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Hydroclimate Impact Analyses and Water Management in the Central Rift Valley Basin in
Ethiopia
Reprinted from: Water 2022, 15, 18, doi:10.3390/w15010018 . . . . . . . . . . . . . . . . . . . . . . 491

Vı́tor Vinagre, Teresa Fidélis and Ana Luı́s

How Can We Adapt Together? Bridging Water Management and City Planning Approaches to
Climate Change
Reprinted from: Sustainability 2023, 15, 715, doi:10.3390/w15040715 . . . . . . . . . . . . . . . . . 513

Chaoyue Wang, Fenggang Dai, Yang Liu, Yunmeng Wang, Hui Li and Wenjing Qu

Shallow Groundwater Responses to Rainfall Based on Correlation and Spectral Analyses in the
Heilonggang Region, China
Reprinted from: Water 2023, 15, 1100, doi:10.3390/w15061100 . . . . . . . . . . . . . . . . . . . . . 535

Ali Sardar Shahraki, Thomas Panagopoulos, Hajar Esna Ashari

and Ommolbanin Bazrafshan

Relationship between Indigenous Knowledge Development in Agriculture and the
Sustainability of Water Resources
Reprinted from: Sustainability 2023, 15, 5665, doi:10.3390/su15075665 . . . . . . . . . . . . . . . . 553

Charles Galdies and Roberta Guerra

High Resolution Estimation of Ocean Dissolved Inorganic Carbon, Total Alkalinity and pH
Based on Deep Learning
Reprinted from: Water 2023, 15, 1454, doi:10.3390/w15081454 . . . . . . . . . . . . . . . . . . . . . 571

Zaib Unnisa, Ajit Govind, Bruno Lasserre and Marco Marchetti

Water Balance Trends along Climatic Variations in the Mediterranean Basin over the Past
Decades
Reprinted from: Water 2023, 15, 1889, doi:10.3390/w15101889 . . . . . . . . . . . . . . . . . . . . . 599

vii





About the Editors

Alban Kuriqi

Alban Kuriqi is a Research Scientist at CERIS–Civil Engineering Research and Innovation for

Sustainability, University of Lisbon. He earned his Ph.D. in Civil Engineering from the University

of Lisbon, specializing in River Restoration and Management. His extensive research interests and

expertise encompass a wide array of areas, including renewable energy, with a particular focus

on hydropower and complementary resources, as well as the impacts of hydropower and water

resources’ management-related issues.

Luis Garrote

Luis Garrote is Full Professor of Hydraulic Engineering at Universidad Politécnica de Madrid.
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Preface

Water is a crucial element on Earth for all living and non-living components. Climate change is

an alarming issue for managing and sustaining life on Earth. Given climate change, water resources

worldwide have been under drastically stressed conditions, as is evident from the uneven weather

patterns, droughts, floods, and cloud bursts. Only three percent of the water resources on Earth are

fresh, and two-thirds of the freshwater is locked up in ice caps and glaciers. Of the remaining one

percent, a fifth is in remote, inaccessible areas. Much of the seasonal rainfall in monsoonal deluges

and floods cannot be easily used. Only about 0.08 percent of all the world’s freshwater is exploited

by humankind, with an ever-increasing demand for sanitation, drinking, manufacturing, leisure, and

agriculture. The ever-increasing water exploitation has intensively degraded freshwater ecosystems,

notably rivers.

Furthermore, the climate extremes and water scarcity that are enhanced by climate change

induce additional stress on the freshwater ecosystems and may stimulate conflicts among water users.

In addition, we know that water is needed for several vital human activities, of which agricultural

and industrial activities are the primary water consumers. In the context in which we observe more

frequent droughts and incidences of water scarcity in the world, water systems’ management requires

the most advanced approaches and tools to rigorously address all of the dimensions involved in the

sustainability of its development.

Therefore, this Topic Collection’s main objective is to contribute to the understanding of

water systems’ management, and to provide science-based knowledge, new ideas/approaches, and

solutions for water resources’ management. Water demand for irrigation has been steadily increasing

during in recent decades. However, other water users have simultaneously been competing with

agricultural sectors for water resources. The conservation of freshwater ecosystems also needs special

attention, such as the sufficient allocation of environmental flows. In addition, in terms of the

projected climate change caused by warmer temperatures and shifting precipitation patterns, water

availability is expected to decrease, and water demand to increase, in many areas of the world.

Consequently, soil productivity and, thus, crop production could be drastically reduced.

These trends raise concerns highlighting the role of water and natural resources’ management

and their conservation to ensure the sustainability of irrigated agriculture. How well-irrigated

agriculture adapts to water scarcity scenarios, particularly by increasing water use efficiency and

better-estimating evapotranspiration, will directly affect the future and sustainability of the sector.

The 89 papers published in this Topic Collection encompass a diverse range of critical issues and

potential solutions concerning the sustainable management of water resources. We anticipate that

this collection will serve as a source of inspiration for engineers, scientists, policymakers, and

decision-makers worldwide, helping them to identify appropriate solutions and make informed

decisions regarding their specific water-related challenges.

Alban Kuriqi and Luis Garrote

Editors

xi





Citation: Gumbo, A.D.;

Kapangaziwiri, E.; Mathivha, F.I. A

Systematic Study Site Selection

Protocol to Determine Environmental

Flows in the Headwater Catchments

of the Vhembe Biosphere Reserve.

Int. J. Environ. Res. Public Health 2022,

19, 6259. https://doi.org/10.3390/

ijerph19106259

Academic Editors: Alban Kuriqi

and Luis Garrote

Received: 28 February 2022

Accepted: 17 April 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Study Protocol

A Systematic Study Site Selection Protocol to Determine
Environmental Flows in the Headwater Catchments of the
Vhembe Biosphere Reserve

Anesu D. Gumbo 1,*, Evison Kapangaziwiri 2 and Fhumulani I. Mathivha 3

1 Department of Geography and Environmental Sciences, University of Venda,
Thohoyandou 0950, South Africa

2 Hydrosciences Research Group, Council for Scientific and Industrial Research (CSIR),
Pretoria 0001, South Africa; ekapangaziwiri@csir.co.za

3 Department of Hydrology, University of Zululand, Empangeni 3886, South Africa; mathivhaf@unizulu.ac.za
* Correspondence: diongumbo@gmail.com

Abstract: Developing nations will be worst hit by the impacts of climate change because limited
resources hinder the spatial reach of climate studies, effort, and subsequent implementation to
help with the improvement of livelihoods. Therefore, finding the best-case study is an essential
undertaking in environmental assessments. This study explains one systematic approach to selecting
a study site for an environmental assessment project. A desktop review of relevant literature, a simple
factor scoring assessment process, reliance on expert opinion, and a field survey for ground-truthing
were conducted. The desktop review showed the most critical factors to site selection. The scoring of
these factors selected those that were crucial for the study. Experts validated the results and suggested
the best study site among the ones identified. While the design is simplified, the proposed approach
selects the most appropriate study site for environmental assessments.

Keywords: climate change; case study; environmental assessment; data scarcity; science communication;
selection protocol

1. Introduction

It is imperative and apparent that understanding changes in climate, and subsequently
their implications on society and the environment (especially the devastating adverse
effects), is a necessary undertaking. Integrating several disciplines to inform mitigation and
adaptation options to the unprecedented climate changes and their devastating impacts
has become important [1]. The general scientific fact is that climate change will increase
the occurrence, magnitude, and frequency of extreme weather events and potentially lead
to loss of food production and livelihoods [2,3]. A crucial global message is that there is
a need for robust responses to arrest the adverse impacts to save lives and livelihoods,
particularly in the most vulnerable societies of the world [4].

According to [5], vulnerability to climate change is regarded as the degree to which
a system is susceptible to and unable to cope with the adverse effects of climate change.
How much a system is exposed, its sensitivity to the exposure, and its adaptive capacity
provides an understanding of how vulnerable it is. Climate change impacts are distributed
unevenly around the globe [6], based on geographical location, level of vulnerability, level
of preparedness and access to necessary resources to implement mitigation and adaptation,
and societal capacity to understand and perceive climate changes [7]. Area-specific climate
change assessments are, thus, vital undertakings to address the global challenge at local
levels to increase the adaptation capacity [8]. The global agenda has been placed on climate
change mitigation and adaptation.

Developing countries, however, have low mitigation capacity, and adapting to these
changes is ideal and many countries are developing their own National Adaptation Plans

Int. J. Environ. Res. Public Health 2022, 19, 6259. https://doi.org/10.3390/ijerph19106259 https://www.mdpi.com/journal/ijerph
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(NAPs) [9]. These strategies to adapt to climate change are backed up by science which
projects future possible scenarios. Southern Africa is one of the regions to experience some
of the most adverse effects of climate change. Studies e.g., [10–13] indicate that the region’s
vulnerability is high, while its preparedness is low to nonexistent. Several issues such as
poverty, corruption, political instability, limited access to climate information, pandemics,
and other problems influence the responsive capacity of countries in southern Africa.

The past few decades have produced scientific reports on the projected magnitudes
and directions of changes in the climate and the potential impacts on water resources’
quality and quantity [14–20]. Improved projections are due to massive technological
advancements [21,22] that have improved data collection and analysis methods and the
efficiency and robustness of environmental assessment tools [23]. Such improvements
have reduced some uncertainties related to environmental assessments and built more
confidence and dependability in climate change projections to influence policy and decision
making. High confidence in climate projections has made science a vital pillar to support
the development of mitigation and adaptation strategies, approaches, and technologies
necessary to combat the potential shocks of a changing climate [24]. These adaptation
strategies are tested and modified in areas that have human–environment interactions.
Several areas with these characteristics have been demarcated around the world and have
been termed biospheres.

Biosphere reserves have been created as study sites to understand the climate change–
human–environment interactions. The United Nations Educational, Scientific, and Cultural
Organization (UNESCO) regards biosphere reserves as learning places for sustainable
development [25]. They are sites for testing interdisciplinary approaches to understanding
and managing changes and interactions between social and ecological systems, including
conflict prevention and management of biodiversity. Consequently, there are 727 estab-
lished biosphere reserves in 131 countries [25] whose purpose is to provide a learning
environment for sustainable development in diverse and fragile but significant ecological
regions. They utilize different socio-economic contexts to enhance the lives and liveli-
hoods of the communities within them [26]. Local solutions to global challenges affecting
sustainable development are developed and tested in these reserves. The value of these
reserves in mitigating and adapting to climate change is significant, offering opportunities
for case studies to be conducted as learning platforms. The Vhembe Biosphere Reserve
(VBR) is a protected area in the Limpopo Province of South Africa. Its spatial extent limits
the implementation of research work to only selected areas. These selected areas need
to be carefully identified as they become the general representation of the biosphere and
the results gathered from their study would need to be adopted by similar areas. Out of
the 10 biospheres in South Africa, the VBR was selected as the area of study because of
a high rural population vulnerable to climate change impacts. It is a data-deprived area
that requires focus to generate information/data to aid informed decision making. Data
availability and data quality are common problems in many areas in Africa [27] and this
affects studies being carried out in such areas. Climate change impacts on water resources
are affected by the lack of adequate and good quality time series of hydrometeorological
data [28]. Creating protocols for carrying out research in such areas becomes critical to
informing sustainable decision making.

Quantifying water resource availability against climate change is an important un-
dertaking as water is central to sustainable development. Developing nations, such as the
southern African regions, are mainly rural [29] whose socio-economic activities are closely
tied to the availability of water resources. Many rivers in the southern African region have
high flows during the rainy season and low to no flows during the dry season [29]. The
dry season is persistent throughout the year and communities rely on the low flows to
sustain their socio-economic activities and the environment. The South African Water Act
of 1998 identifies the environment as a legitimate and important user of water resources
in any sub-basin requiring that a determined amount of water be reserved. Hence, the
environmental water requirements (popularly known as e-flows worldwide) are important

2
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to catchment water management. In the Water Act of 1998, the e-flows are referred to as the
reserve. The quantification of these e-flows in South Africa is an ongoing undertaking of
great importance to water resources’ budgeting and accounting [30,31]. The task generally
requires a water practitioner or user to provide a holistic assessment utilizing any one of the
several acceptable approaches and tools. This is to fully understand the ecological function-
ing and value chain of a given sub-catchment and determine a sensible and viable e-flow
requirements regime for the survival and sustenance of the riverine ecosystem. The choice
of a representative area of study or river stretch should then be carefully considered to
produce results that can inform decision making for the chosen area and its implementation
in other areas of similar characteristics.

Ref. [32] explained that case studies are intense meticulous studies of a particular
area to generate results that can be generalized over a more extensive set of units. They
are used in exploratory research [33], where no past data or a few referral studies exist.
Therefore, identifying a study site that can address one or several objectives of the overall
aim is essential. The overall aim of the intended study for which the case study site(s)
must be selected is to determine the e-flows for headwater catchments that are suitable and
necessary to sustain riverine ecology within major selected parts of the Vhembe biosphere
and assess the potential impacts of a changing climate on the availability and sustainability
of these flow regimes. Several headwater catchments are potentially available for study
within the reserve. However, because of several factors (time, funding, technical expertise,
and best representative of areas in the VBR), the study will have to choose one or a few
sub-basins to use. Results would then have to be extrapolated to the rest of the headwater
catchments. Thus, representative study sites must be selected to generate and establish
baseline information and methodologies that could be applied in the other areas. This
paper proposes a step-by-step and objective approach to determine the ideal case study
site(s) to determine e-flows within the VBR.

2. Study Area

The Vhembe District Municipality and the Blouberg Local Municipality (within the
Capricorn District Municipality) together form the boundaries of the VBR. Figure 1 shows
the location and spatial extent of the VBR. The VBR is the largest of the 10 biosphere
reserves in South Africa [34]. It reaches 30,701 km2, supporting a human population of
approximately 1.5 million, with 97% of the population rural [35]. The Vhembe region
holds a unique and extraordinary biological and cultural diversity in the Soutpansberg and
Blouberg Mountains, together with the Mapungubwe World Heritage Site and northern
Kruger National Park [35]. Local communities have a high, direct reliance on natural
resources for livelihood, with 66% of households relying on firewood for fuel and subsis-
tence agriculture [35]. Agriculture and tourism are the major socio-economic activities that
sustain livelihoods in the reserve.

Several rivers within the VBR maintain diverse flora, fauna, and riverine ecosys-
tems. These rivers include the Luvuvhu, Dzindi, Nzhelele, Tshipise, and several others,
either tributary or pour directly into the Limpopo River. The transboundary nature of the
Limpopo River brings about delicate management issues that need a coordinated effort
for all riparian countries to benefit from the river’s ecosystem values and functions. The
VBR comprises three biomes: the Savannah, Grassland, and the Forest [35]. This implies
the existence of rich biodiversity, some of which is endemic to the area. Such biodiversity
requires coordinated and well-structured management strategies to ensure conservation
viability. The general growth in population and dependence on the environment for energy
and livelihood negatively impacts natural resources, and a changing climate is likely only
to aggravate the situation.

3
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Figure 1. A map showing the spatial extent of the Vhembe Biosphere Reserve (VBR) and the
catchments for potential study sites.

3. Materials and Methods

The study used several methods to determine which area(s) would be ideal for de-
termining appropriate e-flows within the headwater catchments of the VBR. The study
is based on a systematic review of relevant literature, a simple factor scoring assessment
process, experts’ opinions, and a field survey for ground-truthing.

3.1. Systematic Review

A detailed desktop scan of literature was carried out to determine the study sites used,
especially the motivation for selecting the study sites. Literature on or referring to the VBR
was reviewed to understand the previously carried out studies’ nature and thrust. This
also determined the potential gaps in scientific knowledge and understanding that require
additional studies to address them successfully. As information is made available through
research, these gaps are plugged, promoting sustainable management for this fragile
ecoregion. Google Scholar identified journal articles using the keywords ‘study site selection
for environmental assessment’ and about 78,300 articles. A 10-year coverage of literature
(2011–2021) was adopted for the study. Selection and rejection criteria (Table 1) were used
to select the ideal research for review. The review only analyzed peer-reviewed work and
excluded grey literature. Using the selection criteria, seven peer-reviewed journals were
critically reviewed. A thematic analysis of the selected articles determined the significant
factors that contributed to selecting the study site. The complete review of the selected
literature led the study to adopt an exploratory factor analysis (EFA) to determine (without
explicit ranking) the factors influential in selecting a study site.

4
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Table 1. Literature selection criteria to determine factors that contribute to study site selection.

Search Protocol Inclusion Exclusion

Initial Google Scholar search - English literature. - Non-English.

- Peer-reviewed. - Gray area.

- Any region.

Title and abstract review - Site selection of a study
area/case study.

- Sight selection for project
implementation, e.g., wind
farm, landfill, solar.

- Climate research. - Any other study.

Study site description - Field studies. - Non-field studies.

- Areas specific studies. - Non-area-specific studies.

3.2. Exploratory Factor Analysis

Several factors influencing the selection of a study site were obtained from the desktop
review and were used to inform the selection criteria for this study. These included accessi-
bility, availability of funds, familiarity with the area, and research gap. The exploratory
factor analysis (EFA) was implemented to reduce the identified factors to only those re-
garded as crucial to achieving the aim and objectives of the study. A factor-scoring criterion
was developed to select the variables that could comprehensively address the aim of the
study and the associated specific objectives. The variables were scored in importance from
very important to not important.

3.3. Expert Opinions

Valuable expert opinion was solicited from knowledgeable practitioners with extensive
work experience within the VBR. The definition of an expert, in this case, is rather loose and
much more encompassing than the normal dictionary one. Experts included academics,
researchers working or who had worked in the area and were assumed to possess valuable
in-depth knowledge of the area’s processes, functions, and importance. The definition was
extended to include people who have resided in the confines of the biosphere and have a
wealth of knowledge accumulated over many years of observation of relevant phenomena
in the area and can therefore discuss and share valuable insights on the scientific queries.

3.4. GIS-Based Assessment and Ground-Truthing

Geographical Information Systems (GIS) were used to show all the potential sites
selected to implement the study. This provided visual confirmation and display of the
spatial distribution of the selected study sites in a way that could show their advantages
over the other competing sites. Google Earth and available land use maps (e.g., the 2018
land use map of SA and its recent update from the Department of Forestry, Fisheries, and the
Environment) were used to determine the land uses and land cover distributions, including
the location of hydraulic structures, as well as vulnerability to possible degradation around
the study site(s), among others. Site visits were then carried out as the last activity to
familiarize with the area and confirm assumptions and GIS findings.

4. Results

4.1. Systematic Review Results

The literature review sought to determine what others considered important factors
when selecting a study site for their environmental research. Information on where similar
studies have been carried out and the gaps in research from such studies were identified.
Table 2 shows the main factors informing study site selection, with those with an Asterix (*)
being most common. A total of 12 factors were drawn from the literature search.
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Table 2. Factors influencing the choice of a study site and their level of importance in the intended
study. X marks the importance of the factor.

Factor
Importance

Very Just Neutral None

Accessibility: ease of reach (near to the researcher). * X

Need for human presence at the study site or beneficiation
from the headwater catchment/s. X

The presence of environmental phenomena to be
quantified and understood. * X

The rich biodiversity in the area. X

Availability of hydrometeorological data of adequate
quality and quantity. (Headwater catchments with missing or
no observed time series were more critical than those with).

X

The economic value of the area. X

Need to test a model or equipment (experimentation). X

Past similar work has been carried out in the area. * X

Availability of relevant literature. X

Influence of expert opinion. X

Communication barriers (with stakeholders). X

Availability of (adequate) funding. * X
* Most typical reasons why researchers select a study site.

4.2. Factor Scoring Analysis Results

The factors derived from the desktop analysis of literature were listed and given a
score based on how important they were in meeting the aim and objectives of the study.
Table 2 shows the 12 factors used for this study and the factor score results. The factors
considered very important for the study had the most influence on the site selection process.
Of the 12 factors, 8 of them were regarded as significant. Table 3 shows the results of the
selection criteria which indicate that the catchments A91A (Luvuvhu), A92C (Mbodi), and
A91B (Sterkstroom) satisfy the criterion created.

Table 3. The factors that are important to site selection and the possible catchments of study. The tick
(√) shows the quaternary catchments that meet the desired factor and could be chosen for study.
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A91A √ √ √ √ √ √ √ √ √

A91B √ √ √ √ √ √ √ √ √

A91D √ √ √ √ √

A91G √ √ √ √ √ √

A92A √ √ √ √ √ √

A92C √ √ √ √ √ √ √ √ √
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4.3. Expert Opinion Findings

From the desktop review, three experts were identified, an aquatic ecologist who
has worked within the VBR and two hydrologists who have done extensive work in
environmental modeling and climate change impact on streamflow availability. These
experts gave guidance on the best site for the intended environmental study. Literature
review and factor analysis resulted in selecting the headwaters of the Nzhelele and Luvuvhu
River catchments as possible study sites as they met most of the criteria developed. These
choices were then validated by experts whose opinions favored sites in the Luvuvhu River
Catchment (LRC) as the most suitable.

4.4. Findings of GIS Assessment and Ground-Truthing

The selected quaternary catchments are shown in Figure 2. They are located at the
uppermost part of the LRC, making them the headwater catchments for the basin. Several
more headwater catchments join the LRC downstream of A91A and A91B. Most of the
streamflow drained by the selected headwater catchments collects in the Albasini Dam,
creating a different hydrological regime downstream of the dam. It was also confirmed that
some parts are densely vegetated and deprived of human interference while others have
human activities. The water collected in the dam supports domestic use, agricultural and
fishing activities. This phase of the research managed to show the location of the selected
study site within the VBR. It confirmed that the objectives of the comprehensive study to
be implemented could be achieved.

Figure 2. The selected headwater catchments of the Luvuvhu River Catchment in the Vhembe
Biosphere Reserve.

5. Discussion

The assessment of the literature shed light on the reasons that drive researchers to
select study sites. The need to address or understand an environmental problem appeared
as the primary reason for site selection. The absence of similar work in an area can prompt
a researcher to implement an environmental assessment within a region. This is partic-
ularly important where global challenges need to be addressed through sound scientific
research [36]. Some regions will be worst affected by climatic changes, such as southern
Africa, Asia, and Latin America, mainly due to low mitigation and adaptation capacity [37].
The knowledge of this future possibility requires more scientific inquiry in these regions.
The need to contribute locally developed solutions to global challenges encourages re-
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searchers to implement case studies, especially in vulnerable regions. The availability of
funds through donors, government, or private institutions significantly affects site selec-
tion [38]. Funders can influence a study and site selection based on institutional interests
and agendas. However, this does not always give the best results in sustainable develop-
ment due to the often top-down approach. The proximity of the researcher to the study area,
and therefore accessibility, also plays a vital role in site selection. This is especially true in
academic research as it is often limited in time, funding, and adequate supporting technical
expertise. Several environmental assessments are based on the lack of adequate information
on a specific environmental phenomenon that influences the direction of research in an area.

Environmental management and climate change mitigation and adaptation strategies
have acknowledged the need for more research to be carried out to aid decision making
and policy formulation [39,40]. The study site selection is not well documented, as shown
by a lack of publications focused exclusively on this topic in environmental studies. This is
not a popular undertaking or conscious decision in environmental studies. However, other
disciplines such as health sciences have clear protocols to follow when selecting a study
site [41]. They thoroughly analyze the research aim, objectives, and expected deliverables
and select the best study area to achieve these. Adopting this approach in environmental
assessments will be of great value and could account for common deterrents such as data
unavailability. Prior knowledge of what the study requires and targets to achieve against
what potential study sites can provide enables the researcher to design the best methodology.
It becomes time-consuming and costly when a research design cannot be implemented
because the chosen study site lacks the components that enable the methodology to be
successfully implemented. This is important in data-scarce regions [42]. Alternative data
sources, in such cases, may need to be used, which may require downscaling, interpolations,
and extrapolations that the project might not have accounted for in the design phase.
This inevitably leads to delays in project implementation and the invasion of additional
uncertainties in the generated results, which may reduce the degree of confidence in
these results.

The factor scoring results showed the likely catchments to implement the study. Data
scarcity was regarded as a unique factor that, in its availability, would simplify the research
and in its absence, presents an opportunity to generate it. Data of sufficient quality and
quantity are always required in environmental studies, but often, they are the missing
component. Data scarcity is a pandemic in environmental studies and limits research in
some areas. However, data-scarce regions are usually the most vulnerable to climate change,
and sustainable development of such areas can benefit from local scientific investigations.
The selection protocol regarded the lack of observed hydro-climatological data (rainfall,
streamflow, evaporation) as the desired factor. These areas are usually understudied
because they lack observed historical data [43]. Therefore, it is imperative to carry out
scientific investigations in these areas to generate reliable baseline information to support
development initiatives. An opportunity arises to carry out a study in a data-scarce area
to generate more data for various purposes, including decision and policymaking and
creating a methodology that is transferrable to other sites. Designing a methodology that
utilizes the bare minimum of data will give a more substantial basis for adoption on other
sites. The current study needs to be carried out in headwater regions due to their unique
provision of ecological goods and services essential to riverine integrity [44].

Due to their hard-to-reach and underdeveloped nature, headwater catchments are
subject to limited studies [45]. In the African context, headwaters are data-scarce in terms of
observed hydrometeorological data of sufficient quality and literature of previous studies
carried on them [29]. Though insufficiently represented in research, these areas are home
to a larger rural population that depends on natural resources for its livelihood. Water
availability is one natural resource that is important in these communities and its availability
is crucial to livelihoods. Southern Africa experiences a long dry period during the year.
Low flows are crucial during this period to cater to the socio-economic activities that sustain
the riparian rural communities. Understanding the minimum water requirements for the
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survival of riverine ecosystems is essential to river management, especially in a changing
climate. Therefore, the headwater catchments must support rural communities benefiting
from them. The study intends to improve rural resilience as the local climate changes.
Building resilience through scientific approaches will also rest on the co-production of
work to formulate frameworks that can be adopted at the local level using the resources
available. The scoring criteria, thus, realized any potential benefits that would accrue to
the rural communities in the study area to be of great importance in selecting a suitable
study site.

Ref. [46] discuss the challenges expected in e-flow determination in the river catchment,
though no specific e-flows quantities were recommended for the area. They acknowledge
that this river is crucial to rural livelihoods as it provides a source of animal protein and
ecosystems goods and services to the Kruger National Park downstream of the Luvuvhu
River. The importance of the LRC was emphasized as well through the consultations carried
out with experts who have worked in the biosphere and e-flow determination. The research
utilized the information and recommendations of at least three experts. Literature review
and factor scoring managed to further narrow down the site selection. Expert opinion was
important to determine which catchments, from the assessments, would best address the
overall objectives of the study and provide a good case study. The vast knowledge and
understanding of the area, areas that still need researching, knowledge of research that
was carried out, and the agreement of the experts led to the selection of the catchments
A91A and A91B. According to the experts, the LRC offers an excellent opportunity to study
most of the issues that arise in catchment management. The area is rich in biodiversity
and carrying out this study will be of great importance to understanding the central role
of water in this region. The area currently provides room for collaborative efforts in
catchment studies as several projects are currently underway that deal with water and
environmental management. Through networking and collaboration, the determination
of e-flows in the LRC can be aided by the work being carried such as water quality and
distribution of freshwater fish species. The headwaters of LRC have also been demarcated
as part of the Strategic Water Source Areas of South Africa that have a unique ability to
provide a substantial amount of water resources to the river basin than the other sections
of the river [30]. The South African government has embarked on protecting these areas,
and studies that demarcate and quantify the water resources potential of these areas are
crucial [30]. One expert corroborated this and emphasized the need to carry out the e-flow
determination in the LRC and its importance to the national agenda on WSAs. What
the research drew from the consultations with experts was that though the criteria are
important for determining study sites, input from people familiar with the characteristics
of the area is invaluable.

6. Conclusions

Understanding the impacts of climate change on water resources and how these
influence rural livelihoods is of great value to sustainable development. With the projections
that rural populations are more vulnerable to the impacts of climate change, there is a need
for science to aid adaptation in these communities. Biospheres provide the opportunity to
test the man and environment relationship well. As such, this research sought to determine
the best-case study to implement an e-flow determination on headwater catchments within
the biosphere. The research, through limitations in funding, time, and human resources
formulated a protocol to select the best-case study. Though simple, this case study can be
modified accordingly and can be implemented in environmental studies in other areas.
The study used a detailed review of relevant literature, a simple factor scoring approach,
reliance on expert opinions, and ground-truthing to select the best study site to determine
e-flows for the LRC. Several benefits are derived when using a systematic approach to
site selection. Environmental research relies on data of sufficient quantity and quality.
The availability or lack of this data enables researchers to formulate the most appropriate
methodology to implement in their studies. A properly formulated methodology saves time
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in its implementation. Frequently, environmental research goes beyond the anticipated
time as unprecedented hindrances are met during the study. This is particularly true
for scholars who usually have limited time, a tight budget, and are on a learning curve.
Implementing this systematic site selection approach before they begin their studies will
inform them on what is and what is not achievable. At the project level, a proper site
selection protocol saves on resources. Southern Africa is limited in its adaptation capacity
because of limited resources. Each research carried out in this area should be within a
small range on the uncertainty spectrum. Most countries in the region cannot afford to
implement research work that drags on for longer than anticipated because of limited
resources. The site selection protocol in this study selected headwater catchments that are
populated by rural communities and have hydrometeorological data scarcity issues. This
was undertaken mainly because most catchments in southern Africa face these challenges
as alluded to by [47]. With the technical guidance and the knowledge to generate data,
this study is expected to generate new information for the area and the methods used can
be transferred to other similar areas in the region. As protocols to study marginalized
areas become available, adaptation strategies that cater to all can be achieved. This article
emphasizes the importance of carrying out a careful and systematic study site selection as
the initial undertaking in any environmental assessment. Such would provide intelligence
on the study’s shared challenges and outcomes and, thus, provide a plausible methodology
to overcome the challenges and achieve the expected outcomes.
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Abstract: Reference Crop evapotranspiration (ET0) datasets based on reanalysis products can make up
for the time discontinuity and the spatial insufficiency of surface meteorological platform data, which
is of great significance for water resources planning and irrigation system formulation. However, a
rigorous evaluation must be conducted to verify if reanalysis products have application values. This
study first evaluated the ability of the second-generation China Meteorological Administration Land
Data Assimilation System (CLDAS) dataset for officially estimating ET0 (the local meteorological
station data is used as the reference dataset). The results suggest that the temperature data of CLDAS
have high accuracy in all regions except the Qinghai Tibet Plateau (QTP) region. In contrast, the
global solar radiation data accuracy is fair, and the relative humidity and wind speed data quality are
poor. The overall accuracy of ET0 is acceptable other than QTP, but there are also less than 15% (103)
of stations with significant errors. In terms of seasons, the error is largest in summer and smallest in
winter. Additionally, there are inter-annual differences in the ET0 of this data set. Overall, the CLDAS
dataset is expected to have good applicability in the Inner Mongolia Grassland area for estimating
ET0, Northeast Taiwan, the Semi Northern Temperate zone, the Humid and Semi Humid warm
Temperate zone, and the subtropical region. However, there are certain risks in other regions. In
addition, of all seasons, summer and spring have the slightest bias, followed by autumn and winter.
From 2017 to 2020, bias in 2019 and 2020 are the smallest, and the areas with large deviation are south
of climate zone 3, the coastal area of climate zone 6, and the boundary area of climate zone 7.

Keywords: raw reanalysis data; grid data; reference evapotranspiration; meteorological variables;
Penman-Monteith equation

1. Introduction

Reference Crop evapotranspiration (ET0) is a critical factor for calculating crop evapo-
transpiration, the accurate estimation of which plays a vital role in irrigation engineering
design and planning, water resources management, and climate change research [1–3]. Due
to its large population and rapid economic development, China is facing a severe water
shortage problem. The country’s per capita water resource is only one-fourth of the world
average level [4]. Therefore, an accurate estimation of ET0 in this region would provide
a scientific basis for rationally allocating water resources and minimizing the imbalance
between water supply and demand [5]. Currently, the standard estimating method of ET0
is the Penman-Monteith equation (FAO56 PM) recommended by the Food and Agriculture
Organization of the United Nations (FAO) [6,7]. This method combines energy balance and
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the aerodynamic theory, which is strongly applicable under different climatic conditions.
However, the main drawback of this method is that it requires a high quality of meteorolog-
ical data, including air temperature, relative humidity or dew temperature, solar radiation,
and wind speed [8,9]. In many regions of the world, there are not enough weather stations
to monitor the meteorological factors. Additionally, high-quality, long-term observational
data are lacking, especially in developing countries, which hinders the application of the
PM method for ET0 estimation on large spatial scales [10–12].

In recent years, reanalysis products have become one of the main grid data sources
for water resource management research [13]. Reanalysis data are generated by running
a numerical weather-predicting model that assimilates the observed atmospheric and
surface data to reconstruct the past surface, ocean, and atmospheric state variables. Unlike
geostatistical grid data derived from spatial interpolation, the spatial structure of weather
variables (such as temperature and wind speed) synthesizes physical laws embedded in
numerical models [8].

Nowadays, many reanalysis data sets have developed rapidly and are used in various
fields. Baatz et al. (2020) [14] analyzed state-of-the-art methods, recent developments,
and prospects of reanalysis for three subcomponents of the Earth system (atmosphere,
ocean, and land), they points out the method’s increasing computational capabilities, the
growing availability of long-term satellite data with global coverage, and the advancements
in model-data fusion methods such as variational and sequential data assimilation. In
addition, the above paper discusses the increasing awareness of the drastic changes in
the Earth system related to anthropogenic and climatic factors and the way they drive
reanalysis development. Recently, networks of distributed in-situ sensors such as buoys
and biogeochemical Argo floats [15], eddy covariance stations [16], surface water runoff ob-
servations [17], and meteorological station data [18] were used in the reanalysis of physical
and biogeochemical Earth system processes. Munoz-Sabater et al. (2021) [19] presented
the new global ERA5-Land reanalysis. The quality of ERA5-Land fields was evaluated by
direct comparison to many in situ observations collected for the period 2001–2018, and
for comparison to additional model or satellite-based global reference datasets. Overall,
the water cycle was improved in ERA5-Land compared to ERA5 according to the different
variables evaluated, whereas the energy cycle variables showed similar performances. Both
ERA5 and ERA5-Land perform substantially better than ERA-Interim.

Reanalysis data have also been applied and compared to estimate evapotranspira-
tion in different regions of the world. Boulard et al. (2016) [20] calculated ET0 using the
ERA-Interim reanalysis data and verified its accuracy in a water balance study in north-
eastern France. Srivastava et al. (2016) [21] found that ERA-Interim ET0 was superior to
NCEP/NCAR ET0 in the UK. Pelosi et al. (2020) [22] also compared two reanalysis datasets
for ET0 estimation in southern Italy. Woldesenbet et al. (2021) [23] evaluated the ET0 in
the Omo-Gibetta watershed and achieved good prediction results. Song et al. (2015) [24]
judged the spatiotemporal characteristics of ET0 in the Shaanxi Province based on NCEP
reanalysis data and made future predictions. Liu et al. (2019) [25] estimated the future
ET0 in the Poyang Lake basin based on the CMIP5 model. The results showed that the
stepwise regression downscaling model established by the NCEP reanalysis data and the
basin ET0 had better simulation results. ET0 was assessed in the Iberian Peninsula by
Martins et al. (2016) [26]. The focus here is to use the National Center for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) hybrid reanaly-
sis product and gridded dataset to calculate ET0 with good simulation results. Raziei
(2021) [27] used the National Center for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) reanalysis, combined with a gridded dataset, to
calculate monthly ET0 for 43 meteorological stations distributed across Iran. The results
show that the ET0 calculated by the mixed reanalysis had a better effect than the ET0
calculated by the observations at most research stations. Milad and Mehdi (2022) [28]
used reanalysis products to estimate ET0 in areas with sparse data and showed that ERA5
provided more accurate estimates of daily and monthly ET0. Some scholars have also
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compared satellite grid data with meteorological station values. Wang et al. (2019) [29]
comprehensively evaluated and compared this newly released precipitation product (Inte-
grated Multi-satellite Retrievals V05B) and its predecessor TRMM 3B42V7 based upon the
ground-based observations under complex topographic and climatic conditions over the
Hexi Region in the northwest arid region of China. Their results indicated that compared
to ground-based observations, both IMERG and 3B42V7 showed good performance with
slight overestimation. Prakash et al. (2016) [30] investigated the capabilities of the Tropical
Rainfall Measuring Mission (TRMM), Multi-satellite Precipitation Analysis (TMPA), and
the recently released Integrated Multi-satellitE Retrievals for GPM (IMERG) in detecting
and estimating heavy rainfall across India. The results indicated that the multi-satellite
product systematically overestimates its inter-annual variations. With continuous advances
in numerical weather models, computing, information, and communication technology
(ict) tools, and data assimilation techniques, along with continuous improvements in the
quality of atmospheric and ground data obtained from satellites, the spatial and temporal
resolution and reliability of reanalysis data have been gradually improved year after year.

