 m3/t, 293 m3/t to 239 m3/t in RCP 2.6, 4.5 and 8.5, respectively
for different time periods (Figure 5b). The percentage decrease in blue WF for 30 mm CI
was 5.88–24.4%, 8–28.7%, and 14.1–29.9% over the base period among different RCP and
time periods (Figure 6b). In the case of 50 mm CI two times, the blue WF varied from
313.5 m3/t to211.4 m3/t, 296 m3/t to 199.6 m3/t and 277 m3/t to 192 m3/t in RCP 2.6, 4.5
and 8.5, respectively during the time period of 2020 to 2080 (Figure 5c). The maximum
decrease was observed with a 50 mm CI strategy varying from 6.58–37%, 11.8–40.5% and
17.5–42.7% (Figure 6b) over the base period in different RCP and time periods. The analysis
indicated that the rainfed sorghum when cultivated with effective rainfall, the WF’s were

335



Water 2022, 14, 1206

maximum as compared to the adaptation strategy of giving critical irrigations with 30 mm
and 50 mm two times during its crop growth period. Among the blue WFs, 50 mm CI
reduced maximum WF in all RCP scenarios and time periods. However, it was found that
there was a decreasing trend with RCP and time periods in all crops WF.
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Figure 6. Percentage change in WF of rainfed crops ((a) maize (b) sorghum (c) groundnut (d) redgram
and (e) cotton) with critical irrigation under different RCPs and time periods.

Groundnut

The groundnut yields taken for the WF analysis varied from 1.37 t/ha to 1.61 t/ha,
2.9 t/ha to 3.92 t/ha and 5.19 t/ha to 8.47 t/ha in rainfed, 30 mm and 50 mm CI, respectively,
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in different RCPs and time periods (Table 3). The crop ET varied from 510 mm to 519 mm
in RCP 2.6, 518 mm to 521 mm in RCP 4.5, and 513 mm to 533 mm in RCP 8.5 during the
time period of 2020 to 2080. The ER varied from 320 mm to 329 mm, 322 mm to 331 mm,
and 323 mm to 338 mm in RCP 2.6, 4.5, and 8.5, respectively, during the time period of 2020
to 2080 showing the increasing trend (Table 2). However, the ER was observed to be less
than crop ET in all RCP and time periods.

The green WF under rainfed with ER contribution in the production varied from
2328 m3/t to 2125 m3/t, 2010 m3/t to 2104.3 m3/t and 2085 m3/t to 2100m3/t in RCP 2.6,
4.5 and 8.5, respectively for different time periods (Figure 5a).The blue WF with 30 mm
CI varied from 207 m3/t to 163 m3/t, 201 m3/t to 156 m3/t and 189 m3/t to 153 m3/t in
RCP 2.6, 4.5 and 8.5, respectively (Figure 5b). Similarly, with 50 mm CI, the blue WF varied
from 193 m3/t to 132 m3/t, 182 m3/t to 125 m3/t, and 171m3/t to 118 m3/t (Figure 5c)
in RCP 2.6, 4.5 and 8.5 during the time periods of 2020 to 2080. The percentage decrease
in the green WF (rainfed) varied from 5.3–13.5%, 6.1–14.4% and 7.1–14.6% over the base
period in different RCP and time periods (Figure 6c). At 30 mm CI, the blue WF varied
from 6.7–26.6%, 9.6–29.7% and 14.8–31.1% over the base period in different RPCs and time
periods. With a 50 mm CI strategy the blue WF varied from 7.5–36.7%, 12.6–39.9%, and
17.9–43.3% over the base period.

In time periods of 2020 to 2080 in different RCP’s both green and blue WFs were
decreased with maximum reduction in 50 mm CI strategy. In oilseed crops like groundnut,
which is predominantly grown in south-central India is a profitable crop to the farmers
with fewer WFs under the adaptation strategy.

Redgram

Redgram is a protein-rich leguminous crop which is commonly grown in rainfed
conditions as a pulse crop. The yields of the crop varied from 0.82 t/ha to 1.0 t/ha,
1.6 t/ha to 2.18 t/ha, 2.8 t/ha to 4.58 t/ha in rainfed, 30 mm, and 50 mm CI strategies,
respectively under different RCP’s and time periods (Table 3). The crop ET varied from
457 mm to 462 mm, 458 mm to 463 mm, and 458 mm to 470 mm in RCP 2.6, 4.5, and 8.5
respectively in time periods of 2020 to 2080 with an increasing trend. The ER varied from
353 mm to 362 mm, 355 mm to 366, mm and 357 mm to 371 mm in different RCPs and
time periods (Table 2). The ER was found to be less than ETc among all RCPs and time
periods considered.

The green WF varied from 4308 m3/t to 3795m3/t, 4119 m3/t to 3751m3/t and
4104 m3/t to 3728 m3/t in RCP 2.6, 4.5 and 8.5, respectively during different time pe-
riods (Figure 5a). With a 30 mm CI strategy the blue WF varied from 371 m3/t to 294 m3/t,
361.5 m3/t to 284 m3/t and 341 m3/t to 275 m3/t in RCP 2.6, 4.5 and 8.5, respectively in the
time period of 2020 to 2080 (Figure 5b). The blue WF with 50 mm CI varied from 357 m3/t
to 244.5 m3/t, 340 m3/t to 231.5 m3/t and 318.5 m3/t to 218 m3/t in different RCP and time
periods (Figure 5c). The percentage decrease in green WF varied from 2.4–14%, 4.8–15%
and 7–15.5%, the percentage decrease in blue WF with 30mn CI varied from 6.6–26%, 9–28%
and 14–30.7% by 2080, the percentage decrease in blue WF for 50 mm CI varied from
7.1–36.4%, 11.6–39.8% and 17.2–43.2% (Figure 6d) over the base period in different RCP
and time periods.

Cotton

Cotton is grown by the farmers as a commercial crop in rainfed districts of south-
central India having a growth period of 180 days. Its yields varied from 0.9 t/ha to 1.13 t/ha,
2.58 t/ha to 3.52 t/ha and 4.87 t/ha to 8.01 t/ha under rainfed, 30 mm CI and 50 mm CI,
respectively for different RCP and time periods (Table 3). The crop ET varied from 707 mm
to 716 mm, 709 mm to 718 mm, and 709 mm to 728 mm in RCP 2.6, 4.5, and 8.5 respectively
in the time periods of 2020 to 2080. The ER varied from 402 mm to 409 mm, 402 mm to
414 mm and 403 mm to 424 mm under different RCPs and time periods. It was observed
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that the ER was less than ETc among all RCPs and time periods (Table 2). Hence, ER was
considered for calculating green WF under rainfed.

The green WF of cotton varied from 4202 m3/t to 3795 m3/t, 4120.4 m3/t to 3765.5 m3/t,
and 4067.8 m3/t to 3733 m3/t in RCP 2.6, 4.5 and 8.5 for different time periods (Figure 5a).
The blue WF with 30 mm CI varied from 233 m3/t to 183.5 m3/t, 225.6 m3/t to 177 m3/t and
214 m3/t to 170.5 m3/t in RCP 2.6, 4.5 and 8.5, respectively during 2020 to 2080 (Figure 5b).
Adapting 50 mm CI in cotton reduced the blue WF over the 30 mm CI and rainfed. The blue
WF with 50 mm CI varied from 205 m3/t to 141 m3/t, 193 m3/t to 133 m3/t and 181.5 m3/t
to 124.8 m3/t (Figure 5c) in different RCP and time periods. The percentage decreases over
the base period varied from 5.8% to 15%, 7.7% to 15.6% and 8.8% to 16.4%, with 30 mm CI
it varied from 6.9% to 26.6%, 9.8% to 29.2% and 14.3% to 31.8% 1.6%, 2.4% and in 50 mm CI
it varied from 7.6% to 36.5%, 13% to 40% and 18.3% to 43.8% (Figure 6e) in different RCP’s
and time periods. Cotton also has a decreasing trend in WF’s over the time periods and
climate change scenarios of RCP. However, with adaptation strategy of providing 30 mm
and 50 mm CI reduced the WF due to increase in the yields with increased critical water
use during the growth period of the crop.

4. Discussion

The commonly grown crops in SAT regions of India are Sorghum, maize, groundnut,
redgram and cotton. Sorghum is grown extensively in both Indian and African SAT regions
as it is a staple food for poor people. It has localized value additions as well as good
fodder value for animals. Though maize is water-intensive crop, it is grown in rainfed
regions extensively in most of the SAT regions due to its commercial value, used as feed
and fodder to the animals and poultry. Groundnut and redgram are commercial oilseed
and pulse crops, respectively that provides protein and in situ nitrogen fixation to the
soil. Cotton is long duration commercial crop grown in 67% area in rainfed regions of
India having a productivity of 200–275 kg/acre which is very low compared to the other
cotton-growing countries. The other crops productivity ranges between 0.8–1.0 t/ha in
SAT regions [3]. The above crops suffer from the water supplies during critical stages with
long dry spells (30–45 days) due to rainfall breaks. It is seen from Figure 2 that the average
temperature increase will be from 1–5 ◦C having a maximum in RCP8.5. Though rainfall
has an increasing trend among RCPs and time periods from 2020–2080, there were more
non-rainy days during crop growth period indicating more dryspells happened, calling for
a scope of rainwater harvesting on farm for critical irrigation.

Water footprints were studied in SAT regions with critical irrigation strategies applying
30 mm and 50 mm two times during dryspells in the crop-growing period. The available
water content for use by the crops in rainfed soils is about 100 mm/m [38]. If the depletion
of available water content is not addressed during dryspells at critical stages of rainfed
crops, the crop yields are reduced by 30–40% in different crops causing huge losses to the
farmers. In order to minimize this loss besides enhancing the crop productivity, critical
irrigation of 50 mm was provided by meeting the requirement of the crop during dryspell at
50% depletion and deficit irrigation with 30 mm. Taking these two points into consideration,
water footprints of rainfed crops were estimated using both green and blue water. The
positive climate effects on crop growth can be adjusted by effective rooting depth and
nutrients by providing critical irrigations during dryspells which can improve water
productivity by 20–40% [39].

Rainfed crops of maize and groundnut registered the lowest water footprint in all
RCP scenarios. Blue water footprint of cotton/redgram was found to be highest in all RCP
scenarios with either 30 mm or 50 mm CI while the lowest was recorded for groundnut. It
was found that the response of the crop to the CI was positive realizing more yields in the
rainfed regions [40].

Deep rootedness, as well as long duration of the crops (redgram and cotton) standing
in the field, requires more green water for effective root spread and resource use in the root
zone under rainfed conditions. However, the long crop duration/indeterminate nature
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of the crop, makes it to survive and recoup from the extreme weather conditions. Crop
growth cycle for these crops with a long duration of 180 days in the field suffers from
moisture stress during the critical stage of pod/boll development and filling. The green
WF was very high for such crops, if they are grown in rainfed conditions and it could be
reduced with blue water supplies through CI reducing the WF of these crops. However,
if the rain breaks occur immediately after seed germination, the crop suffers affecting the
plant density and this stage becomes a critical stage for crop survival. Therefore, CI could
be applied at any stage of the crop facing severe moisture stress, resulting in improvement
of either crop stand or yields [41]. Under limited soil depths, shallow-rooted crops of
groundnut and maize registered the lowest WF as the CI of 30 mm or 50 mm would make
water available within root zone to improve crop yields. However, cotton crop, which is
deep-rooted also could record lower WF at all RCP scenarios after groundnut which might
be due to its deep rootedness and also due to high yields (nearly three times higher) over
rainfed cotton crop without CI. Reduction in WF is possible with CI at all RCP scenarios
by standardizing timing of irrigation, quantity, and method of irrigation which trigger
the crop growth parameters and yield attributes to a greater extent in crops under rainfed
SAT regions.

5. Conclusions

Water footprint assessment on watershed basis is required to select the most efficient
cropping system per unit of water consumed, which ultimately results in not only con-
serving water but also economic benefits to the farmers through proper water resource
development and use management, particularly in SAT regions. The present study deals
with the assessment of water footprints of rainfed crops grown in the watershed with
critical irrigation of 30 mm and 50 mm two times as an adaptation strategy to climate
change. Out of the water balance of watershed obtained from SWAT, modeling indicated
that there was an opportunity for water harvesting through On-Farm Reservoirs for critical
irrigation in watersheds, as surface runoff increased due to an increase in the rainfall
during the growing period of selected crops across RCP and increasing time periods. The
crop yields were simulated using the AquaCrop model for both base period and climate
change scenarios with two critical irrigations of 30 mm and 50 mm. The analysis of water
footprints for rainfed crops on a watershed basis indicated that the lowest water footprint
was observed in maize under the 50 mm CI strategy followed by groundnut, sorghum,
redgram, and cotton. The strategy of 50 mm CI during two critical stages of the crops
resulted in maximum reduction in the blue WF which is 6.6–37%, 12–40%, and 18–44% for
RCP 2.6, 4.5, and 8.5, respectively among the selected crops. In the rainfed system with a
green water footprint also resulted in the reduction of green water footprint across the RCP
and the time period of 2020 to 2080 which is less than blue water footprint of the crops.
It was the result of increasing rainfall in RCPs (1.2–24%) over the base period. Green WF
could be reduced further by the application of organics or plastic mulches which needs
further investigation and validation under field conditions. The present studies would
help to bring a policy framework from governments to effectively use water and develop
water-efficient crop plans for enhancing productivity in rainfed SAT regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14081206/s1, Figure S1: Input layers to SWAT model.
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Abstract: Surface water stress remote sensing indices can be very helpful to monitor the impact of
drought on agro-ecosystems, and serve as early warning indicators to avoid further damages to the
crop productivity. In this study, we compare indices from three different spectral domains: the plant
water use derived from evapotranspiration retrieved using data from the thermal infrared domain,
the root zone soil moisture at low resolution derived from the microwave domain using the Soil
Water Index (SWI), and the active vegetation fraction cover deduced from the Normalized Difference
Vegetation Index (NDVI) time series. The thermal stress index is computed from a dual-source
model Soil Plant Atmosphere and Remote Evapotranspiration (SPARSE) that relies on meteorological
variables and remote sensing data. In order to extend in time the available meteorological series, we
compare the use of a statistical downscaling method applied to reanalysis data with the use of the
unprocessed reanalysis data. Our study shows that thermal indices show comparable performance
overall compared to the SWI at better resolution. However, thermal indices are more sensitive for a
drought period and tend to react quickly to water stress.

Keywords: indicators; droughts; evapotranspiration; reanalyses

1. Introduction

Droughts are a recurring natural climate event that result from a reduction in precipita-
tion amount received over an extended period of time, such as a season or a year [1]. In arid
and semi-arid areas characterized by a significant temporal and spatial climatic variability,
the vulnerability advanced by recurrent droughts is considerable as it makes serious threats
to agroecosystem health and productivity [2]. More specifically, in several Mediterranean
countries, we observe during the last decade a significant warming trend, more pronounced
in summer, and a decrease in rainfall during the wet season [3]. This could have a strong
impact on water resources and constitutes the main driver of agricultural droughts which
appear as a result of a long-term period of precipitation deficiency and lead to lower soil
moisture. Droughts at a sensitive stage of crop development (emergence, pollination, and
grain filling) can lead to significant damages [4,5] specifically on rainfed agriculture. Thus,
an important issue for rainfed agriculture is to receive adequate rainfall at the appropriate
timing. In contrast, drought responses over irrigated areas are related to surface or ground-
water resource availability which can also suffer a severe drop during prolonged periods of
drought. Therefore, it is crucial to improve the monitoring of agricultural droughts and the
prediction of their occurrence in the future [6]. In this work, we are interested in agronomic
drought identification.

Several drought indices have been developed to quantify agronomic drought periods.
Initial drought indices rely essentially on meteorological variables. Most meteorological
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indices use precipitation either on its own or in combination with other meteorological vari-
ables [6]. The most commonly used meteorological index is the Standardized Precipitation
Index (SPI) [7], which classifies precipitation intensities according to a probability distri-
bution derived from historical records, over different durations (1 month SPI, 3 months
SPI, etc.). SPI is particularly useful for drought identification and frequency analysis [7–9].
However, meteorological indices bring information on meteorological droughts defined
only in terms of rainfall shortage, but not specifically on their consequences on vegetation
for instance, especially for agronomic droughts. On the other hand, remote sensing (RS)
is an effective tool to provide information on whether vegetation functioning is optimal
or sub-optimal. Indeed, RS has shown high potential to retrieve land surface properties
related to plant functionality, such as vegetation cover, from the visible/near infrared
domain [10,11], surface soil moisture from the microwave remote sensing using passive
or active radiometers [12–15], or surface temperature from the thermal infra-red (TIR)
data that exploits surface energy balance components to identify land surface energy
interactions [16].

RS observations of green biomass vegetation indices are relevant indicators of year-to-
year drought conditions and vegetation greenness, especially over the past few decades
thanks to the increasing number of multi and hyperspectral sensors [11,17], such as
Advanced Very High Resolution Radiometer (AVHRR), SPOT-Vegetation and Moderate-
Resolution Imaging Spectroradiometer (MODIS). These sensors provide spatial resolution
ranging from 250 to 1000 m. Historically, the Normalized Difference Vegetation Index
(NDVI) [18], built from the normalized difference between near-infrared (NIR) and RED
reflectances, has been used for decades to provide information on vegetation health due to
its strong correlation with the photosynthetic activity of plant cover. A suite of drought
indices based on NDVI were subsequently developed in order to provide more focused
information, such as the vegetation condition index (VCI) [19]. VCI uses the NDVI infor-
mation provided from each pixel normalized with the maximum and minimum statistical
range over the available time series of images. It has been tested in several regions of
the world, showing a relevant efficiency to characterize periods of droughts [20,21]. The
vegetation anomaly index (VAI) developed by [22], also forms a standardization of the
NDVI time series. Although RS-based vegetation observation indices have proven their
efficiency to assess drought impacts on vegetation growth, they are not able to detect
incipient stress because of the time lag needed for the plant to reflect drought-induced
physiological changes. Therefore, a delayed response to prolonged stress will be provided
using these indices [23]. Response of vegetation to drought is a gradual process altering
soil moisture, that leads to a time lag effect [24].

Surface soil moisture (SSM), which is inferred from microwave RS, is another efficient
key parameter for agricultural planning and water resource management [12,25]. Neverthe-
less, for drought monitoring and agricultural modeling, a representation of root-zone soil
moisture is needed [26]. A number of soil moisture-based indices have been developed and
widely used for drought monitoring, such as the Soil Water Index (SWI) [27]. This index is
retrieved from the Advanced SCATterometer (ASCAT) SSM estimates in C band, which
was found to be more suitable in bare soils or sparse vegetation cover [28], to determine soil
moisture (SM) distributions within the soil profile using an exponential relationship that
links surface and subsurface SM via a characteristic time length [29]. SWI is also used on
analysis of statistical anomalies over several years to derive the Moisture Anomaly Index
(MAI) [15], that has shown a good performance in providing quantitative information on
drought periods over the central region of Tunisia. The Soil Moisture Deficit Index (SMDI),
developed by [30], was helpful for planning to mitigate drought impacts. This index is
calculated from weekly percentage SM deficit or excess using long-term median, maximum
and minimum soil water [30]. The main limitation of drought indices based on passive
microwave data is their low resolution. Moreover, quantitative soil moisture estimation is
still a challenge nowadays, especially under vegetation cover [12,31].
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RS maps of land surface temperature (LST) are very informative of water availability
and form a good indicator of incipient droughts [32]. Indeed, water stress induces a stomatal
closure that generates in turn an elevated canopy temperature [33–37]. Thermal channels of
Landsat, AVHRR or MODIS were exploited to retrieve remotely sensed LST estimates. LST
can be used as a signature of the land surface energy budget and, in particular, to determine
whether the dissipation of available energy is more into sensible (dry conditions) and/or
latent heat (wet conditions) [38]. It also enables the computation of evapotranspiration
(ET) from latent heat, computed as the residual of the surface energy budget [39,40].
ET is particularly informative about water stress conditions [40,41]. Indeed, the crop
water requirements are adjusted to match the water losses from actual evapotranspiration
(ETa) [42]. Consequently, in water stress conditions, the plant reduces its transpiration in
comparison with unstressed vegetation under the same atmospheric conditions [43]. Thus,
the water stress intensity may be inferred from the ratio of actual and potential (unstressed)
ET. Several drought indicators that integrate ET have been explored and showed improved
drought monitoring. In [44], the authors proposed the so-called Water Deficit Index (WDI)
based on the approach Vegetation Index/Temperature Trapezoid (VIT). WDI is estimated
for each pixel to retrieve dry/wet conditions based on the fractional vegetation cover and
the difference between LST and air temperature (Ta). A good example of TIR indices is the
evaporative stress index (ESI) [35] that describes anomalies in the actual and the reference
ET ratio. ESI was shown to provide early warning particularly for flash droughts that could
produce damaging impacts over short time periods [5]. The stress index (SI) is defined as
the ratio between actual and potential evapotranspiration rates.

In summary, several drought indices are commonly used for drought monitoring and
impact assessment in agriculture. However, it is hard to assess their respective performance
in deciphering stress/non stress and drought/non drought situations. An inter-comparison
between the performance of these different drought indicators provided from different
wave lengths, in terms of consistency, reliability and ability to detect incipient water plant
stress, is thus relevant. Kogan [19] evaluated VCI and the Temperature Condition Index
(TCI) in different regions of the world. The analyses show that VCI has an excellent
ability to detect each period of stress, the drought onset, intensity, duration, and impact on
vegetation. The TCI provides additional information about vegetation stress through LST.
In Kogan [19], the authors used VCI and TCI to develop the so-called Vegetation Health
Index (VHI), a well known combined stress index that is widely used for drought detection
and assessment of drought severity and duration [45]. However, as a simple averaging is
performed, there is no real theoretical support for the way to weight the relative impact
of stress (through LST) and vegetation development (through NDVI). The relationship
between the changes in canopy temperature and the soil water supply in the fields is widely
applied as a drought indicator [46]. The Vegetation Supply Water Index (VSWI), which is
the ratio between the LST and NDVI, is found reliable to detect vegetation stress, moisture
and drought-affected areas [46,47]. However, in this work, we suggest to compare different
indices provided from individual biophysical variables (1) the “Normalized difference
vegetation index” (NDVI) from the solar (Visible/Near InfraRed spectrum), (2) “Soil Water
Index” (SWI) from the microwave domains and, (3) a “Thermal stress Index” (SI) from
Thermal InfraRed retrieved from a surface energy budget model. Analyses are carried
out in the Kairouan area in central Tunisia which is subject to a semi-arid climate. The
thermal stress index used is based on ET simulated from a dual source energy balance
model that provides robust estimates of ET when meteorological forcing and vegetation
cover are accurately known [48]. A statistical downscaling method [49] combined with
reanalysis data is used to generate surrogate series in order to extend the observation
period. Then, simulated ET series from the downscaling method or from the unprocessed
reanalyses are used to constrain the dual-source model Soil Plant Atmosphere and Remote
Evapotranspiration (SPARSE) [50]. In this paper, we address three objectives:

(1) We first assess at a regional scale, the consistency between those indices and a
precipitation-based drought index called the “Uniformized Precipitation Index” (UPI)
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which is a variant of the SPI without the transformation into Normal quantiles. We assume
that a robustness of the indices at very low resolution (12 km) translates into a good
accuracy at higher resolution (kilometric).

(2) We assess the reliability of very low (UPI, SWI) and low (SI, NDVI) resolution
indices at higher resolution (kilometric) at local scale, by focusing on drought monitoring
for pixels either with a high proportion of rainfed wheat or that correspond to the extra
large aperture scintillometer (XLAS) transect;

(3) We compare SI when the energy balance model is either forced with the downscaled
meteorological data or with the unprocessed reanalysis data, in order to test the applicablity
of SI with routinely available data at a global scale.

2. Study Area

The study site, the Merguellil catchment (Figure 1), is located in central Tunisia, which
is typical of semi-arid environments. The study area is influenced both by the Mediter-
ranean climate (dry subhumid) and the pre-Saharan climate (arid). It is characterised by the
inter-annual irregularity of precipitation, with an average annual rainfall of about 300 mm
per year, with a short rainy season mostly between September and May [51] and with a
high evaporative demand of about 1600 mm per year. In our study region, the annual mean
air temperature did not show considerable variation during the study period. In Figure 2,
we observe that this variable is mainly steady during the study period, ranging from about
0 ◦C and 45 ◦C with a median of about 20 ◦C.

Figure 1. Merguellil catchment in central Tunisia with seasonal (winter–spring) land cover map of
2019–2020.

The upstream and the downstream sub-catchments are separated by El Haouareb dam
that protects the village from inundations and provides surface irrigation water for the plain.
However, most of the water used for irrigation is extracted from ground water. Merguellil
is emblematic of hydrological processes which have been profoundly modified by human
activities since the end of the 1960s, by the inclusion of soil and water conservation works,
the construction of large and small dams, and intensification of irrigated farming [51,52].
As expected, agriculture is the main water consumer of available water resources in this
region (around 80 of the available water%) [53]. Therefore, the aquifer system shows
a considerable decrease over time and space due to over-exploitation [52]. This makes
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the Merguellil catchment an interesting case study to investigate the ability to monitor
agricultural water management in the recent years. In this work, we are interested only
by the lower sub-catchment (3000 km2) which forms an alluvial plain mainly flat with
altitude between 50 and 200 m. The plain incorporates mainly small cultivated areas [54],
with characteristic vegetation of semi-arid regions: rainfed agriculture (olive trees and
cereals) and vegetables (melons, chilis and tomatoes), see Figure 1. The gauged network
in the Merguellil plain catchment has three stations (Figure 1), installed since 2012 for the
earliest ones.

Figure 2. Annual air temperature (using ERA5 data) variation over the study period (2000–2019).

3. Data and Methodology

3.1. Biophysical Indices Derivation
3.1.1. NDVI

We used the MOD13 version 6 product from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) sensor on board the NASA Terra and Aqua Earth Observation
System satellites that provides each 16-day composite at 1 km of spatial resolution. Time
series are retrieved between 2000 and 2019 over our study area (see Figure 1). NDVI uses
the normalized difference between near-infrared (NIR) and (RED) reflectances.

NDVI =
ρNIR − ρRED
ρNIR + ρRED

. (1)

where ρNIR and ρRed are the near-infrared (NIR) and red reflectances, respectively. NDVI in-
creases with the amount of healthy green photosynthetically active vegetation. Uniformized
NDVI measures reflect the “current” vegetation conditions according to a longer-term his-
torical average NDVI value over the same study area.

3.1.2. SWI

The soil water index (SWI) data are derived from the surface soil moisture (SSM) using
an infiltration model to describe the relation between surface soil moisture and profile soil
moisture as a function of time.

SWI(t) = ∑ SSM(ti)e−(t−ti)/T

∑ e−(t−ti)/T
, (2)

where SSM is the surface soil moisture estimate from the ASCAT at time ti. The parameter
T, called the characteristic time length, represents the time period to integrate SSM data.
T is the most important input parameter to derive the profile soil moisture content from
remotely sensed surface time series: a high T value describes a deeper soil layer if the soil
diffusivity is constant, and the same T value describes different depths for different soils
(texture) [27]. In Ceballos et al. [55], the authors studied a semi-arid region characterized
with a similar heterogeneous texture distribution in the soil profiles as our study region,
having surface soils of sandy texture and a higher clay concentration to a depth of 2 m [56],
and found that T = 60 days is the best choice for the 50–100 cm soil profile, which corre-
sponds to the root layer according to the predominant agricultural use of our study region
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(olive trees and cereals). Indeed, the upper part of the profiles promotes high infiltration
rates and low water retention forces [55].

The SSM is retrieved from scatterometer observations from the ASCAT instruments on
board the MetOP satellites, which measures radar backscatter at C-band in VV polarization,
with an initial spatial resolution of 25 km, re-sampled at 12.5 km [57]. SWI product is
retrieved from the Copernicus Global Land service and provides global daily information
since January 2007 to present [58].

3.1.3. Thermal Infrared Stress Index

We used a stress index (SI) obtained from TIR. The surface temperature (LST) provides
indirect estimates of water stress since it enters in the surface energy balance equations
and it is thus related to the evapotranspiration rate flux. Daily ET simulation is detailed
in Appendix A section. The stress index is defined as the ratio between actual (ETa) and
potential evaporation rates (ETp) [40].

SI =
ETa

ETp
(3)

If the actual evaporation value is close to the potential value, the stress index takes
values close to one that reflect unstressed conditions. However, if the actual evaporation
is low compared to its potential value, the stress index values may reach zero, which
represents fully stressed conditions. ETa and ETp are simulated from the energy balance
model SPARSE [50] using meteorological observations and remote sensing variables.

LST, viewing angle and emissivity data are retrieved from the daily 1-kilometer LST
product (MOD11A1) from MODIS VI products on board Terra and Aqua sensors. Quality
control (QC) assessment for LST and emissivity product is also provided from the LST
product. For stress index retrieval, the Leaf Area Index (LAI) and albedo products are also
needed. We used the 8-day of albedo series (MCD43A3) from MODIS at 500 m, resampled
to a spatial resolution of 1 km. Finally, the LAI is retrieved from the NDVI time series using
an empirical equation [59], defined in the following Equation (4):

LAI = −1
k

ln
NDVImax − NDVIi

NDVImax − NDVImin
(4)

where k is an extinction factor, about 1.13, NDVImax = 0.97 and NDVImin = 0.05 correspond-
ing to the NDVI value of bare soil [48]. The region is characterized by tree-dominant cover
with interrow distance of 12 m corresponding to low LAI values (about 0.3 to 0.4) on an
image [60].

3.1.4. UPI

We used the Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
data which are available from 1981 till now. This product incorporates three types of
information: global climatologies, satellite estimates and in situ observations [61]. CHIRPS
is available daily and at a spatial resolution of about 5 km. The CHIRPS precipitation data
are highly reliable to identify wet and dry periods in our study region [62].

The CHIRPS precipitation time series is used to compute the Uniformized Precipitation
Index (UPI), which is constructed following the same steps as the SPI except for the last
step that transforms into Normal standard quantiles [7]. SPI maps precipitation amounts to
the [0,1] interval by using either the empirical or a parametric cumulative function. Then,
a final transformation is applied to obtain values that are normally distributed. UPI is
computed with a single transformation: the empirical cumulative function is used to map
precipitation amounts derived from historical records, to uniform quantiles in the [0,1]
interval, as expressed in Equation (5):

F̂n(x) =
1
n

n

∑
i=1

1{xi≤x}, (5)
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where 1{·} is the indicator function, x1, . . . , xn are rainfall amounts aggregated at different
time scales (years, months or decades) and F̂n(x) is the UPI value with F̂n(x) = P(X ≤
x) ∈ [0, 1], with X the random variable representing the rainfall amounts at a given time
scale. In contrast, SPI is computed as Φ−1(F̂n(x)) where Φ−1 is the quantile function (the
inverse of the cumulative function) of the standard normal distribution.

We believe the interpretation in terms of uniform quantiles, which are simply proba-
bilities of non-exceedance, is more straightforward than normal quantiles. For example, if
UPI equals 0.1 on a given year, it means that 10% of the yearly precipitation amounts are
inferior or equal to the amount observed that year. In other words, that year is among the
10% driest years. The SPI value corresponding to 0.1 is approximately −1.28.

3.2. Thermal Stress Index Derived from Energy Balance Model
3.2.1. SPARSE Model

We rely on the dual source energy balance model SPARSE [50] to simulate evapotran-
spiration. It estimates evaporation (E) and transpiration (T) separately. This is particularly
relevant for arid and semi-arid areas which are characterized by sparse crop canopy and by
an uneven relative contribution of evaporation and transpiration [63].

The model can be run in two modes: retrieval and prescribed mode. In retrieval mode,
the respective stress levels (between non evaporating/transpiring and fully evaporating/-
transpiring, i.e., potential rates) are two unknowns which are determined from the single
piece of information provided by Tsur f by assuming at first that the vegetation is not
stressed, that allows a simplification to solve the underdetermination problem. Tsur f is
used to estimate the latent heat component from the soil (LEs), corresponding to the soil
evaporation E. If the vegetation is suffering from water stress, the resulting LEs will de-
crease to unrealistic levels (negative values). In that case, we assume that the soil surface is
stressed and LEs is set to a minimum value close to zero. Then the energy budget equation
is solved for the vegetation component of the latent heat flux (LEv), which corresponds
to the transpiration T. If LEv is also negative, fully stressed conditions are imposed for
both soil and surface components [60]. The prescribed mode provides an estimate of the
potential latent flux for the soil and the vegetation (LEspot and LEvpot respectively). The
water stress indice SI is then defined from the actual and unstressed evapotranspiration
rates (potential) at the time of the satellite overpass.

The SPARSE model is forced by a series of meteorological observations (air temper-
ature, relative humidity, global radiation and wind speed) and remote sensing variables
(NDVI, LAI, albedo and LST). Outputs are derived at meteorological time steps (half-
hourly).

3.2.2. Meteorological Forcing

It is important to consider a long meteorological series in order to perform a robust
statistical characterization of drought periods. In addition, owing to the temporal and
spatial scales of climate variability, evapotranspiration and water stress index must be
monitored at high temporal (subdaily to daily scales) and spatial resolution. However,
available gauged stations (see Section 2) are scarce with short observation periods and
numerous gaps, insufficient to perform a robust statistical analyses and characterization of
drought periods. We rely, therefore, on surrogate meteorological series that extend in time
the original series in order to be used to constrain the SPARSE energy balance model. In
this work, we used two types of surrogate meteorological data:

1. Unprocessed reanalysis data ERA5 extracted at the grid cell closest to the region of
interest (see Figure 1): ERA5 reanalyses are available at a 31 km spatial resolution [64])
from 1950 to present at an hourly temporal scale [64]. Reanalysis series that correspond
to the four meteorological variables required for the energy balance model to simulate
the corresponding index SIERA5 are: the incoming global solar radiation at the surface
(bottom of atmosphere), wind speed at 10 m, air temperature at 2 m and the relative
humidity that was derived from 2 m air temperature and 2 m dewpoint temperature
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ERA5 products, according to the procedures defined in [65]. The specific aim of using
unprocessed reanalysis data for our study, is to assess its performance to constrain an
energy balance model for regions with no gauged stations.

2. Simulated series from a Stochastic Weather Generator (SWG) called “MetGen” [49]:
Its implementation is publicly and freely available as an R library. MetGen generates
scenarios of meteorological variables at sub-daily temporal resolution in order to
extend local observations in the past. It relies on low resolution ERA5 reanalysis
data and exploits observations provided by three gauged stations located in our
study region (see Figure 1) to simulate regional climatic information. The correspond-
ing index simulated using the SWG meteorological to constrain SPARSE model, is
denoted SISWG.

Inter-comparison between indices will be computed at a daily time scale for a long
period in the past from 2000 to 2019. Characteristics of indices used are as follows, see
Table 1.

Table 1. Characteristics of indices used.

Wave
Lenghts

Visible/Near
Infrared Infrared + Visible + Meteo. Microwave

Meteo. +
Satellites Data

Indices NDVI SISWG SIERA5 SWI UPI

Satellites MODIS MODIS MODIS ASCAT CHIRPS

Model used � SPARSE SPARSE � �

Spatial
resolution 1 km 1 km 1 km 12.5 km 5 km

Temporal
resolution daily daily daily daily daily

Temporal
availability since 2000 since 2000 since 2000 since 2007 since 1981

3.3. Indices Standardization

For added interpretability, the different indices are usually re-scaled or standardized
in order (1) to be expressed as frequencies that can be easily interpreted [66] and (2) to
statistically characterize the deviation (anomaly) of the index values according to a long
series recorded over the study period. For this aim, we standardize each index X with its
empirical cumulative density function (ECDF). Let (x1, . . . , xn) be the values taken by the
index X for a given data set. Then the ECDF is given by :

F̂n(x) =
1
n

n

∑
i=1

1{xi≤x}, (6)

where 1{·} is the indicator function, Xi is the index value for time step i and Yi is the
standardized value of the index x. The ECDF standardizes by mapping a value x taken by
X to its empirical non exceedance frequency, i.e., the percentage of occurrences of values
lesser than or equal to x [67]. This is illustrated in Figure 3 : the ECDF maps the values
x ∈ [0.1, 0.6] to [0, 1]. In particular, the value xi = 0.31 is mapped to yi = 0.8 which means
that 80% of the values of the index X are expected to be below 0.31.

The advantages of the proposed standardization approach with the ECDF are that (1)
it does not rely on the assumption that the raw indices values follow a normal distribution
which is implicit in standardization approaches that rely on centering and scaling, (2) it
allows for flexibility in the choice of reference sample (depending on seasons for example),
and therefore can be used for short scale monitoring, and (3) it produces results that are
easily interpreted in terms of non-exceedance probabilities, as for UPI, especially when
simultaneous variables are analyzed [67]. Standardization using the empirical cumulative
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distribution function is performed over the whole period (20 years). At an annual scale,
standardization is performed over each year according to available values observed during
the whole study period. At a decadal scale, standardization is performed according to
season (winter, autumn, summer and spring).

Figure 3. Empirical cumulative density function illustration.

3.4. Evaluation of the Different Drought Indices Performance
3.4.1. At Regional Scale

For comparison at a regional scale, all indices are aggregated at a very low spatial
resolution (about 12 km). For this comparison, the CHIRPS precipitation time series is
used as a reference to identify water stress conditions at different time scales: annual and
decadal scales. In order to assess robustness and consistency between indices, we used
for instance time series for visual interpretation and Kendall’s τ, which is a rank-based
correlation coefficient that measures the strength of the relationship between two indices.

To focus on consistency between the precipitation index and other indices, we assess
the ability of the different indices to correctly identify the stress periods defined according
to UPI. We define the stress periods based on UPI as follows. We assume that a drought
event is a stress period with a probability of occurrence of approximately 20% and that it
lasts at least two decades. The threshold of 20% in terms of UPI corresponds to a threshold
of about −0.84 in terms of SPI. The drought classes defined in [7] begin when SPI values
fall below 0 (this corresponds to 50% in terms of UPI). In our study region, the threshold of
20% corresponds to precipitation amounts inferior to 200 mm, which is approximately the
precipitation amount average at a growth season. We transform the decadal standardized
indices into Boolean values according to the stress threshold: 0 to denote an unstressed
situation (>0.2) and 1 for stress conditions (<0.2). The second step is to check for each time
step (t) how many stress periods are recorded within the period between (t − 1) and (t + 1),
one decade being considered as a buffer (see Figure 4).

Figure 4. Identification of stress periods using UPI index transformed into Boolean values.

This method allows us to take into account the memory effects for three decades.
Moreover, the use of a moving average of UPI allows us to take further consideration of
memory effects and delayed responses of the different indices. We consider, therefore,
the use of a UPI moving average lagged up to 2, 3 and 4 decades. If the number of stress
periods based on UPI or lagged moving averages UPI exceeds two of the three decades
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considered, we assign a drought condition for this time step. Then we assess the response
stress/unstress of the other drought indices (SISWG, SIERA5, SWI and NDVI).

3.4.2. At Local Scale

For comparison at finer spatial resolution, a kilometric scale, we use local precise
information based on:

• XLAS in-situ measurements : Sensible heat flux measurements using an extra-large
aperture scintillometer (XLAS) are provided as part of the work of [60], for the period
ranging between March 2013 and June 2015. The scintillometer (XLAS) was installed
close to the Ben Salem village over a 4 km transect above a mixed vegetation canopy:
trees (mainly olive orchards) with some annual crops (cereals and market garden-
ing) [60]. For our analyses, pixels enclosed in the mean XLAS are selected in order to
compare the different drought indices with the stress index derived from the sensible
heat flux measurements, denoted SIXLAS.

• Historical rainfed areas selection : Rainfed crops are more sensitive to rainfall depletion
and thus to drought. For our analyses, we identify historical rainfed wheat areas
relying on a non-irrigated cereal mask (see Figure 5a), computed for the agricultural
year 2011–2012, as part of the work computed by [68]. It is computed using an object-
oriented classification technique basing on the Spot image of 31 March 2012. We
generate the percentage of non-irrigated cereal fields for this year, over each MODIS
pixel, (see Figure 5b). Then, we select pixels that contain more than 40% of rainfed
cereal cover. Rainfed cereal pixels selected are used as reference to locate non-irrigated
cereal fields in precedent years, in order to assess the response of the different indices
over a dry and a wet year.

In order to facilitate interpretation, we define four stress classes that characterize the
severity of water stress identified using the different drought indices. The four stress classes
are listed in Table 2, “High stress”, “Stress”, “Moderate stress” and “No stress” according
to the values of a given index.

Table 2. Drought indices classification.

Index Values Drought Class

0–0.15 High stress

0.15–0.3 Stress

0.3–0.7 Moderate stress

0.7–1 No stress

(a)

Figure 5. Cont.
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(b)

Figure 5. Identification of rainfed cereals in MODIS pixels over the 2011–2012 agricultural season.
(a) Rainfed cereal mask, produced for the 2011–2012 agricultural season [68]. (b) Percentages of
rainfed cereal in each Modis pixel of the 2011–2012 agricultural season.

4. Results

4.1. Drought Indices Inter-Comparison at Regional Scale
4.1.1. Annual Scale

Figure 6 presents the cumulative rainfall during the growth season (September to
May) with the corresponding NDVI variation for each year (Figure 6a), in order to vi-
sually characterize the inter-seasonal variation over the study period. Rainfall data are
provided from CHIRPS precipitation time series. The red line in Figure 6a corresponds to
200 mm/growth season of precipitation amount. We assume that a dry year presents a
cumulative rainfall below 200 mm during a growth season. The Figure 6b shows the time
series of different standardized drought indices: the TIR SI simulated when the SPARSE
model is constrained by the SWG or ERA5 meteorological data SISWG and SIERA5, the
standardized NDVI index, the UPI, and the standardized SWI which is available since 2007.
The red line in Figure 6b indicates the drought threshold, fixed in this study at 0.2 which
corresponds to a drought event with an approximately 20% non exceedance frequency. The
stress threshold is necessary to discuss drought events, as well as their onset, duration and
intensity. The farther below the red line a standardized index is, the worse the drought is.

Overall, we see that annual indices show a similar variation. SISWG and SIERA5 show
similar inter-annual variability. Moreover, we observe that they reproduce UPI variability
and succeed in identifying wet and dry conditions simultaneously. Dry periods, which
correspond to abnormally dry situations that fall below the drought threshold, are well
depicted also by a cumulative rainfall less than 200 mm during each growing season, and a
low NDVI level. However, we observe in some instances that UPI is not very well correlated
with other standardized indices. This is the case for 2004–2005 or 2008–2009 where we
observe that UPI is either above the unusual unstressed condition or below the drought
threshold while other indices present similar stress level. To better explore the allocation of
precipitation intensity along these years, we present in Figure 7, the monthly cumulative
precipitation and monthly NDVI variation over these agronomic years. In addition, in
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order to facilitate interpretation, we present in Figure 7c, the monthly rainfall and NDVI
average over the whole study period between 2000 and 2019. There are in Figure 7a, low
cumulative rainfalls in winter and spring in comparison with the monthly rainfall amount
mostly observed in our study region during this period (see Figure 7c). However, almost all
the largest cumulative rainfall amounts are observed from September to December. Rainfall
during this period was sufficient, and coincided with the beginning of the growth season.
For this reason, we observe a high level of NDVI in March and May that reflect a good
development of vegetation, particularly cereal crops. Consequently, unstressed conditions
were also shown by the rest of the standardized indices. We also observe an abnormally
unstressed situation depicted by UPI during the agronomic year 2008–2009. However, the
other standardized indices indicate a medium stress condition. Indeed, we observe very
low rainfall amounts during the whole year, especially in November and December that
correspond to seeding and early growth. Then, we observe an abnormally high rainfall
amount that exceeds 100 mm/month in January. This high cumulative amount increases
the annual cumulative rainfall but it is late for vegetation growth. Indeed, an adequate
response of the stress is always dependent on receiving sufficient rainfall at the appropriate
moments, with sufficient amounts. In contrast, the agronomic year 2017–2018 shows very
low cumulative seasonal rainfall. The TIR SI values succeed to detect the stress period,
by presenting low values. However, standardized SWI and NDVI show a medium stress
condition. SWI and NDVI did not succeed to detect the drought intensity for this year.

Figure 6. Time-series of seasonal variation of standardized drought indices accumulated in growth
season. (a) Seasonal cumulative rainfall (September to May) with the corresponding NDVI variation.
The red line indicates the 200 mm precipitation amount. (b) Drought indices.

To assess the consistency between the various indices at an annual scale, we use
Kendall’s τ. Kendall’s τ is suitable for non-Gaussian distributions, as opposed to the
Pearson correlation coefficient [69]. Positive values indicate that both indices tend to
increase or decrease simultaneously, while negative values indicate that they tend to vary
in an opposite manner. A value near zero signals a lack of dependence. In Figure 8, we see
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that all indices present positive correlation coefficients. All indices present high Kendall’s
coefficients with UPI that exceed 0.35, particularly SIERA5 which presents a Kendall’s τ of
about 0.46. However, SWI presents a very low correlation coefficient with UPI. This is could
be explained by the different responses of these indices to a rainfall supply. UPI presents
an instantaneous response to rainfall variation. In contrast, SWI which presents the root
zone soil moisture, presents a delayed response to rainfall supply. On the other hand, we
observe that SWI presents the highest τ value with NDVI, which reflects a very strong
seasonal correlation between them. Furthermore, SISWG is highly correlated with other
indices. It presents a Kendall’s τ of about 0.58 with NDVI and with SWI and the highest
correlation with SIERA5, with a Kendall’s τ of about 0.64. However, SIERA5 presents low
correlation coefficients with NDVI and SWI.

Figure 7. Precipitation and NDVI monthly variation over agronomic years (2004–2005) and (2008–
2009). (a) 2004–2005. (b) 2008–2009. (c) Monthly rainfall and NDVI over the study period 2000–2019.
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Figure 8. Seasonal Kendall’s τ correlation between drought indices.

4.1.2. Decadal Scale

We focus on a finer temporal scale, a decadal scale, in order to assess short term
variations. Indeed, a short time scale (monthly or decadal) is more appropriate to provide
information on the growing season development over a few months and, therefore, on the
water supply, unlike the annual time scale [6].

In Figure 9, we propose a comparison analysis carried out at a decadal scale of the cereal
growing season (from September to May) selected from some dry and wet years. We used
the values of precipitation index UPI lagged up to five decades rather than the instantaneous
value, in order to be more correlated with the aggregated response of the different indices. The
agronomic year 2012–2013 (see Figure 9a) is considered as a dry year, based on the cumulative
rainfall over the corresponding growth season (Figure 6a). We observe that the standardized
NDVI index presents moderate drought conditions (50% of probability of occurrence) at the
beginning. Then, it decreases in December to 0.4 and then it reaches 0.2 in the end of the growth
season. However, the standardized TIR indices show mainly similar variations, more correlated
with lagged UPI variations. UPI shows considerable fluctuations along the whole period. We
observe very low values during several decades in September and October and in January until
March, that lead to important drops of SISWG, SIERA5 and extended low values of SWI which
fluctuate around 0.2 in the beginning of the growth season.

The period 2013-2014 represents a typical wet growth season. In Figure 9b, we observe
that the different drought indices are above the drought threshold over the whole period.
The standardized NDVI index present high values in spring that reflect a good vegetation
health and a maximum crop development during this period. High NDVI values are
observed after an important water supply provided during the growing season. UPI
presents abnormally high values that reach 100% probability of non exceedance for several
decades. SISWG, SIERA5 succeed to reproduce the main fluctuation in the lagged UPI:
relevant increases in UPI values lead to an important elevation of both the TIR indices
and a relevant drop in UPI which falls below the stress threshold mainly in January and
February and induces an important rapid decline of both TIR SI values. SWI presents,
however, a more delayed response to UPI variations. In fact, we observe a depression in
SWI in autumn and spring due to successive drop fluctuations of UPI during these periods.

In Figure 9c, we present another dry growth season. The lack of precipitation observed
mainly at the beginning of the growth season induces a decrease in the standardized NDVI
and SWI indices at the end of the growing season. The rainfall shortage during this season
triggers a relevant depletion of the TIR indices, especially in winter where we observe
SISWG, SIERA5 and UPI are below the stress threshold. However, each lagged UPI value
increase leads to an elevation in TIR indices.
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Figure 9. Decadal times series of standardized stress indices derived from different wavelenghts
over the growing season of two dry years (2012–2013 and 2017–2018), and a wet year (2013–2014).
(a) 2012–2013. (b) 2013–2014. (c) 2017–2018.

A further analysis is carried out to assess more closely the consistency between the different
drought indices in identifying stress periods at the decadal timescale according to UPI. As
explained in Section 3.4.1, we define stress periods according to the different indices. Besides,
we identify three cases: (1) the stress indices correctly reproduce the drought condition identified
with UPI (stress period or not stress period), flagged as “Congruent with UPI”, (2) the stress
indices identify a stress period not confirmed by UPI, called a “Not confirmed by UPI”, and the
last case, (3) the stress indices do not succeed to identify a stress period detected by the UPI,
called a “missed stress”. The first case estimates the consistency between the different drought
indices and UPI to identify the same stress conditions. Analyses are performed according to
seasons, in order to assess drought index responses through different seasons.

In Figure 10, we present the probability to identify these three different cases, according
to seasons and UPI values in Figure 10a and lagged moving average UPI to 2, 3 and 4
decades, respectively, for Figure 10b–d. Overall, we observe that the different indices show
a good performance to identify the same stress condition in autumn, winter and especially
in spring. However, in summer, the probability to detect the same stress conditions using
the different stress indices is decreased at the expense of missed stress. Indeed, in summer
the probability of rainfall events is extremely low in our study region. Therefore, drought
periods identified by UPI increase, but they are not necessarily identified by other drought
indices due to the supply of water provided from irrigation as an alternative water supply
for this period. The NDVI shows high probability to detect stress status congruent with
UPI, especially in spring where we have the maximum of vegetation development. The
case of “congruent with UPI” could be related to a stressed or an unstressed period. In this
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case, the high level of the “congruent with UPI” performed by NDVI is mainly related to a
no stress period over the rainy season and particularly in spring.

Figure 10. Probability of drought detection based on UPI and lagged UPI during the period between
2007 and 2019. (a) Stress identification basing on UPI. (b) Stress identification based on a UPI 2
decade moving average. (c) Stress identification basing on UPI 3 decade moving average. (d) Stress
identification basing on UPI 4 decade moving average.
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Besides, we observe that SISWG and SIERA5 show a good performance to correctly
detect the stress conditions determined from the UPI and it presents a low probability of
identifying stress periods not confirmed by UPI, especially using SISWG. This performance
is maintained during different seasons and even enhanced with the comparison with the
lagged moving average of the UPI. On the other hand, we observe that SWI shows a better
performance in winter and spring. Indeed, during this season, vegetation is well developed
with deeper root zones, which could explain the high performance of SWI to identify a
stress period or unstressed period according to UPI. Furthermore, this performance is
improved incrementally when we increase the lagged moving average value of UPI. The
application of a moving average of 4 decades seems to be the best delay period for adequate
responses for all drought indices. Beyond this value, too many memory effects are lost.

4.2. Drought Indices Inter-Comparison at Local Scale
4.2.1. Evaluation with XLAS In-Situ Measurements

In Figure 11, we present a decadal time series of the different standardized indices
during two growing seasons, where XLAS measurements are available at both local
(Figure 11a,c) and regional scale (Figure 11b,d). As mentioned above, we used for this
comparison the lagged UPI (up to 5 decades) and SIXLAS, respectively, as regional and local
references. The aim of the comparison of indices at a local and a regional scale is to assess if
an index found to be robust at low resolution (12 km) maintains its performance at higher
resolution (kilometric). For interpretation, we consider two groups of indices according
to their spatial resolution: a group with low resolution (kilometric) (SISWG, SIERA5 and
NDVI), and a second group with very low spatial resolution, at dozens of kilometers (SWI
and UPI).

In Figure 11a,b, we present a wet year (2013–2014). We see that indices SISWG and
SIERA5 succeed to better reproduce SIXLAS fluctuations in Figure 11a. In addition, we
observe that these indices, especially SISWG, follow the SIXLAS variations more closely,
particularly during the rainfall season (from October to February) and the last decades of
this growth season. Besides, we observe that stress periods defined by the SIXLAS (under
the threshold line), observed in October, December and February, are mostly isolated with
SISWG. Moreover, SISWG succeed in identifying stress conditions defined by SIXLAS, even
using its aggregated values at the regional scale (see Figure 11b). The NDVI, in spite
of being defined among higher resolution indices, did not succeed to reproduce SIXLAS
decadal variations. However, it brings, as expected, an overall delayed information about
stress conditions. We observe, for example, in Figure 11a, which presents a wet year, an
elevation in NDVI values in winter and spring that also correspond to several elevated
values observed by SIXLAS. On the other hand, we observe a different behavior of the
standardized SWI according to the different spatial scale. At a local scale (Figure 11a), SWI
did not succeed in correctly reproducing SIXLAS variations. However, at a regional scale
(Figure 11b), SWI succeeded in identifying dry or wet conditions, according to the lagged
UPI fluctuations. Dry conditions were observed at the beginning of the growth season and
in February. Wet conditions were observed in November–December and the end of the
growth season.

The 2014–2015 period represents a relatively dry year. We observe that NDVI presents
mainly moderate stress values in Figure 11d. In Figure 11c, we observe that TIR stress
indices succeed to better reproduce SIXLAS in this growth season, particularly using SISWG.
Indeed, SISWG succeed to identify a water stress period caught by SIXLAS which persists
for several decades during March, as well as an unstressed period observed later in April
and May, visible in the same figure. At a local scale (Figure 11c), SWI shows low values
observed below the stress threshold during several decades in Autumn and March, which
amply testify an overall dry situation during this growth season. Even at a regional scale
(Figure 11d), SWI shows moderate stress values. However, SWI was not able to accurately
identify stress conditions in comparison with in situ measurements. This could be explained
by its very low spatial resolution, inadequate for local stress detection.
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Figure 11. Decadal times series of standardized stress indices derived from different wavelenghts
over the growing season of two years (2013–2014) and (2014–2015) at a local scale (a,c), in comparison
with SIXLAS derived from XLAS measurements over pixels containing the scintillometer transect and
at a regional scale (b,d). (a) Local scale (2013–2014). (b) Regional scale (2013–2014). (c) Local scale
(2014–2015). (d) Regional scale (2014–2015).

4.2.2. Drought Detection in Rainfed Areas

In Figure 12, we present stress class maps of the different indices at the seasonal
scale (growth season) of the year 2011–2012: Figure 12a for the standardized thermal
index constrained by meteorological SWG data, Figure 12b for the standardized thermal
index constrained by meteorological ERA5 data, Figure 12c for standardized NDVI index,
Figure 12d for standardized SWI index and Figure 12e for standardized precipitation index.
In addition, we present the percentage of stress classes identified by each index using
extracted rainfed cereal pixels, as explained in Section 3.4.2 (see Figure 12f). Combined
results presented in Figure 12f show that most indices depicted a moderate stress class
for this year with the highest percentage. However, we observe that the TIR stress indices
and SWI show an elevated percentages of stress class and even a very low percentage of a
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high stress class for SISWG and SIERA5. This finding is in agreement with the hydrological
year characteristics presented in Figure 6a. Indeed, this year characterized by a cumulative
seasonal rainfall about 228 mm did not belong to very wet or very dry year. Stress classes
depicted by thermal indices and SWI could be more precise than NDVI characterized by
a delayed response and than the UPI which is less informative when aggregated at a low
temporal scale (seasonal scale).

(a) SI SWG (b) SI ERA5

(c) NDVI (d) SWI

(e) UPI (f) Percentages of classes

Figure 12. Stress classes for each drought index used over the agronomic year 2011–2012, (a) for
the standardized thermal index constrained by meteorological SWG data, (b) for the standardized
thermal index constrained by meteorological ERA5 data, (c) for standardized NDVI index (d) for
standardized SWI index, (e) for standardized precipitation index and (f) for percentage of the stress
class identified by each index.

Then, the same analysis was carried out for a dry year, 2009–2010. In Figure 13, we
observe that the rainfed cereal areas selected correspond mainly to high stress or stress
classes. More than 80% of rainfed cereal pixels indicate a high stress according to SISWG
and SIERA5 maps. Using the SWI information, we also identify a high stress of more than
50%. However, using the NDVI, we mainly identify stress class and moderate stress, as
well as the response of the UPI. Expected results are obtained mostly by the TIR indices and
SWI. In fact, these indices are related directly with vegetation water requirement, especially
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for the TIR that also depends on atmospheric demand. Precise information concerning
vegetation and surface stress should be obtained from these indices. Due to its low spatial
resolution, SWI might be less accurate for local analyses.

(a) SI SWG (b) SI ERA5

(c) NDVI (d) SWI

(e) UPI (f) Percentages of classes

Figure 13. Stress classes for each drought index used over the agronomic year 2009–2010, (a) for
the standardized thermal index constrained by meteorological SWG data, (b) for the standardized
thermal index constrained by meteorological ERA5 data, (c) for standardized NDVI index (d) for
standardized SWI index, (e) for standardized precipitation index and (f) for percentage of the stress
class identified by each index.

5. Discussion

We focused on growing seasons to perform our analysis (from September to May).
Indeed, droughts could be damaging for crop health in these periods of the year. Analyses
were carried out at different spatial scales: regional and local scale. At the regional scale, UPI
is considered as the reference index to characterize the year-to-year water statement, and to
assess the response of the aggregated indices used at a large scale (12 km). Overall, we find
that drought indices from the different wave lengths show mostly the same variations at
the annual time scale. All the indices succeed to reproduce the UPI variations. We also find
that thermal stress indices provided by the SPARSE model, when constrained either from
SWG or from ERA5 meteorological data, SISWG and SIERA5, respectively, are very well
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correlated with UPI. However, SIERA5 has a higher Kendall’s τ with UPI. Indeed, SIERA5 is
simulated using regional climatic information (ERA5 reanalyses) and local remote sensing
information. The use of the large scale meteorological data to simulate SIERA5 could explain
its high correlation with the UPI also provided by gridded data-sets. Moreover, we observe
a very strong seasonal correlation between SISWG and SIERA5. This correlation, measured
by Kendall’s coefficient, was also conserved at the decadal scale (see Figure 9), due to
their high spatial resolution. SWI and NDVI also present high correlation due to their
aggregated response to a stress condition. Indeed, the NDVI presents a delayed response
in comparison with the other indices, and shows less variability because of the time lag
needed for vegetation to respond for a supply or a lack of water. On the other hand, SWI,
due to the time needed for the water supply to be infiltrated to the root zone soil, also
shows a delayed response to water supply in comparison to the other indices.

We assess the consistency between drought indices and UPI as a reference stress index
for regional analyses. We find that there is more consistency between UPI and SISWG to
identify the stress condition, especially in autumn, winter and spring. Moreover, this index
presents the smallest probability to identify a stress period not confirmed by UPI. SWI
shows more consistency with UPI in spring. Indeed, during this season, vegetation presents
deeper root zones, which could explain the high performance of this index to identify a
stress period or unstressed period according to UPI. Our analyses show also that using a
moving average of UPI improves the adequation of drought indices to the hydric status. In
fact, all indices need a time lag to respond to a water supply or shortage. This temporal lag
depends obviously on the index used.

We can conclude, therefore, that TIR stress indices are more sensitive for a drought
period. Indeed, a shortage of water supply will affect the soil (evaporation) and the vegeta-
tion (root zone), inducing stomatal closure and a surface temperature elevation detected by
thermal sensors. However, SWI, which carries information on the soil moisture in the root
zone, did not show immediate response as a result of a lack of precipitation. Indeed, the
availability of some water storage in the profile soil after surface soil evaporation could
delay the response of SWI to a water stress. For this aim, we need further analyses to
identify the optimal parameter for the time infiltration (T) according to the characteristics
of our study region. Besides, satellite measurements to estimate soil moisture may not
be sufficiently precise because of the low spatial resolution of the SSM product used (see
Section 3.1.2). However, SIERA5, which is derived from very low resolution unprocessed
ERA5 reanalyses, shows a good performance in identifying water stress conditions, since
it is simulated at kilometric scale with precise satellite information. Analyses at the local
scale strengthen our findings. Indeed, comparison of the different drought indices with
the index derived from the XLAS measurements over the scintillometer transect show
that the thermal stress indices are promising tools for drought identification at low spatial
resolution scale (kilometric). In this case, SISWG, which incorporates information from the
local meteorological station close to the XLAS transect, shows better performances than
SIERA5 and allows an accurate identification of the stress condition. Moreover, the identi-
fication of drought classes in non-irrigated cereal pixels shows, therefore, an ambiguous
situation corresponding to SIERA5. This could be explained by the large spatial resolution of
meteorological data (31 km [64]) used to constrain the SPARSE model in order to simulate
SIERA5. For this task, although the SPARSE model allows the retrieval of separate estimates
of evaporation and transpiration, vegetation analyses seem to be insufficient to identify
plant stress periods, owing to the sparsity of the vegetation cover and the lack of consistent
information about rainfed areas.