The China Meteorological Administration Land Data Assimilation System (CLDAS) is
the only real-time service system in land surface data assimilation systems in China. It uses
a combined technology of integration and assimilation to fuse data from various sources,
such as ground observation, satellite observation, and numerical model products [31]. The
output of this system includes high spatial and temporal resolution land surface driving
products such as temperature, air pressure, specific humidity, wind speed, precipitation,
solar shortwave radiation, and soil moisture. These could be applied in agricultural drought
monitoring, mountain flood geological disaster meteorological services, climate system
model assessments, and spatial fine grid real data services. Although many studies have
evaluated the quality of the CLDAS data, there are limited reports on the estimation of ET0
by this dataset. In this paper, we used the meteorological reanalysis data of 689 surface
meteorological stations in China from 2017 to 2020 and found four grid data points around
each meteorological station through calculation and processing. We then calculated the
value of the target station using the inverse distance weight method, compared it with the
measured data of local meteorological stations and evaluated the accuracy of CLDAS data
through statistical indicators. Therefore, this study aims to evaluate the accuracy of ET0
simulation with CLDAS products for the first time by comparing meteorological data from
689 ground weather stations and to exploring a product that could provide accurate ET0
for areas lacking meteorological data observation.

2. Materials and Methods

2.1. Introduction to CLDAS

CLDAS is an isolatitude and longitude mesh fusion analysis product covering the
Asian region (0–65◦ N, 60–160◦ E) with a resolution of 0.0625◦ × 0.0625◦ and 1 h, and
a spatial geometric distance of 9 km between the corresponding grid points, including
six variables: 2 m air temperature, 2 m specific humidity, 10 m wind speed, surface pressure,
precipitation, and shortwave radiation. This dataset is developed by using the Space and
Time Mesoscale Analysis System (STMAS), optimal interpolation (OI), probability density
function matching (CDF), physical inversion, terrain correction, and other techniques based
on ground and satellite observations from a variety of sources. The dataset’s quality and
spatio-temporal resolution in China is better and higher than in the international market.
The scientific goal of CLDAS is to use data fusion and assimilation technology, on the
ground observation, satellite observations, numerical model products, and other sources of
data fusion to obtain high space-time resolution and high-quality temperature, pressure,
humidity, wind speed, precipitation, and radiation elements such as lattice data to drive
the land surface model, obtain soil temperature and humidity, etc. The research focuses on
processing and acquiring land surface driving data, realizing the operation and integration
of multiple land surface models, and improving the underlying surface data, vegetation
parameters, and atmospheric driving data.
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2.1.1. Data Sources for CLDAS

(1) Ground observation data: hourly temperature, air pressure, humidity, wind speed,
precipitation, and other data observed by more than 2400 national automatic weather
stations and nearly 40,000 regional automatic weather stations after quality control.

(2) ECMWF (European Center for Mediumrange Weather Forecasts) numerical analy-
sis/forecast products: global 3 h, 0.125◦ resolution 2 m temperature, 2 m humidity, 10 mU/V
wind speed, surface pressure, and other data products released by EC (European Center).

(3) GFS numerical analysis/prediction products: NCEP released global ozone, atmo-
spheric precipitation, surface pressure, and other data products with 3 h and 0.5◦.

(4) Satellite precipitation products: FY2 precipitation estimation products (nominal
disk chart) of the National Satellite Meteorological Center; East Asia Multi-Satellite Inte-
grated Precipitation Data Product (EMSIP) with a resolution of 1 h and 0.0625◦ for the
Asian region operated by the National Meteorological Information Center.

(5) Fusion precipitation product: the fusion product of FY2/CMORPH precipitation
and automatic ground station precipitation with 1 h and 0.1◦ resolution in China operated
by the National Meteorological Information Center.

(6) FY2 satellite entire disk nominal map: multi-channel geostationary satellite ob-
servation data with 1 h and 5 km resolution (subsatellite point) of the Service of National
Satellite Meteorological Center (nominal disk map).

(7) DEM data: a global 30m spatial resolution topographic data product jointly mea-
sured by NASA (National Aeronautics and Space Administration) and NIMA (National
Bureau of Surveying and Mapping of the Ministry of Defense) was used to re-sample DEM
topographic data with a spatial resolution of 0.0625◦ in the Asian region using the area
weight method.

2.1.2. CLDAS Data Processing Methods

The 2 m temperature, 2 m specific humidity, 10 m wind speed, and surface pressure
products take ECMWF numerical analysis/forecast products as the background field. To-
pographic adjustment and multi-grid variational technology (STMAS) are used to integrate
the observation data of automatic ground stations in China. The background field outside
China is formed by topographic adjustment, variable diagnosis, and interpolation to the
analysis grid.

The DISORT radiative transfer model used ozone, atmospheric precipitation, and
surface pressure in GFS numerical analysis products as the dynamic input parameters for
the radiative transfer model. Additionally, FY2E/G satellite VIS channel complete disk
nominal map data inversion was used to form the short-wave radiation product.

The above information comes from the China Meteorological Data Sharing Network
(https://data.cma.cn/, accessed on 1 May 2021). The data used in this study included
temperature, global solar radiation, relative humidity, and wind speed, of which the height
of wind speed was 10 m and the height of other meteorological variables was 2 m. The data
spanned from 2017 to 2020.

2.2. Reference Evapotranspiration

According to the FAO56 PM equation [32], reference evapotranspiration (ET0; mm d−1)
can be calculated as:

ET0 =
0.408(Rn − G) + γ 900

Ta+273 U(es − ea)

Δ + γ(1 + 0.34U)
(1)

where Rn is the net radiation at the crop surface, usually calculated by Rs (Global solar
radiation); G is the soil heat flux density; Ta is the mean daily air temperature at 2 m height;
U is the wind speed at 2 m height; es and ea are the saturation and actual vapor pressure,
respectively; Δ is the slope of vapor pressure curve, and γ is the air psychrometric constant.
In daily time-step in this study G can be neglected [33,34].
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2.3. Data Sources

To examine the performance of this dataset, meteorological data from 689 ground
meteorological observation stations of the China Meteorological Administration (CMA)
were collected, which included maximum and minimum temperatures at 2 m, global
surface radiation or sunshine durations, relative humidity at 2 m, and wind speed at 10 m.
If necessary, sunshine durations were converted into global radiation using a formula from
a previous study [35]. The stations were divided into seven climate zones [36,37]. The
specific distribution is shown in Figure 1, and the names are shown in Table 1.

 
Figure 1. Climate zones of China and geographical distribution of 689 meteorological stations. (See
Table 1 for the names of climatic zones 1–7).

Table 1. Names of the seven climate zones.

Zone Area Name

1 Northwest desert zone
2 Inner Mongolia grassland zone
3 Northeast humid and semi humid temperate zone
4 Humid and semi humid warm temperate zone
5 Humid subtropical zone
6 Humid tropical zone
7 Qinghai Tibet Plateau zone

To obtain the daily reanalysis variables for Equation (1) (identified by subscript
CLD), the following steps were taken: (a) daily TmaxCLD and TminCLD were selected as
the maximum and minimum of the 24 daily available 1-h values of the Tmax and Tmin
sequences, respectively; (b) daily RHCLD was obtained by calculating the 24-h average
value of 24 RH values per day; (c) calculating the 24-h cumulative value of the 12-h Rs
as the daily RsCLD value; (d) wind speed at 10 m (U10CLD) was calculated as the 24-h
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average of 24 1-h values, which were then converted to a height of 2 m (UCLD) using
Formula (2) as follows, respectively:

U = Uz
4.87

ln(67.8z−5.42)
(2)

where z is the height of the wind speed observation instrument (in this paper, z is equal to
10) for each meteorological station. Grid data from four grid points around it were selected
and interpolated to the station by the inverse distance weight (IDW) method. The formula
is as follows:

V =
∑n

i=1
vi
D2

i

∑n
i=1

1
D2

i

(3)

where V is the inverse value, vi is the value of the control point, and Di is the weight coefficient.

2.4. Statistics Indicators

Three common statistical indicators, including the coefficient of determination (R2),
root mean square error (RMSE), mean absolute error (MAE), and percent bias (PBias) were
chosen to evaluate the accuracy of the CLDAS meteorological variables and ET0 in this
study. The corresponding formulas are:

MAE =
1
n

n

∑
i=1

|Mi − Pi| (4)

RMSE =

√
1
n

n

∑
i=1

(Mi − Pi)
2 (5)

R2 =

[
∑n

i=1

(
Mi − Mi

)(
Pi − Pi

)]2

∑n
i=1 (Mi − Mi)

2
∑n

i=1 (Pi − Pi)
2 (6)

PB =
∑n

i=1(Pi − Mi)

∑n
i=1 Mi

(7)

where Mi is ET0 calculated by meteorological station data, Pi is ET0 calculated by the
CLDAS gridded data, Mi is average ET0 calculated by meteorological station data, Pi is
average ET0 calculated by the CLDAS gridded data, and n is the number corresponding
to ET0 data. Higher R2 values (closer to 1) or lower RMSE and MAE values indicate a
better estimation performance of the CLDAS dataset. The closer PB is to 0, the better the
estimation performance of the CLDAS dataset.

3. Results

3.1. Meteorological Factors
3.1.1. Air Temperature

Table 2 shows the statistical indicators of maximum and minimum temperatures in
the CLDAS data for the seven climate zones in China. Results indicated that the accuracy
for the maximum and minimum temperatures differed in different climatic regions. For the
maximum temperature, CLDAS data showed a high correlation with data from ground
stations in the four northern climate zones (i.e., climate zones 1–4), with R2 larger than
0.9. Climate zone 5 in the humid climate region also yielded a good correlation. In
climate zones 6 and 7, the correlations between the two datasets were slightly worse when
compared with other climate zones. However, climate zone 6 showed the smallest values
in terms of statistical errors, with RMSE and MAE valued at 2.9 and 2.3 ◦C, respectively.
This may be since the range of temperature changes in this region is not as large as that in
other regions, and the area of this climate zone is significantly smaller than that in other
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climate zones, so the temperature change in this region is not as dramatic as that in other
climate zones. The RMSE and MAE of the high-altitude climate zone (i.e., climate zone 7)
were 6.55 ◦C and 5.83 ◦C, respectively. Figures 2–4 show the spatial error distribution of the
maximum temperature in CLDAS. Overall, the errors at most stations were within a small
range. However, in climate zone 7 and the north-central area of climate zone 1, there was a
big error in the regions, with RMSE and MAE of many stations more significant than 10 ◦C,
while R2 was lower than 0.5. Such huge variations in model errors in these stations might
be resulted from the regional climate model parameter variations and were unlikely caused
by the overall overvalued or undervalued problem of models that may cause significant
variation for ET0 estimation.

Table 2. Statistical indicators of maximum and minimum temperatures in different climate zones
of China.

Tmax Tmin

Climate Zone
RMSE ◦C MAE ◦C

R2
RMSE ◦C MAE ◦C

R2

% % % %

1 4.99 4.32 0.95 4.03 3.45 0.96
2 3.82 2.94 0.93 2.50 1.85 0.97
3 3.75 2.88 0.94 3.02 2.27 0.97
4 3.83 3.05 0.92 2.65 2.11 0.97
5 3.51 2.75 0.88 2.24 1.79 0.96
6 2.90 2.30 0.82 1.87 1.50 0.94
7 6.55 5.83 0.81 5.10 4.53 0.92

 
Figure 2. RMSE values of the five meteorological factors of in all stations.
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Figure 3. MAE values of the five meteorological factors of in all stations.

The minimum temperature behavior in the CLDAS data set was similar to the max-
imum temperature. However, compared with the maximum temperature, correlations
between the minimum temperature of CLDAS and the station’s temperature were higher
in all seven climate zones, with all R2 larger than 0.9. In climate zone 6, the minimum
temperature error was the lowest among all climate zones, with RMSE and MAE valued at
1.87 ◦C and 1.5 ◦C, respectively. On the contrary, climate zone 7 had the highest error, with
RMSE and MAE reaching 5.1 and 4.53 ◦C, respectively. In addition, the lowest temperature
error in climate zone 1 was also relatively high, with RMSE and MAE valued at 4.03 ◦C
and 3.45 ◦C, respectively, which might affect the accuracy of ET0 estimation. As can be
seen from Figures 2–4, the performance of Tmin was similar to that of Tmax. Therefore, the
accuracy of most stations was within an acceptable range. However, some stations showed
significant errors, which were mainly located in the middle of climate zone 1 and climate
zone 7. These stations with high error in the minimum temperature had a high coincidence
with corresponding high Tmax error stations, indicating severe problems in the temperature
simulation of the stations.
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Figure 4. R2 values of the five meteorological factors of in all stations.

3.1.2. Solar Radiation

Table 3 shows the statistical indicators of solar radiation (Rs) in the CLDAS data for
the seven climate zones. Across climate zones, RMSE ranged from 5.18 to 6.21 MJ m−2 d−1,
and MAE ranged from 3.83 to 4.54 MJ m−2 d−1. The differences in Rs errors among different
climate regions were not as apparent as those in air temperature. However, the R2 of climate
zone 7 was significantly lower than that of other climatic regions. These results were similar
to the results reported by Liu et al. (2009) [38]. However, their values were generally higher
than that of the radiation model based on temperature, where the median RMSE was
3.3 MJ m−2 d−1 in humid regions of China (Fan et al., 2019) [39]. The above phenomenon
indicated that the radiation data in the CLDAS data set did not perform well.

Figures 2–4 show the spatial distribution of Rs errors. Overall, the error of Rs in climate
zones 1–3 was better than in other climate zones. The RMSE of most stations was more
significant than 6 MJ m−2 d−1. This might be due to the severe air pollution in the above
areas [40], which would pose particular challenges to accurate simulation.
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Table 3. Statistical indicators of solar radiation, relative humidity, and wind speed in different climate
zones of China.

Rs RH U

Climate
Zone

RMSE
MJ m−2 d−1

MAE
MJ m−2 d−1 R2 RMSE % MAE % R2 RMSE

m s−1
MAE
m s−1 R2

1 5.18 3.83 0.55 14.93 12.11 0.59 1.18 0.88 0.22
2 5.41 3.93 0.65 12.60 9.79 0.55 1.32 1.01 0.29
3 5.33 3.93 0.55 12.81 9.88 0.50 1.28 1.00 0.30
4 6.21 4.51 0.60 13.62 10.73 0.44 1.26 1.01 0.20
5 6.13 4.54 0.48 11.90 9.72 0.42 1.05 0.85 0.21
6 5.54 4.19 0.59 9.19 7.43 0.39 1.38 1.13 0.22
7 5.80 4.43 0.28 31.29 27.62 0.33 1.03 0.81 0.14

3.1.3. Relative Humidity

Statistical indicators of CLDAS RH are shown in Table 3. Climate zone 7 had the most
significant error among all regions, with RMSE and MAE reaching 31.29% and 27.62%,
respectively, close to a random distribution. The consistency between CLDAS and site data
in other climatic regions was also not high, with R2 ranging from 0.39 to 0.59. However, the
values of RMSE and MAE indicated that they were still within acceptable limits. Compared
climate zone 1 with climate zone 6, the consistency of climate zone 1 was higher, but the
RMSE and MAE of climate zone 6 are lower. This result could be attributed to the fact
that climate zone 6 is within the humid region with high annual average relative humidity,
while climate zone 1 is in the arid area where the relative humidity changes more sharply.
Figures 2–4 showed that the overall error of this data set was larger in climate zone 7 than
in other climate zones. In addition, compared with the northeast part of climate region 5,
the error of RH in the western part of the same climate zone (i.e., areas bordering climate
zone 7) was significantly larger. Although there was a relatively large error for RH in some
regions, the estimation of ET0 would unlikely be affected, as previous studies have found
that RH would have a low contribution to ET0 in most regions of China [41].

3.1.4. Wind Speed

Statistical indicators of CLDAS U are shown in Table 3. From the perspective of R2,
the consistency between CLDAS near-surface wind speed and station data was poor in
all climate zones, while from the perspective of RMSE and MAE, their accuracies were
acceptable. In addition, the mean difference between climate zones was within 30%. How-
ever, according to the spatial distribution of the error (Figures 2–4), the RMSE of some
stations was more than 3 m s−1, of which the errors of most stations in climate zone 7 were
significant. Compared with the inland stations, the R2 of the coastal stations was higher.
However, RMSE and MAE were also higher, indicating a problem of overestimation or
underestimation. The worldwide modeling for wind speed is challenging and often inac-
curate. Similar results were obtained for ERA5 [22], NCEP/NCAR [27], and GLDAS [42].
This is mainly due to the complex terrain changes on the ground, and the wind speed is
greatly affected by the roughness of the underlying surface. In addition, it is not easy to
simulate the movement direction of winds accurately.

3.2. Reference Evapotranspiration

The statistical indicators of calculated ET0 based on the CLDAS dataset are shown
in Table 4. Among all climate zones, climate zone 1 had the best consistency (R2 = 0.84)
between CLDAS data and station data, while climate zone 3 showed the lowest errors
(RMSE = 0.87 mm d−1 and MAE = 0.58 mm d−1). For climate zone 7, the values of RMSE
(1.37 mm d−1) and MAE (1.19 mm d−1) were higher than the corresponding values in any
of the other climate zones. Figure 5 shows the spatial distribution of statistical indicators.
Across climate zones, R2 overall showed a decreasing trend from the north to the south,
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and the southernmost region (i.e., climate zone 6) had the lowest value of R2. However, the
spatial distributing patterns of RMSE and MAE were different from R2. The stations with
significant errors are mainly distributed west of climate zone 1, the coastal areas, and the
boundary areas between climate zone 7 and other climate zones. This is mainly due to the
more complex climate change between climate zones. In addition, the high wind speed
error in the coastal areas often leads to a significant ET0 error.

Table 4. Statistical indicators of reference evapotranspiration in different climate zones of China.

Zone RMSE MAE R2

1 1.10 0.74 0.84
2 0.94 0.63 0.80
3 0.87 0.58 0.74
4 1.03 0.75 0.71
5 0.99 0.72 0.64
6 1.08 0.83 0.52
7 1.37 1.19 0.62

 
Figure 5. Spatial distribution of ET0 statistical indicators.

To explore the differences in the CLDAS data in different climate regions, one station
from each climate zone was randomly selected to fit the correlation between the calculated
ET0 based on CLDAS and the FAO56-PM ET0 (Figure 6). Although there were a few outliers,
the scatter points in climate zone 1 were more concentrated to the 1:1 line than those in
other climate zones. Scatter points in climate region 2 were slightly more dispersed than in
climate zone 1 and showed some obvious overestimations when ET0 was more significant
than 6. In climate zone 3, the accuracy was excellent when the value of ET0 was low (<2 mm)
but showed a decline as the following scatter points started to discretize. However, no
overestimation or underestimation existed. In climate zone 4, the error was relatively large
when ET0 ranged from 3 mm to 6 mm. When the ET0 of climate zone 5 was less than 2, the
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problem of underestimation appeared, and then the points were scattered in the 1:1 line for
two measurements, but the distance from the 1:1 line was far. In climate zone 6, the error
was significant when ET0 was greater than 3 mm, and some scatter points were obviously
overestimated or underestimated. Although the points were not as discrete as those in
climate zones 4 and 5, the ET0 of climate zone 7 showed a significant underestimation.

Figure 7 shows the ET0 box diagram of a station randomly selected from each climate
zone. From the median value, there are differences in the performance of different climate
regions. Among them, the ET0 prediction bias of climate region 2 and climate region 3
is slight. The bias of climate region 6 and 7 is large. In addition, from the extreme value,
the bias of ET0 estimated in climate zone 4 and climate zone 6 is small, and other regions
have overestimated or underestimated in varying degrees. From the quartile line, there are
significant differences in ET0 estimation in climate regions 5, 6, and 7. The predicted ET0
performance of climate zones 1, 2, 3, and 4 is relatively good.

Figure 6. Scatter plots of CLDAS and FAO56 PM values of ET0 in different climates.
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3.3. Seasonal Performance of Reference Evapotranspiration from CLDAS

Since the demand for water resources varies significantly between seasons, it is neces-
sary to assess the performance of the CLDAS dataset in different seasons. Figure 8 shows
the RMSE performance of CLDAS ET0 in the four seasons. In spring (March–May), stations
with RMSE smaller than 1.5 mm d−1 accounted for more than 85% of all stations across
China. The RMSE was lower in the south of climate zone 1 and the middle and north of
climate zone 3, ranging from 0.5 to 1 mm d−1. For most stations of climate zones 2, 4, 5, and
6, RMSE values ranged from 1–1.5 mm d−1. Stations with errors greater than 1.5 mm d−1

are mainly located in climate zones 1 and 7.

Figure 7. The box diagram of CLDAS and FAO56 PM values of ET0 in different climates.

In summer (June–August), the RMSE of CLDAS ET0 was generally higher than that
of spring. More than 80% of the stations had RMSE ranging between 1 mm d−1 and
1.5 mm d−1. Stations with RMSE smaller than 1 mm d−1 were mainly concentrated in
the southern part of China and near the boundary area between climate zones 5 and 6.
Stations with RMSE greater than 1.5 mm d−1 were distributed in all climatic regions, of
which climate zone 7 had the largest RMSE, followed by climate zone 1. Especially for
the southwest area of climate zone 7, stations in this area were sparse, and the error was
relatively large, with the value of RMSE larger than 2 mm d−1.

In autumn (September–November), RMSE was less than 1 mm d−1 in 80% of all
stations, and stations with a significant error were still mainly concentrated in climate
zone 7. It is worth mentioning that there were also many stations with RMSE greater than
1 mm d−1 in the coastal areas of climatic zone 6. This is mainly due to the relatively high
temperature of this area in autumn, resulting in a relatively large RMSE.

In winter (December–February), RMSE in northern regions (i.e., climate zones 1–3)
was lower than 0.5 mm d−1 due to the minimal ET0 value. RMSE of most stations in climate
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zones 4 and 5 was less than 1 mm d−1. However, the values of RMSE in the southern part
of climate zone 7, the coastal part of climate zone 6, and the western part of climatic zone 5
were more outstanding than 1.5 mm d−1.

Figure 8. Seasonal RMSE of ET0 calculated from CLDAS dataset.
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Among all seasons, summer had the most significant RMSE error, followed in order
by spring, autumn, and winter. The CLDAS dataset performed well in climate zones 2, 3, 4,
and 5, but performed poorly in all seasons in climate zone 7. In addition, the coastal areas
of climate zone 6 also did not perform well in autumn and winter.

Because the demand for water resources varies significantly in different seasons, it is
also necessary to evaluate the specific overestimation or underestimation of the CLDAS
dataset in different seasons. This provides a more detailed reference for practical production
and life applications. Figure 9 shows the PBias distribution of ET0 calculated by CLDAS in
the four seasons. In spring, the sites with PBias between 0.2 and 0.2 accounted for about 70%
of all sites in the country, and the overall forecast stability was good. The values of ET0CLD
in the southern regions of climate zone 1, climate zone 2, the southern part of climate zone 3,
most of climate zone 4, and the central and northern parts of climate zone 5 are within 10%
of the local station data. In climate zone 7 (Underestimated), numerical biases are generally
greater than 30%. The prediction of ET0CLD in the junction area of climate zone 7 and other
climate zones is not very stable, and most of them are underestimated. In addition, the
ET0CLD in coastal areas will have a relatively large bias.

In summer, the bias of ET0 calculated by CLDAS is generally smaller than that in
spring, but some sites have large fluctuations (the bias is greater than 60%), and the
PBias of more than 60% of the sites is between −10% and 10%. ET0CLD is in the climate
zone 3. The southeastern coastal areas (overestimated), the southern part of climate zone 5
(overestimated), and the western coastal areas of climate zone 6 (overestimated) have large
biases from the local weather station data, with a gap of about 10% to 30%. Numerical bias
with zone 7 (underestimation) is generally greater than 30%. The prediction of ET0CLD for
meteorological stations in the junction of climate zone 7 and other climate zones is not very
stable, and most of them are underestimated.

In autumn, the bias of ET0 calculated by CLDAS is generally larger than that in
spring and autumn, and only about 50% of the sites have PBias between 10% and 10%.
The western region (underestimated), the central and western regions of climate zone 5
(underestimated), the southern coastal region of climate zone 6 (underestimated), and the
climate zone 7 (underestimated) have large biases from the data of local meteorological
stations, with a gap of more than 30%. In addition, the prediction accuracy of the ET0CLD
of the meteorological stations at the junction of climate zone 3 and other climate zones
decreased significantly. Most showed an overall underestimation.

In winter, the bias of ET0 calculated by CLDAS is generally the largest, among which
the bias of ET0CLD from the local station data in the southern region of climate zone 1, the
central region of climate zone 2, the central region of climate zone 3, and the central and
eastern regions of climate zone 5 is 10%. Within %; ET0CLD in the northern region of climate
zone 1 (overestimated), the southern coastal region of climate zone 3 (overestimated), most
of climate zone 4 (underestimated), the central and western regions of climate zone 5
(underestimated), the southern part of climate zone 6 Coastal areas (underestimated), and
climate zone 7 have large biases from local weather station data, with a gap of more than
30%. In addition, the prediction accuracy for the ET0CLD of the meteorological stations in the
transition areas of different climatic zones will drop significantly, and both overestimation
and underestimation exist.

Figure 10 shows a boxplot of the calculated PBias for the CLDAS dataset. From the
median value of PBias, there are biass in the performance of different seasons. Among these,
the estimated bias in spring and summer is smaller, the performance in autumn is second,
and the performance in winter is the largest. From the quartile line (aside from winter),
the estimated differences in the other three seasons were small. From the perspective of
extreme values, the estimated maximum and minimum values in winter are not good. The
performance in summer is the best, and the estimated bias is the smallest. In conclusion, of
all seasons, summer and spring have the slightest bias, followed by autumn and winter.
The CLDAS dataset performs well in climate zones 2, 3, 4, and 5 but not in all seasons in
climate zone 7. In addition, the coastal areas of climate zone 3 and climate zone 6 also
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performed poorly in autumn and winter, and the performance at the interface of different
climate zones was also relatively poor.

 
Figure 9. Seasonal PBias of ET0 calculated from CLDAS dataset.
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Figure 10. The box diagram of Seasonal PBias of ET0 calculated from CLDAS dataset.

3.4. Annual Performance of Reference Evapotranspiration from CLDAS

China is a country with frequent droughts and floods. Water demand also varies
widely between years. Therefore, it is necessary to evaluate the difference in CLDAS ET0
error in different years. The RMSE of CLDAS ET0 in 2017–2020 is shown in Figure 11.
Overall, RMSE in 2019 was lower than that in other years, with more than 85% of all stations
having a value less than 1 mm d−1. In 2020, stations with RMSE less than 1 mm d−1

accounted for 60% of the total stations. Regarding the spatial distribution of errors, climate
zones 3, 4, 5, and 6 overall performed better than other climate zones. Significant errors
were in the southern part of climate zone 7 and the eastern part of climate zone 1, with
RMSE generally more significant than 1.5 mm d−1. This may be related to the special
geographical location of these stations, such as at the boundary of different climate zones.
The above results further confirmed that the data set had good performance in some regions.
At the same time, there were also significant uncertainties in other regions, which could
bring certain risks to the application.

Figure 12 shows the PB distribution of ET0 calculated by CLDAS in 2019–2020. In
2017, the sites with PBias between 0.1 and 0.1 accounted for about 60% of all sites in the
country, and the overall forecast stability was good. The values of ET0CLD in the southern
region of climate zone 1, climate zone 2, the central and northern regions of climate zone 3,
the central region of climate zone 4, the central and northern regions of climate zone 5,
and the central region of climate zone 6 are compared with local weather station data. The
bias is within 10%; the bias of ET0CLD from the local weather station data is larger in the
northern area of climate zone 1, the southern coastal area of climate zone 3 (overestimated),
and the southern coastal area of climate zone 6 (underestimated), with a gap of 10% to
30%. However, the numerical bias of climate zone 7 (underestimated) is generally greater
than 30%. The prediction of ET0CLD in the junction area between climate zone 7 and other
climate zones is not very stable, and most of them are underestimated.

In 2018, the bias of ET0 calculated by CLDAS was similar to that in 2017, with about
60% of sites having a PBias between 10% and 10%, and ET0CLD in the central region
of climate zone 1 and a few in the southern part of climate zone 3. The coastal areas
(overestimated), parts of the southern part of climate zone 5 (overestimated), and the
southern coastal areas of climate zone 6 (overestimated) have large biases from local
weather station data, with a gap of about 10% to 30%. The (underestimated) numerical
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bias is generally greater than 30%. Similarly, the prediction of ET0CLD for meteorological
stations in the junction of climate zone 7 with other climate zones is not very stable, and
most of them are underestimated.

 
Figure 11. Annual RMSE of ET0 calculated from CLDAS dataset.
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Figure 12. ET0 annual PBias distribution calculated from CLDAS dataset.
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In 2019, about 55% of the sites had PBias between −10% and 10%. The ET0CLD in
the southern part of climate zone 1, most of climate zone 2, the middle part of climate
zone 3, small parts of the central region of climate zone 4, the central and eastern regions of
climate zone 5, and the central region of climate zone 6 within 10% of the data from local
weather stations. ET0CLD is in the central region of climate zone 1, the southern coastal
(overestimated) and northern regions (underestimated) of climate zone 3, the central and
western regions of climate zone 4 (underestimated), and the southern part of climate
zone 5 (overestimated). The bias between the southern coastal areas of climate zone 6
(overestimated) and the local weather station data is relatively large, about 10% to 30%.
The numerical bias of climate zone 7 (underestimated) is generally greater than 30%.

In 2020, the bias of ET0 calculated by CLDAS was generally the smallest, and about
60% of the sites have PBias between 10% and 10%. ET0CLD is in the southern part of
climate zone 1 and the southwest of climate zone 2. The central region of climate zone 3,
the central and southern regions of climate zone 4, most of climate zone 5, and most of
climate zone 6 were within 10% of data from local weather stations. ET0CLD is in the central
region of climate zone 1, a few southern coastal (overestimated) and northern regions
(underestimated) of climate zone 3, the central and western regions of climate zone 4
(underestimated), and a small number of regions in climate zone 5 (underestimated). The
bias of local weather station data is large, with a gap of about 10% to 30%. The numerical
bias of climate zone 7 (underestimated) was generally greater than 30%. Similarly, the
prediction of ET0CLD for meteorological stations in the junction of climate zone 7 with other
climate zones is not very stable, and most of them are underestimated.

Figure 13 shows a boxplot of annual PBias calculated for the CLDAS dataset. From the
median value of PBias, there is a bias in the performance of different years. The estimated
bias in 2020 and 2017 is smaller, and the performance of the other two years is relatively
poor. From the quartile line, the estimated bias in 2020 is the smallest and more compact,
and the estimated differences in other years have different degrees of fluctuation. From
the perspective of extreme values, there was a clear overestimation in 2017 and a clear
underestimation in 2018. Additionally, 2020 had the best performance, and the estimated
bias was the smallest. In conclusion, from 2017 to 2020, bias in 2019 and 2020 was the
smallest. The CLDAS dataset performs well in climate zones 2, 3, 4, and 5 but not in all
seasons in climate zone 7. In addition, the coastal areas of climate zone 3 and climate zone 6
also performed poorly except in 2020. The performance of the boundary areas of different
climate zones was also relatively poor.

Figure 13. The box diagram of annual PBias of ET0 calculated from CLDAS dataset.
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3.5. Main Factors Affecting Reference Crop Evapotranspiration

The evapotranspiration process is affected by many factors [43], and its changes are
mainly attributed to the changes in meteorological factors. The country’s climate is complex
and diverse. From a geographical point of view, the eastern part is mostly a monsoon
climate zone with a complex and changeable climate. The air above it is severely polluted,
affecting solar radiation and surface wind speed. Therefore, the performance of estimated
ET0 in coastal areas will decline. The northwest region is far from the sea, is a non-monsoon
region, and belongs to a temperate continental climate. The ground topography in this
region (the junction of climate zones 2, 4, and 5) is complex and changeable, and the wind
speed is greatly affected by the roughness of the underlying surface. The direction of wind
movement is accurately simulated, so the reduction in the accuracy of wind speed is likely
to lead to a decline in the performance of estimating ET0 in some areas. The Qinghai-Tibet
Plateau belongs to the plateau climate zone. Due to its complex and changeable terrain,
the climate itself on the Qinghai-Tibet Plateau will fluctuate depending on the region,
which greatly affects the estimation of ET0. To sum up, the closer are to inland areas
(such as climate zones 1, 2, and 3), the higher the accuracy of ET0 estimation will be. The
performance of ET0 estimation in coastal areas, the Qinghai-Tibet Plateau, and the junction
of climatic zones will be negative effects [44–46]. From the seasonal point of view, the
summer is affected by the warm and humid air from the ocean, with high temperature,
humidity, and rain. The climate is oceanic, so the estimation error in summer is the largest.
In winter, affected by the dry and cold airflow from the continent, the climate is cold, dry,
and less rainy, and the climate is continental, and the estimation error will be relatively
small [47,48]. In addition, specific regions need to be further analyzed according to the
actual situation.

4. Discussion

The calculation of ET0 is affected by a variety of climatic factors. Ma et al. (2010) [49]
studied the influence of main climatic factors on ET0 in mountainous plateau areas and
found that the change of wind speed had the most significant impact on ET0 at each site.
Luo et al. (2010) [50] conducted a sensitivity analysis on ET0 and main meteorological
factors in the main agricultural areas of Tibet, and the results showed that ET0 in the whole
region had a declining trend over the past 50 years. The meteorological element that had
the most significant impact on ET0 was Rs. Similar results were obtained in our study,
where the accuracy of ET0 was affected by the error of Rs. Xie et al. (2017) [51] analyzed the
impact of changes in meteorological factors on ET0 in China’s main grain-producing areas
from 1961 to 2013, in which ET0 showed a saw-tooth decline. The changing characteristics
of main meteorological factors in the study area and the response of ET0 are similar to
the results of our study, showing regional and seasonal variations. Overall, our study
suggests that the errors of meteorological factors in the Qinghai-Tibet Plateau region and
the boundary region of the climate zones are more significant than in other regions, with
the highest errors observed in summer.

Due to the incomplete understanding of the physical mechanism of weather changes
and limited observational data, there is still a specific error in the reanalysis data [52], and
the magnitude of this error tends to vary with different climatic factors. Temperature is a
meteorological variable with minor errors, usually less than 10% [53,54]. Similar results
were found in our study, in which the R2 of Tmax and Tmin are generally greater than 0.9 in
the seven climatic zones. Due to the influence of topography, the errors of wind speed and
relative humidity are usually large [26], and similar results were obtained in our study.

It is worth mentioning that the weather stations in our study are affiliated with the
China Meteorological Administration. The ground of the weather station is usually covered
with short grass under adequate irrigation conditions. However, areas in the grid system
do not necessarily have lush vegetation. Therefore, there might be some differences in
the environmental factors between the two types of systems, especially for the radiant
energy (i.e., R2 < 0.65 in the seven climate zones for the RsCLD estimation in our study).
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This may lead to the problem of overestimating or underestimating the reanalysis data,
which indirectly explains why the estimated ET0 values in some areas fluctuate severely in
our study. In addition, the variation of wind speed is greatly affected by the terrain and
the type of underlying surface, and it is not easy to obtain the average wind speed in a
specific area. Similar results were obtained in our study, where the overall UCLA accuracy
is not satisfactory.

Finally, this study can provide an idea for economically underdeveloped countries
and contribute to improving the reanalysis data set and the accuracy of ET0 estimation.
Therefore, when other developing countries establish regional climate models, they can
consider their own terrain and climate characteristics and establish a more local model.

5. Conclusions

ET0 data set based on reanalysis products can make up for the time discontinuity and
spatial insufficiency of surface meteorological platform data, which is significant for water
resources planning and irrigation system formulation. However, a rigorous evaluation
of reanalysis products must be carried out to see if they have value in application. This
study evaluated the ability of the CLDAS dataset officially published by the Chinese
meteorological system for ET0 estimation. Results indicate that the temperature data of
CLDAS have high accuracy in all regions except the Qinghai Tibet Plateau (QTP) region.
In contrast, the accuracy of the total radiation data is average, and the quality of relative
humidity and wind speed data is poor. The overall accuracy of ET0 is acceptable except for
QTP, but there are many stations with large errors. Among seasons, RMSE is the largest
in summer and smallest in winter. There are also inter-annual differences in the ET0 of
this data set. Overall, the CLDAS dataset is expected to have good applicability in the
Inner Mongolia Grassland area, Northeast Taiwan, the Semi-Northern Temperate zone,
the Humid and Semi Humid warm Temperate zone, and the subtropical region. However,
there are certain risks in other regions. In addition, of all seasons, summer and spring have
the slightest bias, followed by autumn and winter. From 2017 to 2020, bias in 2019 and 2020
are the smallest, and the areas with large deviation are in the south of climate zone 3, the
coastal area of climate zone 6, and the boundary area of climate zone 7.
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Abbreviations

Meaning of main acronyms:
CLDAS: China Meteorological Administration Land Data Assimilation System; ET0:

Reference Crop evapotranspiration; FAO: Food and Agriculture Organization of the United
Nations; ECMWF: European Center for Medium Weather Forecasting; NCEP: National
Centers for Environmental Prediction; Rs: Global solar radiation; U: wind speed at 2 m;
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RH: relative humidity; Tmax: maximum temperature; Tmin: minimum temperature. (When
the subscript CLD exists in these meteorological data, it is the corresponding CLDAS
meteorological data); RMSE: Root Mean Square Error; MAE: Mean Absolute Error; PBias:
percent bias; R2: coefficient of determination.
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Abstract: The results reported in this work are based in part on measurements of sap flow in a few
select trees on a representative riparian forest plot coupled with a forest-wide randomized sampling
of tree sapwood area in a watershed located along the Pacific coast in Santa Cruz County, California.
These measurements were upscaled to estimate evapotranspiration (ET) across the forest and to quantify
groundwater usage by dominant phreatophyte vegetation. Canopy cover in the study area is dominated
by red alder (Alnus rubra) and arroyo willow (Salix lasiolepis), deciduous phreatophyte trees from which
a small sample was selected for instrumentation with sap flow sensors on a single forest plot. These
localized sap flow measurements were then upscaled to the entire riparian forest to estimate forest ET
using data from a survey of sapwood area on six plots scattered randomly across the entire forest. The
estimated canopy-scale ET was compared to reference ET and NDVI based estimates. The results show
positive correlation between sap flow based estimates and those of the other two methods, though over
the winter months, sap flow-based ET values were found to significantly underestimate ET as predicted
by the other two methods. The results illustrate the importance of ground-based measurements of
sap flow for calibrating satellite based methods and for providing site-specific estimates and to better
characterize the ET forcing in groundwater flow models.

Keywords: evapotranspiration; sapflow; phreatophyte; riparian; groundwater

1. Introduction

Prolonged drought conditions in California and the associated increased reliance
on groundwater resources for irrigation in coastal areas, necessitates a re-examination of
agricultural groundwater use in riparian corridors, particularly the impacts of groundwater
pumping on instream flows. Minimum flow requirements in coastal creeks are a source of
serious concern for riparian forest and land managers, fisheries biologists, and agencies
assigned to evaluate sustainable instream flow requirements. Prior works in coastal riparian
systems (e.g., [1]) have focused entirely on groundwater pumping for irrigation, with only
cursory attention given to consumptive groundwater use by riparian vegetation. An
accurate understanding of the impacts of groundwater pumping for irrigation, requires a
consideration and characterization of all the components (inputs, outputs, and storage) of
watershed-scale water budgets, including the poorly understood consumptive groundwater
use by phreatophytic vegetation.

Riparian forests are among the most productive natural ecosystems and perform
such ecological functions as filtering agricultural runoff of sediment, nutrients, and other
solutes, thereby minimizing non-point source contamination of streams and groundwater.
They help maintain the stability of stream banks as well as the quality and quantity of
groundwater recharge [2–4]. In addition to ecological functions, riparian forests also play a
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central role in the earth’s strongly coupled energy and hydrologic cycles through consump-
tive water use from evapotranspiration (ET) and effects on surface roughness and surface
reflectivity (albedo). Direct measurement of tree sap flow to better characterize the ET
forcing on groundwater flow could lead to improved understanding of the ET component
of the hydrologic cycle attributable to consumptive groundwater use by phreatophytic
vegetation. Water requirements of riparian vegetation are usually fulfilled by soil moisture
and groundwater [5]. However, riparian forests also often contain phreatophytic species,
which depend primarily on groundwater for long-term survival [6,7]. The root systems of
such species extend to the capillary fringe, the water-table and the underlying saturated
zone [7,8]. In groundwater models of diurnal groundwater fluctuations, the water use by
phreatophytic vegetation can be characterized by a diurnal ET water-table flux boundary
condition (forcing function) or as a volumetric sink within the saturated zone (unconfined
aquifer) [9].

Although direct measurement of ET from riparian forests is key to understanding
regional and local water and energy balances in hydroclimatological modeling, there remain
high uncertainties in seasonal and long-term (decadal scale) riparian forest ET data due
to the focus on diurnal fluctuations [10,11]. This limits the ability of models to accurately
estimate the groundwater component of water budgets consumed by vegetation in such
forests [11]. Riparian zones in semiarid regions often exhibit high rates of ET in spite of
low-soil wetness due to the presence of phreatophytic vegetation [12,13], which is reflected
in diurnal water-table fluctuations [5,9,12] and can be measured by direct monitoring of
vadose zone soil moisture and groundwater levels. In most long-term ET and groundwater
studies, the amount of water used by phreatophytes is estimated by empirical formulae
that rely on climatic and weather variables or by extrapolation and interpolation of remote
sensing measurements. This can be problematic given the uncertainties associated with the
subsurface sources of the water [10,11].

Direct ground-based measurements of ET include eddy covariance and sap flow
monitoring. There are three common sap flow techniques: (1) thermal dissipation probes
(TDP), (2) heat pulse velocity (HPV), and (3) tissue heat balance (THB). Thermal dissipation
probes (TDP) proposed by [14] comprise two cylindrical probes that are inserted into the tree
stem and separated by a fixed vertical distance. There is some uncertainty on the accuracy
of TDP sensing of sap flow taking in fixed position on trees over long periods [15,16]. The
workers [17] continuously measured sap flow for 1.2 years, and reported that the mean
sap flux density declined by 30% during the second growing season. In a fast-growing
tree, the probes become embedded as the vascular cambium produces new phloem and
xylem tissue [18,19]. Prior work of [16] reported declines in sap flow as probes became
lodged deeper into the sapwood over time, leading to underestimation of the volume sap
flow rate.

In the present study, sap flow was measured using thermal dissipation probes in
four trees, continuously, for two years with the objectives of (1) comparing up-scaled
ground-based sap flow estimates of ET to satellite-based measurements and (2) evaluat-
ing groundwater usage by phreatophytes in comparison to pumping for irrigation. The
approach involved installation of thermal dissipation probes (sap flow probes) in select
phreatophytes, vegetation surveys focusing on phreatophytes, measurement of sapwood
area, and up-scaling of plot-scale sap flow measurements to forest-scale ET estimates.

2. Materials and Methods

2.1. Study Site

The study was conducted at Swanton Pacific Ranch, located along the Pacific coast in
Santa Cruz County, California, about 84 km south-southeast of San Francisco. A map of the
watershed and study area is shown in Figure 1. The climate of the region is Mediterranean,
with warm, mostly dry summers and cool, wet winters. The mean summer air temperature
highs are 24 ◦C and mean winter air temperature lows are 5 ◦C. The rainy season is typically
from October to April, with an average yearly precipitation of 975 mm, with an average of
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193 mm occurring in January. Even during the recent prolonged drought in California from
December 2011 to March 2019, the average yearly precipitation was 945 mm. The average
yearly precipitation over the duration of this study (August 2017 through August 2019)
was 855 mm. Streamflow in main stream in the watershed, Scotts Creek, is typically very
low in the summer (≤0.1 m3/s). During the winter, peak flows typically are 20–70 m3/s,
based on data from a Scotts Creek stream gauge.
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Figure 1. A map (adapted from [20]) of the Scotts Creek watershed, Swanton Pacific Ranch, and the
riparian forest study area. The map shows the location of the instrumented phreatophytes, survey
plots, and piezometers.

The riparian corridor within the study area is about 70–140 m wide with a canopy
cover that often approaches 100% during the growing season [21]. The dominant trees along
the lower portion of the Scotts Creek watershed are red alders (Alnus rubra Bong.), arroyo
willows (Salix lasiolepis Benth.), and pacific willows (Salix lasiandra Benth. var. lasiandra).
Other trees include box elder (Acer negundo L.), bigleaf maple (Acer macrophyllum Pursh.),
California bay laurel (Umbellularia californica (Hook. & Arn.) Nutt.), and coastal redwoods
(Sequoia sempervirens (D. Don) Endl.) Common understory vegetation includes California
blackberry (Rubus ursinus Cham. & Schltdl.), stinging nettle (Urtica dioica subsp. gracilis L.),
poison hemlock (Conium maculatum L.), Cape ivy (Delairea odorata Lem.), and Italian thistle
(Carduus pycnocephalus L. subsp. pycnocephalus) [21–23]. The phreatophytes documented
within the study area, including red alders, arroyo willows, pacific willows, box elders, and
bigleaf maples, are all deciduous. They typically lose their leaves in November/December
and their leaf buds burst in early March. They maintain maximum leafage for most of
the spring, summer, and fall growing seasons. The typical site vegetation is shown in

Figure 2, which shows (a) the dominant phreatophytic trees (b) understory vegetation,

and (c) deciduous vegetation during winter dormancy. Red alders are fast-growing, rela-
tively short-lived, shade intolerant, and tend to favor sites with bare mineral soil and high
sun exposure that were disturbed by floods, windthrows, logging, or fires.
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(a) (b) (c)

Figure 2. Typical vegetation, including (a) phreatophytic trees (b) understory vegetation, and (c) de-
ciduous vegetation during winter dormancy in the study area within the lower Scotts Creek riparian
corridor in June 2017, June 2018, and January 2019, respectively.

2.2. Sap Flow Measurements

Four trees of the dominant phreatophytes at the study site were selected for mon-
itoring based on their stem diameters (7.6–12.7 cm) and proximity (less than 33 m) to
the data acquisition station. The location of the sap flow probe area is shown on the site
map in Figure 1. A pair of probes was installed in each tree. The installation procedure
involved removal of the outer bark at 1.22–1.45 m above the ground to minimize radiative
temperature effects from land surface. Two pilot holes, 40 mm apart vertically, were then
bored into the tree stem to a depth of 30 mm using a 1.5-mm diameter drill bit. The pilot
holes and drill bit were flushed with 10% chlorine bleach prior to and after boring the
holes in each tree to minimize the introduction and spread of pathogens. The probes were
then carefully inserted into the bores and adhesive putty applied around the base of each
probe to provide a water-tight seal. Foam covers were placed over the probes for thermal
insulation and to protect the electrical wiring. Reflective bubble insulation was wrapped
around the probes, foam, and tree stem to minimize thermal gradients caused by direct
solar radiation. Saran wrap was wrapped around the tree stem and upper portion of the
reflective bubble insulation to prevent water from flowing down the stem surface and into
the probes. Figure 3 depicts the probe installation steps (a)–(d) and the aftermath of tree
healing that occurred over the study period (e).

(a) (b) (c) (d) (e)

Figure 3. Pictures of the probe installation and insulation procedure. (a) the dual probe after insertion
into stem drill holes and sealing with putty, (b) foam insulation cover over probes, (c) reflective
blanket, (d) saran wrapped installation, and (e) post-study period probe condition shown growth
over probe.

The probes were part of the FLGS-TDP XM1000 sap velocity system (Dynamax Inc.,
Huston, TX, USA), which includes a CR1000 measurement and control data logger with
a AM16/32 relay multiplexer (Campbell Scientific, Logan, UT, USA) housed in a rugged
weather-resistant instrument enclosure. Communication, programming, and data extrac-
tion between the data logger and a computer were facilitated using the PC400 data logger
support software (Campbell Scientific). The data logger and solar panel were mounted
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on a 10-ft UT10 aluminum tower in a forest canopy gap. The tower was secured in an
8-ft3 concrete pad with a J-bolt kit for stability during rough weather and flooding. Probe
cords were placed inside 1.0-inch diameter schedule 40 PVC conduit pipes and installed
approximately 30 cm underground for protection against weather, flooding, and wildlife.
The conduit pipe openings were covered with duct seal putty to keep out moisture. Upon
completion of probe installation and mounting the data logger to the tower, sap tempera-
ture differentials were recorded at one-minute intervals and their averages were recorded
every 15 min. The data were downloaded from the data logger every two months. A sap
flow computation spreadsheet, provided by Dynamax Inc., and modified appropriately to
implement the theoretical equations of [14], was used to calculate the volumetric rate of
sap flow.

2.3. Measurement and Estimation of Tree Diameter and Sapwood Depth

Determination of the sapwood area, SA, requires knowledge of tree stem diameters,
d, and sapwood depth, Dsap. Hence, for this work, tree stem diameter, d, at breast height
(herein d = DBH) was measured for all woody vegetation greater than 0.025 m in diameter
in each of the six representative sample plots. For this work, the breast height used was
1.37 m. The stem diameters were measured manually with a standard English diameter
tape. The tree diameter tape is based on the assumption that tree stems are perfect circles
such that d = C/π, where C is tree stem circumference. Within each plot, the number of
species, and number of trees for each species were also recorded.

Whereas tree stem diameter was measured for all woody vegetation in each of the
sample plots, sapwood depths, Dsap, were measured from cores extracted from a small
representative subset of the riparian phreatophytic trees within each plot. A stratified
random sampling design was used to estimate phreatophytic vegetation composition.
Woody vegetation was sampled in six random plots, each of area 400 m2, within the
riparian corridor. Environmental Systems Research Institute’s (ESRI) ArcMap 10.7 was
used to determine the locations of these random plots. First, a fishnet with 20 m × 20 m
sections was laid over the study area in ArcMap. Then, random sections were chosen on
the grid. The coordinates of the northwest corner of each plot were programmed into a
Trimble Geo 7X handheld GPS for locating in the field. The locations of the remaining three
corners for each plot were determined with an open reel measuring tape and a compass.

To measure Dsap, wood cores were extracted at breast height (1.37 m) from select
phreatophytes using an increment borer (Haglöf Sweden AB) within each plot. The bark
thickness, sapwood depth, and heartwood/pith radius of each core were measured in the
field with a ruler. In most trees, the sapwood’s lighter color made it simple to distinguish
from the heartwood. However, in some trees (e.g., red alders and arroyo willows), there
was very little color difference between the sapwood and heartwood [24]. In order to
determine the sapwood depth, Dsap, wood cores were first stained with a 0.2% safranin
dye by applying the dye to each core in a series of continuous drops using a small pipette.
The dye was applied immediately after extracting the cores because the vessels of vascular
system lose uptake pressure [25]. Because the dye is absorbed more easily by sapwood
than by heartwood [26], it allows one to locate the sapwood and heartwood boundaries
from which Dsap could then be estimated. Figure 4 depicts (a) the bore from which a core
sample was retrieved, (b) an example of a retrieved tree core stained with dye, and (c) a
close-up of the core showing sap wood to heartwood transition.

43



Water 2022, 14, 1812

(a) (b) (c)

Figure 4. Core sampling to measure of sap wood and heartwood depth. (a) tree bore after core retrieval,
(b) retrieved tree core, and (c) a close-up of the core showing sap wood to heartwood transition.

The sapwood depth, Dsap, of phreatophytic trees in each plot was measured in only a
subset of the trees on the plot. Here, we outline the approach used to estimate Dsap, and
the sapwood areas, SA, of the non-sampled trees. Sapwood depth is defined as

Dsap =
d
2
− DB − DH , (1)

where d is tree diameter at breast height (DBH), DB is bark thickness, and DH heart-
wood/pith radius. Estimates of bark thickness DB for non-cored trees of known diameter,
d, were estimated using the relation of [27], namely

DB = a1eβ1d, (2)

where a1 and β1 are empirical parameters determined using data from cored trees. Esti-
mates of heartwood/pith radii were obtained using the relation

DH = a2eβ2d, (3)

for red alders, and
DH = a2d + β2, (4)

for willows, where a2 and β2 are empirical parameters determined using data from cored
trees. For cored trees, the measured bark thicknesses and heartwood/pith radii were
plotted against the measured stem diameters and best fits of the models given in above
were obtained to determine the values of the empirical parameters. With the empirical
constants thus determined, Equations (2)–(4) were then used to estimate values of DB and
DH for the non-cored trees given their measured diameter d.

For cored samples, the dye droplet method was used to determine the boundary
between sapwood and heartwood. The dye was applied to every core immediately after
extraction from the tree but yielded mixed results depending on the quality of the wood
cores and the tree. On some cores, especially those from small trees, the sapwood absorbed
the dye immediately. Heartwood in cores from older trees absorbed the dye at very slow
rates, making it challenging to make the distinction between heartwood and sapwood in
a timely manner. There were multiple instances where sapwood and heartwood could
not be distinguished from each other based on dye absorption. In these cases, changes in
color and/or texture were used to determine the sapwood/heartwood boundary. Overall,
determining the boundary between sapwood and heartwood was very difficult, even with
the dye droplet method.

2.4. Upscaling Plot Measurements to Forest Scale

Sapwood area is a measure of the actual tree stem area through which water extracted
from the subsurface flows on its way to be transpired to the atmosphere from the canopy.
The sapwood areas of all phreatophytic trees in six sample plots of the riparian forest
were used to estimate the fractional sapwood basal area, αk (expressed in m2/ha), for each
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phreatophytic species over the riparian forest within the study area using the following
relation adapted from [28]:

αk =
1
M

M

∑
p=1

(
1

Ap

Np

∑
n=1

A(k)
n,p

)
(5)

where M is the number of sample plots, Np is the number of trees of kth species in the pth

sample plot, Ap is the forest floor area of the pth sample plot, and A(k)
n,p is the sapwood area

of the nth tree of the kth species in the pth plot. In this work, the area of each of the six
(M = 6) sample plots in which trees were counted and core samples collected, was fixed
at Ap = 400 m2. The total sapwood area, As,k, of a given phreatophytic species over the
entire riparian forest within the study area was then estimated as simply

As,k = αk Arf, (6)

where Arf is the measured total ground area of the forest. For this study, Arf = 9.2 ha.
The total riparian forest sapwood area determined with this equation was then with

sap flow data from the four instrumented trees to upscale measured sap flow to the riparian
forest ET. First, the ET from each instrumented tree was calculated based on the areal extent
of its canopy [29]. The canopy extent of each instrumented tree was determined with a
Trimble Geo 7x GNSS handheld. In ArcMap, the GPS points of each tree were connected to
create a polygon that represented the areal extent of the canopy. A modified version of an
equation from [16] was used to calculate ET above the riparian corridor canopy viz.,

ET =
1

Acp

N

∑
k=1

uk As,k =
Arf
Acp

N

∑
k=1

ukαk (7)

where N is the number of tree species, uk is the mean sap flux density of the kth phreato-
phytic species and Acp is the combined canopy areal extent of the riparian forest. For
simplicity, arroyo and pacific willows are treated as one species for this study such that the
number of species was N = 2 (red alders and willows). This was necessitated by the fact
that only one willow was instrumented.

2.5. Validation Method

The upscaled results will be validated by comparison to two common methods to
estimate ET, namely the Modified Penman Equation for computing reference evapotran-
spiration (ETo) and an equation utilizing normalized difference vegetation index (NDVI)
data and meteorological data. The original Penman Equation comprises two terms: energy
(radiation) and aerodynamic (wind and humidity) [30]. The Modified Penman Equation
includes an amended wind function [31]. According to [32], the Modified Penman Equation
has been shown to overestimate ETo in conditions with high winds and low evaporation,
but it offers the best ETo estimates for grass surfaces. The ETo (mm/d) was calculated using

ETo = c[WRn + (1 − W) f (u)(VPD)] (8)

where c [-] is an adjustment factor compensating for difference in day and night weather
conditions, W [-] is a temperature related weighting factor, Rn (mm/d) is the net solar
radiation in equivalent ET, f (u) [-] is a wind-related function, and VPD (mbar) is the vapor
pressure deficit.

The second method for estimating ET is via satellite remote sensing and meteorological
data. Remote sensing provides spatial and temporal coverage of the land surface [33]. NDVI
is one of the many products that comes from remote sensing and it quantifies the density of
green vegetation on a plot of land. Comprising imagery with near-infrared and red spectral
bands, NDVI data are useful for monitoring changes in vegetation [34]. Due to chlorophyll
in the leaves, vegetated areas absorb visible light and have high near-infrared reflectance.
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In contrast, non-vegetated features have high visible light reflectance and low near-infrared
reflectance, namely rocks, bare soil, water, snow, and clouds. Using an equation by [35], the
ET of the riparian forest can be calculated with

ET =
RnφΔ

ρλ(Δ + γ)

(
1 − 0.583e−2.13NDVI

)
(9)

where Rn (W/m2) is the net solar radiation, φ [-] is the aerodynamic and canopy resistance
parameter, Δ is the slope of the saturated vapor pressure curve, ρ (kg/m3) is the density of
water, λ (J/kg) is the latent heat of vaporization of water, and γ (kPa/K) is a psychrometric
constant. The parameter φ ∈ (0, φmax) was estimated from a scatter plot of site surface
temperature To and NDVI data using the linear interpolation scheme described in [35],
where φmax = (Δ + γ)/Δ = 1.26.

The ETo data set consisted of hourly ET data reported by a California Irrigation Man-
agement Information System (CIMIS) automated weather station located 21 km from the
study area, in Santa Cruz. The station uses the CIMIS version of the modified Penman-
Monteith Equation [30] given by [31] to calculate ET from a standardized grass surface
that is well-irrigated and closely cut, while completely shading the soil. NDVI and meteo-
rological data were used to calculate the ET of the riparian forest with Equation (9). The
NDVI data were taken from weekly EROS Moderate Resolution Imaging Spectroradiometer
(eMODIS) composite sets at 250 × 250 m2 spatial resolution [36]. The weighted average
NDVI value of the entire study area each week was calculated in ArcMap by determining
the percentage of study area within each pixel. The NDVI values were calculated using
NDVI = (IR − R)/(IR + R), where IR and R represents pixel values from the infrared
and red bands, respectively. This yielded NDVI values in the range −1 to +1 for use in
Equation (9). Required meteorological data comprised air pressure, air temperature, and
solar radiation. Two sets of these data were taken from two separate weather stations
(CIMIS and Weather Underground) within the general vicinity of the study area in order
to compare sap flow based-ET to separate areas with slightly different weather patterns.
The second station was a nearby Weather Underground (WU) station, located 5 km from
the study area in Davenport, CA. The meteorological data of each weather station were
averaged over the same weeks as the eMODIS composite sets.

3. Results

As stated previously, the objective of the work was to estimate riparian forest ET from
sap flow measurements collected in a small sample of the predominant vegetation. The ET
estimates are based on estimates of the total sapwood area for the entire riparian forest as
well as its canopy areal extent. The results are presented in the following.

3.1. Phreatophytic Vegetation Survey and Sapwood Area

A total of 159 trees were surveyed in the six sample plots, with 153 of them being
phreatophytes. They comprised 83 red alders, 61 arroyo willows, 9 pacific willows, and
6 coastal redwoods. The survey comprised direct measurement of DBH using diameter
tape. Sapwood depth was measured directly in a subset of the surveyed phreatophytes
by wood coring. The coastal redwoods are not considered phreatophytes, and thus were
excluded from the calculations for the total sapwood area of the riparian forest. The
survey results, including averages and standard deviations of DBH and sapwood area,
are summarized in Table 1. The values in parentheses are for the subsamples that were
selected for coring to obtain direct measurements of bark thickness and heartwood/pith
radius for sapwood area estimation. Multiple cores were extracted on some trees because
the heartwood and/or piths were difficult to sample. Larger trees were especially difficult
to sample due to irregularities in radial growth of tree stems. The poor surface quality
of the cores and the small difference in color between early wood and late wood made
determining the age of trees challenging. Wood cores from young, small red alders (DBH
of d < 35.6 cm) consistently showed only bark, sapwood, and piths, which agree with [17].
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The histograms of the measured diameters at breast height for all surveyed phreato-
phytes are shown in Figure 5. Theoretical probability density functions are also included
for completeness. The arroyo willows and pacific willows were analyzed as one composite
group due to their small sample sizes (61 and 9, respectively). Weibull (p = 0.090 for willows
and p > 0.250 for red alders) and lognormal (p = 0.079 for willows and p = 0.214 for red
alders) distribution model fits are also included. When the red alders and willows were
analyzed as one composite phreatophytic vegetation group, they appear to follow gamma
(p = 0.182) and Weibull (p = 0.087) distributions based on a 95% confidence interval. All the
probability density functions show positive skewness indicating a sampling bias on the small
tree diameter end of the range. Figure 5 also shows histograms of cored main stem sapwood
areas for red alders, arroyo willows, and pacific willows from the six sample plots.

Table 1. Statistics of surveyed phreatophytes within the six sample plots. The values in parenthe-
ses indicate the subsamples that were selected for coring to obtain direct measurements of bark
thicknesses and heartwood/pith radii for sapwood area estimation.

DBH (cm) Sapwood Area (cm2)
Species

n μdbh σdbh n μsa σsa

Red Alder 83 (24) 20.9 (31.6) 15.0 (17.0) 23 734.0 543.1
Arroyo Willow 61 (16) 11.6 (19.6) 7.5 (6.6) 14 318.4 140.7
Pacific Willow 9 (6) 27.5 (28.6) 10.4 (11.5) 5 526.2 347.7

(a) (b) (c)

(d) (e) (f)
Figure 5. Histograms of measured tree stem diameters at breast height (DBH) for (a) all phreatophytes,
(b) red alders, and (c) willows within the six sample plots, and histograms of measured main stem
sapwood areas for (d) all phreatophytes, (e) red alders, and (f) willows within the six sample plots.

Estimates of model parameters in Equations (2)–(4) from tree core data are summarized
in Table 2. These parameters were used to estimate sapwood basal area for the trees on
which cores were not obtained but for which the diameter d at breast height was measured.
Estimates of the fractional sapwood basal area and sapwood area across the entire riparian
forest using Equations (5) and (6), respectively, are also summarized in Table 2.
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Table 2. Model parameters for the best fit developed from wood core data within the six sample plots
to estimate bark thickness and heartwood/pith radius based on DBH. Estimated fractional sapwood
basal area, αk, and total sapwood area, As,k for each phreatophytic species across the riparian forest
within the study area are also included.

Bark Thickness Heartwood/Pith Radius Estimates
Species

n f (x) a1 β1 R2 n f (x) a2 β2 R2 n αk (m2/ha) As,k (m2)

R-Alder 24 Exp 0.220 0.030 0.698 23 Exp 0.067 0.050 0.241 83 16.4 150.5

A-Willow 16 Exp 0.194 0.041 0.674 16 Linear 0.192 −2.214 0.454 61 3.3 30.3

P-Willow 6 Exp 0.331 0.042 0.690 5 Linear 0.045 0.207 0.333 9 2.1 19.3

3.2. Sap Flow Measurements

The four instrumented trees were continuously monitored at one-minute intervals and
the data averaged every 15 min for 618 consecutive days from 18 August 2017 through 26
April 2019. The diurnal sap flow data for selected weekly periods in the growing seasons of
each study year are shown in Figure 6. Several instances of morning peaks were observed
in the data. They were particularly evident during the growing seasons of the study period
for red alders 2 and 3 (Figure 6a), and attributable to direct incident solar radiation on the
reflective shield wrapped around the probes, which served to minimize the occurrence
of morning peaks. It may also indicate problems with installation of the probes. Another
possibility is that they may be as a result of water release in the morning from tree trunk
storage before tree roots uptake water to refill the storage according to [37,38] who found
that tree trunk internal water storage can contribute as much as 28% of the daily water
budget in some tree species. The arroyo willow and red alder 1 also show morning peaks,
but had much lower amplitudes later in the morning. The time lag time between sunrise
and initial sap flow for the arroyo willow and red alder may be due to partial shading
by other trees. All instrumented trees showed some activity during the winter period of
dormancy, with the peak amplitudes of greater than an order of magnitude smaller than
those observed during periods of active growth.
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Figure 6. Example weekly sap flow data of the four instrumented trees collected over the two-year
monitoring period. The graphs show sap flow measured in (a) Fall 2017, (b) Spring 2018, (c) Summer
2018, (d) Fall 2018, (e) Spring 2019, and (f) Summer 2019.
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The time series of the sap flow data for the entire two-year monitoring period of the
four instrumented trees are shown in Figure 7 for (a) arroyo willow, (b) red alder 1, (c)
red alder 2, and (d) red alder 3. The daily maximum air temperatures and daily mean
solar radiation over the same monitoring period are included in Figure 7e to highlight the
seasonality of the observed behavior. Seasonality is clearly evident in the sap flow data
with periods of high sap flow generally coinciding with spring, summer and fall seasons,
interspersed with periods of minimal flow in winter seasons. The spring-fall period is the
period of active growth, with leafage increasing to summer-fall maxima. The instrumented
phreatophytes were deciduous, losing leaves in late fall, with complete leaf loss deep in
the winter months of dormancy. Fall, winter, spring, and summer seasons are marked
clearly on the figures to highlight their correlation to periods of significant sap flow change.
Specifically, the active and dormancy periods of all four trees clearly follow the spring
equinoxes and winter solstices (Figure 7).

Figure 7. Daily total sap flow measured in (a) arroyo willow, (b) red alder 1, (c) red alder 2, (d) red
alder 3, and (e) the CIMIS daily maximum air temperature and solar radiation over the monitoring
period.
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Sap flow peaked in the arroyo willow in early July 2018 and early June 2019. It was
dormant from early January 2018 to early March 2018, and mid-December 2018 to mid-
March 2019. It also showed a similar sap flow pattern to red alder 1 by mid-December
2018. Its sap flow pattern returned to normal by mid-March 2019. Mean peak sap flow in
red alders occurred in early July 2018 and early June 2019. In general, the red alders were
dormant from December to mid-March. Red alder 1 was dormant from early November
2017 to mid-March 2018 and mid-November 2018 to mid-March 2019. Red alder 2 was
dormant from December 2017 to late March 2018, and late November 2018 to late March
2019. Red alder 3 was dormant from late December 2017 to late March 2018 and from
mid-December 2018 to mid-March 2019. These results generally agree with those of [17],
whose red alders were dormant during the winter period, though the period of dormancy
is appreciably longer in Oregon, extending from October through March.

3.3. Evapotranspiration of Riparian Forest

Sap flow data were first used to estimate the ET of the individual instrumented trees.
The results are shown in Figure 8. The seasonal variation in ET of the individual trees is
clearly evident as one would expect from the sap flow data shown in Figure 7. The ET
data among the four trees appear to show moderate to strong behavioral correlations, with
red alders 2 and 3 consistently showing greater ET than the other two trees during the
peak flow periods. The results obtained here did not show a general decrease in ET over
the period of the study as has been observed by other workers. In fact, two trees (arroyo
willow and red alder 3) appear to show increased ET in the final year (2019) of the study.
The seasonal averages of the computed ET for the four trees are summarized in Table 3.

Figure 8. Evapotranspiration (mm/d) of the four instrumented trees from 18 August 2017 through 24
August 2019.

The sap flow data collected from the four instrumented trees were upscaled to the
entire riparian forest canopy using Equation (7), and the estimated values are summarized
and included in Table 3. The season averaged values range from a low of 0.5 mm/d during
the winters to a high of 4.1 mm/d over the summer. Daily values show peak values in
excess of 6 mm/d. It should also be noted that the winter average values are within margins
of instrument measurement uncertainty.

The ET of the riparian forest estimated from sap flow data was compared to ET
estimates based on NDVI and meteorological data, and ETo in the general vicinity of
the study area. The seasonal averages of the sap flow-based ET, ETo, and ETndvi are
summarized in Table 4. Generally, there is strong correlation in the observed temporal
behavior, as well as moderate agreement in estimates of ET over the active growing periods
of spring, summer, and fall. This is particularly the case when comparing the sap flow-
based ET to ETo. However, there are notable divergences in the data. In fall of 2017, the sap
flow-based ET appeared to be similar to the ETo and ETndvi based on CIMIS and WU data
(Figure 9a). In winter of 2018, the sap flow-based ET was substantially lower than the ETo
and both ETndvi estimates. In spring of 2018, the sap flow-based ET was marginally lower
than the ETo, but was substantially lower than both ETndvi,wu values. In summer of 2018,
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sap flow-based ET was similar to ETndvi,wu, but it was marginally lower than the ETo and
ETndvi,cimis. This pattern was repeated in the second year of the study period.

Table 3. Seasonal estimates of mean ET (mm/d), and corresponding mean square errors, of the four
instrumented trees and the entire riparian forest over study period.

Arroyo Red Alders Riparian
Season

Willow 1 2 3 Forest

Summer 2017 2 1.15 ± 0.43 0.93 ± 0.24 2.0 ± 0.38 2.68 ± 0.74 3.74 ± 0.63
Fall 2017 0.69 ± 0.33 0.53 ± 0.28 1.13 ± 0.64 1.82 ± 0.78 2.19 ± 1.07
Winter 2018 0.27 ± 0.18 0.31 ± 0.18 0.20 ± 0.09 0.40 ± 0.19 0.66 ± 0.26
Spring 2018 1.12 ± 0.43 0.90 ± 0.29 1.97 ± 0.66 2.96 ± 1.0 3.47 ± 1.12
Summer 2018 0.97 ± 0.48 1.04 ± 0.28 2.16 ± 0.41 3.79 ± 0.80 3.58 ± 0.90
Fall 2018 0.98 ± 0.43 0.43 ± 0.31 1.22 ± 0.71 2.07 ± 1.19 2.02 ± 1.11
Winter 2019 0.26 ± 0.21 0.28 ± 0.22 0.12 ± 0.05 0.38 ± 0.17 0.49 ± 0.26
Spring 2019 2 1.41 ± 0.68 0.73 ± 0.28 1.83 ± 0.81 3.45 ± 1.62 3.02 ± 1.27
Summer 2019 2 2.00 ± 0.57 0.97 ± 0.25 2.53 ± 0.38 5.21 ± 1.06 4.08 ± 0.86

2 Seasons with incomplete or missing data

Table 4. Estimates of seasonal mean ET (mm/d) and corresponding MSE from the different methods
across the entire riparian forest over study period.

Sap CIMIS NDVI

Season Flow ETo CIMIS WU

Summer 2017 2 3.74 ± 0.63 3.32 ± 0.99 3.20 ± 0.62 -
Fall 2017 2.19 ± 1.07 2.34 ± 1.07 2.17 ± 0.87 -
Winter 2018 0.66 ± 0.26 197 ± 0.92 2.28 ± 0.80 -
Spring 2018 3.47 ± 1.12 4.04 ± 1.22 5.09 ± 1.25 4.85 ± 0.96
Summer 2018 3.58 ± 0.90 4.11 ± 1.07 4.32 ± 0.88 3.42 ± 1.11
Fall 2018 2.02 ± 1.1 2.12 ± 0.94 2.15 ± 0.64 1.70 ± 0.58
Winter 2019 0.49 ± 0.26 1.66 ± 0.99 2.15 ± 1.12 1.87 ± 1.11
Spring 2019 2 3.02 ± 1.27 3.69 ± 1.25 5.09 ± 1.33 4.62 ± 1.74
Summer 2019 2 4.08 ± 0.86 4.36 ± 1.02 4.94 ± 0.94 4.42 ± 1.12

2 Seasons with incomplete or missing data.

The residuals of the ET, defined as the differences between the sap flow-based ET and
the other methods, are shown in Figure 9b. The dashed red and blue lines on the graph
in the figure mark ±1.0 and ±2.0 mm/d residual bounds, respectively. The residuals are
highest during winter and early spring, during which periods the exceed 2.0 mm/d. The ET
predicted by the other methods largely exceeds that based on sap flow due to dormancy of
the willows and red alders during the winter seasons. During the mid-summer to late fall
periods, the residuals are mostly within ±1.0 mm/d, indicating relatively strong agreement
between sap flow-based ET and the other methods.

Scatter plots of sap flow based ET estimates versus the other three methods mentioned
above are shown in Figure 10. The data show positive correlations between sap flow-based
ET estimates and ETo and the NDVI based estimates, with high variance and some bias as
much of the data scatter is widely distributed above the 1:1 line (dashed red line). Data
points above the 1:1 line indicate that sap flow-based ET was lower than the ETo and the
NDVI based ET. Table 5 shows the slopes and coefficients of determination (R2) of the
scatter plots with and without the winter data. Excluding winter data marginally improved
the slopes and R2 values. The fact that the slopes of the regression lines are higher than
1:1 is an indication of overall bias in the sap flow-based ET prediction of the ETo and
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NDVI/weather-based ET. The excluded winter data are marked in cyan in Figure 10b,
where the data clearly plot above the 1:1 line, which confirms the observation made above
that sap flow-based ET underestimates winter ET predicted by the other methods.

(a)

(b)

Figure 9. A plot comparing (a) the sap flow-predicted riparian forest ET to the other methods and
(b) the corresponding residuals over study period. The dashed red and blue lines represent residual
bounds of ±1.0 and ±2.0 mm/d, respectively.