6. Conclusions

Semi-arid areas are characterized by their high exposure to extreme climatic variability.
The occurrence of hot temperatures along with a deficit of rainfall leads to droughts and
impacts agricultural production. These trends in drought occurrence could be quantified
by a long time series of historical indicators. We rely on RS drought indicators provided by

363



Remote Sens. 2022, 14, 1813

different wave lengths: the visible/near infrared, the thermal infrared and the microwave
domains. These indicators provide information about vegetation health, water require-
ment and soil moisture that can help us to identify the plant hydric status. We use the
SPARSE model, a dual source energy balance model [50], in order to retrieve estimates of
evapotranspiration and water stress indices from the thermal infrared domain. SPARSE
relies on satellite information and meteorological observation series to characterize vege-
tation cover and atmospheric demand. As far as we know, not many studies of drought
index comparison have been proposed in the literature. Our study shows that NDVI is
very informative on the year-to-year water stress conditions. However, in spite of its low
resolution (kilometric), its delayed response to water stress forms a major disadvantage.
Thermal indices and SWI show consistent information at an annual scale. Nevertheless,
SISWG seems to be more precise for relevant water stress identification, especially at a local
scale. Indeed, SWI is not sufficiently reliable to accurately identify stress intensity at finer
time scales due to it is large spatial scale. On the other hand, this work highlights the
performance of large scale meteorological variables (reanalyses in our case) to identify
periods of droughts. We proposed an efficient alternative when local meteorological data
are not available, particularly at regional analyses. Perspectives for this work include
the simulation of a drought index simulated from transpiration only in order to focus on
agronomic droughts. Indeed, information about vegetation water requirements rather than
information provided from the “vegetation + soil” composite could be an efficient tool
for drought management in semi-arid regions characterized by crop disparity. Moreover,
adding mesoscale numerical weather prediction could provide efficient drought prediction.
Lastly, the SWG-SPARSE tool will be tested for similar applications but in different climatic
conditions (e.g., coastal areas).
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Appendix A. Post-Processing of Instantaneous Evapotranspiration Estimates

Evapotranspiration is simulated at the satellite overpass time and only during days
with clear sky. Some post-processing must be performed to reconstruct seasonal evapo-
transpiration useful for hydrological studies and particularly in agricultural applications.
The post-processing involves three steps: fusion, extrapolation and interpolation, that are
described below.
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Appendix A.1. Extrapolation

ET derived from TIR RS data rely on once-a-day acquisitions. An extrapolation
algorithm is used to reconstruct its sub-daily variations using a method based on the
evaporative fraction (EF), well described in [70]. EF at the satellite overpass t is defined as
the ratio between the latent heat flux (LE) and the available energy (AE), which is derived
from the net radiation (Rn) and soil heat flux (G), as defined in the following equation:

EFobs =
LE
AEt

=
LE

Rn − G
(A1)

According to [71], EF is relatively stable during the daylight hours on clear days. This
hypothesis allows the reconstruction of the diurnal behavior (hourly or half-hourly time
scale), see Equation (A2), based on the empirical equation of EF defined by [72] (denoted
EFsim), see Equation (A3), and observed EF at satellite overpass (Equation (A1)).

EF(30 min) = EFsim(30 min) ∗
EFobs
EFsim

(A2)

where,

EFsim = [1.2 − (0.4 ∗ GRt

1000
+ 0.5 ∗ RHt

100
)] (A3)

GR and RH are, respectively, the global radiation and relative humidity for a time
scale t (semi-hourly or satellite overpass).

Finally, daily evaporation (Ed) can be simply obtained using the Equation (A4):

Ed = EF ∗ AEd, (A4)

where AEd is computed from an equation suggested by [73]: where AE is assumed to
present the same diurnal variation as the global radiation, see (A5).

AEd = Rgd ∗ AEt

Rgt
, (A5)

Appendix A.2. TERRA ET and AQUA ET Merge

ET simulations are derived from TERRA and AQUA satellites. We choose to combine
these two sources of data in order to increase the overall temporal availability. Results
presented by [60] show that ET derived from these different sensors is potentially biased
because of their different overpass time (10:30 a.m. and 13:30 a.m. for Terra and Aqua,
respectively) and that TERRA simulations are more correlated with ET derived from mea-
sured sensible heat flux (H) from an extra large aperture scintillometer (XLAS). Therefore,
in order to take into consideration systematic differences in distributional properties, we
perform a bias correction approach for the AQUA simulations (available since 2002) before
merging. We considered CDF-t [74], a univariate bias correction method which allows
non-linear corrections to reproduce the statistical distributions of the reference time series.
Our aim is to keep ET simulations derived from TERRA RS (available since 2000) and to
add bias corrected ET derived from AQUA only in days with no TERRA acquisition.

Appendix A.3. Interpolation

to derive seasonal evapotranspiration, we have to fill the gaps between satellite
acquisitions in order to reconstruct days with missing ET data. Methods that rely on self
preservation or known diurnal shape of the ratio of evapotranspiration to a scale factor are
usually used for this aim [70]. Indeed, this scale factor will monitor interpolation between
two acquisition dates of successive images. In this work, we used the global radiation as an
interpolation reference quantity. Delogu et al. [41] have shown that it is the most robust
and best performing scale factor for seasonal timescales.
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Appendix B. Daily ET Simulations

Figure A1 shows time series of the ET estimates derived from merging ET Terra
and ET Aqua over the agronomic year 2013–2014 (from September to August), for which
the residual ET derived from scintillometer (XLAS) measurements are available. We
present ET simulations separately when the SPARSE model is constrained by the SWG
meteorological data (see Figure A1a) and when the SPARSE model is constrained by the
ERA5 reanalyses meteorological data (see Figure A1b). Overall, we observe in both figures
that ET constrained from Aqua RS data (ET Aqua) is always biased in comparison with
ET constrained from Terra RS data (ET Terra), and that ET Terra present higher values. In
Figure A1a, we observe that, in almost all cases, ET derived from XLAS measurements
shows similar variation to ET Terra, excepted for summer periods. In addition, ET provided
by the merging of Terra and Aqua reproduces more closely ET XLAS and succeeds in
removing biases observed originally between ET Terra and Aqua. Using unprocessed
ERA5 reanalyses (Figure A1b), ET from merging succeeds as well to reduce biases observed
initially between ET Terra and Aqua. However, the three ET series simulated from ERA5
meteorological data are not as close to the ET XLAS variations as the ET series simulated
from the SWG meteorological data. Indeed, ERA5 series are always biased in comparison
with observations data.

Figure A1. Weekly times series of evapotranspiration simulated initially from TERRA and AQUA
satellite data superposed with a time series computed from the merging (Merge) of TERRA and bias
corrected AQUA series and ET from XLAS measurements for the agronomic year 2013–2014. (a) [ET
constrained by SWG meteorological surrogate series. (b) ET constrained by ERA5 meteorological
surrogate series.
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Abstract: In order to prepare for floods and droughts that occur as a result of climate change, various
studies in water-related fields are being carried out in various countries around the world. Among
them, special attention is being paid to the low-impact development (LID) technique. This study
measured the annual maximum daily rainfall data from 2019 to 2100 by climate change scenario,
which is the annual maximum daily rainfall series observed for rainfall stations, and tested the
hydrological data using statistical analysis. After determining whether the data could be analyzed,
the probability distribution was selected, and the parameters of the selected probability distribution
were calculated using the L-moment method for each rainfall station. The probabilities of rainfall
data were derived using GEV distribution, and the United States Environmental Protection Agency
Storm Water Management Model (SWMM), a runoff simulation program, was used to compare and
analyze the runoff reduction rate before and after the installation of a permeable pavement as an
LID facility. The results of the analysis showed that representative concentration pathway (RCP) 4.5
and RCP 8.5 had the effect of reducing the runoff for more than 100 years at a 30% reduction rate
compared with before installation.

Keywords: low-impact development (LID); climate change scenarios; SWMM

1. Introduction

The frequency of typhoons and heavy rains has increased rapidly in Korea due to
global warming and abnormal weather conditions, and the scale of flood damage has
increased due to climate change and urbanization, resulting in substantial property damage
in urban areas. Unlike the flooding of agricultural land, urban flooding amplifies not
only economic and human loss, but also the psychological damage and social anxiety
of urban residents because, when flooding occurs, many people and a large amount of
urban infrastructure are concentrated in a dense space. In Korea, the average temperature
recorded in 2016 was the highest since 1973, and there are many signs of a changing climate
compared with the past, such as heat waves as well as unexpectedly heavy rains in July
and August.

According to the Intergovernmental Panel on Climate Change (IPCC) report [1], the
average global temperature will rise by 1 ◦C in the 2020s, and up to 1.7 billion people
worldwide will suffer from water shortages. In the long term, over 30% of coastal areas
will be lost due to rising sea level in the 2080s. It has been reported that more than 20% of
the world’s population will be at risk from flooding [2].

In preparation for many water-related disasters, such as floods and droughts due to
climate change, various studies in water-related fields are being conducted in countries
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around the world. Among them, much attention is being paid to the low-impact develop-
ment (LID) technique. LID is a technique that aims to establish water circulation systems
similar to those prior to development by installing permeable elements in impervious areas
to reduce runoff and improve water quality. Developed countries are responding to the
problems caused by climate change and urbanization by applying it to urban areas. LID
facilities include bio-retention cells, rain gardens, green roofs, infiltration trenches, perme-
able pavements, rain barrels, and vegetative swales. Therefore, a permeable pavement is
one of the facilities selected to reduce the depletion of groundwater and the impacts of
urban flooding.

In this study, by analyzing the changes in the observed rainfall and the probability of
rainfall by applying climate change scenarios, by setting the design rainfall for each return
period using the probability of rainfall for each scenario, and by simulating the amount of
runoff before and after the installation of an LID facility in the object region, we could use
the frequency, according to the scenario, to compare and analyze the emission reduction
rate. In addition, by comparing the amount of runoff in the return period for each climate
change scenario, we sought to show that installing LID facilities has the effect of reducing
runoff. Therefore, it is judged that the results analyzed through this study can aid in setting
an appropriate design direction when considering an LID facility.

2. Theoretical Analysis

For the case of the current facility design return period, rainfall analysis and return
period analysis using rainfall observation data was conducted. However, urban runoff
has continued to increase over a short period of time due to the increase in impervious
areas, and the return period of damage, accompanied by an irregular climate and locally
heavy rainfall, has continued to occur. Therefore, in order to supplement the existing
design return period and to design a stable structure, it was necessary to predict the future
climate using observational data and utilize the data composed of scenarios, rather than
analyze past data only. Therefore, it is suggested that the application of the LID facility in
the climate change scenario used in this study be used as the basic premise for disaster
prevention standard guidelines, and in measures to respond to climate change in urban
areas in the future.

2.1. Climate Change Scenario

For the climate change scenario used in this study, the greenhouse gas concentration
is determined as the amount of radiation exerted by human activities on the atmosphere as
per the IPCC 5th evaluation report, and the representative concentration pathway (RCP)
scenario contains one fixed representative radiative forcing value, with the expression
“representative” used in the sense that there can be many socio-economic scenarios. Unlike
the existing Special Report on Emission Scenarios (SRES), the RCP scenario reflects the
recent trend of changes in greenhouse gas concentrations and has been updated to fit the
recent prediction model. The four representative greenhouse gas concentrations in the RCPs
are 2.6, 4.5, 6.0, and 8.5. In the process of calculating the greenhouse gas concentrations, the
social and economic assumptions were changed from the basis of a future society structure
to whether or not to implement climate change response policies.

The Korea Meteorological Administration (KMA) simulated the future climate change
scenario by introducing the RCP scenario as forced input data to the Hadley Center Global
Environmental Model version 2—Atmosphere and Ocean (HadGEM2-AO) model, a global
climate change prediction model, and used the simulated global climate change scenario as
input data to the HadGEM3-RA model, a regional climate model. Through epidemiological
detailing, regional climate model (RCM) data, a regional climate change scenario that well
reflects the effects of complex topography that cannot be expressed by the global model,
were calculated. In this study, RCP 4.5 and RCP 8.5 scenarios were selected and analyzed
among the four climate change scenarios.
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2.2. Return Period Analysis

There are many different probability distribution types for return period analysis
according to climate change scenarios, such as Gumbel (GUM), generalized extreme value
(GEV), generalized logistic (GLO), generalized Pareto (GPA), generalized normal (GNO),
and Pearson type 3 (PT3). The relationship between the probability weighted moment [3]
and the L-moment is described by Hosking [4,5], Maeng et al. [6], Maidment [7], and
the World Meteorological Organization [8]. Furthermore, Hosking [4] published that
the L-moment, which is the linear combination of the statistical characteristics of the
probability weight moment (PWM) based probability distribution, enables efficient and
safe parameters in smaller samples more than other moment methods and method of
maximum likelihood. In addition, the parameter estimation method by L-moment for
each probability distribution has been studied and described by Hosking et al. [4,9] and
Maidment [7].

2.3. EPA-SWMM for Application of LID Facility

In this study, the Storm Water Management Model (SWMM) was selected and analyzed
from among the models for estimating the amount of flooding caused by rainfall in urban
watersheds. In 1971, with the support of the United States Environmental Protection
Agency (US EPA), the Metcalf & Eddy Corporation, and the University of Florida and
Water Resource Engineering (WRE), the model was developed to simulate the flow rate
and water quality of the urban watershed sewage system [10]. In addition, in the 1981
SWMM model, the extended transport (EXTRAN) block, designed to calculate the overflow,
drainage, and pressure flow of hand structures, was added to the SWMM model to expand
and supplement the transport block. Currently, the EPA-SWMM has been developed up to
version 5.1.007 (with LID control).

The LID runoff model using the SWMM was mentioned by Lee [11], and the applied
model of the study site was selected and analyzed as a permeable pavement.

3. Study Area and Research Method

3.1. Selection of Study Area and Overview

The watershed of the study area was the Eco-Delta City (EDC) located in Busan city
in Korea. The location of the study area is shown in Figure 1. The total area was 105.9 ha
(1.059 km2). The West Nakdong River on the west flows from north to south, and the
Pyeonggangcheon Stream on the east flows into the West Nakdong River through the Suna
sluice gate. The study area was the estuary of the West Nakdong River, which consists
of flat land with an elevation of 50 m or less (mostly 0.4 to 4.0 m), and the difference in
height between the river and the land is less than 1.0 m, being mostly lowlands. In addition,
agricultural water is supplied to the existing irrigation channel in study area through the
lower culvert of the Namhae Expressway, but it will be closed due to development of the
study area, and there is no external inflow.

 

Figure 1. Study area.
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Therefore, the study area was selected with regard to the topographical condition of
the area and the design stage before the installation of the LID facility, as well as the fact
that the permeable pavement will have a large reduction effect on the flat land.

3.2. Collection of Hydrological Data

The rainfall station was selected according to the distance from the study area. There-
fore, the Gimhae rainfall station was selected, as it is located close to Gimhae-si, with the
data exceeding 30 years. The annual maximum daily rainfall data from the Gimhae rainfall
station were used in this study [12]. The location of the Gimhae rainfall station is shown in
Figure 2.

 

Figure 2. Selection of rainfall station.

In addition, the Korean Peninsula climate change scenario was analyzed using the
global climate change scenario data of the HadGEM2-AO model, and was developed in
Korea using the HadGEM3-RA model (Hadley Center Global Environment Model version
3 atmosphere regional climate model) at a resolution of 12.5 km.

Production process for climate change scenarios is shown in Figure 3.
In this study, the RCP 4.5 scenario was simulated for the peninsula for 200 years

with 12.5 km resolution, and the integral control was based on the RCP 8.5 scenario. The
extraction of annual maximum daily rainfall data was based on the past observed time
series of daily rainfall (1988–2018) and the climate change scenarios from 2019 to 2100.

The annual maximum daily rainfall for the next 100 years suitable for the EDC, the
research study area, was analyzed and used as shown in Table 1.
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Figure 3. Production process for climate change scenarios [13].

Table 1. Annual maximum daily rainfall according to climate change scenarios.

Year
RCP Scenarios

Year
RCP Scenarios

Year
RCP Scenarios

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

1988 83.0 83.0 2026 145.0 205.8 2064 145.6 87.7
1989 296.0 296.0 2027 93.7 70.0 2065 128.2 106.6
1990 126.0 126.0 2028 134.0 117.3 2066 219.9 109.7
1991 218.0 218.0 2029 85.7 123.9 2067 98.7 65.7
1992 164.0 164.0 2030 117.0 68.0 2068 91.5 112.0
1993 140.0 140.0 2031 113.0 212.1 2069 84.9 101.5
1994 97.0 97.0 2032 50.9 95.4 2070 65.0 134.7
1995 93.0 93.0 2033 66.3 256.1 2071 116.5 91.9
1996 103.0 103.0 2034 189.7 94.0 2072 264.4 120.2
1997 119.0 119.0 2035 124.1 105.8 2073 157.4 187.8
1998 109.0 109.0 2036 168.7 108.7 2074 102.2 68.3
1999 131.0 131.0 2037 57.5 124.8 2075 79.0 71.7
2000 83.0 83.0 2038 82.4 83.4 2076 65.6 97.5
2001 73.0 73.0 2039 229.4 76.1 2077 83.8 163.5
2002 160.0 160.0 2040 85.2 121.6 2078 86.5 80.9
2003 108.0 108.0 2041 113.7 63.5 2079 129.5 82.2
2004 127.0 127.0 2042 133.6 71.9 2080 108.6 123.7
2005 179.0 179.0 2043 80.1 121.1 2081 95.4 128.6
2006 131.0 131.0 2044 130.2 82.7 2082 156.3 127.3
2007 100.0 100.0 2045 80.9 112.8 2083 116.7 171.2
2008 111.0 111.0 2046 216.8 131.9 2084 129.9 101.4
2009 218.0 218.0 2047 86.7 96.9 2085 249.0 89.2
2010 119.0 119.0 2048 156.3 82.0 2086 79.5 72.0
2011 189.0 189.0 2049 93.2 60.0 2087 107.5 122.0
2012 119.0 119.0 2050 110.4 69.1 2088 137.3 403.6
2013 102.0 102.0 2051 111.5 147.9 2089 79.9 83.3
2014 238.0 238.0 2052 157.8 334.9 2090 75.2 97.9
2015 53.0 53.0 2053 176.7 111.8 2091 162.3 81.1
2016 140.0 140.0 2054 114.2 113.3 2092 112.9 269.1
2017 168.0 168.0 2055 140.5 162.6 2093 69.2 142.0
2018 88.0 88.0 2056 99.1 63.4 2094 150.4 121.1
2019 88.9 121.8 2057 355.9 105.8 2095 152.4 124.4
2020 121.1 81.9 2058 108.3 101.7 2096 123.0 141.5
2021 157.2 151.2 2059 189.6 69.5 2097 96.4 181.9
2022 131.6 85.5 2060 75.3 91.7 2098 132.4 151.2
2023 133.2 97.4 2061 152.4 110.9 2099 100.3 105.6
2024 84.7 85.2 2062 81.2 87.0 2100 65.7 74.6
2025 127.6 73.9 2063 103.8 104.6
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3.3. Input Data Composition of SWMM Model

The parameters of the SWMM model are watershed area, permeability, Manning’s
roughness coefficients, surface storage volume, storage depth, CN value, slope, and sewage
pipe data. The rainfall runoff is simulated using these parameters as input data. However,
since there is limited observation data to apply all parameters, in this study, watershed
area, permeability, Manning’s roughness coefficients, slope, and sewage pipe data were
used as parameters.

In Korea, the EPA-SWMM is used for flood analysis of LID facilities, and in the case of
LID facility effect analysis, the most accurate and ideal result is obtained by performing
monitoring under the same conditions before and after installation of the facility and
analyzing the effect. In this section, the parameters and data construction before and after
LID facility installation are presented. Watershed delineation is the first step in simulating
the physical drainage systems. In the EPA-SWMM model, the subwatershed is assumed
to be a rectangle with uniform characteristics (slope, roughness, etc.). The shape of the
watershed is defined by factors such as area, watershed width, slope, etc. In the case of
the EDC area, it flows out through three outlets, and in the case of each watershed, the
model was built by unifying the watershed names A, B, and C, as shown in Figure 4, with
all three watersheds flowing into the West Nakdong River. The watersheds were divided
into subwatersheds according to the pipe network, and there were 133 subwatersheds in
A, 171 in B, and 202 in C. The pipe network, according to watershed area, subwatersheds,
outlets, nodes, and links, is presented in Table 2 and Figure 4.

Figure 4. Pipe network of watersheds. (A) Outlet of section A; (B) Outlet of section B; (C) Outlet of
section C.

To introduce the LID facilities, variables for each facility were applied. Table 3 shows
the designated values of the permeable pavement in this study.
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Table 2. Pipe network.

Watershed Area
(ha)

Subwatershed
(pcs)

Outlet
(pcs)

Node
(pcs)

Link
(pcs)

A 29.4 133 1 43 43
B 32.4 171 1 52 52
C 44.1 202 1 93 93

Total 105.9 506 3 188 188

Table 3. Parameter values of permeable pavement.

Division Attribute Value

Surface

Berm height (mm) 0
Vegetation volume fraction 0

Surface roughness (Manning n) 0.012
Surface slope (%) 1

Pavement

Thickness (mm) 60
Void ratio (Voids/Solids) 0.15

Impervious surface fraction 0.95
Permeability (mm/h) 360

Clogging factor 0

Storage

Height (mm) 300
Void ratio (Voids/Solids) 0.25

Conductivity (mm/h) 25.9
Clogging factor 0

Underdrain
Drain coefficient (mm/h) 0

Drain exponent 0
Drain offset height 0

In addition, the drainage area of EDC is 52.95 ha, which is 50% of the total watershed area of 105.90 ha. The
roughness coefficients among the conduit input data, 0.030 for the permeable area and 0.014 for the impervious
area, were applied.

3.4. Research Methodology

The following procedure was followed to analyze the reduction rate of the runoff of
the LID facility installed in selected watersheds.

The extraction of annual maximum daily rainfall data was based on the past observed
time series of daily rainfall (1988–2018) and the climate change scenarios from 1988 to 2050
and 1988 to 2100. The statistical tests, such as the mean, standard deviation, coefficient of
variation, coefficient of skewness, and coefficient of kurtosis, were applied to hydrological
data. After calculating the basic statistical values of the annual maximum daily rainfall
series, the time series were tested for independence, homogeneity, and outliers. An appro-
priate distribution was selected for the GUM, PT3, GEV, GLO, GPA, and GNO distributions
through the goodness-of-fit test. The parameters of the appropriate distribution were com-
puted according to the study area and the period of analysis using the L-moment method,
and the probability of rainfall was estimated using the selected appropriate distribution.
Probability of rainfall was computed according to the climate change scenarios.

A rainfall intensity duration equation was derived, and the regression equation was
calculated using the precipitation data from the selected rainfall station. The rainfall
distribution of the probability of rainfall was constructed using the calculated regression
equation. In the EPA-SWMM, the same pipe network data, parameters, and rainfall data
before and after the installation of the LID facility were established, and the parameters for
the facility after the installation of the LID facility were additionally configured. The effect
analysis was presented by estimating the probability of rainfall for each return period of
climate change scenario, such as RCP 4.5 and RCP 8.5, by simulating runoff and comparing
the reduction rate.
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Figure 5 is a schematic diagram of the probability precipitation calculation considering
climate change scenarios and LID facilities. The flow chart used in the study based on the
procedure introduced in Figure 5 is shown in Figure 6.

Figure 5. Estimation of probability precipitation by climate change scenario.

Figure 6. Study flow chart.
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4. Results

4.1. Basic Statistical Analysis and Calculation of Probable Rainfall According to Climate
Change Scenario

The mean, standard deviation, coefficient of skewness, coefficient of variation, and
coefficient of kurtosis for the annual maximum daily rainfall data from the Gimhae rainfall
station were calculated. The mean and standard deviation for each period of the RCP 4.5
scenario ranged from 126.2 m3/day to 135.0 m3/day and 48.502 to 53.361, respectively, the
coefficient of skewness and coefficient of variation were from 1.162 to 1.618 and 0.383 to
0.408, respectively, and the coefficient of kurtosis was from 1.616 to 3.769. This indicated
overall that the mean was larger than the range of standard deviation, the coefficient
of skewness and the coefficient of variation showed positive values and were biased to
the right, and the coefficient of kurtosis was larger than 3, the standard value of normal
distribution.

In the RCP 8.5 scenario, the mean and standard deviation ranged from 121.2 to 135.0
and 50.727 to 56.491, respectively, the coefficient of skewness and the coefficient of variation
were from 1.231 to 2.255 and 0.395 to 0.461, respectively, and the coefficient of kurtosis was
from 1.616 to 6.828.

The basic statistics for RCP 4.5 and RCP 8.5 are shown in Tables 4 and 5.

Table 4. Basic statistics for Gimhae rainfall station using RCP 4.5 scenario.

Duration of
Observed Data

(Years)

Mean ( x)
(m3/s)

Standard
Deviation

(S)

Coefficient
of Skewness

(Cs)

Coefficient
of Variation

(Cv)

Coefficient
of Kurtosis

(CA)

1988–2018 135.0 53.361 1.231 0.395 1.616
1988–2050 126.6 48.502 1.162 0.383 1.646
1988–2100 126.2 51.428 1.618 0.408 3.769

Table 5. Basic statistics for Gimhae rainfall station using RCP 8.5 scenario.

Duration of
Observed Data

(Years)

Mean ( x)
(m3/s)

Standard
Deviation

(S)

Coefficient
of Skewness

(Cs)

Coefficient
of Variation

(Cv)

Coefficient
of Kurtosis

(CA)

1988–2018 135.0 53.361 1.231 0.395 1.616
1988–2050 121.2 50.727 1.421 0.418 1.947
1988–2100 122.4 56.491 2.255 0.461 6.828

4.2. Independence, Homogeneity, and Outlier Detection in Annual Maximum Daily Rainfall

The climate change scenario data were checked to determine the existence of inde-
pendence, homogeneity, and outliers. The Wald–Wolfowitz test was applied to check the
independence, and the Mann–Whitney test was applied to observe the homogeneity of the
data. In addition, the Grubbs–Beck test was used for the detection of outliers in the time
series data.

For the independence test, the Wald–Wolfowitz test [14], which is a non-parametric
test that tests the independence of a population, was performed, and it was found that
there were no abnormalities in any of them.

The outlier test induces inappropriate statistical parameters in the case of data that
appear far above or below the general balanced distribution of hydrological data, resulting
in uncertainty in the presentation of the design hydrologic quantity. Therefore, the presence
or absence of outliers was tested using the Grubbs–Beck method for hydrological data of
the daily maximum flow series for each analysis in the region to which the climate change
scenario was applied. It was confirmed that there were no outliers.

Therefore, the annual maximum daily rainfall in the study area was recognized as
valid for analysis as hydrological data.
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4.3. Estimation of L-Moment Ratio

L-moment ratios were estimated for goodness-of-fit test evaluation of the probability
distributions, such as GUM, PT3, GEV, GLO, GPA, and GNO. L-skewness and L-kurtosis
were calculated for the 1988–2018, 1988–2050, and 1988–2100 periods using the annual
maximum daily rainfall of RCP 4.5 and RCP 8.5.

In the case of RCP 4.5, L-skewness was 0.2535, 0.2136, and 0.2510, and L-kurtosis was
0.2108, 0.1884, and 0.1999. In the case of RCP 8.5, L-skewness was 0.2535, 0.2822, and 0.3321,
and L -kurtosis was 0.2108, 0.2019, and 0.2538.

4.4. Goodness-of-Fit Test

For the goodness-of-fit test, L-moment ratio and Kolmogorov–Smirnov (K–S) tests
were performed. First, the selection of an appropriate probability distribution for each
period was made by plotting the L-moment ratio, using the L-moment ratio calculated
in the previous section. The L-moment ratio diagram was plotted to select the best fitted
probability distribution from among GUM, PT3, GEV, GLO, GPA, and GNO. The best fitted
probability distribution is the one that follows the observed data.

Therefore, Figure 7 shows the average values of the L-moment ratio for the RCP 4.5
and RCP 8.5 scenarios.

 

Figure 7. Identification of distributions by L-moment.

The dimensionless L-moment ratios scattered in the diagram are more likely to follow
the curve of the GEV distribution, as shown in Figure 7. Therefore, the L-moment method
application on the annual maximum daily rainfall for each rainfall station and its plotting
in the L-moment ratio diagram showed that the GEV distribution was an appropriate
probability distribution compared with GUM, GLO, GPA, GNO and PT3.

Second, the K–S test was applied to choose the best fitted probability distribution for
each period of the annual maximum daily rainfall series of the climate change scenario. As
a result, at the 5% significance level, data for each period of the annual maximum daily
rainfall series were recognized as following the distribution of GEV, GUM, GLO, GPA,
GNO, and PT3.

380



Water 2022, 14, 1301

The L-moment ratio diagram and the K–S goodness-of-fit tests showed that the GEV
distribution was best fitted probability distribution compared with the other probability
distributions. Therefore, the GEV distribution was selected for further analysis.

4.5. Parameter Estimation of Desired Distribution According to L-Moment Method

The parameters of the GEV distribution were estimated by applying it to the annual
maximum daily rainfall of the climate change scenarios of RCP 4.5 and RCP 8.5. The
parameters of the GEV distribution consist of shape, scale, and location, estimated using
the L-moment method for defined periods. The parameters of the GEV distribution that
were estimated for the RCP 4.5 and RCP 8.5 scenarios are shown in Tables 6 and 7.

Table 6. Parameters calculated by GEV distribution using L-moment method considering RCP 4.5
scenario at Gimhae rainfall station.

Duration of Observed Data
(Years)

Parameter

ξ α β

1988–2018 108.2442 96.9893 −0.1260
1988–2050 103.4955 35.6241 −0.0668
1988–2100 101.8388 34.1054 −0.1224

Table 7. Parameters calculated by GEV distribution using L-moment method considering RCP 8.5
scenario at Gimhae rainfall station.

Duration of Observed Data
(Years)

Parameter

ξ α β

1988–2018 108.4242 96.9893 −0.1260
1988–2050 96.2268 32.2964 −0.1675
1988–2100 95.8663 30.1751 −0.2377

4.6. Computation of Return Periods Based on Annual Maximum Daily Rainfall

Return periods were computed through the application of GEV distribution on annual
maximum daily rainfall of the climate change scenario using the parameters computed in
the section above, as shown in Tables 8 and 9.

Table 8. Probable annual maximum daily rainfall at Gimhae rainfall station using RCP 4.5 scenario
(unit: mm/day).

Duration of Observed Data
(Years)

Return Period (Years)

10 20 50 100 200

1988–2018 204.66 241.67 294.83 338.97 386.98
1988–2050 190.00 220.54 262.30 295.35 329.85
1988–2100 190.20 224.00 272.41 312.49 355.98

Table 9. Probable annual maximum daily rainfall at Gimhae rainfall station using RCP 8.5 scenario
(unit: mm/day).

Duration of Observed Data
(Years)

Return Period (Years)

10 20 50 100 200

1988–2018 204.66 241.67 294.83 338.97 386.98
1988–2050 184.50 220.51 274.07 320.05 371.53
1988–2100 185.65 226.10 289.85 347.79 415.92
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4.7. Analysis of Runoff before and after Application of LID Facilities by Climate Change Scenario

As a result of the analysis of the reduction rate for RCP 4.5 and RCP 8.5 during
the 1988–2018 period, it was found that the reduction rate for the total amount of runoff
increases as the return period increases.

In addition, as a result of the analysis of the reduction rate from 1988 to 2050 for
the RCP 4.5 scenario, the 10-year return period was 45.4%, the 20-year return period was
45.8%, the 50-year return period was 46.2%, the 100-year return period was 46.5%, and
the 200-year return period was 46.7%. It was found that the greater the return period, the
greater the reduction rate.

Analyzing the RCP 4.5 scenario as a sample, the reduction rate from 1988 to 2100
decreased from 321.8 m3/day to 175.7 m3/day in the 10-year return period of the total
runoff, showing a reduction rate of 45.4%. In the 20-year return period, it decreased from
386.8 m3/day to 209.6 m3/day, showing a reduction rate of 45.8%; and in the 50-year return
period, it decreased from 481.1 m3/day to 258.4 m3/day, showing a reduction rate of 46.3%.
In the case of the 100-year return period, it decreased from 559.9 m3/day to 299.0 m3/day, a
reduction rate of 46.6%; and in the 200-year return period, it decreased from 646.2 m3/day
to 343.3 m3/day, showing a reduction rate of 46.9%.

Table 10 and Figure 8 show the results of the runoff and reduction rates according to
the maximum daily rainfall by return period for the 1988–2100 period analysis of the RCP
4.5 scenario.

Table 10. Runoff and reduction rate by return period of maximum daily rainfall (RCP 4.5, 1988–2100).

Return Period
(Years)

Watershed
Area

Peak Rate of Runoff
(m3/s) Reduction

Efficiency (%)

Runoff
(m3/Day) Reduction

Efficiency (%)
Before After Before After

10

A 0.084 0.052 38.5 105.2 54.6 48.1
B 0.079 0.050 37.1 101.4 57.4 43.4
C 0.088 0.058 34.6 115.2 63.7 44.7

Total 0.252 0.159 36.7 321.8 175.7 45.4

20

A 0.104 0.063 39.4 126.0 64.9 48.5
B 0.097 0.061 37.7 122.2 68.7 43.8
C 0.109 0.070 35.4 138.5 76.0 45.2

Total 0.310 0.194 37.4 386.8 209.6 45.8

50

A 0.133 0.080 40.3 156.1 79.7 49.0
B 0.124 0.077 38.3 152.6 85.1 44.2
C 0.140 0.089 36.3 172.3 93.6 45.7

Total 0.397 0.245 38.3 481.1 258.4 46.3

100

A 0.158 0.093 41.0 181.2 92.0 49.2
B 0.147 0.090 38.7 178.2 98.8 44.5
C 0.166 0.105 36.9 200.6 108.2 46.0

Total 0.471 0.288 38.8 559.9 299.0 46.6

200

A 0.186 0.101 45.7 208.6 105.4 49.5
B 0.172 0.105 39.0 206.2 113.7 44.8
C 0.196 0.122 37.5 231.4 124.2 46.3

Total 0.554 0.329 40.6 646.2 343.3 46.9
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(a) 

(b) 

(c) 

Figure 8. Cont.
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(d) 

(e) 

Figure 8. Runoff by return period according to LID facility installation (RCP 4.5, 1988–2100):
(a) 10-year return period; (b) 20-year return period; (c) 50-year return period; (d) 100-year return
period; (e) 200-year return period.

As a result of the analysis of the reduction rate for the RCP 8.5 scenario analysis from
2018 to 2050, the 200-year return period decreased from 677.2 m3/day of the total runoff to
359.1 m3/day, indicating the largest reduction rate of 47.0%.

Analyzing the RCP 8.5 scenario as a sample, the reduction rate from 1988 to 2100,
during the RCP 8.5 scenario analysis period, for the 10-year return period of the total runoff
decreased from 313.1 m3/day to 171.2 m3/day, showing a reduction rate of 45.3%. In
the 20-year return period, it decreased from 390.8 m3/day to 211.7 m3/day, showing a
reduction rate of 45.8%; and in the 50-year return period, it decreased from 515.3 m3/day
to 276.0 m3/day, showing a reduction rate of 46.4%. In the case of the 100-year return
period, it decreased from 629.9 m3/day to 334.9 m3/day, a reduction rate of 46.8%; and in
the 200-year return period, it decreased from 766.1 m3/day to 404.5 m3/day, showing a
reduction rate of 47.2%.

Table 11 and Figure 9 show the results for the runoff and reduction rates according to
the maximum daily rainfall by return period for the 1988–2100 period analysis of the RCP
8.5 scenario.
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Table 11. Runoff and reduction rate by return period of maximum daily rainfall (RCP 8.5, 1988–2100).

Return
Period (Years)

Watershed
Area

Peak Rate of Runoff
(m3/s) Reduction

Efficiency (%)

Runoff
(m3/day) Reduction

Efficiency (%)
Before After Before After

10

A 0.082 0.050 38.4 102.4 53.2 48.1
B 0.077 0.048 37.0 98.6 55.9 43.3
C 0.085 0.056 34.5 112.1 62.1 44.6

Total 0.244 0.155 36.6 313.1 171.2 45.3

20

A 0.105 0.064 39.4 127.3 65.5 48.5
B 0.099 0.061 37.7 123.5 69.4 43.8
C 0.110 0.071 35.4 140.0 76.7 45.2

Total 0.314 0.196 37.5 390.8 211.7 45.8

50

A 0.144 0.086 40.6 167.0 85.1 49.1
B 0.134 0.083 38.5 163.7 91.0 44.4
C 0.151 0.096 36.6 184.6 99.9 45.9

Total 0.429 0.264 38.5 515.3 276.0 46.4

100

A 0.181 0.106 41.4 203.4 102.9 49.4
B 0.168 0.102 39.0 200.9 110.9 44.8
C 0.190 0.119 37.4 225.6 121.2 46.3

Total 0.538 0.327 39.3 629.9 334.9 46.8

200

A 0.225 0.130 42.2 246.5 123.8 49.8
B 0.208 0.126 39.4 245.3 134.5 45.2
C 0.238 0.147 38.2 274.2 146.2 46.7

Total 0.671 0.403 39.9 766.1 404.5 47.2

(a) 

Figure 9. Cont.
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(b) 

(c) 

(d) 

Figure 9. Cont.
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(e) 

Figure 9. Runoff by return period according to LID facility installation (RCP 8.5, 1988–2100): (a) 10-
year return period; (b) 20-year return period; (c) 50-year return period; (d) 100-year return period;
(e) 200-year return period.

4.8. Analysis of Reduction Rate by Climate Change Scenario

To efficiently manage runoff, it is necessary to determine the rainfall (design rainfall)
to estimate the size of the reduction potential facility. A pre-disaster impact assessment is
recommended [15]. The usual return period used in the design of temporary and permanent
facilities is 30 and 50 years, respectively. As a result, a reduction rate return period analysis
based on the 20-year runoff was reported in this study for LID facilities. The return period
analysis from 1988 to 2018 was the same for the RCP 4.5 and RCP 8.5 scenarios; hence, it is
reported only for the RCP 4.5 scenario.

In the RCP 4.5 scenario, as a result of the comparison and analysis of the total runoff
from 1988 to 2018, it was found that the runoff on a 20-year return period of 421.1 m3/day
was greater than the 200-year return period of 376.1 m3/day before and after the LID facility
installation, which was predicted to reduce the runoff for up to 200 years, as a result of the
LID facility installation, for the 20-year return period, when designing the return period.

In addition, a comparison and analysis of the total runoff from 1988 to 2050 was
conducted, and the results showed that 380.1 m3/day for the 20-year return period before
the LID facility installation was higher than 316.7 m3/day for the 200-year return period
after the LID facility installation, which would have the effect of reducing runoff up through
the 200-year return period. The results of the comparison and analysis of the total runoff
from 1988 to 2100 showed 386.8 m3/day for the 20-year return period before the LID
facility installation, and 343.3 m3/day for the 200-year return period after the LID facility
installation. This showed a value higher than 343.3 m3/day, and it was predicted that the
runoff at the 20-year return period set would be reduced to the 200-year return period as a
result of the LID facility installation, when designing the return period.

Table 12 and Figure 10 show the results of the comparison and analysis of the total
runoff for the RCP 4.5 scenario by return period before and after the LID facility installation.
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Table 12. Runoff by return period using RCP 4.5 scenario (unit: m3/day).

Year of Analysis Development
Return Period

10-Year 20-Year 50-Year 100-Year 200-Year

1988–2018
Before 349.5 421.1 525.1 612.4 708.1
After 190.2 227.4 281.1 326.0 376.1

1988–2050
Before 321.4 380.1 461.3 526.1 594.3
After 175.5 206.1 248.2 281.6 316.7

1988–2100
Before 321.8 386.8 481.1 559.9 646.2
After 175.7 209.6 258.4 299.0 343.3

 

 
(a) 

 
(b) 

Figure 10. Cont.

388



Water 2022, 14, 1301

 
(c) 

Figure 10. Change in runoff by return period in RCP 4.5 scenario: (a) 1988–2018 (year); (b) 1988–
2050 (year); (c) 1988–2100 (year).

In the case of the RCP 8.5 scenario, the analysis of the 20-year return period from 1988
to 2050 before the LID facility installation was based on the comparison and analysis of
the total runoff from 1988 to 2050. The return period of 380.0 m3/day was higher than
the return period of 359.1 m3/day for the 200 years after LID facility installation. When
designing the return period, it was found that the amount of runoff, with a return period of
20 years, would be reduced for around 200 years or more due to the LID facility installation.

The analysis of the 20-year return period from 1988 to 2100 before the LID facility
installation was based on the comparison and analysis of the total runoff from 1988 to 2100.
The return period of 390.8 m3/day was higher than the return period of 334.9 m3/day
for the 100 years after the LID facility installation, and smaller than the return period
of 404.5 m3/day for 200 years. When designing the return period, it was found that the
amount of runoff with a return period of 20 years would be reduced for around 100 years
or more due to the LID facility installation.

Table 13 and Figure 11 show the results of the comparison and analysis of total runoff
for the RCP 8.5 scenario by return period before and after the installation of the LID facility.

Table 13. Runoff by return period using RCP 8.5 scenario (unit: m3/day).

Duration of Analysis
(Year)

Development
Return Period

10-Year 20-Year 50-Year 100-Year 200-Year

1988–2050
Before 310.9 380.0 484.3 574.9 677.2
After 170.0 206.1 260.1 306.7 359.1

1988–2100
Before 313.1 390.8 515.3 629.9 766.1
After 171.2 211.7 276.0 334.9 404.5
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(a) 

 
(b) 

Figure 11. Change in runoff by return period in RCP 8.5 scenario: (a) 1988–2050 (year); (b) 1988–
2100 (year).

5. Conclusions

The runoff reduction rate by return period according to the scenario was compared
and decreased in this study by setting the rainfall distribution by return period via an
analysis of the change in the probability of rainfall. This was achieved by applying the
climate change scenario and the probability of rainfall for each scenario, and simulating
the amount of runoff before and after the LID facility installation in the object region.

The above analysis results are summarized as follows:

1. After composing the annual maximum daily rainfall data based on the previously
observed annual maximum daily rainfall series (1988–2018) and climate change sce-
narios from 1988 to 2050 and 1988 to 2100 (provided by the Korea Meteorological

390



Water 2022, 14, 1301

Administration), statistical analysis was undertaken to determine its suitability as
hydrological data.

2. The GEV distribution was found to be more appropriate than the other five probability
distributions applied to the series of annual maximum daily rainfalls per scenario,
according to the analysis after performing the L-moment ratio and K–S tests, which
are goodness-of-fit tests.

3. The reduction rate was analyzed by constructing a scenario that considered the same
parameters and rainfall data before and after LID facility installation, and the LID
parameters after installation. Assuming the same cost aspect in installing the LID, we
focused on analyzing and selecting the rainwater reduction rate. Regarding RCP 4.5
and RCP 8.5, we observed a maximum reduction rate of 46.9% for the 200-year return
period in the 1988–2100 analysis period for RCP 4.5, and the highest reduction rate of
47.2% for the 200-year return period in the 1988–2100 period for RCP 8.5.

4. As a result of analyzing the reduction rate return period for each scenario, in the
case of scenario RCP 4.5, in the analysis of the 1988–2018, 1988–2050 and 1988–2100
periods, the 20-year return period before installation of the LID facility was the same
as the amount of runoff after installation of the LID facility. In the analysis of the
1988–2050 period, it was found that the effect of reducing the runoff return period
would remain for around 200 years, and that the runoff return period of 20 years
before the installation of the LID facility would show the effect of reducing runoff for
more than 100 years after the installation.

5. Even in the case of scenario RCP 8.5, in the 1988–2050 analysis period, the amount of
runoff with a return period of 20 years before the installation of the LID facility had
the effect of reducing the amount of runoff for up to 200 years after installation. In
the 1988–2100 analysis period, the amount of runoff with a return period of 20 years
before the installation of the LID facility was effective in reducing the amount of
runoff for 100 years or more.

This study presented the results of analyzing the reduction rate by return period for
the design of LID facilities. In the case of Korea, it is difficult to improve efficiency after the
installation of LID facilities due to a lack of basic data on LID specifications and an analysis
of their effects. In comparison with other regions, there are many things to consider, such
as differences in parameters, rainfall amounts, and land use for each region, and there
are limits to construction based only on the related literature. Therefore, analysis through
reduction research and actual monitoring data should be continuously undertaken. In
addition, this study was limited in that the rate of change in the runoff reduction according
to the timing of the permeable pavement and the selected LID facility was not considered.

However, as described in Section 2, the existing studies analyzed only the observa-
tional data, but this study considered a new analysis in that the LID facilities used data on
climate change scenarios.
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Abstract: In order to manage regional water resources efficiently and sustainably and promote the
rational utilization of water resources, it is necessary to evaluate the water-supply benefit reasonably.
On the basis of emergy theory, this paper constructs the water-supply-benefit model of economic
(industry, agriculture, and the tertiary industry) and social (domestic, employment security, enter-
tainment, scientific research) systems. Taking Xi’an from 2014 to 2020 as an example, by analyzing
the energy flow of each system and the multisource water transformities, the water contribution
rate, the water-supply benefit, and the unit-water-resource value in each system are calculated. For
the water-supply benefits: Industry > Agriculture > Domestic > Tertiary industry > Employment
Security > Entertainment > Scientific research. For the unit-water-resource values: Industry > Tertiary
industry > Agriculture > Domestic > Entertainment > Employment security > Scientific research. In
the economic system, the water-supply benefit and the unit-water value of industry were always the
largest, followed by agriculture and the tertiary industry. However, the Pearson correlation coefficient
between the water contribution rate and the output of the industrial system was only 0.52, which was
less than that of other production industries, which indicates that there might be a waste of water
and that industrial water conservation needs to be further strengthened. In the social system, the
domestic-water-supply benefits and the water-resource value were the largest. This is because water
resources, as a basic resource, always affect people’s health and quality of life.

Keywords: water-supply benefit; emergy theory; economic system; social system; transformity; water
contribution rate; unit-water-resource value

1. Introduction

Nowadays, because of the continuous growth of the population and the economy and
the uneven spatial distribution of water resources, the problems of water shortages, uneven
supply and demand, and the waste of water resources are becoming increasingly prominent.
This not only greatly limits social and economic development, but also stimulates contradic-
tions among different regions and industries [1–3]. In such a severe situation, a reasonable
assessment of the water-resource value in different industries is of great significance in
order to protect people’s livelihoods, promote economic development, and allocate water
resources rationally [4,5].

In their study of the quantification of the water-resource value and the water-supply
benefits, Qin et al., Tang et al., Bierkens et al., Liu et al., and Shen et al. established a plan-
ning, or optimization, model to find the dual solution of the linear programming problem,
obtained the shadow price of water, and quantified the value of the water resources [6–10].
Alcon et al., Arena et al., and Arborea et al. measured the economic benefits of reclaimed
water for irrigation (including the market and nonmarket benefits) through the CBA model,
so as to evaluate the economic sustainability of an irrigation scheme [11–13]. Ward applied
the CBA model to water-resource decision making and evaluated the monetary value of

Sustainability 2022, 14, 5001. https://doi.org/10.3390/su14095001 https://www.mdpi.com/journal/sustainability
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the impact of the decision-making scheme on the overall social environment and econ-
omy [14]. Dallman et al. and Zuo et al. evaluated the benefits of rainwater collection
from many aspects, established a cost–benefit model, quantified the economic benefits
and costs of rainwater collection, and thereby quantified the value of rainwater [15–17].
Sun et al., Downing et al., and Ma et al. analyzed the costs and benefits of soil and water
conservation, the benefits brought about by water-quality protection, and the economic
value of water in arid and water-shortage areas by using the cost–benefit model [18–20].
Lee et al., Genius et al., Loomis et al., and Mumbi et al. used the dichotomy conditional
valuation method (CVM) to measure the economic benefits of tap-water-supply services,
the residents’ willingness to pay for potable water treatment, the economic value of water
treatment, and the residents’ willingness to pay for environmental restoration [21–24]. Xu
et al. took the Xin’an River Basin as an example, and estimated the water-use benefits of
different beneficiaries by analyzing the transformation of the protection costs and benefits
in different regions [25]. Van dijk et al. applied linear and spatial hedonic price models to
the real estate market in Switzerland, assessed the impact of the water-related environmen-
tal factors on the housing sales prices, and analyzed the differences in the contributions
of different water-related resources to the housing prices [26]. Chi et al. proposed the
comprehensive evaluation index of the social, economic, and environmental benefits of
water resources, and analyzed the comprehensive benefits of the water resources in an area
by using the multiobjective evaluation model [27]. Wang et al. quantified the ecological and
economic benefits brought about by the middle route of the South-to-North Water Transfer
Project to the water-receiving area by using the cost–benefit method and an alternative cost
method, thereby reflecting the water value [28]. Cheng et al. and Yue et al. analyzed the
river ecological service function and quantified the value of the regional ecological base
flow through the equivalent factor method [29,30].

The above research has used different analysis methods to fully discuss the water-
resource value of different objects, which has provided references for the adaptability of the
research methods and the accuracy of the calculation results in this paper. However, because
of the complexity of the eco-economic system and the abstractness of the socioeconomic
value of water resources [31], the commonly used methods, such as the models of shadow
price, marginal benefit, multiobjective evaluation, and cost–benefit, fail to combine the
ecological and socioeconomic attributes of water and to quantify the input and output of
materials, money, and energy in the eco-economic system uniformly, which may lead to the
inaccurate evaluation of the water-resource value [32]. Therefore, in order to break down the
original barriers between the different substances in the ecosystem and in the socioeconomic
system, to ensure that substances with different attributes have unified measurement
standards, and to facilitate unified analysis, statistics, and comparison, emergy theory came
into being. Emergy theory is a new scientific system that was first proposed by Odum, a
famous American ecologist, in his speech when accepting the Crafoord Prize of the Royal
Swedish Academy of Sciences, and in his paper that was published in Science in 1987, after
his in-depth research on energetics [33]. After further research and demonstration, Odum
completed the world’s first emergy monograph: “Environmental accounting: Emergy and
Environmental Decision Making”, in 1996 [34]. The theoretical framework contains a series
of new concepts and pioneering viewpoints, including energy systems, energy quality,
emergy, and emergy transformity. For the first time, different substances in different
systems were connected together, so that they had a unified measurement standard—
Emergy—which was a major leap in theory and method. Emergy theory, as a bridge
between the natural system and the socioeconomic system, has attracted a lot of attention
in academic circles in recent years, and it is widely used in the quantitative research
on the value of natural resources and in the sustainability analyses of different systems,
such as in the work of Liu et al., who constructed an urban domestic water supplying
process metabolism model and accounting framework that is based on emergy theory,
and who analyzed the cost and value of the urban domestic water supply [35]. Di et al.
constructed the eco-economic value index system, which is based on emergy, and they
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analyzed the water-resource values of eight cities in the Yellow River Basin [31]. Wu et al.
analyzed the social value of water resources on the basis of the emergy method, which
enriched the accounting method of the social value of water resources [32]. Paoli et al.
conducted emergy analysis on tourism and cruise tourism in three cities of the Liguria
coastal region from the perspective of the environmental costs and economic benefits, and
they evaluated the development of tourism in these cities [36]. Kocjancic et al. incorporated
the biophysical indicators on the basis of emergy into the socioeconomic optimization
model and, through the study of the Slovenian dairy sector, it was confirmed that the
inclusion of emergy indicators in the optimization model was conducive to the growth of
industrial economic and biophysical benefits [37]. Zhang et al., Zhang et al., and Zhong
et al. adopted a series of comprehensive emergy indicators to evaluate the sustainability
of China’s newly built sewage treatment plant, China’s cement industry environment,
and the Erhai Lake Basin, respectively [38–40]. Winfrey et al. created the treatment
sustainability index on the basis of emergy theory to quantify the sustainability of a waste-
treatment system [41]. Shah et al. assessed the sustainability of a regional agricultural
production system through the emergy input–output analysis of agricultural production in
Pakistan [42]. Peng et al. and Pan et al. quantified the emergy-carrying capacity and emergy
ecological footprint of a city on the basis of the emergy ecological footprint framework, and
they evaluated the sustainability of the ecological and economic systems of the city [43,44].
Jaklic et al. evaluated the emergy of nine farm types, and they discuss the potential of a
multiperspective collaborative evaluation of agricultural activities [45]. Ali et al. evaluated
and compared the environmental pressure that is caused by agricultural production on
Pakistan and India from the perspective of the emergy index [46]. Viglia et al. used the
emergy accounting method to quantify the environmental support that is required by the
metabolism of five urban systems with different sizes in Italy in terms of the resource
generation and the ecosystem service supply [47].

To sum up, in order to accurately measure the real value of water resources, in view of
the existing research results, this paper introduces the concepts of the water-resource eco-
economic system and emergy, and it constructs the emergy network of the water-resource
ecological and socioeconomic composite system. Taking the economic and social system in
Xi’an from 2014 to 2020 as an example, we analyze the emergy flow in each system, and
we make a specific analysis of the emergy in the Xi’an economic and social system from
three parts, including the original data-processing model, the multisource water-body-
transformity model, and the water-supply-benefit model. Thus, the water-resource value
and the water-supply benefit of each system are obtained. The purpose is to provide new
ideas for improving and perfecting the accounting method of the socioeconomic value of
water resources, and to provide a reference for water-resource pricing and water-resource
allocation in different industries.

2. Materials and Methods

2.1. Description of the Study Area

Xi’an is located in the middle of the Yellow River Basin in Shaanxi Province, with
an area of 9983 km2; the regional general situation is shown in Figure 1. Xi’an is a major
industrial city in Shaanxi Province, as well as a major trade center and manufacturing base
in China, with a rich output of industrial products [48]. At the same time, it is also a famous
historical and cultural city, and the service industry is developing rapidly. According to the
“Xi’an Statistical Yearbook (2014–2020)”, Xi’an’s resident population and the GDPs of three
industries have increased year by year. By the end of 2020, the city’s resident population
was 12.96 million, and the regional GDP was USD 156.57 billion. According to the “Xi’an
Water Resources Bulletin (2014–2020)”, from 2014 to 2020, the average annual precipitation
of the city was 678.43 mm, the average surface-water resources were 1.904 billion m3,
the average groundwater resources were 1.289 billion m3, and the average total water
consumption was 1813.27 million m3. The temporal and spatial distribution of the runoffs
of the major rivers (Wei River, Jing River, etc.) in Xi’an is uneven [49], and usually only
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2% of the annual runoff occurs in February of the dry season, while 45–56% of the annual
runoff occurs in the flood season [50]. The natural conditions and the rapid development
of the social economy in Xi’an are bound to have a great impact on the development and
utilization of the water resources. According to the calculation, in 2020, the per capita
water resources of Xi’an were only 213 m3, which were far lower than the per capita water
resources of the whole country and of Shaanxi Province, and much lower than the critical
value of 1000 m3, which is internationally recognized as the standard that must be met
for a region to maintain economic and social development. Xi’an is a city with extreme
water shortages [48]. In this case, a quantitative analysis of the economic and social value
of the water resources and the water-supply benefits in Xi’an will help to comprehensively
understand the role of water resources in economic and social development, and to realize
the sustainable management of water resources. The research on the economic and social
value of water resources and water-supply benefits is not only one of the important means
to realize the sustainable utilization of regional water resources, but it is also an important
part of the sustainable development strategy.

Figure 1. General situation of the study area.

The original data of the natural conditions and the water supply in Xi’an from 2014 to
2020, according to the “Xi’an Water Resources Bulletin (2014–2020)”, are shown in Table 1.

Table 1. Raw data of Xi’an city from 2014 to 2020.

Items 2014 2015 2016 2017 2018 2019 2020

Area (109 m2) 9.98 1 9.98 1 9.98 1 9.98 1 9.98 1 9.98 1 9.98 1

Rainfall (m) 0.701 1 0.691 1 0.572 1 0.764 1 0.583 1 0.705 1 0.733 1

Surface water (109 m3) 1.73 1 1.71 1 1.42 1 2.03 1 1.80 1 2.36 1 2.276 1

Groundwater (109 m3) 1.44 1 1.43 1 1.43 1 1.27 1 1.12 1 1.17 1 1.16 1

Industrial water supply (108 m3) 4.17 1 4.21 1 4.24 1 4.35 1 4.41 1 4.45 1 2.07 1

Agricultural water supply (108 m3) 6.39 1 6.59 1 6.64 1 6.66 1 6.49 1 5.52 1 5.80 1

Tertiary-industry water supply (108 m3) 0.87 1 0.90 1 0.92 1 0.97 1 1.27 1 1.51 1 2.33 1

Domestic water supply (108 m3) 4.12 1 4.25 1 4.09 1 4.19 1 4.32 1 4.35 1 4.59 1

Ecological water supply (108 m3) 1.64 1 1.88 1 1.98 1 2.23 1 2.72 1 2.64 1 3.17 1

1 The data come from the Xi’an Water Resources Bulletin (2014–2020).

2.2. Emergy Theory

Water resources have two attributes, which are, namely, the ecological attribute and
the socioeconomic attribute. The water-resource ecosystem and the water-resource socioe-
conomic system are interrelated and blend with each other. They constitute a complex giant
system, which is, namely, the water-resource eco-economic system. Therefore, in order to
study the social and economic value of water resources, it is necessary to link the ecosystem
with the socioeconomic system where the water resources exist, and to make a compre-
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hensive analysis. The water-resource eco-economic system is shown in Figure 2, which
describes, in detail, the flow of the different energies in the water-resource eco-economic
system: the natural water body in the ecosystem contains the energy of renewable resources,
such as solar energy, wind energy, earth-rotation energy, and rainwater energy. In order
to make the natural water body flow into the socioeconomic system for use, it must be
developed. The energy to be invested into the process of development includes human,
material, and financial resources. The energy acts on the natural water and converts it into
engineering water, which is then put into the socioeconomic system for production and
social life.

Figure 2. Water-resource eco-economic system.

However, because of the different properties of the different substances in nature
and in human society, it is hard to create statistics and to make a comparison between
them, which makes it more difficult to accurately measure the contribution value of the
water resources to the social economy. Therefore, in order to solve this problem, this paper
introduces emergy theory.

Emergy is defined as the amount of another kind of energy that is contained in a
flowing or stored energy, which is the emergy of the energy [34]. It is generally believed
that all energy comes from solar energy. Therefore, when calculating the emergy of each
material, solar energy is often used as the benchmark to convert and measure the energy of
other substances. The solar energy that is directly or indirectly needed to form a substance
is the solar emergy of the substance, and the unit is solar emjoules (sej).

The calculation of the emergy of substances is shown in Equation (1) [34]:

EM = τs × Q, (1)

In the equation, EM is the emergy of the substances, with the unit of sej; τs is the solar
emergy transformity of the substances, with the unit of sej/j or sej/g; and Q is the energy
or quality of the substances, with the unit of J or g.

The core of the conversion from material energy to material solar emergy is to choose
the appropriate transformities and convert the raw data into the amount that is based on the
solar emergy. Odum, Lan, and other scholars have obtained the solar emergy transformities
of the main substances in the eco-economic system through a lot of research [33,34], which
provides a solid foundation for the ecological and economic value accounting of water
resources and the sustainability analysis of the ecological and economic system.

On the basis of emergy theory, this paper analyzes the emergy of the economic and
social system in Xi’an from three parts. The first part is the raw-data-processing model.
Through the model, the input and output materials in the economic and social system are
transformed into energy for the subsequent calculation of the substances’ emergies. The
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second part is the multisource water-body-transformity model. For urban water supplies,
the emergy transformity of natural water is not enough, and the emergy input in water
conservancy projects should also be considered. Therefore, a water body should be divided
into a natural water body (including rainfall) and an engineering water body. On this basis,
the emergy transformities of the surface, or the underground natural water bodies, and the
engineering water bodies are calculated, respectively, which provide a basis for analyzing
the emergy input of the water resources in different systems. The third part is the benefit
model of the economic and social water supply. The economic benefits of water resources
include the water-supply benefits in industry, agriculture, and the tertiary industry, and the
social benefits of water resources include social security benefits (domestic and employment
security), entertainment benefits, and scientific research benefits. Therefore, by analyzing
the input and output of the material emergy in economic and social systems, we can obtain the
contribution rate of water resources, and we can further obtain the value of the water resources
in each system, as well as the benefits of the urban economic and social water supply.

2.2.1. Raw-Data-Processing Model

The emergy analysis of the economic and social system is the quantitative analysis of
the input and output of various material emergies into the economic and social system. The
resources that are invested in the economic and social system include renewable resources
and nonrenewable resources, and the outputs are mainly industrial products, agricultural
products, social-labor-force recovery, scientific research papers, tourism income, etc. The
quantity or energy of the inputs and outputs of these resources is the raw data that are
needed for the emergy analysis. Then, according to Equation (1), the energy or quantity of
the raw data is multiplied by the corresponding emergy transformity to obtain the emergy
of the inputs and outputs. In the raw data, the calculations of the amounts of the main
substances are shown in Equations (2)–(4):

Es = A × Rs, (2)

In the equation, Es is the solar energy, in the unit of J; A is the area of the study region,
in the unit of m2; and Rs is the annual average solar radiation, in the unit of J/(m2·a).

The calculation of wind energy is shown in Equation (3):

Ew = H × ρw × α × SG × A, (3)

In the equation, Ew is the wind energy, in the unit of J; H is the height, using 1000 m;
ρw is the wind density, using 1.23 kg/m3; α is the eddy diffusion coefficient, in the unit
of m2/s; and SG is the wind-speed gradient, using 3.154 × 107 s/a.

The energy calculation of raw materials, fuels, and products is shown in Equation (4):

E = C × ε, (4)

In the equation, E is the energy of the substances, in the unit of J; C is the annual
consumption or output of the substances, in the unit of g or t, respectively; and ε is the
corresponding energy conversion coefficient [34], in the unit of J/g or J/t, respectively.