(a) (b)

Figure 10. Scatter plots of ETo and NDVI/weather-based ET versus sap flow-based ET with winter
data in (a), and without winter data in (b) (the removed winter data are highlighted in cyan). The red
line represents the 1:1 slope.
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Table 5. Model parameters for the best fit through the origin (0, 0) to correlate sap flow-based ET
with the ETo and NDVI/weather-based ET.

w/ Winter Data w/o Winter Data
Method

Slope R2 Slope R2

CIMIS ETo 1.103 0.911 1.081 0.953

NDVI/CIMIS 1.260 0.893 1.237 0.932

NDVI/WU 1.135 0.914 1.136 0.938

3.4. Comparison with Groundwater Pumping for Irrigation

Groundwater fluctuations were continuously measured in five piezometers (JFP-1, JFP-2,
PHP-1, PHP-4, and VFDP-4 in Figure 1) and the Pump House irrigation well from 18 August
2017 to 27 April 2019. All piezometers are completed in a thin clay/silt aquitard layer that
sits atop the underlying leaky confined aquifer [39], and all responded to riparian forest ET
as well as to pumping from the Pump House irrigation well. Data from the irrigation well
and the most responsive of the piezometers, PHP-1, are shown in Figures 11 and 12 and are
also reported in [20]. Piezometer and well data are reported here as changes relative to the
respective first water level recorded to facilitate their comparison. Piezometer PHP-1 and the
Pump House irrigation well are about 18 m apart. The data show fluctuations that are clearly
caused by groundwater pumping, ET, recharge primarily from winter-spring precipitation
events, and long-term discharge to the stream and ocean characterized by a period of recession
from the end of spring through the summer and into the fall.
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Figure 11. Groundwater fluctuations observed in piezometer PHP-1 and the Pump House irrigation
well from 18 August 2017 through 26 April 2019. Daily precipitation of Swanton Pacific Ranch and
stage of Scotts Creek are shown over the same period. The gray boxes represent the two zoomed-in
time periods shown in Figure 12.

Diurnal groundwater level fluctuations due to ET forcing are superposed on those
due to pumping from the irrigation well. Fluctuations due to ET are more pronounced
in the piezometer data and are largely imperceptible in the irrigation well data. They
are highlighted in Figure 12, which shows zoomed in plots of the aquifer and aquitard
responses for two monitoring periods (08/2017–11/2017 and 08/2018–11/2018). Ground-
water response to ET is most perceptible during periods of aquifer and aquitard recovery
following a pumping event from the irrigation well. When the pumping frequency is
daily, water-level responses to ET are practically indistinguishable from those attributable
to pumping. In such cases, the amplitude of the aquitard response is much larger than
what can be expected from ET alone. The data clearly show that the riparian corridor
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phreatophytes induce measurable fluctuations in the thin clay/silt aquitard that overlies
the leaky aquifer.
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Figure 12. Groundwater fluctuations observed in piezometer PHP-1 and the Pump House irrigation
well (a) from 18 August 2017 to 1 November 2017, and (b) from 1 August 2018 to 1 November 2018.

The diurnal groundwater fluctuations due to ET discussed above are induced by a
forest-scale ET flux averaging 3.8 mm/d over the summer seasons. When multiplied by
forest area, Arf = 9.2 ha, this flux yields a volume flow rate usage by phreatophytes of
Qet = 350 m3/d = 64.1 gpm. The typical pumping rate from the irrigation at the site is
250 gpm. Hence, ET across the forest amounts to about 25% the pumping rate, which is a
substantial proportion.

4. Discussion

As stated previously, the objective of this work was to estimate riparian forest ET
from sap flow measurements collected in a small sample of phreatophytic trees. Sap flow
measurements were collected in the same four trees over the two-year monitoring period.
For each individual tree, the data were largely repeatable during the growing seasons,
with comparable average seasonal amplitudes. The fact that sap flow probes were left in
the trees for such a prolonged period but continued to yield meaningful measurements
was unexpected because [40] reported that other users of the sap flow probes used the
same drill holes for one growing season, at the most. In addition, ref. [18] reported a
30% decrease in daily average sap flux density during the second growing season for red
alders. The degradation of data quality over prolonged periods of monitoring has been
attributed to tree response to drill-hole wounding by forming tyloses over those vessels,
which affects heat exchange with the probes [41]. The good quality data collected over
two-year study period may be attributable to the fact that the four instrumented trees were
younger, smaller, and of different species than those in other studies. Hence, it may be
argued that younger trees are better suited for prolonged monitoring than are older trees
as long as their diameters and sapwood areas are corrected for from year to year in the
computation of ET.

The ET flux projected across the entire riparian forest correlated strongly with the
CIMIS ETo and ET computed on the basis of NDVI/meteorological data. The sap flow-
based forest ET had consistently lower average magnitudes during the growing seasons
with significant departure from the values computed by the other methods over the winter
seasons. This divergence in winter may be due to vegetation differences among the methods.
Sap flow-based ET was collected on deciduous trees that lost their leaves every winter
leading to values that were consistently lower than those from the other methods. The
CIMIS ETo values are based on a cool-season perennial grass that does not die back during
winter and continues to transpire. Additionally, although most trees lost their leaves along
lower Scotts Creek in winter, there was still plenty of green understory vegetation and some
evergreen overstory vegetation, which were shown by the NDVI data. This may explain
why the ET residuals showed seasonal patterns with peaks being highest and smallest
during winter and fall seasons, respectively.

Long-term passive groundwater monitoring data were analyzed qualitatively to assess
the magnitude of fluctuations in water levels from season to season and year to year. On
average, at the study site, groundwater levels increased every winter before receding and
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reaching their lowest levels in the fall. The steady decrease in water levels during the
summer and fall is largely attributable to ocean and stream discharge, consumption by
phreatophytic vegetation [42], and groundwater withdrawal for crop irrigation. Diurnal
groundwater fluctuations attributable to uptake by phreatophytes across the study forest
are much smaller than fluctuations due to pumping, with sap flow based estimates of ET
over the riparian corridor being about 25% the typical pumping rate for irrigation. Sap
flow based estimates of groundwater fluctuations showed appreciable divergence from
satellite based measurements, which suggests the importance of the former in calibration of
the the latter, especially where site-specific vegetation may have greater control on local ET
and consumptive groundwater use. A well characterized ET forcing function is essential
modeling for groundwater flow and diurnal fluctuations [5,9,43–45].

There are some limitations in this study that may be addressed in future research,
including (1) location and number of instrumented trees, (2) size of instrumented trees,
(3) location and number of sap flow probes on tree stems, (4) instrumentation and mon-
itoring of the minor tree species scattered throughout the riparian corridor such as live
oak and redwoods, (5) accounting for the effect of understory vegetation on total ET and
(6) measurement of sapwood area for individual trees and the entire riparian forest. The
sampling design for this study was partly restricted due to the stem-diameter limitation of
the probes, which biased monitoring to younger trees that are known to be hydraulically
active than older trees. Using a combination of small and large sap flow probes to see the
differences in sap flux density could provide more accurate estimates of ET. Additional
pairs of probes could be installed on each instrumented tree at different depths and the sap
flux densities averaged because the sap flux density is not uniform across sapwood area of
a tree [15,16]. The method of using long-term sap flow measurements to estimate the ET
of a riparian forest may be replicated on other phreatophytic species for similar or longer
periods of time because phreatophytic tree species may react differently to sap flow probes
in terms of sap flow behavior and physical intrusion of the probes.

5. Conclusions

The study presented herein was based on a two-year sapflow monitoring program
on a single riparian forest plot where only a small sample of four trees were instrumented.
The data were used together with a survey of tree sapwood depth in six plots across
the entire forest to upscale the single-plot sapflow measurements to forest canopy-scale
evapotranspiration (ET). The upscaled ET results were compared to ET based on NDVI-
based estimates and were shown to be in good agreement. This indicates that for expensive
ground-based technologies such as sapflow sensing by the heat dissipation models, a
instrumentation of a small sample of a forest may yield reasonable estimates of forest
canopy-scale ET as long as they are also based on sampling of sapwood depth across the
entire forest. The results of the present study, despite the small sample size of sap flow
measurements, illustrate the importance of ground-based measurements of sap flow for
calibrating satellite based methods and for providing site-specific estimates and to better
characterize the ET forcing in groundwater flow models. The small sample size is important
because it is necessitated by the high cost of instrumenting individual trees and it suggests
the potential usefulness of single-plot monitoring stations for ground-based measurement
and estimation of forest ET.

Further research is required to better capture the spatial variability of sapflow across
the forest and would include: (1) a larger sample of instrumented trees to better characterize
sap flow behavior, (2) a sample of instrumented trees with a greater variety of main stem
diameters in order to better characterize the sap flux density for each species, (3) greater
spatial distances between instrumented trees, and (4) long-term monitoring of sap flow
in additional phreatophytic species across the forest. The need for a greater sample size
is clear even from the data from four instrumented trees because they very had different
canopy and sapwood areas. Tree with larger sapwood area tend to have higher volumetric
sap flow rate, which could bias the results based on a small sample size.
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The following abbreviations and acronyms are used in this manuscript:

CIMIS California Irrigation Management Information System
DBH Diameter at breast height
ESRI Environmental Systems Research Institute
ET Evapotranspiration
ETo Reference evapotranspiration
eMODIS EROS Moderate Resolution Imaging Spectroradiometer
HPV Heat Pulse Velocity
NDVI Normalized difference vegetative index
THB Tissue Heat Balance
TDP Thermal Dissipation Probe(s)
VPD Vapor Pressure Deficit
WU Weather Underground
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Abstract: The confined aquifer in the Aksu River Basin is the main aquifer for drinking water within
the area. In this study, the unconfined aquifer and the confined aquifer in the Aksu River Basin
were divided into different water circulation units through analysis of their flow field. After the
hydrochemistry and isotope characteristics of each unit were analyzed, these data were used as
water volume quantitative information of the aquifer according to the mixed-unit model. With this
quantitative information, the transformation relationship between the unconfined aquifer and the
confined aquifer, the recharging source, recharging amount, recharging proportion, and discharging
amount of the confined aquifer were revealed. The results showed that the confined aquifer receives
a recharge of 21.48 × 106 m3/a from the unconfined aquifer. The recharging sources of the confined
aquifer in the middle and upper stream of the Aksu River mainly included side recharging and leakage
recharging from the unconfined aquifer, while the confined aquifer received little recharging from
unconfined aquifer downstream of the Aksu River and did not receive recharging from the unconfined
aquifer in the southeast of the basin. Additionally, drainage methods of the confined aquifer were
mainly lateral flowing and artificial well-group pumping. The side discharging volume through the
whole area was 15.67 × 106 m3/a, and the artificial pumping volume was 21.20 × 106 m3/a. The
confined aquifer was in a negative balance state from the middle-upper stream to the downstream.
The downstream confined aquifer and its unconfined aquifer had a plane laminar flow movement,
and the unconfined aquifer provided very little recharging to the confined one, which was further
enhanced by the artificial well pumping and caused an accumulating negative balance state of the
downstream aquifer.

Keywords: confined aquifer; unconfined aquifer; transformation; mixed-unit method; Aksu River Basin

1. Introduction

1.1. Research Status

As the source of life, water is inseparable from human survival and development.
Although there are many water resources, groundwater with stable volume and excellent
quality has become an important water resource for agriculture, animal husbandry, industry,
and cities. As an indispensable resource for human society, in arid and semi-arid areas with
limited precipitation and a small, unevenly distributed surface water resource, the effect of
recharging and drainage of groundwater is significant [1,2] and has attracted the attention
of many scientists in different fields.

Therefore, in the early 1950s, the United Nations Educational, Scientific and Cultural
Organization (UNESCO) began to study the groundwater cycle [3], and the International
Association of Hydrogeologists (IAH) also actively carried out many large-scale academic
projects on groundwater circulation [4,5]. In China, water resource is the largest and most
rigid constraint for production and life throughout the arid area in the northwest. Today,
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when we vigorously promote the construction of ecological civilization, we need to insist
on using water to plan cities, land, populations, and production. Therefore, the efficient
and reasonable development, and sustainable utilization, of groundwater resources are
particularly important.

Many methods, such as hydrodynamic methods [6,7], hydrochemical methods [8–10],
and environmental isotope methods [11,12] have been reported for studying the relationship
between groundwater recharging and discharging.

The hydrodynamic method is based on groundwater chemical dynamics theories,
according to the calculation and analysis of hydrochemical indicators (component activity
and the mineral saturation index) and limited pumping-test data, five hydrogeological
parameters (the permeability coefficient, K; the water conductivity coefficient, T; the actual
velocity of groundwater, U; its penetration velocity, v; and the groundwater age, t) and can
be used to quantitatively analyze and study all hydrogeological conditions [13,14]. The
chemical composition of groundwater is usually controlled by many factors, such as the
composition of precipitation, the geological structure, the mineral composition, and the
hydrogeological processes of the aquifer. The continuous interaction between groundwater
and its surrounding media also changes its chemical composition. Therefore, according to
the relative concentration of the main ions in precipitation, surface water, and groundwater
from different aquifers, information on the geochemical process in aquifers can be obtained
to analyze the law and control mechanism of groundwater evolution, as well as the possi-
ble groundwater-evolution path from the recharging area to the discharging area [15–17].
Recently, isotope technology, as a new type of technology, has been developed in hydro-
geology to effectively trace the change in water bodies and environment very sensitively,
and thus, to record historical information about the evolution of the water cycle [18–20].
Since the 1950s, synthetic isotopes and environmental isotopes have been used to study
issues related to hydrology and hydrogeology [21–24]. Many scientists worldwide have
used these isotope methods to solve problems related to groundwater recharging resources,
surface water transformation, surface-water runoff rate, and the age of surface water. Some
scientists have further applied water-chemistry information to groundwater numerical
models, used isotopes to trace and determine the recharging resource of groundwater,
and calculated the amount of groundwater recharging [25–27]. In the 1990s, quantitative
mathematical models became very mature. As one of these mature mathematical models,
the mixed-unit model, with water-chemistry data and isotope data, can be used to quan-
titatively calculate the recharging rate and recharging amount of an aquifer in a specific
space [28–31]. These results will be used in studies on groundwater cycles to provide a
reliable basis for the rational development and utilization of groundwater resources in the
arid area of Northwest China with limited hydrogeological work and low precision.

1.2. Purpose of the Research

The Aksu River Basin has four independent rivers from west to east: Aksu River,
Kekeya River, Tailan River, and Karayuergun River. The Aksu River is one of the typical
large rivers in the northern margin of the Tarim Basin with two major tributaries in its
upper stream: the tributary of the Toshigan River on the west and the tributary of the
Kumara River on the north. The Toshigan River originates from the Aksai River in the
Atbash Mountains of Kyrgyzstan, the Kumarak River comes from the Khan Tengri Peak of
the Tianshan Mountains, and both of them recharge rivers with water from snow-melting
of glaciers and from precipitation. Twelve km to the south, the Aksu River divides into the
Xinda River and the Laoda River. The Laoda River merges into the Xinda River again in
Bawutulak, flows south, and enters the Tarim River in Xiaojiake. Its main stream is 132 km
long and its drainage area is 63,100 km2. The Kekya River originates from the Kochikal
Basili Glacier and the Ishtarji Glacier. It goes through the Duolang Canal and merges into
the Xinda River in Georgia, and has a total length of 82 km. Both the Tailan River and
the Karayuergun River originate from the southern foot of Tuomuer Peak in the South
Tianshan Mountains and are independent water systems.
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As the Aksu River Basin is located at the southern foot of the Tianshan Mountains
and has a dry climate with limited rainfall, the population and agricultural production are
currently mainly concentrated in its oasis zone with the confined aquifer as an important
water source. Many scientists have studied and provided information on the transformation
relationship between river and groundwater (mostly unconfined aquifers). However, the
recharging and discharging relationships, and the circulation mode of the confined aquifer
are not currently understood.

In this study, based on data from the unconfined aquifer and confined aquifer flow
fields in the basin, samples of river water, the unconfined aquifer, and the confined aquifer
were systematically collected. After their water chemistry and isotope distribution charac-
teristics were analyzed, the mixed-unit method was used to quantify these data, and thus,
to reveal the recharging source and circulation mode of the confined aquifer.

2. Geology and Hydrogeology

The Aksu River Basin is located at the southern foot of Tianshan Mountains and
the northern edge of the Tarim Basin, which belongs to the first-level tectonic unit of the
Tarim platform. The water system in this basin was formed from the end of the Tertiary
to the beginning of the Quaternary. Due to the neotectonic movement of the northern
mountain body, a downstream river system was formed along the south-dipping slope
of the mountain body. The water flow has brought mountain debris to the front of the
mountain and deposited it in the Awati fault depression, gradually forming the alluvial
plain of the Aksu River and the Kekeya River. Additionally, the uplift of the Yingan
Mountains has led to a decline of the southeast side of the study area, and the formation
of a strip of lowland in Aiximan (Figure 1). With water accumulation, a bead-like lake
group was generated. Meanwhile, the Aksu River continued to swing in periods and
moved eastward to the current Laoda River and Xinda River, leaving several river traces
in the west of the plain, which then evolved into an intermittent strip of an oxbow lake,
as shown in Figure 1. The geomorphological units of the Aksu River Basin from north
to south are the piedmont alluvial fan group, the alluvial–proluvial slope plain, and the
fine-soil-grain plain. As shown in Figure 2, from north to south, the lithology changes
from coarse to fine, and sandy gravel changes from medium-coarse sand, to fine sand, to
sandy loam. The sloping gravel plain area in the piedmont zone is a single unconfined
aquifer area. Its water is more than 50 m in depth with the deepest part being 220 m, and
its thickness is 90–100 m. The gently sloping fine-soil plain area and the desert plain area
are a multi-layer area with unconfined and confined aquifers. The unconfined aquifer of
Tumuxiuke Town–Wensu-Jiamu Town, north of Wutuan is buried 10–50 m deep, and the
middle and downstream of the unconfined aquifer of the alluvial plain is less than 10 m in
depth. In the south of Ayikule Town, Rice Farm, and the south of Wutuan, groundwater
overflows from an artesian well. The south and southeast are formed with confined aquifer
rock groups (mainly sand layers), and the thickness of the confined aquifer gradually
increases from the north to the south within 15–130 m. The confined aquifer winging out
in the west of Aksu is influenced by the Yinganshan uplift. The groundwater flow in the
unconfined aquifer and the confined aquifer in the Aksu River Basin is affected by this
neotectonic movement, and flows from north to south. Its downstream flowing direction
changes from north-to-south to south-to-east as shown in Figures 3 and 4.
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Figure 1. Locations of the studied area and sampling sites.

Figure 2. The hydrogeological profile of A–A′ section.
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Figure 3. Contour lines of unconfined aquifer.

 

Figure 4. Contour lines of confined aquifer.
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3. Sample Collection and Testing

A total of 196 groups of water samples were collected, including 151 groups from
the unconfined aquifer and 45 groups from the confined aquifer. There are 23 groups of
environmental isotope samples, including 15 groups from the unconfined aquifer and
9 groups from the confined aquifer. Sampling locations are shown in Figure 5.

 

Figure 5. Sampling locations in the area.

The collected samples were analyzed by the first regional geological survey team of the
Xinjiang Geological and Mineral Bureau to determine K+, Na+, Ca2+, Mg2+, HCO3−, CO3

2−,
SO4

2−, and Cl− on an inductively coupled plasma spectrometer and an atomic absorption
spectrophotometer with accuracy of ±0.5% and ±1%. Environmental isotope samples were
analyzed in the American BETA laboratory to determine δD and δ18O with accuracy of
±2‰ and ±0.3‰, respectively, on an isotope mass spectrometer (Thermo Delta-Plus) after
high-temperature treatment, evaporation, dissociation, atomization, and ionization.

4. Principles and Theory of Mixed-Unit Method

4.1. Hypothesis of Mixed-Unit Method

In mixed-unit method, the aquifer is generalized and discretized into a finite number
of homogeneous and isotropic small units. Each small unit has a comprehensive value to
show its hydrochemical characteristics (ion concentration and isotope value). According to
their flow fields, the possible recharging and discharging relationship is obtained. With the
ion concentration and isotope value in each unit as its tracer, the tracer mass-conservation
equation can be established. Through solving this equation, the recharging and discharging
relationships and recharging ratio can also be determined. Before the determining of the
mixed units, the following assumptions need to be made: (1) in order to qualitatively judge
the groundwater charging and discharging conditions, the tracer concentration of the water
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resource and the discharged water flow are already known; (2) conservation of water level:
in each small unit, within a certain time, the water level is constant, and the water level
is averaged; (3) the migration of dissolved components is controlled by convection; and
(4) effects of mineral reaction, dissolution, and precipitation are negligible.

4.2. Unit Determination Principles

In order to reduce the unknown parameters of the model and determine the small
units in an optimal way, the following principles need to be followed: (1) The studied
area is divided along the groundwater flow into units, whose horizontal unit boundary
must be parallel to the groundwater level contour line and longitudinal boundary must
be perpendicular, or approximately perpendicular, to the groundwater level contour line;
(2) A hydrogeological unit can be divided into multiple small units. A small unit cannot
cross into different hydrogeological units. Different hydrogeological units store different
types of groundwater with different ion composition and isotope values. (3) A small unit
should have representative water sample data. (4) The same cone of depression should be
divided into one small unit.

4.3. Unit Determination

According to the above-mentioned assumptions and principles of the mixed-unit
method, the unconfined aquifer of the Aksu River Basin was divided into seven small units
(a, b, c, d, e, f, and g), and its confined aquifer is divided into five small units (C, D, E, F,
and G), as shown in Figure 6.

 

Figure 6. Mixed-unit division in the confined aquifer.
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4.4. Calculation of Aquifer Recharging and Discharging

In the mixed-unit model, the unconfined aquifer and confined aquifer are divided into
a finite number of discrete small units, which are discrete at an interval of Δt. Their solutes
are fully mixed, and the components of each solute are evenly distributed in all small units.
Therefore, the equilibrium equation of water in a small unit within the period of Δt can be
expressed as:

Qn − Wn + ∑In
i=1 qin − ∑In

i=1 qnj = en (1)

According to the assumption on the water balance of each small unit, the mass balance
equation of the dissolved component k in unit n can be obtained as:

CnkQn − Cnk

[
Wn + ∑In

j=1 qnj

]
+ ∑In

i=1 qinCink = enk k = 1, 2, . . . , k (2)

where, Qn represents the time average flow value into unit n, Wn is the average value of the
flow out from unit n, qin represents the average flow from unit i into n, en is the deviation
of water balance caused by various errors from the flow entering or exiting the unit n, k is
the average concentration of the tracer k in one unit, and Cnk is the average concentration
of the trace k in the k in unit n.

After Equations (1) and (2) are combined into a rectangular matrix of known con-
centrations in unit n, in which the first row represents the water balance and the other
rows represent the solute mass conservation balance, the Equation (3) can be obtained with
any unit n:

Cnqn + Dn = En (3)

where, qn represents the flow through the boundary of small unit n:

qn = [q1nq2n . . . qinqn1qn2 . . . qnjn](In + Jn)× 1 (4)

Dn is the measurable and quantifiable known items in unit n (such as the known
outflow and pumping volumes), and En represents the unknown error vector in the unit as,

En = [enen1en1 . . . enk](1 + K) × 1 (5)

According to Equation (3) (Adar (1988)), through the minimization of the sum function
J of square error and evaluation of the sum of square error of all units, the flow composition
of the aquifer can be obtained as,

J = ∑N
1 [E

T
nWEn] = ∑N

1 (cnqn + Dn)
TW(cnqn + Dn) (6)

5. Calculation of Charging and Discharging of Confined Aquifer with Mixed-Unit Method

5.1. Division of Mixed Units

Because the studied area is located in the plain of alluvial–diluvial fine-soil parti-
cles, the conceptual model of the mixed units was established accordingly as shown in
Figure 5. The mixed units of the unconfined aquifer and confined aquifer were, respec-
tively, marked as a, b, c, d, e, f, and g and C, D, E, F, and G. Units a and b are located
in the alluvial–proluvial slope gravel plain as a single-structure unconfined aquifer and
are the recharging source of confined aquifer. All other units are in the alluvial–diluvial
fine-soil-grain plain. Units G and F are discharging units. The transformation relationship
between units of the aquifer is shown in Figure 7.
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Figure 7. The transformation relationships between units.

5.2. Hydrochemical Characteristics

The unconfined aquifer is widely distributed in the studied area, and its salinity
in the upper stream was about 0.6 g/L, and pH was 8.4 with an HCO3·SO4–Mg·Ca-
type water. It was 1.3–3 g/L in the middle stream with water types of SO4·Cl–Na·Mg
and SO4·Cl–Na·Ca·Mg, and pH was 8.3. The salinity in the west of the downstream
study area was 3.7 g/L, pH was 8.4, and the salinity in the east was 9.0 g/L, pH was
8.2, with water types of Cl·SO4–Na and Cl–Na. The water-chemistry type of uncon-
fined aquifer units a→c→e→f changed from HCO3·SO4–Mg·Ca, to SO4·Cl–Na·Mg, to
SO4·Cl–Na·Ca·Mg, to Cl·SO4–Na (or Cl–Na. That of unconfined aquifer b→d→g changed
from HCO3·SO4–Mg·Ca to Cl·SO4–Na (or Cl–Na) and SO4·Cl–Na·Mg (or SO4·Cl–Na·Ca·Mg).

The salinity of confined aquifer from the middle-upper stream to the downstream
of the Aksu River Basin did not change significantly with a salinity of 1 g/L, pH of
8.1 and water types of SO4·Cl–Ca·Na·Mg, SO4·HCO3·Cl–Mg·Na·Ca and Cl·SO4–Na·Ca
in the downstream. Water types of the confined aquifer unit C→E→F changed from
SO4·Cl–Ca·Na·Mg or SO4·HCO3·Cl–Mg·Na·Ca to Cl·SO4–Na·Ca. From units D→G, it
changed from SO4·Cl–Ca·Na·Mg or SO4·HCO3·Cl–Mg·Na·Ca to Cl·SO4–Na·Ca. These
data showed that, along the flowing path of the confined aquifer, in the middle and upper
steams of the west, the confined aquifer receives a large amount of recharging laterally
from the unconfined aquifer (a→C→E), and a small amount of recharging vertically from
the unconfined aquifer (c→C→E). When the water exchange between the confined aquifer
and the unconfined aquifer was reduced (e→E and f→F), evaporating concentration and
cation-exchange adsorption (e→f) occurred in the unconfined aquifer, and cation exchange
adsorption occurred in the confined aquifer (E→F). The middle and upper streams in the
east receive a large amount of recharging water vertically from unconfined aquifer (d→D),
with a small amount from unconfined aquifer laterally (b→D). Its downstream receive
a large amount of water recharging laterally from confined aquifer (D→G). with a small
amount vertically from unconfined aquifer (g→G). The unconfined aquifer has significant
evaporating concentration (d→g), and the confined aquifer mostly has cation exchange
adsorption (D→G). The water chemistry characteristics in this basin are shown in Figure 8.
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Figure 8. Water chemistry characteristics.

5.3. Distribution Characteristics of Isotopes

As shown in Figure 9, after the precipitation line slope of the aquifer of the studied
area was compared with the Global Meteoric Water Line (GMWL) proposed by Craig [32],
the slope and intercept were both smaller than the global precipitation line and δD and δ18O
were all located at the upper left of GMWL. These results showed that strong evaporation
had taken place in the whole of the aquifer.

 
Figure 9. Relationship between δD and δ18O.

The isotopic compositions of the unconfined aquifer(a→c→e→f) and the confined
aquifer(C→E→F) in the west were basically the same, indicating that unconfined aquifer
and confined aquifer had a certain hydraulic connection. As shown in Figure 10a, in the
middle and upper steams of the west, because of the influence of evaporation, the δD
and δ18O in the unconfined aquifer increased gradually, while the δD and δ18O in the
confined aquifer increased simultaneously. These results showed that the unconfined
aquifer recharged the confined aquifer vertically (c→C, e→E). In the downstream, the δD
and δ18O of the unconfined aquifer f and the confined aquifer F were significantly different,
indicating that the confined aquifer was less replenished by the unconfined water ( f→F).
The δD and δ18O of unit C→E→F were closer to unit c→e→f than to unit a, indicating
that the confined aquifer received a large amount water recharging laterally from the
unconfined aquifer (a→C→E→F).
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Figure 10. Relationship between δ18O and relative distance.

The δD and δ18O values of the unconfined aquifer (b→d→g) and the confined aquifer
(D→G) in the east were significantly different, indicating that the hydraulic connection
between the two water bodies was weak. As illustrated in Figure 10b, from upper to lower
in the east, because of the influence of evaporation, the δD and δ18O were enriched along
the way and in the confined aquifer, the δD and δ18O decreased. These results showed that
the confined aquifer in the middle and upper streams received a large amount of water
recharging vertically from the unconfined aquifer (d→D) and the confined aquifer in the
lower streams received a small amount of water recharging vertically from unconfined
aquifer (g→G).The δD and δ18O of unit D→G were closer to Unit d→g than to the mountain
exit stations, indicating that the confined aquifer D→G received a large amount water
recharging laterally from unconfined aquifer (b→D→G).

5.4. Recharging Relationships between Unconfined Aquifer and Confined Aquifer

According to the hydrochemical and isotope distribution characteristics of the studied
area, the confined aquifer in the alluvial–diluvial plain area received water recharging
from the loose rock porous unconfined aquifer and upper porous unconfined aquifer of
the Quaternary in the upper alluvial–diluvial slope plain, which was discharged through
artificial and lateral downstream. The recharging and discharging relationship between
units in the unconfined aquifer and confined aquifer are shown in Figure 11.

 

Figure 11. Groundwater circulation in the unconfined aquifer and the confined aquifer.

69



Sustainability 2022, 14, 6936

5.5. Data Analysis

The hydrogeochemical and isotopic data of each unit were statistically analyzed and
are listed in Table 1.

Table 1. Hydrochemical properties and isotopes of all units.

Unit Item K+ Na+ Ca2+ Mg2+ Cl− SO4
2− HCO3

− D 18O

a Average 0.14 2.39 3.25 2.95 1.95 2.98 3.21 −76.36 −11.52
Mean square error 3.65 7.70 4.23 3.53 5.93 1.20 25.52 6.65 0.44

b
Average 0.18 9.76 4.25 2.41 7.27 6.99 1.58 −73.44 −11.13

Mean square error 0.93 13.59 3.60 1.02 0.77 13.72 4.99 - -

c Average 0.21 8.98 6.76 8.06 7.41 12.89 3.40 −73.72 −10.97
Mean square error 0.33 5.28 2.40 3.73 5.93 0.01 3.85 0.96 0.03

d
Average 0.12 5.18 3.45 3.40 4.46 4.96 2.03 −73.34 −11.20

Mean square error 2.79 3.82 7.18 2.95 2.18 8.02 8.24 - -

e Average 0.19 7.56 6.50 7.56 8.24 10.87 2.66 −70.57 −10.50
Mean square error 2.35 11.14 4.76 6.00 11.84 1.72 25.52 7.67 0.49

f
Average 0.23 19.46 6.82 10.55 14.61 18.46 3.50 −74.2 −10.67

Mean square error 11.6 0.09 9.14 0.95 1.98 11.17 0.01 5.29 0.11

g Average 0.12 11.36 4.69 5.20 15.82 2.92 0.98 −74.38 −10.75
Mean square error 0.06 11.17 0.38 0.16 0.16 5.90 20.86 - -

C
Average 0.15 2.56 3.43 3.15 2.21 3.76 3.07 −77.70 −11.45

Mean square error 0.75 9.88 1.27 1.58 3.85 0.85 1.88 9.61 0.20

D
Average 0.09 4.64 2.66 2.30 4.38 3.30 1.40 −85.20 −12.40

Mean square error 1.84 11.73 0.15 6.51 8.63 6.39 24.35 - -

E
Average 0.10 4.70 1.96 3.32 3.40 4.39 2.17 −76.90 −11.00

Mean square error 4.62 7.76 0.31 15.54 5.93 1.60 25.52 - -

F
Average 0.06 3.32 1.56 0.90 1.83 2.50 1.30 −78.70 −11.90

Mean square error 0.94 3.26 0.57 4.58 29.60 8.14 3.85 - -

G
Average 0.06 4.92 1.51 0.93 2.65 3.05 1.38 −90.40 −12.90

Mean square error 2.79 9.52 5.11 0.59 11.85 10.40 22.69 - -

Notes: (1) Concentrations are in meq/L unless otherwise indicated, such as deuterium and oxygen 18O in ‰, and
(2) “-” means that there is only one sampling point and the square error cannot be determined.

In the studied area, the drainage methods of the confined aquifer were mainly lat-
eral runoff discharging and artificial well-group pumping. Artificial exploitation was
27.95 × 106 m3/a and the mining volume of each unit was calculated according to the
proportion of the unit area. The mining volume of each unit is shown in Table 2. The lateral
discharging volumes were 8.57 × 106 m3/a and 7.10 × 106 m3/a, as shown in Table 3.

Table 2. Groundwater mining volume of each unit.

Unit a b C D E F G

Surface area (km2) 724.72 400.05 988.55 655.2 810.18 714.27 365.34
Mining volume (106 m3/a) 4.35 2.4 5.93 3.93 4.86 4.29 2.19

Table 3. Groundwater discharging laterally from Units F and G.

Unit
Buried Depth of

Groundwater (m)
Aquifer

Thickness (m)
Osmotic

Coefficient (m/d)
Hydraulic
Gradient

Discharging
Volume (106 m3/a)

F 4.03 180 2.5 1/1050 8.57
G 1.88 180 2 1/740 7.1
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5.6. Results and Analysis

The results showed (Figure 12) that units a and b in the studied area were single-
structure unconfined aquifers as the main recharge resources of the downstream confined
aquifer. Unit C accepted the lateral recharge from unit a and the leakage recharge from Unit
c, which were 9.77 × 106 m3/a and 0.64 × 106 m3/a, respectively. Unit E received the lateral
recharge from unit C and the overflow recharge from unit e, which were 4.67 × 106 m3/a
and 2.80 × 106 m3/a, respectively. The unit F received the lateral recharge from the unit E
and the overflow recharge from the f unit, which were 6.10 × 106 m3/a and 0.90 × 106 m3/a,
respectively. Unit D received the lateral recharge from unit b and the overflow recharge from
unit d, which were 1.71 × 106 m3/a and 5.66 × 106 m3/a, respectively. The unit G received
the lateral recharge from the unit D, and the recharging was 5.90 × 106 m3/a. This recharge
relationship and degree were consistent with results from hydrochemistry and isotope.

 

Figure 12. Quantitative water circulation model of the unconfined aquifer and the confined aquifer
in the studied area.

The total groundwater recharge volume from the confined aquifer in the studied area
was 21.48 × 106 m3/a, of which the lateral recharge was 11.48 × 106 m3/a, accounting for
53.45% of the total, and the vertical leakage recharge was 10.00 × 106 m3/a, accounting
for 46.55% of the total. The vertical leakage recharge in the southeast was very small and
negligible. The total discharging volume from the confined aquifer was 36.87 × 106 m3/a,
of which the lateral discharging volume was 15.67 × 106 m3/a, accounting for 42.5%, and
artificial exploitation was 21.2 × 106 m3/a, accounting for 57.5%. These results showed that
the confined aquifer was in an accumulation and superposition state of negative balance
along the direction of the underground water flow.

5.7. Discussion

Based on the results of the water balance and the model output, the upstream confined
aquifer received lateral recharging and vertical leakage recharging from the unconfined
aquifer, and the downstream confined aquifer only received lateral recharging from the
upstream confined aquifer, which was consistent with the hydrochemical and isotope
analysis. In addition, the unit flux between the cells was apparently influenced by the water
source exploitation. For example, the unit E received the recharge from unit e and unit C
was 7.47 × 106m3/a, the discharged through lateral was 6.10 × 106m3/a. Because of over
extraction, the difference between the inflow and outflow to unit E was −3.49 × 106m3/a.
Compared with previous research, we identified the recharge sources and their relative
contributions to the confined aquifer, and the data of the extraction were available, the
quantitative water circulation model were reasonable, and the results were reliable.
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6. Conclusions

According to the geological and hydrogeological data of the studied area, the recharg-
ing and discharging relationship between the unconfined aquifer and the confined aquifer
was determined. Based on the hypothesis and principles of unit dividing, and the qual-
itative recharging and discharging relationship, a mixed-unit model was established to
study the hydrochemical characteristics of the confined aquifer in the west of the studied
area. Results showed that the confined aquifer was significantly affected by unconfined
aquifer, and the confined aquifer received lateral recharging from upstream of the uncon-
fined aquifer and vertical recharging from the upper unconfined aquifer. In the east of the
studied area, the downstream confined aquifer no longer received the recharging vertically
from unconfined aquifer, but mainly received the lateral recharging from the upstream
confined aquifer.

The δD and δ18O of unconfined aquifers in the studied area were both at the upper
left of the Global Meteoric Water Line, and their slope and intercept were both smaller than
those of the global atmospheric precipitation line, indicating that the unconfined aquifer
was significantly evaporated. The isotopic compositions of unconfined aquifer and confined
aquifer in the west of the studied area were basically the same, indicating that there was a
hydraulic connection between these two water bodies, and the confined aquifer received
lateral recharging from the upstream unconfined aquifer and vertical leakage recharging
from the upper unconfined aquifer. The δD and δ18O distributions of the unconfined aquifer
and confined aquifer in the east of the studied area were relatively discrete, indicating that
the hydraulic connection between these two water bodies was weak, and the downstream of
confined aquifer in the east mainly received lateral recharging from the upstream confined
aquifer. These results were consistent with the hydrochemical analysis.

Based on the mixed-unit model, the calculation results showed that the total recharged
volume received by the confined aquifer in the studied area was 21.48 × 106 m3/a, in
which the lateral recharging was 11.48 × 106 m3/a, accounting for 53.45% of the total,
and the vertical recharging was 10.00 × 106 m3/a, accounting for 46.55% of the total.
The vertical recharging amount in the southeast was very small and negligible. The
total discharging volume was 36.87 × 106 m3/a, including lateral discharging whose
amount was 15.67 × 106 m3/a, accounting for 42.5%, and the artificial pumping amount
was 21.2 × 106 m3/a, accounting for 57.5%. The upstream confined aquifer received
lateral recharging and vertical leakage recharging from the unconfined aquifer, and the
downstream confined aquifer only received lateral recharging from the upstream confined
aquifer. The confined aquifers in the entire region were in a state of negative balance, and
this state was continuously accumulated from the upstream to the downstream.
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Abstract: Cyanobacterial blooms caused by phytoplankton Microcystis have occurred successively
since 1980 in Lake Taihu, China, which has led to difficulty collecting clean drinking water. The
effects of cyanobacterial scum-derived dissolved organic matter (DOM) on microbial population
variations and of algal-derived filtrate and algal residual exudative organic matter caused by the
fraction procedure on nutrient mineralization are unclear. This study revealed the microbial-regulated
transformation of DOM from a high-molecular-weight labile to a low-molecular-weight recalcitrant,
which was characterized by three obvious stages. The bioavailability of DOM derived from cyanobac-
terial scum by lake microbes was investigated during 80-d dark degradation. Carbon substrates
provided distinct growth strategy links to the free-living bacteria abundance variation, and this
process was coupled with the regeneration of different forms of inorganic nutrients. The carryover
effects of Microcystis cyanobacteria blooms can exist for a long time. We also found the transformation
of different biological availability of DOM derived from two different cyanobacterial DOM fractions,
which all coupled with the regeneration of different forms of inorganic nutrients. Our study provides
new insights into the microbial degradation of cyanobacterial organic matter using a fractionation
procedure, which suggests that the exudate and lysate from degradation products of cyanobacteria
biomass have heterogeneous impacts on DOM cycling in aquatic environments.

Keywords: cyanobacterial blooms; dissolved organic matter; nutrient; bacterial abundance;
carryover effects

1. Introduction

Clean drinking water plays a critical role in human physical health and welfare [1].
Lakes are the most important clean drinking water sources in China because they can
provide a relatively stable water supply with few nature fluctuations (i.e., floods, droughts,
and freezing) [2]. Lake Taihu (30◦05′–32◦08′ N, 119◦08′–121◦55′ S) is the third largest
freshwater lake in China. The lake watershed covers approximately 36,500 km2 and is
an important drinking water source for more than 10 million people and several modern
cities, such as Shanghai, Wuxi, and Suzhou. Moreover, Lake Taihu also serves numerous
industrial, agricultural, and municipal activities [3]. However, harmful cyanobacteria
blooms caused by the phytoplankton Microcystis have occurred successively since 1980
in Lake Taihu, which have directly threatened the safety of drinking water and triggered
serious health and social problems, particularly the “Water supply crisis” in Wuxi in
2007 [4–7]. Qin et al. [8] promoted a large-scale integrated monitoring and forecasting
system for cyanobacterial bloom management in Lake Taihu, and they found that the
distribution area of cyanobacterial blooms reached 997.5 km2 in 2011, which was the
maximum value for the four consecutive years of monitoring (2009–2012). Generally,
cyanobacterial bloom growth can be influenced by temperature, daylight, water turbulence,
pH, and macronutrient. In addition, wind-induced hydrodynamic effects, such as sediment
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resuspension and the corresponding nutrient release from the sediment–water interface,
played an important role in intensifying cyanobacterial bloom expansion [9,10].

After blooms, the massive cyanobacterial biomass aggregates into scum and is then
degraded by indigenous heterotrophs [11]. Large fractions of cyanobacterial organic matter
are released from the biomass as dissolved organic matter (DOM) mainly via three major
decline steps, which were proposed to describe the bloom decline process: scum disaggre-
gation, colony settlement, and cell lysis in colonies [12]. Various bacteria of myxobacterium
and the genera Alcaligenes and Pseudomonas and the Cytophaga/Flavobacterium group from
aquatic environments were found to be lysed Microcystis, which is closely related to the
degradation of biomass produced by cyanobacteria [13,14]. This algal-released DOM can
be referred to as bulk algal-derived DOM. When large complex algal-derived DOM enters
the aquatic system, it may cause oxygen depletion and cyanobacterial toxin secretion by
biological activities, resulting in the appearance of a “black water mass,” which may pose
serious risks to aquatic plants, fish, and oxygen-sensitive invertebrates and cause mass
mortality events [15–17]. The high frequency formation of a massive bloom composed of
cyanobacteria of the genus Microcystis, which can produce potent hepatotoxins, neurotox-
ins, and dermatoxins and promote tumor formation (i.e., microcystins), and they finally
cause damage to the liver [18,19].

Several studies have suggested that bulk algal-derived DOM is closely related to
the biogeochemical cycle and energy flow of lake ecosystems, which indirectly impact
human health and the dynamics and driving factors of cyanobacterial blooms [20–22].
For example, Bittar et al. [23] confirmed that extracellular and intracellular DOM were
produced in axenic cultures by Microcystis aeruginosa, which can effectively increase the
biolabile DOM (BDOM) to bacterial growth and activity in lake waters for timescales of
minutes to days. Moreover, Lee et al. [24] found that algal-derived BDOM can be converted
into recalcitrant organic matter (such as humic substances), which remains in the water
column for a long period. On the one hand, this freshly produced BDOM would strongly
influence its binding properties to heavy metals and thus their fate, mobility, and toxicity
in aquatic environments; especially, the algal-derived polymeric component increases
the coagulation and sedimentation rates of colloidal material and associated metals, and
thus brings hidden potential dangers to benthic healthy [25,26]. On the other hand, after
long-term biodegradation, progressive accumulation of algal-derived recalcitrant DOM,
as disinfection by-product precursor compounds, is transformed into trihalomethanes
and haloacetic acids (i.e., carcinogenic and mutagenic disinfection byproducts), which
inevitably leads to increased costs of drinking water supply systems [27–29]. In addition,
during the decay of cyanobacteria blooms in lake ecosystems, cyanobacteria toxins are
introduced into water and could directly threaten human health [30,31].

Dissolved organic matter is a fundamental regulator of aquatic ecosystems, and algal-
derived DOM often dominates the DOM composition in water during algal bloom decay
in Lake Taihu [32]. Several authors have studied the production of DOM with unique
compositions and stoichiometries that fuel successive trophic transfers of fixed carbon
through initial assimilation by heterotrophs. However, their rates of processing phytoplank-
ton DOM are controlled to a large extent by the biological availability of cyanobacterial
exudate and lysate; thus, two different cyanobacteria fractions will have implications for
lake microorganisms to facilitate the efficient turnover of the highly heterogeneous cycle of
available DOM [33,34]. Microbial-mediated metabolism reactions have been demonstrated
to transform DOM from labile to a relatively recalcitrant state. This process is associated
with nutrient recycling, greenhouse outgassing, and microbial secondary production, affect-
ing microbial succession, as reflected in the taxonomic composition and functional diversity,
as well as the growth rates of specific groups [35–39].

For lake ecosystems, especially eutrophic lakes, the nutrients needed to maintain the
system largely depend on the internal circulation and regeneration of the system rather than
external input [40]. Among them, the degradation of cyanobacterial organic matter and
the release process of nutrients, which are important carriers of nutrients in water, may be
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important sources of active nutrients in water [41]. Algal-derived DOM has generally been
used to represent the heterogeneous matrix for the entire decomposition of cyanobacterial
blooms; however, most studies have focused primarily on the environmental behavior of
bulk algal-derived DOM or the response of the interaction between bulk algal-derived
DOM and water contaminants. However, the relationship between released DOM refers to
the different fractions of cyanobacterial organic matter, and there have been few studies on
reproduced nutrient and microbial secondary production (i.e., ecological effect) following
the cyanobacterial cell lysis mechanism.

Therefore, the objective of this study was to gain new insight into the role of molecular
weight-fractionated cyanobacterial organic matter on DOM mineralization, sequestration,
and related nutrients. We set up a medium-volume, long-term incubation experiment
and combined it with a fractionation procedure to investigate how DOM from lysed
cyanobacteria cells impacts the variation of the microbial population, and how processing
of algal-derived DOM impacts nutrient mineralization by comparative analysis. The results
will provide data support for the ecological effects of cyanobacteria degradation.

2. Materials and Methods

2.1. Sample Collection and Pretreatment

Surface lake water and fresh algal scum of the phytoplankton Microcystis were collected
at the aggregate stage of a cyanobacterial bloom along the shore of Lake Taihu (trestle area),
China, in 2021 [42] (Figure S1). Samples (i.e., fresh algal scum) were stored at 4 ◦C and
transported to the laboratory, where they were immediately filtered through a sterile 20-μm-
pore nylon net (47-mm diameter, Merck Millipore, Ireland) to exclude the interference of the
largest algal aggregates, protozoa, and non-living particulates in the microbial degradation
system. This filtration for lake water through a 20-μm-pore-size filter (47-mm diameter,
Merck Millipore, Cork, Ireland) was performed to separate particle-associated bacteria
or large cells from small and free-living bacteria [43]. Then, the chlorophyll a (Chl a)
concentration was measured (18.61 μg L−1) and considered the low biomass in summer.
Chlorophyll a concentration was similar to the annual average in the lake center, and
therefore, this was considered as a control set [44]. Meanwhile, harvested algal scum were
concentrated through 20-μm bolting silk to partly dewater and remove obvious impurities;
then, these samples with 90% moisture were defined as algal organic matter.

We considered the algal organic matter as a whole, which could be divided into
two fractions by the freeze-thaw method. First, 10 mL algal organic matter-sterile water
solutions with multiple batches (0.03 g mL−1 fresh weight) were shaken on a shaker, and
we then obtained a destructed cyanobacterial complex mixture; the solids of these mixture
were concentrated using a 0.2-μm membrane filter (47-mm diameter, PC, Merck Millipore,
Cork, Ireland), and the filtrates were obtained. Destruction of cells in the above mixture
was performed using the freeze-thaw method with three successive recycles, as described
in a previous study [45]. The efficiency of cell destruction was confirmed using an optical
microscope [46].

2.2. Batch Experiment
2.2.1. Long-Term Microbial Degradation of Algal Organic Matter

At room temperature (20–25 ◦C) and under dark conditions, the cyanobacterial scum
sampled from Lake Taihu shore and then pretreated as the 0.5 L algal organic matter-
sterile water solution (0.03 g mL−1 fresh weight) was added to 9.5 L of filtered lake water
containing bacterial communities and mixed in an acid-cleaned glass container to conduct a
long-term (80-d) degradation experiment as the algal-derived DOM group. The purpose of
setting this algal biomass concentration, i.e., ~1.5 g L−1 (fresh weight), was to simulate the
real accumulation situation along the lakeshore as best as possible. The purpose of using
dark incubation conditions was to prevent the possible growth of cyanobacteria that may
have been present in filtered lake water. Therefore, the possible growth of cyanobacteria
will interfere with the experimental results. Simultaneously, the long-term degradation of
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the filtered lake water without added cyanobacterial scum was set as the control group
(i.e., natural lake water group). Both groups had three replicates, and all containers were
covered tightly to avoid direct contact with the atmosphere. By collecting water samples at
different intervals during the 80-d degradation process, the dynamic changes in planktonic
bacterial abundance in lake water, and the concentrations and compositions of dissolved
organic carbon (DOC) and nutrients were analyzed.

2.2.2. Process Analysis of Microbial Degradation of Algal Organic Matter Using the
Fractionation Procedure

The above-described long-term microbial degradation systems were repeated under
the same controlled conditions in which 0.5 L of the extracted filtrates and concentrated
solids, which were resuspended in an equal volume of sterile water, were added to the
filtered lake water that served as the algal-derived filtrate and algal residual exudative
organic matter groups. These two treatments were also conducted in triplicate in the dark
for 80 d. As for the bulk algal-derived DOM and control groups, subsamples from the algal-
derived filtrate and algal residual exudative organic matter groups were also collected on
days 0, 1, 2, 4, 8, 12, 20, 31, 40, 52, 61, and 80 for analyses of planktonic bacterial abundance
and determination of DOC and nutrient concentrations and compositions. Intriguingly,
we observed that the water color of the algal-derived filtrate group changed dramatically
(from brilliant blue to emerald green); therefore, an additional sample was collected on
day 3.

2.3. Sample Analysis
2.3.1. DOC and Chromophoric Dissolved Organic Matter (CDOM) Measurement

For the analysis of DOC concentration, 40 mL of water sample was filtered through
pre-combusted (450 ◦C for 4 h) 0.22-μm-pore-size glass microfiber filters (47-mm diameter,
Shanghai Xingya Purification Material Factory, Shanghai, China). Then, the filtrates were
collected with glass pipettes, placed into pre-combusted brown glass vials, and stored at
−20 ◦C until analysis. Reference DOC standards (obtained using potassium hydrogen
phthalate) served as an additional control to calibrate the instrument. The blank was
deducted using Milli-Q water analysis before every five samples, and all samples (includ-
ing the blank) were acidified to pH = 2 by 10% HCl until analysis. The average blank
concentrations associated with the DOC measurement were approximately 0.06 mg L−1,
and the analytic precision of the triplicate injections was ±3%.

After passing through pre-combusted 0.22-μm Millipore membrane filters (47-mm
diameter, Merck Millipore, Cork, Ireland), approximately 100 mL filtrate was used for
CDOM absorbance and fluorescence measurements. CDOM absorbance was measured over
the 200–800 nm range (1 nm increments) in a 5-cm quartz cell using a Shimadzu UV-2450 PC
UV–vis recording spectrophotometer. A fluorescence spectrophotometer (Hitachi F-7000,
Tokyo, Japan) with a scanning speed of 2400 nm min−1 was employed to measure the
excitation-emission matrix (EEM). The main components of fluorescence dissolved organic
matter (FDOM), i.e., the fluorescent fraction of CDOM, were analyzed using a fluorescence
spectroscopy technique coupled with parallel factor (PARAFAC) analysis [47]. During the
experiments, a total of 150 EEM spectra were obtained for PARAFAC analysis. MATLAB
(MathWorks, Natick, MA, USA) and the DOM Fluor toolbox (http://www.models.life.
ku.dk/ accessed on 6 May 2022) were employed for data analysis [48,49]. Further details
on the PARAFAC-EEM analysis of FDOM have been described previously [50] and are
displayed in Supplementary Materials Text S1.

During analysis of the composition parameters of CDOM, the characteristic param-
eters of the CDOM absorption coefficient [a (355)] and spectral slope for the interval of
300–500 nm [S300–500] were employed to estimate the concentration and composition dy-
namic of CDOM, respectively [47]. Moreover, high S300–500 values denote a high extent of
recalcitrant and a low degree of molecular weight [51].

78



Int. J. Environ. Res. Public Health 2022, 19, 6981

2.3.2. Nutrient Concentrations

Inorganic nitrogen (i.e., nitrate, nitrite, and ammonium) and inorganic phosphorus
(i.e., phosphate) concentrations were measured using a continuous flow analyzer (San + +,
SKALAR, Breda, The Netherlands). Total dissolved nitrogen (TDN) and total dissolved
phosphorus (TDP) concentrations were analyzed using combined persulfate digestion
followed by spectrophotometric measurements [52].

2.3.3. Bacterial Abundance (BA)

Samples for analyses of BA were preserved with a final concentration of 0.5% glu-
taraldehyde and stored at −80 ◦C. BA was measured using an LSRFortessa flow cytometer
(BD Biosciences, San Jose, CA, USA) by staining with SYBR Green I. Bacteria were enumer-
ated according to a previously described method [53].

2.4. Statistical Analysis

The linear regression model was used by OriginPro 8.1 software (OriginLab, Northamp-
ton, MA, USA) to characterize the following relationships: (1) among the free-living bac-
terial abundance and CDOM absorption coefficient at 355 nm for the entire process in
the bulk algal-derived DOM group; (2) among free-living bacterial abundance and the
main components of FDOM identified by PARAFAC analysis for the entire process in bulk
algal-derived DOM, algal-derived filtrate, and algal residual exudative organic matter
groups; and (3) among free-living bacterial abundance and the fluorescence intensity of
humic-like components for the day 40–80, day 20–80, and day 31–80 phases in the bulk
algal-derived DOM, algal-derived filtrate, and algal residual exudative organic matter
groups, respectively. To examine the significance of the temporal changes in the main
components of FDOM identified by PARAFAC analysis during the experiment, we mainly
aimed at comparing the bulk algal-derived DOM and control groups, and the algal-derived
filtrate, and algal residual exudative organic matter groups. One-way analysis of variance
(ANOVA) was performed using the data analysis function of OriginPro 8.1 software.

3. Results and Discussion

3.1. Algal Organic Matter Analysis

The initial properties of the selected algal-derived DOM and its different fractions are
summarized in Table 1. In brief, the initial bulk algal-derived DOM was composed of 67.15%
carbon, 26.38% nitrogen, and 6.47% phosphorus, whereas the initial algal-derived filtrate
and residual exudative organic matter were composed of 77.86% and 58.33% carbon, 19.55%
and 39.06% nitrogen, and 2.59% and 2.60% phosphorus, respectively. These values showed
that the carbon component of the algal-derived filtrate was higher than that of the bulk
algal-derived DOM; the nitrogen component of algal residual exudative organic matter was
higher than that of the bulk algal-derived DOM. In contrast, the phosphorus components
of the algal-derived filtrate and algal residual exudative organic matter were lower than
that of the bulk algal-derived DOM. After freeze-thaw treatment, the CDOM absorption
coefficients at 355 nm for initial algal-derived filtrate and algal residual exudative organic
matter were approximately 0.79 and 0.63 times lower than that of initial bulk algal-derived
DOM, respectively. Obviously, the FDOM composition of the initial bulk algal-derived
DOM contained only two components (i.e., protein-like C1 component and humic-like C2
component), and C1 was the main fraction in the bulk algal-derived DOM. Surprisingly,
through the comparison among the FDOM composition for initial bulk algal-derived DOM,
filtrate, and algal residual exudative organic matter, it appeared that the humic-like C2
component was enriched in the algal-derived filtrate, which was approximately > 6 times
higher than that of the other two groups.
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Table 1. Physicochemical properties of bulk algal-derived dissolved organic matter (DOM), algal-
derived filtrate, and algal residual exudative organic matter. ND—not determined. DOC—dissolved
organic carbon; DON—dissolved organic nitrogen; DOP—dissolved organic phosphorus.

Parameter
Concentration

(Mean ± Deviation)
Parameter

Concentration
(Mean ± Deviation)

Bulk algal-derived DOM

DOC (mg L−1) 4.15 ± 0.56 C1 (R.U.) 0.78 ± 0.13
DON (mg L−1) 1.63 ± 0.17 C2 (R.U.) 0.03 ± 0.01
DOP (mg L−1) 0.40 ± 0.03 C3 (R.U.) ND
a (355) (m−1) 21.93 ± 1.80 C4 (R.U.) ND

Algal-derived filtrate

DOC (mg L−1) 6.61 ± 0.73 C1 (R.U.) 0.43 ± 0.04
DON (mg L−1) 1.66 ± 0.13 C2 (R.U.) 0.22 ± 0.02
DOP (mg L−1) 0.22 ± 0.01 C3 (R.U.) 0.04 ± 0.04
a (355) (m−1) 17.38 ± 0.16 C4 (R.U.) 0.03 ± 0.03

Algal residual exudative
organic matter

DOC (mg L−1) 4.48 ± 0.58 C1 (R.U.) 0.87 ± 0.03
DON (mg L−1) 3.00 ± 0.86 C2 (R.U.) 0.02 ± 0.03
DOP (mg L−1) 0.20 ± 0.07 C3 (R.U.) 0.18 ± 0.10
a (355) (m−1) 13.91 ± 0.29 C3 (R.U.) 0.01 ± 0.04

3.2. Release and Microbial Degradation of Algal-Derived DOC

The dynamic changes in the DOC concentration of the bulk algal-derived DOM,
algal-derived filtrate, and algal residual exudative organic matter during the release and
microbial degradation processes are shown in Figure 1. In detail, DOC was released from
the cyanobacterial scum, resulting in a linear increase in the DOC concentration from
8.36 ± 0.32 mg L−1 to a peak of 10.68 ± 0.17 mg L−1 during the first 4 d. Then, the DOC
concentration decreased from 10.68 ± 0.17 to 6.86 ± 0.86 mg L−1 from day 4–40 with a
mean reduction rate of 0.11 ± 0.02 mg L−1 d−1. Subsequently, the DOC concentration
decreased to 4.60 ± 0.09 mg L−1 at the end of the experiment with a mean reduction rate of
0.06 ± 0.00 mg L−1 d−1 (Figure 1a). Therefore, according to the dynamic changes in the
DOC concentration, the 80-d degradation process was clearly divided into three stages:
the DOC rising (DR) stage (4 days); rapid DOC decline (r-DD) stage (36 days); and slow
DOC decline (s-DD) stage (40 days). In contrast, no significant fluctuations in the DOC
concentration were observed in the lake water; rather, it had a relatively narrow range
from 3.34 ± 0.03 to 4.48 ± 0.21 mg L−1 and a mean of 3.98 ± 0.42 mg L−1. Meanwhile,
we determined that the DOC mineralization rate was 56.88 ± 1.26% from the time point
of maximum DOC release to the end of the experiment. As shown in Figure 1b, the
initial DOC concentrations were 10.81 ± 0.47 mg L−1 and 8.68 ± 0.33 mg L−1 in the algal-
derived filtrate and the algal residual exudative organic matter treatments, respectively.
Specifically, the algal-derived filtrate treatment caused a rapid and markedly large increase
in the DOC concentration; however, the DOC concentration was slightly lower in the algal
residual exudative organic matter group at the initial time point. Throughout the microbial
degradation process, the DOC concentration showed a rapid decrease in the first 20 d (from
10.81 ± 0.47 to 5.57 ± 0.33 mg L−1), followed by a near-continual slow decrease with an
overall concentration of 4.44 ± 0.52 mg L−1 for the algal-derived filtrate group; in short, the
DOC mineralization rate of the entire process was 64.56 ± 0.32%. In another algal residual
exudative organic matter group, the DOC concentration showed a linear decrease over the
entire experimental process by 51.83 ± 5.12% (i.e., the DOC mineralization rate). Finally,
the DOC concentrations were 3.83 ± 0.18 and 4.17 ± 0.30 mg L−1 in the algal-derived
filtrate and the algal residual exudative organic matter treatments, respectively, on day 80.
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Figure 1. Dynamic changes in dissolved organic carbon (DOC) concentration during the 80-d
degradation processes in (a) bulk algal-derived dissolved organic matter (DOM) group and natural
lake water group (as control), and (b) algal-derived filtrate and algal residual exudative organic
matter groups.

3.3. CDOM Absorption and Spectral Slope in Different Algal-Derived DOM

Generally, CDOM is largely responsible for the optical properties of most natural
waters, and as a tracer of algal-derived DOM is valuable for elucidating the dynamic
changes of DOM. The specific changes in the CDOM absorption coefficient [a (355)] of the
bulk algal-derived DOM, algal-derived filtrate, and algal residual exudative organic matter
during the 80 d processes are shown in Figure 2. In detail, in the bulk algal-derived DOM
group, the a (355) increased from 24.35 ± 1.71 to 29.24 ± 0.37 m−1 within the first day, and
then decreased to 15.93 ± 0.82 m−1 on day 4, with a reduction rate of 4.46 ± 0.60 m−1 d−1

from day 1–4. During the process from day 8–80, the a (355) fluctuant decreased from
8.11 ± 0.98 m−1 to 3.58 ± 0.11 m−1. After repeated measurement, we found that an
abnormal increase to 8.72 ± 0.23 m−1 occurred suddenly on day 40. Compared to the
lake water, the a (355) exhibited relatively small variations and remained at the mean level
(i.e., 2.40 ± 0.45 m−1) during the entire experimental process. As shown in Figure 2b, after
the different amended cyanobacterial organic matter fractions were added, we found that it
led to large increases in a (355) in algal-derived filtrate and algal residual exudative organic
matter groups; i.e., a (355) increased by 7.19 ± 0.04 and 5.75 ± 0.15 times compared with the
initial lake water value, respectively. Then, a (355) degradation showed similar exponential
decay patterns in both the algal-derived filtrate and algal residual exudative organic
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matter groups, and their intensities remained steady at approximately 5.20 ± 0.47 and
4.22 ± 0.81 m−1, respectively, with time after decreasing rapidly in the first 20 and 31 d,
respectively.

Figure 2. Dynamic changes in the chromophoric dissolved organic matter (CDOM) absorption
coefficient at 355 nm [a CDOM (355)] during the 80-d degradation processes of (a) bulk algal-derived
dissolved organic matter (DOM) and natural lake water groups (as control) and (b) algal-derived
filtrate and algal residual exudative organic matter groups.

The CDOM spectral slope for the 300–500 nm [S300–500] interval was employed to
estimate the composition dynamic of CDOM. Moreover, high S300–500 values denote a
high extent of recalcitrant and a low degree of molecular weight [51]. Throughout the
entire bulk algal-derived DOM degradation process, the spectral slope S300–500 gradually
increased from 6.69 ± 0.06 μm−1 to 15.71 ± 0.49 μm−1; it indicated the transformation from
high-molecular-weight labile CDOM into low-molecular-weight recalcitrant CDOM. In
the control group, Figure 3a shows that the spectral slope S300–500 had a relatively narrow
range variation from 11.04 ± 0.30 to 13.69 ± 0.07 μm−1 within the first 40 d, and that
the index then increased to 17.24 ± 0.20 at the final time point. Notably, at the s-DD
stage, the S300–500 index was near the mean level of the control group; this implied freshly
cyanobacterial scum-released CDOM underwent long-term biotransformation to perform
some molecular weight CDOM similar to cyanobacterial scum-free lake water. For the algal-
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derived filtrate group (Figure 3b), the spectral slope S300–500 increased by 5.12 ± 0.04 μm−1,
i.e., from 8.10 ± 0.06 to 13.22 ± 0.06 μm−1, over the course of the experiment. Another
algal residual exudative organic matter group exhibited highly dynamic characteristics
because the spectral slope S300–500 increased by 9.20 ± 0.34 μm−1 from 5.44 ± 0.04 to
14.63 ± 0.35 μm−1 over the course of the experiment (Figure 3b). Therefore, the initial
molecular weight of the algal residual exudative organic matter group was higher than
that of the algal-derived filtrate and bulk algal-derived DOM groups; however, after the
80-d experiment, the molecular weight of DOM was converted to the same level for the
three groups.

Figure 3. Dynamic changes in the chromophoric dissolved organic matter (CDOM) spectral slope for
the 300–500 nm [S300–500] interval during the 80-d degradation processes of the (a) bulk algal-derived
DOM and natural lake water groups (as control) and (b) algal-derived filtrate and algal residual
exudative organic matter groups.

3.4. EEMs in Different Algal-Derived DOM

The characterization of DOM by 3D fluorescence spectroscopy was considered a
reliable parameter for observing the entire degradative process for bulk algal-derived
DOM and natural lake water groups (as a control). As shown in Figure 4a–c, we found
that the EEMs of CDOM released from cyanobacterial scum at two major protein-like
fluorescence peaks decreased with time and reached a low level at the end of the experiment,
which was characterized by being highly dynamic. Comparatively, for the natural lake
water group, a conservative distribution of inherent CDOM peaks at the two similar
protein-like fluorescence peaks was observed; however, its fluorescence intensities and
the range of increasing–decreasing fluctuations were both lower than those of the bulk
algal-derived DOM group. This result was consistent with those reported previously [54],
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whereby cyanobacteria survival and mortality played important roles in shaping the optical
properties of many natural waters. Moreover, decayed cyanobacteria led to protein-like
CDOM production, which was an important source of biodegradable DOC and contributes
to the biogeochemical cycles of aquatic ecosystems [55]. Comparing the EEMs of the
algal-derived filtrate and the algal residual exudative organic matter groups, as shown in
Figure 5, we found that high-intensity protein peaks dominated the entire spectra, and
that after 80-d degradation, their fluorescence intensities were greatly reduced. Finally, the
variability in the fluorescence properties of CDOM of the two groups was similar to that of
the control group, as determined by EEMs. More specifically, the intensities of humic peaks
were almost consistent with the intensities of protein peaks, which only appeared in the
algal-derived filtrate group at the initial time point. This suggested humic-like components
direct from cyanobacteria cell lysis, and that this component has low molecular weight
characteristics, which is indicated by the higher values of S300-500 than the algal colloidal
exudative organic matter group during the initial 20 days.

Figure 4. Chromophoric dissolved organic matter (CDOM) fluorescence properties variability by
excitation-emission matrix spectra (EEMs) during the degradation processes of the bulk algal-derived
dissolved organic matter (DOM) group on (a) day 0; (b) day 4; and (c) day 80, and in the natural lake
water group (as control) on (d) day 0; (e) day 4; and (f) day 80.
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Figure 5. Chromophoric dissolved organic matter (CDOM) fluorescence properties presented by
excitation-emission matrix spectra (EEMs) for the algal-derived filtrate group on (a) day 0 and
(b) day 80, and for the algal residual exudative organic matter group on (c) day 0 and (d) day 80.

3.5. FDOM Components in Different Algal-Derived DOM

FDOM was employed as a proxy for DOM to study the dynamic changes in DOM
composition [56]. The FDOM components were characterized with three-dimensional
EEM spectroscopy coupled with the PARAFAC analysis technique, and total EEM collec-
tion of the algal-derived dissolved organic matter; its different molecular fractions and
lake water were modeled with PARAFAC using MATLAB with the DOMFluor toolbox.
Furthermore, four distinct FDOM components (i.e., C1–C4) were identified; in detail, the
ex|em wavelengths were 225 (275–280)|332 nm, 265 (360)|452 nm, 230 (275)|320 nm, and
235 (305)|348 nm, respectively. Based on their ex|em wavelengths, C1, C3, and C4 repre-
sented protein-like fractions and C2 represented a humic-like fluorophore. During the bulk
algal-derived DOM degradation process, the dynamic changes in the fluorescence intensity
of the protein-like component C1 exhibited three stages, which corresponded to the stage
characteristics of dynamic changes in the DOC concentration (Figure 1). Furthermore,
its fluorescence intensity decreased periodically at 0.89 ± 0.11 R.U. (mean values) in the
DR stage, at 0.21 ± 0.07 R.U. (mean values) in the r-DD stage, and the final fluorescence
intensities fell to zero (mean values) in the final s-DD stage (Figure 6a). Interestingly,
the change in the humic-like component C2 showed an opposite trend compared with
that of the protein-like component C1 (Figure 6b). The C2 component increased gradu-
ally throughout the degradation process, except for a sudden increase on the first day
(Figure 6b). However, the two fluorescence components (i.e., C1 and C2) in the con-
trol group exhibited no significant changes throughout the entire degradation process
(Figure 6a,b). Moreover, we found that the variation patterns of the C1 and C2 components,
when comparing the bulk algal-derived DOM and natural lake water groups, exhibited
significant changes (one-way ANOVA, p < 0.05); therefore, these two components also
should focus on fluorescence variety with time for the algal-derived filtrate and the algal
residual exudative organic matter groups. Regarding the two other protein-like C3 and C4
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components, their changes tended to be consistent, and both remained at relatively low
levels compared to the biodegradable protein-like C1 component (Figure 6c,d).

Figure 6. Dynamic changes in the main components of fluorescent dissolved organic matter (FDOM)
during the 80-d degradation processes of the algal-derived DOM group and in the natural lake water
group (as control). (a) C1, (b) C2, (c) C3, and (d) C4.

Similarly, four FDOM components (C1, C2, C3, and C4) were identified in the algal-
derived filtrate and the algal residual exudative organic matter groups. Based on our
previous results regarding dynamic changes in the FDOM compositions of bulk algal-
derived DOM and control groups, the intensity changes of the protein-like component C1
and humic-like component C2 were comprehensively examined again in algal-derived
filtrate and algal residual exudative organic matter groups. Notably, the dynamic variations
in fluorescence intensity of C1 and C2 underwent clear changes, which were also reflected
by the three-stage characteristics over the entire degradation period (Figure 7a,b). In the
algal-derived filtrate group, the fluorescence intensity of C1 decreased from 0.58 ± 0.03
to 0.47 ± 0.01 R.U. with a decrease rate of 0.04 R.U. d−1 from day 0–3. Subsequently,
its fluorescence intensity decreased to 0.05 ± 0.02 R.U. at day 20, with a decrease rate of
0.02 R.U. d−1, and stabilized at 0.02 ± 0.02 R.U. from day 20–80. In contrast, the fluorescence
intensity of C2 increased from 0.07 ± 0.01 to 0.10 ± 0.0004 R.U. for the period of day 20–80
(Figure 7a,b). Similarly, in the algal residual exudative organic matter group, the protein-
like component C1 decreased rapidly from 1.02 ± 0.01 to 0.51 ± 0.04 R.U. with a decrease
rate of 0.13 R.U. d−1 for the period of day 0–4, then decreased slowly to 0.04 ± 0.00 R.U. at
day 31, with a decrease rate of 0.01 R.U. d−1, and reached near-constant intensities with
a mean level of 0.02 ± 0.01 R.U. in the day 31–80 phase. The fluorescence intensity of C2
increased from 0.04 ± 0.003 to 0.08 ± 0.0003 R.U. in the day 31–80 phase (Figure 7a,b).
Curiously, in the algal-derived filtrate, we found that the humic-like component C2, which
is always used as an indicator of recalcitrant DOM [57], was found at much higher flu-
orescence signal levels when compared to the algal residual exudative organic matter
and bulk algal-derived DOM samples on day 0. Furthermore, its fluorescence intensity
remained high (~0.25 ± 0.04 R.U.) for the period of day 0–3, and suddenly decreased to
a lower level of 0.13 ± 0.05 R.U. for the period of day 3–20 (Figure 7b). Zuo et al. [58]
identified 6-L-biopterins and their glucosides as candidate structures for consistently oc-
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curring algae-derived humic-like fluorophores (Em 440–460 nm) during the cyanobacterial
strain Microcystis aeruginosa degradation experiment under simulated natural conditions;
the environmental concentrations of 6-L-biopterin (without counting any other deriva-
tives) ranged from 0.20–2.78 μg L−1 in five lakes in China. Additionally, biopterin and
its derivatives, which contributed to 55.5 ± 1.7% of fluorescence at Ex350/Em450 nm in
FDOM, were found in a Lake Tai surface water sample [58]. In this study, C2 displayed
two excitation maxima at 265 and 360 nm and one emission maxima at 452 nm, which was
categorized as a humic-like peak; therefore, it may have indicated that the algae-derived
characteristic humic-like fluorophores were associated with biopterin. Humic-like fluo-
rophores are ubiquitous in algal-dominated freshwater and marine environments [59,60].
Through this research, we found that humic-like components rich in cyanobacterial filtrate
could not accumulate in lake and coastal eutrophic water, which is inconsistent with re-
search results from pelagic oligotrophic sea and deep-sea zones. For instance, Xie et al. [55]
investigated the bioavailability of Synechococcus-derived organic matter by estuarine and
coastal microbes during 180-d dark incubations, and found that humic-like C4 (ex|em
wavelength was 250 (385)|484 nm) displayed recalcitrant DOM characteristics, and that its
fluorescence intensity gradually increased over the entire incubation period. One possible
explanation for this result is that the high decrease rate of humic-like fluorophores was
supported by the high content of biodegradable protein-like components or nutrients as
well as the metabolically active microbial populations in the eutrophic lake water [47]. In
contrast, in oligotrophic environments, freshly released algal filtrates can hardly trigger the
organic matter “priming effect” mechanism that stimulates the microbial degradation of
humic-like components, whereas humic-like organic matter is often considered a potential
tracer of recalcitrant DOC [61–63]. Lake eutrophication can result in algal blooms and
water quality degradation, which affects the services provided by the lake ecosystem [64].
As discussed above, initial DOM compositions derived from algal-derived filtrates and
algal-residual exudative organic matter were highly heterogeneous in terms of FDOM
composition, whereby their FDOM compositions were consistent with each other after a
long degradation period.