2.2.2. Multisource Water-Body-Transformity Model

According to the characteristics of the natural–artificial composite water cycle, the
water body is divided into natural water (including rainfall) and engineering water. Natural
water is surface water and groundwater that is formed through the precipitation hydro-
logical process. Engineering water is the natural water after considering the investment of
water conservancy projects. The specific calculations are as follows:
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1. The natural-water-body-transformity model

The main source of natural water is natural rainfall, and its emergy transformity is
calculated as shown in Equations (5)–(8):

τN
k = EMp/AWk, (5)

EMp = CEp × τp, (6)

AWk = Wk/Uk, (7)

CEp = P × G × A × ρ, (8)

In the equations, τN
k is the transformity of the natural water body, in the unit of sej/m3;

k = 1, 2, represent the surface and underground, respectively; EMp is the annual total
emergy of the precipitation in the catchment area, in the unit of sej; AWk is the annual
catchments of the natural water body, in the unit of m3; CEp is the chemical energy of
the precipitation, in the unit of J; τp is the transformity of the chemical energy of the
precipitation, using 18,200 sej/J [34]; Wk is the total amount of water, in the unit of m3;
Uk is the renewal period of the water body, using 0.03 a of surface water, and 100 a of
groundwater; P is the average annual rainfall, in the unit of m; G is the Gibbs free energy
of the rain, using 4.94 J/g [34]; and ρ is the density of the rainfall, using 1 × 106 g/m3.

2. Engineering-water-body-transformity model

Engineering water is the natural water after considering the investment of water
conservancy projects (including capital, labor, operation, and management costs, etc.), and
the water body at this time contains the added value of the project investment. The calculation
of the emergy transformity of an engineering water body is shown in Equation (9):

τE
k = EMIk/EWk, (9)

In the equation, τE
k is the transformity of the engineering water, with the unit of sej/m3;

EMIk is the total emergy input of the water conservancy project, with the unit of sej; and
EWk is the amount of water that is affected by the project, with the unit of m3.

2.2.3. Benefit Model of Economic and Social Water Supply

By analyzing the emergy of the input and output in the economic and social system,
the contribution rate of water resources can be calculated, and then multiplied by the
system output to obtain the water-supply benefit.

In the economic system, the related industries include agriculture, industry, and the
tertiary industry. The input of each production system includes all kinds of renewable
resources and nonrenewable resources, and the output is mainly the emergy of the prod-
ucts. Among them, according to the “Industry classification of national economy” (GB/T
4754-2011), the tertiary industry includes all kinds of service industries, including tourism,
finance, catering, etc. Since the output of the tertiary industry is nonphysical output and
cannot be measured by specific products, this paper uses the GDP of the tertiary industry
instead for its approximate output.

Talcott Parsons, in his book The Social System, defined the social system as the composi-
tion of individual or group-interaction behaviors [51], which shows that human beings are
the subject in the social system. From the perspective of the Marxist labor value theory, we
should understand value in the practical relationship between the subject and the object,
and we should regard value as the relationship between the attribute of the object and the
needs of the subject, and as a certain meaning of object to subject. Therefore, value can
be defined as the meaning of the existence, attribute, and development of the object to
the subject’s material and spiritual life in social practice [52]. It can be seen that the social
value of water resources should be reflected in the satisfaction and benefits of maintaining
people’s quality of life and their social spiritual needs. This paper abstractly summarizes it
as: social security benefits (maintaining people’s quality of life), entertainment benefits, and
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scientific research benefits (meeting social spiritual needs). Among them, the social security
benefits of water resources can be abstracted into the benefits of domestic water supplies
and employment security. By analyzing the input and output emergy in the domestic
system, the benefits of the domestic water supply can be obtained. Since the inputs of food
and nonfood in the domestic system maintain human life and health, the output of the
domestic system can be abstracted as the value of the labor-force restoration, which can be
calculated by the product of per capita disposable income and the Engel coefficient that can
best reflect the people’s quality of life [32]. Because the input and output of employment
security, entertainment, and scientific research cannot be measured by material objects, the
employment security benefits of water resources can be directly calculated by the number of
water-related employees and the corresponding transformity. The benefits of entertainment
and scientific research can be measured by the annual tourism income that is related to
water and the number of relevant papers.

1. Water contribution rate (WCRi)

The WCRi is a relative index to measure the contribution of water resources to the
total output of the system (i). It is the ratio of the water emergy input to the total emergy
input in the system (i). (i = 1, 2, 3, and 4, respectively, represent industry, agriculture, the
tertiary industry, and the domestic system. WCR1, WCR2, WCR3, and WCR4, respectively,
represent the water contribution rates of industry, agriculture, the tertiary industry, and the
domestic system). The calculations are shown in Equations (10) and (11):

WCRi = WUEi/EIi, (10)

EIi = EMr
i + EMn

i , (11)

In the equations, i = 1, 2, 3, and 4, respectively, for industry, agriculture, the tertiary
industry, and the domestic system; WCRi is the water contribution rate in the system (i),
with the unit of %; WUEi is the water emergy input into the system (i), with the unit of
sej; EIi is the total emergy input into the system (i), with the unit of sej; EMr

i is the emergy
input of the renewable resources into the system (i), including solar energy, wind energy,
water resources, etc., with the unit of sej; EMn

i is the emergy input of the nonrenewable
resources in the system (i), including fuel, raw materials, fertilizer, labor, investment, food,
nonfood household consumption, etc., with the unit of sej.

2. Water-supply-benefit model

The WCRi is multiplied by the emergy output (EOi) of the system (i), and it is then
combined with the ratio of the emergy to the currency, and the water consumption of
the system (i), the water-supply benefit (Bi), and unit-water-resource value (WRVi) of the
system (i) can be obtained, respectively. The calculations are shown in Equations (12)–(14):

Mi = WCRi × EOi, (12)

Bi = Mi/EDR, (13)

WRVi = Bi/WUi, (14)

In the equations, i = 1, 2, 3, and 4, respectively, for industry, agriculture, the tertiary
industry, and the domestic system; Mi is the emergy value of the water resources in the
system (i), with the unit of sej; Bi is the water-supply benefit in the system (i), with the
unit of $; WRVi is the unit-water-resource value in the system (i), with the unit of $/m3;
EOi is the emergy output in the system (i), with the unit of sej; EDR is the ratio of the
emergy to the currency, using 3.02 × 1012 sej/$ [53]; and WUi is the water consumption
in the i system, with the unit of m3.

As mentioned in Section 2.2.3, because the input and output of the employment
security, entertainment, and scientific research cannot be measured by material objects,
the employment security benefits of water resources can be directly calculated by the
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number of water-related employees and the corresponding transformity. The benefits of
entertainment and scientific research can be measured by the annual tourism income that
is related to water and the number of relevant papers. The employment security benefits
(B5), entertainment benefits (B6), and scientific research benefits (B7) of water resources are
shown in Equations (15)–(23):

M5 = (N1 + N2)× τ5, (15)

B5 = M5/EDR, (16)

WRV5 = B5/WU, (17)

M6 = B6 × EDR, (18)

B6 = I × μ, (19)

WRV6 = B6/WU5, (20)

M7 = T × P × τ7, (21)

B7 = M7/EDR, (22)

WRV7 = B7/WU, (23)

In the equations, M5 is the employment security value of the water resources, with the
unit of sej. B5 is the employment security benefit of the water resources, with the unit of $.
WRV5 is the employment security value of the unit water, with the unit of $/m3. M6 is the
entertainment value of the water resources, with the unit of sej. B6 is the entertainment
benefit of the water resources, with the unit of $. WRV6 is the entertainment value of the
unit water, with the unit of $/m3. M7 is the scientific research value of the water resources,
with the unit of sej. B7 is the scientific research benefit of the water resources, with the
unit of $. WRV7 is the scientific research value of the unit water, with the unit of $/m3.
N1 is the number of employees in the agriculture, forestry, animal husbandry, and fishery
industries. N2 is the number of employees in the water conservancy industry. τ5 is the
transformity of the human labor force, using 1.74 × 1015 sej/person/year [33]. WU is the
total water consumption of the society’s economy and ecology, with the unit of m3. I is the
annual tourism income, with the unit of $. μ is the proportion of water-related tourism
resources in all of the tourism resources in Xi’an, using 1.3%. WU5 is the ecological water
consumption, with the unit of m3. T is the number of academic papers that are related to
water that have been published. P is the average number of pages per paper, using 6 pages.
τ7 is the transformity of the academic papers, using 3.39 × 1015 sej/p [54].

3. Results

3.1. Raw Data Processing

The raw data of the inputs and outputs in the economic and social system in Xi’an
from 2014 to 2020 were collected. Most of these data are in tons, but the corresponding
transformity unit is usually sej/j. Therefore, it is necessary to convert the units of these data
into joules for the subsequent emergy calculation. (The emergy transformity units of some
substances are given in sej/t, so the raw data of these substances do not need to be processed.)

Taking the industrial system in 2019 as an example, the energy of the substances in the
system can be calculated according to Equations (2)–(4), as is shown in Table 2.

401



Sustainability 2022, 14, 5001

Table 2. Data-processing results.

Items C 1 Unit ε (unit/J) 2 E (J)

Raw coal and other fuels 1.70 × 107 t 2.09 × 1010 3.56 × 1017

Edible oil 3.70 × 1010 t 2.03 × 105 7.63 × 1015

Generating capacity 1.55 × 1010 kw·h 3.60 × 106 5.58 × 1016

Crude-oil-processing capacity 2.34 × 107 t 4.18 × 1010 9.79 × 1017

Gasoline and other fuel oils 2.32 × 107 t 4.18 × 1010 9.70 × 1017

1 The data come from the Xi’an Statistical Yearbook. 2 Adapted with permission from Ref. [34]. 1995, John Wiley
and Sons

3.2. Natural- and Engineering-Water-Body Transformities

To facilitate the calculation, the natural water is summarized as the surface water and
the groundwater, and the transformity of the natural water and the engineering water from
2014 to 2020 are calculated, respectively.

Taking 2019 as an example, according to Table 1 and Equations (5)–(8), the chemical
energy of the rainwater (CEp), the precipitation emergy (EMP), the annual catchments of
natural water (AWk), and the transformity of natural water (τN

k ) can be calculated in turn.
(k = 1, 2, represent the surface and underground, respectively).

However, in order to study the engineering-water-body transformity, it is necessary to
clarify the emergy input of the water conservancy project. By the end of 2019, 92 reservoirs,
49 hydropower stations, 101 pumping stations, 27 sluice projects, and 133,957 electro-
mechanical wells had been built in Xi’an city. Because it is not realistic to calculate the
emergy transformity of the engineering water body of each water conservancy project
one by one, the surface water and groundwater projects are simplified into reservoirs,
pumping stations, and water-diversion works. Because of the lack of information about
the construction, operation, and management costs of each project, this paper refers to the
analysis in [54] (i.e., the cost of the reservoirs, pumping stations, and water-diversion works
are 0.178 $/m3, 0.038 $/m3, and 0.045 $/m3, respectively). The emergy of the cost with the
unit of sej/m3 can be obtained by multiplying the cost by the emergy currency ratio (EDR).
Since the engineering water is the natural water after considering the investment of the
water conservancy projects, the cost emergy plus the natural water transformity can obtain
the engineering water transformity (τE

k ).
The calculation results of the natural and engineering water transformities in Xi’an

from 2014 to 2020 are shown in Table 3.

Table 3. Transformities of natural water and engineering water in Xi’an.

Years
CEp

(1016 J)

EMP
(1020 sej)

AW1
(1010 m3)

AW2
(107 m3)

τN
1

(109 sej/m3)

τN
2

(1013 sej/m3)

τE
1

(1011 sej/m3)

τE
2

(1013 sej/m3)

2014 3.46 5.34 5.75 1.44 9.29 3.70 7.06 3.72
2015 3.41 5.27 5.68 1.43 9.27 3.69 7.06 3.72
2016 2.82 4.35 4.70 1.43 9.28 3.05 7.06 3.08
2017 3.77 5.82 6.74 1.27 8.64 4.58 7.05 4.60
2018 2.88 4.44 5.97 1.12 7.44 3.97 7.04 3.99
2019 3.48 5.37 7.82 1.17 6.87 4.58 7.03 4.61
2020 3.61 5.58 5.18 1.08 10.78 5.19 6.86 5.21

3.3. Benefits of Economic and Social Water Supply in Xi’an
3.3.1. Benefits of Economic Water Supply in Xi’an

The industrial, agricultural, and tertiary industries are mainly considered for the
economic water supply in Xi’an. Taking the industrial system of Xi’an in 2019 as an
example, according to Equation (1), the emergy of the substances in the system can be
obtained by multiplying the raw data of the substances by the corresponding emergy
transformity. The calculation is shown in Table 4.
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Table 4. Emergy input and output of Xi’an industrial system in 2019.

Items Substances Raw Data Unit
Transformity

(sej/Unit)
Emergy

(sej)
Transformity
References

Input

Renewable
resources

Solar 6.07 × 1019 1 J 1 6.07 × 1019 Odum [34]
Wind 8.43 × 1016 1 J 623 5.25 × 1019 Odum [34]

Industrial water (Surface) 2.50 × 108 2 m3 6.82 × 1011 1.70 × 1020 This study
Industrial water (Underground) 1.95 × 108 2 m3 4.61 × 1013 9.01 × 1021 This study

Nonrenewable
resources 3

Raw coal and other fuels 3.56 × 1017 3 J 4.00 × 104 1.42 × 1022 Odum [34]
Raw materials 1.39 × 1010 3 $ 3.02 × 1012 4.19 × 1022 Li [53]

Labor 1.75 × 1010 3 $ 3.02 × 1012 5.29 × 1022 Li [53]
Fixed assets 2.20 × 1010 3 $ 3.02 × 1012 6.65 × 1022 Li [53]

Total input 1.849 × 1023

Output

Industrial
products 3

Edible oil 7.63 × 1015 3 J 8.60 × 104 6.56 × 1020 Lan [33]
Generating capacity 5.58 × 1016 3 J 1.60 × 105 8.93 × 1021 Odum [34]
Chemical pesticide 1.30 × 103 3 t 1.62 × 1015 2.11 × 1018 Odum [34]

Plastic 2.76 × 105 3 t 3.80 × 1014 1.05 × 1020 Odum [34]
Steels 3.15 × 105 3 t 1.78 × 1015 5.61 × 1020 Lv [54]
Glass 2.15 × 104 3 t 8.40 × 1014 1.81 × 1019 Lv [54]

Aluminum 2.11 × 104 3 t 1.60 × 1016 3.38 × 1020 Lv [54]
Cement 2.76 × 106 3 t 1.98 × 1015 5.46 × 1021 Lv [54]

Wheatmeal 4.40 × 105 3 t 8.30 × 104 3.65 × 1010 Odum [34]
Dairy products 7.26 × 105 3 t 1.71 × 106 1.24 × 1012 Lan [33]

Tap-water production 6.52 × 108 3 m3 3.89 × 1013 2.54 × 1022 Lv [54]
Meat 7.83 × 104 3 t 1.70 × 106 1.33 × 1011 Lan [33]

Chemicals and detergents 7.00 × 105 3 t 1.00 × 1015 7.00 × 1020 Lv [54]
Silicon 1.21 × 104 3 t 1.60 × 1016 1.93 × 1020 Lv [54]

Paper Products 1.25 × 105 3 t 3.90 × 1015 4.86 × 1020 Wang [55]
Mechanical products 8.75 × 104 3 t 6.70 × 1015 5.86 × 1020 Lv [54]

Crude-oil-processing capacity 9.79 × 1017 3 J 5.40 × 104 5.29 × 1022 Odum [34]
Gasoline and other fuel oils 9.70 × 1017 3 J 6.60 × 104 6.40 × 1022 Odum [34]

Wood processing and furniture manufacturing 1.01 × 109 3 $ 3.02 × 1012 3.05 × 1021 Li [55]
Transportation equipment 1.12 × 1010 3 $ 3.02 × 1012 3.38 × 1022 Li [55]

Total output 1.972 × 1023

1 The data are calculated according to Equations (2) and (3). 2 The data come from the Xi’an Water Resources
Bulletin (2019). 3 The raw data come from the Xi’an Statistical Yearbook (2019).

Similarly, the emergy input and output of the industrial system from 2014 to 2020 can
be obtained, as shown in Figures 3 and 4.

Figure 3. Emergy input of industrial system from 2014 to 2020.
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Figure 4. Main emergy output of industrial system from 2014 to 2020.

According to Tables 1 and 4, Figures 3 and 4, and Equations (10)–(13), the EI1, EO1,
WCR1, B1, and WRV1 in the industrial system from 2014 to 2020 can be calculated, as
shown in Table 5.

Table 5. Benefits of industrial water supply in Xi’an from 2014 to 2020.

Item 2014 2015 2016 2017 2018 2019 2020

EI1 (1020 sej) 1724.45 1675.04 1572.9 1708.32 1836.84 1849.15 1822.61
EO1 (1020 sej) 1935.21 1954.67 1892.2 1974.19 1930.67 1971.6 1946.20

WUE1 (1020 sej) 78.96 78.04 64.84 94.52 78.4 91.84 57.85
WCR1 (%) 4.58 4.66 4.12 5.53 4.26 4.96 3.17

EDR (1012 sej/$) 3.02 3.02 3.02 3.02 3.02 3.02 3.02
WU1 (108 m3) 4.17 4.21 4.24 4.35 4.41 4.45 2.07

B1 (109$) 2.93 3.01 2.58 3.61 2.73 3.24 2.05
WRV1 ($/m3) 7.03 7.16 6.09 8.32 6.18 7.28 9.88

From 2014 to 2020, in the Xi’an agricultural and tertiary industry systems, the emergy
input (EI2, EI3), the emergy output (EO2, EO3), the water contribution rate (WCR2, WCR3), the
water-supply benefit (B2, B3), and the unit-water-resource value (WRV2, WRV3) are calculated,
in turn, with reference to the industrial system. The results are shown in Tables 6 and 7.

Table 6. Benefits of agricultural water supply in Xi’an from 2014 to 2020.

Item 2014 2015 2016 2017 2018 2019 2020

EI2 (1020 sej) 387.34 410.78 359.98 470.27 437.36 408.45 392.81
EO2 (1020 sej) 99.31 98.80 102.57 113.43 109.96 112.82 117.72

WUE2 (1020 sej) 208.64 214.65 179.40 268.94 227.38 222.86 265.02
WCR2 (%) 53.87 52.26 49.84 57.19 51.99 54.56 67.47

EDR (1012 sej/$) 3.02 3.02 3.02 3.02 3.02 3.02 3.02
WU2 (108 m3) 6.39 6.59 6.64 6.66 6.49 5.52 5.80

B2 (109$) 1.77 1.71 1.69 2.15 1.89 2.04 2.63
WRV2 ($/m3) 2.77 2.60 2.55 3.22 2.92 3.70 4.53

3.3.2. Benefits of Social Water Supply in Xi’an

In the social system, the WCR4, B4, WRV4, B5, WRV5, B6, WRV6, B7, and WRV7 from
2014 to 2020 in Xi’an are calculated according to Equations (10)–(23). The results are shown
in Tables 8 and 9. The raw data required for the calculation are from the Xi’an Statistical
Yearbook (2014–2020) and the Water Resources Bulletin (2014–2020).
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Table 7. Water-supply benefits of the tertiary industry in Xi’an from 2014 to 2020.

Item 2014 2015 2016 2017 2018 2019 2020

EI3 (1020 sej) 2298.81 1995.00 2157.09 2556.25 2707.13 2761.68 3116.04
EO3 (1020 sej) 1574.46 2198.64 1977.32 2298.57 2619.36 2917.16 3106.75

WUE3 (1020 sej) 17.28 17.70 15.08 22.69 25.02 34.22 54.96
WCR3 (%) 0.75 0.89 0.70 0.89 0.92 1.24 1.76

EDR (1012 sej/$) 3.02 3.02 3.02 3.02 3.02 3.02 3.02
WU3 (108 m3) 0.87 0.90 0.92 0.97 1.27 1.51 2.33

B3 (109$) 0.39 0.65 0.46 0.68 0.80 1.20 1.81
WRV3 ($/m3) 4.50 7.18 4.97 6.98 6.30 7.95 7.80

Table 8. Benefits of domestic water supply in Xi’an from 2014 to 2020.

Item 2014 2015 2016 2017 2018 2019 2020

EI4 (1015 sej per person) 9.23 10.27 10.65 11.42 11.60 12.56 11.72
Disposable income of residents (1016 sej per person) 1.25 1.36 1.46 1.59 1.53 1.66 1.74

Engel coefficient (%) 33.25 32.45 28.10 28.35 25.75 26.10 28.05
WUE4 (1014 sej per person) 9.03 9.05 7.08 9.47 7.82 8.78 8.45

WCR4 (%) 9.78 8.81 6.65 8.30 6.74 6.99 7.21
EDR (1012 sej/$) 3.02 3.02 3.02 3.02 3.02 3.02 3.02

WU4 (108 m3) 4.12 4.25 4.09 4.19 4.32 4.35 4.59
B4 (109$) 1.16 1.12 0.80 1.19 0.88 1.02 1.51

WRV4 ($/m3) 2.81 2.63 1.95 2.84 2.04 2.35 3.29

Table 9. Employment security, entertainment, scientific research value of water resources in Xi’an
from 2014 to 2020.

Item 2014 2015 2016 2017 2018 2019 2020

N1 (104 person) 105.02 107.68 105.13 113.17 101.25 101.37 99.97
N2 (104 person) 3.11 2.61 2.9 3.29 3.64 3.83 3.58

Tourism income (1010$) 1.48 1.68 1.90 2.55 3.99 4.92 2.94
μ (%) 1.30 1.30 1.30 1.30 1.30 1.30 1.30

WU5 (108 m3) 1.64 1.88 1.98 2.23 2.72 2.64 3.17
WU (109 m3) 1.63 1.69 1.70 1.74 1.80 1.70 1.56

EDR (1012 sej/$) 3.02 3.02 3.02 3.02 3.02 3.02 3.02
B5 (108$) 6.22 6.34 6.21 6.70 6.03 6.05 5.95
B6 (108$) 1.93 2.18 2.47 3.32 5.19 6.39 3.82
B7 (104$) 12.12 9.43 9.43 14.14 10.78 16.84 33.00

WRV5 ($/m3) 0.38 0.38 0.37 0.38 0.34 0.36 0.38
WRV6 ($/m3) 1.18 1.16 1.24 1.49 1.90 2.42 1.21
WRV7 ($/m3) 0.000074 0.000056 0.000056 0.000081 0.000060 0.000099 0.00021

4. Discussion

4.1. Inputs and Outputs in Economic System

1. Input and output in industrial system

It can be seen from Table 5 that, in the industrial system of Xi’an, from 2014 to 2020,
the WCR1 was the largest in 2017, accounting for 5.53%, and the corresponding EO1 and
B1 were also the largest, accounting for 1974.19 × 1020 sej and 3.61 × 109$, respectively.
The trend comparison between the WCR1 and the EO1 is shown in Figure 5a. The average
WCR1 and the average contribution rates of the other main inputs of the industrial system
are shown in Figure 5b.
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Figure 5. (a) Trends of WCR1 and EO1; (b) average contribution rates of main inputs in industrial system.

It can be seen from Figure 5a,b that, in the industrial system, compared to the other
inputs, although the WCR1 was small, the EO1 was still affected by it, and the two are
positively correlated with each other. The Pearson correlation coefficient (ρ) is the most
commonly used linear correlation coefficient: ρ ∈ [0.4, 0.6] is a medium positive correlation,
ρ ∈ [0.6, 0.8] is a strong positive correlation, and ρ ∈ [0.8, 1.0] is a very strong positive
correlation. After calculation, the Pearson correlation coefficient (ρ1) between the WCR1
and the EO1 in the industrial system from 2014 to 2020 is 0.52, which is a medium positive
correlation, which indicates that there is a certain degree of waste of water resources
in industrial production, and that there is still room for improvement in the water-use
efficiency. In order to further improve the utilization efficiency of industrial water resources,
we should continue to strengthen the management of industrial water, vigorously develop
water-saving technology, and actively streamline the production process.

2. Input and output in agricultural system

It can be seen from Table 6 that, in the agricultural system, from 2014 to 2020, the input
of the water resources accounted for a large proportion. Moreover, the WCR2 reached more
than 50% in most years, which is mainly because the growth of the crops largely depended
on the water supply. The trend comparison between the WCR2 and the EO2 is shown in
Figure 6a. The average WCR2 and the average contribution rates of the other main inputs
of the agricultural system are shown in Figure 6b.

It can be seen from Figure 6a,b that, in the agricultural system, compared to the other
inputs, the input of the water resources accounted for the largest proportion, and the
changing trends of the WCR2 and the EO2 were basically the same. After calculation, the
Pearson correlation coefficient (ρ2) between the WCR2 and the EO2 is 0.72, which is a strong
positive correlation. This shows that the output of agriculture, as the largest water user, is
greatly affected by water resources.

3. Input and output in tertiary-industry system

It can be seen from Table 7 that, in the tertiary-industry system, from 2014 to 2020,
the input of the water resources was very small, and the WCR3 in each year was only
about 1.0%. The trend comparison of the WCR3 and the EO3 is shown in Figure 7a, and
the average WCR3 and the average contribution rates of the other main inputs of the
tertiary-industry system are shown in Figure 7b.

It can be seen from Figure 7a,b that, in the tertiary industry, compared to the other
inputs, although the WCR3 was very small, the changes between the WCR3 and the EO3
tended to be consistent, and the latter was obviously affected by the former. After calcula-
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tion, the Pearson correlation coefficient (ρ3) between the WCR3 and the EO3 is 0.85, which
is a very strong positive correlation.

 

 

(a) (b) 

Figure 6. (a) Trends of WCR2 and EO2; (b) average contribution rates of main inputs in agricultural system.

 

 

(a) (b) 

Figure 7. (a) Trends of WCR3 and EO3; (b) average contribution rates of main inputs in tertiary industry.

4.2. Inputs and Outputs in Social System

In the social system, the social value generated by water resources is mainly reflected
in the satisfaction and benefits in people’s lives, health, and spiritual pursuits. The output
of the water-resource social system includes the labor-force restoration of the residents,
the water-related employees, the water-related tourism income, and scientific research
papers. The input of the system mainly includes water resources, food, food services,
nonfood consumption, etc. It can be seen from Tables 8 and 9 that, in the social system,
the B4 was greater than the B5, and far greater than the B6 and the B7. This also shows
that water resources, as the basic resources for human survival, played a significant role
in social security and affected people’s life quality, to a large extent. Among the many
tourism resources, the investment in water-related tourism resources in Xi’an was very
small from 2014 to 2020, accounting for only 1.3% of all the tourism resources, which led to
low entertainment benefits from the water resources.
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4.3. Differences in Water-Supply Benefits among Industries

The water-supply benefits and the unit-water value in the economic and social system
are shown in Figure 8a,b. It can be seen from Figure 8 that there were obvious differences
in the water-supply benefits and the unit-water-resource values in different industries in
Xi’an from 2014 to 2020. In terms of the water-supply benefits: B1 > B2 > B4 > B3 > B5
> B6 > B7. In terms of the unit-water-resource values: WRV1 > WRV3 > WRV2 > WRV4
> WRV6 > WRV5 > WRV7. This was mainly because the output of the industrial system
was much greater than that of other systems, and the socioeconomic value of the water
resources mainly came from industrial production. This trend was also in line with the law
of the market economy in most cities. It can be seen that the socioeconomic benefits of the
water resources mainly came from industrial production. In the economic system and the
social system, although the water-supply benefits fluctuated slightly in the study period,
they showed an upward trend as a whole. Because of the vigorous development of the
tertiary industry in recent years, its market share has become larger and larger, which has
far exceeded that of industry and agriculture. Therefore, even if the B3 was small because
of the small WCR3, the WRV3 was second only to the WRV1, and it had an increasing trend
year by year.

  
(a) (b) 

Figure 8. The benefits and values of water resources in economic and social system: (a) water-supply
benefits among industries; (b) unit-water-resource values among industries.

The American scholars D’Odorico and Paolo et al. [56] define the value of irriga-
tion water resources as the added value of the crop yield that is affected by irrigation
($/m3), and they measured the value of the irrigation water of different crops in the world
(0.1 $/m3–1.2 $/m3). The Chinese scholars Wei Wang et al. [57] calculated the shadow price
of the industrial water resources in China’s provinces by using the dual model of the non-
radial distance function, and the average price in Shaanxi Province was 3.31 $/m3. When
measuring the value of irrigation water and industrial water, they did not comprehensively
consider the value of the natural water and engineering water, and so the result was too
small. By using emergy theory, this paper considers both the natural-water value and the
engineering-water value, and it considers the sources of the water resources (surface and
underground) separately, which are obviously more accurate. In addition, when analyzing
the output of the industrial system, Wei Wang et al. only considered the industrial GDP and
did not consider the industrial products themselves, which may also lead to the undervalu-
ation of the industrial products. The Korean scholars Won-Seok Lee et al. [22] measured
the economic benefits of water for social life through the conditional valuation method
(CVM). This method focuses on evaluating the nonmarket value of resources, and it has
strong subjectivity, which can easily affect the reliability of the results because of internal
deviation. By contrast, the emergy method that is used in this paper takes into account the
market value (domestic-water-supply value) and nonmarket value (employment security,
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entertainment, and scientific research value) of the social water use, and the evaluation
process is more comprehensive and objective.

5. Conclusions

This paper makes up for the defects of the current commonly used water-resource-
value evaluation methods, such as the models of shadow price, marginal benefit, and
cost–benefit, which fail to combine the ecological and socioeconomic attributes of water
resources, and to quantify the input and output of the energy, material, and money in the
eco-economic system uniformly. On the basis of emergy theory, this paper analyzes the
emergy flow of the economic and social systems in Xi’an from 2014 to 2020, constructs an
urban water-supply-benefit model, systematically evaluates the unit-water-resource value
and water-supply benefits in various industries, and discusses the results. The conclusions
are as follows:

1. The dependence of industrial production on the water resources in Xi’an from 2014
to 2020 was relatively stable. Compared to other industries, the B1 and the WRV1
were the largest, and the socioeconomic value of the water resources mainly came
from industrial production. In the industrial system, the WCR1 and the EO1 have a
medium positive correlation with each other, and ρ1 was 0.52, which still has room
for improvement, compared to ρ2 and ρ3. It can be seen that there might be a certain
degree of waste of industrial water. The government should further strengthen the
specification of the industrial water, vigorously develop water-saving technology, and
actively streamline the production process, so as to improve the water-use efficiency
and obtain greater B1 and total benefits;

2. Compared to other industries, the input of the water resources into the agricultural
system in Xi’an from 2014 to 2020 was the largest, and the agricultural production
was extremely dependent on the water supply. However, the B2 and the WRV2 were
lower than the B1 and the WRV1, which were related to the different character of
the water-use sector, and this phenomenon was in line with the law of the market
economy. There was a strong positive correlation between the WCR2 and the EO2
(ρ2 = 0.72), which indicates that, in the agricultural system, the WCR2 closely affects
the EO2. The more water resources that are input into a certain range, the greater the
B2 and total benefits will be;

3. In the tertiary industry, although the B3 was small because of the small WCR3, the
WRV3 was second only to industry and it had an increasing trend year by year, and
there was a very strong positive correlation between the WCR3 and the EO3 (ρ3 = 0.85);
all showed high levels of water-use efficiency;

4. In the social system, the B4 and the WRV4 were the largest, mainly because water
resources, as an indispensable basic resource for human life, not only affect people’s
quality of life, to a great extent, but are also the decisive factor for the development of
people’s lives, and they play a significant role in social security;

5. There were obvious differences in the benefits and the value of the water resources
among various industries. The industrial water supply had the greatest benefits and
unit-water value, followed by agriculture, the domestic system, the tertiary industry,
and others. Therefore, it is very important to accurately evaluate the value and
benefits of water resources in industries, which can be used not only as a reference for
the government to formulate water prices, but also to help the relevant departments
coordinate and alleviate the water contradiction between various industries and
allocate water resources reasonably.

The innovation of this paper lies in the following:

1. With regard to the water-resource ecosystem and the socioeconomic system as a whole:
building an ecological and socioeconomic composite network of water resources,
showing the process of energy circulation and flow, and providing a research basis for
the value accounting of water resources;
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2. On the basis of emergy theory, the basic framework and model of the urban socioeco-
nomic water-supply-benefit and water-resource-value research are put forward. This
enriches the research methods for the water-resource value;

3. On the basis of the basic principle of the emergy transformity calculation, by analyzing
the energy change in the process of the water-resource circulation, the water body is
divided into the natural water body and the engineering water body, which further
refines the emergy calculation process and solves the problem of how to measure the
emergy transformity of multisource water bodies in the emergy calculation.

To sum up, at present, the value accounting of the water resources in China is mainly
from the perspective of economics, and it uses currency to measure its value. Currency
is the product of the social economy. It does not circulate through nature and it cannot
reflect the essence and laws of nature. Therefore, the real value of water resources cannot
be directly measured by currency. The accounting system of the economic and social water-
supply benefits that is based on the emergy theory that is proposed in this paper unifies
the dimensions of the different substances in the natural system and in the socioeconomic
system, explores the real value of water resources with both socioeconomic and natural
attributes, makes up for the defect that the current economic accounting system does not
include natural factors, and is of scientific significance to improving the value theory of
water resources. It also provides new ideas for the unification of the economic value and
the social value of water resources, the rational allocation and pricing of water resources,
and the sustainable utilization of regional water resources.

However, because of the interdependence and overlapping between social systems
and economic systems, the problem of double calculation may inevitably occur when using
emergy theory to analyze the energy flow of each system. How to overcome this problem
needs further research.
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Abstract: Coastal areas are particularly vulnerable to flooding from heavy rainfall, sea storm surge,
or a combination of the two. Recent studies project higher intensity and frequency of heavy rains, and
progressive sea level rise continuing over the next decades. Pre-emptive and optimal flood defense
policies that adaptively address climate change are needed. However, future climate projections have
significant uncertainty due to multiple factors: (a) future CO2 emission scenarios; (b) uncertainties in
climate modelling; (c) discount factor changes due to market fluctuations; (d) uncertain migration
and population growth dynamics. Here, a methodology is proposed to identify the optimal design
and timing of flood defense structures in which uncertainties in 21st century climate projections are
explicitly considered probabilistically. A multi-objective optimization model is developed to minimize
both the cost of the flood defence infrastructure system and the flooding hydraulic risk expressed
by Expected Annual Damage (EAD). The decision variables of the multi-objective optimization
problem are the size of defence system and the timing of implementation. The model accounts for
the joint probability density functions of extreme rainfall, storm surge and sea level rise, as well
as the damages, which are determined dynamically by the defence system state considering the
probability and consequences of system failure, using a water depth–damage curve related to the
land use (Corine Land Cover); water depth due to flooding are calculated by hydraulic model. A
new dominant sorting genetic algorithm (NSGAII) is used to solve the multi-objective problem
optimization. A case study is presented for the Pontina Plain (Lazio Italy), a coastal region, originally
a swamp reclaimed about a hundred years ago, that is rich in urban centers and farms. A set of
optimal adaptation policies, quantifying size and timing of flood defence constructions for different
climate scenarios and belonging to the Pareto curve obtained by the NSGAII are identified for such a
case study to mitigate the risk of flooding and to aid decision makers.

Keywords: climate change; multi-objective optimization; coastal region; pumping plant; flooding

1. Introduction

Flooding due to extreme weather-related events hitting coastal regions has caused
devastating damage worldwide in recent decades [1,2]. The negative impacts of these
events could worsen in the coming decades due to the rapid anthropogenic development
of coastal areas, and due to climate change. The population density in coastal areas is
expected to increase by 25% by 2050 [3]. Furthermore, future climate projections indicate
that coastal regions will be faced with a general increase in the average sea level, as well as
an intensification of extreme meteorological phenomena that can increase the frequency
and/or intensity of flooding [4–6]. Thus, flood protection policies to reduce vulnerability
and exposition of coastal areas and to adapt to above mentioned future changes [7,8] are
necessary. In April 2013, the European Union formally adopted the Adaptation to Climate
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Change Strategy, in which the principles, guidelines and objectives of the Community
policy on adaptation to climate change were defined. Despite the importance of the issue,
methodologies and approaches for long-term planning of adaptation policies are very
challenging since they should be able to identify the best adaptation solutions to adopt and
their right timing given uncertain future climate scenarios.

1.1. Source of Uncertainty in Climate Projections

There are different sources of uncertainty in future climate projections. First, although
different possible mitigation pathways have been hypothesized as Representative Concen-
tration Pathways (RCP) in CMIP5 or Share Social-economic Pathway (SSP) in CMIP6 [9],
there is no assessment of the relative likelihood of these scenarios. This is often considered
a deep uncertainty. A second source of uncertainty is due to the different characteristics of
Global Climate Models (GCMs). Initial condition, parametric and structural uncertainties
affect the GCM simulations which represent climate evolution trajectories that can differ
significantly even for the same mitigation scenario [10]. To overcome that problem, an
ensemble of models is employed to offer a probabilistic representation of climate projec-
tions. Third, in order to explore possible adaptation policies at local or regional scales, the
trends of the hydrological variables such as temperature, rainfall or sea level rise need to be
projected at a finer spatial resolution than that provided by GCMs. Due to the coarse spatial
resolution of GCMs, these hydrological variables are usually biased. For instance, in CMIP5
GCMs, oceanographic processes are simulated with a horizontal resolution coarser than
1 degree of latitude and longitude. This resolution is not sufficient to represent bathymetry
variation affecting local processes like coastal currents [11], or small-scale processes like
eddies [12]. Furthermore, structural errors in models of the sea level components are proba-
ble, as well as, systematic bias caused by missing processes and/or feedback. Ref. [13]. Bias
correction methods are also usually adopted to correct daily or monthly rainfall amount pro-
jections by GCMs and downscaling methods are used to obtain rainfall projections at finer
spatial scale. Both methods add further uncertainties that may be unquantifiable [14–16].
Finally, natural variability at decadal or bidecadal scales, could dominate the climate trends
and makes the identification of adaptation policies timing very difficult [17]. All these
sources of uncertainty are illustrated in Figure 1.

Figure 1. Uncertainties in climate projection due to (a) future CO2 emission scenarios; [18] (b) uncer-
tainties in climate modelling; (c) long period natural cycle [8].

1.2. Metodology Approaches to Adaptation Action Identification

In the literature, a number of methodologies for the identification and the assessment
of adaptive actions and works to cope with hydraulic risks in coastal areas under climate
change have been proposed in the past [19–21]. Among the approaches which explicitly take
into account the elements of uncertainty due to climate change are the resilience “bottom-
up” approach [22] and the predictive “top-down” approach which is the most used.

Bottom-up approaches do not necessary need climate projections by GCMs. Examples
of bottom-up approaches include the policy tipping point [23] and the dynamic adaptive
policy pathways [24]. The dynamic adaptive policy pathways method developed by [24]
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combines some elements of Adaptive Policymaking [25], and Adaptation Pathways [26]
methods, like adaptation tipping point, i.e., the point when a particular action is no longer
adequate and that triggers a specific condition that requires a new action or plane change.
These approaches do not seek to identify the optimal sequence of adaptation actions and
their timing.

Top-down methods use climate projections by GCMs as inputs for designing adapta-
tion strategies which might enhance resilience or reduce vulnerability of specific geographic
areas to climate change [20,27,28]. Specifically, for coastal areas, [29] developed a top-down
type model that integrates multi-objective optimization algorithms and a tree-like decision-
making scheme in order to provide the optimal strategy to cope sea level rising. The
tree-like scheme coupled with a genetic algorithm evaluates the costs associated with each
intervention and the flood risk. The decision tree shows the intervention measures at
each planning horizon time step if a threshold value is reached based on the future sea
level projections.

The identification of adaptation measure timing provides relevant information which
could significantly improve the planning process, and lead to a more efficient use of the
economic resource to cope the adverse effects of climate changes. Moreover, approaches
should able to schedule the best adaptation actions timing in case of sudden or abrupt
climate changes [30].

1.3. The Proposal

In order to address these latter issues, i.e., the need to identify design and timing of
defence constructions taking into account the uncertainties in climate projections, including
abrupt changes of climate forcing, we propose a multi-objective optimization approach
(similar to [29,31]) which integrates hydraulic modelling for simulating flooding and its
consequences, in which the timing of the adaptive actions is taken into account among the
decision variables of the optimization problem and uncertainties in climate projections are
integrated into the definition of objective functions. Multiobjective optimization approach
was chosen on the basis of similar considerations as those proposed [29]. Multiobjective
optimization methods allows decision makers to choose the preferred solutions among a
set (Pareto-optimal set) of trade-off solutions, for example those relative to natural habitat
conservation, which can’t be easily expressed in monetary terms [32]. In the present paper,
the multi-objective optimization model relies on the definition of two optimality criteria:
minimizing the cost of the flood defence infrastructure system and the flooding hydraulic
risk for the entire period of climate projections. The formalization of the last optimality
criteria, i.e., the hydraulic risk associated to flooding events, relies on the definition of the
Expected Annual Damage (EAD) [33]. The EAD accounts for the joint probability density
functions of extreme rainfall, storm surge and sea level rise, and the corresponding damages,
for a given defence system state identified by the water depth–damage curve related to
the land use (CORINE Land Cover) [1]).The uncertainties in future climate projections are
treated through time varying probability density functions (Pdf) and are used to compute
the EAD. A hydraulic model for the assessment of damage is integrated within the multi-
objective optimization algorithm (non-dominated sorting genetic algorithm 2, NSGAII [34]).
A case study is presented for the Pontina Plain (Lazio Italy), a coastal region, originally a
swamp reclaimed about a hundred years ago, that is rich in urban centers and farms. A set
of optimal adaptation policies, belonging to the Pareto curve calculated by the NSGAII, to
mitigate the risk of flooding and to aid decision makers are identified for such a case study.

2. Methods

A sketch of the model system is shown in Figure 2. Figure 2 synthetized methodology
and related algorithms aimed to identify the size and timing of flood defence constructions
to cope with sea level rise, as well as, extreme rainfall regime modification due to climate
change. The methodology considers a multi-objective optimization problem, in which both
hydraulic risk due flooding and construction costs of flood defence system are minimized
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for the entire period of climate projections. Hydraulic models are used to calculate the
hydraulic variables necessary to the flood damage assessment as a functions of climate forc-
ings and of the state of flood defence systems, taking into account uncertainties in climate
projections. Figure 2 also describes decision variables of the multi-objective optimization
problem as well as the input ones.

Figure 2. Sketch of model system.

2.1. Multi-Objective Optimization Problem Formalization

Two optimization criteria are defined: (a) minimization of hydraulic risk associated to
hydrological extremes for the entire climate projection period; (b) minimization of the cost
of the adaptation actions for the same period. Adaptation actions consists of flood defence
constructions, as levees, flood retention basins, spillway canals, other actions aimed to
reduce exposition to hydraulic risk as for instance retreat strategies [35]. Objective functions
for the two optimization criteria are formalized as:

O f1 =
Na

∑
i=1

(
1

(1 + rd)i EADi − EADa)
2 (1)

O f2 =
Ni

∑
k=1

1
(1 + rc)Tk

Cc + (Tk +
−→χk) +

Na

∑
i=1

1
(1 + rc)i Cm

i (
−→χk + ΔTk) (2)

The flooding hydraulic risk objective function Equation (1) is constructed with refer-
ence to the concept of Expected Annual Damage (EAD). The EAD can be expressed as the
integral of the probability of not exceeding certain dangerous events, multiplied by the
consequences of the event [36]:

EADi(
−→χ ) =

∫
A

∫
E

D(lci (x, y),
−→
ξ ,−→χ )pT

i (
−→
ξ ) dad

−→
ξ (3)

where D(lci (x, y),
−→
ξ ,−→χ ) is the damage depending on: (a) land cover or use characteristics

lci (x, y) being x, y the coordinate of a generic point of the domain representing the region
considered; (b) the probability density pT

i (
−→
ξ ) at the i-th year of the Nc hydrological forcing
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factors
−→
ξ =

−→
ξ1 ,

−→
ξ2 , . . . ,

−→
ξNc , potentially able to cause flooding; (c) the state at the year

i of the ND flooding defence structures−→χ = −→χ1,−→χ2, . . . ,−−→χND . The EAD accounts both
the probability density function of the forcing hydrological factors and the damage due
to flooding associated with them depending on the intensity of extreme events and of
the state of flood defence structures. In Equation (1), EADi is Expected Annual Damage
(i = 1, 2, . . . , Na), Na the number of the years of climate projection, rd and rc are discount
rates related to the first and second objective function respectively, EADa the Acceptable
Expected Annual Damage. We define as acceptable EADa as the maximum value of EAD
that a community can tolerate, in relation to its exposition, vulnerability and hazard. In
principle EADa should be equal to zero, i.e., a community would not want suffer any
kind of damage due to flooding. But since zero risk is unrealistic, a community can bear
exceptionally flooding producing limited damage to things or building, no casualties and
so on. In this sense the acceptable EADa could be thought as a reference acceptable target
for the community, not varying in time. The formalization of the O f1 in Equation (1),
therefore is a metric representing the distance from such target. The formalization of
O f1 by Equation (1) is rather general and could also be used for defining other objective
functions including those related to assess of intangible damage or related to environmental
quality or natural habitat targets which can’t easily expressed in monetary terms [31]. In
Equation (2) Cc is the cost of the ND flood defence constructions and other adaptive actions−→χ = −→χ1,−→χ2, . . .−−→χND , at the time Tk(k = 1, 2, . . . , Ni) where Ni number of horizon times in
which the climate projection period is divided , Ci

m is the annual maintenance costs of the
flood defense constructions depending on the type of flood defence adopted, and the timing
between two succeeding constructions. ΔTk = Tk − Tk−1. In the multi-objective problem
formalized in Equations (1)–(3), −→χ = −→χ 1,−→χ 2, . . .−−→χND and TK(K = 1, 2, . . . , Ni) are the
decision variables, lci (x, y) are the state variables,

−→
ξ and pT

i (
−→
ξ ) are the input variables.

The decision variables are constrained by:

Tk+1 > Tk (4)

Tk+1 − Tk > ΔTmin (5)

where, ΔTmin is the minimum temporal interval between two flood defence constructions
(or actions) and their update. We also impose that once a construction is realized at the time
Tk it can’t remove at the time Tk+1 but only update if necessary, except for the case in which
flood defences can be destroyed by the occurrence of a large event as, for instance, that
able to produce an overflow of levees. In the latter case the cost the entire reconstruction of
flood defence is taken into account. The other decision variables are also included within
an interval of reasonableness, for instance the increase of the embankments will be selected
within an predefined range from 0 to a maximum levee crest height.

The probability pT
i (
−→
ξ ) in Equation (3) is a resulting probability density function that

accounts for the probability density of each forcing factor ξ j(j = 1, 2, ...Nc) as well as the
changes in probability functions of the forcing factors associated to the ensemble of GCMs
simulations within a for each future climate scenarios. If the forcing factors are mutually
independent, for a single climate scenario, the probability density function is given by the
product of probability of every single event. If the forcing factors are not independent,
a different methodology could be used to account for the dependence among the different
forcing factors, e.g., bivariate point process method [37]. Furthermore, the probability
density function for an ensemble of GCM simulations, as well as the likelihood of different
RCP or SSP climatic scenarios have to be taken into account in the definition of pT

i (
−→
ξ ).

This allows one to include the uncertainties of future emission scenarios, as well as those in
climate modeling.

2.1.1. Discount Rates

In Equations (1) and (2) two different discount rates rd and rc are considered. In the
context of climate change policy making, they are very important in understanding how
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much society today should invest in trying to protect vulnerable areas, limiting the impacts
of climate change later in the future [38]. Depending on the context, discount rates can
assume different meanings [39]. In the specific case proposed in the present study, rd in
Equation (1) is as a measure of the relative importance of negative consequences produced
by flood events in term of hydraulic risk occurring at different points in time. It therefore
can be thought as how we weight risks due to future events within an intergenerational
pact. Higher is rd, lower is our hydraulic risk assessment at future times for the same
hydrological event; rd equal zero is equivalent to assume a temporal independence of
hydraulic risk assessment.

The discount rate rc in Equation (2), that is related to the flood defence construction
costs, depends on general condition of economy in a more close relation with the market
dynamics. Since our formulation of the multi-objective problem allows to formalize the
objective functions in different measurement units, eventually incommensurable, the
distinction between the two discount rates appears to be appropriate. Furthermore it
allows a more flexible approach to the problem.

2.1.2. Damage Assesment

The term D(lci (x, y),
−→
ξ ,−→χ ) in Equation (3) accounts for the damage due to inundation

depending on the state of land cover and the defence constructions, and on the entity of
forcing factors. The damage D(lci (x, y),

−→
ξ ,−→χ ) is estimated as follows. The direct damage

associated with the physical impacts of a hazard is estimated by unit damage functions
or Stage-Damage functions, which are conceptually similar to the fragility curves used in
other disciplines. In the event of flooding, the damage functions are determined by the use
of a specific relationship between the characteristics of flood and the extent of the economic
damage referred to a specific type of asset exposed [40]. The procedure for estimating
direct damage has 3 components: (1) The characteristics of the assets exposed through the
analysis of the information on land use by satellite data [41]; (2) the characteristics of the
flood represented by depth and extension of the flooding: (3) the combination of the (1)
and (2) with the depth curve-damage in order to stimulate the extent of the damage with
respect to the value of the exposed asset. Vulnerability and exposure of each point of the
considered region is featured by the term lci (x, y) which is assumed to change from year
to year as a consequence of modification of land use or increase/decrease of urbanization
or population. The physical characteristics of the territory and the value of vulnerable
assets (1) are represented by the digital terrain model (DTM) and by the satellite land
use data (CORINE Land Cover), respectively. The extent and depth of the flooding were
obtained by numerical hydraulic simulations, for given rainfall intensities and sea levels.
The data thus obtained are translated into a damage index or the percentage of the value
of the asset that is lost, through the depth-damage curves [42]. Several countries have
developed standardized methods for estimating flood damage. An example is the HAZUS
methodology developed in the USA [43], the guidelines for cost-benefit analysis (CBA)
developed in the UK [44], and Australia (Bureau of Transport Economics, 2001). The model
we chose was HAZUS as it provides an estimate of a large variety of damages, direct and
indirect. For each calculation cell of 100 m2, the damage constitutes in the value in Euro of
the damage caused by type of asset according to the depth of the flooding.

2.1.3. Hydraulic Models

Flood damage assessment requires knowledge of the hydraulic characteristics of the
flooding—water depth, flow velocity, flooding persistence. These are obtained by hydraulic
simulations forced by direct application of rainfall, as well as, boundary conditions due to
storm surge and sea level rise. In this paper, for the study case, two different hydraulic mod-
els are used: (a) a 2D hydraulic model, the USACE Hydrologic Engineering Center’s River
Analysis System (HEC-RAS 5.0.7); (b) a fast simplified hydraulic model. The first model is a
public domain software that meets the minimum requirements of National Flood Insurance
Program as required by FEMA (https://www.fema.gov/hydraulic-numerical-models-
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meeting-minimum-requirement-national-flood-insurance-program). A recent FEMA re-
port (https://www.fema.gov/media-library-data/1561469561757-6fed6a4fd077673f684
920b9ad5a0e53/RapidResponseFloodModelingFinalReport.pdf) shows that the model pro-
duces results with higher precision (standard deviation) and predictive value (correlation)
than other models.

The equations in HEC-RAS are solved using an implicit Finite Volume algorithm.
This algorithm allows the use of a structured or unstructured computational mesh. Local
thickening of computational mesh can be applied by breaklines, added along levees,
buildings, roads, and in abrupt slope change. One of the advantages of using HEC-RAS
is the possibility to simulate the presence of gates, pumping stations, and other hydraulic
devices for flow maneuver. For very large domains, the 2D HEC-RAS code can be coupled
with HEC-HMS which is a physically based and conceptually semi-distributed model
designed to simulate rainfall-runoff processes to provide flood hydrographs generated
externally from the 2D integration domain.The fast simplified hydraulic model [45] models
the hydraulic network and the flooplain using three elements: the main river hydraulic
networks, the storage areas representing the basins, and the ideal channels connecting
the storage areas to points of the rivers belonging to the hydraulic network. The 1D
Saint-Venant equations are used to simulate the flow along the rivers which belong to the
hydraulic networks. The temporal trend of water level over the storage areas is calculated
by the continuity equation, which is a function of the flows entering or going out from the
ideal channels and of the rainfall amount directly falling over the area.

2.1.4. Flood Defence Construction and Maintenance Costs

To evaluate the objective function expressed by Equation (2) construction and main-
tenance costs of flood protection structures have to be evaluated. Such costs include the
construction of fill, columns, flood walls, levees, and flood shields or closures, as well
as, that of auxiliary materials and activities that are required to assure that the primary
flood proofing elements function properly. Examples are the cost for providing access
to buildings on fill, or interior drainage for areas enclosed by levees or floodwalls. We
considered two kind of works: levees in the most critical zones of the hydraulic network,
and the creation of flood expansion areas ruled by weirs. In order to estimate the costs
of raising the banks, reference is made to the study conducted by [46], which estimate
between 4.5–12.4 million Euros per km of length and per meter of raising the embankment
in rural areas. In the present study a unit cost of C = 4.5 million Euros/km per meter of
embankment elevation will be considered.

For every planning horizon the total cost of the riverbanks rise is calculated using the
following equation:

Carg(t, l2) = δt(l2(t) ∗ C ∗ L) (6)

where L is the length of the entire network of embankments, around 35 km. Maintenance
costs, €100,000 per kilometer to be spent every 10 years, were provided by the Reclamation
Consortium Office. The cost of expansion areas was evaluated as lost space to most
productive uses, the amount is €5000 per hectare for each year in which the expansion area
is flooded.

2.1.5. NSGAII Genetic Algorithm

The multi-objective optimization problem of Equations (1)–(5) is solved by the NSGA
II genetic algorithm. Genetic algorithms mimic the Darwin’s theory of natural selection:
a population represents a group of solution points. A generation represents algorithm
iteration. A chromosome is equivalent to a component of the design vector. In accordance
to these definitions genetic algorithm deals with a population of points, and hence multiple
Pareto optimal solutions can be obtained from a population in a single run. Random
number and information from previous iterations are combined to evaluate and improve
a population of points, and then to select non-dominant solutions. In this paper the non-
dominant-sorting genetic algorithm II [47], NSGA II, is used, which has been applied
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successfully to many optimization problems. This algorithm uses tournament Goldberg
and Deb [48], simulated binary crossover (SBX) [49], mutation operator and crowding
distance for diversity preservation. The original NSGA II Matlab code has been adapted to
the specific multi-objective optimization problem above described.

2.2. Probability Density of Hydrological Forcing Factors

In order to calculate the EAD of Equation (3) it is necessary to estimate the probability
density function pT

i (
−→
ξ ) taking into account the statistical independence or the possible

statistical dependence among the different hydrological forcing factors. Generally, heavy
daily rainfall amount and storm surge due to wind set-up and low atmospheric pressure are
statistically dependent, while the average sea level rise, as a consequence of climate change,
can be assumed statistically independent from the above cited forcing factors [50,51].
Therefore, in Equation (3) we express the probability density function as:

pT
i
−→
ξ = pT

i (ξ1, ξ2)pT
i (ξ3) (7)

where pT
i (ξ1, ξ2) and pT

i (ξ3) are the probability density functions of the statistical jointly
variables heavy rainfall amount ξ1 and storm surge ξ2 and of the statistical independent
variable sea level rise ξ3.

2.2.1. Heavy Rain and Storm Surge Joint Probability

The estimation of the joint probability of the occurrence of intense rain and storm
surges is extremely important [37] because even a weak dependence can have significant
implications in the estimation of the hydraulic risk [52]). Indeed, heavy rainfall and storm
surge are often caused by similar atmospheric conditions such as, low atmospheric pressure
and strong winds that cause storm surge. Several methods of multivariate statistical
analysis exist to estimate the dependence of such events, including the Point Process
Method [53,54]. For the estimation of the probability distribution p(ξ1, ξ2) the “logistic
model” can be applied [37]:

p(ξ1, ξ2) = exp − (ξ−1/α
1 + ξ−1/α

2 )1/α 0 < α < 1, ξ1 > 0, ξ2 > 0 (8)

where ξ1 and ξ2 represent the extremes of the bivariate vector consisting respectively of
daily rainfall amount and daily storm surge levels, which is assumed to follow the standard
Frechet distribution. The parameter α indicates the dependence between the two extremes
with α → 0 complete dependence and α → 1 independence. The method used involves
identifying the rainfall and storm surge intensity thresholds and estimating the Generalized
Pareto Distribution (GPD) of the margins. Then using GPD parameters, the entire dataset
is transformed to have the standard Fréchet margins [55]. After the transformation of the
Fréchet margins into radial and angular components (r, w), the joint threshold r0 is selected.
The α parameter is estimated through a likelihood function constructed from the spectral
density h(w).

h(w) =
1
2
(α−1 − 1)[w(1 − w)]−1−1/α[w−1/α + (1 − w)−1/α]α−2 (9)

The inference for the Point Process Method is based on a likelihood function con-
structed from the spectral density h(w):

L(α; (ξ1, ξ2) . . . (ξn, ξn)) = ∏
j|rj>r0

h(wj) (10)

The joint probability of the events will be considered for each year of the time horizon
considered. The model is calibrated using the data relating to the accumulated daily rainfall
for 20 years of records of rainfall stations present in the study area.
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2.2.2. Mean Sea Level Rise Projections

The future mean sea level until 2200 can be derived from [18,56,57]. Using a model
ensemble, ref. [18] provide a method for obtaining probabilistic projections of sea level rise
both on the global scale and on the local scale considering the individual contributions due
to the melting of both the polar ice caps and glaciers. The projections use 3 RCP scenarios,
8.5, 4.5 and 2.6. In order to obtain local sea level rise projections, the model requires the
aggregation of the individual components that influence the sea level change in every
site of interest [58]. Those components are respectively the three ice sheet components
(Greenland, West Antartic and East Antartic): (a) the global mean thermal expansion and
the ocean dynamic effects based upon the CMIP5 [59] and GCM models; (b) the land water
storage evaluated following the approach of [60]; (c) the glacier and ice cap surface mass
balance and tectonics. The non-climatic effects can be approximated as linear trends over
past century and assumed unchanged, using spatiotemporal Gaussian process model [61].
We use the DP16 projections because they included previously omitted processes such as
the hydrofracturing of the ice shelf and structural collapse of high ice cliffs ending at sea,
which have the potential to drive a higher sea level rise. Projections of ice sheets for the
21st century are generated from IPCC AR5 projections (IPCC, 2014), used to characterize
median and likely ranges of sea-level change, while study carried out by [62] is used to
calibrate the shape of the tails. For each RCP, the model employ a multivariate t-distribution
of ice mass change with a mean and covariance estimated from the model results of [63].
To calculate global and local sea level projections the model uses 10,000 Latin hyper–cube
samples from time dependent probability distributions of cumulative contributions of
each individual component [18]. To calculate the probability of increasing of the average
local sea level at site of interest (ξ3), taking into account the different RCP scenarios, we
estimated the probability linked to each level of increase for each year by calculating the
probability distribution function relative to a sample of 30,000 projections, 10,000 for each
RCP scenario considered. Each RCP scenario is assumed as independent from others with
a different temporal varying density probability function.

3. Case Study

3.1. Site Description

The model developed was tested on the southern area of the Pontine Plain, a recovery
area with a surface of 395 km2, originally a swamp, reclaimed in 1920s and located in the
south of Lazio region (Italy). The area is densely populated, with a significant presence
of agriculture and industrial activities. A natural park, Circeo National Park, aimed to
conserve the biotypes and biodiversity typical of wetland environments covers the areas
closer to the coast, with the presence of a long coastal dune and a number of coastal
lagoons [64]. These social, economic, naturalistic and ecological characteristics, together
with the morphological ones, determine a particular vulnerability and exposition of the
zone to extreme hydrological events and sea level rise. In fact, vast areas are below the
sea level, furrowed by a dense network of canals that are mostly artificial and subject
to periodic flooding phenomena due to the concomitance of meteorological phenomena
such as heavy rains and local sea level rises due to storm surge. As shown in Figure 3,
the area is kept dry by pumping water that accumulates in the most depressed areas by
conveying it into a higher altitude network of canals and then discharged into the sea. In
addition, maneuvers are carried out by the network operators, such as opening and closing
mechanical sluice gates, to prevent excessive water from accumulating inside the channels
during emergency periods.
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Figure 3. Hydraulic network of Pontina Plain with maneuvers, pumping stations and gates.

The most important is the Mazzocchio pumping station, which has a maximum
capacity of about 30 m3/s and is used to drain the water that accumulates in the most
depressed area of the Pontine plain, with a minimum altitude of up to −3 m above sea level.
The area upstream the Mazzocchio pumping station has an extension of about 102 km2 and
due to the lower altitude in respect to surrounding basins it results hydraulically connected
with downstream hydraulic network only by the pumping. Therefore changes in flow
rates and flow depths in the rivers downstream from the pumping don’t affect the flow
characteristics of the areas upstream from the pumping station. On contrary the flow rates
lifted by Mazzocchio pumping station affects the flow characteristics of the downstream
area. A previous study by [45] showed, that during heavy precipitation events, higher
pumping flow rates reduce the extension of flooding areas upstream from Mazzocchio
pumping station, but it worsens the flooding of those downstream. In the current study
case, we explore how to increase the resilience to sea level rise of the drainage network
downstream from Mazzoccio pumping station, through both the raising of the embankment
elevation along the most vulnerable part of the drainage network and the construction of
flood expansion areas ruled by weirs along the channels. In this context an analysis has been
conducted with the aim to verify how an increasing of the pumping power of Mazzocchio
station could reduce the extension of the flooding in the areas upstream from the station and
how such increase could affect the flooding in the downstream zones. Therefore simulation
were carried out for two different global pumping power for Mazzocchio station: the
current ones with 6 pumps having a 6 m3/s flowrate and an hypothetical configuration
with the same number of pumps but able to lift up to 9 m3/s.