Figure 7. Dynamic changes in the main components of fluorescent dissolved organic matter (FDOM)
during the 80-d degradation processes of algal-derived filtrate and algal residual exudative organic
matter groups. (a) C1, (b) C2, (c) C3, and (d) C4.
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3.6. Variability of Nutrient Compositions in Different Algal-Derived DOM

Along with the release and microbial degradation of DOC derived from cyanobacte-
rial scum, variations in inorganic nutrients (including NH4

+, NO2
−, NO3

−, and PO4
3−)

and organic nutrients (including DON and DOP) were presented during the 80-d incu-
bation (Figure 8c,d). In detail, in the bulk algal-derived DOM group, in terms of the
variations of TDN and TDP, the TDN concentration gradually increased from 6.01 ± 0.36 to
12.38 ± 1.06 mg L−1 in the day 0–31 phase, then remained at 11.91 ± 0.96 mg L−1 during
day 31–80 (Figure 8a); the TDP concentration gradually increased from 0.72 ± 0.03 to
1.10 ± 0.16 mg L−1 in the day 0–31 phase, then remained at 1.19 ± 0.10 mg L−1 for the
day 31–80 phase. Three inorganic nitrogen compositions were measured, and the com-
bined concentrations as dissolved inorganic nitrogen (DIN) and its variation are shown in
Figure 8b, in which a linear increase can be seen from 3.73 ± 0.39 to 14.26 ± 1.69 mg L−1

with an increase rate of 0.29 ± 0.05 mg L−1 d−1 during the day 0–31 phase. Within the
next 49 d, the DIN concentration increased to 13.29 ± 0.90 mg L−1 with a minimal in-
crease rate of 0.01 ± 0.06 mg L−1 d−1. The variation of DIP followed the same pattern,
whereby it increased from 0.28 ± 0.06 to 1.11 ± 0.09 mg L−1 with an increase rate of
0.03 ± 0.00 mg L−1 d−1 during the day 0–31 phase and was subsequently relatively sta-
ble within the range of 0.41–0.52 mg L−1. Meanwhile, in addition to leaching dissolved
total nutrients from cyanobacterial biomass, there are many other nutrient metabolism
processes, i.e., organic nitrogen and phosphorus degradation, and inorganic nitrogen and
phosphorus production (Figure 8b,c). Moreover, ammonia was the most dominant form of
DIN, with the conversion of cyanobacteria-derived organic nitrogen to inorganic nitrogen
(Figure 8b,d). In the day 40–80 phase, the DON and DOP concentrations tended to stabilize
and maintain mean concentrations of 0.34 ± 0.46 and 0.07 ± 0.08 mg L−1, respectively;
specifically, the dominant form of DIN was converted into nitrate (Figure 8b–d). In the
control group, the range of changes and contents in the dissolved nutrient composition
were relatively gently and small, and the most dominant DIN (i.e., ammonia) during the
initial 4 d was also replaced by nitrate over the course of the entire process (Figure 8e–h).

In the algal-derived filtrate group, the initial TDN and TDP concentrations were
6.46 ± 0.24 and 0.62 ± 0.01 mg L−1, respectively, during the first 3 d and then decreased to
5.51 ± 0.18 and 0.41 ± 0.01 mg L−1, respectively. For the following 17 d, TDN and TDP
concentrations exhibited linear increases to 6.93 ± 0.02 and 0.63 ± 0.05 mg L−1, respec-
tively; finally, the concentrations remained constant at 7.04 ± 0.41 and 0.67 ± 0.02 mg L−1,
respectively (Figure 9a). In contrast, in the algal-derived filtrate group, the TDN concentra-
tion displayed a similar variation pattern to that of the TDP concentration. For the initial
12 d, TDN and TDP concentrations were stable at 4.85 ± 0.40 and 0.27 ± 0.03 mg L−1,
respectively. After 20 d, TDN and TDP concentrations dramatically increased to 6.66 ± 0.51
and 0.44 ± 0.05 mg L−1, respectively (Figure 9e). Two processes of total dissolved nutrient
release and dissolved organic nutrient conversion into dissolved inorganic nutrients were
detected from 0–20 d in both groups. Ammonia was the only form of DIN that was present.
Moreover, in the following 60 d, the variations in the DIN, DON, DIP, and DOP concentra-
tions exhibited roughly stable levels; notably, the majority of DIN during this period was
replaced by nitrate, and a high nitrate concentration was maintained (Figure 9b–d,f–h).
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Figure 8. Variations in dissolved nitrogen and phosphorus concentrations and compositions during
the 80-d degradation processes of the (a–d) bulk algal-derived dissolved organic matter (DOM) group
and (e–h) natural lake water group (as control). TDN—total dissolved nitrogen, TDP—total dissolved
phosphorus, DIN—dissolved inorganic nitrogen, DON—dissolved organic nitrogen, DIP—dissolved
inorganic phosphorus, DOP—dissolved organic phosphorus, DTP—dissolved total phosphorus,
DTN—dissolved total nitrogen.
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Figure 9. Variations in dissolved nitrogen and phosphorus concentrations and compositions during
the 80-d degradation processes of the (a–d) algal-derived filtrate group and (e–h) algal residual
exudative organic matter group. TDN—total dissolved nitrogen, TDP—total dissolved phosphorus,
DIN—dissolved inorganic nitrogen, DON—dissolved organic nitrogen, DIP—dissolved inorganic
phosphorus, DOP—dissolved organic phosphorus.

3.7. Variability of Free-Living Bacterial Abundance in Different Algal-Derived DOM

For the degradation of the bulk algal-derived DOM process, the change of free-living
bacterial abundance showed highly dynamic characteristics and could be roughly di-
vided into three stages, which correspond with the periodic transformation of differ-
ent biological availability of algal-derived DOM (labeled Stage DR, r-DD, and s-DD).
In the bulk algal-derived DOM group, the free-living bacterial abundance increased by
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0.48 ± 0.71 × 107 cells mL−1 (from 4.22 ± 0.28 × 107 to 4.70 ± 0.51 × 107 cells mL−1) in phase
DR. Then, the free-living bacterial abundance decreased to 1.23 ± 0.31 × 107 cells mL−1 at
the end of phase r-DD and remained with relatively small variations in the range from
0.41 × 107 to 1.77 × 107 cells mL−1 in the following days (i.e., phase s-DD). In contrast, in the
control lake water group, no significant fluctuations in bacterial abundance were observed;
the range of change was between 0.06 × 107 and 0.98 × 107 cells mL−1 (Figure 10a).

Figure 10. Dynamic changes in free-living bacterial abundance during 80-d degradation processes of
(a) bulk algal-derived dissolved organic matter (DOM) group and in natural lake water group (as
control), and (b) algal-derived filtrate group and algal residual exudative organic matter group.

The DOC concentration increased sharply and reached its maximum in only 4 d dur-
ing the DR stage. Concurrently, the bacterial abundance also increased. This indicated
that the release of DOC from decaying cyanobacteria was relatively rapid, and that the
freshly released DOC was strongly favored by bacteria. During this stage, bacteria abun-
dance slightly increased, indicating that a portion of the released DOC was utilized and
transformed into bacterial biomass, or possibly some originally attached bacteria dispersal
from dead algal biomass into the water. Subsequently, the DOC concentration began to
decline, entering the r-DD stage. The decrease in DOC concentration may have been due
to the slowdown in DOC release from the cyanobacterial scum not maintaining the same
rate as DOC consumption by the abundant bacteria, or the life strategy of these bacte-
ria undergoing changes [34]. The relatively rapid decline process in DOC continued for
5 weeks. This showed that a portion of the DOC released by the decaying algal scum was
labile DOC and was easily utilized by bacteria. Indeed, in the eutrophic environment of
Lake Taihu, lake water quality usually deteriorates within approximately 1 month after
decomposition of Microcystis blooms [65]. One important reason may have been that, while
utilizing the rich labile DOC released from decaying algal scum, the heterotrophic bacteria
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consumed oxygen and released CO2, resulting in decreased dissolved oxygen and impacts
on the nutrient status of the surrounding water [66,67]. After the r-DD stage, during
the remaining 40 d, the remaining DOC had lower bioavailability to bacteria, and partly
the DOC fraction may have been in recalcitrant states [68]. Notably, bacterial abundance
reached its maximum on day 2, decreased rapidly in the next 38 d, and then decreased
at a slower rate in the final 40 d. This may suggest that partly DOC components become
humified, which barely promotes the growth of free-living bacteria, leading to the death
of some bacteria. Compared to the control group, the positive linear correlation between
free-living bacteria abundance and DOC concentration for the entire process (R2 = 0.63,
p < 0.01) further suggested that algae-released DOC stimulated microbial growth and
activities [29]. The slope of significantly positive relationships between bacterial abundance
and DOC concentration were found in the r-DD stage to be almost three times higher than
the s-DD stage; this preliminarily reflected that the availability of DOM components and the
bacterial responses to phytoplankton-derived carbon had changed. Furthermore, we found
a relatively strong linear correlation between free-living bacteria abundance and CDOM
absorption coefficient at 355 nm for the entire process (R2 = 0.68, p < 0.001), indicating
that the microbial biodegradation process had transformed the autochthonous DOM from
chromophoric components to nonchromophoric species. Furthermore, it showed that the
growth and mortality of some free-living bacteria responded to the transformation of DOM,
and the increasing changes in the spectral slope for the interval of 300–500 nm (i.e., S300–500),
indicating the production of a large amount of high-molecular-weight CDOM through
microbial conversion to lower molecular weight CDOM. By focusing on changes in the free-
living bacteria abundance and the fluorescence intensities of four FDOM components, only
the protein-like C1 fraction showed a significant and positive relationship with free-living
bacteria abundance (R2 = 0.85, linear regression, p < 0.001), indicating that the protein-like
C1 may be a critical bioavailable component and energy source for microbes in the lake.
At the initial time point of the s-DD period, the CDOM absorption coefficient at 355 nm
exhibited an abnormal increase on day 40. Concurrently, we found that the humic-like
C2 component increased linearly and was weakly negatively correlated with the change
in bacterial abundance (R2 = 0.24, p > 0.05), in contrast to the change in the protein-like
C1 component, during the last s-DD stage. Therefore, we infer that the remnants of dead
bacteria (i.e., necromass) and bacterial secretions may have made an important contribu-
tion to the accumulation of the humic-like C2 component. Therefore, we can conclude
that the lysis of cyanobacterial scum by microbes liberates DOM into lake water, and
the DOC concentration and composition in water are closely related to the abundance of
planktonic bacteria.

For the algal-derived filtrate and algal-residual exudative organic matter groups,
the dynamic change patterns in free-living bacterial abundance also showed three dif-
ferent characteristics among stages of the long-term degradation process (Figure 10b).
At the beginning, bacterial abundances of these two treatments were 1.62 ± 0.17 × 107

and 2.45 ± 0.29 × 107 cells mL−1, respectively. These initial values were at much higher
levels than the lake water blank sample that had been filtered through 20-μm pore size
membranes; however, the sum of the two values was slightly less than that of the bulk
algal-derived DOM group, with approximately 4% loss due to experimental operations. In
the algal-derived filtrate group, the free-living bacterial abundance increased considerably
in response to the addition of the carbon sources and reached 5.08 ± 0.15 × 107 cells mL−1

on day 3. A sharp decline in the bacterial abundance was observed from day 3 to
day 20 (i.e., 0.54 ± 0.05 × 107 cells mL−1), and then there was a gradual decrease to
0.25 ± 0.01 × 107 cells mL−1 on day 80. In the algal-residual exudative organic matter group,
bacterial abundance showed an increase over the first 4 d to 5.23 ± 0.09 × 107 cells mL−1,
followed by a rapid decrease during the following 28 d (i.e., 1.09 ± 0.17 × 107 cells mL−1)
and near-constant abundances after day 31 to the end of the experiment with a mean
abundance of 0.69 ± 0.33 × 107 cells mL−1.
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Significantly positive linear relationships between free-living bacterial abundance and
protein-like C1 fluorescence were also found in the algal-derived filtrate group (R2 = 0.78,
p < 0.001) and algal residual exudative organic matter group (R2 = 0.59, p < 0.01) throughout
the entire experimental period. This indicated that labile algal-derived filtrate or algal
residual exudative organic matter derived from algal degradation became an important
factor in controlling bacterial abundance, which would play an important role in microbial
food webs and carbon cycling during the decay of algal blooms through the bacterial
enzymolysis mechanism [69]. At the final stable phase of the two groups (algal-derived
filtrate group, day 20–80; algal residual exudative organic matter group, day 31–80), the
humic-like C2 component accumulated with the decrease in free-living bacterial abundance,
and free-living bacterial abundance showed a significant negative linear relationship with
humic-like C2 fluorescence (algal-derived filtrate group, R2 = 0.63, p < 0.05; algal residual
exudative organic matter group, R2 = 0.96, p < 0.01).

4. Conclusions

In this work, the labile fraction of fresh cyanobacterial organic matter could be rapidly
utilized by microbes, and the subsequent microbial-mediated processes of cyanobacte-
rial organic matter also drove the elemental cycling of carbon, nitrogen, and phospho-
rus. Specifically, we showed the gradual transformation of algal-derived DOC from a
high-molecular-weight labile to a low-molecular-weight recalcitrant through the microbial
process. Different dominant DOM compositions with bioavailable characteristics were
present in different phases during bulk algal-derived DOM degradation, which were linked
to the variation in the abundance of free-living bacteria. Furthermore, this process was
coupled with the regeneration of different forms of inorganic nutrients. Algal-derived
filtrate and algae residual exudative organic matter both made key contributions to the
decomposition of algal blooms in eutrophic Lake Taihu. Additionally, the findings show
that the carryover effects of Microcystis cyanobacteria blooms can exist for a long time,
whereby approximately 7.45% and 18.60% of the released DOC could be converted into
a stable state in the algal-derived filtrate and algal residual exudative organic matter
groups, respectively.
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Abstract: During recent years, several eutrophication processes and subsequent environmental crises
have occurred in Mar Menor, the largest hypersaline coastal lagoon in the Western Mediterranean
Sea. In this study, the Landsat-8 and Sentinel-2 satellites are jointly used to examine the evolution of
the main water quality descriptors during the latest ecological crisis in 2021, resulting in an important
loss of benthic vegetation and unusual mortality events affecting different aquatic species. Several
field campaigns were carried out in March, July, August, and November 2021 to measure water
quality variables over 10 control points. The validation of satellite biogeochemical variables against
on-site measurements indicates precise results of the water quality algorithms with median errors of
0.41 mg/m3 and 2.04 FNU for chlorophyll-a and turbidity, respectively. The satellite preprocessing
scheme shows consistent performance for both satellites; therefore, using them in tandem can improve
mapping strategies. The findings demonstrate the suitability of the methodology to capture the
spatiotemporal distribution of turbidity and chlorophyll-a concentration at 10–30 m spatial resolution
on a systematic basis and in a cost-effective way. The multitemporal products allow the identification
of the main critical areas close to the mouth of the Albujon watercourse and the beginning of the
eutrophication process with chlorophyll-a concentration above 3 mg/m3. These innovative tools
can support decision makers in improving current monitoring strategies as early warning systems
for timely assistance during these ecological disasters, thus preventing detrimental conditions in
the lagoon.

Keywords: remote sensing; Copernicus programme; eutrophication; turbidity; chlorophyll-a; coastal
monitoring

1. Introduction

Coastal lagoons, as transitional environments between land and sea, occupy 14% of
the world’s coastlines [1]. Due to their shallow waters, morphology, trophic status, and
physicochemical processes in a semienclosed system, they are considered one of the most
productive habitats on Earth [2,3]. These areas play a significant conservational, ecological,
and protective role and are home to an important part of global biodiversity [4]. They un-
derpin human livelihoods, well-being, and welfare and provide several ecosystem services,
including tourism, fisheries, aquaculture, and industrial, recreational or navigational activi-
ties. Coastal lagoons are subject to diverse transformations and uncoordinated management
plans by different agencies and stakeholders from the local to national scale, which might, in
some cases, degrade their ecological values. A wide range of anthropogenic activities such
as urbanization, agriculture, aquaculture or industry use a variety of organic substances and
pollutants, which can reach semienclosed bays, inland waters, and lagoons [5]. Considering
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that these environments are extremely sensitive and vulnerable, they usually show signs
of deterioration, pollution, biodiversity loss, alteration of their ecological functioning, and
limited ecosystem services [6]. Habitat destruction, water withdrawal, overexploitation,
and chemical and biological pollution, such as invasive species, are the main causes of their
deterioration, making them one of the most threatened ecosystems in the world [7]. The con-
servation of coastal lagoons is crucial for their ecological value and the significant number
of services they provide [8]. Furthermore, in the context of climate change, coastal lagoons
are sentinel systems with an essential role in controlling the fluxes of water, organisms,
and nutrients between land, rivers, and oceans, as well as eutrophication and pollution
processes [8,9]. Therefore, there is an urgent need to advance monitoring, mapping, and
management tools in order to improve the knowledge of these strategic systems, prevent
their environmental degradation, and increase their future protection [10].

This is the case of Mar Menor, the largest hypersaline lagoon in the Western Mediter-
ranean Sea (Figure 1) and one of the most iconic and emblematic natural areas in Spain
due to its significance in terms of habitats and species, its ecological value, and the unique-
ness of its ecosystem. Mar Menor, its surrounding wetlands, and natural areas, are of
vital natural importance and a protected landscape as a Wildlife Protection Area, Natura
2000 network, Wetland of International Importance (RAMSAR Convention), and a Regional
Park. Moreover, the area is a key component of the regional economy, development, and
policy plans due to the variety of uses and human activities developed there. The lagoon,
with a maximum depth of 6.5 m and a surface area of 135 km2, presents a long sand bar
called “La Manga” acting as a barrier between the Mediterranean Sea and the lagoon,
only connected through five shallow inlets called “golas” [11]. The lagoon is close to the
Campo de Cartagena region, one of the most intensive agricultural areas in Europe. Several
ephemeral wadis drain into the western part of the lagoon, transporting nutrient-enriched
waters from agricultural runoff after rainy periods, the Albujon watercourse (Figure 1)
being the main collector of the Campo de Cartagena drainage basin and the only perma-
nent wadi flowing into the lagoon [11–16]. Therefore, most of the discharges are located in
the southern half of the lagoon where the Albujon watercourse maintains a regular flux
of water, albeit depending on the torrential and sporadic rainfall regime, as occurred in
September 2019 during one of the most extreme storms, known as the “Cold Drop” [13].

 

Figure 1. Location of the Mar Menor coastal lagoon on the southeastern coast of Spain and Sentinel-2
image captured on 21 March 2021 indicating the final transect of the Albujon watercourse flowing
into the lagoon.
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Nowadays, this ecosystem is a cause for international concern due to the drastic
modifications of its natural and physical status caused by anthropogenic activities. The
main impacts causing acute degradation of Mar Menor are those from mining, agri-
culture, tourism, and urban development [11,14]. The land-use modifications that oc-
curred in the watershed during the 1980s and 1990s with relation to agriculture, from dry
land to intensively irrigated vegetable crops (Figure 2), have produced a severe excess
of nutrients and fertilizers draining into the lagoon from the freshwater discharge [11],
which clearly affect the environmental health of the lagoon (Corine Land Cover datasets,
https://centrodedescargas.cnig.es/CentroDescargas/; accessed on 1 January 2022). The
current problems affecting the lagoon are increased turbidity and chlorophyll-a, resulting
in an acute eutrophication process, silting, a general loss of sediment and seawater quality,
and the deterioration of submerged seagrass and animal communities. The degradation of
the coastal lagoon has also influenced conventional fishing that has been carried out in the
lagoon since ancient times [17].

Figure 2. Land cover classification for the Mar Menor lagoon and its surroundings according to
Corine Land Cover datasets (https://centrodedescargas.cnig.es/CentroDescargas/; accessed on
1 January 2022) for 1990 and 2018.

The effects of these massive contributions of nutrients in the lagoon ecosystem have
been cushioned by its elements that, for decades, have acted as mechanisms of homeostasis
and resilience, preventing an excess of nutrients from being available to opportunistic
phytoplankton organisms. However, despite the capacity of Mar Menor to resist the
effects of elevated nutrient concentration, a succession of catastrophic events have occurred
(Figure 3a–c) since 2016 [18–20]. In August 2021, the latest environmental crisis caused
alarm and considerable concern and was considered worse than previous eutrophication
events. The excess of nutrients and organic matter caused anoxia in the deep layer and
massive mortality of benthic flora and fauna during several weeks (Figure 3d), causing
an impact on public opinion at the local, national, and international level. Images of
dying wildlife traumatized citizens and occupied the public agenda, raising questions
about the cause of this ecological disaster that keeps getting worse year after year. The
Spanish Institute of Oceanography (IEO-CSIC) highlighted the main cause as pollution
and the entry of fertilizers and nutrients into the lagoon from intensive agriculture and
other human activities, causing the aquatic ecosystem to collapse [21]. This has led to a
clear transformation in the regime of the lagoon, from an apparently stable state (with
frequent symptoms of eutrophication in recent decades) to an altered and highly unstable
state, much more vulnerable to changes in the environment, especially extreme weather
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events, which are clearly more intense and frequent as a result of global climate change [22].
In fact, in recent years, it has been observed that when the chlorophyll-a values in the
lagoon exceed 3 mg/m3, a process of eutrophication occurs immediately [21]. Several
administrations and public authorities responsible for managing the lagoon have been
developing initiatives in an attempt to solve the problem. The regional government
maintains an open-access network with a few constant sampling sites and field-based
campaigns for monitoring variables related to water quality, such as water clarity, turbidity
or chlorophyll-a, an indicator of phytoplankton biomass in seawater, temperature, salinity,
and dissolved oxygen [23]. However, sound management and deterioration control need
improved characterization of the spatial variability and distribution of the water quality, in
particular in the western area of Mar Menor, where the Albujon watercourse flows into the
lagoon. This information remains key not only for long-term monitoring but also for quick
emergency response as an early warning system.

Figure 3. (a) Sentinel-2 scene in Mar Menor after the extreme weather event known as the “Cold
Drop” and the catastrophic flooding on 13 September 2019; (b) surface of the water in the lagoon
in July 2016 during the environmental crisis; (c) typical resuspension of sediments and increased
turbidity during strong winds; (d) latest environmental catastrophe with massive dead fish and
crustacean in August 2021 (authorship: Greenpeace); and (e) field campaign carried out in the lagoon
in March 2021.

This study examined the evolution of the main biogeochemical parameters of the
seawater quality in the coastal lagoon using the Landsat-8 and Sentinel-2 satellite missions
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in tandem, both with high spatial resolution. Remote sensing technologies can advance
current management and monitoring strategies providing synoptic information of the
lagoon, as well as provide insights into past, present, and future eutrophication events, in
particular during the severe environmental crisis that occurred in summer 2021. Although
ocean color sensors provide a distinct picture of the seawater bio-optical status across
several scales not achievable with traditional in situ surveying techniques, application in
coastal lagoon biogeochemical monitoring is challenging. In this sense, there are studies
that focus on mapping water quality, phytoplankton blooms, and eutrophication events
in Mar Menor with traditional ocean color sensors at the moderate spatial resolution of
300–1000 m [24–26]. RGB composite images on 3 August 2021 of the Sentinel-3 satellite
(300 m spatial resolution), Landsat-8 satellite (30 m spatial resolution), and Sentinel-2 satel-
lite (10 m spatial resolution) are shown in Figure 4. Sentinel-3 is the ocean color mission
developed by the European Union’s Copernicus programme to support ocean forecasting
systems, environmental and climate monitoring with high accuracy and reliability. How-
ever, this example highlights that the moderate spatial resolution of Sentinel-3 might not be
adequate in complex coastal areas, such as Mar Menor. In recent years, some studies sug-
gested that in order to appropriately determine the ecological conditions of complex inland
or coastal water areas by means of remote sensing tools, improved temporal and spatial
capabilities are required [27–32], in particular in Mar Menor [13,33–35]. Conceived in the
first instance to monitor land cover, the notably enhanced spectral and spatial resolution
and minor footprint of both Landsat-8 and Sentinel-2 platforms provide the opportunity
to evaluate terrestrial–aquatic interfaces and their dynamic spatial heterogeneity at local,
regional, or global scales [36,37].

Figure 4. RGB (Red–Green–Blue) composite image on 3 August 2021 of (a) Sentinel-3 satellite (300 m
spatial resolution), (b) Landsat-8 satellite (30 m spatial resolution), and (c) Sentinel-2 satellite (10 m
spatial resolution).

The main aims of this study are: (1) to use a consistent atmospheric and sunglint
correction strategy with Landsat-8 and Sentinel-2 imagery in Mar Menor; (2) to validate
the satellite-derived chlorophyll-a and turbidity retrievals with in situ data; (3) to detect
the spatiotemporal fluctuations of the biogeochemical parameters during the study period
with the multisensor approach; and (4) to evaluate and identify the critical zones in the
context of the most recent ecological catastrophe in 2021. This combined information can
allow enhanced temporal mapping and predictability of the water mass degradation as an
early warning system. Remote sensing technology has large-area and real-time advantages
in promoting the monitoring and forecasting of coastal disasters, providing information
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about when and where the chlorophyll-a values in the lagoon exceed 3 mg/m3 [21]. These
tools can be applied in parallel to regular on-site sampling campaigns in order to reduce the
detrimental effects of high levels of phytoplankton, algae, and turbidity on the vulnerable
lagoon system and to continuously calibrate/validate the different water quality algorithms
for more reliable results.

2. Materials and Methods

2.1. Satellite Imagery

The Sentinel-2A/B twin mission was used for mapping the lagoon thanks to the open
data access policy and high spatial resolution (10-20-60 m). The European Commission and
the European Space Agency (ESA), in the frame of the Copernicus programme, developed
this optical constellation in order to support its operational requirements. Sentinel-2 is
a multispectral, wide-swath imaging platform used for monitoring land surfaces, water
coverage, soil, and vegetation. In addition, it can also support Copernicus water monitoring
over coastal regions and inland waterways. The Sentinel-2A and Sentinel-2B mission,
with a global revisit frequency of five days at the Equator, is based on a constellation of
two operationally identical satellites in the same orbit and phased at 180◦ to each other.
The ESA User Handbook describes the temporal, spectral, spatial, and radiometric features
of the visible and near-infrared (NIR) bands of both Sentinel-2A and -2B satellites [38]. The
stated quality standards for absolute geolocation of the Sentinel-2 scenes (two pixels, 20 m)
are within the ESA requirements [39]. The images covering Mar Menor (zone 30 and tile
SXG; acquisition time 11:00 UTC) during the study period in 2021 were downloaded from
the ONDA DIAS (https://www.onda-dias.eu/cms/es/; accessed on 20 May 2021). These
products are the top-of-atmosphere (TOA) datasets at Level-1C (L1C) after the radiometric
and geometric corrections.

In addition, the freely available Landsat-8 visible and NIR spectra imagery from the
United States Geological Survey (USGS) and the National Aeronautics and Space Adminis-
tration (NASA) were also used for comprehensive monitoring. We downloaded the Level 1
data from the Earth Explorer (https://earthexplorer.usgs.gov/), orthorectified and terrain
corrected at a 30 m spatial resolution, with a 16-day revisit frequency [40,41]. The region
of interest was covered by the tiles located in paths 198–199 and row 34 (acquisition time
10:30–10:45 UTC). A low cloud coverage (<40%) filtering was applied over Mar Menor
for further analysis of the scenes. When Sentinel-2 and Landsat-8 products are combined,
the average revisit time in Mar Menor is ~4 days. From the control period before and
after the 2021 crisis, 48 images were downloaded and processed (29 and 19 images for
Sentinel-2 and Landsat-8, respectively). However, clouds and severe sunglint contamina-
tion diminished the number of usable images, with only 18 final scenes further evaluated
(12 and 6 images for Sentinel-2 and Landsat-8, respectively) to characterize the spatial and
temporal distribution of water quality. Table 1 shows the acquisition dates and the quality
of the scenes.

Bottom-of-atmosphere (BOA) Level-2A products were generated with one of the most
commonly used atmospheric correction softwares (ACOLITE, version 20210114.0), which
supports preprocessing of Landsat-8 and Sentinel-2 satellites. This software incorporates an
image-based model, without the need for in situ atmospheric datasets. The Royal Belgian
Institute of Natural Sciences (RBINS) developed this free toolbox to correct Level-1 to Level-
2 data products over marine, inland, and coastal waters [42]. The Dark Spectrum Fitting
(DSF) atmospheric correction algorithm was applied [43,44]. The notably enhanced spectral
resolution of Landsat-8 and, in particular, Sentinel-2 satellites, are key to obtain good-
quality products by means of the DSF model [44]. Correction of the sunglint over the surface
reflectance was performed by means of the additional image-based sunglint correction,
since during the study period acute sunglint effects were observed at these latitudes (specific
setting parameters: dsf_path_reflectance = tiled, l2w_mask_threshold = 0.05). The remote
sensing reflectance (Rrs, sr−1) products along the visible and NIR spectrum were calculated
after resampling to 10 m and 30 m pixel size for Sentinel-2 and Landsat-8, respectively.

102



Remote Sens. 2022, 14, 2744

Table 1. List of imagery used in this study during the latest ecological crisis in 2021 corresponding to
the Sentinel-2 and Landsat-8 satellites.

Sentinel-2A/B Landsat-8

Number Month Day Observations Number Month Day Observations

1 May 5 Severe sunglint 1 May 6 Severe sunglint
2 May 15 Severe sunglint 2 May 15 Severe sunglint
3 May 20 Clouds 3 May 22 Clouds
4 May 25 Clouds 4 May 31 Clouds

5 May 30 Clouds 5 June 7 Severe sunglint

6 June 4 Clouds 6 June 16 Clouds
7 June 9 Severe sunglint 7 June 23 Severe sunglint

8 June 14 Severe sunglint 8 July 2 Good quality
9 June 19 Clouds 9 July 9 Clouds
10 June 24 Clouds 10 July 18 Good quality
11 June 29 Clouds 11 July 25 Clouds

12 July 4 Severe sunglint 12 August 3 Good quality
13 July 9 Clouds 13 August 10 Clouds
14 July 14 Severe sunglint 14 August 19 Clouds
15 July 19 Clouds 15 August 26 Sunglint

16 July 24 Severe sunglint 16 September 4 Clouds
17 July 29 Clouds 17 September 11 Good quality

18 August 3 Good quality 18 September 20 Clouds
19 August 8 Clouds 19 September 27 Clouds

20 August 13 Good quality
21 August 18 Good quality
22 August 23 Clouds
23 August 28 Clouds

24 September 2 Clouds
25 September 7 Clouds
26 September 12 Good quality
27 September 17 Good quality
28 September 22 Clouds
29 September 27 Clouds

The standard products to monitor the biogeochemical conditions in Mar Menor during
the ecological crisis with Sentinel-2 and Landsat-8 satellites were seawater turbidity (FNU)
and chlorophyll-a (chl-a, mg/m3). We selected both indicators as required by the EU Water
Framework Directive (WFD) for the evaluation of the good ecological status of the coastal
lagoon. The Nechad et al. semianalytical algorithm (red band, Rrs 665 nm) was applied
to estimate turbidity with both satellites [45]. This model has already been validated in
different environments [46–48] and was previously used in Mar Menor during an extreme
weather event in September 2019 [13]. These semianalytical algorithms allow a more global
performance since they are based on the inherent optical properties of the seawater. The
commonly used OC3 algorithm was applied to calculate the concentration of seawater
chl-a [49]. The standard masking procedures were accomplished, eliminating clouds, cloud
shadows, land, and the low performance of the sunglint and atmospheric corrections.
Turbidity and chl-a maps were at 30 m and 10 m spatial resolution for Landsat-8 and
Sentinel-2, respectively, with the generation of the final products after 3–4 h following
image acquisition for each sensor.

2.2. In Situ Data

Four sampling cruises were carried out during 2021 (March, July, August, and Novem-
ber), where seawater was collected at 10 points homogeneously distributed in the Mar
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Menor lagoon (Figure 5). The dates of the in situ campaigns during the study period
corresponded to 23–24 March, 27 July, 26 August, and 16–17 November 2021. Matchups
between in situ and satellite samples were generated when both data acquisitions occurred
within 30 h of each other, and the satellite value was calculated as the mean of the 3 × 3 10
m pixel region around the sampling station.

Figure 5. Control points for data collection during the four in situ campaigns carried out in March,
July, August, and November 2021.

In order to determine turbidity, samples were measured just after collection onboard
using a portable turbidimeter (2100P, Hach). Prior to calibration, we ensured that the equip-
ment did not suffer anomalies and that the necessary reagents were available. Calibration
was performed quarterly, unless the equipment was malfunctioning. The turbidimeter
was calibrated at 4 points: 0 NTU, 10 NTU, 200 NTU, and 800 NTU. The standards used
in the calibration were certified commercial standards at room temperature in order to
avoid misting interferences in the turbidity measurement. The turbidimeter was calibrated
according to the equipment manual.

In the case of chl-a, water was collected from a 0.5 m depth in 1 L dark bottles to
avoid enhanced photosynthetic activity and kept in a portable fridge until arrival at the
laboratory. Three replicates per station were collected. Chl-a concentrations were measured
in 700–1000 mL water samples for each replicate, which were filtered through Whatman
GF/F 0.2 μm polycarbonate filters. The filters were immediately frozen at −20 ◦C until
pigment extraction in 90% acetone at 4 ◦C overnight in the dark. Chl-a concentrations were
determined with a 10-AU Turner Designs fluorometer calibrated with pure chl-a [50].
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3. Results and Discussion

3.1. Multisensor Approach and Preprocessing

Until now, standard ocean color sensors at the moderate spatial resolution of 300–1000 m
were generally used to map water quality, phytoplankton blooms, and eutrophication events in
Mar Menor [25,26]. However, features in the lagoon show typical scales of tens of meters that
cannot be detected with existing ocean color sensors (Figure 4). In recent years, several studies
already demonstrated that, in order to comprehensively evaluate the ecological conditions of
heterogeneous coastal areas and land-water inputs using remote sensing technologies, improved
spatial resolution should be used with Landsat-8 and/or Sentinel-2 [28,30,31,51]. Undoubtedly,
the Sentinel-2 twin mission, although originally not designed for coastal ocean monitoring, is a
key tool for the detailed mapping of highly dynamic environments, such as coastal or inland
water areas [52].

During the study period, in particular during summer, acute sunglint contamination
also influenced the quality of the imagery over Mar Menor due to the specular reflection
of sunlight off the water (see Table 1 for details). Figure 6 shows two images on 9 June
2021 and 4 July 2021 at the top-of-atmosphere (TOA) level, after ACOLITE processing at
the bottom-of-atmosphere (BOA) level, and the Rrs of the blue band (492 nm). Accurate
performance was accomplished by ACOLITE over low to moderate sunglint conditions,
such as on 9 June 2021 (Figure 6a–c), but failed to retrieve Rrs during severe sunglint
contamination on 4 July 2021 (Figure 6d–f), thus masking the data. The sunglint is clearly
observed at TOA-Level-1C (Figure 6a,d), whereas the residuals are visible at BOA-Level2
(Figure 6e) with intense effects on the eastern area of the Sentinel-2 tile, exactly where
Mar Menor is located. This effect is significant during spring and summer, given that
minimum information could be retrieved with severe sunglint, restricting the amount
of available data when the majority of the blooms occurred. Comparable results were
generated in other coastal regions, such as in North Atlantic [53] or Caribbean waters [54].
Irregular residual issues still require further advancements in the sunglint and atmospheric
correction approaches to facilitate the extensive combination of Landsat-8 and Sentinel-2
products during summer. In addition, the typical stripping patterns are clearly observed at
both TOA and BOA levels.