3.2. Data

The data used in the present study are the amounts of daily rainfall in the study
area, the sea level, the ground level, the land use and the channel network morphological
characteristics. Above mentioned data can be downloaded at github.com/project.
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3.2.1. Rainfall Data

Rainfall data recorded from five rainfall stations present in the study area were used.
Four rain gages, whose coordinates are shown in Table 1, provided daily precipitation
amount from 1 January 1980 to 31 Decmber 2000. The first station, located in the municipal-
ity of Latina (12◦58′12′′ 41◦25′12′′) provided hourly rainfall amount time series for a shorter
period (since 2009). Using the 10 years long hourly rainfall time series, and applying the
method developed by [65], synthetic hyetographs were generated which distribute the
total rainfall amount in 24 h according to a statistical distribution obtained from the hourly
rainfall data. In fact, a previous study [45] has shown that 24-h-long heavy rainfall (with a
daily rainfall amount greater than 100 mm) has, in the past, induced serious flooding in
the examined site. Ref. [45] is reported a detailed description of the methodology used to
construct the hyetographs for the study case. The daily rainfall amount time series were
used to obtain the joint probability between extreme rainfall and storm surge in according
to the method described Section 2.2.1.

Table 1. Coordinates Rain Stations.

Rain Gauge Lon Lat

Latina 12.8313442 414623368
Lenola 13.4401114 41.4051557

Ponte Ferraioli 13.0958461 41.4643082
Terracina 131255395 41.2848763

Mazzocchio (Pontinia) 13.136856 41.397645

3.2.2. Storm Surge Data

Since direct measurements of storm surge along the coast were not available for the
site, we reconstructed the sea level time series from 1 January 1980 to 31 Decmber 2000.
using the time series of the wind speed and direction and sea level pressure for the area
of interest (Lat 39.75–42, Lon 12–14.25). Sea level is a combination of the component due
to the action of the wind (wind set-up), of the astronomical tides (Boon, 2020) and of
the atmospheric pressure acting on the sea free surface. Storm surge levels are calculated
starting from the pressure data on the mean sea level and zonal and southern wind intensity
obtained from the ERA-Interim model [66]. In order to derive the wind set-up, we applied
the relationship and coefficient obtained by [67]:

S =
KpLpU2

g(D − h − S)
ln

D
h + S

(11)

where:

U = wind speed (m/s) at 10 m. over the sea surface;
D = limit depth of the continental shelf (~200 m);
Lp = continental shelf extension (m);
h = depth where storm-surge is calculated (m);
g = gravity acceleration (9.81 m/s2);
kp = coefficient equal to 3 × 10−6.

For the specific coastal zone eastern-southerly winds produce higher storm surges
which increase due to the contribution of sea level pressure and astronomic tide. Usually,
extreme meteorological events in the considered zones last from one to three days, thus
also the maximum tidal amplitude has to be taken into account as a further component
to the storm surge. To calculate the height of the sea due to astronomical tides the model
developed by [68]. The measurements from which we obtained the trend of the astronom-
ical tides refer to the recordings made by the Gaeta tide gauge (LAT 41◦12′35.97′′, LON
13◦35′23.05′′). The range of tidal amplitude in that coastal area result equal to ±200 mm.
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3.3. Sea Level Rise Projections

To obtain the projections for raising the local average sea level, we used the data
recorded in Civitavecchia tide gauge which is located in a zone close to that of the study
case and having very similar morphological characteristics. Two different projections of
mean sea levels were calculated referred to [57] (DP16) and [18] (K14). As shown in Figure 4,
the two projections show a substantial variation of the median sea level rise ,with regard to
the worst-case scenario (RCP 8.5), of more than 1 m in 2100. The two scenarios considered
differ mainly in the contribution of the hydro-fracturing of the Arctic ice sheets introduced
by [57] in the model developed by [18].

Figure 4. Downscaled projections used to calculate the total probability of sea level rise D16 (top)
and K14 (bottom).

4. Results

4.1. Hydraulic Simulations

In order to analyze the hydraulic response of the hydraulic network and of the sur-
rounding floodplains of the area and to identify the critical zones to flooding 2D hydraulic
simulations were carried out. Due to the large dimensions of the catchments feeding the
hydraulic network the integration domain was divided as shown in Figure 5.

Figure 5. Sketch of integration domain.
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Hydrographs at the closing sections of the upstream basins were obtained applying
rainfall runoff models. These hydrographs were applied as inputs to the 2D hydraulic
model. The rainfall-runoff models as well as the 2D hydraulic model were calibrated using
data from the hydrometric and meteorological monitoring system, and Sentinel I satellite
image of flooding, recorded during the event of 25 November 2018. The monitoring system
consists of eleven hydrometric stations and two meteorological stations, which collect
the data and return the hourly averages relating to the water tie, to rainfall, to the wind
intensity and direction, atmospheric pressure, etc.

Figure 6a,b show the hyetograph and the sea level trend recorded during the event of
25 November 2018 respectively, and applied as boundary conditions to the rainfall-runoff
model as well as to 2D shallow water hydraulic model. Rainfall-runoff models for each
of the basins sketched in Figure 5, were calibrated by varying the saturation factor k as
defined by Şen (2008)

dR
dP

= (1 − e−kP) (12)

where dR
dP is the runoff rate, being R the runoff and P the precipitation amount. Typically,

the value of k ranges between 2.54 to 12.7 (mm−1) depending on the land cover and of
hydrologic soil group. In the present study case uniform values of k were assumed for the
entire integration domain. Figure 7 shows such comparation.

Figure 6. Hyetograph (top) and the sea level (Bottom) trend recorded during the event of 25 Novem-
ber 2018 respectively.

To calibrate k in the part of the basin simulated by 2D hydraulic model, the fit between
the flooding areas detected by satellite images Aobs and those obtained by simulations Asim
was evaluated by the following index:

I(k) =
Aobs ∩ Asim(k)
Aobs ∪ Asim(k)

(13)
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The best value of the saturation factor k was identified as the one that yields the
maximum value of I(k). In Equation (2) refers only to the flooding areas which are detected
by satellite. Therefore coastal lakes and other water bodies, as well as, vegetate and dense
urbanized areas were removed ([69–71]). After model calibration, a number of simulations
were carried out, forced by the same rainfall of the event 25 November 2018, with different
values of the pumping rates in Mazzocchio station and of the sea level rise, with the goal
to identify the most vulnerable areas to flooding and the type and location of the flood
defence constructions, as levees, dikes or flood expansion areas. In order to calculate the
damage function D(lci (x, y),

−→
ξ ,−→χ ) of Equation (3), related to flooding in the study area,

simulations were carried out using the fast simplified model, which takes into account the
entire domain shown in Figure 5, and whose parameters were calibrated with reference to
same above mentioned heavy rainfall event used in 2D simulations. Hydraulic simulations
were carried out considering rainfall events lasting 24 h. Then, 24 h rainfall amounts were
distributed hourly according to the synthetic hytographs. Hydraulic simulations were
carried out offline to reduce the computation time. Different hydraulic construction states
were considered, raising embarkment level in the range of 0 and 4 m, with longitudinal
weir level ruling flood expansion areas varying between 2 and 6 m above mean sea level.
The scenarios considered consist of five rainfall intensities, five storm surge levels and
five average sea level rise scenarios combined to form 625 different simulations with each
combination of boundary conditions. For the simulations, extreme rains of intensity from
30 mm per day to 150 mm per day, storm surge levels from 20 cm per day to 100 cm per
day and increases in the average marine level from 20 cm to 200 cm were considered. The
most depressed areas of the domain are kept dry by groups of pumping stations whose
flow rates were related to the water level in the upstream storage tank.

(a) (b)

Figure 7. Comparison between flooding areas by Sentinel 1 satellite image (a) and simulated ones (b).
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4.2. Effect of the Increase of Pumping Power at Mazzocchio Station and Identification of Flood
Defence Constructions by 2D Hydraulic Model Simulations

For the event of 25 November 2018, Figure 8 shows the maximum flow depth difference
between the simulated configuration with 9 m3/s pumping flow rate for each pump of the
Mazzocchio Station and with 6 m3/s ones. In simulations the switch-on and switch off of
different group of pumps were considered as a function of different free surface levels in
the tank upstream of the Mazzocchio pumping station. The increase of pumping reduces
the maximum flow depth of about 0.20 m. in the zones upstream from Mazzocchio Station
but increases it in the downstream area up to 0.4 m. in the most depressed zones.

Figure 8. Maximum flow depth difference between configuration with 1.5 increase of pumping flow
rate of each single pump (9 m3/s) at Mazzocchio pumping station and the current one (6 m3/s).

With the aim to identify the areas most prone to flooding, and to define the type
and locations of flood defence constructions, a number of hydraulic simulations for dif-
ferent average sea level rise were carried out, applying the same hyetograph of the event
of 25 November 2018, as well as the same storm surge trend. Figure 9a–d shows the
comparison between the water depth field at the instant of maximum flooding for the
current average sea level and that assuming an average sea level rise equal to m. 0.5. As
shown in Figure 9c there is a notable worsening of flooding conditions, especially in the
urbanized region closer to the coastal line and where there is the convergence of the main
watercourses.
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To defend such a region different kinds of flood disaster risk reduction measures
could be adopted [72]. Here, as shown in Figure 9d, we consider raising the embankment
elevation along the drainage network crossing the most vulnerable areas and the construc-
tion of flood expansion areas, upstream from such areas, ruled by the level of weir along
the channels.

Figure 9. (a–d) Comparison of the water depth field at the instant of maximum flooding for the
current average sea level and that assuming an average sea level rise equal to m. 0.5.

4.3. Probability Density Function for Sea Level Rise Scenarios

To calculate the probability of raising the local sea level, 10,000 simulations were
carried out for each RCP emission scenario considered, In the Figure 10a,b the probability
density functions at the year 2050 and 2100 for each RCPs,and the total probability density
function are shown, for the sea level rise scenarios K14 and DP16 respectively. Figures also
show the narrower range of variation of sea level rise in the year 2050 than 2100.

(a) (b)

Figure 10. Probability density functions at the year 2050 and 2100 for each RCPs, for the sea level rise
scenario K14 (a) and Dp16 (b) respectively.
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4.4. Application of Multi-Objective Optimization to Case Study

In order to test the reliability of the multiobjective optimization model for identifying
the sizing and the timing of the flood defence constructions, five scenarios with different
environmental and economic characteristics were taken into into account. These scenarios
are listed in the Table 2. Scenarios refer to: (a) two sea level rise projections previously
discussed capitol k14 and D16; (b) different power of the Mazzocchio pumping station;
(c) two different spatial domains to calculate the objective function of Equation (1), the one
that takes into account both the areas upstream and downstream from the Mazzocchio
pumping station and the one that takes into account only the downstream area; (d) different
values of the discount rates rd and rc. For each of the scenarios considered, Pareto optimal
curves were calculated. Each point of Pareto curves identifies the values of decision
variables, i.e., the sizing of the flood defence construction and timing.

Table 2. Scenarios description.

RCPs
Considered

Mean Sea Level
2100 Projection

Discount
Rate Costs

Discount Rate
Damages

Pumping Rate
for Each Pump

Selcella Basin’s
Damages Accounted

Scenario 1 8.5-4.5-2.6 K14 0 0 6 m3/s yes
Scenario 2 8.5-4.5-2.6 D16 0 0 6–9 m3/s yes
Scenario 3 8.5-2.6 D16 0 0 6 m3/s no
Scenario 4 8.5-4.5-2.6 D16 0.02-0.05-0.07 0 6 m3/s yes
Scenario 5 8.5-4.5-2.6 D16 0.02 0.02-0.07 6 m3/s yes

In the NSGA II algorithm a crowded comparison approach by [47] is used to assure
the convergence to the optimal Pareto set and a good spread of solutions. Such approach
does not require any user-defined parameter for maintaining diversity among population
members. Generally, the algorithm terminates when either a maximum number of genera-
tions has been produced, or a satisfactory fitness level has been reached for the population.
By performing preliminary runs we selected the minimum number of generations needed
to converge to the optimal Pareto set that are reported in Table 3. In carrying out the
multiobjective optimization, 50 generations of 1000 individuals each were assumed. The
Table 2 shows the parameters used in the multi-objective optimization algorithm.

Table 3. NSGA 2 Parameters.

NSGA II Parameters

Generations 50
Population 1000

Crossover percentage 0.7
Mutation percentage 0.4

Mutation rate 0.02

The Pareto set obtained solving the multiobjective optimization problem for the
scenario 1 of Table 1 is shown in Figure 11. The Pareto curve identifies a set of optimal
solutions representing the “best” choices relative to the two objective functions. The curve
shows a clear upward concavity: higher costs of flood defence construction reduce the
hydraulic risk for the entire period.Each optimal solution belonging to the Pareto set (filled
circles) includes the decision variables: size of flood defence works (embankment level
and flood expansion area)and timing of their construction. Figure 12 shows the difference
among the optimal solutions of Pareto set in term of values of decision variables.

In Figure 12 we explore optimal policy sets by looking at the differences between the
safest and most expensive and the most risky and economic ones. The more expensive
solutions are characterized by a higher level of banks and time horizons closer to each
other (yellow) than the riskier policies (blue) characterized by milder and more distant
interventions over time. The solutions (green), positioned in the “elbow” portion of the
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Pareto Set, are characterized by height levels of the intermediate banks with respect to the
solutions that prefer risk or safety.

Figure 11. Pareto set for scenario 1. of Table 2.

Figure 12. Size and timing of Flood defence constructions for the Pareto set optimal solutions.

The second decision variable, that is the level of the drain, presents solutions charac-
terized by an anticipation over time of the more expensive solutions but little variation
in terms of altitude up to 2050; the coincidence of the data is due to the contained rise
in the sea level up to that date resulting from the K14 projection. In this case, a lower
drain level corresponds to higher costs due to a greater portion of land to be allocated
to the expansion area. In Figure 13 the Pareto sets obtained for the scenario 2 of Table 2
are shown. The two curves are obtained for two configurations of Mazzocchio pumping
station, single pump power of 6 m3/s and 9 m3/s. As evidenced in Section 4.2, the increase
in the power of pumps reduces the entity of flooding in the basin upstream of Mazzocchio
station but at the same time makes worse the hydraulic risk in downstream areas. As it
is evident from Figure 13, due to the low economic values of agriculture production in
upstream Mazzocchio region, the reduction of the damages in this part of the watershed

430



Water 2022, 14, 1481

does not compensate the increased damages in the portion of watershed downstream due
to the higher pumping flowrates from Figure 13, the increase of hydraulic risk (Objective
function 1) at parity of construction costs is made evident from the translation of the curve
associated to the higher values of pumping rates.

Figure 13. Pareto set for scenario 2 of Table 2.

As shown in Figure 14a,b, coherently with the higher weight of damage (Objective
function 1) in the watershed downstream from Mazzocchio station, the optimal solutions
belonging to the Pareto set for 9 m3/s are characterized by higher top level of levees and larger
flood expansion areas than those for 6 m3/s. Furthermore, the construction times of the defence
works in the first case are delayed with respect to the second one. This result suggests to limit
the pumping power of Mazzocchio station at 6 m3/s, since further increase of the pumping
power does not produce significant reduction of hydraulic risk for the entire domain, but it
makes worse the hydraulic risk in the downstream portion of such domain.

Figure 14. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 2 of Table 2.
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In Figure 15 the Pareto sets obtained for different sea level rise scenarios, referred to
RCP 2.6 and RCP 8.5 respectively, are compared. Even if the RCP 2.6 curve presents lower
costs than RCP 8.5 curve at parity of hydraulic risk, as expected, the curves are rather close.
This is due to the fact that the trends of SLR for RCP2.6 and RCP 8.5 diverge significantly
only starting form the 2060. Despite this, the optimal solutions for the two cases are rather
different: for RCP8.5 the levee levels are higher than for RCP 2.6. However, construction
timings are rather coincident (see Figure 16a,b).

Figure 15. Pareto set for scenario 3 of Table 2.

Figure 16. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 3 of Table 2.

Thus, the model is able to identify the optimal timing in which to implement the
planned intervention. Analyzing Figure 16b, it is possible to observe how the more precau-
tionary policies but also the more expensive ones (yellow) foresee more substantial rises
of the embankment summits and closer in time, with a maximum time horizon around
2070. The least expensive policies monetary terms but riskier in terms of potential damage

432



Water 2022, 14, 1481

from flooding (blue) envisage lower river embankments more distant time horizon with a
maximum time horizon of around 2080. In the scenarios 4 and 5 in Table 2, a local projection
of sea level rise more severe one in which the phenomenon of the detachment of large
portions of ice from the Antarctic polar cap takes place was considered (DP16). For this
projection of sea level rise, in scenario 4 in Table 1, the results obtained by varying the
cost discount rate rc—equal to 2%, 5% and 7% respectively—were compared. We also
assume a damage discount rate equal to zero, i.e., the hydraulic risk does not depend
on time. Figure 17a,b shows the Pareto sets relating to such scenario in terms of average
sea level rise (DP16) by varying, as said, the discounting of the intervention costs and
leaving the actualization of the consequent damages unchanged. The main influence of cost
discount rate rc can be inferred comparing Figure 17a,b: greater the cost discount rate is
more delayed the flood construction time horizons are. Indeed defence policies, especially
the more expensive ones that involve a greater rise in the level of the levees, tend to be
anticipated over time by applying the lower cost discount factor rc = 0.02 than policies
in which a greater costal discount factor rc = 0.07 is applied. This is a consequence of the
different way in which the cost are weighted in dependence of construction time horizon.

Figure 17. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 4 of Table 1.

Figure 18a shows the results of the variation of the social discount rate in the case of
the DP16 scenario with rc = 0.02 and rd = 0.02 . Comparing with Figure 18b (same case but
with rd = 0) we observe that, due to the minor weight of the hydraulic risk in future years,
the optimal solutions in the case of rd = 0.02 are characterized by flood defence works of
minor size with construction horizon times anticipated in respect to the case in which rd is
assumed equal to zero.
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Figure 18. (a,b) Size and timing of Flood defence constructions for the Pareto set optimal solutions
referred to scenario 5 of Table 1.

In conclusion, observing the responses of the model to the variations in the social
discount rate, both as regards only the costs of carrying out the works, and as regards the
associated damages, we note a tendency to anticipate time horizons for the construction of
the defence works DP16. Analogous analysis was conducted also for the projections K14, not
shown here since results were substantially similar to those of D16 projections. The results
presented are intended to offer a tool that the decision maker can rely on to implement
planning based for example on a budget limit or on a long-term goal. The input data can be
updated from year to year in order to monitor and, if necessary, modify the chosen policy.
This is regardless of the RCP scenario that occurs, as the model considers a total probability
for each sea level rise and chooses the optimal policies regardless of the RCP scenario. From
the results it is possible to observe the model’s ability to grasp differences in the projections
of local sea level rise due to a greater contribution from the melting of the Antarctic ice sheet.
This difference in the results for the two different projections indicates the model’s ability
to adapt even to sudden and significant events, such as the rapid rise in the average sea
level due to the fracturing of part of the polar caps with the consequent introduction of
huge quantities of water into the ocean. The model is able to identify the optimal time in
which to implement the planned intervention. Another aspect evident from the results is
the influence of uncertainty on the solutions, it is clear that for modest marine rises and less
affected by uncertainty, in which the difference between the 95th and the 5th percentile is
small, the solutions tend to concentrate in some very precise instants of time (K14), while
with increasing uncertainty (DP16) also the solutions tend to be more varied both as regards
the geometric characteristics and for the temporal horizons of realization.
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5. Summary and Conclusions

We developed a methodology and related algorithms aimed to identify the size and
timing of flood defence constructions to cope with sea level rise, as well as, extreme rainfall
regime modification due to climate change. The methodology considers a multi-objective
optimization problem. The first objective function is related to the hydraulic risk for
the entire climate projection period, while the second one refers to the construction and
maintenance costs. Two relevant aspects of the multi-objective optimization problem
deserve to be highlighted. First, since the construction timing is considered as a decision
variable the projected trend of climate variables, whether it corresponds to uncertain abrupt
or smooth changes or in the case in which natural variability shadows climate trend, can be
addressed. Second, EAD integrates in its definition the uncertainties in climate projections
considering the different RCPs postulated by climate community and for each of these RPCs
the structural, parametric and initial condition model uncertainties in climate projections.
The relative likelihood of each RCP can be specified by the decision maker, including
its possible variation in the future. This way optimism or pessimism as to the ability to
mitigate future climate risk can be incorporated. The application to the study case has
shown the reliability of the proposed approach which has allowed the identification under
different forcing factors of a set of optimal solutions belonging to the Pareto Curve, each
of them defining sizing and timing of the flood defence constructions along the entire
period of climate projections. There are several areas of potential improvement with future
research. First we focused our study just on the flooding over the considered coastal region
due to the concomitant action of heavy rainfall, storm surge and sea level rise (SLR) for
different global warming scenarios. The SLR also has other impacts on coastal regions
which can be equally significant. For instance, coastal erosion that threatens the stability
of the shore and dune-coastal lake systems, salt intrusion in coastal aquifers, alteration of
ecosystem equilibrium as marshes, or lagoons. Further optimality criteria can be added to
the proposed multi-objective optimization scheme without loss of generality. These criteria
are not necessarily in monetary terms, since the multi-objective optimization problem can
be formulated using incommensurable objectives. In the case study we assumed as flood
defences only levees and expansion areas controlled by weirs. Different coastal strategies
and policies could be hypothesized to cope sea level rise within the three different categories
usually considered and referred as retreat, accommodate and protect [72]. More work needs
to be done to assess damages due flooding by hydraulic model simulations to capture the
entire landscape of possible options also using water quality or eutrophication models [73],
groundwater models [74] or coastal erosion models [75]. A further relevant research
suggestion is that proposed by [76], who advocates addressing the unintended negative or
positive effects of disaster risk reduction measures and strategies on drought risk. To better
design disaster risk reduction (DRR) measures and strategies, it is important to consider
interactions between flood and drought which are closely linked hydrological phenomena.
The mutual interaction of disaster risk reduction (DRR) measures and strategies aimed
to cope the two hydrological risk should be investigated and then formalized within the
objective functions. Finally, the proposed approach provides an adaptive and flexible
way moving forward the temporal window and then time updating climate projections
resulting from future improved GCMs. An ideal application would be as part of an adaptive
process where the analysis is updated, for instance, every 5 years with new information
and assumptions reflecting the evolution of the climate as well as socio-economic systems,
and policy variables such as the discount rate.
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Abstract: Sustainable groundwater utilization is important for social and economic development.
There is a need for groundwater sustainability assessment in small-scale areas lacking detailed mining
data. Here, exploiting water level data series, we propose an indicator of groundwater sustainability
based on the response to mining (MGSI) for better evaluation; it integrates groundwater data and
spatio-temporal variability at a local scale. A decomposition coefficient was applied to decompose
the pressure exerted by groundwater mining on the groundwater system for each monitoring well. It
correlated with the groundwater response state. In Da’an City, Jilin Province, China, the appraised
results revealed that the aquifer type exhibiting the greatest risk to groundwater sustainability
changed from phreatic to confined during 2008–2017. The spatio-temporal distribution of different
sustainability levels between and within the aquifers indicated that adjustment of the groundwater
mining layout should be the focus of groundwater management in Da’an City. Additionally, the
Mann–Kendall trend test and Sen’s slope trend analysis effectively explained the sustainable evolution
of groundwater in Da’an City and confirmed the reliability of the MGSI method. The proposed
method highlights the effects of groundwater mining on sustainability and helps us better understand
the interaction between anthropogenic activities and groundwater resources.

Keywords: mining; groundwater response; sustainability assessment

1. Introduction

Groundwater is one of the most important freshwater resources for maintaining
agricultural, economic, and environmental development; it accounts for 35% of global
anthropogenic water mining [1–4]. In China, 17.5% of the total water supply is through
groundwater mining [5]. The domestic, industrial, and agricultural utilization rates of
groundwater are 65%, 50%, and 33%, respectively, as reported by the National Groundwater
Pollution and Control Plan (2011–2020) [6]. In particular, the grain-producing areas and
commodity grain bases in Northeast China are dominated by groundwater irrigation, with
78% of groundwater mining used for agriculture in 2016 [7]. Consequently, the sustainable
mining capacity of groundwater has become crucial to guarantee the steady growth of grain
output, promote economic development, maintain the ecological environment, and ensure
food security in Northeast China [8]. Accordingly, rigorous assessments of groundwater
sustainability are required.

Various methods of groundwater sustainability assessment have been thoroughly
investigated; however, none of them are capable of directly and accurately assessing the
state of groundwater under the influence of multiple factors such as hydrometeorology,
topography, and the extent of anthropogenic activities [9,10]. Thus, several indirect meth-
ods are still being applied to assess groundwater sustainability. These indirect methods are
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typically based on the following: the theory of water balance and numerical simulation
method [11,12], obtaining observational data by remote sensing [13], index evaluation [14],
and other techniques such as machine learning [15] and the comprehensive application
of multiple methods [16]. Among them, the numerical simulation method can provide
effective guidance for groundwater management. However, each numerical model requires
abundant datasets and the associated running time to accurately capture the complex rela-
tionships between groundwater factors. Moreover, because of the complexity of the model
itself, it is difficult for managers to communicate and interact with each other and flexibly
adapt to management requirements [17,18]. Remote sensing observation data, such as
data obtained from the Gravity Recovery and Climate Experiment (GRACE) program, can
indirectly determine the changing trend of groundwater reserves [19–22] in the evaluation
of the sustainability of groundwater. However, remote-sensing-based technologies are
generally more suitable for larger-scale groundwater research [23,24]. It is difficult to pro-
vide sufficient resolution for the acquisition of smaller-scale groundwater information [25].
Moreover, the inappropriate use of such data may lead to erroneous guidance for ground-
water management in associated subregions [26]. In contrast, a groundwater sustainability
evaluation index system based on monitoring data and statistical data can make better
use of surface water data and is more suitable for local-scale assessments. Compared with
traditional methods, such an index system can include multiple aspects, such as economic
and aquifer variations [27]. It is considerably easier to quantify the influence of each aspect
on the entire system. Many such indicators reflecting the current status and future trends of
water resources have been used in resource and sustainability evaluations of groundwater
and surface water [28–32]. The results have helped to improve our understanding of the
spatial and temporal effects of anthropogenic activities and natural processes on water
resources [33]. However, owing to the complexity of methodologies, testing, and data
acquisition, such an index system is difficult for managers to use.

Long-term variations in groundwater levels reveal natural change processes and
disturbances in the water budget related to anthropogenic activities (i.e., groundwater
mining). Moreover, in order to describe the dynamic variations in groundwater resources,
the groundwater level is more intuitive and is considerably easier to obtain than other
indices applied to calculate recharge and discharge. Therefore, the primary aim of this
study was to develop a method based on groundwater table data and an indicator system
for groundwater sustainability assessment that is suitable for local-scale projects. Therefore,
here, we propose the mining-response-based groundwater sustainability index (MGSI). In
order to achieve our objective, Da’an City in Jilin Province was selected as the study area.
Da’an City is an advanced grain production county (city) in China where crop irrigation is
predominantly reliant on groundwater. In recent years, Da’an City has actively promoted
the implementation of land consolidation and water-saving irrigation projects in order to
improve the current situation of groundwater development and utilization. However, the
amount of groundwater withdrawn for irrigation is still increasing (Figure A1). Therefore,
a convenient and reliable method to rapidly assess the spatio-temporal distribution of local
groundwater sustainability is urgently required to guide future groundwater management
in Da’an City.

In this study, groundwater sustainability was quantitatively characterized by com-
bining the pressure index imposed by anthropogenic activities with the groundwater
response state. Thereafter, sustainability was classified according to the evaluation results.
Subsequently, the nonparametric Mann–Kendall (MK) test [34,35] and Sen’s slope trend
analysis [36] were applied to analyze the significance and variation degree of the recent
long-term trends of groundwater depth to verify the reliability of the index system. The
index system reflects the changes in groundwater resource sustainability caused by anthro-
pogenic activities in different locations in the region, providing an assessment method to
understand the spatio-temporal evolution of local-scale groundwater sustainability and
guide future mining activities.
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2. Study Area

Da’an City is a county-level city in Baicheng City in northwestern Jilin Province, China;
it experiences one of the most extreme water shortages in western Jilin [37]. The city covers
an area of 4879 km2 (Figure 1) and has a multi-year average precipitation of 389.2 mm and
evaporation of 1702.44 mm. It is a county with scarce local surface water resources [38]. The
demand for water for daily life, industrial, and agricultural activities predominantly relies
on groundwater mining. There is extensive deposition of Neogene mud, sandy rocks, and
loose Quaternary materials in the study area, in which several stable and superimposed
aquifers have formed. Groundwater mining for industries and agriculture in the study area
predominantly involves two Quaternary water aquifers, one phreatic and one confined,
which were the target aquifers of this study.

 

Figure 1. Land use and distribution of monitoring wells in the study area.

Quaternary phreatic aquifers are widely distributed in the study area. The lithology is
mainly silty sand and fine sand. The thickness of the aquifer is 1–8 m. The water quality is
poor and is generally alkaline. The underlying Quaternary confined aquifers are distributed
throughout the area. The lithology is mainly sand and gravel, and the thickness is generally
2–30 m. The water quality is good and the mining value is large.

3. Data Sources

The groundwater depth data of 75 monitoring wells in the study area, collected at
five-day intervals between 2000 and 2017, were obtained from the database “Groundwater
Dynamic Data (Songyuan and Baicheng volume)” [39]. The monitored horizons, from
top to bottom, are as follows: Quaternary phreatic water, Quaternary confined water, and
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Neogene confined water. Neogene confined water was not analyzed in this study because
it is considered to be a deeper confined water resource and, in principle, can only be used
by special industries; therefore, data on mining and monitoring are limited for this horizon.

The data were filtered according to the completeness index (CI, the number of valid
data as a percentage of the number of complete data) [40], such that the water level depth
data every 5 days in each natural year for each well was greater than 75%. According to
this criterion, 23 monitored wells met the requirements (Figure 1), namely, 11 Quaternary
phreatic water-monitoring wells and 12 Quaternary confined water-monitoring wells. After
filtering, the CI of the water level depth data for each well was 98% for 2008–2017. The
groundwater mining data and precipitation data used in this study covered the period from
2000 to 2017 and were obtained from the “Baicheng City Water Resources Bulletin” [41].
The population and economic data used to calculate the degree of mining were collected
from the “Jilin Statistical Yearbook” of the Jilin Provincial Bureau of Statistics [42]. The
data sharing service system provided a 30 m resolution land-use map of the study area in
2020 [43].

4. Methodology

4.1. Mining-Response-Based Groundwater Sustainability Index (MGSI)

Groundwater sustainability aims to reflect the ability of groundwater to sustain long-
term use [18]. Considering this concept, here, we propose the MGSI, which reflects both
pressure of mining on groundwater sustainability and response of groundwater to mining
to indicate how anthropogenic activities affect groundwater sustainability.

After determining the groundwater response state (RES) and mining pressure (PRE),
the MGSI can be calculated using Equation (1):

MGSIik = RESik − PREik (1)

where i is the year of evaluation and k is the kth monitoring well.
The process of determining the MGSI is shown in Figure 2. In ArcGIS, the inverse

distance weight method was used to interpolate groundwater sustainability in the study
area, and sustainability maps of different aquifers were obtained in accordance with the
different monitoring horizons. The mean MGSI of the entire aquifer and the MGSI at
various locations of the aquifer can then be obtained from the MGSI grid graph generated
by interpolation. The RES of each monitoring well can be calculated according to its
water level depth data. The PRE represents the intensity of mining activities. The degree of
mining in the study area is decomposed to each monitoring well through the decomposition
coefficient, which indicates whether the groundwater responds sustainably to the pressure
of mining activities. In this study, the calculated MGSI values of all aquifers were between
−0.5660 and 1.938, which were quantified in ArcGIS using the Jenks Natural Breaks
Classification method into the following five grades: “Low”, “Relatively low”, “Medium”,
“Relatively high”, and “High” to describe the sustainability of groundwater, as shown in
Table 1. Finally, the spatio-temporal variation in the groundwater sustainability level was
analyzed.

Table 1. Classification of groundwater sustainability in the study area.

MGSI Range Sustainability Level of Groundwater

−0.566 to 0.148 Low
0.148–0.498 Relatively low
0.498–0.776 Medium
0.776–1.145 Relatively high
1.145–1.938 High
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Figure 2. Methodological flowchart for evaluating groundwater sustainability based on artificial
mining response.

4.2. Groundwater Response State (RES)

RES refers to the response of groundwater to anthropogenic activities and natural
processes and is the sum of the groundwater development potential (POT) and groundwater
reliability (REL), as shown in Equation (2):

RESik = POTik + RELik (2)

where POT describes the relative distance between the groundwater depth in a certain year
and the maximum historical depth. The greater the distance, the greater the development
potential of the monitoring well location, as shown in Equation (3):

POTik =
max(h1k, h2k, . . . , hmk)− hik

max(h1k, h2k, . . . , hmk)− min(h1k, h2k, . . . , hmk)
(3)

According to the concept of REL proposed by Hashimoto et al. [44], this variable indi-
cates the historical possibility that the system is in a satisfactory state; here, the satisfactory
state refers to the rise in the water level. As shown in Equations (4) and (5), REL is the ratio
of the instances of Δh < 0 and m − 1 in the annual water level series of each monitoring well.
Δh was calculated using Equation (5) according to the water level data, and the number
of Δh < 0 indicates the “satisfactory state” in Equation (4). m is the number of years in the
water level series, and m − 1 is the number of h, which is “all state” in Equation (4). hik is
the average groundwater table depth of hole k in year i:

RELik =
satis f actory state

all States
(4)

Δhik = hik − hi−1,k (5)

4.3. Groundwater Mining Pressure (PRE)

The PRE of groundwater at each monitoring well was calculated using Equation (6):

PREik = DCik × MDi (6)

where PREik represents the dimensionless value of the groundwater mining pressure at the
monitoring well of hole k in year i. DCik and MDi indicate decomposition coefficient (DC)
and degree of mining (MD), respectively, which are explained in the following subsections.
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4.3.1. Degree of Mining (MD)

The technique for order performance by similarity to ideal solution (TOPSIS)-entropy
method was used to calculate the comprehensive effect of the amount and intensity of
groundwater mining; the selected indexes are listed in Table 2. The entropy weight method
can assign weights according to the potential information content of the data, and the
TOPSIS method specifically sorts the data according to the relative closeness (Ci) between
the evaluation object and the negative ideal solution. The annual mining degree (MDi) of
the study area was replaced by Ci, which was determined using the entropy weight TOPSIS
method. Ren [45] describes these calculations in greater detail. However, to avoid a zero
value, a different dimensionless method was adopted here, as shown in Equation (7):

yij =
xij

∑m
i=1 xij

(7)

where i represents the 11 sample years from 2007 to 2017 and j represents the seven
indicators in Table 2. In addition, according to the definition of MDi, the higher the
frequency of groundwater mining, the greater the value of yij and the greater the value of
MDi. The weights of each index and the calculation results of MDi are listed in Tables 2
and 3, respectively.

Table 2. MD index framework and calculation methods.

Target
First-Level

Evaluation Index
Serial

Number
Secondary

Evaluation Index
Data Source/

Calculation Method
Weight Relative

to Target

Mining
degree

Amount of
groundwater

mining

1 Total amount of
mining

Baicheng City Water Resources
Bulletin 0.084

2 Amount of mining for
irrigation

Baicheng City Water Resources
Bulletin 0.109

3 Amount of mining for
industry

Baicheng City Water Resources
Bulletin 0.122

Intensity of
groundwater

mining

4
Groundwater

consumption per
10,000 Yuan of GDP

Total amount of mining
(10,000 m3)/GDP (10,000 Yuan) 0.207

5
Groundwater

consumption per
capita

Total amount of mining
(10,000 m3)/total population (10,000) 0.099

6 Intensity of mining for
agriculture

Amount of mining for irrigation
(10,000 m3)/total number of

agricultural wells
0.228

7

Groundwater
consumption per

10,000 Yuan of
industrial production

value

Amount of mining for industry
(10,000 m3)/industrial production

value (10,000 Yuan)
0.151

Table 3. MD calculation results.

i MDi i MDi i MDi

2007 0.126 2008 0.063 2009 0.626
2010 0.789 2011 0.390 2012 0.392
2013 0.140 2014 0.303 2015 0.487
2016 0.971 2017 0.966

4.3.2. Decomposition Coefficient (DC)

As the MD can only describe the state of groundwater mining in the entire region,
decomposition of MD is required to further reflect the PRE of the local area and different
aquifers. Water level depth dynamics help us understand this groundwater balance as
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the difference between the water level depth variation amplitude of different monitoring
wells reflecting the magnitude of the production pressure in different locations. Therefore,
the DC, calculated using Equation (8), was proposed to decompose the MD into different
spatial locations and closely correlate groundwater mining with the groundwater response.
The symbols and subscripts in Equation (8) have the same meaning as those in Equation (5):

DCik =
Δhik − min

(
Δhi1, Δhi2, . . . , Δhiq

)
max

(
Δhi1, Δhi2, . . . , Δhiq

)− min
(
Δhi1, Δhi2, . . . , Δhiq

) (8)

4.4. Trend Test

The MK trend test method and Sen’s slope method were used to detect the trends
of time series data and the intensity of trend changes, respectively. These nonparametric
methods are widely used in the field of hydrometeorology because they do not require
testing of data distribution and the results are considered reliable [46–51]. Here, the
two methods were combined to test the annual variation trend of the mean MGSI in
the study area and the annual average groundwater depth trend of each monitoring
well from 2007 to 2017. Details of these methods are not provided here; however, full
descriptions can be found in the aforementioned references.

5. Results and Discussion

5.1. Spatio-Temporal Variation in Groundwater Sustainability

The mean MGSI of confined water exhibited the same change trend as the amount
of mining (Figure 3), indicating that the sustainability of confined water is substantially
affected by groundwater mining. Prior to 2015, the MGSI of confined water was higher
than that of phreatic water; however, later, it became lower than that of phreatic water,
although the difference was relatively marginal. This phenomenon was aggravated in
2016–2017, indicating that the rapid increase in mining over the previous years placed a
burden on confined water, which is not conducive to groundwater conservation. Therefore,
Da’an City should formulate a more reasonable mining plan to ensure the sustainable use
of groundwater resources.

In comparison, the phreatic water trend more closely followed that of precipitation,
although it was also slightly affected by the amount of mining (Figure 3). For example,
during 2012–2014, a decrease in precipitation led to a decrease in the recharge received by
phreatic water. However, owing to the simultaneous decrease in the amount of mining
during this period, the decreased precipitation did not ultimately lead to a downward
trend in the mean MGSI of phreatic water. The same situation occurred during 2014–2016,
wherein precipitation increased the recharge of phreatic water, but a significant increase in
mining ultimately caused a decrease in the mean MGSI of phreatic water.

The actual state of groundwater in Da’an City is consistent with the results of this
study, that is, poor water quality and low mining are characteristics of phreatic water in
the study area and precipitation is the main factor affecting the phreatic water. Although
the changes in precipitation affect the leakage recharge of phreatic water to the confined
aquifer, confined water is still the main source of water in Da’an City, and it is largely
influenced by anthropogenic factors.

The highest mean MGSI values for the confined aquifer (1.326) and phreatic aquifer
(0.999) occurred in 2008 and 2014, respectively. The lowest mean MGSI values for both
aquifers occurred in 2010 (0.230 and 0.283 for phreatic and confined water, respectively).
The calculation results of the MK trend test and Sen’s slope analysis are shown in Table 4.
Notably, the average MGSI of the phreatic aquifer increased at a rate of 0.01 per year,
whereas that of the confined aquifer decreased at a rate of 0.04 per year, which indicates that
the risk of groundwater becoming nonsustainable within the study area shifted from the
phreatic aquifer to the confined aquifer with time. However, this trend was not significant
at the 95% confidence level.
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Figure 3. Annual variation trends of the mean MGSI for the phreatic and confined aquifers according
to the amount of mining and precipitation.

Table 4. Trends of mean MGSI for aquifers in the study area.

Aquifer Mean MGSI Significance
(5% Significance Level)

Trend Sen’s Slope (/a)

Phreatic 0.230–0.999 Insignificant Increasing 0.01
Confined 0.283–1.326 Insignificant Decreasing −0.04

This finding is supported by the observation that the zone with the lowest sustain-
ability was the largest in the phreatic aquifer in 2010, representing 45.2% of the study area,
but also was the largest in the confined aquifer in 2017, representing 32.5% of the study
area (Figure 4). In 2008, the sustainability levels of the two aquifers were highly in contrast.
This phenomenon can be explained by the fact that the annual variation in groundwater
depth was used to calculate the MGSI; that is, the groundwater depth in 2007 was used to
calculate the MGSI in 2008. To confirm the validity of the calculation results for 2008, the
variation in water level was calculated for 23 monitoring wells from 2007 to 2008. During
this period, the groundwater depth of phreatic monitoring wells increased by 0.52 m per
year, whereas that of the confined aquifer decreased by 0.03 m per year. This explains the
difference in the sustainability levels of the two aquifers in 2008.

During 2009–2012, the sustainability level of the phreatic aquifer was predominantly
“Relatively low”, whereas that of the confined aquifer was predominantly “Medium”.
During this period, the depth of the confined aquifer was relatively stable and the overall
sustainability was better than that of the phreatic aquifer. Similarly, during 2013–2015, both
aquifers showed larger areas of “High” and “Relatively high” sustainability. However, sub-
zones of “High” and “Relatively high” sustainability in the confined and phreatic aquifers
gradually decreased after 2013 and 2014, respectively. After 2015, “Low” sustainability
subzones gradually expanded, particularly in the confined aquifer.

To understand the changes in the spatio-temporal distribution of the sustainability
level of each aquifer, representative years were selected (2008, 2010, 2014, and 2017).
Figure 5 shows the spatial changes in the sustainability level subzones of each aquifer
throughout the study period (2008–2017). In 2008, “Relatively low” sustainability subzones
accounted for a relatively large proportion of the phreatic aquifer (Figure 5a), and they were
distributed in the eastern and central regions (Subregion a1 in Figure 5a). This was almost
the worst state of phreatic sustainability in 2008, except for a localized “Low” sustainability
subzone in the northeast of the study area (Subregion a2 in Figure 5a). By 2010, the
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“Medium” sustainability subzone in the east (Subregion a1) had expanded into the middle
(Subregion b1 in Figure 5b) of the study area, with some “Relatively high” sustainability
subzones appearing in this region. In 2007, in order to secure food and water supplies, the
Jilin Provincial Government began to implement the use of water from the Nenjiang River
(in the eastern and central parts of the study area) to irrigate the Da’an Irrigation Area. This
resolution used part of the confined aquifer area for irrigation and transformed dry and
saline land into paddy fields [52]. The expansion of paddy fields would have increased the
amount of infiltration into the phreatic aquifer, thereby raising the water level in the area.
Dry conditions in 2010 then encouraged evaporation, and high groundwater consumption
increased mining, leading to “Low” sustainability levels over a relatively large area of
the phreatic aquifer in this year. High precipitation and low mining around 2014 then
effectively replenished the groundwater resources, which had an equally large effect on
both phreatic and confined aquifers (Figure 5c,g). Continuously increasing mining resulted
in the “Relatively low” sustainability subzone again occupying most of the phreatic aquifer
(Figure 5d).

Figure 4. Percentage (by area) of different groundwater sustainability subzones in the study area.

Considering that confined water level recovery in 2008 was relative to the previous
year, the sustainability level for the confined aquifer in that year was “High” (Figure 5e). By
2010, under the influence of a more arid climate, almost the entire area exhibited “Relatively
low” sustainability, with a large area of “Low” sustainability appearing in the center of the
study area (Subregion f1 in Figure 5f). This is because the Da’an Irrigation Area is located in
the central region (Subregion f1), which contained a large number of paddy fields that were
irrigated by the Nenjiang River in normal years and supplemented by confined water in
dry years. Low precipitation in 2010 and crop growth demands led to highly concentrated
mining, thereby contributing to the development of a “Low” sustainability subzone in
the central region (Subregion f1). To verify the above explanation, the actual amount of
groundwater mining was investigated over the entire study area used for agricultural
irrigation. The data showed that phreatic water was not used for agricultural irrigation.
The amount of confined water extracted for agricultural irrigation was 181.85 million m3 in
2009, 146.37 million m3 in 2011, when rainfall was relatively abundant, and 200 million m3

in 2010, when rainfall was relatively infrequent. The increased mining of confined water in
2010 effectively explain the “Low” sustainability subzone in the central region (Subregion

447



Sustainability 2022, 14, 5618

f1). With this reduction in confined water sustainability, “Low” sustainability subzones
became concentrated in the west of the study area by 2017 (Subregion h1 in Figure 5h).

Figure 5. Distribution of sustainability level subzones.

Currently, industrial, agricultural, and domestic water use in Da’an City mainly de-
pend on groundwater, and confined water accounts for a large proportion. Therefore,
strengthening the protection of groundwater resources is important for economic develop-
ment, food security, and water security. In the future, Da’an City should pay close attention
to groundwater mining in the western region and improve water use efficiency throughout
the region to avoid uncontrolled mining.

5.2. Change Trends of Groundwater Depth

According to the calculation results of the groundwater depth change trend, only a
small portion of phreatic monitoring wells (27.3%, three wells) exhibited a decreasing trend
during 2007–2017. Phreatic water depth mainly increased in the north, at a typical rate of
0.036–0.083 m/a (Figure 6). The difference in groundwater depth between the north and
south verified the results shown in Figure 5, i.e., that the phreatic sustainability level was
typically higher in the south than in the north. According to the distribution of Sen’s slope
values (Figure 6), the trend of rising groundwater depths in southern (−0.009 to 0.036 m/a)
and northeastern marginal areas (−0.077 to 0.009 m/a) was consistent with the long-term
trends of the distribution of sustainability level subzones for phreatic water. The results
for the northeastern marginal area are the most intuitive, that is, the area experienced
“Low”, then “Relatively high”, then “High” sustainability levels during the study period
(the subregion corresponding to a2 in Figure 5a–c). By 2017, although the sustainability
level of the area had decreased, it was still higher than that of most other areas (Figure 5d).
Moreover, Sen’s slope value (0.083–0.308 m/a) at Well 9 in Figure 6 verifies the change
from “Relatively high” sustainability to “Relatively low” and then “Low” sustainability
(Figure 5b–d). In addition, for phreatic water, the number of monitoring wells with
significant trends was very small (18.2%). Only two phreatic water-monitoring wells
exhibited a significant increase in depth during the study period, namely, Wells 8 and
9 (Figure 6). Of these, Well 9 (southeast of the study area) exhibited the largest Sen’s
slope value of the entire area (Figure 6), with a significant increase in depth of 0.31 m/a,
whereas that for Well 8 (northwest) was 0.15 m/a. These significant increasing trends
of groundwater depth indicate that the phreatic water in these subzones has been over-
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consumed in recent years. Therefore, long-term monitoring in these subzones is necessary
to maintain the sustainable utilization of groundwater.

Figure 6. Distribution of Sen’s slope values for phreatic water depth and water depth trends in the
monitoring wells.

Figure 7 shows the confined water trend analysis and spatial distribution of the Sen’s
slope calculation results. During the analysis period, six of the twelve confined water-
monitoring wells showed an increasing trend, whereas the other six showed a decreasing
trend. In contrast to phreatic water, the confined water depth trend differed in the east-west
direction, that is, it increased in the west of the study area but generally decreased in the east.
The area of increasing groundwater depth (Sen’s slope value of 0.015–0.328 m/a in Figure 7)
agrees with the reduction in the sustainability level of confined water observed in the west
of Da’an City in Figure 5, where the dominant sustainability level in this region changed
from “High” to “Low” (subregion corresponding to h1 in Figure 5e,f,h). However, the
sustainability level of confined water in the east of the study area (subregion corresponding
to h2 in Figure 5e–h) was not consistent with the trend of Sen’s slope values (Sen’s slope
value of −0.316–−0.030 m/a in Figure 7) for the groundwater depth in the monitoring wells.
Specifically, the groundwater depth in the monitoring wells in the area characterized by
the Sen’s slope values of 0.034–0.328 showed a consistent increasing trend, whereas that in
the area with the Sen’s slope values of −0.316 to 0.034 showed a different trend. Therefore,
the spatio-temporal variation in the confined water sustainability level is more complex in
the east of the study area than in the west. Regarding the variation in confined water level
depths, 16.7% of the monitoring wells (two wells) showed a significant increasing trend.
In contrast, 8.3% (one well) showed a significant decreasing trend. Figure 7 shows three
confined water-monitoring wells with significant trends in the study area, where Well 5
exhibited the fastest decrease in water depth over the study area (0.32 m/a) and Well 18
exhibited the largest increase in water depth over the study area (0.33 m/a). The significant
decrease in water depth in Well 5 indicates that the confined aquifer in this area has the
potential for further mining.
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Figure 7. Distribution of Sen’s slope values for confined water depth and water depth trends in the
monitoring wells.

6. Conclusions

We demonstrated a method developed to assess the sustainability of local-scale ground-
water based on the degree of groundwater mining and the subsequent changes in ground-
water level, called the mining-response-based groundwater sustainability index (MGSI).
This index can be used by water management departments to guide groundwater devel-
opment and utilization planning. The selection of indicators and evaluation methods is a
key aspect of sustainability evaluations. We introduced the following new indicators to
construct the evaluation system: (1) the decomposition coefficient (DC) was proposed in
order to decompose the degree of mining over the entire study area into mining pressure at
each point; (2) an indicator of the development potential of groundwater (POT) was used to
describe the relative distance between the current water depth and the maximum historical
depth; and (3) an indicator was developed to reflect the reliability of groundwater in terms
of the potential groundwater level rise (REL). Long-term variation trends of groundwater
depth verified the reliability of the MGSI method. The proposed groundwater sustainability
index based on groundwater’s response to mining can be used to monitor groundwater
sustainability and analyze local spatio-temporal variations in groundwater sustainabil-
ity. Such an analysis can help identify areas of potential groundwater sustainability and
areas requiring protection from groundwater mining, as well as to implement effective
groundwater resource management.

We demonstrated the potential of the evaluation method by taking Da’an City as an
example and made the following conclusions:

(1) The mean MGSI of confined water is more significantly affected by groundwater
mining than that of phreatic water. During 2013–2017, with the increase in mining,
the mean MGSI of confined water dropped sharply, and the mean MGSI of phreatic
water also showed a similar trend. In the future, water resource management should
consider replacing groundwater with surface water or other water sources to reduce
groundwater exploitation.

(2) The mean MGSI of the phreatic aquifer increases at a rate of 0.01 per year, whereas
that of the confined aquifer decreases at a rate of 0.04 per year. Therefore, the mining
of confined water in Da’an City should be carried out more cautiously in the future.

(3) The sustainability level evaluation using the MGSI shows that the continuous increase
in mining up to 2017 subsequently led to the “Relatively low” sustainable subzone
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occupying most of the submerged aquifer, and the “Low” sustainable subzone of the
confined aquifer was concentrated in the west of Da’an City. Reducing mining and
the utilization of groundwater is still a challenge that should be overcome in Da’an
City, especially in the west of Da’an City. Taking into account the local conditions,
developing water-saving agriculture, or replacing paddy fields with dry fields should
be considered.

(4) The groundwater depths of Well 8 and Well 9 have increased significantly, indicating
that the phreatic water in these areas has been overconsumed during recent years,
and management measures should be implemented in the future while continuing
to pay attention to the groundwater levels in these areas. The groundwater depth of
Well 5 decreased significantly, indicating that the confined water in this area has the
potential for further mining.
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Figure A1. Agricultural exploitation from 2007 to 2017 and linear fitting.
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Abstract: Climate change has significantly affected agricultural production. As one of China’s most
important agricultural production regions, the North China Plain (NCP) is subject to climate change.
This paper examines the influence of climate change on the wheat and maize yields at household and
village levels, using the multilevel model based on a large panel survey dataset in the NCP. The results
show that: (i) Extreme weather events (drought and flood) would significantly reduce the wheat and
maize yields. So, the governments should establish and improve the emergency service system of
disaster warning and encourage farmers to mitigate the adverse effects of disasters. (ii) Over the past
three decades, the NCP has experienced climate change that affects its grain production. Therefore,
it is imperative to build the farmers’ adaptive capacity to climate change. (iii) Spatial variations
in crop yield are significantly influenced by the household characteristics and the heterogeneity
of village economic conditions. Therefore, in addition to promoting household production, it is
necessary to strengthen and promote China’s development of the rural collective economy, especially
the construction of rural irrigation and drainage infrastructures.

Keywords: climate change; extreme weather event; multi-level model; grain crop yield; village
collective economy

1. Introduction

Climatic conditions have always been an important factor shaping agricultural pro-
duction. Climate change, especially in terms of extreme weather events, has exacerbated
the fluctuations in food production and threatened world food security. In most part of
China, increase in temperature is the main climate change issue reducing the major crop
(wheat, rice, and maize) yields [1–4]. Increased extreme weather events associated with
climate warms have exacerbated the decrease in food production in China. Since the 21st
century (2000–2019), the average annual crop area affected by drought and flood were
17,966.6 and 10,011.1 thousand hectares, accounting for 11.3% and 5.3% of the total area,
respectively. Crop yield loss due to drought has reached 26.39 million tons, and the crop
loss rate has reached 4.7% [5,6]. As one of the most important agricultural production
regions in China, the North China Plain (NCP) is subject to climate change and is often hit
by extreme weather events, particularly drought [7].

Researchers have used econometric approaches to analyze the impact of climate
change on grain production. Mendelsohn et al. [8] first proposed the Ricardian approach
to analyze the climate change effect on farmland value (profit or net productivity of land).
Liu et al. [9], Wang et al. [10], and Chen et al. [11] also employed the Ricardian approach
to study the impact of climate change on China’s grain profit. However, the empirical
results may be biased due to a few limitations, including the omission of irrigation variables
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in the model [10,12,13], the assumption of the unchanged price of grain and production
inputs [14–16], and cost-free adaptation and adjustment implied in the models [17].

To address the limitations of the Ricardian approach, the production function approach
was used to reveal an empirical relationship between climate factors and grain output in
agricultural production, particularly in China [1–3,18–22]. However, most of the existing
literature only focuses on long-term climate change such as changes in temperature and
precipitation, while the studies on the impact of extreme weather events are scarce [23,24].
Furthermore, most previous literature uses macro data at the provincial or county level,
which cannot effectively reflect the farmer’s behavioral selection characteristics or the
village socio-economic characteristics, and their impact on crop yield. A village composed
of farm households is the smallest administrative unit in rural China. The development of
village collective economy plays a key role in ensuring food security, and it is an important
guarantee for accelerating the building of a moderately prosperous society in all respects
in rural areas [25,26]. Therefore, it is essential to capture the impact of climate change on
grain yield at both the household and village levels [19,27].

To achieve the above goal, it is necessary to use a multilevel model to analyze large-
scale survey data of farm households which typically adopt stratified multistage clustered
sampling designs (with household level and village level). The multilevel analysis can
model the clusters occurring at different levels of the sampling with nested random ef-
fects [28]. This study has shown that there were large spatial and temporal variations
in climatic change factors in different growth stages of wheat and maize, and climatic
factors in different growth stages have different effects on wheat and maize yield [3,29].
Meanwhile, this paper has also found that village heterogeneity plays a significant role
in variation of gain yield, which likely indicates that developing rural village collective
economy can reduce the negative effect of climate change on grain crop production in
the NCP.

The rest of this paper is organized as follows: Section 2 briefly introduces the theoretical
framework of multilevel model. Section 3 describes the sampling procedure and variables.
The estimation results are presented in Section 4, and the final section concludes with some
policy suggestions.

2. Theoretical Framework of Multilevel Model

The stratified sampling data with clustered characteristics show significant differences
between different levels of data and high similarity among data at the same level. In
this case, a regular ordinary least squares (OLS) model may result in misspecification by
ignoring the average variation between groups. Therefore, a multi-level model (MLM)
should be developed to deal with the heteroscedasticity caused by inter-dependent error
terms and to estimate group-level averages by both fixed and random effects [30]. MLM
decomposes the variance in the outcome into two components, one is attributed to the
differences between individuals located in different groups and the other is related to the
variation between individuals within the same group. This decomposition of variance
into “between groups” and “within groups” corrects parameter estimation errors due to
within-level sample similarity. Thus, this study uses the MLM to estimate the influencing
factors of wheat and maize yields in the NCP at both household and village levels. The
two types of MLM are introduced as follows.

2.1. Unconditional Means Model

The unconditional means model is an “empty model” that does not include any inde-
pendent variables. It is reasonable to adopt MLM if individual respondents are clustered
within groups and the variance of outcome in two levels are significantly different in a data
structure. Assuming that Yij is grain yield measured for the ith farm plot of household in
the jth village, the equations are as follows:

Yij = β0j + εij (1)
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β0j = γ00 + μ0j (2)

where β0j represents the intercept term (the mean value of Yij) for village j, and εij is
the residual for farm household in village j (an individual-level random component) in
Equation (1). Equation (2) can be obtained by decomposing β0j into a fixed (γ00) and a
village-level random component (μ0j). Then, substituting (2) into (1) obtains Equation (3):

Yij = γ00 + μ0j + εij (3)

where γ00 is the overall intercept or grand mean, μ0j is a village-level random residual
component indicating the average deviation from the grand mean for those farm house-
holds located in village j, and εij remains the farm household-level residual. The usual
assumption is that μ0j ∼ N

(
0,σμ

2), εij ∼ N
(
0,σε

2) and the μ0j are independent from
the εij. Thus, σμ

2 and σε
2 represent the between-group variance and the within-group

variance, respectively. The intra-class correlation coefficient, ρ = σμ
2

σε
2+σμ

2 , is an indicator of
the relative importance of village attributes, with larger values indicating a greater impact
of village level on grain yield [31].

2.2. Random Intercept Model

The characteristics of farm households and villages that affect the grain yield remain
unmeasured in Equation (3). Therefore, the variables of such characteristics are introduced
to determine whether the between and within components of variation can be explained at
the household and village levels. The random intercept model can be expressed as:

Yij = (γ00 + ∑q
1 β0qjV0qj + ∑p

1 βpijXpij) + (μ0j + εij) (4)

where, Xpij represents the independent variable of the farm household level, V0qj repre-
sents the independent variable of the village level. Equation (4) consists of two parts:
γ00 + ∑

q
1 β0qjV0qj + ∑

p
1 βpijXpij as the fixed effects and μ0j + εij as the random effects, and it

can be expressed as:
Y = Xβ+ ZU + e (5)

Equation (5) is the general model of Equation (4). Where, Y is the observation variable;
X is the design matrix of constant parameter β; Z is the design matrix of random effect
U; and e is the random error. cov(Y) = V(θ). The logarithmic likelihood function of
Equation (5) is given as:

lnL(β, θ|Y ) = − ln|V(θ)| − (Y − Xβ)′V−1(θ)(Y − Xβ) (6)

Maximum likelihood estimation of parameters can be obtained by maximizing

Equation (6). That is, β̂(θ) =
(

X′V−1(θ)X
)−1

X′V−1(θ)Y by fixing parameter θ. Then,

plugging β̂(θ) into L(β, θ|Y ) can obtain the maximum likelihood estimation of θ.

3. Data Source and Empirical Model

3.1. Data Source

The NCP is one of China’s major grain production areas, accounting for approximately
75% and 35% of China’s wheat and maize outputs, respectively [6]. This region only grows
winter wheat and summer maize. In recent years, this region has experienced evident
climate change such as rising temperature and decreasing precipitation. The frequency
of extreme weather events increases as the seasonal variation of precipitation becomes
apparent. Specifically, flood often occurs in summer that receives 60% of the annual
precipitation. Drought is often a serious threat in spring, autumn, and winter, especially
in the areas without irrigation facilities [29,32]. The data used in this study are from a
large-scale field survey of five provinces (Henan, Hebei, Shandong, Anhui, and Jiangsu) in
the NCP.
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To collect the data, stratified multi-stage cluster sampling was implemented. First,
three counties were randomly chosen in each province using the following criterion. (i) The
counties had experienced at least one episode of either severe drought or flood between
2010 and 2012. China’s national standard for natural disasters [33] categorizes the severity
of droughts or floods into four levels: most severe, severe, moderate, and mild. A disaster
year is when the government declares a warning of the most severe or severe flood or
drought. (ii) The counties experienced at least one normal year in the past three years
(2010, 2011 or 2012). Grain production usually experiences various weather shocks during
any growing season; the term ‘normal year’ does not refer to a year without any weather
shocks, but rather a year with no more than moderate weather shocks. Second, from
each of the chosen counties, three townships were randomly selected to represent ‘good’,
‘medium’, and ‘poor’ local irrigation and drainage infrastructure conditions, respectively.
Third, three villages were randomly selected from each township, and 10 households
were randomly selected from each village for face-to-face interviews. Finally, from each
household, two plots with grain production were randomly selected. Meteorological data
were provided by National Meteorological Information Center (NMIC) (Data source: The
China Meteorological Data Service Center (http://cdc.cma.gov.cn accessed on 15 May 2021),
including the daily maximum temperature, minimum temperature, average temperature,
and 24 h average precipitation recorded by the meteorological observatory in sample or
adjacent counties.

As a result, the samples of winter wheat included 2261 plots of 1216 households,
which were distributed in 123 villages (or 41 townships, 14 counties) of five provinces
(Table 1). The samples of summer maize covered 1769 plots of 1028 households, distributed
in 117 villages (or 40 townships, 14 counties) in five provinces (Table 2). Among the 14 case
study counties, 10 suffered from drought disaster, and 4 suffered from flood disaster. The
regional (provincial and county) distribution of all samples is shown in Figure 1.

Table 1. The sample distribution of winter wheat for the NCP.

Province County No. of Households No. of Plots Disaster Type
Disaster/Normal

Year

Henan Yuanyang 90 167 D 2011/2012
Huanxian 90 160 D 2011/2012
Yongcheng 90 176 D 2011/2012

Hebei Weixian 90 164 D 2011/2012
Yixian 56 93 F 2012/2011

Shandong Lingxian 90 167 F 2012/2011
Yuncheng 90 174 D 2011/2012
Huishan 90 159 D 2011/2012

Jiangsu Xinghua 89 160 F 2011/2012
Xiangshui 90 171 F 2012/2011

Peixian 81 146 D 2011/2012
Anhui Yongqiao 90 175 D 2011/2012

Suixi 90 172 D 2011/2012
Lixin 90 177 D 2011/2012

Total 14 1216 2261 - -

Notes: D and F stand for drought and flood, respectively.
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Table 2. The sample distribution of summer maize for the NCP.

Province County No. of Households No. of Plots Disaster Type
Disaster/Normal

Year

Henan Yuanyang 72 128 D 2011/2012
Huanxian 90 159 D 2011/2012
Yongcheng 62 113 D 2011/2012

Hebei Weixian 90 164 D 2011/2012
Yixian 90 162 F 2012/2011

Shandong Lingxian 90 167 F 2012/2011
Yuncheng 90 172 D 2011/2012
Huishan 90 159 D 2011/2012

Jiangsu Xinghua 11 12 F 2011/2012
Xiangshui 82 89 F 2012/2011

Peixian 63 93 D 2011/2012
Anhui Yongqiao 67 119 D 2011/2012

Suixi 62 106 D 2011/2012
Lixin 69 126 D 2011/2012

Total 14 1028 1769 - -

Notes: D and F stand for drought and flood, respectively.

Figure 1. Location of five provinces in the NCP (left) and 14 sample counties (right).

The 12 main growth stages of winter wheat are seedling emergence, three-leaf, tillering,
overwintering, reviving, jointing, booting, heading, anthesis, grain-filling, wax ripeness
and mature. This study separated the overwintering stage from the vegetative stage (Firstly,
this stage is a special stage of winter wheat to stop growing, which is quite important
to store energy; secondly, China boasts the distinctive differences in regions and climate,
especially the winter temperature change is more remarkable [18]); it also divided the
whole growth period of winter wheat into three major growth stages: the overwintering
stage from seedling emergence to reviving (generally from mid-October to mid-February
in the following year), the vegetative stage from reviving to heading (generally from

459



Int. J. Environ. Res. Public Health 2022, 19, 5707

the mid-February to mid-April), and the reproductive stage from anthesis to maturity
(generally from mid-April to early June). Similarly, the 12 main growth stages of summer
maize include the stages of seedling, three-leaf, jointing, flare opening, tasseling, flowering,
silking, filling, milk ripening, wax ripening, and full ripening. They were divided into three
major growth stages: the vegetative stage from sowing to jointing (generally from mid-June
to mid-July, about 20–30 days), the concurrent stage from jointing to silking (generally from
mid-July to mid-August, about 27–30 days), and the reproductive stage from silking to full
ripening (generally from mid-August to late September, about 40–60 days) [34].

Table 3 shows the climatic trend of various growth stages of winter wheat and summer
maize in the NCP. In general, the overall climate change in the sample area was increasing
temperature and precipitation from 1981 to 2010. The rangeability was inconsistent with
temperature and precipitation over different grain growth stages. The warming trend
during the winter was the most prominent, which further proves that the warming trend is
most significant in the winter among the four seasons [35]. Precipitation increased the most
during the whole growth period of summer maize, indicating that precipitation increase
was most significant in the summer among the four seasons.

Table 3. Climatic trend rate of major crop growth stages in the NCP (1981–2010).

Crop Growth Stages
Daily Average Temperature

(◦C/10a)
Average Precipitation

(cm/10a)

Winter wheat:
Overwintering stage 0.519 0.115

Vegetative stage 0.675 0.66
Reproductive stage 0.305 1.137

Summer maize:
Vegetative stage 0.319 1.601
Concurrent stage 0.153 2.25

Reproductive stage 0.229 1.229
The sample data comes from meteorological observation stations in 14 wheat and maize producing counties.
Regressed the meteorological variables and time variables of each sample county linearly, and weighted average
of all regression coefficients to obtain the annual change rate, which multiply by 10 to obtain climatic trend rate.

3.2. Empirical Model and Variables

Production inputs and economic and social institutional factors should be incorporated
into the model; meanwhile, the factors of long-term climate change and extreme weather
events should be included in the production function model. The C-D-C production
function equation, which is the extension of Equation (4), is specified as:

ln(Yij) = β0 + β1Cij + β2Dij + β3DLij + β4 ln(Iij) + β5Lij
+β6Hij + β7Vij + β8VijDij + β8VijDLij + T + μ0j + εij

(7)

This study independently investigated the effects of climate change and the household
and village attributes on the yields of winter wheat and summer maize by Equation (6),
respectively. The dependent variable Yij refers to crop yield, which is measured as the
wheat or maize output per hectare. As shown in Table 4, the average yields of wheat and
maize in the farm plots were 6400 kg and 6615.1 kg per hectare, respectively.

The variable of long-term climate change Cij examined in this paper includes average
daily temperature and precipitation over the past three decades (1981–2010). For winter
wheat, the daily average temperature was only 5.2 ◦C in the over-wintering stage, and it
was 20.4 ◦C in the reproductive stage. For summer maize, the daily average temperature
could be above 20 ◦C, and the precipitation was more than 100 mm at different growth
stages (Table 4).
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Table 4. Summary statistics of variables used.

Variables Definition
Winter Wheat Summer Maize

Mean S.D. Mean S.D.

Explained variables:
Grain yield (Y) Kg/ha 6400 1176 6615 1535
Explanatory variables:
The variables of long-run climate change (wheat):
Daily avg temperature in overwintering stage (Twheat1) ◦C 5.22 1.19 - -
Total avg precipitation in overwintering stage (Pwheat1) cm 8.40 2.89 - -
Daily avg temperature in vegetative stage (Twheat2) ◦C 9.67 1.47 - -
Total avg precipitation in vegetative stage (Pwheat2) cm 7.64 4.05 - -
Daily avg temperature in reproductive stage (Twheat3) ◦C 20.38 0.81 - -
Total avg precipitation in reproductive stage (Pwheat3) cm 8.53 2.46 - -
The variables of long-run climate change (maize):
Daily avg temperature in vegetative stage (Tmaize1) ◦C - - 26.13 0.49
Total avg precipitation in vegetative stage (Pmaize1) cm - - 10.73 3.56
Daily avg temperature in concurrent stage (Tmaize2) ◦C - - 27.12 0.41
Total avg precipitation in concurrent stage (Pmaize2) cm - - 16.95 2.74
Daily avg temperature in reproductive stage (Tmaize3) ◦C - - 23.33 1.20
Total avg precipitation in reproductive stage (Pmaize3) cm - - 16.93 3.20
Extreme weather events:

If it occurred drought disaster at the county-level (DD) 1 = Yes;
0 otherwise 0.25 0.43 0.25 0.43

If it occurred flood disaster at the county-level (DF) 1 = Yes;
0 otherwise - - 0.08 0.27

If it occurred drought disaster on farm plot (DLD) 1 = Yes;
0 otherwise 0.41 0.49 0.36 0.48

If it occurred flood disaster on the farm plot (DLF) 1 = Yes;
0 otherwise 0.03 0.16 0.16 0.36

If it occurred continuous rain disaster on farm plot (DLR) 1 = Yes;
0 otherwise 0.08 0.26 0.04 0.19

If it occurred strong wind disaster on farm plot (DLw) 1 = Yes;
0 otherwise 0.08 0.27 0.16 0.37

Farmland plot characteristics:
Farmland area (L1) Hectare 0.21 0.18 0.19 0.13

Farmland topography (L2) 1 = flat land;
0 = otherwise 0.98 0.14 0.06 0.24

Low quality of farmland (L31) 1 = Yes;
0 otherwise 0.11 0.31 0.12 0.33

Medium quality of farmland (L32) 1 = Yes;
0 otherwise 0.70 0.46 0.67 0.47

High quality of farmland (L33) 1 = Yes;
0 otherwise 0.19 0.39 0.21 0.41

Production inputs:
Fertilizer cost (I1) Yuan/ha 2863.29 1246.98 2442.79 1063.44
Pesticide cost (I2) Yuan/ha 331.24 263.68 472.71 321.17
Machinery cost (I3) Yuan/ha 1678.38 577.16 1248.26 800.56
Labor input (I4) Adult days/ha 36.26 34.52 60.90 63.69
Irrigation water (I5) m3/ha 1760.88 1753.53 1730.09 2279.84
Household’s characteristics:

Asset of household (H1) Durable goods
(103 yuan) 9.67 19.24 9.86 19.48

Education of household head (H2) Attending year 6.91 3.19 6.93 3.11

Producing/technical training (H3)
If attending

(1 = Yes;
0 otherwise)

0.27 0.45 0.24 0.42

Village’s characteristics

Collective enterprise (V1)
Number of
collective

enterprises
0.08 0.55 0.13 0.768
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Table 4. Cont.

Variables Definition
Winter Wheat Summer Maize

Mean S.D. Mean S.D.

Ratio of irrigation area to total cultivated area (V2) % 83.85 23.71 83.17 27.88
Distance between the village committee and the nearest road
above the township level (V3) Km 1.36 1.55 1.38 1.58

Year dummy variables:

2011 (T2011) 1 = Yes;
0 otherwise 0.33 0.47 0.33 0.47

2012 (T2012) 1 = Yes;
0 otherwise 0.33 0.47 0.33 0.47

Observations - 6749 5212

The second climate indicator is extreme weather event, including the variables of
county-level disaster Dij and farm plot disaster DLij. There are two county-level disasters,
which are DD for the severe drought year and DF for the severe flood year. In the past three
years (2010–2012), 24.7% of counties that grew wheat suffered from drought, and 25.1% and
only 8.2% of counties that grew maize suffered from drought and flood, respectively. There
are four types of farm plot disasters, which are DLD for farm plots suffering from drought,
DLF for farm plots suffering from flood, DLR for farm plots suffering from continuous
rain, and DLw for farm plots suffering from strong wind. In the past three years, 40.5% of
farm plots growing wheat suffered from drought, 7–8% suffered from continuous rain or
strong wind, while 2.7% suffered from flood, indicating that drought was the most frequent
disaster during wheat planting. During the same period, 36% of farm plots that grew maize
suffered from drought, 16% suffered from strong wind, and 15.5% suffered from flood. This
shows that drought was the most frequent disaster during maize planting, and the risk of
strong wind and flood should not be underestimated.

Three variables represent farmland plot characteristics. (i) The farmland areas L1 were
relatively small, with an average farm area of only 0.21 ha and 0.19 ha for wheat and maize
(Table 4), respectively, which indicates the formation of tiny plots and scattered planting;
(ii) Most of the farmland topography L2 is flat land, and only less than 3% and 5% of
farmers chose to grow wheat and maize in the mountains, respectively; (iii) Compared with
the overall land quality of village, the farmland quality L3 is divided into three categories,
which are low-quality, middle-quality and high-quality land. The majority of plots (68%)
were of medium quality, 10% were of low-quality, and 20% were of high-quality.

Iij is a set of production input variables, covering the fertilizer cost I1, pesticide cost I2,
machinery cost I3, labor input I4, and irrigation water I5 at the plot level. Table 4 shows that
among these costs, the average input costs of fertilizer were the highest with 2863.3 yuan
and 2442.8 yuan per hectare, respectively, for wheat and maize. The cost of machinery was
the second highest with 1678.4 yuan and 1248.3 yuan per hectare for wheat and maize,
respectively, while the labor input costs of wheat and maize were 36.3 and 60.9 adult days
per hectare. Thus, there might be a substitution relationship with machinery and labor.
The irrigation water reached 1760.9 m3 and 1730.1 m3 for wheat and maize, respectively,
indicating that the grain grown in the NCP is mainly irrigated rather than rainfed.

Farm household’s characteristics (Hij) include variables as follows. (i) The assets
possessed by the household (H1), which are measured as the value of the durable goods.
The average value of durable goods of sample households was 9700 yuan; (ii) H2 represents
the education level of the household head, where the average education was 6.9 years.
(iii) H3 represents the production and technical training, and about 25% of household
members received such training.

Three variables were used to measure village characteristics. (i) V1 refers to village
collective enterprise. The average village collective enterprise was only about 0.1, which
means many villages did not have such enterprises. (ii) V2 refers to the ratio of irrigation
area to total cultivated area in the village, which is more than 80%. (iii) V3 is the distance
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between the village committee and the nearest road above the township level with an
average distance of 1.4 km.

In addition, this study used year dummies, T2011 (1 = 2011, otherwise = 0) and T2012
(1 = 2012, otherwise = 0), to control technological advances or other unobservable factors
that change over time.

4. Results and Analyses

4.1. The Unconditional Means Model

Table 5 shows the estimated results of the unconditional means model with maximum
likelihood estimation. The intra-class correlation coefficient ρ is 0.384, indicating 38.4% and
61.6% of the variation in wheat yield were caused by the village attributes and household
attributes, respectively. Similarly, the inter-class correlation coefficient ρ is 0.238, indicating
that 23.8% and 76.2% of the variation in maize yield were caused by the village attributes
and household attributes, respectively. Due to the different samples in wheat and maize,
the variation was different between villages and households. Moreover, a fairly large
part of variation in the wheat and maize yields in the NCP was on the village level.
Therefore, it is helpful to adopt a multilevel model to improve the accuracy of parameter
estimation results.

Table 5. The estimated results of unconditional means model.

Variance Decomposition
Winter Wheat Summer Maize

Coefficient S.D. Coefficient S.D.

Variance of village level
(between-group variance) 0.118 0.008 0.173 0.014

Variance of household level
(within-group variance) 0.189 0.002 0.555 0.005

Intra-class correlation coefficient ρ 0.384 - 0.238 -

4.2. The Random Intercept Model

According to Equation (6), the estimated results of the influence of climate factors
and other factors on wheat and maize yields are shown in Tables 6 and 7. Model I only
included climate change variables and year dummy variables. Then, farmland attributes
and production input variables were incorporated into Model II. Finally, village attributes
were incorporated into Model III.

Table 6. The estimated results of influencing factors of winter wheat yield.

Variables Model I Model II Model III

Twheat1 0.080 ** (0.032) 0.079 ** (0.031) 0.088 *** (0.032)
Pwheat1 −0.087 *** (0.025) −0.088 *** (0.025) −0.097 *** (0.026)
Twheat2 −0.068 * (0.037) −0.062 * (0.036) −0.086 ** (0.038)
Pwheat2 0.054 *** (0.021) 0.052 ** (0.021) 0.065 *** (0.022)
Twheat3 0.041 (0.032) 0.036 (0.032) 0.051 (0.032)
Pwheat3 −0.002 (0.015) 0.005 (0.015) −0.002 (0.015)

DD −0.032 *** (0.011) −0.033 *** (0.011) −0.084 *** (0.022)
DLD −0.096 *** (0.006) −0.094 *** (0.006) −0.197 *** (0.02)
DLF −0.057 *** (0.015) −0.056 *** (0.014) −0.055 *** (0.014)
DLR −0.158 *** (0.01) −0.161 *** (0.009) −0.160 *** (0.009)
DLW −0.088 *** (0.009) −0.084 *** (0.009) −0.086 *** (0.009)
T2011 0.036 *** (0.01) 0.035 *** (0.009) 0.034 *** (0.009)
T2012 −0.033 *** (0.005) −0.033 *** (0.005) −0.033 *** (0.005)

L1 − 0.005 (0.015) 0.003 (0.015)
L2 − −0.009 (0.016) −0.010 (0.016)
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Table 6. Cont.

Variables Model I Model II Model III

L32 − 0.06 *** (0.007) 0.06 *** (0.007)
L33 − 0.083 *** (0.009) 0.083 *** (0.009)

ln(I1) − 0.007 (0.005) 0.006 (0.005)
ln(I2) − −0.002 (0.002) −0.002 (0.002)
ln(I3) − −0.003 (0.006) −0.003 (0.006)
ln(I4) − −0.016 *** (0.004) −0.016 *** (0.004)
ln(I5) − 0.004 *** (0.001) 0.004 *** (0.001)

H1 − 0.0001 (0.0001) 0.0001 (0.0001)
H2 − 0.002 ** (0.001) 0.002 ** (0.001)
H3 − 0.012 ** (0.006) 0.012 ** (0.006)
V1 − − 0.011 (0.015)
V2 − − −0.0001 (0.0003)
V3 − − 0.002 (0.007)

V1 × DD − − −0.004 (0.009)
V1 × DLD − − 0.006 (0.009)
V2 × DD − − 0.001 *** (0.0002)

V2 × DLD − − 0.001 *** (0.0002)
V3 × DD − − 0.001 (0.004)

V3 × DLD − − 0.01 *** (0.004)
Cons. 8.542 *** (0.421) 8.501 *** (0.418) 8.447 *** (0.415)

Variance σμ
2 0.106 (0.007) 0.105 (0.007) 0.103 (0.007)

Variance σε
2 0.179 (0.002) 0.177 (0.002) 0.176 (0.002)

Log likelihood 1836.415 1908.163 1935.25
AIC −3640.829 −3760.326 −3798.5

Notes: *, ** and *** represent significance 10%, 5% and 1% level, respectively.

Table 7. The estimated results of influencing factors of summer maize yield.

Variables Model I Model II Model III

Tmaize1 −0.167 (0.111) −0.158 (0.107) −0.167 (0.104)
Pmaize1 −0.023 ** (0.011) −0.013 (0.01) −0.011 (0.010)
Tmaize2 0.533 *** (0.181) 0.427 *** (0.173) 0.453 *** (0.168)
Pmaize2 −0.016 * (0.009) −0.012 (0.008) −0.013 (0.008)
Tmaize3 −0.083 *** (0.03) −0.047 (0.03) −0.047 (0.029)
Pmaize3 −0.017 (0.012) −0.013 (0.012) −0.012 (0.011)

DD −0.127 *** (0.041) −0.13 *** (0.041) −0.091 (0.080)
DF −0.142 *** (0.043) −0.138 *** (0.043) −0.165 *** (0.043)

DLD −0.136 *** (0.019) −0.141 *** (0.019) −0.489 *** (0.056)
DLF −0.224 *** (0.027) −0.219 *** (0.026) −0.219 *** (0.026)
DLR −0.122 *** (0.042) −0.127 *** (0.042) −0.133 *** (0.041)
DLW −0.098 *** (0.023) −0.101 *** (0.023) −0.107 *** (0.023)
T2011 0.149 *** (0.036) 0.149 *** (0.035) 0.137 *** (0.035)
T2012 0.151 *** (0.021) 0.147 *** (0.021) 0.147 *** (0.021)

L1 − 0.108 (0.069) 0.094 (0.069)
L2 − 0.001 (0.047) −0.009 (0.047)
L32 − 0.114 *** (0.024) 0.106 *** (0.024)
L33 − 0.147 *** (0.028) 0.145 *** (0.028)

ln(I1) − −0.006 (0.01) −0.006 (0.010)
ln(I2) − 0.032 *** (0.008) 0.033 *** (0.008)
ln(I3) − 0.009 (0.007) 0.011 (0.007)
ln(I4) − −0.036 *** (0.013) −0.036 *** (0.013)
ln(I5) − 0.018 *** (0.003) 0.018 *** (0.003)

H1 − 0.0008 * (0.0004) 0.001 * (0.000)
H2 − 0.003 (0.003) 0.003 (0.003)
H3 − 0.033 (0.021) −0.033 (0.020)
V1 − − −0.028 (0.023)
V2 − − −0.001 (0.001)
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Table 7. Cont.

Variables Model I Model II Model III

V3 − − 0.004 (0.011)
V1 × DD − − 0.128 *** (0.022)

V1 × DLD − − −0.11 *** (0.021)
V2 × DD − − −0.001 (0.001)

V2 × DLD − − 0.005 *** (0.001)
V3 × DD − − 0.018 (0.012)

V3 × DLD − − −0.018 (0.012)
Cons. 1.449 (2.052) 2.678 (1.977) 2.269 (1.93)

Variance σμ
2 0.152 *** (0.013) 0.141 *** (0.012) 0.133 *** (0.012)

Variance σε
2 0.541 *** (0.005) 0.537 *** (0.005) 0.532 *** (0.005)

Log likelihood −4281.319 −4231.07 −4177.54
AIC 8596.638 8520.14 8431.08

Notes: *, ** and *** represent significance 10%, 5% and 1% level, respectively.

4.2.1. The Determinants of Winter Wheat Yield

Table 6 displays the results of the three model for winter wheat yield. The likelihood
function ratio, LR = 2[Ln(LR2) − Ln(LR1)] = 143.5, is greater than critical χ2

0.01(12) = 26.22,
meaning that farmland attributes and production input variables had significant impact on
the variation in winter wheat yield. Furthermore, the AIC value is −3760.326 in Model II,
which is less than AIC of −3640.829 in Model I, meaning that the better the overall fitting
of Model II according to the information criteria, the smaller the AIC value, and the better
the overall fitting of the model.

Similarly, Model III shows a better overall fitting than Model II. The likelihood function
ratio LR = 2[Ln(LR3) − Ln(LR2)] = 54.17 is greater than critical χ2

0.01(9) = 21.67, suggesting
that village attributes had significant impact on the variation in winter wheat yield. Mean-
while, AIC of −3798.5 in Model III is smaller than AIC of −3760.326 in Model II. According
to Table 6, the following conclusions can be drawn:

Firstly, the heterogeneity of wheat yield was not only caused by household charac-
teristics, but also determined by differences in village economies, except for farmland
characteristics and production input factors. For example, the variance of village level is
σμ

2 = 0.103 (Table 6, row 36) with introducing explanatory variables (Model III), which
is less than the variance of σμ

2 = 0.118 (Table 5, row 1) in the unconditional means
model without the introduction of explanatory variables. It indicates that social and
economic factors at the village level, such as collective economy (number of collective
enterprises), irrigation condition (ratio of irrigation area), and traffic condition (distance
between the village committee and the nearest road above the township level), could ex-

plain 12.7% (σμ
2(unconditional means model)−σμ

2(random intercept model)
σμ

2(unconditional means model) = 0.118−0.103
0.118 = 0.127) of

the variation in wheat yield at the village level. Household attributes could explain 6.9%

(σε
2(unconditional means model)−σε

2(random intercept model)
σε

2(unconditional means model) = 0.189−0.176
0.189 = 0.069) of variation in

wheat yield, which was apparently and substantially smaller than village attributes.
Secondly, the effect of long-term climate change on wheat yield varied across different

wheat growth stages. The increase of average temperature significantly promoted wheat
production during the overwintering stage. For example, wheat yield would significantly
increase by about 8% if temperature increased by 1 ◦C (row 1, Table 6). However, the
increase of average temperature resulted in an obvious decrease in wheat yield during
the vegetative stage. Specifically, wheat yield would significantly decline by 6.2–8.6%
if average temperature improved by 1 ◦C (row 3, Table 6). These results indicate that
the proper increase in winter temperature has a positive effect on winter wheat yield,
while the increase in spring temperature can lead to a decrease of winter wheat yield,
which is consistent with some previous studies [36]. This is probably because that the
shortened growth period and warming temperature contribute to the increase of productive
tiller [37,38].
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Thirdly, the occurrence of extreme weather events had significantly negative impact on
wheat yield. County-level drought significantly reduced wheat yield. Farm-level disasters
also had led to obvious reduction in wheat yield. In particular, drought, flood, continuous
rain, and strong wind at the farm level would reduce wheat yield by about 10%, 6%, 16%,
and 9%, respectively, holding constant of other variables (rows 8–11, Table 6). Farm-level
disasters showed a greater negative impact on wheat yield than county-level disasters.

Fourthly, production input significantly affected the wheat yield. The elasticity of labor
is −0.016 with other input factors unchanged (row 21, Table 6). The sign of labor elasticity
is negative, which is consistent with previous empirical studies [39]. The possible reasons
are two-fold: on the one hand, there is a significant substitution relationship between
labor input and machinery input, which leads to multiple collinearities contributing to
the unreasonable estimated economic value of labor output elasticity; on the other hand,
there is too much surplus labor force in agricultural production in China. The scattered and
limited arable farmland will further increase surplus rural labor force, while labor has not
fully flowed in the market. Therefore, it is more valuable of focusing on the quality of labor
than the quantity of labor to improve grain yield and farmers’ income. Moreover, irrigation
water could significantly and slightly promote wheat yield (0.004, row 22, Table 6), showing
that wheat yield only increased by 0.004% with increasing irrigation water by 1%. The
result means that the input of irrigation water is lack of elasticity.

Fifthly, the social and economic characteristics of households had a significant impact
on wheat yield. As expected, education and participation in production and technology
training programs played an important role in promoting wheat yield. In particular, the
wheat yield would significantly increase by 0.2% if the schooling year of the household
head increased by one (row 24, Table 6). Similarly, the wheat yield would significantly
increase by 1.2% if farmers had previously undertaken a production and technique training
(row 25, Table 6).

Finally, the social and economic characteristics of village could mitigate the loss of
wheat yield under extreme weather events, especially drought disaster. For example, the
wheat yield decreased by 19.7% if farm plot occurred drought disaster, but it only decreased
by 1% if the distance shortened by 1 km between the village committee and the nearest
township-level road. Moreover, the wheat yield decreased by 8.4% and 19.7%, respectively,
when county-level drought and farm plot drought occurred simultaneously. However,
in the case of drought, the wheat yield could significantly improve by 0.1% if irrigation
proportion rise by 1%.

4.2.2. The Determinants of Summer Maize Yield

Table 7 displays the determinant regression results of summer maize yield using three
models. Similarly, according to the likelihood function ratio LR and information criterion
AIC, Model III is more preferable than other models. The empirical results of Table 7 are
similar to those in Table 6, but there are several differences as follows.

Firstly, the heterogeneity of maize yield was shaped by village attributes. In particular,
the village level variance of σμ2 = 0.133 (row 36, Table 7) with introducing explanatory vari-
ables (Model III) is less than the variance of σμ2 = 0.173 (row 1, Table 5) without introducing
explanatory variables (unconditional means model). This indicates that the social and economic
characteristics of village, such as the village collective enterprise, the proportion of village
irrigation area, and the distance between the village committee and the nearest road above

the township level, could explain 23.1% (σμ
2(unconditional means model)−σμ

2(random intercept model)
σμ

2(unconditional means model)

= 0.173−0.133
0.173 = 0.231) of the variation in maize yield at the village level. Household attributes

could explain 4.1% (σε
2(unconditional means model)−σε

2(random intercept model)
σε

2(unconditional means model) = 0.555−0.532
0.555 = 0.041)

of variation in maize yield, which was apparently and considerately smaller than
village attributes.

Secondly, the occurrence of extreme weather events had a significantly negative impact
on maize yield. For example, the maize yield decreased by 12.7% and 14.2% under drought
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and flood disasters at the county level, respectively. The disasters occurring on farmland
plot led to more loss in maize yield than those at the county level. Specifically, drought,
flood, continuous rain, and strong wind reduced maize yield by 13.6%, 22.4%, 12.2%, and
9.8%, respectively.

Thirdly, production input significantly affected the maize yield. The sign of labor
elasticity is negative, and the reasons have been mentioned above. Pesticide and irrigation
water input could significantly promote maize yield. Specifically, the maize yield would
increase by 0.032% and 0.018% for every 1% increase in pesticide input and irrigation water,
respectively (rows 20 and 23, Table 7).

Finally, the social and economic characteristics of village could mitigate the loss of
maize yield under extreme weather events. The coefficients of the cross term between
village collective enterprise and drought disaster reveal that the negative impact of drought
disaster on maize yield would decrease dramatically if the village had more collective
enterprises. For example, the maize yield declined by 48.9% if drought occurred on
the farmland plot, but it only decreased by 11% for one additional collective enterprise.
Furthermore, the maize yield could decrease by 9.1% under county-level drought, but it
could increase by 12.8% for an additional collective enterprise.

5. Conclusions and Discussion

Based on the data of 6749 wheat plots and 5212 maize plots of farm households over
2010–2012, this paper adopted a multilevel model to analyze the impact of long-term climate
change and extreme weather events on the wheat and maize yields in the NCP. It also
considered village social and economic conditions, social and economic characteristics of the
household, production inputs, and farmland plot characteristics as the influencing factors
of wheat and maize yields. The findings of this study suggest the following conclusion
and discussion.

5.1. Conclusions

There are three main findings and conclusions in this study.
Firstly, spatial variations in crop yield are significantly influenced by the heterogeneity

of village economic conditions. The explained variation in crop yield is much higher at the
village level than at the household level. The social and economic characteristics of the
village have a positive effect on crop yield and mitigate the loss of crop yield under extreme
weather events. Therefore, under China’s dual-level management system of integration of
unification and separation in rural area, it is necessary to strengthen household production
behavior and improve village collective economy.

Secondly, the arid and semi-arid region of NCP has been experiencing climate change,
affecting grain production over the past three decades. The effects of long-term climate
variables on winter wheat and summer maize yields vary across the growth stages. There-
fore, it might be time to think of making agricultural production adapt to climate change.
For example, it may need to adjust the planting system, change crop varieties, and build
households’ adaptive capacity to climate change.

Thirdly, extreme weather events are more likely than long-term climate change to
reduce the wheat and maize yields. The negative impact of extreme weather events on
crop yield is more serious and immediate. These findings suggest that the governments
should establish and improve the disaster service and coping system for grass-roots units.
Specifically, it is essential to use modern information technology to improve the monitoring,
forecasting, and warning of agricultural disasters and provide and publicize disaster early
warning and response information timely. At the same time, agricultural technical guidance
and financial support should be provided for disaster prevention and control, enabling
farmers to minimize crop production loss. The households also need to prepare for extreme
weather events.
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5.2. Discussion

In dialogue with the existing literature, we respond to, and confirm, the scholarly
view that the role of the village collective economy plays a key role in ensuring food
security [25,26]. We have shown that the village collective economy can mitigate the loss
of crop yield under extreme weather events. In addition, the impact of extreme weather
events on crop yield should be emphasized when revealing an empirical relationship
between climate factors and grain output in agricultural production [23,24]. Since the
negative impact of extreme weather events on crop yield is more serious and immediate
than long-term climate change.

As usual, this paper still has some limitation. Due to data unavailable, for example,
the impact of the township or even the county economic levels cannot be taken into
consideration; long-term temperature and precipitation at county-level data have to be
used for plot-level modelling. For the future study, it be better incorporating long-term plot-
level temperature and precipitation into plot-level modelling by taking into consideration
of county- and -township-level economic impacts.
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Abstract: In recent years, people’s environmental awareness has increased. The high density of the
urban population has caused a considerable increase in the demand for car washing services, which
has created large quantities of car wash wastewater. The main pollutants in car wash wastewater are
detergents, dirt, oil, and grease. Untreated wastewater released into rainwater sewer systems or other
water bodies may pollute the water and generate excessive bubble foams, which negatively affects
urban appearance. Car washes are divided into mechanical car washes and manual or self-service car
washes. In general, car washes have a small operation and scale, occupy limited land, and cannot
afford wastewater treatment costs. Therefore, most car washes are not equipped with wastewater
treatment facilities. Consequently, the discharge of wastewater from car washes negatively affects
the water quality in the surrounding environment and results in wasteful use of water resources.
This study reviewed 68 research papers on the quality, treatment techniques, treatment costs, and
treatment effectiveness of car wash wastewater to provide a reference for car wash operators to
contribute to the preservation of water resources. We found that there is a higher chance of recycling
car wash wastewater when combing two different techniques for car wash wastewater treatment.

Keywords: carwash; SS; COD; NTU; wastewater

1. Introduction

The rapid growth in human population has resulted in increased car use, which
has increased the demand for car wash services and thereby generated large amounts
of car wash wastewater. In metropolitan areas, the foam in the wastewater produced
during car washing overflows and spoils the appearance of the city. However, compared
with industrial wastewater it is relatively easy to treat car wash wastewater and improve
its water quality. In Taiwan, the conditions of the narrow and densely populated area
and the small scale of the industry make low-cost and low-space car wash wastewater
treatment technology an urgent need, and it is believed that this demand is applicable
to other metropolitan areas in Asia as well. The goals of car wash wastewater treatment
are to prevent environmental pollution and to reuse water resources. According to one
estimation, the world had 1.5 billion cars in 2020 [1]. If each car was washed monthly
and each wash consumed 100 L of water [2], the amount of water used for car washing
would be 1.8 billion tons/year. At a price of one US dollar per ton of water, the annual
total cost of car washing worldwide would be USD 1.8 billion per year [3]. Considering
that each person consumes approximately 150 L of water per day, the amount of water
used for car washing annually is equal to that used by 33 million people annually [4].
This consumption approximately represents the amount of water used annually by the
entire population of Malaysia (33 million), Venezuela (32 million), the Republic of Ghana
(30 million), Oceania (including Australia (25 million) and New Zealand (5 million)) or
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the combined population of Denmark (5.8 million), Norway (5.4 million), Switzerland
(10 million), Finland (5.5 million), and Iceland (360,000). The 2030 Agenda established
by the United Nations proposes 17 sustainable development goals as the core objectives
for sustainable development among governments and corporations. In particular, goal
six is aimed at ensuring access to water and sanitation for all. Access to water is a basic
right; thus, the value of water exceeds the price of water. Consequently, the circulation
and reuse of water resources is essential. This study reviewed 68 research papers and
obtained data on the car wash wastewater produced in 38 cities in 21 countries. These data
mainly contained information on the suspended solid (SS, mg/L) concentration, turbidity
(Nephelometric Turbidity Unit, NTU), chemical oxygen demand (COD, mg O2/L), and
oil and grease (O&G, mg /L) concentration of car wastewater, as well as on the anionic
surfactants (AS, mg /L) used in car wash wastewater treatment. The aforementioned
data and the corresponding removal techniques of these pollutants are comprehensively
discussed in the following sections.

2. Car Wash Wastewater Quality

Car wash wastewater generally contains suspended particles that originate from the
dirt on vehicles, the oil on vehicle exteriors, the oil and grease generated from car wax, and
the anionic surfactants caused by detergent use [5,6]. This wastewater has a high COD.
Table 1 [2,7–58] presents data on the car wash wastewater quality of each region investigated
in the literature review. The SS concentration, turbidity, COD, O&G, and AS values in
the collected data ranged from 68 to 1990 mg/L, 60 to 1000 NTU, 85 to 1295 mg O2/L, 12
to 325 mg/L, and 3 to 68 mg/L, respectively. The median values of the aforementioned
parameters were 186 mg/L, 187 NTU, 418 mg O2/L, 28 mg/L, and 13 mg/L, respectively. The
car wash wastewater data of different countries (Table 1) exhibited no significant correlations.
In particular, the extreme values of the SS concentration, turbidity, and COD values were
2929 mg/L, 3649 NTU, and 14133 mg O2/L, respectively [27]. Moreover, the turbidity and
COD ranged from 559~733 NTU and from 2640~4160 mg O2/L, respectively [20,21]. Because
the collected data include data on wastewater created when washing garbage trucks, the
different water quality parameters were relatively higher in value. If extreme values such as
those for the wastewater from washing garbage trucks are eliminated, it is believed that the
normal SS, turbidity, COD, O&G and AS values of car wash wastewater would be around
level 200 mg/L, 200 NTU, 450 mg O2/L, 30 mg/L, and 30 mg/L, respectively. The most
direct intention of car washing is to remove dust; therefore, Figure 1 shows the NTU data
as surveyed from the literature. From Figure 1, it can be seen that the NTU of car washing
wastewater is not directly related to the desertification of the urban environment.

Figure 1. NTU data of carwash wastewater surveyed from Table 1.
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Table 1. Car wash wastewater characteristics from various literature sources.

Country Area Ref.
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

USA New Jersey [2] 115 — — — 9.2
USA Texas [7] — — 260 — —

Mexico Toluca [8] 538 925 1024 t, 541 s 448 —
Mexico Toluca [9] — 898 1295 t, 488 s 369 68.3
Brazil Porto Alegre [10] — 103 ± 57 191~600 — 6.3~21
Brazil Sao Paulo [11] 68 ± 19 89 ± 16.5 241 ± 23.5 6 ± 1 11.7 ± 9
Brazil Sao Paulo [12] — 156 ± 45 626 ± 125 — —
Brazil Porto Alegre [13] 112 ± 21 139 ± 45 259 ± 40 12 ± 6 —
Brazil Porto Alegre [14] 89 ± 54 103 ± 57 191 ± 22 — —
Brazil Natal [15] — — 625 ± 5 — —
Brazil Belo Horizonte [16] 260 ± 20 85 ± 8 85 ± 6 <0.1 —
Brazil Porto Alegre [17] 85~279 194~254 249~873 — 11.3~22.3

Belgium Leuven [18] 60~140 — 208~382 — 0.7~2.5
Sweden Goteborg [19] — — 1263~4600 291~550 —

Italy Genoa [20,21] — — 572 — 95.5
Italy Brescia [22] — 559~733 2640~4160 — —

France Toulouse [23] 46~518 60~152 539~1506 — ~12
Egypt South of Egypt [24] 55 28.1 82 — —
Egypt Shatby [25] — 90.5~386 282~566 — —
Egypt Elminia [26] — 160 1430~1649 — —
Ghana Kumasi [27] 2929 ± 451 3649 ± 2150 14133 ± 237 — —

South Africa Gauteng [28] — 109~4000 — 12~43 1.4~5.8
South Africa Johannesburg [29] — — 750~1864 5~24 —

Syria Aleppo [30] 49 — 350~510 20~40 21~35
Turkey Istanbul [31] — — 314 ± 9.4 — —
Turkey Istanbul [32] 320 — 500 120 290
Turkey Tekirdag [33] — 312~420 7960~8190 — —
Turkey Istanbul [34] 2300 — 560 125 35

Iran Zahedan [35] 193 ± 71.5 166.8 ± 51.7 856 ± 217 — 31.2 ± 18.8
Iran Tehran [36] — 118~1400 610~2619 — —
Iran Tehran [37] — 170 ± 32.5 480~1560 — —
Iran Ahvaz [38] — — 480~1560 — —

Vietnam Hanoi [39] 51~110 — 498~808 37~125 —
Malaysia Johor, Skudai [40] — 34.7~86 75~738 — —
Malaysia Parit Raja [41] — 275.1 220 — —
Malaysia Parit Raja [42] 186 ± 56.6 173.7 ± 58.8 741 ± 316 1.78 ± 0.1 —
Malaysia Taman University [43] 202 ± 10 216.3 ± 21.5 893 ± 298 0.004 —

China Shenyang, Hunan [44] — 362~450 — 5.3~13.5 —
China Shanghai [45] — 70~100 100~160 5~25 2~5
China Zhenjiang [46] — 128.7 155.6 — —

Australia Melbourne [47] 1275 522~763 295~471.5 — —
Australia Geelong [48] 4200 1000 433 — —
Australia Melbourne [49] 1200 763 417.5 — —
Pakistan Abbottabad [50] 110~5856 73~772 141~1019 1.3~83.7 —
Pakistan Peshawar [51] 1000 253 — 27 —
Pakistan Hyderabad [52] — 82.4~493 — — —
Taiwan Hsinchu [53] 230 — 67 — —
Taiwan Taipei [54] 30~200 20~40 50~300 — 3~20

Indonesia Semarang [55] — 186.6 700 36 —
India Bangalore [56] 970~1020 56.3~195 176.23~246 135~190 —
India Tasveer Mahal [57] 242.6 — 79 — —
India Trichy [58] — 132~140 150~175 — —

Note: t denotes total, s denotes dissolved.
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3. Water Quantities Required to Wash a Car

The quantity required for washing a single car has been measured by different studies
as approximately 45~60 L, 130~350 L, 45~60 L, 189~379 L, 400 L, and 151~227 L of water,
respectively [2,10,12,18,39,59]. These results indicate that varying amounts of water are
required for car washing in different countries. A reasonable amount of water for washing
a car is 100~200 L. Several studies have collected data on car wash wastewater for unique
vehicles. The car wash water consumption for heavy vehicles and waste container washing
vehicles was recorded as approximately 350~900 L and 5000 L, respectively [12,22]. Monney
et al. [27] reported that the car wash water consumption of multiple vehicles (e.g., saloon
cars, sport utility vehicles or pick-ups, buses or vans, heavy articulators, and graders or
loaders) ranged between 105 and 1381 L. The car wash water consumption for washing
heavy vehicles, trucks, and trailers ranged between 250 and 1200 L [19]. Germany and
Austria have stipulated regulations mandating the recycling of 80% of car wash wastewater.
Alternatively, the Netherlands and Scandinavian countries impose restrictions on water
consumption for each car wash of 60~70 L [60]. There is a scarce record on car wash water
consumption based on what kinds of cars are washed in the literature reviewed, however,
it is natural to assume that larger cars require a larger amount of water in a car wash. The
amount of water used in a car wash is not highly correlated with the region where the car
is washed or the type of car; rather, it is more likely to be related to the culture of water
usage. However, there is no significant evidence to support this supposition.

4. Car Wash Wastewater Treatment Technique

Currently, various car wash wastewater treatment techniques are available, as re-
ported in reviewed literatures [61–66]. The scope of this study includes discussion of such
techniques as electrocoagulation (EC) [67–69], flocculation flotation (FF) [10,17], filtration
(F) [18], coagulation–flocculation (CF) [22,35], biological treatment (Bio) [2,12], adsorption
(AD) [70], electro-oxidation (EO) [15,71], and other less-known technologies such as photo-
Fenton application [24,72]. In general, the combination of at least two wastewater treatment
techniques can enable high treatment efficiency of car wash wastewater [7,20,21,32].

4.1. Electrocoagulation (EC)

Figure 2 depicts the general mechanism of the electrocoagulation process. EC uses
metal hydroxides produced by electrolysis to remove pollutants in wastewater. During the
electrolysis reaction, a sacrificial anode undergoes an oxidation reaction to release metal
ions, while the cathode undergoes a reduction reaction to reduce the metal ions to metal
and generate hydrogen. Commonly used metal anodes include aluminum and iron. The
EC process has a turbidity removal rate of approximately 90% [8,9,25]. When coupled
with adsorption treatment or electro-oxidation treatment, the turbidity removal rate of
the EC process can be increased. Moreover, the EC process has a COD removal rate of
approximately 80%. When combined with other treatments, the COD removal rate of the
EC process can be increased (Table 2). Obviously, it is not efficiently to remove SS by EC.

4.2. Flocculation–Flotation (FF)

Figure 3 presents the mechanism and process of flocculation–flotation (FF). FF com-
bines polymer flocculant addition and air bubble flotation to separate pollutants in carwash
wastewater. The SS and turbidity removal rates of the FF process are approximately 85%
and 90%, respectively [10,17]. When coupled with other treatments, the SS and turbidity
removal rates of this process can reach as high as 96% [11,14]. The FF process has a COD
removal rate of approximately 70~80%, which can be increased when this process is cou-
pled with other treatments. Thus, the FF process exhibits a turbidity and COD removal
performance comparable to that of the EC process (Table 3).
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Figure 2. Schematic illustration of electrocoagulation/flotation.

Table 2. Removal rate of various water qualities by EC method.

Country Area Ref. Technique
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

Mexico Toluca [8] EC + AD — 92~98% 78~94% — —
Mexico Toluca [9] EC + EO — 98~98.4% 76~96% 92~100% 81~92%

Italy Genoa [21] EC + EO — — 75~97% — —
Iran Tehran [36] EC — 85.5% 80.8% — —
Iran Tehran [38] EC — — 88% — —
Iran Ahvaz [37] EC — — 90% — —
USA Texas [7] EC — — 79% — —

Egypt Shatby [25] EC — ~87% ~85% — —
Turkey Istanbul [34] EC — — 88% 82% 99%
Turkey Tekirdag [33] EC — 99% 76% — —
China Zhenjiang [46] EC + Ultrasound — 96% 69% — —

Table 3. Removal rate of various water qualities by flocculation–flotation method.

Country Area Ref. Technique
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

Brazil Porto Alegre [17] FF + O 83–99% 89–95%
93–98%

39–85%
81–99% — 78–89%

81–99%
Brazil Porto Alegre [10] FF — 91-96% — — 40%
Brazil Sao Paulo [11] FF + SF — 87–91% — — —
Brazil Porto Alegre [13] FF 89% 93% 11% — —
Brazil Porto Alegre [14] FF + SC 91–93% 91–96% 63–76% — —

Pakistan Hyderabad, Sindh [52] DAF + F — 97% — 99% —

Note: sand filtration (SF), ozonation (O), sand filtration and chlorination (SC), Filtration (F), Dissolved Air
Flotation (DAF).
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Figure 3. Schematic illustration of flocculation–flotation.

4.3. Filtration (F)

In recent years, filtration has become an excellent method for solid–liquid separa-
tion [73], and membrane filtration has especially been used in many fields, for example
mineral processing [74], removing surfactants [75], suspension filtration [76], and more.
Figure 4 illustrates the mechanism of filtration.

Figure 4. Illustration of filtration.

When the filter element has sufficient selectivity, the flocculation–filtration process
can achieve SS and turbidity removal rates over 99%, as presented in [51,55]. However,
the filtrate flux of flocculation–ultrafiltration and flocculation–nanofiltration are only ap-
proximately 50 and 10 LMH (L/m2-h), respectively. To provide wastewater treatment for
the medium-scale car wash factory discussed in [18], an ultrafiltration plant with a size
of approximately 100 m2 would be required. Such a plant would occupy a large space,
and would thus be unsuitable for highly developed urban areas. Despite being able to
remove partial COD, the general COD removal rate of the flocculation–filtration process is
approximately 60% (Table 3).

The coagulation–filtration process has turbidity and COD removal rates of approxi-
mately 90% and 60%, respectively (Table 4).
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Table 4. Removal rate of various water qualities by filtration.

Country Area Ref. Technique
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

Belgium Leuven [18] UF + NF — — 60~95% — 88~95%
Sweden — [77] UF — — 60% — —
Turkey Istanbul [34] EC + NF 99% — 88% 90% 91%

Malaysia Johor, Skudai [40] UF + NF — — 55~92% — —
Brazil Belo Horizonte [16] MF + UF — 96.2~99.3% 81~85% — —

Turkey Istanbul [31] UF + NF — — Negligible~97% — —
Indonesia Semarang [55] UF — 100% 91% 83% —

Japan Tokyo [78] F + UF — 75% 50~90% — —
China Shanghai [45] C + UF — 85% 80% —

Vietnam Hanoi [39] MBR + F — — 90% 88% —
Australia Melbourne [47] UF + RO 100% 99.9% 96% — —
Pakistan Peshawar [51] SED + F 80% 99% — 49.2%

India Aligarh [57] SF 89.2% — 83.5% — —
India Trichy [58] UF — 82% 47–60% — —

Note: ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), coagulation (C), sand filtration (SF), sedimen-
tation (SED), reverse osmosis (RO), filtration (F).

When coupled with filtration technology, the biological treatment process achieves
turbidity and COD removal rates of approximately 99% and 95%, respectively [48,53].

4.4. Coagulation–Flocculation (CF)

Figure 5 depicts the processes of coagulation–flocculation (CF), which is a two-stage
reaction system. In coagulation, a coagulant such as polyaluminum chloride (PAC) or ferric
chloride is added to the wastewater to modify the surface charge of the particle pollutants,
thereby eliminating the electrostatic repulsion between the particles was. The flocculant
(i.e., polymer) is then added to the wastewater to aggregate the near-neutral electrostatic
particles and form flocs for easier pollutant removal. Generally speaking, the turbidity
removal rate of CF with car wash wastewater is good, generally over 90%; however, the
removal rates of COD, O&G, and AS are not as good [22,41]. In addition, CF needs to add
a suitable flocculant, which can easily cause cost increases and secondary pollution. Table 5
lists the effects of using CF and its combinations on car wash wastewater treatment as
found in the literature.

Figure 5. Schematic illustration of coagulation–flocculation (CF).

4.5. Bio-Treatment

Figure 6 illustrates the mechanism of bio-treatment. Aerobic microorganisms in the
wastewater degrade the organics into H2O and CO2, while the dead biomass of microor-
ganisms forms a sludge in the wastewater. Table 6 lists the effects of biological treatment
combined with other technologies on car wash wastewater treatment. For biological treat-
ment followed by filtration treatment, the removal rate of turbidity, COD, and AS can reach
more than 95% [2,12,48,49].
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Table 5. Removal rate of various water qualities by coagulation–flocculation.

Country Area Ref. Technique
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

Italy Brescia [22] CF — 98% 74% — —
Iran Zahedan [35] C 37% — 44% — 76%

Egypt Elminia [26] CF + SF + O + SF — 100% 88% — —
Malaysia Parit Raja, Johor [41] CF — 97% 35% — —
Malaysia Parit Raja [42] C — 94% 60% — —
Malaysia Taman University [43] C — 90% 60% — —

China Shenyang [44] C + UF — 94% — >40% —
China Shanghai [79] C + M — 70% — — —
India Bangalore [56] CF + F — — 80–90% 92–93% —

Pakistan Abbottabad [50] C + H2O2 — 97% 93% 96% —

Note: Chemical coagulation (C), membrane filtration (M).

Figure 6. Illustration of bio-treatment.

Table 6. Removal rate of various water qualities by bio-treatment.

Country Area Ref. Technique
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

Brazil Sao Paulo [12] RBC + F — 72~97% 56~94% — —

USA New Jersey [2] four bioretention
mesocosms 84~95% — — — 89~96%

Taiwan Hsinchu [53] Bio + M 95.7% — 70.2% — —
Australia Geelong [48] C + MBR 99.8% 99.6% — — —

Australia Melbourne [49] enhanced MBR
(eMBR) — 99.9% 99.8% 5.9~6.7

LMH —

Rotating Biological Contactor (RBC).

4.6. Other Methods

A few other single treatment methods, such as the Photo-Fenton’s process [24], ad-
sorption [30], electro-oxidation [15], etc., are listed in the table below (Table 7). Except
for electro-oxidation, these single-unit processing technologies have a removal rate of less
than 90%.

Table 7. Removal rate of various water qualities by other single unit treatment techniques.

Country Area Ref. Technique
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

Egypt South of Egypt [24] Photo-Fenton’s
process — — 82~93.4% — —

Syria Aleppo [30] AD — — 81.6% 86.8% 88.3%
Brazil Natal [15] EO — — 96% — 83~96%
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Treated water with low turbidity can be obtained by coagulation and flocculation,
however, the added chemicals increase the amount of sludge. Treated water with relatively
low turbidity can be obtained by ultrafiltration and nanofiltration, as well; however, the
filter material is expensive, and a large filtration area is required to obtain a large amount
of recycled water. While the electrocoagulation treatment method has a good treatment
effect on AS and O&G, it is less effective than filtration in turbidity treatment. Meanwhile,
the sacrificial electrode causes additional sludge. Bio-treatment has an excellent effect
on COD, although the biological treatment method is relatively slow and unstable. The
combination of at least two wastewater treatment techniques can enable the achievement
of high treatment efficiency of car wash wastewater treatment.

5. Energy Consumption

The energy consumption rates of the wastewater treatment methods used by EC have
been reported by Pinto et al. [16], Kara [33], and Nguegang et al. [29] as 0.14, 1.5, and
2.7 kWh/m3, respectively. The energy consumption rate based on COD reduction was
66 kWh/kg after 6 h operation [15]. In [35], the energy consumption rate was 10 kWh/m3;
in [67], the energy consumption rate ranged from 1.5 to 2.7 kWh/m3. In [25], car wash
wastewater was subjected to electrocoagulation using a new cell design featuring a horizon-
tal spiral anode placed above a horizontal disk cathode. Excellent treatment results were
achieved through electrocoagulation. El-Ashtoukhy et al. [25] used a new EC cell with a
spiral tube anode placed above a flat plate cathode resting on the cell bottom; the energy
consumption based on COD reduction ranged from 2.3 to 15.1 kWh/kg. In [33], the energy
consumption for the treatment of transport container washing wastewater ranged from
3.1 to 46.5 kWh/m3. The aforementioned electrochemical techniques can have varying
flow capacities and involve the use of different types of electrodes. In general, an electricity
consumption rate between 0.5 and 2 kWh/m3 is considered reasonable.

6. Operating Cost

The operating cost depends on the techniques processes used in carwash wastewater
treatment, including materials, chemicals, energy consumption, sludge disposal, labor, etc.
Table 8 summarizes the operating cost and payback duration for the various techniques.
Among the EC methods, the case using a titanium electrode costs substantially more
than using an Al and Fe electrode [33,67,68]. In [33], the treatment of transport container
washing wastewater is discussed. Because transport container washing wastewater has
high COD and turbidity (specifically 8200 mg/L and 420 NTU, respectively), the sludge
production rate was 12 kg/m3. The payback duration was reported as 6 and 15 months for
the bio-membrane and electrocoagulation methods when combined with flotation (ECF),
respectively [51,53].

Table 8. Comparison of operating costs.

Technique
Operating
(US $/m3)

Payback (Month) Ref.

EC 0.8 - [33]

EC with -
- [67]Al electrode 0.3

Fe electrode 0.6

EC with Titanium
electrode 9.7 - [68]

Bio + M - 7–15 [51]

ECF - 15 [53]

FF 0.92 - [10]
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The detailed items of operating cost for FF technology have been previously de-
termined; the respective cost for chemicals, sludge disposal, and electricity consump-
tion was USD 0.43/m3, USD 0.07/m3, and USD 0.423/m3 [10]. The market value of a
flocculation-column flotation system with a capacity of 1.0 L/h was USD 8687.50 in Brazil.
The wastewater treatment system discussed in [51] had a fixed operating cost of USD 2677
and an electricity consumption cost of USD 258.4 kWh/year in filtration, equivalent to
USD 51.6/year.

7. Discharge Standards

Table 9 presents the car wash wastewater treatment regulations of various countries.
Most countries have imposed the following rigorous regulations on car wash wastewa-
ter treatment: SS concentration < 40 mg/L, turbidity < 5 NTU, COD < 50 mg/L, O&G
concentration < 5 mg/L, and AS value < 2 mg/L.

Table 9. Discharge standards of different countries.

Country Criteria Ref.
SS

(mg/L)
Turbidity

(NTU)
COD

(mg/L)
O&G

(mg/L)
AS

(mg/L)

China GB/T 18920-2002 [79] 5 5 50 1 0.5
Iran Iran Standard [35] 40 50 60 — 1.5

Australia Recycled water class A
according to EPA [47] 5 2 — — —

Belgium — [18] <60 — <125 — 3
France — [23] 35 — 125 — —

Malaysia Environmental quality Act 1974 [41] — <5 <50 — —
Syria Syrian Standard No. 2752 [30] 50 — 75 5 5
USA NJDEP [2] 40 — — — —

Brazil Local emission standards [17] 180 — 400 — 2
Mexico — [8] — — — 15 —

New Jersey Department of Environmental Protection.

The regulations on suspended solids in China and Australia require less than 5 mg/L,
which is stricter. In terms of nephelometric turbidity units, most of the specifications
listed in the table are NTU < 5. As the particulate pollution of car wash wastewater is
comprehensively reflected in SS and NTU, the regulation of SS < 5 m/L and NTU < 5 is
relatively reasonable.

8. Conclusions

This study reviewed the literature on wastewater quality, wastewater treatment tech-
nology, the electricity consumption and operating costs of wastewater treatment, and
wastewater treatment-related regulations. In summary, car wash wastewater treatment
facilities are worth investing in for the reasons described in the text. First, the required
filtering, electrochemical, and bioprocessing technologies are relatively mature and able
to remove pollutants, i.e., SS, COD, O&G and AS, at rates above ~85%. The operating
procedures of the treatment facilities are not complicated, and the operating costs are
within a reasonable range, from USD/m3 0.3–0.92. Second, by selecting and coupling
various types of wastewater treatment technologies, operators can treat wastewater in a
way that meets government regulations. Third, regions with abundant water resources
may experience short- or medium-term droughts under the effects of climate change; thus,
water resources are highly valuable. However, whether recycling wastewater yields profit
is a valid commercial concern.

Water resources are relatively scarce in the face of frequent droughts and floods
in extreme weather. From the second half of 2020 to the first half of 2021, Taiwan has
experienced nearly a year of drought (Taiwan is a country with an average annual rainfall
of 2500 mm). In Taichung City, water is only available four days a week. While effective and
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active treatment of car wash wastewater may not be economical, it is extremely important
for the sustainability of precious water resources.

Author Contributions: Data curation, C.-Y.H. and L.-W.K.; Investigation, W.-H.K.; Methodology,
C.-Y.H.; Supervision, W.-H.K.; Writing—original draft, J.-M.W.; Writing—review & editing, J.-M.W.
All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Environmental Protection Administration of the China,
Taiwan, for financially supporting this research under Contract No. EPA 109-A339.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Environmental Protection Administration of
the Republic of China, Taiwan, for financially supporting this research under Contract No. EPA 109-A339.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

Abbreviations

AD adsorption
AS anionic surfactant
Bio biological treatment
COD chemical oxygen demand
C chemical coagulation
CF coagulation-flocculation
DAF dissolved air flotation
EC electrocoagulation
EO electro-oxidation
F filtration
FF flocculation flotation
M membrane filtration
MBR membrane bio-reactor
MF microfiltration
NF nanofiltration
NJDEP New Jersey Department of Environmental Protection
NTU nephelometric turbidity units
O&G oil and grease
O ozonation
RBC rotating biological contactor
RO reverse osmosis
SC sand filtration and chlorination
SED sedimentation
SF sand filtration
SS suspended solids
UF ultrafiltration
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Abstract: A bibliometric analysis based on the Scopus database was carried out to summarize the
global research related to selenium in drinking water from 1990 to 2021 and identify the quantitative
characteristics of the research in this period. The results from the analysis revealed that the number of
accumulated publications followed a quadratic growth, which confirmed the relevance this research
topic is gaining during the last years. High research efforts have been invested to define safe
selenium content in drinking water, since the insufficient or excessive intake of selenium and the
corresponding effects on human health are only separated by a narrow margin. Some important
research features of the four main technologies most frequently used to remove selenium from
drinking water (coagulation, flocculation and precipitation followed by filtration; adsorption and
ion exchange; membrane-based processes and biological treatments) were compiled in this work.
Although the search of technological options to remove selenium from drinking water is less intensive
than the search of solutions to reduce and eliminate the presence of other pollutants, adsorption
was the alternative that has received the most attention according to the research trends during
the studied period, followed by membrane technologies, while biological methods require further
research efforts to promote their implementation.

Keywords: selenium; drinking water; treatments; bibliometric analysis; research trends

1. Introduction

Selenium (Se), with atomic number 34, is a member of group 16 of the periodic table
and thus belongs to the chalcogens. The position between the nonmetal sulfur and the
metalloid tellurium determines the mainly nonmetallic properties it presents, characterized
by high chemical similarity to sulfur. Because of its applications (electronic components,
glass additives, metal alloys, etc.) and influence on human and animal health, research
related to selenium has gained attention and issues about environmental pollution have
become relevant [1].

The speciation of selenium in the natural environment is a key aspect to understanding
its mobility, availability and toxicity. This nonmetal can be stable in several oxidation states
but the most important ones from the environmental point of view are Se−2, Se0, Se+4

and Se+6. Elemental selenium, Se0, normally exists in the hexagonal semimetallic form
(gray selenium) at ordinary temperatures, although other allotropic forms, mainly as red
monoclinic selenium and different amorphous solids (black and red), can be found [2].
Nevertheless, it rarely occurs in its elemental native state or as pure ore compounds in
the Earth’s crust. The Se−2 valence (selenide) is not frequent in aquatic environments,
since it is only present under extreme redox circumstances. The Se−2 system includes
H2Se and the corresponding deprotonated derivatives HSe− and Se−2 with dissociation
constant values of 3.8 and 14.0 for pKa1 and pKa2, respectively [3]. Although reduction of
other selenium compounds, including insoluble elemental selenium, to selenide may occur
due to microbial action [4], reaction between the dissolved selenide and metallic cations
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present in natural waters takes place, which results in the precipitation of insoluble metal
selenides [5].

Therefore, the two most common oxidation states of selenium in water are Se+4 and
Se+6 as part of the dissolved oxyanions selenite (SeO3

−2) and selenate (SeO4
−2), respec-

tively [6]. Both species can be present in different protonated forms as function of the pH.
On the one hand, the Se+4 system includes H2SeO3 and the corresponding deprotonated
derivatives HSeO3

– and SeO3
−2 with dissociation constant values of 2.7 and 8.5 for pKa1

and pKa2, respectively. On the other hand, the Se+6 system includes H2SeO4 and the
corresponding deprotonated derivatives HSeO4

− and SeO4
−2, with dissociation constant

values of −2.0 and 1.8 for pKa1 and pKa2 [3]. According to these data, the prevalent species
around neutral conditions (typical pH for natural surface waters and groundwaters ranges
from 6.5 to 8.5) are HSeO3

− (maybe SeO3
−2 when the pH is in the upper range) for Se+4

and SeO4
−2 for Se+6. This fact implies that both valences remain as anions in most water

bodies, since the highest pH value compatible with a non-charged molecule is lower than
3 (possible presence of H2SeO3).

In addition to pH, the redox potential also plays a relevant role in the definition of the
relative abundance of the selenium species. Complete speciation diagrams for selenium in
aqueous systems as function of pH and redox potential can be found in bibliography [7,8].
On one hand, under oxidant conditions, the Se+6 state becomes clearly dominant over the
Se+4 one, but, on the other hand, the Se+4 species are prevalent under reducing conditions.
Nevertheless, in case of extreme reducing conditions, Se−2 valence will become dominant.
To gain a clearer idea, the redox potentials of selenium in acid and alkaline solutions are
included in Figure 1 [3].