On 3 August 2021, Landsat-8 and Sentinel-2 acquired a scene at 10:45 am and 11:00 am
GMT, respectively. Figure 7 shows the spectral signal of both satellites with only a 15 min
time difference over three control points distributed across different areas of the lagoon.
This exhibits the consistent performance of ACOLITE for both satellite missions, retrieving
the spectrum with similar Rrs values for each point and sensor (P1, turbidity of 18.11
and 17.28 FNU; P2, turbidity of 5.5 and 6.1 FNU; and P3, turbidity of 4.08 and 3.93 FNU
for Sentinel-2 and Landsat-8, respectively), thus further corroborating the remarkable
value of the combined products. Comparison of Sentinel-2 and Landsat-8 Rrs over the
visible and NIR bands yielded a bias of −0.00035 sr−1, MAE of 0.00072 sr−1, and MedAE
of 0.00049 sr−1. Consistent sunglint and atmospheric correction models are needed to
empower the application community to explore these products in order to thoroughly
address the ecological conditions of Mar Menor using remote sensing technologies. Recent
research already demonstrated the potential of ACOLITE to provide robust information
for aquatic and marine applications [30,43,44,54]. A study applied Sentinel-2 data to
monitor water quality in Mar Menor using the Sen2Cor atmospheric correction processor
(designated for land application with restricted performance in water application) and to
generate products at 60 m spatial resolution [35]. However, Pahlevan et al. (2019, 2021)
suggested that enhanced information for inland and coastal water quality mapping is
required as a critical and urgent task to evaluate spatial and spectral differences under
several atmospheric and aquatic conditions [28,55]. This data record is crucial to ensuring a
detailed monitoring of the Mar Menor coastal lagoon with both satellite platforms working
in tandem.
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Figure 6. RGB (Red–Green–Blue) composite image on 9 June 2021 from the Sentinel-2 satellite (10 m
spatial resolution) at (a) top-of-atmosphere (TOA) level, (b) bottom-of-atmosphere (BOA) level after
ACOLITE, and (c) remote sensing reflectance (Rrs, sr−1) of the blue band (492 nm); (d–f) the same
on 4 July 2021. Severe sunglint contamination can be clearly observed in the eastern section of the
Sentinel-2 tile affecting Mar Menor.

Figure 7. (a) RGB (Red–Green–Blue) composite image on 3 August 2021 of the Sentinel-2 satellite
at bottom-of-atmosphere (BOA) level, (b) spectral signal of the Sentinel-2 and Landsat-8 satellites
over different control points (P1, turbidity of 18.11 and 17.28 FNU; P2, turbidity of 5.5 and 6.1 FNU;
and P3, turbidity of 4.08 and 3.93 FNU for Sentinel-2 and Landsat-8, respectively). Yellow circles in
(a) indicate the location of the control pixels.

3.2. Validation of the Water Quality Algorithms

Figure 8 shows the validation matchups for the water quality parameters obtained
with Sentinel-2 and Landsat-8 during the four in situ campaigns carried out in 2021. We
applied the standard OC3 algorithm to calculate chl-a concentration and a regularly used
semianalytical algorithm for the determination of turbidity [44,45]. The performance of
both algorithms is illustrated in Figure 8a,b, respectively. The chl-a matchups cover the
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range of 0.5–5 mg/m3 with a bias of 0.37 mg/m3, MAE of 0.43 mg/m3, and MedAE of
0.41 mg/m3 (R2 = 0.903, n = 37), whereas the turbidity ranges from 0.5–6 FNU with a
bias of 2.09 FNU, MAE of 2.09 FNU, and MedAE of 2.04 FNU (R2 = 0.54, n = 35). The
validation assessment indicated robust statistical analysis, with accurate chl-a retrieval and
minimum bias. Predictions of chl-a from both Sentinel-2 and Landsat-8 yielded precise
results after the ACOLITE atmospheric and sunglint correction. The performance of the
ACOLITE and the turbidity model is accurate, but a general satellite overestimation was
encountered with biased outcomes, as seen in Figure 8b. Pahlevan et al. (2022) also
found overestimation of turbidity retrievals by means of the ACOLITE processor [56]. The
turbidity model has already been validated in different regions worldwide with accurate
performance [46–48,57] and has previously been used in Mar Menor during an extreme
weather event [13]. These methodologies are consistent and valid approaches for the
assessment of suspended material or turbidity, which contribute towards achieving more
precise performance worldwide [45,58].

Figure 8. Validation of water quality parameters obtained with Sentinel-2 (S2) and Landsat-8 (L8)
during the four in situ campaigns carried out in March, July, August, and November 2021 for
(a) chlorophyll-a concentration (chl-a, mg/m3) and (b) turbidity (FNU).

3.3. Water Quality Monitoring

Figure 9 shows the RGB composite scenes acquired on 9 and 24 June and 2, 14, 18, and
29 July 2021, whereas Figures 10 and 11 display the image-derived maps for turbidity and
chl-a, respectively. The imagery corresponded to the months prior to the ecological crisis in
mid-August 2021. Generally, the turbidity levels were low in the lagoon (<5 FNU), except
in the western section on 24 June and 14 July 2021, indicating higher levels (~25 FNU). A
turbid plume appeared near land where the Albujon watercourse flows into Mar Menor.
The most common chl-a condition during this period was <1.5 mg/m3, while higher chl-a
concentration (~2.5 mg/m3) was observed close to the turbid plume. Figures S1 and S2
indicate the available (cloud and sunglint-free) Sentinel-2 scenes in August 2021 for further
evaluation. On 3 August, a turbid plume was observed in the western section close to
the input of the Albujon watercourse with peaked levels ~20 FNU, whereas minimum
turbidity was encountered in the rest of the lagoon. The chl-a concentration for this date
seemed to increase in the western section, indicating maximum values within the lagoon.
The turbidity maps depicted high and constant turbidity values ~20 FNU in August 2021,
except a slight decrease on 18 August 2021 on the western side (Figure S2). Moreover, chl-a
maps displayed higher concentrations compared with July and the beginning of the bloom
during this month, in particular on 13 August 2021 with chl-a ranging from 4 to 9 mg/m3, a
strong indicator of algal blooms in Mar Menor. Clear-water lagoon phases are characterized
by chl-a concentrations ranging from 1 to 3 mg/m3 [59], as occurred during June and July
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2021. However, these typical low chl-a values tipped rapidly towards more eutrophic
conditions, with chl-a concentration higher than 3 mg/m3, such as last year’s [18,19,21,60].
We reported that using the multisensor approach during the eutrophication episode in
2021, the beginning of the bloom (chl-a concentration higher than 3 mg/m3) was detected
mainly in the western and southern section. This is critical information for early detection
of the eutrophication processes, given that the massive mortality of fish and crustaceans
occurred during the last weeks of August 2021 [21], as well as an opportunity to enhance
emergency management response in early deterioration stages.

Figure 9. Sentinel-2 and Landsat-8 RGB (Red–Green–Blue) composite image acquired on (a) 9 June
2021, (b) 24 June 2021, (c) 2 July 2021, (d) 14 July 2021, (e) 18 July 2021, and (f) 29 July 2021.

After this event, the ecosystem equilibrium recovered slightly during September 2021
(Figure S3) as can be observed in the decrease in turbidity retrievals on the western side
(Figure S4). However, the Albujon continued to discharge to the western section of the
lagoon, indicating increased surface runoff and rising turbidity levels, and a plume was
always close to this area. In addition, chl-a concentration gradually reached normal values
<3 mg/m3 in some areas in September 2021, although on 7 and 12 September 2021 high
chl-a concentrations of ~4–5 mg/m3 persisted not only in the center and south but also in
the northern and eastern sections of the lagoon (Figure S5). A minor “Cold Drop” occurred
on 20–21 September 2021, but the cloud and haze coverage remained very high during the
consecutive days, as can be observed on 22 and 27 September 2021.
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Figure 10. Turbidity (FNU) from Sentinel-2 and Landsat-8 acquired on (a) 9 June 2021, (b) 24 June
2021, (c) 2 July 2021, (d) 14 July 2021, (e) 18 July 2021, and (f) 29 July 2021.

Figure 11. Chlorophyll-a concentration (Chl-a, mg/m3) from Sentinel-2 and Landsat-8 acquired on
(a) 9 June 2021, (b) 24 June 2021, (c) 2 July 2021, (d) 14 July 2021, (e) 18 July 2021, and (f) 29 July 2021.
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Time-consuming and costly on-site measurements are regularly carried out to de-
termine the water quality status in the lagoon; nevertheless, these observations are not
able to address the heterogeneity and complexity of the spatial distribution within Mar
Menor. In fact, in situ data might lack samples from the peak of the bloom or high turbidity
levels due to the sparsely distributed single sampling sites. Field campaigns may not have
adequately retrieved maximum concentration in chl-a if in situ measurements were not
correctly spotted in Mar Menor [35]. The combined satellite data series characterized the
dynamic nearshore patterns and fine-scale bio-optical gradients across this complex coastal
interface. Satellite maps offered a synoptic perspective of the entire lagoon, detecting
higher and lower turbidity and chl-a concentration over the study area. Interestingly, while
maximum turbidity levels across the study site were typically located in the western section
associated with the drainage of the Albujon, highlighting the impact of hydrological inputs
and discharge from this canal, minimum levels were observed on the eastern, northern, and
southern sides and along the barrier beach “La Manga”. Our results also present the highest
chl-a concentrations along the western coastline, detecting a change due to a proliferation
of phytoplankton in early August 2021. The IEO-CSIC suggested that this eutrophication
event was due to an excess of nutrient availability flowing from the Albujon [21]. There-
fore, the abrupt deterioration of the water quality in Mar Menor reached a stage of severe
eutrophication that resulted in an ecological collapse in mid-August, showing a gradual
recovery during September 2021 before the minor “Cold Drop” event on 20 September 2021.
Among all the wadis transporting materials, water, and nutrients from agricultural run-off,
the Albujon is the principal collector of the Campo de Cartagena drainage basin, subjecting
the lagoon to nutrient and sediment runoff from the agricultural landscape [11,12,15,16].
These results sustain that in order to remedy the ecological collapse of the lagoon, it is
crucial to design and implement environmental strategies and policies [22], in particular
those that focus on limiting the suspended material discharged from the Albujon to regulate
the massive proliferation of phytoplankton and the eutrophication pressure favored by
agricultural dumping [25,61].

3.4. An Early Warning Tool with High Spatial Resolution

The complex distribution and variability of the lagoon can be observed in detail in all
the satellite-derived products presented in this study, in particular for the turbid plume
located in the western part. These turbid features are usually small in dimension; therefore,
detecting them by means of traditional ocean color sensors at lower spatial resolution
can be challenging. We recommend using Landsat-8 and Sentinel-2 missions in tandem
to improve the monitoring and control of Mar Menor. The multisensor methodology
might enhance previous studies that attempted to map water quality using coarser spatial
resolution imagery at 300–1000 m [24–26]. Additional evaluation of previous months in
March 2021 also highlighted the importance of our methodology for studying the impact of
weather events on the coastal lagoon. Figures S6 and S7 show the RGB composite images
and turbidity levels on 11 and 12 March 2021 and on 21 and 28 March 2021, before and
after a severe winter storm, respectively. The maps corresponding to 11 and 12 March
2021 presented minimum turbidity levels (<4 FNU) in front of the Albujon. This cycle
was occasionally disrupted by the intense winter storm resulting in increased inputs of
terrestrial discharges into the entire lagoon. The high resuspension of materials can be
observed in both the RGB and turbidity maps after the storm, in particular on 21 March
2021 along the western coastal region with turbidity >50 FNU. A zoom on 21 March 2021
corresponding to the southeastern shore of Mar Menor showed the high variability of
the turbidity patterns (Figure S8). Turbidity generally decreases seaward in the lagoon
and extreme events, such as storms, can increase turbidity 5-to-10-fold, altering the water
quality distribution in the system. In particular, “Cold Drop” events can dramatically alter
the ecological status of the lagoon with turbidity levels increasing by more than a factor of
five [13]. Previous studies have already indicated that finer spatial resolution is needed to
comprehensively determine these complex spatial and temporal features [62].
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With three-to-four-day revisits allowed by combined Landsat-8 and Sentinel-2 datasets,
the managers, end users, and coastal science community will take advantage of these
synoptic, improved, consistent, and high-quality products. This information may be
critical for operational purposes in the context of the EU WFD [32], from which early
warning systems can be implemented. Although work remains to be performed towards
improving and developing advanced sunglint, atmospheric, and bio-optical algorithms for
both Sentinel-2 and Landsat-8, it is the ideal moment to examine, exploit, and maximize
these merged datasets in Mar Menor. Particularly during ecological crises, such as the
one explored in this study, this information is crucial to assess appropriate measures to be
taken in coastal and inland water ecosystems. However, research must continue to enable
retrievals in extremely contaminated sunglint scenes during eutrophic/turbid conditions
in summer periods, as demonstrated in this study (Figure 6), as well as the analysis of other
biogeochemical variables, such as Colored Dissolved Organic Matter (CDOM). In addition,
as shown in recent research by Wójcik-Długoborska [63], turbidity measurements in the
field may differ from those taken in the laboratory and thus provide different correlations
between reflectance and the true value of turbidity. Therefore, we intend to focus additional
research on this aspect during the coming field campaigns. Future studies will also be
carried out to evaluate the entire Sentinel-2 and Landsat-8 series to assess the seasonality
of these events and to identify possible common factors, which can be monitored or used
as warning systems in the future. The improved resolution afforded by the combined
time-series products offers additional insights into processes over weekly or subweekly
timescales; nevertheless, these results emphasized the need for enhanced temporal coverage
space-based datasets in dynamic coastal environments. With these three satellites now
operating, Landsat-9 already in orbit, planned missions launching shortly (e.g., Sentinel-
2C/D), and continuously improving atmospheric and sunglint correction techniques, the
accessible record of high-to-moderate spatial resolution imagery will provide even more
robust water quality monitoring in complex inland and coastal environments.

4. Conclusions

Eutrophication in areas where agricultural and industrial wastewater runoff feeds
excessive loads of nutrients into coastal regions can foster algal blooms and undermine
the health of these ecosystems. In this study, both Landsat-8 and Sentinel-2 satellites were
jointly merged as a constellation to estimate indicators of the water quality in the highly
unstable and vulnerable Mar Menor coastal lagoon. The validation of satellite biogeo-
chemical parameters, both turbidity and chl-a, retrieved good performance for ranges
of 0.5–6 FNU and 0.5–5 mg/m3, respectively. The atmospheric and sunglint correction
using the ACOLITE software showed consistent performance for both satellites; therefore,
using them in tandem can improve mapping strategies, highlighting the importance of
the preprocessing scheme. The results demonstrate the suitability and consistency of the
methodology to reliably capture the detailed spatiotemporal distribution of turbidity and
chl-a, where satellite imagery was capable of early detection of chl-a levels above 3 mg/m3,
which generally triggered the subsequent blooms during recent years. Although neither
of the satellite missions have been designed to characterize coastal seawater quality, our
approach demonstrated their capacity to provide appropriate information at 10–30 m spa-
tial resolution on a systematic basis and in a cost-effective way. Multitemporal maps were
produced, and an analysis of all images showed that the highest turbidity and chl-a levels
were always located in the western section. In particular, turbidity and chl-a concentration
at the mouth of the draining Albujon watercourse were consistently two times higher than
in the northern and eastern sections of the lagoon. The influence of the highly dynamic
plume from the Albujon extended over the entire lagoon, yet the strongest gradients typi-
cally occur within the first nearshore 1–2 km. Therefore, observing these gradients, their
variability, and the impact of land–water exchanges on nearshore dynamics under varying
environmental conditions from space requires higher spatial resolution. Imagery from both
satellites offered snapshots of water quality patterns that are difficult to map with in situ
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technologies in such heterogeneous environments. These innovative tools can support de-
cision makers in the implementation of a joint monitoring strategy, better characterization
of the water quality distribution, and timely assistance to society during these ecological
disasters, thus preventing detrimental conditions in the lagoon. Furthermore, the powerful
multisensor system can be used as guidance to complement the ongoing in situ techniques
carried out by the local and regional authorities to select relevant areas for data sampling.
This information could advance mapping of water quality and bio-optical properties in
terrestrial–aquatic environments as an important tool for managers and stakeholders, as
well as for the tourism and fishing industry. A new era has begun with the use of the
Sentinel-2 and Landsat-8 missions as a virtual constellation, with significant opportunities
for monitoring the heterogeneous spatiotemporal patterns of inland and nearshore coastal
waters at resolutions certainly not observed previously.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14122744/s1. Figure S1: RGB (Red–Green–Blue) composite
image on (a) 8, (b) 13, and (c) 18 August 2021 of the Sentinel-2 satellite (10 m spatial resolution);
Figure S2: Turbidity (FNU) on (a) 3, (b) 8, (c) 13, and (d) 18, August 2021 of the Sentinel-2 satellite
(10 m spatial resolution); (e–h) the same for chlorophyll-a concentration (Chl-a, mg/m3); Figure
S3: Sentinel-2 and Landsat-8 RGB (Red–Green–Blue) composite image acquired on (a) 4 September
2021, (b) 7 September 2021, (c) 11 September 2021, (d) 12 September 2021, (e) 17 September 2021, and
(f) 22 September 2021; Figure S4: Turbidity (FNU) from Sentinel-2 and Landsat-8 acquired on (a) 4
September 2021, (b) 7 September 2021, (c) 11 September 2021, (d) 12 September 2021, (e) 17 September
2021, and (f) 22 September 2021; Figure S5: Chlorophyll-a concentration (Chl-a, mg/m3) from Sentinel-
2 and Landsat-8 acquired on (a) 4 September 2021, (b) 7 September 2021, (c) 11 September 2021, (d) 12
September 2021, (e) 17 September 2021, and (f) 22 September 2021; Figure S6: RGB (Red–Green–Blue)
composite image from Sentinel-2 and Landsat-8 acquired on (a) 11, (b) 12, (c) 21, and (d) 28 March
2021; Figure S7: Turbidity (FNU) from Sentinel-2 and Landsat-8 acquired on (a) 11, (b) 12, (c) 21, and
(d) 28 March 2021; Figure S8: (a) RGB (Red–Green–Blue) composite image, and (b) Turbidity (FNU)
from Sentinel-2 on 21 March 2021 corresponding to the southeastern shore of Mar Menor.
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Abstract: Water resources provide indispensable ecosystem services, which are related to human well-
being and sustainable social development. Accurately measuring the water ecosystem services value
(WESV), and then grasping its changing characteristics, is particularly important for solving water
problems. In this study, the typical area of the central Loess Plateau location is taken as the research
area. Based on remote sensing images and statistical data, the direct market method combined with
the equivalent factor method was used to calculate the WESV including groundwater and surface
water, which is of greatest originality. The temporal and spatial variation characteristics in 2010, 2015
and 2020 were analyzed. Then, four WESV driving factors including per capita GDP, population
density, proportion of water areas, and water consumption were selected, and the geographically
weighted regression (GWR) model was used to analyze the spatial distribution pattern and temporal
variation of WESV’s response to the influencing factors. The results showed that WESV experienced
a process of first decreasing and then increasing, which was mainly caused by Yulin. For the
composition of WESV, the proportion of provisioning services value has increased, which caused the
proportion of regulating services value to decrease. The correlations between four factors and WESV
were different. The distribution pattern of the influences was spatially heterogeneous, which showed
regular variations over time. These results indicate the necessity of WESV’s independent research
and provide a realistic basis for ecological compensation in the Yellow River Basin.

Keywords: water resources; ecological services value; influencing factors; geographically weighted
regression (GWR); space–time change; the Loess Plateau

1. Introduction

Ecosystems provide basic and necessary services for human survival and social func-
tioning, namely ecosystem services (ESs). ESs are the continuous provision of ecosystem
goods and services by ecosystems and their ecological processes [1]. However, factors such
as population growth, industrialization and urbanization have led to a rapid increase in the
demand for ESs, and ecosystems are facing unprecedented pressure [2]. A comprehensive
and reasonable quantitative assessment of ecosystem services value (ESV) is necessary to
alleviate the contradiction between supply and demand of ESs, manage effectively and
formulate relevant policies. Water resources are an essential part of ecosystems. Whereas,
due to the existence of water pollution, waste of water resources and climate change, the
water ecosystem is facing greater pressure than other types of ecosystems. Therefore, it is
crucial to study the water ecosystem services value (WESV) and the various factors that
affect WESV.

Monetization of ecosystem service value is the most recognized and practical form of
ESV, and the calculation methods can be divided into two categories. One is to adopt the
relevant methods of traditional ecological economics or environmental economics. Most of
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these methods obtain the output of physical quantity based on statistical data or ecological
model, and then they calculate the value of ecosystem services by combining the market
value method, willingness survey method (CV) and revealed preference method. This
kind of method has high requirements on data, parameters, model accuracy and method
applicability, etc. Specific to the value of water resources ecosystem services, this kind of
method is suitable for calculating the value of water resources with commodity attributes.
The other is the equivalence factor method, which constructs the economic value equivalent
per unit area of different ecosystems based on the division of ecosystem service functions
and quantifies ESV in combination with the distribution of ecosystems. Compared with
traditional methods, the equivalence factor method requires relatively fewer data, and the
evaluation of ESVs is more comprehensive. Costanza et al. divided the global ESs into
17 species and calculated that the ESV of 16 biomes in the world was US$33 trillion per
year [3], and rivers or lakes were one of the 16 biomes. Meanwhile, another contribution of
this study is to provide the equivalent table of services value per unit area of 17 ecosystems
in each biome at the global scale, which provides a reference for future research. In 2003,
the Millennium Ecosystem Assessment (MA) conducted by the United Nations classified
global ESs into four primary categories, namely Provisioning Services, Regulating Services,
Supporting Services, and Cultural Services [4]. At the regional scale, Xie et al. improved
Costanza’s research and obtained the equivalent factor of ecosystem service value suitable
for China. Then, the ESV can be calculated combined with the area of each ecosystem. This
study was accepted by a large number of Chinese scholars [5,6]. Whether it is a global
scale or a regional scale, in the study of using the equivalent factor method to evaluate
ecosystems, most of the rivers/lakes or waters are divided into one type of ecosystem
for discussion. However, this method does not clarify the service value of groundwater,
which is an important component of water resources. The most direct service value of
groundwater is that it provides a part of water for production and domestic use, accounting
for only 70% of the total global water use for agriculture, and 40% of agricultural water
comes from groundwater [7]. Therefore, it is more comprehensive and accurate to combine
the two methods to assess the WESV including surface water and groundwater.

It is not the ultimate goal of scholars to study the value of WESV; the more important
goal is to study the relationship between WESV and the interaction of various factors. In
order to deal with more severe water and environmental problems, exploring the influence
of various factors on WESV has gradually become one of the research hotspots. Due to
the social nature of water resources, social and economic factors have become one of the
components that affect WESV. The characteristics of cities, populations, communities, and
cultures [8] all have an impact on water resources and water ecology [9,10]. The urban-
ization level is a concentrated expression of the social and economic development degree,
which profoundly affects the spatial distribution and potential functions of ecosystem
services [11]. Many researchers have conducted related research in North China [12,13],
Yangtze River Delta [14], Pearl River Delta [15], Southwest Mountainous [16,17] and North-
west arid regions of China [18,19]. WESV also has a significant response to changes in
natural factors. Climate conditions [20–22], ecosystem types [23], and environmental qual-
ity [24] are the main influencing factors. Meanwhile, the coupling of many factors, such as
nature, social economy and human activities, has a more realistic impact on WESV [25,26].
Many of the above studies have fully considered various factors and provided important
references for explaining the changes caused by EVS or WESV. Unfortunately, the collinear-
ity among some influencing factors and the nonstationarity in space have not attracted
enough attention.

However, EVS exhibit spatial heterogeneity and spatial dependence with changes in
geographic space due to differences in the socioeconomic development degree, natural
resources, and geographic environment. Thus, incorporating geospatial aspects into the
research scope is the key to addressing spatial heterogeneity. Geographically Weighted
Regression (GWR) model is an effective tool for dealing with spatial heterogeneity, which
is improved on the basis of ordinary least square [27]. The model incorporates the spatial
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location information as a coefficient into the regression equation and explores to eliminate
the nonstationarity caused by spatial changes based on the fitted values of geographic
element parameters [28]. The GWR model has been widely used in the fields of natural
resources and ecological environment [29]. The water footprint has been extensively
researched, including concepts, methods and applications, for better management of water
resources and water ecology [30,31]. With the deterioration of ecological environment
problems, it is necessary to analyze the evolution of ecological footprint and the spatial
differences of influencing factors from the perspective of spatial heterogeneity [29]. In
the related research on land use variation and ESV, the GWR model is used to solve the
problem of spatial heterogeneity and compare with the OLS model [32]. In coastal counties
of Mississippi and Alabama (U.S.), GWR was used in the estimation of the monetary value
of distance to different waterfront types, in the extension to a traditional hedonic pricing
method, and in analyzing the value of ecosystem services associated with waterfronts
differed geospatially [33]. However, few researches utilize the GWR model to study WESV,
which becomes the main content of this study.

In arid and semi-arid regions, water resources are very precious, which means that
the ecological services provided by water resources play a vital role. Therefore, on the
basis of accurately measuring the value of water resources ecosystem services, analyzing
the impact of various factors on WESV is of great significance to effectively manage water
resources and alleviate the contradiction between supply and demand of water resources
ecosystem services.

Many studies have been conducted on the value of ecological services and their
influencing factors. However, this study is more relevant. Specifically, the ecological service
value of water resources is the object of this study. In addition, the scope of water resources
is broader to include groundwater and surface water. This study serves the ecological
compensation policy in China.

In this study, the typical area in the central Loess Plateau of China was taken as the
research object, and the evaluation of water resources ecosystem service value and the
analysis of the temporal and spatial changes of the influencing factors were carried out.
The main works are as follows:

(1) Combining the environmental economics method and the equivalent factor method,
the WESVs of 25 counties (districts) in the study area including groundwater and sur-
face water in 2010, 2015 and 2020 were calculated, and the distribution characteristics
were analyzed;

(2) Selecting the representative factors of nature, economy and society, and the applicabil-
ity of OLS model and GWR model in studying the impact of each indicator on WESV
was analyzed;

(3) Using the more applicable GWR model, the spatial heterogeneity and spatial and
temporal distribution of the effects of various factors on WESV were shown.

2. Materials and Methods

2.1. Study Area

The Loess Plateau (33◦43′–41◦160′ N, 100◦54′–114◦33′ E) covers an area of 640,000 km2

in the upper and middle reaches of China’s Yellow River (Figure 1a) [34,35]. Most areas of
the Loess Plateau belong to arid and semi-arid areas, with fragile environment, scarcity of
water resources and serious soil erosion [36,37]. The study area of this paper is Yulin and
Yan’an Cities (Figure 1b), with an area of about 79,957 km2, accounting for 12.49% of the
area of the Loess Plateau. In terms of location, the study area is located in the middle of
the Loess Plateau, which is a representative area in the middle of the Loess Plateau. From
the perspective of administrative division, the study area belongs to the north of Shaanxi
Province. The study area includes 25 county-level administrative units (Figure 1c). The
study area with large topographic relief and hilly gully, is the core area for controlling soil
and water loss in the Yellow River Basin. The annual average temperature of Yulin City
in the north of the study area is about 10.5 ◦C, and the average annual precipitation is
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about 400.00 mm. From north to south, the landform gradually transits from sandy land
to gullies and hills [38,39]. It is an important energy and chemical base in China. Yan’an
City in the south of the study area belongs to the hilly area of the Loess Plateau, which is
high in the northwest and low in the southeast. The annual average temperature is about
7.70~10.60 ◦C, and the annual average precipitation is about 500.00 mm [40–42].

Figure 1. Location and administrative division of the study area: (a) Loess Plateau location; (b) study
area location; (c) administrative division of the study area and DEM.

2.2. Data Sources

The data involved in this study include economic indicators, social indicators, and
natural indicators of Yulin and Yan’an Cities in 2010, 2015 and 2020. It should be noted that
due to the impact of COVID-19, some economic and social indicators in 2020 are replaced
by data from 2019, including population, population density, urbanization rate, per capital
GDP, and gross product of primary industry.

The water consumption comes from the water resources bulletin of Yulin and Yan’an
Cities (2010, 2015 and 2020). Through reclassification, water consumption is divided
into three categories: agricultural water consumption, residential water consumption and
nonresidential water consumption. The price of water is obtained from the research of the
water supply department.

GDP, GDP per capita, population, population density and urbanization rate are from
the statistical yearbooks of Yulin and Yan’an (2010, 2015 and 2019).

The water area and the proportion of water area are calculated through the statistical
calculation of the spatial distribution data of the national land use type remote sensing
monitoring provided by the Resource and Environmental Science and Data Center, Chinese
Academy of Sciences (http://www.resdc.cn/, accessed on 2 July 2018). The resolution of
the data is 30 m × 30 m, which is generated by manual visual interpretation using the
remote sensing images of Landsat TM of various phases of the US Landsat as the main
data source.
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2.3. Methods
2.3.1. Classification and Calculation Method of WESV

According to the classification of ESs by the Millennium Ecosystem Assessment
(MA 2005) carried out by the United Nations [4], combined with the research practice
in China [43] and the practicability of ecological compensation in the study area, this
study divided WESV into three categories. The reason why the cultural services value
was not considered is that at this stage, ecological compensation in China rarely involves
such services value. Considering the ways of WES and the availability of data, the three
categories were subdivided into 9 specific services (Table 1). The calculation method of
WESV can be expressed formally as follows:

Vw =
9

∑
n=1

Vn (1)

where Vw is the value of WESV; Vn is the n-th sub-category of WESV; n = 1, 2, . . . , 9.

Table 1. Classification of WESV.

Categories of WESV Work Mode Content Symbol

Provisioning Services Value

Direct supply Water supply V1

Indirect supply
Aquatic product V2

Material V3

Regulating Services Value

Direct regulation
Hydrological regulation V4

Water purification V5

Indirect regulation
Climate regulation V6

Air regulation V7

Supporting Services Value Indirect support
Soil conservation V8

Biodiversity V9

2.3.2. Market Value Method

Whether groundwater or surface water, the most direct and important service is water
supply for living and production. The value of water services is reflected in the water
price [44]. Therefore, this study adopts the market value method to calculate the water
supply services value of water resources. According to the type of water price, water is
divided into agricultural water, residential water and nonresidential water, among which
nonresidential water mainly refers to industrial, business service water, administrative
institution water, municipal water, etc. The formula for calculation is as follows:

V1 =
3

∑
j=1

Qj×Pj, (2)

where V1 is the value of water supply services; Qj and Pj are the water consumption and
water price of the j-th type of water; j = 1, 2, 3 represent agricultural water, residential water
and nonresidential water, respectively.

The market value method is also used to calculate the indirect supply value of aquatic
products provided by water resources. Due to the variety of aquatic products and the
different prices, this study uses the fishery output value in the statistical yearbook [45–48]
as the value V2 of aquatic product supply services, and the calculation method also adopts
the market value method.
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2.3.3. Equivalent Factor Method

Water resources are the most basic elements to maintain the normal operation of
ecosystems and social systems, and most of its ecosystem services cannot be measured by
market value. The ESV equivalent factor method is obtained from the study of Xie G. [5] by
calculating the ecological service value per unit area of each ecosystem in China, which has
been widely recognized and applied [49]. The equivalence factor is defined as a relative
quantity, which represents a relative value of ecosystem services relative to the economic
value of grain output in that year. In the case of the study area, due to the difference
in planting structure, the economic value of grain output will change accordingly. The
ecological service value of the study area can be calculated by the follows:

Vper =
1
7
× (Y1 × P1 + Y2 × P2)

A1 + A2
, (3)

where Vper is the value of ESs per unit area; corn and potato are mainly planted in the study
area, Y1 and Y2 are the yield of corn and potato, respectively, which comes from “Shaanxi
Statistical Yearbook” [45–48]; P1 and P2 are the corresponding grain prices, which comes
from “Compilation of National Agricultural Product Cost and Benefit Data” [50–52]; A1
and A2 are the planting area of corresponding grain; 1/7 is the ratio of the economic value
provided by natural ecosystems without artificial inputs to the economic value provided
by existing farmland. The calculated values of ESs per unit area in 2010, 2015 and 2020
were 1457.16 CNY/hm2, 1318.81 CNY/hm2 and 1199.63 CNY/hm2, respectively.

The equivalence factor adopts the corresponding part of the water ecosystem in
the equivalence coefficient table of ecosystem service value per unit area calculated by
Xie G. [43] (Table 2). At the same time, the value of WESV per unit area in 2010, 2015 and
2020 was calculated (Table 2).

Then, the value of services other than Water supply and Aquatic product could be
calculated as follows:

Vm = Vper × Aw × Em, (4)

where m = 3, 4, 5, . . . , 9; Vm is the value of other services besides Water supply and
Aquatic product; Aw represents the watershed area for the study year; Em is the equivalent
coefficient of different service in Table 2.

Table 2. Equivalent coefficients of WESV, and the WESV per unit area in different years.

Provisioning
Services

Regulating Services Supporting SERVICES

Material
Hydrological
Regulation

Water
Purification

Climate
Regulation

Air
Regulation

Soil
Conservation

Biodiversity

Equivalent
coefficient (Em) 0.23 1 102.24 1 5.55 1 2.29 1 0.77 1 0.93 1 2.55 1

2010 WESV per
unit area 335.15 148,979.93 8087.23 3336.89 1122.01 1355.16 3715.76

2015 WESV per
unit area 1055.04 303.33 134,834.65 7319.37 3020.06 1015.48 1226.49

2020 WESV per
unit area 275.92 122,650.62 6657.97 2747.16 923.72 1115.66 3059.07

1 The equivalent coefficient was quoted from Ref. [43].

2.3.4. Geographically Weighted Regression

The first law of spatial geography shows that the correlation between ground objects
gradually increases as the distance decreases [53,54]. Inevitably, spatial correlation and
spatial heterogeneity coexist. GWR achieves better results when using local smoothing to
deal with the problem of spatial heterogeneity [55,56]. GWR was based on kernel-weighted
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regression. Instead of estimating global values for regression parameters, GWR allows these
parameters to be derived for each location separately [57]. The model can be expressed as

yi = β0(μi, νi) + ∑
k

βk(μi, νi)xi,k + εi, (5)

where yi is the explained variable; (μi, νi) are the coordinates of the target area i; β0 (μi, νi) is
the intercept; xi,k is the value of the explanatory variable xk on the target area i; the value of
the function βk (μi, νi) at geographic location i is βk (μi, νi); k is the number of explanatory
variables; εi is the random disturbance term, i.e., the error. The coefficient of each sample
point is a parameter estimate obtained by weighting the adjacent observations [58], and the
expression is as follows:

β̂(ui, vi) = (XTW(ui, vi)X)
−1

XTW(ui, vi)Y, (6)

where β̂(ui, vi) is the parameter estimate of the local coefficient of the i-th sample with
coordinates (μi, νi); X and Y are the vectors of the explanatory and the dependent variables;
W(ui, vi) is the weight matrix, which is usually calculated by the Gaussian function of the
distance decay function (kernel function).

ArcGIS software has developed the related functions of OLS and GWR into convenient
tools. Therefore, this study uses ArcGIS 10.4 to perform related calculations.

3. Results

3.1. WESVs and Characteristics in 2010–2020
3.1.1. Temporal and Spatial Variation Analysis of WESV

Taking the county-level administrative region as the minimum calculation unit, and
adopting appropriate methods according to different service types, the WESVs of typical
areas in the middle of the Loess Plateau in 2010, 2015 and 2020 were calculated (Table 3).
The changes in counties among the three years have also been shown (Figure 2). Overall,
the WESV in the study area showed a trend of first decreasing and then increasing. The
WESV decreased from 12,370.42 million CNY in 2010 to 11,746.86 million CNY in 2015,
which showed a drop range of 5.04%. Then, it increased to 13,379.48 million CNY in 2020.
The increasing range was 13.90% from 2015 to 2020, and 8.16% during the entire study
period of 2010–2020.

It can be seen from Table 4 that, from 2010 to 2020, some districts and counties in
Yan’an City in the southern part of the study area experienced a decrease in WESV, but the
trend was rising, with a rate of 3.96%. The leading area that led to the decreasing trend in
2015 was Yulin City. From 2010 to 2015, the WESV in Yulin City decreased by 7.84%, which
was significantly greater than the entire study area decreasing rate. Only four counties of
Yuyang, Hengshan, Mizhi and Zizhou showed an increase in WESV, and the remaining
two-thirds of the counties presented a decreasing trend; the decreasing degree in Fugu
reached the highest 30.46%. These phenomena indicated that the ecological service function
provided by water resources in Yulin City was in the stage of degradation from 2010 to
2015, which also indirectly reflected the trend of ecological environment deterioration.

From 2015 to 2020, WESV in Yan’an City was still in a growth trend as a whole, and
the growth rate increased to 8.56%. Only Yanchang, Ansai and Ganquan experienced
negative growth. During the same period, WESV in Yulin City increased rapidly, with an
overall increasing rate of 15.77%, and 75% of the counties in the jurisdiction were on the
rise, mainly due to the low value of WESV in 2015, which showed that the water ecosystem
and its service functions in Yulin City were in a significant recovery situation in 2015–2020.