Figure 1. The redox potentials of selenium in acid and alkaline solutions.

Therefore, the selenate system is thermodynamically more stable for surface waters
under alkaline conditions, while in acidic waters selenite is predominant. Although selenite
in these acid solutions could be reduced at least partially to insoluble elemental selenium
under suitable redox conditions, complete removal is often difficult, because the selenium
sometimes precipitates as a colloid and further reduction to selenide is very slow [9]. The
case of groundwaters is a bit more complex, since both selenite and selenate states can
coexist (even selenide can appear under reducing conditions) and the incidence of each
specie depends on the total selenium input to the system, the specific chemical conditions
and the biological activity.

The effects of selenium on human health have been subject to extensive research.
Selenium plays a vital role in different physiological processes and its altered levels have
direct impact on human health, since they can be directly related to the development of
diseases [10]. Selenium is an essential micronutrient for humans and other animals, since
it is important for many cellular processes because it is a component of several seleno-
proteins and selenoenzymes, such as glutathione peroxidase, with essential biological
functions [11]. The biological activity of these selenium biological compounds is mainly
related to antioxidant actions, activation and degradation of thyroid hormones and immu-
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nity enhancement [12]. Further detailed information about the role of selenium and its
functions in the human body can be consulted [13].

Examples of health problems in farm animals caused by both excessive exposure
(selenium toxicity) and suboptimal intake (selenium deficiency) have been well-known
and the possible impact on human health of these situations has gained great concern [6].
On the one hand, excessive low intake of selenium in humans is directly related to the
development of two endemic diseases that mainly occur in China and adjacent countries: a
fatal dilated cardiomyopathy called Keshan disease [14–16] and a disabling degenerative
disorder of peripheral joints and spine called Kashin–Beck disease [17–20]. On the other
hand, a chronic high selenium intake by humans results in selenosis, characterized by
symptoms such as hair and fingernails loss, diarrhea, effects on the central nervous system,
loss of appetite and hepatic disfunction [21–23]. In addition, early symptoms of acute
selenium poisoning include hypotension and tachycardia, vomiting, abdominal pain or
diarrhea and neurological signs, such as tremor, muscle spasms, restlessness and confusion.
Pulmonary edema develops as a severe complication and in severe cases, death can be
reached due to peripheral vasodilatation or direct myocardial depression [24,25].

Consequently, controlled dietary intake of selenium is highly recommended. The
World Health Organization (WHO) established the limits for recommended selenium
intakes between 25 and 35 μg/d, depending on the genre, with even lower values for infants,
children and adolescents [26]. This recommendation clearly reduced previously defined
dietary limits, with typical values above 50 μg/d [27]. The uptake and accumulation of
selenium by plants define the transference of this element from soils to animals, including
humans. Different plant species have different abilities to take selenium from soil, and
different plant tissues differ in their selenium contents [28,29]. The bioaccumulation of
selenium in food chain components across trophic levels has been investigated for different
ecosystems [30,31]. Therefore, the content of Se in different diets varies significantly as a
function of both soil and plant and animal species. In addition to food sources, drinking
water must be taken into account as a significant source of selenium intake, specifically in
regions with selenium-rich soils or waters [32,33].

The simultaneous essentiality and toxicity of selenium for humans have created a
great controversy about safe limit values for selenium in drinking water. This debate
is not new, since it started in the 1970s and early 1980s, with the scientific discussion
related to the justification of a new recommendation of 50 μg/L in the United States, versus
the originally proposed 10 μg/L concentration for selenium in drinking water [34–36].
The WHO produces its international norms on water quality and human health in the
form of guidelines that are used as the basis for regulation and standard setting. For the
particular case of selenium, the standard limit was fixed at 10 μg/L until it was increased to
40 μg/L in 2011 when the fourth edition of the guideline was published [37]. Nevertheless,
most jurisdictions nowadays continue applying a threshold value of 10 μg/L in their
corresponding legislations [38], including Chile [39] and the European Union. In this last
case, even the proposal approved in 2018 to review the European Directive justified the
maintenance of the 10 μg/L limit against the new recommended value by the WHO [40].
However, the adopted final Directive defined a 20 μg/L limit, which can be increased until
30 μg/L for regions where geological conditions could lead to high levels of selenium in
groundwater [41]. Nevertheless, scientific researchers continue the discussion and propose
new limit values below and above the 10 μg/L concentration [42–44].

The presence of selenium in the environment has a highly irregular distribution
among the atmospheric, aquatic and terrestrial compartments. The latter one is the most
relevant compartment, but natural processes can transfer selenium to groundwaters and
surface waterbodies, such as volcanic activity; rock and soil weathering; leaching of soils;
transportation by groundwater; uptake and release by plants, animals and microorgan-
isms; adsorption-desorption reactions; or chemically and biologically mediated oxidation-
reduction reactions [45]. Although the selenium content of most natural waters does
not threaten human health, the aquifers and the related surface water bodies in natural
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selenium-rich geological areas can present selenium concentrations that require further
treatment to obtain safe drinking water. Chinese, Indian, American and Canadian selenium-
rich regions have been deeply investigated [46–48], but other countries with localized areas
characterized by high selenium contents can be mentioned, such as Argentina, Brazil,
France, Ireland, Israel, Italy or Venezuela [49–56]. Nevertheless, anthropogenic activities
account for a widespread selenium contamination as the result of some industrial activi-
ties, such as coal mining and combustion; gold, silver and nickel mining; metal smelting
(especially pyrometallurgical copper, nickel and zinc production); oil transport, refining
and utilization; and agricultural irrigation with selenium-rich waters [57]. Examples of
many locations where waterbodies have been polluted by these industrial activities have
been deeply identified and investigated [58–70], including the case of Chile, where samples
of drinking water with selenium concentration above 10 μg/L have been analyzed [71].
Since no natural geological area rich in selenium has been highlighted in Chile [72,73],
the presence of selenium in drinking water can be directly related to the copper mining,
smelting and refining activities in most cases [74–76].

Since the management of the high number of published papers about selenium and
drinking water that can be found in bibliography is difficult, bibliometric tools are useful to
handle all this information. Bibliometrics refers to the research methodology employed in
library and information sciences, which applies quantitative analysis and statistics methods
to describe the distribution patterns of publications according to some given categories.
This methodological approach allows the exploration, organization and analysis of a high
number of scientific documents and can be applied to the identification of important
research trends, as demonstrated by several works in the environmental and chemical
engineering fields [77–92], including water pollution aspects [93–103].

The main purpose of this work was to analyze, from a bibliometric perspective,
the scientific literature related to the research on selenium in drinking water published
from 1990 to 2021 in the sources compiled in Scopus. These documents were analyzed
and evaluated according to several categories (annual outputs, leading countries and
institutions, or main journals, subjects and languages) and were used to determine the
quantitative characteristics of the research on selenium removal from drinking water
worldwide. In addition, a bibliometric network analysis was carried out to contribute to the
identification of the most relevant trends related to this topic and possible research gaps.

2. Data Sources and Methodology

The bibliographic search of published scientific literature related to selenium in drink-
ing water was based on the employment of Scopus database. This abstract and indexing
database with full-text links is managed by Elsevier and claims to index over 22,800 active
titles from more than 5000 international publishers. These figures imply that it is the
largest abstract and citation database of peer-reviewed literature and delivers the most
comprehensive view of the world’s research output in the fields of science and technol-
ogy [104]. More than 69 million abstracts with references back to 1969 and more than
6 million records before that year are included. Titles from all regions around the world
are covered, counting non-English titles when abstracts in English are provided with the
documents. In fact, around 20% of titles on Scopus are not published in English, resulting
in more than 40 languages. In addition, more than 50% of Scopus content comes from
outside North America, with important contributions by European, Latin American and
Asian countries. As a result, Scopus offers an extensive coverage of peer-reviewed literature
across the sciences, technology, engineering and mathematics (STEM) fields.

The online search within Scopus was completed in April 2022 after the selection of
“selenium” and “drinking water” as keywords in the Article Title, Abstract, Keywords field
of the search-engine. The keywords drinking and water were introduced together with
quotations to obtain only the papers that include these two words in the exact sequence.
The search was limited from 1990 to 2021 in order to identify the scientific documents
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related to the research on this topic published before 2022. The total number of documents
recovered was 1117.

The analysis of the scientific literature obtained after a systematic bibliographic search
provides a suitable scenario to have a better understanding of the global research situation
in such a relevant subject as removal of selenium from drinking water, which can support
the identification of present hot topics and the definition of future long-term research
strategies. Consequently, the investigated aspects included in this work did not only cover
the quantitative description of the publications (annual outputs, leading countries and
institutions, or main journals, subject categories and languages), but also the review of the
most relevant research topics identified after the study of the corresponding keywords.

3. Results and Discussion

3.1. Bibliometric Analysis of Research Trends on Selenium in Drinking Water (1990–2021)
3.1.1. Publication Year, Document Type and Language of Publications

The distribution of annual publication output identified by Scopus and the total
number of accumulated documents are shown in Figure 2. It is obvious that there is a
continuously increasing general trend in the number of publications that appears each year,
although three different stages can be distinguished. The first one covers the 1990–2002
period and it is characterized by an irregular evolution of the number of publications,
where the years 1997 and 2000 must be highlighted because of their prolific production.
From 2002 to 2011 a much more regular linear increase can be identified but the year 2007
was especially productive and has the highest value in this period. After 2011, another
irregular stage appeared, in this case with a great production rate maintained over time,
since only 2018 did not attain 50 annual publications. As a consequence, the references
published for the last ten years (from 2012 to 2021) account more than half of the total
found publications during the 32-year period (51.3%). Nevertheless, when the accumulated
number of publications was observed, the corresponding rise can be considered as a
quadratic growth and it was decided to apply a quadratic regression to the data. The
obtained equation was y = 0.995·x2 + 2.44·x + 17.4, where y represents the number of
accumulated documents and x the year (starting at 1 for the year 1990). The result of the
regression was a very good fitting, with a R2 value of 0.9991.

The distribution of document types was analyzed. Eleven different document types
were found among the total 1117 publications. Nevertheless, article (967) was the most
frequently used document type comprising 86.6% of total production, followed by review
(65; 5.8% contribution) and proceedings paper (49; 4.4% contribution). These percentages,
and specifically the clear supremacy of articles over other types of publication, are very
concordant with the figures obtained by other authors when analyzing the trends on
the research about other contaminants in water [93,100,105]. The other less significant
categories include book chapter (16), note (7), editorial (5), short survey (3), letter (2),
book (1), erratum (1) and retracted (1).

A clear majority (94.0%) of all the publications were published in English. Several other
languages were identified, Chinese and Russian being the second and third languages,
respectively. The rest of languages represented are compiled in Table 1. English has
undoubtedly turned into the global lingua franca and there has never in the past been
a language spoken more widely in the world than English is today [106]. Consequently,
international communication has moved to a clear pre-eminence of English, especially in
the field of scientific research, where more than 75% of the published documents in the
social sciences and humanities and well over 90% in the natural sciences are written in
English [107]. However, due to China’s fast development in research production and its
high percentage of national journals published in Chinese, the world is experiencing, for
the first time in more than a century, a decrease in the worldwide percentage of active
academic journals published in English and an increase in the percentage of documents
written in Chinese [108].
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(a) 
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Figure 2. Annual (a) and accumulated (b) publication output.
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Table 1. The languages employed by the publications.

Language Publications Contribution (%)

English 1050 94.0
Chinese 33 3.0
Russian 13 1.2
French 7 0.6
Czech 3 0.3

Japanese 3 0.3
Spanish 3 0.3

Bulgarian 2 0.2
German 2 0.2

Hungarian 2 0.2
Moldavian 2 0.2
Romanian 1 0.1
Ukrainian 1 0.1

3.1.2. Publication Distribution of Countries and Institutions

The top 31 countries (the only ones that produced at least 10 documents) ranked by
number of total publications are shown in Table 2. Since the country affiliation is not an
exclusive category (a document can be contributed by authors from more than one country),
some papers may be indexed in more than one country simultaneously. Consequently, the
sum of the number of documents in these categories is above the total number. A reduced
group of countries usually dominate the global scientific production, as in this case, since
the joint contribution of the three first countries in the ranking (USA, China and India)
accounts for 47.3% of the total number of documents. USA is the most productive country,
with 259 papers, which implies a percentage of 23.2%. This leader country was followed
by two Asian countries (China and India) which jointly produce a percentage higher than
the one corresponding to USA (24.7%). After Canada and Japan, the top ten positions are
completed with European countries: among them Turkey is surprisingly the most prolific
country with 44 documents, followed by Italy, Germany, the United Kingdom and France,
which are countries with relevant contributions in most research fields. However, the
presence of countries with limited scientific production in other topics has been previously
identified by other bibliometric studies regarding pollution of drinking water [93]. This
fact was explained by the relative importance of the presence of polluted drinking water in
these parts of the world and some countries, such as Tunisia, Bangladesh, Egypt or Nigeria,
which are included in Table 2, could be mentioned as examples of countries worried by the
presence of selenium in drinking water [109–112].

In fact, these countries worried by the presence of polluted waters have deserving
contributions when additional indicators that give the possibility of having some bench-
marking are analyzed. Besides the total number of publications, two other indicators
that take into account the total population and income (GPD) of the countries have been
considered in Table 2: the number of publications per million inhabitants and the number
of publications per trillion US Dollars (population and income data taken from World
Bank database). On the one hand, when the income indicator is observed in detail, Tunisia
appeared as the leader with a great difference, since it obtained a value above 600 docu-
ment/trillion $, which is an order of magnitude higher than the following countries. In this
ranking, the second, third and fourth positions corresponded to Bangladesh, Egypt and
Pakistan, which are not high-income countries. A group of three European high-income
countries occupied the next three positions: Greece, Sweden and Czech Republic in the fifth,
sixth and seventh places, respectively. On the other hand, the analysis of the population
indicator demonstrated the important research efforts promoted by Scandinavian coun-
tries, such as Sweden, Norway and Denmark, are situated in the first, second and fourth
positions, respectively. Once again, Tunisia must be highlighted, since it occupied the third
position in this ranking, with a contribution above two documents/million inhabitants, a
limit only surpassed by four countries.
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Table 2. The top 31 most productive countries (at least 10 documents).

Country Publications Contribution (%)
Publications/

Million Habitants

Publications/
Trillion US

Dollars GPD

United States 259 23.2 0.786 12.4
China 172 15.4 0.122 11.8
India 104 9.3 0.075 41.6

Canada 61 5.5 1.605 37.9
Japan 46 4.1 0.366 10.5

Turkey 44 3.9 0.522 43.1
Italy 37 3.3 0.621 21.3

Germany 36 3.2 0.432 10.5
United Kingdom 36 3.2 0.536 12.5

France 34 3.0 0.505 14.1
Russian Federation 33 3.0 0.229 23.2

Brazil 32 2.9 0.151 18.3
Sweden 31 2.8 2.995 58.2

Spain 30 2.7 0.634 25.4
Egypt 29 2.6 0.283 70.4

Tunisia 27 2.4 2.285 613.6
Saudi Arabia 25 2.2 0.718 38.4
Bangladesh 24 2.1 0.146 88.6

Pakistan 21 1.9 0.095 65.7
Iran 20 1.8 0.238 48.8

Poland 20 1.8 0.527 36.0
Nigeria 18 1.6 0.087 36.4

Australia 17 1.5 0.662 11.4
Norway 14 1.3 2.602 34.7
Austria 12 1.1 1.348 31.1
Belgium 12 1.1 1.038 25.7
Denmark 12 1.1 2.058 36.6

South Africa 12 1.1 0.202 35.7
Switzerland 12 1.1 1.390 16.2

Greece 11 1.0 1.027 59.5
Czech Republic 10 0.9 0.935 49.3

The top 18 institutions (the only ones with at least 10 documents) are compiled in
Table 3. Among these top 18 institutions, 5 were in China and 4 in the USA, thus al-
though USA was the most productive country, this production was shared more among
different institutions. In the case of China, its production is more concentrated and the
leader (Chinese Academy of Sciences with 40 documents) and the second (Institute of Geo-
graphical Sciences and Natural Resources Research with 19 documents) institutions were
Chinese. Surprisingly, the third position was occupied by a Tunisian university (University
of Sfax), which contributed with 16 documents, just two more than the production of the
US EPA, a very relevant institution in all the topics related to water pollution. The role of
the Panjab University in India, with 14 documents published, the same amount that US
EPA, must be highlighted. Moreover, the great concern about the effects of selenium on
human health justified the presence of prestigious medical institutions in the ranking, such
as the Swedish Karolinska Institute, which is one of Europe’s largest and most prestigious
medical institutions, or the Columbia Mailman School of Public Health in the USA.
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Table 3. The top 18 most productive institutions (at least 10 documents).

Institution Publications Contribution (%)

Chinese Academy of Sciences (CHINA) 40 3.6
Institute of Geographical Sciences and Natural

Resources Research (CHINA) 19 1.7

University of Sfax (TUNISIA) 16 1.4
Università degli Studi di Modena e Reggio Emilia (ITALY) 15 1.3

University of Chinese Academy of Sciences (CHINA) 15 1.3
Panjab University (INDIA) 14 1.3

Environmental Protection Agency (USA) 14 1.3
Ministry of Education (CHINA) 13 1.2

Northeast Agricultural University (CHINA) 13 1.2
The University of Chicago (USA) 13 1.2

CHU Habib Bourguiba (TUNISIA) 13 1.2
University of Calgary (CANADA) 12 1.1
Karolinska Institutet (SWEDEN) 12 1.1

University of Saskatchewan (CANADA) 12 1.1
Columbia University (USA) 12 1.1

Universidade de São Paulo (BRAZIL) 10 0.9
Columbia Mailman School of Public Health (USA) 10 0.9

Universidade Federal de Santa Maria (BRAZIL) 10 0.9

3.1.3. Distribution of Output in Subject Categories and Journals

The distribution of subject categories defined by Scopus is shown in Table 4, where the
9 most popular categories are compiled (the only ones with at least 40 articles), taking into
consideration once again that some documents can be included in more than one subject,
since it is not an exclusive category. The ranking indicates that Environmental Science was
the most common subject, but the role of the biomedical sciences must be highlighted, since
Medicine occupied the second position and the third position corresponded to Biochemistry,
Genetics and Molecular Biology. Moreover, Pharmacology, Toxicology and Pharmaceutics oc-
cupied the fifth position of the ranking, just after Chemistry in the fourth position. These
results are in agreement with those ones obtained by a bibliometric analysis applied to the
research trends on lead in drinking water [100], but they do not fit as well with the trends
identified in the case of a bibliometric analysis about arsenic in drinking water [93]. The
Engineering category was very relevant and it occupied the second position in the ranking,
while in this case, it occupied the eighth position (49 documents), just two publications
more than chemical engineering, which ranked ninth with 47 documents. This fact gives a
clear idea about the significant efforts applied to the search of effective technical solutions
to the problems caused by the presence of arsenic in drinking water, but in the case of
selenium, the efforts are more focused on the identification of the health effects of the intake
of selenium.

The distribution of outputs in journals is shown in Table 5. The Scimago Journal
Ranking indicator (SJR) of the top 9 journals, which are the only ones that published at
least 15 articles, was also included. The two leading journals must be highlighted since
their productions more than double the production of the journal in the third position. On
the one hand, Biological Trace Element Research was the most prolific journal (54 documents)
in articles related to selenium and drinking water. This journal is focused on the inter-
disciplinary field of research on the biological, environmental, and biomedical roles of
trace elements. On the other hand, Science of the Total Environment occupied the second
position in the ranking with 44 documents. It is a multi-disciplinary journal for publication
of original research on the whole environment, which includes the atmosphere, hydro-
sphere, biosphere, lithosphere and anthroposphere. Therefore, these journals confirmed
the relevance of the health and environmental aspects of the presence of selenium in the
water bodies. A glance at the rest of the journals in the table is enough to discover the
importance of the environmental studies regarding selenium, since all these journals con-
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tain the word environmental in their title, except the Journal of Trace Elements in Medicine
and Biology, which covers biomedical issues related to trace elements. The most relevant
journals according to the JCR indicators among the top journals are Environmental Science
and Technology and Environmental Health Perspectives, both with JCR values above 2 (2.851
and 2.257, respectively). On the contrary, Environmental Monitoring and Assessment was the
journal with the lowest JCR value, with a value below 0.6 (0.590).

Table 4. The top 9 most popular subject categories (at least 30 documents).

Ranking Subject Publications Contribution (%)

1 Environmental Science 471 42.2
2 Medicine 359 32.1
3 Biochemistry, Genetics and Molecular Biology 281 25.2
4 Chemistry 226 20.2
5 Pharmacology, Toxicology and Pharmaceutics 164 14.7
6 Agricultural and Biological Sciences 105 9.4
7 Earth and Planetary Sciences 59 5.3
8 Engineering 49 4.4
9 Chemical Engineering 47 4.2

Table 5. The top 8 most popular journals (at least 15 documents).

Source
SJR 2020
(Scopus)

Publications Contribution (%)

Biological Trace Element Research 0.649 54 4.8
Science of the Total Environment 1.795 44 3.9

Environmental Science and Pollution Research 0.845 19 1.7
Environmental Research 1.460 18 1.6

Environmental Science and Technology 2.851 18 1.6
Environmental Health Perspectives 2.257 16 1.4

Environmental Monitoring and Assessment 0.590 15 1.3
International Journal of Environmental Research and Public Health 0.747 15 1.3

Journal of Trace Elements in Medicine and Biology 0.739 15 1.3

3.1.4. Most Frequently Cited Papers

The top 10 articles according to the number of citations they have received are pre-
sented in Table 6. The numbers of citations increased from 226 for the last article to 1278 for
the leading article that occupied the first position of the ranking. In addition to the total
number of citations, the Field-Weighted Citation Impact (FWCI) was also included. FWCI
is the ratio of the total citations actually received by the denominator’s output, and the
total citations that would be expected based on the average of the subject field. This way,
an FWCI value equal to 1 means that the output performs just as expected for the global
average. Values above 1 indicate that the output is cited more than expected according to
the global average, while values below 1 indicate that the output is cited less than expected
according to the global average. Taking into account the FWCI values, the documents in
Table 2 present remarkable performance, with values above 3 in most cases; however, the
document in the 5th position must be highlighted, since it attains a value above 11, which
clearly indicates that this work has achieved a great impact.
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Table 6. The top 10 most cited papers.

Ranking Articles
Times
Cited

FWCI

1

Title: Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a
toxicological model
Authors: Weber, L.W.D., Boll, M., Stampfl, A.
Source: Critical Reviews in Toxicology
Published: 2003

1278 3.37

2

Title: Metals and micronutrients—Food safety issues
Authors: McLaughlin, M.J., Parker, D.R., Clarke, J.M.
Source: Field Crops Research
Published: 1999

729 4.97

3

Title: Lung cancer in never smokers: Clinical epidemiology and environmental risk factors
Authors: Samet, J.M., Avila-Tang, E., Boffetta, P., (...), Thun, M.J., Rudin, C.M.
Source: Clinical Cancer Research
Published: 2009

348 3.73

4

Title: Arsenic exposure and cardiovascular disease: A systematic review of the
epidemiologic evidence
Authors: Navas-Acien, A., Sharrett, A.R., Silbergeld, E.K., (...), Burke, T.A., Guallar, E.
Source: American Journal of Epidemiology
Published: 2005

300 3.18

5

Title: The effects of arsenic exposure on neurological and cognitive dysfunction in human
and rodent studies: A review
Authors: Tyler, C.R., Allan, A.M.
Source: Current Environmental Health Reports
Published: 2014

274 11.79

6

Title: Survey of arsenic and other heavy metals in food composites and drinking water and
estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India
Authors: Roychowdhury, T., Tokunaga, H., Ando, M.
Source: Science of the Total Environment
Published: 2003

251 6.13

7

Title: Trace elements and cancer risk: A review of the epidemiologic evidence
Authors: Silvera, S.A.N., Rohan, T.E.
Source: Cancer Causes and Control
Published: 2007

248 3.10

8

Title: Health risks from the exposure of children to As, Se, Pb and other heavy metals near
the largest coking plant in China
Authors: Cao, S., Duan, X., Zhao, X., (...), He, B., Wei, F.
Source: Science of the Total Environment
Published: 2014

242 7.48

9

Title: Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities
and biochemical parameters in rats exposed to aluminium
Authors: El-Demerdash, F.M.
Source: Journal of Trace Elements in Medicine and Biology
Published: 2004

237 2.08

10

Title: Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning
Authors: Kalia, K., Flora, S.J.S.
Source: Journal of Occupational Health
Published: 2005

226 3.72

Although further comments about the most important research trends will be intro-
duced in the next sections after the analysis of the most employed author keywords and
the bibliometric network analysis, the reading of the most cited publications gave an initial
idea about some relevant issues that have attracted attention from researchers investigating
selenium in water. According to this list of top cited papers, health and toxicological as-
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pects of selenium have mainly captured the attention of the researchers along the analyzed
period. The most cited article was a review that covered the hepatotoxicity and mechanism
of action of haloalkanes [113]. It mentioned the antioxidant effects of selenium to mitigate
the damage induced by these toxic compounds. Another article in the list (in the ninth
position with 237 citations) investigated the role of selenium in alleviating the negative
effects of aluminum [114], while other three articles were focused on the interactions be-
tween selenium and arsenic in the human body [115–117]. Moreover, the decreased risk of
cancer and the preventive effects derived from diets containing adequate levels of selenium
have been analyzed by two articles among the most cited [118,119]. Another relevant issue
investigated by the other three papers in Table 6 is the identification of the presence of
selenium and the quantification of the corresponding concentrations in different water, soil,
dust, air and locally produced food samples, including the most important health risks and
exposure levels [120–122]. Therefore, none of the 10 most cited documents cover aspects
related to treatment alternatives to remove selenium and other metals from water, and,
in fact, to find a document regarding this issue, the document in the 12th position in the
ranking (216 citations) must be consulted, which explains the removal of some elements,
including selenium, just by incorporation into hydrocalumite and ettringite [123]. This fact
confirms again that the search of effective technical solutions to the problems caused by the
presence of selenium in drinking water has not been a relevant research topic.

3.1.5. Distribution Analysis of Author Keywords and Trending Topics of the Research

The list of the 46 most often used keywords (the only ones that were mentioned at
least 100 times) is shown in Figure 3. Obviously, it was clear that “Selenium” was the
most frequent keyword as it was selected in 879 articles. The second positions of the
ranking corresponded to the other expression selected to be introduced in the article
title, abstract, keywords field of the search-engine database: “Drinking water” appeared
598 times. However, these figures indicated that only 69.6% of all the identified documents
used “Selenium” as keyword, while the value for “Drinking water” decreased to 45.9%.
Therefore, the selection of both expressions as keywords did not occur for more than half
of the documents analyzed in this study. This fact pointed to the consideration of lower
global concern and consequent scarcer research efforts about the presence of selenium in
drinking water and the needs of treatment for its removal when compared to other metals
or metalloids [124,125]. A further analysis of the keywords revealed a more important
interest focused on the health and toxicological effects of selenium. The third position of
“Controlled study” (444 times) in the keyword ranking underpinned this idea, confirmed
also by the presence of other terms directly related to health studies, such as “Nonhuman”,
“Male”, “Human”, “Animal experiment”, “Female” or “Rats” (all of them selected as keywords
more than 220 times).

A further look at the results was enough to find other ten metallic and non-metallic
elements in the ranking: “arsenic” (340 times), “zinc” (233 times), “cadmium” (209 times),
“lead” (197 times), “manganese” (184 times), “copper” (184 times), “chromium” (184 times),
“iron” (166 times), “nickel” (157 times) and “mercury” (105 times). On the one hand, the
study of the synergistic and antagonistic effects selenium may cause on the toxicity of
these other elements is a hot topic under investigation [12,126,127]. On the other hand, the
evaluation of the presence and the distribution of these water pollutants implied general
water sampling and characterization of the concentrations of all these elements in drinking
water, water bodies or in different samples of environmental interest [61,128,129]. Lastly,
among the top most frequent keywords, terms directly related to possible technologies for
selenium removal in drinking water or wastewater treatments cannot be found.
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Figure 3. The top 46 most frequently used keywords.
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3.1.6. Bibliometric Network Analysis

In order to provide more information about of the most important research topics
and their evolution through the studied period, a bibliometric network analysis based on
science mapping was applied. This methodology is useful to analyze a field of research,
since it allows the identification and visualization of the conceptual subdomains (partic-
ular themes or general thematic areas) and provides its thematic evolution throughout
time [130]. Although various software tools are available for science mapping analysis,
SciMAT software (Universidad de Granada, Granada, Spain) was selected due to its visual
and easily understandable strategic diagrams and thematic evolution structure. SciMAT is
an open-source science mapping software tool that can be freely downloaded, modified
and redistributed according to the terms of the GPLv3 license [131].

The bibliometric network analysis conducted in this paper was based on four phases of
analysis within a specified set of 4 periods (1990–2001, 2002–2011, 2012–2019 and 2020–2021).
These periods were defined according to the different trends previously identified when
the annual production was analyzed. The last period covers the years 2020 and 2021, which
have suffered the pandemic lock-down. First, the research themes were identified using a
frequency and network reduction of words (the value of the minimal frequency of a word to
be considered was 3). The clustering algorithm used was the simple centers algorithm. To
normalize data, Salton’s cosine was used to create the strategic diagram and the equivalence
index was applied to normalize the co-word network of the thematic evolution structure.
Secondly, the previously identified themes were then plotted on a bi-dimensional diagram
composed of four quadrants, in which the vertical axis characterizes the density and the
horizontal axis characterizes the centrality of a theme [132]. Thirdly, the results were
organized in thematic network structures of themes as clusters, and the corresponding
thematic evolution structure was obtained. These thematic network structures characterize
the co-occurrence between the research themes and highlights the number of relationships
and internal strength among them, while the thematic evolution structure provides an
appropriate image of how the themes preserve a conceptual nexus throughout the defined
subperiods. In both cases, the size of the clusters is proportional to the number of core
documents and the links indicate cooccurrence among the clusters. Solid lines indicate that
clusters share the main theme, and dashed lines represent the shared cluster elements that
are not the name of the themes. The thickness of the lines is proportional to the inclusion
index, which indicates that the themes have elements in common. Finally, the scientific
contribution was measured by analyzing the most important research themes and thematic
areas using the h-index, sum of citations, core documents centrality, density and nexus
among themes [133].

The strategic diagram of each subperiod is depicted in Figure 4. According to their
situation in these strategic diagrams, the themes can be classified into four different cate-
gories [134]:

– First quadrant (high centrality and high density): Motor themes. Trending themes for
the field of research with high development.

– Second quadrant (high centrality and low density): Basic and transversal themes. Themes
that are inclined to become motor themes in the future due to their high centrality.

– Third quadrant (low centrality and low density): Emerging or declining themes.
Themes that require a more detailed analysis to define whether they are emerging
or declining.

– Fourth quadrant (low centrality and high density): Highly developed and isolated
themes. Themes that are no longer trending due to a new concept or technology.

The strategic diagrams present 17 clusters in total, 7 of them are motor themes, 4 are
basic and transversal, 2 are emerging or declining themes and 4 are highly developed and
isolated themes. The size of the clusters represents the number of total citations (the exact
values appear in each cluster). In addition, h-index and absolute centrality and density
values are presented for each cluster in Table 7.
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The thematic evolution structure is shown in Figure 5, which explains the evolution
of the research field over the different subperiods considered in this study. In this way,
each individual theme relevance is illustrated through its cluster size as well as with its
relationships throughout the different subperiods. Two different continuity lines among
clusters that cover all the time periods can be clearly identified. The first one includes the
clusters Rat, Selenium and Oxidative-stress, while the second one is formed by the cluster
Drinking-water and Trace-element. The thematic network structures of these two groups can
be visualized in Figures 6 and 7, respectively (while the network structures of the rest of
clusters are compiled as Supplementary Material), which provide a good representation of
the co-occurrence among keywords and allow the depiction of complex patterns.

Figure 4. Strategic diagrams of the subperiods: 1990–2001 (a), 2002–2011 (b), 2012–2019 (c) and
2020–2021 (d).
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Table 7. Citations, h-indexes and centrality and density values of the different clusters identified in
the bibliometric network analysis.

Cluster Citations h-Index Centrality Density

Subperiod 1
(1990–2001)

Rat 1373 27 49.60 19.06
Drinking-water 1988 16 19.10 13.82

Subperiod 2
(2002–2011)

Selenium 7051 49 125.8 33.01
West Bengal 1858 35 28.34 17.44

Glutathione-peroxidase 1335 31 54.04 11.51
Speciation 1516 30 16.69 17.80

Trace-element 1080 29 26.05 4.03

Subperiod 3
(2012–2019)

Rat 1715 30 66.49 34.81
Drinking-water 2764 30 59.20 15.56

Soil 770 26 26.81 10.33
Lead 678 23 30.13 11.80

Supplementation 247 23 17.17 3.23
Plasma-Mass-Spectrometry 631 19 16.83 18.18

Adsorption 842 17 5.14 17.56

Subperiod 4
(2020–2021)

Drinking-water 412 8 63.42 25.93
Oxidative-stress 92 7 20.11 8.97

Adsorption 44 4 18.96 19.33

Figure 5. Thematic evolution structure of selenium and drinking water research (1990–2021).
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Figure 6. Evolution of the thematic network structure of the clusters Rat/Selenium/Oxidative-stress:
1990–2001 (a), 2002–2011 (b), 2012–2019 (c) and 2020–2021 (d).

The clusters Rat and Selenium were motor themes in the three first subperiods, but
oxidative-stress was a basic and transversal theme in the last subperiod. The cluster
selenium was the most cited one during the second subperiod (2002–2011), but the other
clusters were less cited than the cluster Drinking-water in the corresponding subperiods.
These clusters include the keyword “Selenium”, but in the case of the last subperiod,
complemented with other keywords that give a direct link to health and toxicological
aspects and animal testing, such as “Toxicity”, “Liver”, “Rat” or “Mice”. Among these
topics, the role of selenium and the glutathione system in the context of defense against
oxidative agents must be highlighted, since the keywords “Oxidative-stress”, “Glutathione”,
“Glutathione-Peroxidase” and “Antioxidant” are included in these clusters. Therefore, the
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importance of the health and toxicological effects of selenium that was proposed from the
analysis of the most frequent keywords is confirmed by the bibliometric network analysis.

 

Figure 7. Evolution of the thematic network structure of the clusters Drinking-water/Trace-element:
1990–2001 (a), 2002–2011 (b), 2012–2019 (c) and 2020–2021 (d).

The cluster Drinking-water (renamed Trace-element in the second subperiod) started
as motor theme in the first subperiod, was an emerging theme in the second subperiod
(2002–2011) and it returned to the first quadrant as motor theme in the last two subperiods.
The list of keywords that belong to this cluster includes keywords such as “Heavy-Metal”,
“Lead”, “Cadmium”, “Arsenic”, “Iron”, “Nickel” or “Aluminium”, which were more relevant
in the first two subperiods. After the analysis of the most frequent keywords, two different
reasons were presented to justify the presence of all these elements as keywords: the study
of the synergistic and antagonistic effects selenium may cause on the toxicity of other
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elements and the evaluation of the presence and the distribution of these water pollutants
in water sampling. The detailed study of the keywords included in the clusters identified in
the bibliometric network analysis gave more relative importance to the first reason, the one
related to synergistic and antagonistic toxicological effects, due to the presence of keywords
such as “Exposure”, “Health”, “Risk”, “Mortality”, “Lung” or “Kidney”. In fact, keywords
more directly related to the second reason, the one related to environmental sampling and
measuring of these elements that are pollutants, can be found in other clusters with lower
relevance. For instance, in the second subperiod, the cluster Speciation (Figure S3) included
keywords such as “Samples”, “Preconcentration”, “Water”, ”Soil” and “Atomic Absorption
Spectrometry”. This cluster was a highly developed and isolated theme, which gives an
idea about the well-established technical solutions provided by analytical chemistry for
speciation and quantification of selenium in environmental samples. Another cluster in
the third subperiod, called “Plasma-mass-spectrometry”, also considered a highly developed
and isolated theme, compiled more keywords regarding these analytical aspects, such as
“Water samples”, “Speciation Analysis”, “ICP-MS”, “HPLC-ICP-MS”, “Solid-Phase-Extraction”
and “Atomic Absorption Spectrometry” (Figure S4).

The lack of terms directly related to possible technologies for selenium removal from
water during the analysis of the most frequently used keywords was at least partially solved
when the cluster Adsorption was examined (Figures S7 and S9). This cluster appeared in
the third subperiod (2012–2019) and had continuity until the last subperiod. In both cases
it must be considered a highly developed and isolated theme, which was not trending.
The list of keywords in this cluster included “Removal”, “Arsenic-Removal”, “Sorption”,
“Membrane” and “Selenate”, which gave an idea about the most investigated technologies
for selenium removal: the use of adsorbents and membrane-assisted separation processes.

The other cluster identified as motor theme not previously mentioned is West-Bengal
during the second subperiod from 2002 to 2011 (Figure S1). This keyword in strongly
correlated to Bangladesh and both regions suffered similar problems. On the one hand,
uncontrolled industrial effluents are an important potential source of selenium pollution in
these areas [135]. On the other hand, the dietary status of selenium is adversely affected
by a chronic excessive ingestion of arsenic. These high levels of chronic arsenic ingestion
from well water by people from these regions accelerate the excretion of selenium lowering
the body’s content of this essential trace element [136]. Keywords such as “Exposure”,
“Contamination”, “Groundwater”, “Dietary-Selenium” and “Metabolism”, which appeared in
this cluster, confirmed this double problem that must be solved in these areas.

3.2. Review of Current Treatment Alternatives for Selenium Removal from Drinking Water

Although the health aspects of the presence of selenium in drinking water have been
the focus of most research efforts covering this topic, the increasing interest from the
scientific community in technical processes for removal of selenium from water has been
proved by the publication of some recent reviews that cover this field [137–143]. The list
of commercially available and emerging technological options for selenium removal is
extensive, but all the alternatives can be included in one of the following main categories:

• Adsorption and ion exchange.
• Coagulation-flocculation-precipitation.
• Membrane-based processes.
• Biological treatments.

Since more detailed reviews are available, the aim of this section is just to mention the
most important trending topics identified as a consequence of the bibliometric analysis,
without the intention of compiling a concise register of all the scientific bibliography
published about technical solutions to remove selenium from water.

3.2.1. Adsorption and Ion Exchange

This treatment category can be considered the most important one according to the
number of papers published and the relevance of them. In fact, the unique article included
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among the most cited ones in Table 6 that presented results of a technical solution for
selenium removal from water was related to the use of anionic clay minerals based on
aluminum hydroxides as adsorbents/ion exchangers [123].

Iron compounds have certainly been the most recurrent materials tested as adsorbents
for selenium removal from water. Iron oxides, hydroxides and oxyhydroxides, as well as
zero-valent iron (ZVI), have frequently been reported as efficient adsorbents for selenium
oxyanions [144–154]. The mechanisms that rule selenium oxyanions adsorption on iron
compounds have been determined and modelled [155] and the effects that pH, surface
loading, and ionic strength have on these mechanisms have been reported [156]. Selenite
was more effectively removed that selenate by natural iron oxides (goethite and hematite)
under identical conditions [157] and equivalent results were confirmed for other iron
compounds derived from corrosion of ZVI [158]. Iron compounds resulted in a cost-
effective solution, since they are not expensive and some are even waste materials, such
as water treatment residuals, bauxite-processing red mud or fly ashes, can be directly
reused as sorbents [159,160]. An innovative approach pointed to the employment of
nanoparticles, nanocomposites and other nanomaterials for the intensification of selenium
removal [161,162]. ZVI must be considered a very appropriate option for selenium removal,
since it is highly reactive and widely available. ZVI can be easily oxidized by dissolved
oxygen, contaminants themselves or even just water, resulting in iron oxides, hydroxides
and oxyhydroxides as aqueous corrosion products [163]. Enhancing the corrosion of ZVI
has been observed as an effective approach to promote its decontamination performance
and the role of additional oxidants in this promotion has gained relevance. The addition of
chemicals, such as hydrogen peroxide, sodium hypochlorite or potassium permanganate,
achieved highly efficient and rapid selenium oxyanion removal [164–166]. Moreover,
some treatment proposals have taken advantage of the magnetic properties of some iron-
based adsorbents to improve the performance of the process by application of magnetic
fields [167–169].

The removal of selenium from water by other metallic compounds, specifically oxides
and hydroxides, has been reported. Activated alumina adsorption is known to be an
effective and inexpensive technology for the removal of metals from drinking water and
has been successfully applied to the case of selenium oxyanions [170–175]. Once again,
activated alumina was more effective for selenite adsorption than selenate [176,177]. Other
research works have proposed the employment of metallic oxides, such as titania, silica
or zirconia, for this same purpose [178–182]. In some cases, the developed adsorbents
were highly selective to selenite, even in the presence of selenate or selenide [183,184].
Natural and modified zeolites are high-performance adsorbents that have been imple-
mented in the treatment of drinking water and have demonstrated that the selenium
limits for drinking water can be achieved with specific process designs based on these
aluminosilicates [185–187].

The removal of toxic oxyanions from water by means of adsorption onto carbon is a
well-known process and an increasing number of drinking water treatment plants have
installed activated carbon filters as secondary or tertiary treatments for the removal of
micropollutants [188]. Both granular activated carbons (GACs) and powdered activated
carbons (PACs) have been applied to the removal of selenium and the results revealed prac-
tical total removal of selenite (initial 100 μg/L concentration) with contact times not longer
than 60 min under acidic or neutral conditions, but worse performance under alkaline
pH [189]. However, the results with higher initial concentrations (5–75 mg/L solutions)
demonstrated that, although relatively significant removal (87%) was observed for the
lowest concentration tested, higher concentrations resulted in reduced removal percent-
ages [171]. Besides, the use of activated carbons as supports to form stable composites
loaded with metallic compounds has been reported. This way, the physical sorption that
characterized the retention of selenium oxyanions in activated coals can be completed with
the chemical adsorption provided by metal oxides and hydroxides, such as iron or cop-
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per [190,191]. This combination enhanced the removal of selenium oxyanions, particularly
for selenate, which was only partially removed by activated carbons [192].

Layered double hydroxides (LDHs), also called anionic clays, contain positive-charged
layers and counter-anions in the interlayer space. They are ordered according to the
generic layer sequence [OHM2OH A OHM3OH]n, where M2 and M3 represents layers
of divalent and trivalent metal cations, respectively, OH are layers of hydroxide anions,
and A are layers of counter-anions. These materials have demonstrated effective removal
of oxyanions from water due to the combination of adsorption in their large surface area
and high anion exchange capacity. For the case of selenium removal, Al+3 was clearly the
most preferred trivalent cation of the LDHs evaluated [193–195], but examples of Fe+3 in
combination with Zn+2 can be found [196,197]. The tests with Mg/Al and Zn/Al LDHs
with intercalated chloride revealed that the oxidation state of selenium was not too relevant,
since the adsorption trends for both selenite and selenate on these LDHs were similar under
the experimental conditions [198]. The presence of zwitterions instead of the classical
anions in the interlayer space can imply a better adsorption capacity and selectivity for the
removal of oxyanions. As example, the use of the amino acid glycine replacing nitrate in a
Ni/Al LDHs increased the removal of selenate from 34 to 83% [199]. Another innovative
approach identified was the loading of ZVI in a Mg/Al LDH, which enhanced the removal
of selenate by incorporation of reductive immobilization mechanisms [200]. Nevertheless,
the removal of selenium by LDHs can be severely affected and even inhibited by the
presence of competitive anions in the water to be treated [201].

The application of commercial ion exchange resins for selenium removal has been
reported. Articles describing the performance of strong and weak basic anionic resins in
the presence of selenite and selenate are common [202–207], although these ion exchange
processes have to deal with two important disadvantages. On the one hand, the occurrence
of other oxyanions, such as nitrate or sulfate, implies a strong competition for the sorption
sites in the resins. Since typically the concentrations of these competitive anions are several
orders of magnitude higher that the selenium concentrations, resin can be exhausted rapidly
and selenite and selenate removal inhibited [208]. On the other hand, ion exchange resins
do not appear to be the most economical option, especially when compared to alternative
adsorbents, which result in being clearly cheaper [197]. Consequently, research efforts
have been focused on the search for solutions to improve these two drawbacks that ion
exchange resins present. Low-cost ion exchangers derived from waste biomass [209,210]
and inorganic ion exchangers based on silicates [211] have been investigated for selenium
removal with successful results and can be considered a valid option to reduce the eco-
nomic costs of the process. In order to improve the selectivity of the resins for selenium
oxyanions and avoid the competition of other anions, innovative ligand and chelating
resins [212–214] and metal-loaded cationic resins [215] have been proposed. Nevertheless,
further research efforts are still required to identify more selective ion exchangers for the
removal of selenium from aqueous solutions.

3.2.2. Coagulation-Flocculation-Precipitation Followed by Filtration

The direct precipitation of selenium compounds is not an adequate technology for
selenium removal from water. Selenite and selenate oxyanions are the most frequent
species of selenium in waters and, in contrast to the low solubility of metallic selenides,
most metallic selenites and selenates are soluble in water [3,216]. However, the precipitation
of Se+4 by sulfide ions is a well-known process, although the nature and characteristics of
the solids formed in selenium-sulfide systems are not totally defined. The role of selenium
disulfide (SeS2) is crucial, but sulfur and selenium are miscible in all proportions and
can form complex polymer-like molecules, thus the sulfur-selenium solid solutions are
composed of cyclic Se–S rings containing a variable number of Se and S atoms [217]. Selenite
removal at neutral pH by reductive precipitation using sodium sulfide as reducing agent
(with S/Se molar ratios between 1.5 and 11) has been investigated and the precipitation
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reaction went to completion with less than 5 μg/L of soluble selenium remaining in solution
after 10 min at ambient temperature [218,219].

Ferric coagulants, such as FeCl3 or Fe2(SO4)3, are frequently used in water treat-
ments due to their availability and low price. Some metals and metalloids species can
co-precipitate or adsorb onto the surface of these ferric coagulants. Selenite behaves in
this way and is readily removed through ferric co-precipitation. However, this treatment
method is not adequate for selenate [220], but a previous reduction pretreatment, for ex-
ample with sulfite, has been successfully applied to transform selenate into selenite and
remove it by ferric coagulation [221]. Once again, selenium concentration below 5 μg/L in
the treated effluent were achieved by ferric coagulants [222]. Aluminum coagulants, such
as AlCl3 or poly-aluminum chloride PAC, are very commonly used for water treatment too,
since Al cations hydrolyze quickly and form abundant hydroxide precipitates in situ, which
can act in a similar way to their homologous ferric compounds. Nevertheless, the research
about the use of aluminum coagulants for selenium removal has demonstrated that the
use of ferric compounds was preferred, since they were much more efficient [223,224].
Nevertheless, the performance of the coagulation process can be enhanced with the ad-
dition of commercially available polymeric flocculants, which enhanced the removal of
selenium [225].

In electrocoagulation, an electrical current is used to generate metallic ions from
a sacrificial anode immersed in the water to be treated. This way, continuous in situ
generation of ions that polymerize rapidly and act as coagulants is possible. Although
aluminum sacrificial anodes have been tested with satisfactory results [226], iron has
been most frequently selected due to better sedimentability properties of the precipitated
particles [227]. Regardless of the applied coagulation and flocculation process, filtration
is required to remove the particles and microfiltration membranes [228] or alternative
filtration media, such as sand filters [229], must be implemented as post-treatment.

3.2.3. Membrane-Based Processes

The removal of toxic metals and metalloids from environmental aqueous samples
with high salinity has been a rising area for membrane separation, because, under these
circumstances, they provide a better solution than the technologies explained in the two
previous sections, which can suffer worse performance due to elevated ionic contents.
Pressure assisted membranes are good candidates for the removal of selenium, but the
selection of the most appropriate technology must take into account the balance between
high permeate production and efficient selenium rejection.

One the one hand, the strictest membranes, such as reverse osmosis (RO) and tight
nanofiltration (NF), produce relatively low permeation fluxes and require high applied
pressure, but the rejection percentages are maximal. On the other hand, less restrictive
membranes, such as loose NF or ultrafiltration (UF), are characterized by production
of larger volumes of permeate, but the removal performances are often considerably
lower [230].

Although RO and NF are the most frequent pressure-assisted membrane technologies
selected to remove selenium from water because of the small size of the selenium oxyanions,
which is around 2.4 Å [137], an example of the application of UF to eliminate selenium
was found [231]. This work investigated the potential to remove both Se+4 and Se+6 states
by different polymeric and ceramic membranes. On the one hand, the use of commercial
polyamide UF membranes with MWCO values between 2.5 and 3.5 kDa implied high
permeate fluxes (more than 5 × 10−5 m3/m2·s) and rejection percentages around 90%
and 95% for Se+4 and Se+6, respectively, with very little influence of the initial selenium
concentration. The higher rejection of Se+6 can be justified by its stronger electrostatic
interactions, since the charge of Se+6 oxyanions was higher than the one corresponding
to Se+4 oxyanions for most pH values. The most extreme case was the rejection at pH 1.5,
where neutral H2SeO3 is not rejected by the UF membrane while HSeO4

− showed a
rejection value above 40% (similar case when HseO3

− was compared to SeO4
−2). Even

506



Int. J. Environ. Res. Public Health 2022, 19, 5834

when the charge of the oxyanions were equal, steric effects favored the rejection of Se+6

versus Se+4. The importance of the electrostatic interaction in the rejection of selenium
oxyanions was confirmed by the decreased rejection values due to higher ionic strength.
On the other hand, the performance of a ceramic UF membrane with MWCO 8 kDa
exhibited lower rejection percentages: around 30% and 80% for Se+4 and Se+6, respectively
(although the permeate flux doubled the values of the polymeric membranes). However,
these rejection values were greatly improved by addition of chitosan as chelating agent to
improve selenium removal.

The first examples of the application of RO to selenium removal were published
in the late 1970s and 1980s [140]. In contrast to arsenic, where the oxidation state of
the element highly determined the performance of the membrane process due to the
presence of neutral species of As+3 [93], selenium appears as negatively charged oxyanions
in most environmental water samples and both Se+4 and Se+6 are efficiently rejected
by RO membranes [232]. Several studies have analyzed in detail the permeability of
selenium species through RO membranes and the interactions with other ions in aqueous
solution [233,234]. Nevertheless, RO can be an inadequate solution to treat streams with
excessive salinity, due to the extreme osmotic pressure these types of solutions present. As
an example, deep formation water, which is extracted as an undesired byproduct from oil
production wells, can be mentioned, since its hypersalinity requires pressure conditions
exceeding 200 bars across the RO membrane [235]. Some illustrative case studies of the
application of RO to the removal of selenium are compiled in Table 8. The rejection
percentages attained by RO membranes are higher than 94%, with some examples around
100%, but the lower rejection values corresponded to initial selenium concentrations below
100 μg/L. However, the permeate fluxes are significantly reduced and due to the balance
between simultaneous high water permeability and rejection that NF presents, it can be
considered a most adequate technology to achieve this goal [236]. Table 9 introduces some
relevant articles that covered the treatment by NF of water samples with high selenium
content. An analysis of the results of these works pointed to a more valuable compromise
solution by implementation of NF. The rejection of selenium maintained equivalent values
to those obtained by RO, but NF provided increased permeate production, with values at
least an order of magnitude higher than the case of RO [237].

Table 8. Examples of application of reverse osmosis for selenium removal from water.

Treated Water Membrane
ΔP

(bar)
Permeate Flux

(m3/m2·s)
Initial [Se]

(μg/L)
Removal

(%)
Reference

Agricultural drainage water - 55 1.1 × 10−7 30,000 99.9 [232]

Mining polluted groundwater PAC1/TW30
(Ionics/Filmtec) 7 - 550 98 [230]

Synthetic aqueous solution
(previous biological treatment)

ESPA
(Hydranautics) 8 - 326 99 [238]

Groundwater BW30
(Filmtec) 13 1.5 × 10−5 15 94 [239]

Mining polluted groundwater - - - 21 100 [240]
Potabilization inlet water - - - 5 100 [241]

Previously NF treated landfill leachate BW30
(Filmtec) 76 3.6 × 10−6 63 94 [242]
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Table 9. Examples of application of nanofiltration for selenium removal from water.

Treated Water Membrane
ΔP

(bar)
Permeate Flux

(m3/m2·s)
Initial [Se]

(μg/L)
Removal

(%)
Reference

Agricultural drainage water Unidentified
(Filmtec) - - 3000 95 [243]

Coal-fired power plant
scrubber water

NF3A/PNF2
(SEPRO) - - 634 98.6 [148]

Synthetic aqueous solution POSS-TFN
(non-commercial) 10 1.5 × 10−5 100,000 97.4 [244]

Synthetic aqueous solution UiO-66-TFN
(non-commercial) 10 3.2 × 10−5 1,000,000 97.4 [236]

Synthetic aqueous solution Zwitterionic copolymer-TFN
(non-commercial) 10 2.4 × 10−5 1,000,000 99.9 [245]

Synthetic aqueous solution Carbon quantum dots-TFN
(non-commercial) 10 2.9 × 10−5 1,000,000 98.2 [246]

Synthetic aqueous solution
Polyamide intercalated membrane with
biofunctionalized core shell composite

(non-commercial)
0.5 1.2 × 10−4 100 98 [247]

Potabilization inlet water NF1/NF2/NF20
(SEPRO) 14 3.9 × 10−5 400–2000 98 [237]

Furthermore, apart from pressure-assisted membrane technologies, other innovative
membrane technologies have been investigated for selenium removal. Firstly, supported
liquid membranes, which have been successfully applied to the removal of other metals
and metalloids from water, have been investigated for the case of selenium. Three different
stages and phases are involved in supported liquid membranes: solute extraction from the
feed phase, diffusion of solute through the extractant-containing phase and stripping of
solute to the acceptor phase. For the particular case of selenium, several investigations have
been completed, all based on the use of feed and acceptor aqueous phases, while the extrac-
tant is an organic phase. Mafu et al. employed Aliquat 336 supported on PP (polypropylene)
hollow fibers to transfer selenium to a 0.8 M NaOH stripping solution [248]. From an initial
100 μg/L concentration, the selenium content was reduced by 78%. Lower removal percent-
ages (around 60%) were achieved by Ambe et al., which selected TBP (tributyl phosphate)
as carrier in a decalin phase supported on microporous PTFE (polytetrafluoroethylene)
disks [249]. In this case, HCl solution was employed as acceptor phase. Selective removal
of selenium compared to other metallic impurities in aqueous solution was demonstrated
by Noguerol et al., in this case with NaDDTC (sodium diethyldithiocarbamate) as carrier
in kerosene phase supported on PTFE (polytetrafluoroethylene) membrane and with H2O2
as stripping agent [250]. Secondly, brackish groundwater was treated by pervaporation to
be used for micro-irrigation [251,252]. In pervaporation, the membrane acts as a selective
barrier between the two phases: the liquid-phase feed and the vapor-phase permeate. It
allows the desired components of the liquid feed to transfer through it by vaporization,
and consequently, the separation of the components is based on a difference in transport
rate of individual components through the membrane. Among the model compounds
selected for these pervaporation studies, Se+6 was included. Under optimal configura-
tion of the sweeping gas pervaporation system, the maximal permeate water flux was
5.1 × 10−8 m3/m2·s. The removal of selenium from solutions with initial concentrations
in the range 56–154 μg/L attained 92% with corrugated sheet membranes made of ther-
moplastic copolyether esters elastomers. Lastly, electrodialysis was applied to the removal
of inorganic trace contaminants (including selenium) from a real brackish groundwater
in a remote Australian community [253]. Electrodialysis is based on the transport of salt
ions from one solution through ion-exchange membranes to another solution under the
influence of an applied electric potential difference. A systematic investigation of the most
relevant operation conditions (applied voltage and solution pH) was completed to elucidate
removal efficiency. A higher applied voltage enhanced removal of Se+6 (from 33 to 48%)
at pH 7, but the adjustment of the pH value was a more effective measure to improve the
removal. On the one hand, pH below 6 increased the removal percentage above 80%, while,
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on the other hand, pH values between 8 and 11 formed insoluble CaSeO4, which eliminated
selenium from the water but caused fouling of the membrane.

3.2.4. Biological Treatments

The reactions that are involved in the biogeochemical cycle of selenium have been
deeply investigated, including the ones more directly related to microorganisms, which
are depicted in Figure 8 [254]. Among all these transformation reactions, dissimilatory
reduction pathways must be considered the most interesting option in terms of biological
removal of selenium from water [255–258]. Many microorganisms that transform the solu-
ble selenate and selenite oxyanions into insoluble elemental selenium have been identified
and isolated from pristine [259–261] and polluted environments [262–265] for better under-
standing of the metabolic mechanisms involved [143]. A compilation of major cultured
selenium-reducing microorganisms and their main properties has been published [4].

Figure 8. Selenium transformations in nature.

Biological selenium removal by environmentally sustainable technologies is an at-
tractive alternative due to the water characteristics (dilute selenium concentration and
high volume to be treated) and low costs. In addition, adequate biological treatment may
imply the transformation of dissolved selenium into a recoverable insoluble form. The
recovery of the elemental red selenium resulting from dissimilatory reduction is seriously
considered to reduce or even compensate the treatment costs. Although several studies
have demonstrated that these bacterial selenium nanoparticles can contain impurities, such
as heavy metals or organic compounds, the recovery of selenium provides high value for
the industrial sectors interested in its applications [266]. Nevertheless, the recovery of the
biogenic elemental selenium is challenging, since it exhibits colloidal properties that require
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further post-treatment (filtration, centrifugation, coagulation, electrocoagulation, etc.) for
separation of the colloidal selenium from the treated water [226,267].

The dissimilatory reduction of selenate and selenite has been investigated under dif-
ferent scenarios and it was successfully applied under methanogenic, sulfate reducing,
denitrifying or hydrogenotrophic conditions [268]. All these tests have demonstrated
that the dissimilatory reduction to elemental selenium is viable even in presence of high
concentrations of other oxyanions, such as sulfate or nitrate [263,269–271]. In addition,
the presence of heavy metals did not exert a significant effect on selenite microbial reduc-
tion [272]. The biological treatment of selenium-polluted water required the enrichment
and retention of microorganisms in bioreactors. Different bioreactor configurations have
been analyzed for this purpose. Among all the alternatives tested, which include from
basic anaerobic ponds to complex bio-electrochemical systems [273–275], fluidized bed
reactors (FBRs), upflow anaerobic sludge blankets (UASBs) and membrane biofilms reactors
(MBfRs) must be highlighted [276].

In FBRs, a biofilm is formed on added solid particles, which are fluidized by the
movement of the liquid to be treated, avoiding the transport limitations that appear in
stationary-bed processes. For the removal of selenium, examples of activated carbon and
commercial supports, such as Kaldness-K1 or Extendospheres, as added solid particles have
been investigated [277–279]. Optimization of the bioreactor operation conditions resulted in
selenium removal percentages above 88% with hydraulic retention times no longer that 0.5 h.
Meanwhile, UASBs employ beds of granular sludge developed by the self-aggregation
of microorganisms, which are fed from the bottom with water to be treated, while a gas-
liquid-solid separator in the upper section of the bioreactor retains the biomass. Different
types of granular sludge have been investigated for selenium microbial reduction, with
removal values above 90%, even when the selenium concentration in the influent exceeded
3 mg/L [280,281]. Finally, a type of MBfR has been systematically studied in the last
decade for the removal of selenium oxyanions: the H2-based MBfR [282]. These bioreactors
consume non-toxic gaseous hydrogen as electron donor for the reduction of dissolved
pollutants. The gas is delivered by diffusion through the walls of non-porous hollow fiber
membranes and a biofilm is naturally formed on the outer wall of the membranes [283].
Different interactions between selenium oxyanions and other anions present in the influent,
such as nitrate or sulfate, have great influence on the performance of MBfRs due to the
direct link between the specific microbial community structure in the biofilm and the
composition of the aqueous solution medium [284–286]. Once again, the decrease of the
selenium content in the water treated in these bioreactors ranged between 90 and 99%, even
with initial concentration from 1 to 11 mg/L, values more than one order of magnitude
higher than the maximum contaminant level for drinking water [287–289].

Phytoremediation takes advantage of the ability of some plants and their related
microbes to take selenium from the environment [290,291]. The design of constructed
wetlands is a valuable green option to apply the potential of these plants for improving
water quality. The main mechanisms for removal of selenium in constructed wetlands
include biosorption, biologically-mediated precipitation, assimilation and accumulation,
and volatilization of organic selenium compounds produced via bioalkylation [292]. The
relative contribution of each pathway and the precise roles of the plants, the corresponding
microorganisms and even the animals that may be present depends on the specific biotic
community and the abiotic conditions in the constructed wetland. The identification of the
most adequate plant species for selenium removal is a key aspect of the research in this field.
Cattails (Typha spp.) have demonstrated a satisfactory performance to effectively reduce the
selenium concentration in waters, but other species, such as bulrushes (Cyperus spp., Scirpus
spp., Schoenoplectus spp.), reeds (Phragmites spp.), saltgrass (Distichlis spp.), rabbitfoot
grasses (Polypogon spp.) or trees, such as poplars (Populus spp.), must be mentioned too as
adequate candidates for selenium removal [293–295].

In addition, microalgae, such as Chlorella vulgaris, have been successfully applied to
the removal of selenium [296,297]. The percentage of removal of selenium was highly
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dependent on the exact conditions of each constructed wetland, but the most frequent
values ranged from around 40–50% as minimal values [298,299] to practically complete
removal in the most effective cases [297,300,301], with many case studies around 75%
removal [302–306].

Biological methods must be considered efficient ways to reduce the selenium con-
centration in water. These methods allow the recovery of selenium as insoluble forms
or selenium-enriched vegetables can be produced, which exhibit interesting antioxidant
properties [299]. Therefore, research efforts must be promoted in this field in order to
demonstrate the technical and economic viability of real scale processes and pave the way
to further implementation.

4. Conclusions

A summary of the research on selenium in drinking water was prepared from the
results of a bibliometric analysis (information about annual publications, document types,
languages, countries, institutions, categories, journals and keywords). The number of accu-
mulated publications about this subject increased according to a quadratic evolution during
the 1990–2019 period. The USA was the leading country in total number of publications,
followed by a couple of Asian countries (China and India). In fact, Chinese institutions
appeared among the most productive ones. Although Environmental Science was the most
frequent category, many studies in Medicine and Biochemistry, Genetics and Molecular Biology
have investigated the identification of the health effects of the intake of selenium. In fact,
these aspects directly related to the consequences of selenium intake on the human health
have been identified as the most deeply investigated. The bibliometric network analysis
revealed that the clusters with keywords in this field were more relevant and they were
cited a higher number of times than the clusters with keywords more easily related to
water treatment.

Although the search of effective technical solutions to solve the problems caused by
the presence of selenium in drinking water has been less intensive than the treatments of
other pollutants, such as arsenic, many research works have investigated the best practices
to remove selenium oxyanions. Adsorption was by far the most investigated treatment
alternative. Several metallic compounds, mainly iron and aluminum oxides, hydroxides
and oxyhydroxides, are the most relevant sorbents under study. Nevertheless, further
research efforts to identify more selective ion exchangers must be recommended. Pressure-
assisted membrane technologies (mainly nanofiltration and reverse osmosis) must be
considered competitive solutions, but a balance between selenium rejection and permeate
production is required. Processes for selenium removal based on coagulation, flocculation
and precipitation have not gained too much attention by researchers, although iron and
aluminum salts have been successfully employed as coagulants, especially for the retention
of colloidal elemental selenium particles. The most relevant biological treatments take
advantage of the dissimilatory reduction of selenate and selenite to elemental selenium.
Moreover, the recovery of this elemental selenium could be a sustainable option to close
the cycle of selenium, thus the investigation related to the biological methods that can close
this loop must be promoted, including the production of selenium-enriched vegetables.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19105834/s1, Figure S1: Structure of the cluster West-Bengal
in the second subperiod (2002–2011), Figure S2: Structure of the cluster Glutathione-Peroxidase in the
second subperiod (2002–2011), Figure S3: Structure of the cluster Speciation in the second subperiod
(2002–2011), Figure S4: Structure of the cluster Plasma-Mass-Spectrometry in the third subperiod
(2012–2019), Figure S5: Structure of the cluster Lead in the third subperiod (2012–2019), Figure S6:
Structure of the cluster Soil in the third subperiod (2012–2019), Figure S7: Structure of the cluster
Adsorption in the third subperiod (2012–2019), Figure S8: Structure of the cluster Supplementation in
the third subperiod (2012–2019), Figure S9: Structure of the cluster Adsorption in the fourth subperiod
(2020–2021).
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Abstract: One of the most complex and difficult questions to answer concerns how to organize and
economically support public services of all kinds. In terms of services that involve a multiplicity of
actors and objectives, as is the case with urban stormwater management, the difficulty is magnified
and resources never seem to be sufficient. This paper reviews the successful approaches to stormwater
management in a number of countries and concludes that it is both feasible and possible to successfully
structure stormwater management in cities using a variety of models and incentives. With examples
from cases practiced in the USA and Canada, based theoretically on the user-pays principle and on
the fair distribution of impacts, the text innovates showing not only a technically and legally viable
option, but an opportunity for users to become aware of the importance of reducing environmental
impacts. By raising the possibility of delivering services out of the general public budget, reducing
the taxation of all in exchange for charging only users and improving the performance, the discussion
is directed, in an innovative way, to a very rarely questioned aspect and links the change in mentality
from and economic way of thinking towards the new stormwater paradigm shift and SDGs.

Keywords: drainage; fees; financing; stormwater management; sustainability; utilities

1. Introduction

The management of urban stormwater evolved with the understanding of its role and
the good and bad characteristics that such water brings to society. In each era, water has
had different roles, but has always been connected with human activities, and cities were
born and developed in close relationship with water. The close presence of water, whether
for agriculture, energy production, navigation or consumption, in most cases brought value
to the territories, with the exception of urban flooding [1].

Cities continued to grow and man thought wastewater and stormwater were reasons
for diseases, and that it was necessary to take it as soon as possible to rivers, lakes, estuaries
and the sea. The function of the receiving water bodies was not only transport, but effluent
discharge, without treatment, as is still the case in many places today. In the era of ‘tout
à l’égout’ [2], the hygienist phase of the 19th century, the reigning order indicated was to
move waste and rainwater away from the cities as quickly as possible, not only to avoid
the proliferation of diseases, but also to prevent flooding. The concern was fundamentally
hydraulic, with a focus on quantities and mass flows, i.e., the problem was reduced to the
sizing of pipes and channels, a matter for engineers. Concerning stormwater drainage,
there was an understanding that these were of good quality and free of pollutants [3],
reinforcing the idea that only volumes, mass flows, and dilution should be addressed.
As for quality, represented by pollution, people said that it was only a matter of diluting
polluted volumes into larger volumes, free of pollutants. The issue of sizing structures
for drainage and dilution went through the discovery of which rains could be predictable
in each region, a problem of hydrology and statistics, the latter helping by informing
the probability of occurrence of certain volumes and the associated risks, expressed by
determining the so-called return times of the events. Again, problems and issues are more
related to engineers. From the possession of this information, the problem of the decision to
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choose return periods, or “project rainfall”, depended on political decisions, closely linked
to investments to be made in physical infrastructure and their respective risks.

With the advances brought by microbiology and epidemiology and Koch’s discoveries
regarding cholera, the understanding grew that the issue of wastewater quality was of
crucial importance allowing sanitary approaches to sanitation and drainage to occupy a
prominent place; it was the beginning of the sanitarian phase after the hygienist phase
of the 19th century. The first wastewater treatment plants started to be developed at the
turn of the century [4]. The decision about the type of treatment and size of the facilities
involved the determination of the desired quality levels for effluents, an issue that no longer
affected only engineers, but also health professionals, considering the risks that society
would be willing to undergo and the alternatives of investments to be made, i.e., again,
decisions of a political nature.

Currently, as of the nineties, there is an upsurge in urban flooding problems for several
reasons, with two of them more relevant and interconnected: demographic growth, with
the consequent territorial expansion of the urban fabric; and climate change, leading to the
perception that just draining downstream, ever further and with greater volumes, treating
rainwater effluents in a concentrated manner, at the point of discharge (“end of pipe”), in a
vision on the one hand hydraulic and on the other hygienist, has not even found physical
spaces for the task [5].

Later on, simultaneously with the environmental and right to the city movements, the
vision of sustainability took over urban environments that started to understand water
not as a problem anymore, but as a solution to old and new issues of quantity and quality,
such as scarcity, well-being and comfort, exemplified, respectively, by its use in daily life,
embellishment and the fight against “heat islands” [6].

According to this approach, alternative techniques emerge, in opposition to the tra-
ditional method of removal, which mainly uses buried pipes. The new mentality is one
of harmonious coexistence with water; therefore, in addition to its visible presence on the
surface, there must be treatment at the source, that is, as close as possible to the places of
origin, where precipitation occurs [7].

In terms of management, what worked before—the centralized management with
command and control concentrated in the public power—requires changes, and a change
in the traditional management paradigm. With new and multiple actors assuming different
roles, disputing and sharing the resource represented by urban stormwater, practices are
gradually changing and favoring the decentralization and democratization of decisions [8].

At the same time, the change reaches aspects of service funding, as the understanding
had always been that flooding issues, linked to large volumes and flows (hydraulics), were
usually borne, at great expense, by general (centralized) public budgets. The feasibility of
solutions at the source, or located where precipitation occurs, generally requires potentially
lower and decentralized expenditures enabling private sharing and participation in the
solution in a distributed manner [9].

Around the world, this paradigm shift is being studied to create the best format
for financing and management. The USA and Canada, countries where there have been
successful experiences for some time (around three decades [10]), materialized through
stormwater programs, are partially or totally based on the collection of tariffs from users.
Users became important and stable sources of funds, specifically for the improvement
in urban stormwater management systems to comply with legislation. In the USA and
Canada, the collection mechanisms for funding the activity are called stormwater utilities
(SWUs), with specific characteristics in each place, but which deserve to be observed in
order to learn from them.

The contributions of this paper lie in the approach to a subject absent from the literature,
despite its importance, exemplified by the number of existing cases and of importance of the
countries in which it is presented. Despite this, however, SWUs are financing stormwater
management mechanisms that are little used in most countries where funding is required.
In this sense, the contribution is to expand the dissemination and discussions around the
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subject and its application, so that through its knowledge its use can be expanded and the
improvement in stormwater management can be achieved.

Besides this short introduction, the article is structured in four more sections. The
Section 2 will focus on issues related to the origin and reason for the emergence of SWUs. In
the Section 3, several cases where SWUs exist are presented; in the Section 4 the results and
discussions are briefly presented; finally, in Section 5, the conclusions are drawn. Figure 1
presents a flow chart of the study with each chapter, its main aspects, as well as some of its
interconnections.

Figure 1. Study flow chart.

2. The Creation of SWUs

In line with the diversity of aspects to be addressed, new demands for resources
and management have arisen from the entry into force of legislation and regulations
targeted at improving the quality of urban service delivery systems, including stormwater
management. Costs expected to result from climate change (increased frequency, intensity,
and duration of rainfall with flooding and rising sea levels) have led to a search for
alternatives to system funding through the application of the user-pays principle, based
on charges levied on users according to their contribution to runoff, supporting, even if
sometimes only partially, the new costs to be assimilated by budgets [11]. In each location,
these financing methods, often associated with new management practices, have become
institutionalized and have been given different names: SWU, stormwater fee, stormwater
user fee, and stormwater service fee [12].

Cities support increasing costs, but with no proportionally crescent budgets, of main-
tenance and replacement of ageing infrastructure, of the new built areas and of quality and
quantity costs occurring depending on climate change. In Canada, due to climate change,
the stormwater infrastructure is considered in critical condition, but it was built in the last
twenty years. With an estimated lifetime of 70–100 years for linear systems, 50–80 years for
structures, and 25 years for electrical and mechanical components, this picture is surprising.

The SWUs, mechanisms to obtain resources for financing urban stormwater manage-
ment, resulted from the perception by the American municipalities of the need to find eco-
nomic means to cope with the increasing pressure on their budgets to meet socio-economic
and environmental demands. These demands were incorporated into the American legisla-
tion through water quality control requirements due to diffuse urban stormwater pollution,
considered a pollution point source at the point of discharge.

The legal and regulatory framework was developed over the last five decades since
1972, with the Clean Water Act (CWA) aimed at controlling water quality, revised in
1987 through the Water Quality Act (WQA), with provisions added for five categories
of stormwater discharge. These provisions, classified under Phase I, established a set of
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restrictions for large and medium-sized municipal storm sewer separator systems (MS4).
These systems cover populations greater than 100,000 and according to discharge quality
permits, bring them into compliance with the National Pollutant Discharge Elimination
System (NPDES). In 1990, the final rules were established for Phase I, and later, in 1999, for
Phase II. In small MS4, in addition to systems for fewer than 100,000 inhabitants, there are
industries and construction areas of 4047 to 20,234 m2 (1–5 acres). Stormwater eventually
carries pollutants such as nutrients, pathogens, sediment, and metals, but must fall within
the limits of the Total Maximum Daily Load (TMDL), a pollutant load that can be discharged
to a given receiving body, without failing to meet the quality standards established by
the states. The TMDL program applies to all MS4 systems, industrial and construction
activities, and its limits include both point source and diffuse source loads [13].

Additionally, from the 1980s onwards, partly as a reflection of the taxpayer revolts of
the 1970s, and the passage, in 1978, of proposition 13 in California, which placed limits
on property taxation, some governments began to consider tariffs as a better source of
resources than taxation for urban services. Thus, more favourable conditions were created
for the introduction of stormwater utilities, a period considered as the utility model different
from the traditional tax-supported public works model, until then predominant [14].

The creation of SWUs in the USA is not mandatory and depends on the perception
of their need by the populations, policymakers, and those in charge of state legislations,
on which SWUs depend to be implemented. There is no pre-defined size, with small
communities such as Indian Creek Village in Florida (only 88 people), according to the 2010
Census population, and Los Angeles (over 4 million inhabitants).

There are nine models for calculating collection rates: dual, flat, tier, square foot, parcel
acre, meter, usage, equivalent residential unit (ERU), and residential equivalent factor
(REF). Some are based on impervious areas, such as the most widely used, ERU. Others
are based on runoff generated, such as REF, or other forms of measurement. ERU is more
popular in places with high population density and high property values while flat fee is
more popular in places with low population densities and low property values [12].

Thus, in the absence of a general rule, the junction of necessity and opportunity has
favored the creation of SWUs. The opportunity often occurred after catastrophic events,
such as the hurricanes Katrina, in Louisiana (LA) and Mississippi (MS) fifteen years ago,
and Sandy, in Connecticut (CT), New Jersey (NJ), and New York (NY) eight years ago, after
which, however, by 2021, there were still no SWUs in place.

In the USA, the coming into force of legislation showed a relationship with the higher
number of deployed SWUs [12], as also a clear definition of the legal authority in charge
of each city, county, and watershed. In the some way, important was the key role played
by the professional organizations, providing information, support, and encouragement to
communities interested in the implementation of SWUs.

3. Stormwater Utilities (SWUs)

3.1. The USA

In the US, according to research by the University of Kentucky, there are 1851 dis-
tributed SWUs identified, in 41 states and the District of Columbia [15]. While the number
of SWUs may seem large, it becomes small when compared to the number of 22,389 commu-
nities computed as participants in the National Flood Insurance Program (NFIP), as of June
2019, meaning there are SWUs in less than 10% of this total. Despite a long history of SWU
implementation in the US, the main challenges that remain for communities, regardless of
their size, are related to adequacy of funding and public support, which are compounded
by aging infrastructure [16].

The national average monthly fee paid by single-family homes is USD 5.94, increasing
over time according to the consumer price index (CPI), with values varying from USD 0 to
45, although there are situations where reductions may occur and the range may reflect
stormwater needs and also political contexts. The most widely used calculation method
is based on the impervious areas of the land and on the ERU system, an average of the

526



Sustainability 2022, 14, 6179

single-family residential impervious areas of land, but in some communities, a value can
be defined based on the average of all the areas of residential land. The method calculates
the amount to be charged based on the impervious areas of the lots, regardless of the total
areas. The ERU is calculated through sampling carried out through field research [17], but
can also be estimated through aerial or satellite images. Once the total impervious area of
residential properties (AI) is obtained, it is divided by the number of properties, giving the
ERU value [15].

For non-residential land, the rates are proportional to the ratio of the impervious area
of the land to the ERU. The most commonly found average size for ERUs (895 utilities) in the
University of Kentucky survey was 3072 square feet of impervious area, so it is important
to determine ERUs accurately so that no one pays a disproportionate amount. There
are other taxation systems, such as tiered systems (254 utilities) or flat fees (230 utilities).
The ERU can be considered a system of infinite levels or steps and the flat fee and dual
fee (108 utilities) as systems of a single level or step, the latter considering taxation for
residences and another one for non-residential properties.

An example, taken from research conducted in 2021 by the University of Kentucky
(Campbell, and Bradshaw 2021) [16], illustrates calculation systematics for a hypothetical
area and allows conclusions to be drawn: residential waterproofed area = 15 × 107 sq ft;
non-residential waterproofed area = 15 × 107 sq ft; ascertained ERU = 3000 sq ft; annual
amount required for the selected level of service = CD$ 12 million and every household
pays a fee of 1ERU.

Dividing the total waterproofed area (30 × 107 sq ft) by the standard computed ERU
gives a number of 100,000 ERUs, 50% of which are residential areas and 50% of which
are non-residential areas; therefore, a monthly fee of CD$ 1 million is required, which
when divided by the number of 100,000 ERUs indicates a base amount of CD$ 10 per ERU
per month.

If, however, for example for political reasons, it is decided that the assessed value
to be used for non-residential areas should be for standard ERUs with 4000 sq ft and
not 3000 sq ft, the number of non-residential ERUs becomes no longer 50,000 but 37,500
(1.5 × 107 sq ft divided by 4000 sq ft), totaling no longer 100,000 but 87,500 ERUs in the
municipality (50,000 residential and 3700 non-residential), which implies a value no longer
of CD$ 10/ERU, but of CD$ 11.43 per ERU (87,500 × 11.43 = CD$ 1 million per month)
and, according to the following Equations (1) and (2), the percentage of costs will no longer
be 50% between residential and non-residential areas, but 57% for residential and 43%
for non-residential.

Fracres = ERUres/ERUsres + IAnonres/ERU used (1)

Fracnonres = 1 − Fracres (2)

where Fracres corresponds to the fraction of the stormwater program paid by residential
customers; ERUres is the total number of residential ERUs in the city; IAnonres is related
to the total non-residential impervious areas in town; ERU used is the actual ERU used as
opposed to the true ERU.

Similarly, if the standard ERU in the non-residential area with the value of 2000 sq ft is
used, 125,000 ERUs will be obtained (50,000 residential and 75,000 non-residential), whereby
the value of the ERU equals CD$ 8 (125,000 × 8 = 1 million) with the residential area bearing
40 and the non-residential area bearing 60% of the costs. Similarly, for ERU = 1000 sq ft,
the percentages of monthly costs borne become 25% for residential areas and 75% for
non-residential areas, or for ERU = 5000 sq ft, 62.5% for residential and 37.5% for non-
residential users, respectively, according to Equations (1) and (2). From this, it is clear that
the determination of the ERU is a very important aspect to have a fair taxation system that
reduces the possibility of questioning.

Still, as to the example, it should be highlighted that it does not take into account pos-
sible reductions, applied in some municipalities, due to the placement of rainfall retention
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devices on lots or even the disconnection from collective drainage systems, besides other
aspects that motivate exemptions.

The second most popular model is the REF method, with 133 utility cases; this system
is based on the amount of runoff from a unit compared to the amount of runoff by a
standard property of a single-family dwelling, considering an event with a determined
return time, for example, 2 years and 24 h of rain, calculated by the rational method or the
Soil Conservation Service (SCS). Besides relying on hydrological information over time and
soils, this system penalizes commercial properties for shorter return times and residential
properties for large return times [18].

Thus, building a model for calculating fair taxation, making SWUs accepted by all
as a development factor, is still a complex and evolving task that depends on several
parameters in addition to policy options in each location and different development context.
Nevertheless, some SWUs have made significant capital investments through user fee
programs, such as in Fort Collins (CD$ 120 million), Bremerton (CD$ 55 million), and
Raleigh (CD$ 100 million), initiated in 1980, 1994, and 2004, respectively, and in the second
case the investment is to promote the separation of the existing unitary system [16].

In 2021, most of the 73 participants in the survey, which covered 20 American states,
conducted by the consulting firm Black & Veatch, declared to: have a separating system
(82%); have a municipality as their area of jurisdiction (97%); carry out the collection of
drainage fees on water and sewerage bills (78%); consider a drainage website the most
effective means of ensuring approval and support for the fees charged to users; and to
fit into Phase II (population under 100,000) of the EPA’s Municipal Separate Storm Sewer
Systems (MS4s) discharge regulation program.

EPA has 855 participants in Phase I MS4s (population over 100,000) and 6695 in Phase
II MS4s which include many cities and regions. In the majority, i.e., in 54% of those locations,
where combined systems still exist, the combined systems account for less than 25% of
the total system. Despite being the third most important item cited in the survey and
that 73% of systems have—according to the survey—aging drainage infrastructure, asset
management plans are in place in only 63% of systems falling under MS4s Phase I and 35%
falling under MS4s Phase II.

The main percentages of instruments used for funding corresponds to cash (78%)
or debts (22%), according to the percentages of answers for each type of instrument. As
for the main sources of revenue, 95% of the answers indicate that more than 75% of the
amounts are supported by fees received from users and the three main activities described
as included in the O&M budget are: illicit discharge detection and elimination (96%), best
management practices (90-92%) and public education (92%) [16].

3.2. Germany

In Germany, in several cities since the 1990s, based on the polluter-pays principle,
stormwater management charges have been introduced taking into account the impervious
area. Since many cities have single systems, i.e., systems that deal with both stormwater
and wastewater systems, they are charged jointly through a single fee and the calculation
is based on water supply consumption, which is not a fair way of charging. From the idea
of changing to a fairer system, based on the mentioned principle, in most states the fee for
impervious areas was introduced, but just with a value around only 20–75% of the costs of
stormwater and wastewater management [17].

There are two ways to calculate the impervious area: by estimation, according to
zoning (Munich, since 1970), or by measurement (Hamburg, since 2012; Dresden, since
1998; and the State of Baden-Wuerttemberg, since 2010). Calculation by estimation is easier
to implement but more inaccurate.

The implementation of the levy resulted in: waterproofing area reductions of 4.5 M m2

or 240,000 m2/year in Munich with 3000 ML groundwater recharge; 10% reduction in
waterproofing area per person in Dresden; and in the state of Baden-Wuerttemberg, 48% of
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the cities reported decreases, 11% with high reductions already in the first two years after
the levy implementation.

In Munich, maps with colors identify the runoff coefficients, being 0.9 for the blue
zone, in the city center; 0.6 for the pink strips, in intermediate regions, between the center
and the outskirts; 0.5 for the outer suburban areas (orange); and 0.35 for residential plots
in the outer suburbs (green) (Vietz et al. 2018). Additionally, several beneficial effects
were noted, such as the reduction in the quantities treated in the combined systems in
Munich and Dresden, enabling process optimization and deferring infrastructure upgrades
of existing systems [17].

3.3. Canada

In Canada, only 4 out of 48 utilities use the ERU system and eight use property value
or “ad valorem” taxation and the average taxation is CD$ 10.67 [15].

In the Victoria Community, located in British Columbia, integration between stormwa-
ter management (SWM) and street sweeping has recently been discussed with the latter
usually being included in property-related fees [19].

In Victoria, stormwater bills are issued annually to property owners and are deter-
mined based on property-specific characteristics such as impervious areas (roofs, car parks,
and driveways) measured with the aid of building plans, aerial photography and mapping
using georeferencing technology (GIS).

The value, in 2022, is of CD$ 0.654 per square meter and street cleaning is determined
by frontage length and street type, charged per meter of lot frontage, varying according to
Table 1 below.

Table 1. Victoria charge, according to the type of street.

Street Type CD$/Meter of Street Frontage

Local streets 1.81

Collector streets 3.84

Arterial streets 4.35

Downtown streets 43.60

The property impact on the stormwater system through a flat portion of the charge,
based on the building code is: low density residential—CD$ 0; multi-family residential—
CD$ 81.79; civic/institutional—CD$ 72.98, and commercial/industrial—CD$ 148.38. Fi-
nally, there is a program in which property can be registered if they have ten or more
parking spaces and are self-businesses, recreational facilities, recycling operations, storage
yards, or have construction activities on site, paying CD$ 169.70 per year (2022).

In a study conducted in the City of Thunder Bay, comparing the various forms of
taxation for stormwater funding, the conclusions were that urban properties subsidize
rural areas by approximately CD$ 300.00 annually and that residential properties account
for 67% of the contributions to the stormwater program while non-residential properties
receive the remaining 33%.

However, the runoff from residential areas is only 58% and the remaining 42% comes
from non-residential areas, meaning that a distribution based on contributing areas would
lead to a 9% redistribution, i.e., the average residential properties would bear 9% less while
the non-residential areas would bear an average of 9% more in levies.

Although this distribution would be fairer, one of the recommendations of the study
was that the change would only be worthwhile above 10%, given the high implementation
costs of reallocating only CD$ 360,000 per year from residential to non-residential plots,
against a budget of CD$ 4 M and minimal apportionment of the difference among the
38,203 existing residential properties.
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There are, however, other aspects that should be considered in the long term, such
as the observation that property tax encourages urban sprawl while the user fee option
encourages densification, and other issues including environmental liabilities [20].

3.4. Stormwater Management in Australia

The changes that occurred in water management in Australia over the past five decades
determined its current state, according to a path dependence viewpoint (Otoch et al. 2019) [21].

However, according to Brown and other scholars, moments of tension and alignment
existed between six distinct institutional logics (decision making, risk, sustainability, water
quality, infrastructure, and demand) that coexisted in permanent evolution. Thus, according
to a study conducted in the period between 1970 and 2015, throughout all that time, the
urban water management sector in Australia showed great complexity [22].

In this context, the evolution (rather than a revolution) towards the current practices
of Sustainable Urban Water Management (SUWM), which emerged in the 1990s, was based
on the trajectory traveled by the logic of sustainability, water quality, and demand.

Changes in the idea of sustainability were characterized by the focus on aquatic health
and the reorientation of the vision of point source pollution to diffuse, reflected in the logic
of water quality that has become more restrictive with standards and monitoring based on
aquatic ecology.

The demand was characterized by the emancipation of the end-user and the growth of
expectations related to urban amenities and environmental protection. The infrastructure
model, identified with engineering expertise, evolved from civil engineering based on fore-
casting and control to a more significant multidisciplinary approach, in which adaptability
and flexibility became important design parameters.

The decision-making logic also evolved from the seventies, when it was characterized
by bureaucratic, paternalistic decisions, centralized in powerful, vertically integrated
organizations, and focused only on water supply, treatment, and drainage.

As of the 1980s, the government’s influence grew, with the private sector participating
and the predominance of the economic efficiency viewpoint. Decisions considered eco-
nomic factors first, causing the user-pays principle to take the place of the tenure principle,
which had property as the determining value in pricing decisions.

As of the 1990s, this vision intensified, reflecting free-market competition, with a com-
mercial focus and financial instruments in decision-making. Public–private partnerships,
for instance, are considered an alternative, and the user acquires the status of a consumer.

This framework remains from the 2000s with the water markets [23] when, however,
due to the “millennium drought” at “a critical juncture”, according to the definition of
historical institutionalism [24], the logic of risk comes into play, temporarily interrupting
decentralization, and the construction of large centralized desalination structures in all
major cities [22].

Australia has a federative system of government, commonly referred to as “Common-
wealth” or federal, with six states, two territories, a constitution, proclaimed in 1901, which
defines the roles of each of the eight federal entities and, according to section 100, water
management is the responsibility of each.

In the states and territories, there is another level of local government, which are the
municipalities and district councils. In most states, the state governments own the utilities
and local governments do the planning and management of stormwater services and the
systems are separative.

For over thirty years, Australia has been developing its national water quality manage-
ment strategy. It includes the use of stormwater for supply and guidelines are available for
adoption by the states and territories. There are also guidelines for the evaluation of Water-
Sensitive Urban Design (WSUD) options that incorporate an integrated approach to the
urban water cycle. This includes the management of water supply, sewerage, groundwater,
stormwater, land use, and environmental protection.
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3.4.1. The Salisbury Example—South Australia

The city of Salisbury, in the metropolitan area of Adelaide (population 1.3 M), South
Australia, developed through rapid urbanization from the 1970s onwards. Today, with
around 137,000 inhabitants and an average annual rainfall of around 430 mm, mostly
occurring in winter, it adopted WSUD principles to maximize the use of run-off water and
reduce the risk of flooding. Aquifer recharge management was introduced to control the
low salinity of stormwater by using Aquifer Storage and Recovery (ASR) in a brackish
aquifer for subsequent irrigation.

The stormwater is collected in retention basins forming wetlands and lakes and
subsequently infiltrated into the aquifers, with retention time around seven to ten days,
being recovered through ASRs or Aquifer Storage Transfer and Recovery (ASTRs) allowing
the reduction in the demand for water supply used for irrigation of sports fields.

Wetlands now occupy about 200 ha of the catchment area and in 2001 the City of
Salisbury expanded the use of urban stormwater as a commercial enterprise through a
public–private partnership project. The project focuses on applying AUD 4.5 million to
construct wetlands and ASR facilities for stormwater treatment and storage, at Parafield
Airport, a secondary airport in Adelaide. In this case, also a purple pipe network was
constructed for the Mawson Lakes neighborhood, with recycled water comprised of a
combination of stormwater from the Parafield Airport wetlands and wastewater from the
Bolivar Sewage Treatment Plant.

The success of this operation led to the formation of a pioneering business that included
nine projects in different locations. Providing non-potable water in a volume equal to
5 × 106 m3 per year showed that stormwater containing contaminants, when stored
underground and under control, can be used for uses such as irrigation of public open
spaces and, when chlorinated, can be supplied in pipes (third pipe supplies). Its use
for potable purposes depends on the additional use of microfiltration, UV disinfection,
and chlorination, but the costs of these additional operations to reach the required safety
standards are considered to be lower than the costs of laying double distribution pipes. The
total cost of supply (capital and operation), for example, in 2012/13 was AUD 1.57/m3 for
non-potable use for irrigation of public spaces and AUD 1.96 to AUD 2.24/m3 for potable
use (excluding distribution network costs), therefore cheaper than the usual AUD 3.45/m3

for mains water [25]. The costs of providing non-potable water through a new distribution
network, however, are similar to or higher than the costs of distributing water from the
existing network.

In 2010, a business unit, Salisbury Water Business Unit, participating in the admin-
istrative structure, administered by the SWMB and chaired by an external independent
member, was established. The unit manages various water collection and supply schemes
for non-potable use, being mainly recycled rainwater and native groundwater. Treated to
standards, according to the purposes for which they are intended, it is distributed to parks,
reserves, schools, industries, and some residential sectors. It serves over 500 users, among
them 31 schools, and generated AUD2.8 million in resources in 2015–2016.

3.4.2. Melbourne and Victoria

In Greater Melbourne, 5 million people live in an area of about 10,000 km2 with
an average annual rainfall of around 600 mm [26]. There is a fixed annual charge per
household, based on property value, which is paid as part of the Waterways and Drainage
Charge, regardless of the amount of waterproofed area and the impact it has on drainage
systems. In the Australian state of Victoria, the Water Act governs how the Waterways and
Drainage Charge should be implemented, but it is unclear how the level of waterproofing
may influence the levy.

The theoretical graph in Figure 2 demonstrates how the fixed charge works and allows
a reflection on the greater possibilities for incentives for non-sealing that can exist from a
variable charging policy [17], which is fairer, collects more resources to support the systems,
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and provides incentives to non-sealing and disconnection. These can alleviate the need for
extensions and maintenance on stormwater systems and save resources more efficiently.

 

Figure 2. Comparison between fixed and variable rates considering the same total storage for
20 dwellings with different degrees of waterproofing [17].

4. Results and Discussion

Unlike decades ago, when stormwater management was focused only on urban
flooding, there was an evolution that, presents differences and similarities in developed
and developing countries. The main issues involve multiple aspects and challenges such
as water and environmental quality, aquifer recharge, supply and treatment, urban heat
islands, urban well-being, street trees [27] aquatic life, landscaping, and leisure, and flood
analysis [28], among many others [29].

Although interrelationships between stormwater and wastewater are known, in sev-
eral countries, especially where the absolute separator system is adopted, at least officially
(as is the case for Brazil), management is still focused on wastewater treatment. This
is partly due to the significant sanitation deficit [30], and so stormwater is erroneously
considered a low priority, except when flooding events occur [19].

Thus, the collection of stormwater fees and the construction of management structures
dedicated to urban stormwater management, with or without private sector participation,
has been left behind, especially in developing countries. Initiatives for its implementation
are the target of many objections, including judicial ones, as was the case in the municipality
of Santo André, in the ABC Paulista, metropolitan region of São Paulo. After a period of
evolution and success in the use of charging, started in 1998, a setback occurred, with its
suspension in 2012 [31].

Experience, however, including in the U.S., has shown the importance of information
and disclosure, particularly when on user demand, with the most used channel of com-
munication with the public being the website [16]. The Web aims at the understanding,
involvement, and participation of society and the reduction in objections, proposed mainly
by non-residential users. The objection questions are mainly of two types: the legality
of the authority responsibility for issuing, implementing, and financing the fees and the
legality of the charging mechanism [32].
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The organization of management through SWUs considers the institutionalization of
the application of fees as an economic support strategy for stormwater management. It
is based on four criteria: efficiency, equity, adequacy, and feasibility in the collection and
use of revenues. It enables long-term planning of capital and operational investments,
brings the potential for change in public behavior, and impacts business and management
of municipal investments, but at the same time suffers objections from users, including
legal ones.

The tariffs, in general, are based on the operating, maintenance, and, when possible, the
capital costs of the systems, distributing them among the users according to criteria that, in
most cases, correspond to the waterproofed areas. The criteria seek equity not only through
proportionality between tariffs and the contribution to runoff and pollution generated, as
established by the user-pays principle, but through different payment capacities, expressed,
for example, by property values or consumption of services such as water supply.

The issue of stormwater systems’ economic support is still quite controversial, even
in places such as the USA and Canada, where there are legal challenges, most of them
being refused by the courts. Barriers to their implementation also exist, as can be seen
in the Canadian example of the City of Thunder Bay, where the conclusion led to the
option, even in the short term, of not adopting the fairest method of distributing the burden
of waterproofing.

There are several ways of economic viabilization and funding stormwater management
services, but they can be summarised in two, especially with regard to fundraising: the
traditional model, based on the general budget (payment by all citizens), and the model
based on payment just by the users of the service, known as the stormwater utility.

These two different visions on how to obtain resources to economic support public
services are part of a larger dispute involving the role that governments should play in the
solution of socio-economic-environmental problems. The traditional vision is opposed to
the innovative vision of stormwater utilities, the latter responding in part to the population’s
desire for more fair tariffs and to reduce the burden of general taxes, as occurred in the USA
decades ago, when stormwater utilities were implemented. However, decades after their
implementation, the thought that they are hidden taxes disguised under another name
still survives.

Existing experiences and those under implementation deserve to be observed, as well
as examples extracted from them of what may work and what may not work so well in
each context. However, there should be no delay, as this is still a subject that deserves
practical experimentation, a kind of learning by doing, given the increasing demands that
are coming with the growth in urbanization, rising temperatures, increased urban rainfall
and rising sea levels, according to climate change forecasts.

For example, in Brazil, where the focus is still very much on the scarcity of public
resources, the introduction of management and funding mechanisms such as SWU, based
on the user-pays principle, can work. As in other countries, stormwater utilities in Brasil
are welcome, as long as they are applied through policies that encourage not only the
economic contribution of users, but that consider forms of management with focus on
results. Besides that, they may lead to increasing the involvement and participation,
bringing the contribution of all actors to the decisions made, including the design of
the calculation methods of charging and the legislation. This may mean opening the
way to solutions that lead to economic autonomy of stormwater services management
and also for disengagement from the general public budget, decreasing taxes, with gains
in responsibility distribution efficiency and a permanent flow of resources to the sector,
providing sustained continuity to the actions.

The study shows that the use of the stormwater utilities mechanism is more devel-
oped in countries where environmental legislation has been fully implemented. Table 2
shows examples of the countries’ main approaches, fee criteria and objectives. From the
information in Table 2, although it is not possible to verify uniformity in all aspects, there is
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a trend in the approach to control environmental effects (reduce pollution of water bodies)
and in the criteria for calculating tariffs (sealed areas).

However, there is no definite trend regarding the form of quantification of the ob-
jectives, a fact that can be attributed to the experience and reality in each location. From
the perspective of the economic efficiency objective, information on collected revenues
compared to measurable cost outcomes of avoided environmental impacts (e.g., volumes
of treated effluent) can allow for the ranking of stormwater utilities initiatives. Measured
economic parameters also enable the comparison with other alternatives such as the overall
budget itself.

This is different in countries where there is no legislation incentives or, as in Brazil,
where the law has existed for a long time and is broad, but encounters obstacles to applica-
tion. Utilities with a low level of institutionalization and administrative and economical
disorganization tend to relegate environmental issues, postpone the acquisition of economic
support and, eventually, adopt the funding and organization structure.

Table 2. Countries, approaches, fee criteria and objectives.

Country Main Approach Practical Fee Measures Criteria Objective’s Evaluation Metrics

EUA Environment Pollution Conttrol ERU (m2 of impervious areas);
many others (flows, etc)

Pollution and environment
statements attendance

Germany Environment and Equity
Polluter-Pays Principle

Impervious area and water
supply consumption

Impermeable surface reductions,
groundwater recharge and treated

quantitative vol. reduction

Canada Polluter-Pays Principle ERU (m2 of impervious area) and
“ad valorem” property tax

Impermeable surface reductions

Australia SUWM—Sustainability Urban
Water Management Fix, based on property values

Groundwater recharge
measurements; stormwater and

reuse of non-potable supply

Brasil Flow Control m2 of impervious area Undecided

5. Conclusions

The overview of SWUs presented here provides an update on what has been imple-
mented to ensure the economic sustainability of urban stormwater management systems
with the participation not only of the public sector but also of users and private agents,
being remunerated as a public service to society as a whole.

The study’s contribution comes in the sense of bringing together scattered information
and thus allowing the formation of a general picture of the evolution in a certain direc-
tion, namely, the economic organization and financial sustainability of urban stormwater
drainage and management under a new paradigm, which has been occurring simultane-
ously in several places around the world.

The perception of this fact as a general trend does more by allowing scholars, re-
searchers, and practitioners to identify it and become aware of what is still missing for its
rapid institutionalization, implementation, and experimentation, thus contributing to the
evolution and improvement in the sector’s actions. This is a small contribution, given what
still needs to be done, but with the potential to help transform the reigning mentality, or
the business as usual, and in this sense it can be significant.

The institutionalization of charging users for the provision of urban stormwater
management services, whether provided by public or private operators, always encounters
obstacles, posed by those who believe that they should be compulsorily provided by the
public authority and funded by general public budgets, which means the cost is socialized
for all the society. Either due to technical reasons, such as methods of quantification of
the shares that each one is responsible for (the user-/polluter-pays principle), or to issues
of understanding regarding the services to be provided by the state or for various legal
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and rights-based reasons (i.e., legal, among others), the fact is that barriers exist to the
implementation concept of stormwater utilities.

The reality, however, has shown that in several countries there are feasible ways of
charging equitably for the services, relieving public budgets, encouraging the reduction in
impervious areas and the disconnection to urban stormwater systems, i.e., saving nature
from impacts, taxpayers from unfair costs, and public budgets from unplanned expenses,
made to remedy sudden failures after extreme precipitation events, which are increasingly
frequent due to the climate.

Based on theoretical knowledge, expressed in various pricing and collection formulas
that have been tried in practice in different countries, it is possible to see that economic
sustainability, as the economic side of the ongoing paradigm shift in urban stormwater
management services already has feasible options and alternatives. Thus, the argument
that urban drainage is a public service left “for later” due to a lack of resources or economic
organization does not hold. Political will can set in motion policies, institutions, and
regulations that, aligned around the objective of solving drainage sector issues, set in
motion incentives for economic organisation and financial support.

The novelty is the possibility to make the economic change a viable side of the stormwa-
ter paradigm shift, in a win–win manner, with more than economic gains for all actors.
There are efficiency gains in terms of environmental, social, institutional, organizational,
and political aspects.

This is not all, since society’s acceptance of the paradigm shift, through the understand-
ing of the gains that are thus produced, requires an effort of awareness. This is not only
motivated by economic–financial gains and reasons, but by others of ideological nature,
that is, at the level of ideas and ideals, as is the case for the sustainable development goals.
SDG’s are present in the paradigm shift, but are not always perceived and require more
work from all. A missing economic aspect that is important in ascertaining the speed of the
paradigm shift is the quantification of ‘green’ and ‘grey’ infrastructure investments made
with the revenue raised through SWUs. This is an aspect for study, that is, it is important
to know to what extent the mechanism and the collection from users has contributed to
the implementation of more infrastructures that favour the paradigm change (e.g., green
infrastructures) such as the quantity of street trees and many others leveraging the change.
Criteria to measure the achievement of clear objectives make the possibilities of reaching
them visible, contribute to adjustments, and can help everything run more quickly towards
the change in paradigm.

The study explored the existing publications, information, and data to which it was
possible to have access and, by adopting this methodology, it carries with it the limitations
arising from it, such as the absence of information that does not exist in the databases studied,
or even the form of research used in these bases. Additionally, given the dynamics of the
temporal evolution of the experiments, they will continue to occur, often surpassing the ability
to become aware of them and analyze them, a fact that is part of the research process.

Author Contributions: Conceptualization, C.N. and R.M.; methodology, C.N. and R.M.; valida-
tion, C.N. and R.M.; formal analysis, C.N. and R.M.; investigation, C.N.; resources, C.N. and R.M.;
data curation, C.N.; writing—original draft preparation, C.N. and R.M.; writing—review and edit-
ing, C.N. and R.M.; visualization, C.N. and R.M.; supervision, R.M.; project administration, R.M.;
funding acquisition, C.N. and R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors are grateful for the Foundation for Science and Technology’s support through
funding UIDB/04625/2020 from the research unit CERIS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

535



Sustainability 2022, 14, 6179

References

1. See, L.S.; Calo, L.; Bannon, B.; Opdyke, A. An open data approach to mapping urban drainage infrastructure in developing
communities. Water 2020, 12, 1880. [CrossRef]

2. Pinheiro, C.B. Políticas Públicas de Manejo de Águas Pluviais em Belo Horizonte: Novos Caminhos em Meio a Velhas Práticas.
Master’s Thesis, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2019.

3. Imhoff, K.; Imhoff, K.R. Manual de Tratamento de Águas Residuárias, 3rd ed.; Edgard Blucher: São Paulo, Brazil, 1985; pp. 1–301.
4. Monte, H.M.; Santos, M.T.; Barreiros, A.M.; Albuquerque, A. Tratamento de Águas Residuais—Operações e Processos de Tratamento

Físico e Químico: Cursos Tecnicos; ERSAR & ISEL: Lisbon, Portugal, 2016; pp. 1–544.
5. Tucci, C.E.M.; Meller, A. Regulação das águas pluviais urbanas. REGA 2007, 4, 75–89.
6. Bertrand-Krajewski, J.L. Integrated urban stormwater management: Evolution and multidisciplinary perspective. J. Hydro-Environ. Res.

2021, 38, 72–83. [CrossRef]
7. Hamel, P.; Daly, E.; Fletcher, T.D. Source-control stormwater management for mitigating the impacts of urbanisation on baseflow:

A review. J. Hydrol. 2013, 485, 201–211. [CrossRef]
8. Novaes, C.A.F.O.; Marques, R.C. Public policy: Urban stormwater in a paradigm shift, is it the end or just the beginning?

Water Sci. Technol. 2022, wst2022127. [CrossRef] [PubMed]
9. Braden, J.B.; Ando, A.W. Economic costs, benefits, and achievability of low-impact development-based stormwater regulations.

In Economic Incentives for Stormwater Control; CRC Press: Boca Raton, FL, USA, 2011; pp. 45–70.
10. Black & Veatch. 2018 Stormwater Utility Survey Black & Veatch. 2018. Available online: https://www.bv.com/resources/2018

-stormwater-utility-survey-report (accessed on 15 February 2022).
11. Veiga, M.M.; Feitosa, R.C.; Marques, R.C. Analyzing barriers for stormwater management utilities. Water Sci. Technol. Water Supply

2021, 21, 1506–1513. [CrossRef]
12. Kea, K.; Dymond, R.; Campbell, W. An analisys of the patterns and trends in United States Stormwater Utility Systems.

J. Am. Water Resour. Assoc. 2016, 52, 1433–1449. [CrossRef]
13. NACWA. MS4 Stormwater Permitting Guide; NACWA—National Association of Clean Water Agencies: Washington, DC, USA,

2018; pp. 1–89.
14. Grigg, N.S. Stormwater Programs: Organization, Finance, and Prospects. Public Works Manag. Policy 2013, 18, 5–22. [CrossRef]
15. Campbell, W.; Bradshaw, J. Western Kentucky University Stormwater Utility Survey 2021; Kentucky University: Lexington, KY,

USA, 2021; Available online: https://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=1003&context=seas_faculty_pubs
(accessed on 15 January 2022).

16. Black and Veatch. 2021 Stormwater Utility Survey Report; Black & Veach: Overland Park, KS, USA, 2021; Available online:
https://www.bv.com/resources/2021-stormwater-survey-report (accessed on 20 February 2022).

17. Vietz, G.; Whiteoak, K.; Ehrenfried, L. Incentivising Stormwater Management in Cities and Suburbs. Water J. 2018, 3, 1–15.
[CrossRef]

18. Campbell, C.W.; Dymond, R.L.; Dritschel, A. Western Kentucky University Stormwater Utility Survey 2016; Kentucky University:
Lexington, KY, USA, 2016; pp. 1–50. Available online: https://www.wku.edu/seas/documents/swusurvey-2016.pdf (accessed
on 18 January 2022).

19. Tasca, F.A.; Assuncão, L.B.; Finotti, A.R. International experiences in stormwater fee. Water Sci. Technol. 2017, 1, 287–299.
[CrossRef] [PubMed]

20. AECOM. Thunder Bay Stormwater Financing Strategy Report; AECOM: Gualph, ON, Canada, 2020.
21. Otoch, B.C.C.; Studart, T.M.C.; Campos, J.N.B.; Portela, M.M. Gestão de Recursos Hídricos em Regiões Semiáridas e a Dependência

da Trajetória Institucional: Nordeste Brasileiro e Austrália. Rev. Recur. Hídricos 2019, 40, 43–51. [CrossRef]
22. Brodnik, C.; Brown, R.; Cocklin, C. The Institutional Dynamics of Stability and Practice Change: The Urban Water Management

Sector of Australia (1970–2015). Water Resour. Manag. 2017, 31, 2299–2314. [CrossRef]
23. Fonte, G.M.S. Os Mercados da Água em Operação nos Eua, Chile e Australia: Reflexões para o Brasil. Master’s Thesis, Brasília

University, Brasília, Brazil, 2020.
24. Monaghan, C. Critical Junctures. Educ. Durable Solut. 2021, 11, 95–108.
25. Radcliffe, J.C.; Page, D.; Naumann, B.; Dillon, P. Fifty years of water sensitive urban design, Salisbury, South Australia.

Front. Environ. Sci. Eng. 2017, 11, 7. [CrossRef]
26. Australian Government Bureau of Meteorology. Australian Climate Averages—Rainfall (Climatology 1981–2010). 2022. Avail-

able online: http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp?period=an&area=vc#maps (accessed on
20 February 2022).

27. Stovin, V.R.; Jorgensen, A.; Clayden, A. Street trees and stormwater management. Arboric J. 2008, 30, 297–310. [CrossRef]
28. Burgan, H.I.; Icaga, Y. Flood analysis using adaptive hydraulics (ADH) model in the Akarcay basin. Teknik Dergi Tech. J. Turk.

Chamb. Civ. Eng. 2019, 30, 9029–9051. [CrossRef]
29. Barbosa, A.E.; Fernandes, J.N.; David, L.M. Key issues for sustainable urban stormwater management. Water Res. 2012, 46,

6787–6798. [CrossRef]
30. ANA. Atlas Esgotos—Despoluição de Bacias Hidrográficas; Agência Nacional de Águas (ANA): Brasilia, Brazil, 2017; pp. 1–265.

Available online: http://arquivos.ana.gov.br/imprensa/publicacoes/ATLASeESGOTOSDespoluicaodeBaciasHidrograficas-
ResumoExecutivo_livro.pdf (accessed on 15 February 2022).

536



Sustainability 2022, 14, 6179

31. Tasca, F.A. Simulação de Uma Taxa para Manutenção e Operação de Drenagem Urbana para Municípios de Pequeno Porte.
Master’s Thesis, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil, 2016.

32. Zhao, J.Z.; Fonseca, C.; Zeerak, R. Stormwater utility fees and credits: A funding strategy for Sustainability. Sustainability 2019,
11, 1913. [CrossRef]

537





Citation: Zhang, H.; Shao, Z.; Sun, J.;

Huang, X.; Yang, J. An Extended

Watershed-Based AHP Model for

Flood Hazard Estimation:

Constraining Runoff Converging

Indicators via MFD-Derived

Sub-Watershed by Maximum Zonal

Statistical Method. Remote Sens. 2022,

14, 2465. https://doi.org/10.3390/

rs14102465

Academic Editors: Luis Garrote and

Alban Kuriqi

Received: 27 March 2022

Accepted: 16 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

An Extended Watershed-Based AHP Model for Flood Hazard
Estimation: Constraining Runoff Converging Indicators
via MFD-Derived Sub-Watershed by Maximum Zonal
Statistical Method

Hongping Zhang 1,2, Zhenfeng Shao 1,*, Jisong Sun 2, Xiao Huang 3 and Jie Yang 1

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; zhanghongping@whu.edu.cn (H.Z.); yangj@whu.edu.cn (J.Y.)

2 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
sunjs@cma.gov.cn

3 Department of Geosciences, University of Arkansas, Fayetteville, AR 72701, USA; xh010@uark.edu
* Correspondence: shaozhenfeng@whu.edu.cn

Abstract: Floods threaten the sustainable development of areas with a high probability of hazard.
A typical analytic hierarchy process (pixel-based AHP) based flood hazard estimation method may
ignore the similar threat caused by neighborhood cells at the sub-watershed scale. This study pro-
posed an extended watershed-based Zonal Statistical AHP for flood hazard estimation: Constraining
converging related indicators by the sub-watersheds (WZSAHP-RC) model to improve this gap.
Before calculating the flood hazard index, the proposed model uses the sub-watershed derived by
the multiple flow direction method as a based unit to calculate the maximum zonal statistical value
of runoff converging indicators. Moreover, taking the Chaohu basin of Anhui in China as the case
study, the validation flooding ground-truthing was constructed from GF-3, and Landsat OLI images
of the flood event from 20 July to 24 July 2020, which is the biggest flood recorded by the Zhongmiao
station, which recorded a new water level, 0.82 m higher than the historical record. Compared with
the validation, the results indicated the proposed method could improve the correct ratio by 38%
(from 22% to 60%) and the fit ratio by 17% (from 18% to 35%) when considering the predicted flood
hazard levels of “High” and “Very High” as flooded areas. Moreover, the flood hazard map derived
by WZSAHP-RC demonstrated greater consistency in the flooded districts filtered by Baidu News
than the pixel-based AHP. It revealed that considering two- or even multi-dimensional homogeneity
may help to improve the accuracy of flood hazard maps on a catchment scale.

Keywords: flood; analytic hierarchy process (AHP); GF-3; Chaohu; watershed; Baidu News

1. Introduction

Flooding is a common phenomenon occurring worldwide, related to climatic condi-
tions, geography, the environment, human activities, and other factors. Flooding is a natural
event with great destructive power and a common challenge for human society [1,2]. The
underlying surface is a formation environment for floods, and it is also the leading site for
human activity. As economic development and urbanization are promoted, more surfaces
that were previously natural are being replaced by impermeable surfaces. The increase
in impervious surfaces may cause an increase in the surface runoff and a decrease in the
time between the start of a flood and the flood peak [3]. These adverse hydrological effects
may cause an increase in extreme rainstorm events in the future. Continuous excessive
rainfall will cause the water level of rivers, lakes and reservoirs to rise sharply, bringing
severe threats to flood-prone areas [4].

China is one of the countries frequently disturbed by flood and waterlogging events.
It was reported that 641 out of 654 Chinese cities were exposed to frequent floods [5].
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Taking China’s third largest catchment—the Yangtze River, as an example, the areas in the
middle and lower reaches of this estuary experience plum floods every spring. In 2020,
there were five floods whose discharge or water level reached the flood warning level for
the Yangtze River. In the flood season of July 2020, seven floods occurred across several
provinces. According to the Ministry of Emergency Management of China, as of 13 August
2020, the floods had affected 63.46 million people and caused a direct economic loss of
178.96 billion CNY [6]. Different human settlements might experience an extra loss level in
the same hazard [7]. The combination of climate change and increasing urbanization brings
tremendous challenges to planning and managing cities for sustainability [4]. Meanwhile,
the feedback loop of flood protection and awareness in communities affects their planning
and development in the long term [8]. To mitigate urban floods, accurate flood hazard
estimation corresponding to patterns of urbanization is a policy objective.

Flood hazard distribution is the dominant factor in flood risk estimation. Compared
with the aim of flood risk mapping to identify the exposures of communities and socio-
economic places in extreme rainfall events, flood hazard maps focus on the flooded area dis-
tribution determined by natural features, such as flow converging, geological permeation,
and under-lying surface storage space. AHP is a typical multi-objective-decision-making
method widely used in flood hazard estimation. Models, such as analytic hierarchy process
(AHP) [9], Bayesian models [10], fuzzy comprehensive evaluation [11,12], and hybrid mod-
els between bivariate statistical [13], artificial neural networks and boosting algorithms [14]
have been deployed in flood hazard estimation. Bayesian models need measurements and
statistical data from historical flood events. Fuzzy methods and swarm intelligence can
be supervised classifications, but need samples from historical flood events. Flood hazard
estimation via the AHP method does not rely directly on historical records, and it has the
advantage of being easy to use and accurate.

The essential flood hazard estimation via AHP describes the individual heterogeneity
features of under-lying surface areas [15,16]. As the geology information system (GIS)
develops, flood hazard estimation can detail flood hazards involving pixel-scale indicators.
For example, Abdouli et al. [17] adopted AHP to map the flooding potential on the Arabian
Gulf coast using data that include land use, soil type and antecedent moisture. Wu et al. [18]
estimated flood vulnerability via AHP using rainfall intensity and duration, elevation,
slope, land use, and population density. However, these pixel-based AHP are difficult,
considering terrain connectivity thus leading to the possibility of ignoring flood hazard
consistency caused by neighborhood pixels.

A watershed is a natural terrain edge of water converging through the terrain. Sub-
watershed reflects a group of pixels with common flow paths to combine rainwater to the
same outlet (e.g., rivers, lakes, and wetlands). As in the hydrology and hydrodynamic
model, a sub-watershed was usually considered a basic unit, such as SWAT, SWMM, etc.
However, these models always rely on detailed input parameters (e.g., rainfall, evapora-
tion, topography, soil, river, and drainage information), are computationally demanding,
often simulate the specific rainfall-flood process, and are widely used in flood forecasting.
For flood hazard estimation, especially in data-scarce or large-scale areas, the detailed
parameters of the hydrology/hydrodynamic model desired cannot be satisfied.

During a flood event, the continuous rainwater converging along the flow path can be
considered source flooding, bringing similar threats to pixels at sub-watershed scales [3].
The flood hazard of cells is more dependent on the maximum risk level of neighborhood
cells on a sub-watershed scale rather than the individual terrain features or hydrological
characteristics of each cell [19]. Therefore, using sub-watershed as a basic unit to estimate
flood hazards may consider the hydrological influence introduced by adjacent pixels. Thus,
it may increase the estimation accuracy of the flood hazard map.

This study aims to present a new flood hazard estimation method of using the sub-
watershed as a constrain unit to express the homogeneity of flood hazards introduced
by a group of converging pixels. The proposed model, termed WZSAHP-RC, adopts
multiple flow directions (MFD) derived sub-watershed [20] as a basic unit to constrain
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runoff, converging related indicators by the maximum zonal statistical method, while other
hydrological-formation indicators are also calculated by pixels. Taking the Chaohu basin
of Anhui, China, as an example, the flood hazard maps derived from the proposed model
were validated by the flooded areas extracted from remote sensing images captured during
a real-world flood event in July 2020. Furthermore, the influences of using single flow
direction and multiple flow direction algorithms to delimitate a sub-watershed and the
adopting minimum area threshold for a sub-watershed were also discussed.

This paper is organized as follows: In Section 2, the primary data sources and the
methodology will be described. Subsequently, the results and the significant findings are
presented in Section 3. Then, the influence of sub-watershed delimitation methods and
function constraining factors of the proposed model will be discussed in Section 4. At last,
some conclusions and the limitations of this study are provided in Section 5.

2. Materials and Methods

2.1. Study Area

The Chaohu basin is in the range of Anhui province, China. It is located at the inter-
section of the Yangtze River catchment and Huaihe River catchment, draining rainwater
from the upstream Huaihe River to Chaohu and finally flowing into the Yangtze River.
This study selected 11 counties surrounding Chaohu Lake to analyze the flood hazard
distribution (Figure 1). These chosen districts implemented a 10-km buffer analysis to
avoid the many small-scale sub-watersheds occurring at the edge of specific areas. The
boundary was considered the range of the study area.

 

 

Figure 1. The geographical location of the study area and the DEM of the study area (according to
the China basic geographic information, 2008 version).

The terrain surrounding the Chaohu basin is characterized as a “butterfly” pattern,
which leads to most areas along with the water system of the Chaohu basin having a high
possibility of flooding every flood period. The terrain of the Chaohu basin contains five
major terrain types: low mountains, hilly land, hill land, plains (lakeside and wavy plains)
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and water areas. The elevation in the northwest and southeast is higher than in other
areas of the study area; the middle region has a relatively lower elevation than other areas.
Lujiang city and Wuwei city are at relatively lower elevations. Therefore, they are exposed
to a high risk of flooding. Improving the accuracy of flood hazard estimation in the Chaohu
basin will support future flood risk management and thus help protect the local economy.

2.2. Materials

Primary data sources and their detailed information are presented in Table 1. The
geographic information system (GIS) vector map of specific and hydrological information
was used in this study. The digital elevation model (DEM) data were used to divide
sub-watersheds and calculate slopes. The impermeable surface products were used to
extract land-used type and hydrological infiltration information. The images include the
SAR (synthetic aperture radar) image of the GF-3 and the optical image of the Landsat 8
OLI image. The GF-3 captured on 24 July 2020, was used to extract flooded areas. The
Landsat 8 OLI image shot on 20 July 2020, was used to extract former flood areas. Moreover,
the flooding information searched in Baidu News was used to construct the validation of
flooded towns and villages. The final used tiles of impervious surface production and the
validation dataset were described as in Appendix A.

Table 1. The main data materials used in this study.

Data Sources Used Data Detailed Information

Geographic information
(1:1 million)

District The county and town level districts were used. Hydrological layers
were utilized to constrain DEM. They were downloaded from the

China Science and Technology resources sharing network, Available
online: http://www.geodata.cn/data/datadetails.html?dataguid=

113730965998632 (accessed on 20 July 2020).
River and lake

ASTER GDEM V2 (30 m) DEM
The DEM divides watersheds and classifies the slope and elevation

indicators. The DEM was downloaded from Available online:
http://www.gscloud.cn (accessed on 20 July 2020).

China’s impermeable surface
product (2 m)

Land-use type
Following [21], the water, vegetation, soil, building and road layers
were used to classify land use and hydrological indicators. China’s

impermeable surface production (2 m) dataset is not published on the
website. In this study, the involving land use type vector collected

from this product can be downloaded according to the detailed
description in the Supplementary Material section.

Hydrological characteristics

Images for extracting
flooding areas Water bodies

The Landsat 8 OLI on 20 July 2020 and GF-3 on 24 July 2020 were
used to extract flooding areas. The Landsat 8 OLI was downloaded
from Available online: https://www.usgs.gov (accessed on 20 July

2020). The GaoFen center of Hubei province supports the GF-3 data,
and it also can download from the China Science and Technology

resources sharing network: Available online:
http://39.106.90.21/datashare/newsatelliteset2.html (accessed on 20

July 2020).

Flooding information in
Baidu News Flooding and dam breaks by towns Baidu News, as a validation source, was searched from Available

online: http://news.baidu.com (accessed on 20 July 2020).

1. GIS Vector maps—Geographic information. This study used the vectorized county and
town boundaries released in 2008. The administrative districts served as geographic
constraints to filter Baidu News flood reports. The hydrological layers, including
rivers, streams, and lakes (levels 1 to 5), were compared with water bodies classified
from images.

2. DEM—ASTER GDEM V2 dataset. The DEM dataset adopted is ASTER GDEM V2. This
study area covers a total of nine scenes. The horizon resolution of the DEM dataset is
30 m, and the vertical resolution is 1 m. The projection is WGS_1984_UTM_Zone_50N.
As shown in Figure 1, the range of elevation was −204~1807 m, and they were the
original value of DEM in the study area.
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3. GRID of Remote sensing production—Land information. This study adopted China’s
impermeable surface grid product (2 m) [21]. The 18 tiles for Hefei, Luan, Anqing,
Wuhu, Maanshan, Chuzhou, and Huainan cities were used to prepare the land use
and hydrological indicators.

4. Images—Extracting flooded area. As remote sensing develops, more and more im-
ages of multiple spatial resolutions, considerable time, multiple angles, and multiple
carrying platforms can be used for urban underlying surface observation [22]. The
flooded areas extracted from remote sensing images can construct the flood hazard
ground-truthing dataset. This study collected the used optical image of Landsat 8 OLI
of 30 m resolution shot on 20 July 2020, and the SAR of GF-3 Fine Stripmap II (FSII)
model of 10 m resolution shot on 24 July 2020. The pre-processing of Landsat 8 OLI
was performed in ENVI 5.3, and included radiometric calibration, and atmosphere
correction; the water bodies were extracted by the maximum likelihood method.
The pre-processing of the GF-3 SAR image was implemented in PolSAR Pro 5.2 and
GAMMA and included speckle filtering, radiometric calibration, terrain correction
and geocoding. The water bodies in GF-3 were classified basing the threshold segmen-
tation method corresponding to the water bodies in Landsat 8 OLI. The validation
experiments were constructed to establish the intersecting area’s ground truth range
considering the temporal differences between these two images. The permanent water
bodies extracted from China’s impermeable surface product were excluded from the
final validation ground truth of the flood areas.

5. Baidu News—Filtering flood and dike rupture information. The damage information
from floods and dikes of flood events in July 2020 was used to verify the accuracy of the
flood hazard estimation in the Chaohu basin. We used an internet context searching
and capturing tool named “Octopus” (Available online: https://www.bazhuayu.com
(accessed on 20 July 2020)) to collect information from the Baidu News website
(Available online: https://news.baidu.com (accessed on 20 July 2020)). The keywords
were used to filter Baidu News, including “flood” and “waterlogging”, combined
with the names of the county in the range of the study area.

2.3. Methods

The technical workflow used in this study is illustrated in Figure 2. After the primary
data sources were pre-processed, the flood hazard criteria were constructed. Moreover, the
flood hazard involving indicators grouped by the rainfall-runoff production and the flow
converging related indicators were prepared. According to the proposed WZSAHP-RC
model, the maximum zonal statistical method will constrain the converging associated
indicators. Then, the pixel-based AHP flood hazard index and the sub-watershed-based
WZSAHP-RC flood hazard index will be calculated. Then, the two kinds of flood hazard
maps will be classified as five levels according to the Nature Break slice method in terms of
flood hazard indexes. Finally, the validation process will be implemented.
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Figure 2. The overall workflow of our study.

The primary data sources and the pre-processing processes were described in Section 2.2.
The proposed watershed-based zonal statistic AHP model will be introduced in Section 2.3.
Moreover, to further detail the multiple flow direction algorithm and the single flow
direction algorithm influence, the sub-watershed division method based on the D8 and
MFD algorithms will be introduced in Section 2.4. Finally, the flood hazard validating
approach will be supplied in Section 2.5.

2.3.1. Flood Risk Estimating Method

A sub-watershed is a physical range, and it indicates rainwater converging along
a section of a digital stream flowing out through the same outlet. The sub-watershed
pixels reflect the same runoff outlet along the common converging path. Moreover, the
pixels in a sub-watershed can be considered to share the same storage of surface runoff
rainwater at the sub-watershed scale. Therefore, in this study, the sub-watershed was
adopted as a basic unit to constrain runoff converging related indicators by the maximum
zonal statistical method to consider that the spatial connectivity brought similar flood
hazards at the sub-watershed scale. The structure of traditional AHP (Figure 3a) and the
flood hazard estimation process among pixel-based AHP (Figure 3b) and the proposed
WZSAHP-RC (Figure 3c) are shown in Figure 3.
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Si
P P

Figure 3. The logical structure of flood hazard estimation methods: (a) The general structure of AHP,
(b,c) are diagrams of ordinary AHP and WZSAHP-RC.

Figure 3a shows the structure diagram of the AHP method, its estimation target is
recorded as “object”, and its criteria are C = {C1, C2, . . . , Cx}, and the criterion can be
constructed in multiple layers as needed. The estimating index can determine its final
alternative set A = {a1, a2, . . .}. The AHP model is widely used in flood hazard estimation
to integrate a Geographic Information System (GIS) and remote sensing. AHP is composed
of three levels: target, criteria, and alternatives. The target layer refers to the evaluation
unit; the criteria (with single or multiple layers) consist of several clusters that reflect
different aspects of the target; the alternative is composed of the estimation results set. The
AHP-based flood hazard estimation model can be defined as follows:

P =

⎡⎢⎢⎣
p11 p12 . . . p1n
p21 p22 . . . p2n
. . . . . . . . . . . .
pm1 pm2 . . . pmn

⎤⎥⎥⎦, C =

⎡⎢⎢⎣
C1
C2
. . .
Cx

⎤⎥⎥⎦, Cx =

⎡⎢⎢⎣
c11 c12 . . . c1n
c21 c22 . . . c2n
. . . . . . . . . . . .
cm1 cm2 . . . cmn

⎤⎥⎥⎦
x

(1)
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where matrix P represents the pixels in the study area, with a size of m × n, C is the flood
hazard estimation indicators, and each of the indicators cx is a raster layer, with a size of
m × n.

A comparative matrix of criteria and calculated weights is constructed. According
to the AHP model, the positive pairwise comparison matrix usage value 1 to 9 indicates
the relative importance of the two indices. Its largest eigenvalue and corresponding
eigenvectors can be used as weight vectors to represent the established hierarchic evaluation
structure [23]. The hierarchic evaluation structure can be calculated as follows:

J =

⎡⎢⎢⎣
j11 j12 . . . j1x
j21 j22 . . . j2x
. . . . . . . . . . . .
jx1 jx2 . . . jxx

⎤⎥⎥⎦
x×x

, J•X = λmax•X → ωi =
xi

∑x
j=1 xj

, ω =

⎡⎢⎢⎣
ω1
ω2
. . .
ωx

⎤⎥⎥⎦ (2)

where the comparison matrix J, with a size of x × x, is used to determine the importance
order among criteria C (in Equation (1)). X is the eigenvector corresponding to the largest
eigenvalue λmax of J, ω is the weight vector corresponding to the normalization value of
the eigenvector X.

The consistency ratio was calculated in Equation (3) to calculate the judgment matrix
criteria as logically consistent [23]. The pairwise comparison matrix can be accepted if its
consistency ratio is less than 0.1 (a consistency ratio of 0 indicates that the judgment matrix
is entirely consistent).

CI = λmax − n/n − 1, CR =
CI
RI

(3)

where CR is the consistency ratio, CI is the consistency index, RI is a statistic random index,
the average CI of randomly generated pairwise comparison matrix of similar size, λmax is
the largest eigenvalue of the comparison matrix, and n is the number of indicators used
in criteria.

Figure 3b shows that the common AHP model adopts the pixel as a basic unit. The
final estimation index can be calculated by accumulating the pairwise cumulative indices
and weights.

Figure 3c is a diagram of the proposed WZSAHP-RC model. The constrain runoff
converging related indices, such as Slope, Elevation, and Distance from streams, can
constrain sub-watersheds and thus help identify neighborhood hazards using the following
formulas:

S =

⎡⎢⎢⎣
. . .

Sk Sk
Sk

. . .

⎤⎥⎥⎦
m×n

(4)

F(S, cx) = zonalStatistic(S, cx, Method) (5)

where S is the sub-watershed division raster, F(S, cx) is the constraint sub-watershed as
a statistical zonal unit, to update the corresponding indicator cx. The size of F(S, cx) is
also m × n; zonalStatistic is calculated using the descriptive statistics of indicator cx for
each sub-watershed S, Method is the statistical method including the majority, maximum
and median.

The final flood hazard index is calculated using the pairwise cumulative criteria and
weights following Equation (6). As the Natural Break method can maintain slight variance
within groups and significant variance among indexes, it is widely used to partition the
final flood hazard map [15,16,24–26]. Therefore, the final flood hazard map can be derived
by classifying the flood hazard index into {“very low”, “low”, “moderate”, “high”, and
“very high”} by the Nature Break method.

FRI = ω•C = ∑i=m
i=1 ωi•F(S, ci) + ∑j=x

j=m+1 ω
j
•cj, (0 ≤ m ≤ x) (6)
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where FRI is the flood hazard index, calculated by the cumulative sum of criteria C and
its corresponding weight ω. The criteria can be grouped as the sub-watershed constraint
indices F(S, ci) and the original indices cj.

2.3.2. Constructing Flood Hazard Estimation Criteria

This study adopted five indices C = {C1, C2, C3, C4, C5}, where C1 = Slope, C2 = Elevation,
C3 = Distance from streams, C4 = Hydro-lithological formations, C5 = Land use type, referring
to [25] to construct flood hazard estimation criteria. The former three indicators, the “Slope”,
“Elevation”, and “Streams”, affect the path of rainwater runoff convergence. They reflect the
geological flood hazard factors. The “Hydro-lithological formations” and the “Land-use type”
affect infiltrability and the roughness of the underlying surface. Thus, the “Hydro-lithological
formations” and the “Land-use type” are grouped as runoff production indicators. As in
AHP-based flood risk estimation, the weighting definition would influence the accuracy
of the final flood hazard distribution. Ekmekcioğlu and Koc et al. [11,12,27] adopted the
fuzzy-AHP to increase the reasonable weighting definition. The comparison matrix defined,
referred to [25], as shown in Table 2.

Table 2. The judgment matrix of criteria. C1 = Slope, C2 = Elevation, C3 = Distance from streams,
C4 = Hydro-lithological formations, C5 = Land use type.

Flood Hazard Potential C1 C2 C3 C4 C5

C1 1 4 1/2 3 1/2
C2 1/4 1 1/3 1/2 1/4
C3 2 3 1 3 1
C4 1/3 2 1/3 1 1/3
C5 2 4 1 3 1

In the judgment matrix, the maximum eigenvalue is λmax = 5.133. As the criteria
number is 5, the obtain random index value is as RI = 1.12 from a lookup table. Thus, the
consistency index of the judgment matrix is: CI = λmax−n

n−1 = 5.133−5
4 = 0.03325. Therefore,

the final consistency ratio can be calculated as CR = CI
RI = 0.03325

1.12 ≈ 0.030. Since the value
CR is less than 0.1, the judgment matrix used to derive the weight matrix can be accepted.
The process of weighting criteria is calculated as:

C =

⎡⎢⎢⎢⎢⎣
C1
C2
C3
C4
C5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
FRSlope

FRElevation
FRDistance_ f rom_streams

FRHydro_lithological_ f ormations
FRLand_use_type

⎤⎥⎥⎥⎥⎦, A =

⎡⎢⎢⎢⎢⎣
1 4 1/2 3 1/2

1/4 1 1/3 1/2 1/4

2 3 1 3 1
1/3 2 1/3 1 1/3

2 4 1 3 1

⎤⎥⎥⎥⎥⎦ (7)

λmax = 5.133, ω =
[

0.214 0.068 0.302 0.100 0.315
]

where C is the matrix of used flood hazard estimation criteria. The corresponding indicators are:{
FRSlope, FRElevation, FRDistance_ f rom_streams, FRHydro_lithological_ f ormations, FRLand_use_type

}τ
,

FRI is the flood risk index, A is the judgment matrix comparing between two indica-
tors, and the weight vector ω is calculated according to Equation (2).

As in the WZSAHP-RC model, the descriptive statistics were calculated based on
the value of runoff converging indices, including “Slope”, “Elevation”, and “Distance from
streams”. Moreover, the flood hazard index can be expressed as:

FRI = ω1•F(S, C1)+ω2•F(S, C2) + ω3•F(S, C3) + ω4•C4 + ω5•C5 (8)

where FRI is the flood risk index, ω is weight, C is the criteria as defined according to
Equation (7), F(S, Ci) is the criterion Ci calculated using the descriptive statistics values of
the sub-watershed S, according to Equation (5).
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2.3.3. Rating Flood Hazard Estimation Involving Indicators

The original flood hazard estimation involving indicators needs to be rated uniformly.
The values of “Slope” and “Elevation” are numeric, with a natural pattern distribution.
Therefore, the natural break method reclassified these two indicators into uniform classes.
The value of “Land-use type” and “Hydro-lithological formation” are category words. They
were ranked according to the infiltration and rainfall-runoff production ability correspond-
ing with levels of 1–5. The “Distance from streams” adopted specific ranges of Euclidean
distance from streams to represent flood hazard levels. The ranked flood hazard estimation
indicators are listed in Table 3.

Table 3. The classes and rating of factors in flood hazard estimation.

Factors Classes Rating Factors Classes Rating

Slope (◦)

0 5

Land use
types

Water 5
0–2 4 Road 4
2–6 3 Building 3

6–12 2 Soil 2
12–20 1 Vegetation 1
>20 0

Elevation (m)

−204–12 5
Hydro

lithological
formations

Water 4
12–23 4 Impermeable surface 3
23–46 3 Pervious surface 1
46–152 2
>152 1

Factors Classes Rating

Distance from
streams (m)

Rivers, lakes and reservoirs 5

Level 1 Level 2 Level 3 Level 4 Level 5

0–1000 4
0–500 0–1000 1000–2000 3

0–500 500–1000 1000–2000 2000–4000 2
0–500 500–1000 1000–1500 2000–3000 4000–6000 1
>500 >1000 >1500 >3000 >6000 0

1. Slope. The slope is the main factor influencing the rainwater flow path. The slope
range is 0◦–81◦, classified as six classes by the Natural Break method, the angles (◦)
of “0”, “0–2”, “2–6”, “6–12”, “12–20”, and “>20” were labeled as 5, 4, 3, 2, 1 and 0,
respectively.

2. Elevation. The elevation influences flood risk distribution. It seems that cells with low
elevation are highly likely to suffer flood hazards. The elevation range is −204–1490 m,
they were classified into five types by the Natural Break method, the elevations (m) of
“−204–12”, “12–23”, “23–46”, “46–152”, and “>152” were labeled as 5, 4, 3, 2 and 1,
respectively.

3. Distance from streams. Streams are the source of flood risks. The distance from
streams reveals the potential risk. In this study, the streams were extracted using the
D8 algorithm, and the stream levels were labeled by the STRAHLER method. For
specific streams, far away cells had lower flood risks than nearby cells. According to
Table 3, six types of distance from streams were defined, including the water bodies
ranked into five classes, and the distance from streams of levels 1–5 were classified as
0–4.

4. Land use types. The land-use types determine the rainfall-runoff production. The
ranked vegetation, soil, building, road and water were 1, 2, 3, 4 and 5, respectively.

5. Hydro-lithological formations. The hydro-lithological formations influence the infil-
tration performed by rainfall-runoff production. Hydro-lithological formations were
grouped by water, impervious surface, and permeable surface, and they were rated as
4, 3, and 1, respectively.
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2.4. Watershed Delaminating
2.4.1. Pre-Processing DEM for Watershed Division

A DEM was the primary data used to derive the watersheds but needed to be enriched
with hydrological information before delaminating the sub-watersheds. Kenny et al. [28]
found that integrating hydrological streams with a DEM can improve the accuracy of
extracting digital drainage. Zhang et al. [29] pointed out that delimiting a watershed and
constraining a DEM by water bodies can reduce the uncertainty created when calculating
water flow direction. Thus, hydrological features, including streams, rivers, and lakes, were
used to update the elevation in a corresponding cell of a DEM.

Hydrological features can be recognized by their shapes. Constructed water bodies,
such as rice paddies and ponds always have regular symmetrical shapes. Naturally occur-
ring hydrological elements, such as lakes and even artificial elements, such as reservoirs,
always extend along a terrain. The bodies of these hydrological elements are irregular
and with long perimeters. Other hydrological features, such as streams, rivers and ditches
always have long flow paths, so their shapes appear as long and narrow rectangles. There-
fore, the defined natural water body index termed Steady Water Index (SWI) is expressed
as Equation (9) to identify hydrological features. For example, since their shapes are like
long and narrow rectangles, and river and stream elements, when the value SWI is 200,
the ratio of the longer edge and the shorter edge is approximately 10,000. This ratio can
represent most rivers and streams.

SWI =
Shape_Length√

Shape_Area
(9)

where SWI is the steady water index. The Shape_Length and Shape_Area are the perimeter
and area of the water bodies, respectively. Referring to the study area, it suggests the value
of SWI should be set as between 6 to 200. At the same time, the water area threshold is also
used to identify hydrological features. As the minimum area of lakes in the study area is
about 70,000 m2, the water polygons with a spatial coverage larger than 78 cells (as pixel
resolution is 30 m, this is about 70,200 m2) were regarded as natural water elements.

2.4.2. Delaminating Sub-Watershed by D8 Algorithm

The D8 algorithm is a typical single flow direction (SFD) method in the watershed
division. It is termed via its theory of using the maximum drop of elevation from the
neighborhood of eight pixels to obtain the candidate flow outlet of central pixels. Then,
the flow accumulation can be determined through the single flow path. Moreover, the
sub-watershed was divided by the minimum area threshold according to the accumulation
value of flowing pixels.

The hydrology tool in ArcGIS 10.3 is based on the D8 algorithm and was used to
segment sub-watersheds in this study. The area threshold of the sub-watershed is a vital
parameter in defining watershed schemes. According to Baidu News, the threshold was
determined according to the area of flooded parcels. The threshold of 200 hectares (ha)
was marked according to the report from the network of China Radio [30], “The Wuwei
county released flood water to village parcels with the area of smaller than 30,000 mu
(~200 hectares) along dikes”. The threshold of 667 ha came from Xinhua news [31], “Hefei
city flooded nine village parcels with the area of larger than 100,000 mu (~667 hectares)
along dikes”. There were six area thresholds defined in the sub-watershed division, as
shown in Table 4:

As shown in Table 4, four kinds of area thresholds were defined according to the area
threshold of 667. Two types of area thresholds were determined according to 200.
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Table 4. Area threshold used in delimitation watersheds via D8 algorithm.

Basic Area Unit (1) (2) (3) (4) (5) (6)

667
ha 66.7 667.0 3333.0 6667.0
mu ~10,000 ~100,000 ~500,000 ~1,000,000

200
ha 200.0 2000.0
mu ~30,000 ~300,000

2.4.3. Delaminating Sub-Watershed by MFD Algorithm

The multiple flow direction (MFD) algorithm was also used to divide sub-watersheds.
Thus, the influence of flood hazard estimation introduced by sub-watershed division
derived by SFD and MFD can be compared.

MFD determines the flow direction according to elevation drops between a target cell
and adjacent cells. If there are several alternative outflow directions, MFD will choose them
as the outlets and distribute the flow accumulation by calculating the average water value
of the central cell. The MFD algorithm may reduce the randomness when setting the flow
direction as one of the potential outlets in flat areas. The MFD algorithm calculates flow
direction as Equation (10) and derives sub-watershed by tracing the flow-in cells.

Dir f low+ =

{
2i, i f (Z0 − Zi) > 0
0, i f (Z0 − Zi) ≤ 0

, (0 ≤ i ≤ 8) (10)

where Dir f low is the flow direction of the current cell, it records the potential flow directions
in a continuous value between 1–255 by accumulating the potential flow directions; i is
the index of the eight adjacent cells, starting from the east, southeast, west, and so on, in a
clockwise order; Z0 is the elevation of the central cell; Zi is the elevation of the adjacent cells.

The MFD algorithm traces the connected flat cells and sets them as the seed of a new sub-
watershed. Searching the seeds from the sink areas, all the pixels flowing into the seed cells
will be defined as belonging to the same sub-watershed. The scope of a certain sub-watershed
will grow until the size is larger than the area threshold, and then the cells will be recorded
as a new sub-watershed. Thus, the algorithm can keep the connected flat cells in the same
sub-watershed, while the area threshold will determine the sub-watershed of the in-flowing
neighborhood cells. The MFD algorithm was programmed by C#, and the sub-watershed
delimitation result by the MFD algorithm is submitted as in Supplementary Materials.

2.5. Flood Risk Validating Method

In this study, the accuracy of flood hazard estimation results derived from the proposed
model was quantitatively evaluated by flooded areas extracted from the GF-3 and Landsat
8 OLI images. The flood hazard estimation is always a five classify issue. Each pixel in the
study area is ranked as one of the elements in the level set {“very low“, “low”, “moderate”,
“high“, and “very high”}. Then, the five flood hazard levels were classified into two groups:
the positive and the negative groups. Moreover, for each pixel where its flood hazard
belongs to the positive group; it will be considered as a predicted flooded pixel. Otherwise,
it is regarded as a predicted dry pixel. Following the former literature [32,33], the correct
and fit ratios were used to assess flood hazard estimation accuracy. The correct ratio and fit
ratio are calculated as follows:

Correct(%) =
FPp ∩ FWFlood

FWFlood
× 100 (11)

Fit(%) =
FPp ∩ FWFlood

FPp ∪ FWFlood
× 100 (12)

where Correct(%) is the correct ratio, and Fit(%) is the fit ratio. FPP represents the pixels
considered as predicted flood areas. FWFlood represents the ground-truthing flood areas
extracted from GF-3 and Landsat 8 OLI images.
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The definition of flood hazard positive and negative groups is a critical process for
constructing a validation dataset. From the view of classification, this definition means
determining the classification threshold. This study defined two kinds of positive group
and negative group, as follows:

� Validation 1: {positive group: “very high”, “high”, “moderate”;
negative group: “very low”, “low”};

� Validation 2: {positive group: “very high”, “high”;
negative group: “very low”, “low”, “moderate”}.

To further distinguish the flood hazard estimation result from the better-matched
validation group, the F1-score is additionally used as an indicator. The F1-score is used to
distinguish the combined accuracy among the used methods. The F1-score is a comprehen-
sive indicator in binary segmentation problems. More excellent classification usually has
a higher value of F1-score in binary segmentation problems. Moreover, the value of the
F1-score is expected to be 0.6~0.8 or higher. It can be calculated according to Equation (13):

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 =
2 × P × R

P + R
(13)

where F1 is the F1-score, P is the precision rate, R is the recall rate, TP is the cells with
truthing status predicted as positive in the validation dataset, FP is the cells with false
status expected as positive in the validation dataset, and FN is the cells with false status
predicted as negative in the validation dataset.

The flood hazard estimation is a five-type classification issue. Its comparison matrix
was constructed following Table 5. As in large-scale flood hazard estimation, the ratio of
predicted flood area is always small compared with the range of study area. Moreover, in
this study, the proposed method considered the flood hazard level of all the water areas
(the normal range of transport and storage water, such as rivers, lakes and so on) was “very
high”. In order to focus on the estimation of the consistency of predicted flood hazard
pixels with the ground-truthing flood areas, the validation ground-truthing dataset was
constructed by excluding the pixels of normal water body range in rivers, lakes, ponds,
and reservoirs. The excluded water bodies were identified according to Equation (9).

Table 5. The classes and rating of factors in flood hazard estimation.

Validation 1 Validation 2

Positive Group: “Very
High”, “High”, “Moderate”

Negative Group: “Very
Low”, “Low”

Positive Group: “Very
High”, “High”

Negative Group: “Very
Low”, “Low”, “Moderate”

flooded area TP FN TP FN
dry area FP TN FP TN

normal water / / / /

“TP” represents a predicted right result, the predict “Positive” matched the ground-truthing, “FN” represents a
predicted wrong result, the predict “Negative” does not match the ground-truthing, “FP” represents a predicted
wrong result, the predict “Positive” does not match the ground-truthing, “TN” represents predicted right result,
the predict “Negative” matches the ground-truthing.

It is known that the precision, recall, and F1-score indicators in Equation (13) were
widely used in the estimation binary segmentation classifier. Moreover, the correct ratio
(shown in Equation (11)) and the fit ratio (shown in Equation (12)) were widely used
indicators reflecting the flood hazard estimation accuracy. It can be found that both correct
ratio and fit ratio focus on the estimation of the consistency of predicted flood areas with the
ground-truthing flood pixels. Moreover, the correct ratio is the same as the recall indicator
(the R in Equation (13)):

Correct(%) =
FPp ∩ FWFlood

FWFlood
× 100 =

TP
TP + FN

(14)
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As in flood estimation, precision is important, but the value of recall is more im-
portant. Moreover, the fit ratio can be expressed as Equation (15), which can reflect the
overestimation of predicting flood pixels.

Fit(%) =
FPp ∩ FWFlood

FPp ∪ FWFlood
× 100 =

TP
TP + FP + FN

(15)

3. Results

This session describes the experimental results, including the sub-watershed division
results and the flood hazard map derived by the proposed method.

3.1. The Sub-Watershed Derived by DEM Using MFD and D8 Algorithms

In this paper, the hydrology layer collected in geographic information (1:1 million)
was used to burn in DEM. Using the hydrology information enforced DEM, the raster of
sub-watersheds can be delimitated via the MFD and D8 algorithms (Figure 4).

 

Figure 4. The sub-watersheds derived via MFD (a) and D8 (b–g). The area threshold used in the
MFD-derived subwatershed is 66.7 ha, and the area thresholds used in the D8-derived subwatershed
as shown in (b–g) are 66.7 ha, 200.0 ha, 667.0 ha, 2000.0 ha, 3333.0 ha and 6667.0 ha, respectively.

In Figure 4a, the MFD algorithm used to delimitate sub-watersheds was programmed by
C#. The MFD algorithm adopts pixels in sink areas as seeds, traces the flow direction raster
and identifies all the converging pixels consisting as a whole of sink areas. When delimitating
sub-watersheds, all the pixels in the sink area and those pixels in the eight directions flowing
towards to sink areas would be kept in the same sub-watershed as the sink area. Otherwise,
the converging pixels would be classified as several sub-watersheds according to the flow
order adjacent to the labeled sub-watershed in the same sink area. In this study, the maximum
area threshold of the MFD algorithm adopted 66.7 ha to delimitate sub-watersheds.

The sub-watersheds produced by the D8 algorithm with different area thresholds
were mapped in Figure 4b–g. The hydrological tool of ArcGIS 10.3 is programmed basing
the D8 algorithm. The hydrology tool was used to delimitate sub-watersheds. The main
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process contained calculating flow direction, calculating flow accumulation, extracting
stream, making stream link, and delimitating sub-watersheds. The definition of area
threshold determines the process of extracting the stream. Only pixels with an area of flow
accumulation larger than the area threshold will be extracted as separate streamlines. The
streamline would identify the sub-watersheds derived stream link while considering the
stream links as pours. In this study, the used area thresholds in Figure 4b–g were 66.7 ha,
200.0 ha, 667.0 ha, 2000.0 ha, 3333.0 ha and 6667.0 ha, respectively.

As in Figure 4a, the flat area, especially the water bodies, was kept in the same sub-
watershed. This indicates that the MFD algorithm can keep connecting flat areas as a whole.
While in the D8 algorithm, all the flat areas and water bodies were treated as pixels to
divide sub-watershed. The defined area threshold represents the maximum number of
pixels converging in upstream water. Thus, as in Figure 4b–g, the flat area, the water areas
and corresponding connected neighborhood pixels were sliced as sub-watersheds, and
most of the sub-watershed areas seemed to be similar. Moreover, as the area threshold
increases from Figure 4b–g, the number of sub-watersheds was reduced.

3.2. The Flood Hazard Map Derived by the Proposed Method

The actual flood areas (Figure 5a), the flood hazard map derived by the proposed method
(Figure 5b), and part of the detailed flood area distribution (Figure 5c,d) were shown in
Figure 5. Especially for the detailed flood area, the overlayer vector map of flooded towns
and villages is filtered from Baidu News. Furthermore, Table 6 listed the comparison matrix
of elements corresponding to flood areas, and dry areas with predicted flood hazard pixels.

 

Figure 5. The flood hazard distribution is derived from the proposed method. Subfigure (a) was the
real-world flooded areas extracted by remote sensing in July 2020 in the Chaohu basin. Subfigure
(b) was the flood hazard distribution estimated by the proposed model. Subfigure (c) was the detailed
hazard view of the Fengle river and the Hangfu River, and subfigure (d) was the clear hazard view of
the Xi River.
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Table 6. The comparison matrix and correct ratio, fit ratio, F1-score of flood hazard and flooded areas
distribution.

Items

Validation 1 Validation 2

Positive Group (P):
“Very High”, “High”,

“Moderate”

Negative Group (N):
“Very Low”, “Low”

Positive Group (P):
“Very High”, “High”

Negative Group (n):
“Very Low”, “Low”,

“Moderate”

Flooded area (T) 842,963 131,230 583,933 390,260
Dry area (F) 1,004,991 302,577 673,359 634,209

Correct ratio (%) 87 60
Fit ratio (%) 43 35

F1-Score 0.597 0.523

Table 6 demonstrated that when considering the flood hazard pixels of {“very high”,
“high”, and “moderate”} derived by the proposed method as Positive results, the Correct
ratio, Fit ratio and F1-Score were 87%, 43%, and 0.597, respectively. When considering the
flood hazard pixels of {“very high”, and “high”} derived by the proposed method as a
Positive result, the Correct ratio, Fit ratio and F1-Score were 60%, 35%, and 0.523, respectively.
Moreover, according to the F1-score, the flood hazard estimation result using validation 1
has higher consistency with flood areas extracted by remote sensing images.

As shown in Figure 5a, there were plenty of flooded areas near the north beach of
the Fengle River in Feixi city. There were flooded areas distributed at the south beach of
the Fengle River and the north beach of the Hangfu River in Shucheng city. Moreover, the
flooded regions of Lujiang city were located in the south part of the Hangfu River and Xi
River. Moreover, the flood areas of Wuwei city were scattered in the northern region of the
Xi River. Moreover, in the northwest of Chaohu, there were some flooded areas near the
Nanfei River in Feidong county. In the northeast of Chaohu, there was some flooded area
near the Tuohao River in Chaohu city.

Figure 5b–d shows flooding hazard distribution overlayered by breaking points,
flooded town/villages, or actively flood areas, which were searched from Baidu News.
Moreover, as in Figure 5b–d, the breaking points corresponding to the towns were 1—Taoxi
town, 2—Bolin village, 3—Qianrenqiao town, and 4—Tongda town. Moreover, in the
area of the flooding point, the related towns were 21—Nihe town, 22—Yefushan town,
23—Shengqiao town, 24—Zhongmiao street, 25—Baishan town, 26—Shitou town, 27—
Jinniu town, 28—Guohe town, and 29—Chengguan town. Moreover, in the active flood
area, the corresponding towns were 31—Union dike of Shatan, Fengle town, 32—Union
dike of Binhe & Union dike of Jiangkouhe, Sanhe town, and 33—Union dike of Peigang,
Baihu town.

As shown in Figure 5c,d, the flood hazard map derived by the proposed method
almost covered the areas, including the active drainage areas (No. 31, No. 32, and No. 33),
the dike broken areas (No. 1, No. 2, No. 3, and No. 4), and the under submerged flooded
areas (No. 21~No. 29). The flood hazard map derived by the proposed method contained
part of the flooded district. The phenomenon indicated that the proposed method had
higher consistency with flooded areas caused by broken and active drainage than natural
flooding areas.

3.3. The Flood Hazard Distribution via AHP and the Proposed Models

The flood hazard distribution derived by pixel-based AHP and sub-watershed-based
WZSAHP-RC were illustrated in Figure 6.
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Figure 6. Differences in ground-truthing flooded areas compared with expected flooded areas from
the AHP and the proposed model. (a) was the distribution of validation flood area, (b) was from the
original pixel-based AHP, while (c) was from the proposed model.

Compared with the flood hazard map derived by AHP (Figure 6c), the areas were
classified as higher hazards via the proposed method (Figure 6b), especially those pixels
located along the Fengle river, the Hangfu river, the Zhao river, and the Yangtze River.
Moreover, in the areas near the north beach of the Yangtze River, the flood hazard levels
derived by the proposed model were higher than the AHP model.

Table 7 listed the validation results of Correct ratio, Fit ratio, and F1-Score derived by
AHP and WZSAHP-RC models. Compared with the AHP model, when considering pixels
of “very high”, “high”, and “moderate” as predicted flooding areas, the correct ratio and
fit ratio calculated by the WZSAHP-RC model increased by 16% and 6%, respectively.
Moreover, when considering pixels of “very high” and “high” as predicted flooding areas,
the correct ratio and fit ratio calculated by the WZSAHP-RC model were increased by 34%
and 17%, respectively.

Table 7. The correct ratio, fit ratio and F1-score were calculated by the pixel-based AHP method and
the proposed sub-watershed-based WZSAHP-RC method.

Adopted
Method

Base Unit

Validation 1:
Positive Group (P): “Very High”, “High”,

“Moderate”; Negative Group (N): “Very Low”,
“Low”

Validation 2:
Positive Group (P): “Very High”, “High”; Negative

Group (N): “Very Low”, “low”, “Moderate”

Cor.1 (%) Fit1 (%) F1-Score Cor.2 (%) Fit2 (%) F1-Score

AHP Pixel 67 37 0.542 22 18 0.298
WZSAHP-RC Sub-watershed 83 43 0.597 60 35 0.523
Increasing (%) / 16 6 / 34 17 /
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3.4. The Flood Hazard Results Estimated by Constraining Different Converging Indicators

Figure 7 mapped the flood hazard map derived by AHP (Figure 7a) and WZSAHP-RC
using MFD-derived sub-watersheds (Figure 7b–m).

Figure 7. Flood hazard levels from pixel-based AHP (a), while (b–m) show flood hazard levels
derived by WZSAHP-RC using different indicators and zonal statistics.

The C1 and F1 represented the correct ratio and fit ratio considering “very high”,
“high”, and “moderate” as predicted flooded pixels, and the C2 and F2 represented the
correct ratio and fit ratio considering “very high” and “high” as predicted flooded pixels.
The range of permanent water bodies was colored blue. The flood hazard levels from low to
high were colored with dark green, light green, yellow, orange, and red. For the subfigures
of WZSAHP derived flood hazard maps, those in the same row constrained the same
kinds of indicators (including {“Distance from Streams”}, {“Slope”, “Distance from Streams”},
{“Elevation”, “Distance from Streams”}, {“Elevation”, “Slope”, “Distance from Streams”}). The
sub-figures in the same column adopted the same zonal statistical method (e.g., maximum,
median, majority), e.g., Figure 7b–d used the MFD-derived sub-watershed to constrain the
“Distance from Streams” by the maximum, median, and majority zonal statistical methods,
respectively.

As in Figure 7, when using the maximum type of zonal statistical method via the
MFD-derived sub-watershed to constrain all kinds of combinations of converging related
indicators, the correct ratio and fit ratio could keep being increased, considering {“high”,

“very high”, “moderate”} or {“very high”, “high”} as predicted flooding areas.
Using the sub-watershed derived by MFD as a basic unit to constrain different kinds of

converging indicators, we obtain the other distribution of the flood hazard index. Figure 8
shows the combined curve plots and bar graphs relating the AHP and the WZSAHP
constrained sub-watershed to various converging indicators.
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Figure 8. The correct ratio and fit ratio values of pixel-based AHP and sub-watershed-based
WZSAHP-RC models constrain different kinds of converging related indicators.

As shown in Figure 8, the quality estimation correct ratio and fit ratio demonstrated
that all the used constrain sub-watershed-based indicators via the maximum zonal statis-
tical method could be improved. Moreover, for the median and majority zonal statistical
methods, the correct and fit ratios derived by the WZSAHP-RC model via the constraining
sub-watershed to {“Distance from Streams”}, {“Slope”, “Distance from Streams”}, {“Elevation”,
“Distance from Streams”} or {“Elevation”, “Slope”, “Distance from Streams”} had a higher
value than pixel-based AHP model. As in maximum, median, and majority zonal statistical
methods, it could be observed that the correct ratio and fit ratio would be higher as the
constraining indicators contain the “Distance from Streams” indicator. This phenomenon
demonstrated the proposed WZSAHP-RC model—using MFD-derived subwatershed as a
basic unit to constrain converging related indicators will steadily improve the flood hazard
estimation correct ratio and fit ratio.

Figure 9 demonstrated the distribution of the flood hazard index calculated by pixel-
based AHP and sub-watershed-based WZSAHP-RC. All the subfigures in Figure 9 mapped the
scatter points (X, Y) in terms of the index of flood hazard indexes (FRIWZSAHP−RC, FRIAHP).
The FRIWZSAHP−RC represented flood hazard index is calculated by the WZSAHP-RC
model, and the FRIAHP represented flood hazard index is derived by the AHP model.

The scatter diagrams used the water areas extracted by remote sensing images as
truth values to filter the flood hazard index’s raster values. Moreover, the subfigures were
sampled using a moving grid window column × row with a size of 20 × 30 to obtain the
values at the range of the column and row of water areas. Moreover, the unique index
points were used to obtain the value of the flood hazard indexes. The scatters diagrams
were drawn using a transparent circle with a variable radius (alpha = 0.1, radius =
2 ∗ Numsamepoints), which adopted 0.1 as the value of transparency and used two times the
number of pair points having the same values as the variable radius.

For the influence of the zonal statistical method, as shown in Figure 9 the scatter
distribution pattern of using median and majority types of zonal statistical methods seemed
to be similar. The same results could be observed. Only in the subfigures of flood hazards
estimated using the maximum zonal statistical method (Figure 9a,d,g,j), all the scatter points
were distributed on the lower diagonal side, and this indicated that the WZSAHP model
using a maximum zonal statistical method to constrain converging related indicators would
increase the flood hazard index.
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Figure 9. Scatter diagrams of flood hazard index derived by WZSAHP-RC via MFD delimitated
sub-watershed as X-axis and flood hazard index derived by AHP as Y-axis. The converged indicator
in (a–c), (d–f), (g–i), and (j–l) were the same, and the sub-figures in the same column used the same
type of zonal statistical method.

For the influence of constraining indicators, it indicated that as constrained “Stream or
Elevation & Stream”, the scatter points distribution in all kinds of zonal statistical methods
seemed to be more concentrated than restrained {“Slope”, “Distance from Streams”} or
{“Elevation”, “Slope”, “Distance from Streams”}. Therefore, the spatial distribution of sample
points demonstrated that the WZSAHP-RC constrained by {“Slope”, “Distance from Streams”}
or {“Elevation”, “Slope”, “Distance from Streams”} would perform better in distinguishing
flood hazard index, which means they might have a higher correct ratio and fit ratio. This
phenomenon indicated that the efficient method needs to map a higher flood hazard index
and make the flood hazard index distribution a dispersing pattern.

3.5. The Flood Hazard Results Estimated by Using D8-Derived Sub-Watershed with Different Area
Thresholds as Basic Units

The flood hazard maps derived by AHP (Figure 10a) and using WZSAHP-RC via
D8-derived sub-watersheds using different kinds of area thresholds (as listed in Table 3)
were illustrated in Figure 10b–s.
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Figure 10. Flood risk levels from pixel-based AHP (a) and sub-watershed based AHP using D8-
derived sub-watershed to constrain converging related indicators, such as Elevation, Slope and Distance
from Streams (b–s).

The labeled correct ratio and fit ratio corresponding to the validation 1 of {“very high”,
“high”, “moderate”} were recorded as C1 and F1, and the validation 2 of {“very high”, “high”}
were marked as C2 and F2, respectively. The range of permanent water and the flood
hazard levels were colored as same as in Figure 7.

As in Figure 10b–s, subfigures in the same row adopted the same threshold area, and
subfigures in the same column used the same statistical method. Moreover, using the
maximum type of zonal statistical method to constrain flood converging related indicators,
indicated that the correct ratio and fit ratio could keep increasing, considering {“very high”,
“high”, “moderate”} or {“very high”, “high”} as predicted flooding areas.
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The flow path and the area threshold determined the final sub-watershed division
results. The correct ratio and fit ratio derived by the six kinds of area threshold (as described
in Table 4) using the proposed method and D8-derived sub-watershed to constrain “Slope”
and “Distance from streams” were compared in Figure 11.

 

Figure 11. The correct ratio and fit ratio values of pixel-based AHP and the WZSAHP-RC using D8
derived sub-watershed to constrain converging related indicators.

As shown in Figure 11, while in the validation of considering “high” and “very high”
as predicted flooding areas, the inflection point could be observed as the area threshold
of 2000 ha. It indicated that the correct ratio and fit ratio derived by D8-based WZSAHP-
RC (always using the maximum zonal statistical method) were consistently higher than
pixel-based AHP, but the increasing of correct ratio and fit ratio derived by D8-based
WZSAHP-RC would be influenced by the definition of area threshold for sub-watershed
delimitating. For the median and majority zonal statistical methods, the correct and fit ratios
seemed to fluctuate as the area threshold changed.

Figure 12 aimed to distinguish the scatter diagrams of flood hazard index distributions
calculated by the AHP and the WZSAHP-RC using the D8 derived sub-watershed as basic
units to constrain “Slope” and “Distance from streams” by the maximum, median, and majority
zonal statistical methods.

In Figure 12, the scatter point pairs and sampling and mapping methods were the
same as in Figure 9. The subfigures in the same row adopted the same area threshold
determined sub-watershed as a basic unit. The subfigures in the same column used the
same zonal statistical method. For example, as the scatter points (FRIWZSAHP−RC, FRIAHP)
in Figure 12a, the FRIWZSAHP−RC represented flood hazard index was calculated by the
proposed model using a D8-derived sub-watershed with an area threshold of 66.7 ha,
and the FRIAHP represented flood hazard index was derived by the AHP model. The
scatter was mapped according to the moving sampling grid window of size 20 × 30 via the
flood hazard index raster derived by the AHP and WZSAHP-RC methods. Moreover, the
converging related indicators were used to derive FRIWZSAHP−RC, which was calculated
by the maximum type of zonal statistical method.

560



Remote Sens. 2022, 14, 2465

Figure 12. Scatter diagrams of flood hazard indexes distribution sampled by WZSAHP-RC via D8
delimitated sub-watershed a basic unit (WZSAHP-RC-D8) and AHP methods. The subfigures (a–r)
used the flood hazard index derived by WZSAHP-RC-D8 as X-axis and using flood hazard index
derived by AHP as Y-axis.

As in Figure 12a–i, it could be found that the spatial distribution of sampled point pairs
was determined by the zonal statistical method. Moreover, the area threshold in the cluster
of 66.7 ha, 200 ha and 667 ha were more similar to each other; in the area threshold defined
as 2000 ha, 3333 ha, and 6667 ha, their scatter distribution pattern seemed to be more
similar. This phenomenon also revealed that the flood hazard index changing trend using
the D8-derived sub-watershed as a basic unit would have a point of inflection. Moreover,
this suggested that the use of WZSAHP-RC via the D8-based sub-watershed as a basic unit
should take care of the proper area threshold for sub-watershed delimitation.
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3.6. The Validation of Using the Global River Widths from Landsat (GRWL) as Streams

The Global River Widths from the Landsat (GRWL) database was the first global
compilation of river planform geometry at a constant-frequency discharge [34]. It is highly
recognized by academics as a worldwide product. In this subsection, the GRWL was
used to construct the “Distance from streams” indicator (Figure 13); additionally, the flood
hazard distribution derived by pixel-based AHP and the proposed WZSAHP-RC method
were compared (Figures 14 and 15). Moreover, the WZSAHP-RC uses sub-watershed to
constrain the “Slope”, “Elevation”, and “Distance from streams” indicators. The used “Slope”
and “Elevation” were as same as in Sections 3.4 and 3.5. Only the “Distance from streams”
was constructed according to the vector stream map supported by the GRWL database.

Figure 13. The GRWL distribution and the GRWL-based Distance from streams indicator in the study
area. Figure (a) was the GRWL vectors and corresponding buffer results basing the attribute value of
the width, figure (b) was the Euclidean distance from the GRWL buffer border, and figure (c) was
the ordinary water bodies overlying the GRWL buffer layer and the ranked “Distance from streams”
indicator in figure (d) was derived by GRWL and normal water range.
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Figure 14. The flood hazard distribution derived by pixel-based AHP, the WZSAHP-RC using D8-
derived and MFD to classify sub-watersheds as basic units. (a–c) were the flood hazard distribution
basing pixel-based AHP, WZSAHP via D8-derived sub-watershed, and WZSAHP via MFD derived
sub-watershed, respectively. (d–f) were the GRWL derived distance from streams distribution
using pixel-based AHP, WZSAHP via D8-derived sub-watershed, and WZSAHP via MFD derived
sub-watershed, respectively.

The GRWL vector is the shape of hydrology lines, and the width was recorded in
the attribute table. The hydrology polygon was constructed using the width’s value to
build buffer areas on both sides of the hydrology lines (Figure 13a). Then, according to
the ranking definition of the level 5 digital stream in Table 3, the calculation of Euclidean
distance from the GRWL buffer range was implemented using distances of 1000 m, 2000 m,
4000 m, and 6000 m, respectively (Figure 13b). The level “Distance of streams” of pixels
in the range of regular water areas (Figure 13c) was ranked as 5, and the pixels in the
range of Euclidean distance from GRWL of <1000 m, 1000 m~2000 m, 2000 m~4000 m,
4000 m~6000 m, and >60,000 m were classified as 4, 3, 2, 1, 0, respectively (Figure 13d).

Based on the ranked “Distance from streams” derived by GRWL, the flood hazard
distribution estimated by pixel-based AHP demonstrated the proposed WZSAHP-RC
method using the D8-derived and MFD derived sub-watersheds as units (Figure 14). The
validation dataset was constructed as in Sections 3.4 and 3.5. The correct ratio and fit ratio
indicated that the WZSAHP-RC using the MFD sub-watershed as the basic unit (Figure 14c)
performed better than using the pixel-based AHP (Figure 14c) and the WZSAHP-RC using
the sub-watershed derived by D8 as units (Figure 14c). Figure 14d–f was the used distance
from streams indicator in the pixel-based AHP, WZSAHP-RC using the D8 derived sub-
watersheds and MFD derived sub-watershed. As in Figure 14e,f, the neighborhood pixels
of those with high levels would be higher, especially using D8-derived sub-watershed as
basic units.
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Figure 15. The correct ratio, fit ratio and F-measure basing the validation dataset excluding permanent
water areas and including permanent water areas. (a,b) were the validation ratio using floodwater
areas excluding permanent water areas. In contrast, (c,d) was the validation ratio using all water
areas on flood days.

Figure 15 shows the further comparison of statistical results using a different method
to construct validation flood areas. There are flood areas on a land surface that use water
areas, excluding permanent water areas as a validation range (Figure 15a,b) and flood
areas in all regions which contain land surface and common water areas, such as lakes,
and rivers (Figure 15c,d). The results indicated that as constructed validation using water
areas excluding permanent water areas, the correct ratio and fit ratio of WZSAHP-RC could
consistently outperform pixel-based AHP.

As shown in Figure 15b,d, the F1-measures value was higher than in Figure 15a,c).
This phenomenon revealed that validation dataset 2 (which adopted “high” and “very high”
as predicted flooded areas) was more suitable than validation dataset 1 (which adopted
“moderate”, “high”, and “very high” as indicated flooded areas).

4. Discussion

In this section, the influence and the usage of the proposed WZSAHP-RC model
were discussed. The sub-watershed delimitation methods and their influences on the
proposed model were discussed in Section 4.1. The converging involving indicator choices
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in AHP-based flood hazard related estimation, and the influence on the proposed method
is discussed in Section 4.2.

4.1. The Sub-Watershed Delimitation Methods and the Related Influences in the Proposed Model

The contribution of the proposed model revealed using sub-watershed as a basic unit
to constrain converging related indicators can improve flood hazard estimation correct
ratio and fit ratio. Thus, the sub-watershed delimitation is very important. Usually, the
sub-watershed delimitated by DEM could be grouped as SFD and MFD algorithms. The
accuracy influence of delimitation methods and the attention points in SFD-based and
MFD-based sub-watershed delimitations should be discussed.

Point 1. The influence of DEM accuracy for MFD and SFD methods.
DEM is the primary material for sub-watershed delimitation. The accuracy of DEM

is limited by the accuracy of the original captured data quality, the precision of the DEM
producing process, and the related resolution format transformation. Therefore, to obtain
higher consistency with the real-terrain DEM data, one method is to derive a hydrology
data enforced DEM dataset.

Normal water distribution reflected the terrain in low-lying areas and the potential
risk locations. The range of normal water can be used to improve the accuracy of DEM and
used as auxiliary data to calculate flood hazard estimation involving indicators, such as
“Distance from streams” and “Hydro-lithological formations”.

In this study, the SWI index was used to improve the water areas. The essential
feature of the SWI was extracting water areas by the defined thresholds to extract those
elements with corresponding area and length relations. The RivaMap is a convenient engine
to extract river centerlines by Landsat images, a geometric parameter of the multiscale
singularity index to distinguish lakes and rivers effectively [35]. Figure 16 revealed the
distribution of the normal water range extracted by the SWI and the multiscale singularity
index of the RivaMap. Figure 16b,d indicated that the SWI derived water was cleaner than
the RivaMap. However, the SWI derived result had a better effect and was beneficial to the
accuracy of former potential water bodies supported by the impervious surface production.
The RivaMap relay on the input Landsat image derived MNDWI index, and the RivaMap
engine might calculate the multiscale singularity index automatically. Then, using the
general Natural Break method could distinguish the final water map. Therefore, as in a
large area of research, the easily used RivaMap engine might be a good choice to extract
the textural characteristics of rivers and lakes.

Moreover, there were some refined river extraction [36] and automatic channel network
extraction methods [37]. These methods rely on detailed indicators of remote sensing
images and DEM. As in a small area range of study areas, they were using the precise
hydrology information extraction method, which might be better to derive more detailed
and near real-time water systems than the released geology information.

Point 2. The critical points of the MFD delimitation method.
In this study, the used MFD algorithm [20] adopts pixels in sink areas as seeds, traces

the flow direction raster and identifies all the converging pixels consisting of whole sink
areas. When delimitating sub-watersheds, all the pixels in the sink area and those in
the eight directions totally flowing towards sink areas would be kept in the same sub-
watershed as the sink area. Otherwise, the converging pixels would be classified as several
sub-watersheds according to the flow order adjacent to the labeled sub-watershed in the
same sink area.

Point 3. The critical points of the SFD delimitation method.
The D8 algorithm is one of the classical SFD algorithms. The result (in Section 3.5)

indicated that the area threshold of the D8-based sub-watershed would influence the final
estimation results. Therefore, for D8-based sub-watershed delimitation, exploring the
proper area threshold is very important. In this study, the result indicated that 667 ha is a
point of inflection. This might be influenced by some special environment factors, such as
the study area scale, the flat terrain features and the special validation event. The proper
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area threshold should be further explored in a specific study case. Thus, the high efficiency
of sub-watershed delimitation is very important. High-efficient extraction of drainage
networks from digital elevation models constrained by enhanced flow enforcement from
known river maps proposed a ConstrainedDNE tool to extract drainage networks [38]. It
could auto delimitate sub-watershed as several grades of the version, only relying on the
given DEM and streamlines.

 

Figure 16. The normal water range extract by the proposed SWI and the RivaMap. (a) was the range
of water bodies extracted by SWI overlay the distribution of the impervious surface production,
(b) was the water body and range areas of SWI, and (c,d) were the distributions of the multiscale
singularity index of RivaMap classified by nature break method as nine types and two types.

However, [38] expected to use an outside prepared stream to determine the sub-
watershed by back-tracing the outlet of rivers. For one aspect, it is not easy to prepare
data. As collecting fully covered stream information in the real world at a sub-watershed
scale is relatively easy, the study area may consist of several sub-watersheds. The data
requirement of fully covered and high quality makes using the suggested method difficult.
For another aspect, it is difficult to fully match the survey streamlines to the used DEM. As
in the large-area study case, the public used DEM is always produced by satellite-based
InSAR surveying. The production of DEM might not be as high quality as local survey
data because the surveyed streamlines are always investigated by local departments. Thus,
DEM could use corresponding essential survey points to derive higher accuracy of results.

4.2. The Choice of Converging Indicators and the Related Influences in the Proposed Model

The AHP model is a traditional method used in flood hazard estimation. Thus, it is
significant to discuss the possible reasons why and the function of how the converging
indicators play a role in the proposed WZSAHP-RC model.

Point 1. The function converging indicators in this study.
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In this study, the converging related indicators contain “Slope”, “Elevation”, and “Dis-
tance from Streams”. The results in Figures 8 and 9 revealed that when using MFD-derived
sub-watershed to constrain indicators {“Distance from Streams”}, or {“Elevation”, “Distance
from Streams”}, or {“Slope”, “Distance from Streams”}, or {“Elevation”, “Slope”, “Distance
from Streams”}, the proposed WZSAHP-RC model derived correct ratio and fit ratio were
demonstrated to be higher than the derived by pixel-based AHP method. Constraining
indicators {“Elevation”, “Slope”, “Distance from Streams”} performed best, and followed by
{“Slope”, “Distance from Streams”}, {“Elevation”, “Distance from Streams”}, and {“Distance from
Streams”}.

The essential of constraining sub-watershed to specific indicators means properly
considering the hydrology converging influence on individual pixels. In the research
of [39], the similar indicator “Distance from drainage network” matched with the “Distance
from streams” of this study. It explained that the “Distance from drainage network” is influenced
by the converging indicator “drainage density” and the runoff production indicator (such
as “ground water depth”, and “land use”, etc.). The indicator “Slope” also has a significant
influence on the indicator “drainage density” and “ground water depth”. Those findings
confirmed that the indicator “Distance from streams” could reflect other indicators directly
or indirectly. Thus, constraining sub-watershed to “Distance from streams” might influence
converging and runoff production indicators.

Point 2. The converging indicators are used in the related flood hazard estimation.
In the flood probability estimation based on geo-environment indicators [40], the

weight of indicator order is demonstrated as “slope”, “distance to rivers”, “altitude” (referring
to the “elevation”), and then followed by the “terrain ruggedness index” (TRI) and “drainage
density”. Moreover, in the study of prioritization of sub-watershed flood probability based
on physical, hydrological, and climatological parameters [41], the high-risk sub-watersheds
have higher “permeability” and “rainfall” and greater “drainage network density” at a shorter
“distance from rivers”. In [42], the flood hazard estimation in the vicinity of the main channels
of the Kifisos and Ilisos Rivers indicated that the highest flood hazard areas were total
covered “streams”, expansion of “impermeable formations” and “intense urbanization”. As in
the referenced flood probability and flood hazard estimation research, the distance from

“streams”, “rivers”, or “drainage networks” is taken seriously.
In the flood susceptibility mapping research basing the statistical model [43], “distance

from streams”, “elevation”, and “slope” were important indicators in the occurrence of floods,
and the “rainfall”, “terrain wetness index” (TWI) and “land cover type” also influenced in-
dicators on flood sensitivity. Moreover, the flood susceptibility mapping based machine
learning research [44] found the relative importance order of indicators were “slope angle”,
“distance from rivers”, “land use”, “TWI”, “elevation”, and other indicators. For flash flood
susceptibility estimation [45], the slope was the essential indicator that occurred and devel-
oped floods. Thus, it was assigned the highest weight and followed by the factors of “land
use”, “lithology”, and “profile curvature”. Therefore, these works of literature all considered
the “slope”, “distance from ‘streams’ or ‘rivers’”, “elevation” as essential indicators, and some
research assigned “slope” the highest weight.

Point 3. The choices of digital streams and GRWL to construct “Distance from streams”.
The choice of using a proper stream also needs to be discussed. DEM can be used to

produce digital streams, and there is some mature globe-scale hydrology production, such
as GRWL. The digital streams extracted from DEM were used as basic streams to construct
“Distance from streams” in this study.

The GRWL production contains the width of large-scale lakes and rivers, while the
digital streams focus on distinguishing terrain converging characters (Figure 17). As
described in Sections 3.4 and 3.6, the proposed WZSAHP-RC method using sub-watershed
delimitated by MFD as basic units could improve the correct ratio and fit ratio compared
to the pixel-based AHP using both streams to derive the “Distance from streams” indicator.
Moreover, for WZSAHP-RC method, when using digital streams (Figure 7k), the final
estimated flood hazard distribution had a higher correct ratio and fit ratio (C1 = 87%,
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F1 = 43%, C2 = 60%, F2 = 35%) than using GRWL (C1 = 78%, F1 = 12%, C2 = 61%, F2 = 16%)
(Figure 14c). Therefore, it could be concluded that using the DEM derived digital stream
was more suitable for constructing “Distance from streams” than GRWL at the basin scale.
As in the larger scale, such as catchments or regional areas, more experiments should be
conducted in the future.

 

Figure 17. The distribution of GRWL in the study areas, overlaid by the digital streams derived by
DEM, and the common water area in the study area.

5. Conclusions

In this study, as the traditional pixel-based AHP method failed to capture the hydro-
logical features caused by neighborhood pixels, a sub-watershed-based extended AHP
model named WZSAHP-RC was proposed. Taking the Chaohu Basin of Anhu, China, as
an example, the correct ratio and fit ratio of the proposed method were validated using
the real-flood areas extracted from remote sensing compared with the pixel-based AHP
method. When using {“very high”, “high”, “moderate”} as predicted in flooded areas, the
results indicated that the correct ratio and fit ratio derived by the WZSAHP-RC could
improve by 21% (from 66% to 87%) and 6% (from 37% to 43%), respectively. Moreover,
when using {“very high”, and “high”} as predicted flooded areas, the correct ratio and fit
ratio could increase by 38% (from 22% to 60%) and 17% (from 18% to 35%), respectively.
Moreover, in comparison with flood towns filtered by Baidu News, the proposed method
had higher consistency with dikes broken and active drainage flooded areas than the
pixel-based AHP method.

Furthermore, the correct ratio and fit ratio could be improved using the proposed
WZSAHP-RC method to constrain part of converging related indicators by the MFD-
derived or D8-derived sub-watershed as a basic unit. When using a D8-derived sub-
watershed as a basic unit, the correct ratio and fit ratio were also demonstrated to be
increased compared to the pixel-based AHP model. Still, the area threshold of delimitating
sub-watershed would influence the increasing value.
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Despite the success of the proposed WZSAHP-RC model, we need to acknowledge
its limitations. The validation flood is the period from 20 to 24 July 2020 in the Chaohu
basin, which is the biggest in recent years, but this is validated by one case, and maybe
other places or flood events, would produce different results. Furthermore, it indicated
that the area threshold of delimitating sub-watershed would influence the correct ratio
and fit ratio increment of WZSAHP-RC. Future research needs to reveal the usability
of different terrain character study areas and quantitatively analyze the effective area
threshold range of the delimitating sub-watershed for the proposed method. Meanwhile,
the potential of flooding and the company risk is a combined effect function by flood
hazard, exposure, and vulnerability. Flood hazard estimation needs not only to consider the
spatial heterogeneity but also needs to consider the effect of spatial homogeneity. This study
demonstrated the space connections between sub-watershed and flood hazard estimation.
The flood exposure and vulnerability estimation also need to explore the affiliate effects in
horizontal and vertical geological space in detail, even extending to the link affecting the
multi-dimensional social-economic environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14102465/s1. These data include the rating dataset of flood risk
involve of indicators, the watersheds delimitated by the D8 (with area threshold of 667 ha, 200.0 ha,
667.0 ha, 2000.0 ha, 3333.0 ha, and 6667 ha) and MFD algorithms, and the water body of natural
boundary and during validating flood period.

Author Contributions: Conceptualization, H.Z. and Z.S.; methodology, H.Z., Z.S. and J.S.; software,
H.Z.; validation, Z.S., J.S. and J.Y.; formal analysis, J.S. and J.Y.; investigation, X.H.; writing—original
draft preparation, H.Z.; writing—review and editing, X.H., J.S. and J.Y.; visualization, J.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China, grant number
2018YFB2100501, the Fundamental Research Funds for the Central Universities, grant number
2042021kf0007, the open grants of the state key laboratory of severe weather, grant number 2021LASW-
A17, the Open Fund of Hubei Luojia Laboratory, grant number 220100009, the Shenzhen Science and
technology Innovation Key project, grant number JCYJ20200109150833977, in part by the National
Natural Science Foundation of China under Grants 42090012, Sichuan Science and Technology
Program, grant number 2022YFN0031, Zhuhai industry university research cooperation project of
China, grant number ZH22017001210098PWC, 03 special research and 5G project of Jiangxi Province
in China, grant number 20212ABC03A09, and Zhizhuo Research Fund on Spatial-Temporal Artificial
Intelligence, grant number ZZJJ202202. The authors would like to thank the anonymous reviewers
and editors for their comments, which helped us improve this article significantly.

Data Availability Statement: Not applicable.

Acknowledgments: Author thank sincerely to teacher Stephen McClure of Wuhan University for his
work in improving this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Used Tiles of Impermeable Surface Product and the Flooded Town

Derived from Baidu News

As shown in Section 2.2, the 18 tiles (Table A1) of China’s impermeable surface product
(2 m) in Hefei, Luan, Anqing, Wuhu, Maanshan, Chuzhou, Huainan cities were used to
prepare the land use and hydrological indicators.
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Table A1. Tiles of China’s impermeable surface product (2 m) were used in the study area.

District Data Tiles Districts Data Tiles

Anqing R1C1, R1C2 Luan R1C2, R3C2
Chizhou R1C1, R1C2 Maanshan R1C1, R1C2
Chuzhou R2C1, R2C2 Tongling R1C1

Hefei R1C2, R1C2, R2C1, R2C2 Wuhu R1C1, R2C1
Huainan R2C1

As shown in Section 2.2, the retrieved raw flood event-related news were manually
cleaned up to derive the final validating dataset of flood town (Table A2) and active
breaking dikes for excessive drainage rainwater in the Chaohu basin (Table A3).

Table A2. The flood- and damage-relevant information from Baidu News in the study area.

Date City Flooded Town (Village) Broken Location

19 July 2020 Shuchengxian, Liuan city

Taoxi town Fengle River (Longtan River)
Blinding (Bolin, Jiehe village) Fenagle (Bolin Reach)

Qianrenqiao town (Shuxin, Xingfeng,
Tonggui, Huangcheng, Wanghe,

Sanchahe, Qiandashan etc. villages)
Hangfu, Qiandashan rivers

Chengguan town (Taiping village) Sanli, Zhanggongdang,
Zhucao Rivers

22 July 2020

Lujiangxian, Hefei city

Tongda town (Xuejiayu, Guyu, Lianhe,
Yongxing, Shifeng, Changfeng villages) Shidayu
Baishan town (Baishan, Daiqiao, Shilian,

Jinsheng, Jiulian, Xingang villages)

Not clear
Shengqiao town, Yefushan town, Shitou
town, Jinniu town, Guohe town, Nihe

town, Baihu town

Table A3. Flooding area distribution caused by active dam breaking.

Date City Flooded Land Mitigation Pressure

19 July 2020 Quanjiaoxian, Chuzhou city Dike of Huangcao district 2 and 3 Chu River

26 July 2020 Feixixian, Hefei city
Union dike of Jiangkouhe, Yandian Xiang

Union dike of Binhu, Sanhe Town
Union dike of Shatan, Fengle Town

Chaohu

27 July 2020 Lujiangxian, Hefei city Union dike of Peigang, Baihu Town Chaohu
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