From the whole study period, the increasing rate of WESV in the southern part of
the study area was significantly greater than that in the northern part. In 2020, WESV in
Yan’an increased by 12.86% compared with 2010, while Yulin increased by only 6.69% in
this decade.
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Figure 2. Changes of WESV among the three years in different regions.

Table 3. WESV of the typical area in the central Loess Plateau. unit: million CNY.

City County 2010 2015 2020

Yulin

Yuyang 866.28 1071.75 1386.48
Shenmu 3336.85 2765.08 3237.86

Fugu 1294.82 900.46 1194.77
Hengshan 589.99 686.95 811.72
Jingbian 1086.09 1070.41 1133.69
Dingbian 918.33 905.37 1036.14

Suide 264.05 249.26 235.08
Mizhi 114.52 119.55 125.89
Jiaxian 404.83 401.90 363.29
Wubu 161.24 147.49 143.38

Qingjian 340.77 309.77 317.19
Zizhou 54.41 64.33 77.94

Subtotal 9432.18 8692.32 10,063.43

Yan’an

Baota 352.40 366.65 427.71
Yanchang 215.76 333.62 302.61
Yanchuan 324.42 228.90 233.01
Zichang 92.63 101.52 117.77

Ansai 126.53 161.89 152.78
Zhidan 234.91 251.12 270.24
Wuqi 281.47 319.77 345.85

Ganquan 213.12 202.37 183.24
Fuxian 507.99 468.73 542.46

Luochuan 221.64 221.65 274.95
Yichuan 96.23 96.43 129.86

Huanglong 15.50 21.05 24.65
Huangling 255.62 280.84 310.91

Subtotal 2938.22 3054.54 3316.04

Total 12,370.42 11,746.86 13,379.48
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Table 4. Structural of WESV in 2010, 2015, 2020.

WESVs Content
2010 2015 2020

WESVs Proportion WESVs Proportion WESVs Proportion

Provisioning
Services

Water supply 1260.94 10.19% 1963.99 16.72% 3729.11 27.87%
Aquatic production 45.08 0.36% 122.14 1.04% 188.06 1.41%

Materials 22.21 0.18% 19.40 0.17% 19.00 0.14%

Regulating
Services

Hydrological regulation 9874.52 79.83% 8621.80 73.40% 8444.72 63.12%
Water Purification 536.03 4.33% 468.03 3.98% 458.41 3.43%

Climate Regulation 221.17 1.79% 193.11 1.64% 189.15 1.41%
Air Regulation 74.37 0.60% 64.93 0.55% 63.60 0.48%

Supporting
Services

Soil Conservation 89.82 0.73% 78.43 0.67% 76.82 0.57%
Biodiversity 246.28 1.99% 215.04 1.83% 210.62 1.57%

3.1.2. Variation Analysis of WESV Structural Characteristics

Table 4 and Figure 3 exhibited the changes in the value and proportion of nine subser-
vices that comprise WESV from 2010 to 2020. Among the three first-level classifications
of WESV, Regulating Services accounted for the largest proportion, but the proportion
gradually decreased from 86.55% in 2010 to 68.44% in 2020. The Provisioning Services
proportion has increased year-by-year, from 10.73% to 29.42% in the past decade.
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Figure 3. Structural changes of WESV in the typical area of the central Loess Plateau: (a) the propor-
tion of various WESV in 2010; (b) the proportion of various WESV in 2015 and (c) the proportion of
various WESV in 2020.

The Supporting Services proportion has decreased steadily, from 2.72% in 2010 to
2.14% in 2020.

In the subcategories, only the proportions of Water Supply and Food Production
have increased year-by-year, and the proportions of other ESV have decreased to varying
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degrees, which showed that the development of economy and society has caused a sharp
increase in the demand for water resources and aquatic products, and at the same time, the
regulating function of water resources has gradually weakened.

3.2. Analysis of Spatial Heterogeneity Characteristics of Each Impact Factor
3.2.1. Identification of Influencing Factors

This paper selected 12 influencing factors from two aspects of society-economy, and
natural environment. The values of NDVI, Forest and grass area, Forest and grass coverage
ratio, and Proportion of water area were directly or indirectly obtained from the Resource
and Environmental Science and Data Center, Chinese Academy of Sciences (http://www.
resdc.cn/, accessed on 2 July 2018). All other influence factors were obtained from the
statistical yearbook [45–48]. For the three different years of 2010, 2015 and 2020, the
collinearity investigation of influencing factors and the significance test between them and
the explained variables were carried out respectively, which is the first step in building a
model. The specific work was to construct models for different parameter combinations
by the OLS model in Arcgis 10.4. Then, parameters, that did not meet the criteria for
variance inflation factor (VIF) and significance tests were excluded one by one gradually.
The results (Table 5) showed that in the three years, only four influencing factors satisfy the
two conditions of being VIF < 7.5 and significant at the same time. Therefore, we selected
per capita GDP, population density, the proportion of water areas, and water consumption
as the research objects.

Table 5. Statistical test results and the selection of influencing factors.

Classification Influence Factor Unit Statistical Test Results

Social and economy

Population 104 VIF > 7.5
Population density person/km2 VIF < 7.5, significant
Urbanization rate % VIF < 7.5, no significant
Per capital GDP yuan VIF < 7.5, significant

Gross product of primary industry yuan VIF > 7.5
Water consumption 104 m3 VIF < 7.5, significant

Natural environment

Rainfall mm VIF > 7.5
NDVI / VIF > 7.5

Forest and grass area hm2 VIF > 7.5
Forest and grass coverage ratio % VIF < 7.5, no significant

Proportion of water area ‰ VIF < 7.5, significant
Area of soil erosion control hm2 VIF < 7.5, no significant

3.2.2. Effect of the GWR Model

In order to illustrate the applicability of GWR, this study first used the OLS model to
simulate. As shown in (Table 6), the R2 and Adjusted R2 of the GWR model in the three
years are larger than those of the OLS model, indicating that the simulation effect is more
accurate and representative. Meanwhile, the AICc of the GWR model is smaller than that
of the OLS model, and the difference is greater than 3.0, which demonstrated that the
GWR model is more applicable. Therefore, the GWR model can accurately explain the
relationship between WESV and each explanatory variable and the spatial heterogeneity.

Table 6. Statistical test of OLS and GWR in 2010, 2015, and 2020.

2010 2015 2020

OLS GWR OLS GWR OLS GWR

R2 0.758 0.856 0.792 0.953 0.850 0.906
Adjusted R2 0.709 0.789 0.751 0.915 0.820 0.865

AICc 377.181 373.591 364.539 351.095 365.338 362.201

126



Sustainability 2022, 14, 7169

3.2.3. Per Capita GDP

Figure 4 displayed the spatiotemporal distribution of the per capita GDP impact on
WESV. The darker the color, the greater the positive effect. In 2010 (Figure 4a) and 2020
(Figure 4c), WESV and Per Capita GDP were positively correlated. The magnitude of
the coefficient indicated that, in general, the 2020 Per Capita GDP had a stronger impact
on WESV. In 2010, the correlation relationship gradually increased from west to east,
with Huanglong, Huangling and Yanchang in the southeast, Wubao in the east and Fugu
in the northeast being the most influential. In 2020, the impact of Per Capita GDP on
WESV gradually increased from southwest to northeast, and WESV in Fugu, Shenmu and
Jia County was more sensitive to Per Capita GDP. Because Yulin is the base of energy
and chemical industry in China, the economy had developed rapidly after 2008, and the
demand for water had increased. The combined effect of the two led to changes in the
spatial distribution from 2010 to 2020. Nevertheless, in 2015 (Figure 4b), the WESV of
11 districts and counties in the northern and central parts of the study area showed a
negative correlation with Per Capita GDP, and the negative correlation effect was strongest
in the northeast. This illustrated that during the period from 2010 to 2015, the protection
of water resources and water environment in the northern region was neglected due to
the great economic development, which was consistent with the reality of the reduction of
the water area in this region. It also showed that from 2015 to 2020, the water resources
condition in the northern part of the study area and the ecological services provided had
been greatly restored.

Figure 4. Temporal and spatial distribution of the impact of Per Capita GDP on WESV in different
years: (a) 2010; (b) 2015; and (c) 2020.

3.2.4. Population Density

In a certain area, population density determines the demand for WES. Figure 5 dis-
played the spatiotemporal distribution of WESV response to Population Density. Through-
out the study period, WESV exhibited a negative correlation with population density,
and the negative correlation gradually weakened with time. From 2010 to 2015, the more
northerly the geographical location is, the more sensitive WESV is to changes in population
density. Compared with Figure 5a,b, although the overall negative correlation was slightly
enhanced, the area of region with the lowest level of negative correlation was increased. As
shown in Figure 5c, the spatial distribution pattern of the impact of population density on
WESV had fundamentally changed in 2020, and the coefficient increased from the southeast
to the outside. The larger the coefficient, the weaker the negative correlation.
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Figure 5. Temporal and spatial distribution of the impact of Population Density on WESV in different
years: (a) 2010; (b) 2015 and (c) 2020.

3.2.5. Proportion of Water Areas

WESV is largely determined by the water areas. The spatial distribution pattern of
the proportion of water areas affecting WESV and the temporal change of this distribution
pattern were analyzed (Figure 6). Looking at the entire study area, although the pattern
distribution has changed, all coefficients showed that the proportion of water area has a
positive impact on WESV. As shown in Figure 6c, the impact pattern in 2010 is that the
degree of impact decreased from north to south. In 2015, the impact pattern evolved into
that population density had the lowest impact on the southeastern region, and gradually
increased in the west and north directions. In 2020, the gravity center of the impact
continued to shift eastward, showing the phenomenon that the west was large and the east
was small. The two counties with the least impact appeared in Shenmu and Fugu in the
northeast, and these two districts and counties belonged to the most affected areas in 2010
and 2015.

Figure 6. Temporal and spatial distribution of the impact of Proportion of Water Areas on WESV in
different years: (a) 2010; (b) 2015 and (c) 2020.
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3.2.6. Water Consumption

Water consumption is a key factor affecting the service value of Water Supply, and
it is also the most direct manifestation of the ecological service value of water resources.
Figure 7 exhibited the change in the spatiotemporal distribution of water consumption
affecting the degree of WESV and showed that there is a positive correlation between
water consumption and WESV. In 2010, the correlation coefficient between WESV and
water consumption in the study area showed an increasing state from west to east. In
2015, the degree of influence showed a circular increase from the western to the eastern
region (Figure 7b). The increase in the value range of the coefficient indicated that the
differences between districts and counties were expanding. WESV in the southern region
was gradually affected by changes in water consumption. With the passage of time, in 2020
(Figure 7c), the spatial distribution of WESV affected by water consumption had a strong
regularity, decreasing in a stepwise manner from south to north. However, the coefficient
ranges were less discrete.

Figure 7. Temporal and spatial distribution of the impact of Water Consumption on WESV in different
years: (a) 2010; (b) 2015 and (c) 2020.

4. Discussion

4.1. Necessity to Assessing WESV

The significance of evaluating the value of ecosystem services is to better manage
the ecological environment and natural resources to achieve sustainable development.
The water issue is prominent today, so it is more practical to discuss the value of water
resources ecosystem services. In China, the value of ecosystem services is always in the
form of the upper limit of the ecological protection compensation standard. The water
ecosystem services value is often calculated as part of a comprehensive ecosystem service
value and is rarely discussed in isolation. Even in the basin ecological compensation, only
the fluctuation of the direct use value caused by the change of water quantity is calculated,
and how the ecosystem service value of water resources including groundwater changes is
not fully explored. In 2019, the ecological protection and high-quality development of the
Yellow River Basin was established as one of China’s major national strategies. Ecological
compensation is one of the key tasks of the strategy. The Loess Plateau, located in the
middle reaches of the Yellow River, is the main source of sediment in the Yellow River. The
region has scarce water resources, a large population, and an urgent need for development.
Hence, from the perspective of the integrity of water resources, this study selects typical
regions to assess WESV and analyzes the temporal and spatial variation characteristics of
WESV, which can provide a basis for the ecological compensation development.
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4.2. The Spatiotemporal Distribution of WESV Response to Different Influencing Factors

Previous studies have shown that the value of water resources is affected by multiple
factors, such as water quantity, water quality, use of water resources, economic develop-
ment, and educational level of residents [59,60].

With the deepening of relevant research, the water resources value has been extended
to the value of ecosystem services that water resources can provide for human well-being.
Correspondingly, WSVE is also affected by economic, social, natural and cultural factors.
Many researches have explored the mechanism by which ESV is affected by various driving
factors, including land use change, socioeconomic development indicators, and human
acceptance willingness. Furthermore, the distribution characteristics of the sensitivity of
ESV to various influencing factors at different temporal and spatial scales were obtained.
WESV is an important part of ESV and is also affected by various factors. As mentioned
above, the extent to which WESV is affected by external factors should be studied separately.

With the rapid economic development and the sharp expansion of cities, the differences
between different regions in natural resources, economy, society and culture are gradually
increasing. In this study, the central part of the Loess Plateau was selected as the research
area, and four main influencing factors were selected. The GWR model was used to analyze
the influence of per capita GDP, population density, the proportion of water areas, and
water consumption on WESV in different regions.

Per Capita GDP is an important parameter to measure the development degree of
a region. The rise in prices and the massive consumption of water resources brought
about by economic development will lead to an increase in WESV. Meanwhile, WESV will
greatly decreased because of the ecological degradation caused by development, that is,
the reduction in water area. Therefore, the relationship between water conservation and
economic development should be balanced. The effect of per capita GDP on ESV was
confirmed by Song F. [61] in a study on the value of wetland ecosystem services. Dai X.
concluded that per capita GDP was negatively correlated with ESV in Chengdu [62]. As
can be seen from Figure 4, per capita GDP showed time instability. The study area has
undergone a process of environmental damage and recovery during a 10-year development
period, which is consistent with the process in China. During 2015–2020, the construction of
ecological civilization has been raised to a new level. At last, a pattern in which the degree
of economic development roughly matches WESV is formed. Many studies have found
that per capita GDP has an unstable impact on ESV, by influencing the level of awareness,
willingness to protect the environment, and investment in environmental protection [63–65].

It is generally believed that the increase in population density is accompanied by the
expansion of human activity areas, which will encroach on other land-use types. The water
area is also experiencing depletion of rivers and lakes due to the massive depletion of
surface water while the water area was occupied. Under the dual effect of the two, WESV is
bound to decrease, which also explains the negative correlation between population density
and WESV. It was confirmed in Chen Y.’s study of the relationship between population
density and agro-ecosystem services [66]. Jiang Z. also obtained a consistent conclusion in
his study of the South Four Lakes that population density was negatively correlated with
Esv [67]. In recent years, the population growth rate in the study area has slowed down as
in the whole country. WESV is less sensitive to population density.

In the same region, WESV will increase with the increase in water area, which can
also be explained by the calculation method adopted in this study. The equivalent factor
method is to calculate the corresponding ESV according to the type of land use. Figure 6
showed that the proportion of water area has the greatest influence on WESV. During
the initial stage of the study, the drier regions in the north were more sensitive. With the
comprehensive management of the Mu Us Desert, the environment in the northern region
has been gradually improved, and the scarcity of water resources and the vulnerability of
the water environment have been alleviated. The center of influence then transferred to the
west, where the pace of governance was relatively slow.
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In 2010 and 2015, the impact of water consumption on WESV had a certain regularity
in space, but the spatial instability that occurs cannot be ignored. Figure 7a,b can well
demonstrate this phenomenon. From 2015 to 2020, the state strictly controlled the regional
water consumption, and the strictest water resources management system was success-
fully implemented locally [68], which well explained the phenomenon that the spatial
distribution pattern in 2020 was more regular.

There is spatial heterogeneity in the sensitivity of WESV to explanatory variables.
Using the GWR model can more clearly show the spatial pattern of the influence degree
and its evolution trend over time.

4.3. Limitations

Based on the water area obtained from remote sensing image statistics and the water
consumption obtained from statistical data, this study proposed a method to quickly calcu-
late WESV and analyze the temporal and spatial distribution of driving factors. However,
the impact of water quality on WESV does not depend on water consumption or water
area. Deterioration of water quality not only reduces the quality of services provided by the
water resource but also incurs additional remediation costs [69]. This study did not include
water quality as the basic data in the WESV assessment for three reasons. First, different
types of WESVs have different sensitivity to water quality, and its mechanism of action and
degree of influence are not clear, which will cause uncertainty in the calculation of WESV.
Second, the equivalent factor method used in this paper is calculated from the ecological
service value and the economic value of grain, and the output of grain is affected by water
quality. That is to say, this study considered the impact of water quality on WESV to a
certain extent. Third, the spatial and temporal scales of this study determined that water
quality will not have an essential impact on WESV. In space, the county-level administrative
region is the smallest research unit; in terms of time, a year is the minimum span of time.
From this point of view, the water quality in the region is relatively stable, and this is also
verified by the water quality data released by the environmental department. Therefore,
the WESV calculated in this study is still representative and reliable without considering
water quality.

5. Conclusions

In this study, taking a typical area in the central Loess Plateau as the study area,
WESV was explored and assessed, and the spatiotemporal relationship between WESV and
driving factors was analyzed. The conclusions obtained are as follows:

(1) Considering surface water and groundwater as a whole, a WESV calculation method
based on multi-method fusion of multiple data sources such as remote sensing images
is proposed.

(2) In total, the WESV in 2020 is 8.16% higher than that in 2010. However, during the study
period, the WESV in the typical area of the central Loess Plateau experienced a process
of first decreasing and then increasing. The main factor leading to this phenomenon
was that the WESV of Yulin City in the north of the study area decreased by 7.84% in
2015 compared with 2010. From the perspective of the WESV composition structure,
the proportion of regulating services has decreased by 18.11% in the past 10 years, but
its proportion is still the largest; the proportion of provisioning services has increased
year by year to 29.42%; the proportion of supporting services has decreased steadily,
from 2.72% in 2010 to 2.14% in 2020.

(3) Considering the spatial heterogeneity, the GWR model has better applicability. Among
the four influencing factors, the proportion of water area and water consumption
showed a positive correlation with WESV throughout the study period. Population
density is negatively correlated with WESV. Per capita GDP was positively correlated
with WESV in both 2010 and 2020. In 2015, there was a negative correlation between
per capita GDP and WESV in the northern and western districts and counties of the
study area.
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(4) With the passage of time, the spatial distribution pattern of the influence of the four
factors on WESV has changed, and the evolution directions are different. The response
degree of WESV to per capita GDP has evolved gradually from low in the west and
high in the east to low in the southwest and high in the northeast, and the laddering
nature is stronger. The water area plays a leading role in the size of WESV, and the
center of gravity of the influence of the water area proportion shifts from the north
to the west, with a strong decreasing law. The distribution of the influence of water
consumption on WESV has experienced three evolutionary stages: small in the west
and large in the east, increases in a circular shape from the west to the outside, small
in the north and large in the south.
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Abstract: Research on the Yellow River Basin’s virtual water is not only beneficial for rational water
resource regulation and allocation, but it is also a crucial means of relieving the pressures of a shortage
of water resources. The water stress index and pull coefficient have been introduced to calculate
the implied virtual water from intraregional and interregional trade in the Yellow River Basin on
the basis of a multi-regional input–output model; a systematic study of virtual water flow has been
conducted. The analysis illustrated that: (1) Agriculture is the leading sector in terms of virtual
water input and output among all provinces in the Yellow River Basin, which explains the high
usage. Therefore, it is important to note that the agricultural sector needs to improve its water
efficiency. In addition to agriculture, virtual water is mainly exported through supply companies in
the upper reaches; the middle reaches mainly output services and the transportation industry, and the
lower reaches mainly output to the manufacturing industry. Significant differences exist in the pull
coefficients of the same sectors in different provinces (regions). The average pull coefficients of the
manufacturing, mining, and construction industries are large, so it is necessary to formulate stricter
water use policies. (2) The whole basin is in a state of virtual net water input, that is, throughout
the region. The Henan, Shandong, Shanxi, Shaanxi, and Qinghai Provinces, which are relatively
short of water, import virtual water to relieve local water pressures. However, in the Gansu Province
and the Ningxia Autonomous Region, where water resources are not abundant, continuous virtual
water output will exacerbate the local resource shortage. (3) The Yellow River Basin’s virtual water
resources have obvious geographical distribution characteristics. The cross-provincial trade volume
in the downstream area is high; the virtual water trade volume in the upstream area is low, as it
is in the midstream and downstream areas; the trade relationship is insufficient. The Henan and
Shandong Provinces are located in the dominant flow direction of Yellow River Basin’s virtual water,
while Gansu and Inner Mongolia are at the major water sources. Trade exchanges between the
midstream and downstream and the upstream should be strengthened. Therefore, the utilization of
water resources should be planned nationwide to reduce water pressures, and policymakers should
improve the performance of agricultural water use within the Yellow River Basin and change the
main trade industries according to the resource advantages and water resources situation of each
of them.

Keywords: virtual water flow; multiregional input–output model; pull index; water stress index;
Yellow River Basin

1. Introduction

Water is not only a necessary and irreplaceable resource for social and economic devel-
opment [1–3], but it is also a vital element of the environment, essential for global sustain-
able development [4–6]. Water resources mainly refer to freshwater resources on land [5,7],
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with the total amount of freshwater available for human use accounting for only 0.3%
of all freshwater. Since the 1990s, global water resources have been deteriorating [8–10].
About 1.5 billion people, accounting for 40% of the global population, in 80 countries and
regions are suffering from a shortage of freshwater [11,12], and about 300 million from
26 countries are in an extreme water-shortage state [13–15]. Agricultural development
will be especially hindered, and world food security will be compromised as a result of
water shortages [16,17]. Globally, industrial water consumes approximately 20% of the
total freshwater [18]; the shortage of water resources may lead to industrial shutdowns and
limit production [19]. In addition, the destruction of ecosystems and biodiversity due to
the water crisis will pose serious threats to human survival [20–22].

In terms of countries with water shortages, China is one of them [23,24]. Currently,
China only possesses 6% of the global water resources [25], followed by Brazil, Russia, and
Canada [26]. Nevertheless, China has a per capita water resource of only 2300 m3 [27],
making it one of the most water-scarce countries in the world [28,29]. The unbalanced
distribution of water resources is currently one of the biggest obstacles to promoting sus-
tainable development in China [23,24]. There are significant differences in the distribution
of water resources between North and South China [30–32]. For example, the Yellow River
Basin covers an area of 795,000 km2 [33], accounting for only 44.2% of the Yangtze River
Basin [27]. At present, the per capita water resources of 6 provinces (regions) in China are
less than 500 m3, and water from the Yellow River Basin serves two-thirds of these provinces
(regions) (Ningxia Autonomous Region, Henan Province, Shanxi Province, and Shandong
Province) [34]; the shortage of water resources has become a major restricting factor for the
Yellow River Basin’s high-quality development [35,36], posing quite a severe challenge to
the construction of an ecological civilization and regional sustainable development [37,38].
The Yellow River Basin provides important water-resource support for China’s granary
and national energy security, and it is tasked with supplying water to Hebei, Tianjin, the
Jiaodong Peninsula, and other basins. The Yellow River Basin, which accounts for 2% of
the river runoff in China, supports the water demands of 12% of the population and 17%
of the arable land in China, and it plays a decisive role in the overall economic and social
development. Therefore, quantifying the flow laws and operation trends of water resources
used in economy and trade will have important theoretical value, and enhancing the Yellow
River Basin’s intensive water usage is of practical significance [39–41], as is promoting its
high-quality development in consideration of the water-resources carrying volume [42,43].

To better broaden the field of water research and find solutions for water scarcity
in arid regions, Allen [44] proposed the concept of virtual water in 1993. The concept of
virtual water illustrates that water resources, as a whole, required in various productions
reflect the real quantity of resources in various economic production activities [44]. Virtual
water has become one of the major methods for investigating regional water-resource
issues [45]. Currently, the main method for studying virtual water is the input–output
method, which can analyze trade and flows in a wide range of industries, and it is widely
used by researchers globally [46–48]. Research on virtual water has multiple scales. First,
the calculation model of trade and usage is established through the method of input and
output, and then the volume of virtual water in any industrial sector is calculated [49,50].
Cegar [51] utilized the model discussed in this research to find both the indirect and the
direct volumes of virtual water in the economy of Croatia; the water volume mainly relies
on the processes of power generation and the utilization of the power processing output,
along with the chemical and petroleum sectors. Gkatsikos and Mattas [52] analyzed water
scarcity in Mediterranean countries and found that the agricultural sector dominated the
regional virtual water flux. By analyzing the water usage of each link in commodity supply
in China, Houyin et al. [53] found that the industrial sector was the core of indirect water
usage. In regard to the continuous input and output table of Liaoning Province from 2012
to 2018, Zhang et al. [54] illustrated that the outflow sector of virtual water in Liaoning
Province was mainly concentrated on primary and tertiary employment. Yang et al. [55]
and Fu et al. [56] utilized this model to investigate the virtual water trade between the
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Tarim River Basin and Hubei Province in China, finding that the volume used of virtual
water in the primary industry is much higher [32]. Zhang et al. [57] calculated both the
direct and total water input coefficients in Inner Mongolia in 2007, 2012, and 2015. The
research concluded that the direct and primary, secondary and tertiary total water input
coefficients of the industries show a downward trend, indicating that the tertiary industry’s
efficiency is constantly improving. Second, with the help of an input–output multi-regional
model, the virtual water flux is combined with the economic relations among regions, so
as to calculate the flow direction and usage of virtual water throughout all the regions.
Islam et al. [58] conducted a multi-regional input and output analysis of virtual and direct
water in 5 Australian capital cities and their surrounding areas, showing that the virtual
part from outside the Australian cities boundary was nearly 20 times that from inside
the urban boundary. Qasemipour et al. [59] assessed Iran’s virtual water flux via a multi-
regional input–output framework (MRIO). The results showed that there was no shortage
of water resources in the northern countries, and virtual water is imported through the
trade in various products, while areas with serious water shortages are net exporters of
virtual water. As pointed out by Dong et al. [60], Chen et al. [61], and Wang and Chen [62],
virtual water in China presents a flow pattern from the inland to the coastal areas, as
well as from the underdeveloped to the developed areas. Based on the analysis of water
trade between provinces and interprovincial flows in Northeast China, Zhang et al. [63]
suggested that Liaoning and Jilin Provinces have almost scarce water resources, and other
regions have the highest cumulative risk scores of virtual water-trade spillovers compared
with Liaoning Province. Third, with the increasing frequency of economic activities, virtual
water flow also has had a certain impact on the utilization of water resources. Some
scholars combine virtual water with water-resource utilization to study virtual water.
Wang et al. [64] assessed the water security in five countries in Central Asia, finding that
Tajikistan and Kyrgyzstan are relatively safe in terms of quantitative water-resource security,
while Uzbekistan is at risk. Zhang et al. [65] analyzed and calculated water-resource usage
efficiency in the Aral Sea region from 2000 to 2014. The results demonstrated that the Aral
Sea’s water region dropped by 60.28% from the original 28,119 m2 over those 15 years.
Through the accounting of virtual water in some areas of China, Zheng et al. [66] and
Wang et al. [67] found that the utilization structure of water resources in the study area
was unreasonable, and the utilization efficiency of water resources needed to be improved.
Other scholars have also conducted investigations from the perspective of water resource
pressures. For example, Rosales-Asensio E. et al. [68] noted the fact that the restrictions on
water resources in the Canary Islands of Spain led to the over-exploitation of aquifers and
wells, leading to the deterioration of water resources and the environment. De O et al. [9]
found that, due to the expansion of irrigation areas and urban populations in the Rio Verde
Grande Basin, Brazil, the availability of water resources was low, causing water-resource
conflicts to be triggered. Gohar A. et al. [69] studied the groundwater resources in Barbados
and concluded that, in order to protect the sustainability of aquifers, it was necessary
to formulate policies to restrict pumping, while economic welfare would be reduced
by a certain amount in a short time. The Chinese mainland, as the research area, was
comprehensively evaluated for its regional water-resource pressures using virtual water
flow by Sun et al. [70]. The results showed that the northeast and the Huang-Huai-Hai
regions in China are the largest producers of food and the biggest exporters of virtual water,
and the pressure of resource shortages is generally serious. Liu et al. [71] analyzed a water
pressure index of 11 administrative regions from 2000 to 2013, including Hebei Province,
China, where the demand and supply are in serious conflict. The results show that water
stress is mainly manifested at three levels: high, medium, and low. The aforementioned
studies generally argue that the shortage of water resources has become the main problem
affecting regional sustainable development.

According to the analysis above, it can be seen that: (1) With regard to virtual water, the
majority of the calculations focus on the use of a single regional or interprovincial industrial
sector, while flows are less often studied from a regional or industrial-sector perspective;
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(2) Some studies focus on the fair distribution of water resources across regions, but they fail
to fully combine the flow of virtual water with water resource management; (3) The research
on key economic regions is not deep enough, especially those with serious shortages. Most
studies focus on the virtual water in a single province in a basin; however, only a few
studies have investigated the flow of virtual water within and between the Yellow River’s
regions. The Belt and Road, the important node and the trade link between the Yellow
River and China, is gradually strengthening under the current situation of double-cycle
development in China. It is of great significance for water resource management strategy
to analyze and study the virtual flow pattern implied by the Yellow River Basin’s internal
and external trade.

To sum up, this paper takes the Yellow River regions as the object of this research,
along with the interregional input and output data of a total of 31 provinces (municipalities
and autonomous regions) domestically in 2015 and the water-usage data of 42 industrial
sectors, constructs a multi-regional input–output accounting framework of the Yellow River
Basin, and calculates the volume of virtual water trade within and between regions of the
Yellow River Basin, respectively. Moreover, the pull coefficient and water stress index are
introduced to further explore the coordination between the virtual water trade volume
and local resource carrying capacity in the Yellow River region, as well as providing more-
feasible policy suggestions for the management of the Yellow River region’s water resources.

In contrast to previous studies, the innovations of this paper are as follows: (1) Virtual
water flow is discussed from the perspective of internal and external regions and sectors,
which presents a theoretical basis for the formulation of systematic and rational regional
trade policies and industrial water policies; (2) The introduction of the water stress index
and pull coefficient to further investigate the dependence of the studied subject implied by
regional trade on water resources locally and the tie between various sectors have practical
significance for regions and sectors to formulate reasonable water-resource policies. This
study provides a systematic and reasonable industrial and trade policy framework for
optimizing the Yellow River region’s water resource allocations, promoting the protection
of the aquatic ecological environment and alleviating its resource pressures.

The rest of the article is structured as follows: Section 2 introduces the research field,
including the results and a virtual water analysis of an accounting framework regarding
multi-regional input–output data and data sources pertaining to the Yellow River Basin.
Section 3 presents the results and analysis. Section 4 puts forward a discussion, and
suggestions are made in the conclusion.

2. Methodology and Materials

2.1. Study Region

The Yellow River region covers seven provinces and two autonomous regions, includ-
ing the Shandong, Henan, Qinghai, Gansu, Sichuan, Shanxi, and Shaanxi Provinces, as well
as the Ningxia and Inner Mongolia Autonomous Regions. It is one of the largest economic
comprehensive zones in northern China [72,73]. According to the characteristics of the
Yellow River Basin, the nine provinces are divided into three regions: upstream, midstream,
and downstream [36,38,39] (Figure 1).

A total of 18.63% of the total domestic water resources came from the Yellow River
Basin in 2019, and China’s Yellow River Basin GDP accounted for 25.08% nationally. The
total quantity of water resources is basically balanced with the level of economic devel-
opment (Table 1). Yet, economic development and water resources in the Yellow River
Basin lack coordination. Upstream resources account for 82.32% of the basin’s total, while
the GDP accounts for only 32.04%; the total quantity of downstream water-resource usage
accounts for 6.72% of the Yellow River Basin, but it brings more than 50% of the GDP of
the whole basin. In terms of total water usage, excepting Sichuan Province, the provinces
(regions) located in the Yellow River Basin’s upper and middle reaches do not exceed
20 billion m3, and the downstream is much lower than the upstream. Therefore, encour-
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aging the rational movement of water between the Yellow River Basin and the rest of the
world is of paramount importance.

Figure 1. Locations of the upper, middle, and lower reaches of the Yellow River Basin (source:
Authors’ own calculation/conception, using ArcGIS 10.7 software (Environmental Systems Research
Institute, Inc., Taiyuan, China)).

Table 1. Water Resources and economic development of the Yellow River Basin in 2019 (source: China
Statistical Yearbook (2020) and China Water Resources Bulletin (2020).

Province (Region)
Total Water

Resources/100 Million m3
Total Water

Consumption/100 Million m3
GDP/100 Million

Yuan

Upper reaches

Qinghai 919.30 26.20 2965.95
Gansu 325.90 110.00 8718.30

Ningxia 12.60 69.90 3748.48
Sichuan 2748.90 252.40 46,615.82

Inner Mongolia 447.90 190.90 17,212.53

Middle reaches
Shanxi 97.30 76.00 17,026.68
Shaanxi 495.30 92.60 25,793.17

Lower reaches
Shandong 195.20 225.30 71,067.53

Henan 168.60 237.80 54,259.20
The Yellow River Basin 5411.00 1281.10 247,407.66

Whole country 29,041.00 6021.20 986,515.20
Percentage of Yellow River Basin

in China 18.63% 21.28% 25.08%

Percentage of upper reaches in the
Yellow River Basin 82.32% 50.69% 32.04%

Percentage of middle reaches in the
Yellow River Basin 10.95% 13.16% 17.31%

Percentage of lower reaches in the
Yellow River Basin 6.72% 36.15% 50.66%

2.2. Multi-Regional Input–Output Virtual Water Accounting Framework of the Yellow River Basin
2.2.1. Single-Region Input–Output Model

Since Leontief [74] proposed the input–output method, scholars globally have widely
used this method due to its ability to analyze the direct and indirect usage of virtual water
in various industrial sectors and regions. This chart illustrates the direct and indirect
relationships between different regions and industries [75–77]. According to the input–
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output method, there is a balance between the output and usage of an economic system
as follows: ⎡

⎢⎢⎢⎣
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where xr
i is the total output of sector i in region r, zij is the intermediate input provided by

sector i to sector j, and fi is the final use of sector i.
The direct input coefficient aij reflects the number of products and/or services directly

consumed by each product per unit of complete output in the process and operation process
of a product sector. Its calculation formula is:

aij = zij/xj (2)

where xj is the total output of sector j.
Therefore, Equation (1) can be rewritten as:
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2.2.2. Modeling of Yellow River Basin Inputs and Outputs on a Multi-Regional Scale

As is known to all, the multi-regional input–output method is able to connect the
economies inside and outside a region with virtual water flow [49]. Therefore, in this
paper, the calculation of provinces’ water usage was performed based on a multi-regional
input–output method of analysis (regions) in the Yellow River region. According to the flow
direction and geographical location characteristics of the Yellow River region, this paper
defines the Yellow River region’s 9 provinces (regions) as local and the other 22 provinces
(areas and cities) in China as foreign, leading to the construction of a multi-regional input–
output table of the Yellow River Basin in 2015 (Table 2), which includes 10 regions and
42 industrial sectors in each region. Figure 2 is the input–output flow chart of this study.

Table 2 shows the multi-regional inputs and outputs of the Yellow River Basin; the
balance of Regional r economic activities is:

xr
i =

10

∑
s=1

42

∑
j=1

ars
ij xs

j +
10

∑
s=1

f rs
i + er

i (4)

where xr
i is the total output of sector i in region r, ars

ij is the direct input coefficient, which
indicates the direct input of sector i in region r to the production unit product of sector s in
region j. f rs

i is the input of sector i in region r to the final demand of region s, and er
i is the

export volume of sector i in region r.
Equation (4) is expressed by the matrix as:

Xr = Ars + Frs + Er (5)

Additionally, Equation (5) is appropriately reformed to obtain the multi-regional
input–output model of the Yellow River Basin:

Xr = (I − Ars)−1(Frs + Er) = L(Frs + Er) (6)
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Among them,

L = (I − Ars)−1 =

⎡
⎢⎢⎢⎣

q11 q12 . . . q1,10

q21 q22 . . . q2,10

...
...

. . .
...

q10,1 q10,2 . . . q10,10

⎤
⎥⎥⎥⎦ (7)

where Xr is the total output matrix, I represents the identity matrix, and Ars means the
direct input coefficient matrix. Frs and Er mean the end-use matrix and export matrix,
respectively. L = (I − Ars)−1 is the Leontief inverse matrix, and the element lrs

ij in the
matrix donates the total output per unit product provided by sector i in region r to sector j
in region s, where the regional direct water uses coefficient matrix Y, expressed as:

Y =
[
y1, y2, · · · , y10

]
(8)

The complete water usage coefficient matrix Q is:

Q = YL = Y(I − Ars)−1 =

⎡
⎢⎢⎢⎣

q11 q12 . . . q1,10

q21 q22 . . . q2,10

...
...

. . .
...

q10,1 q10,2 . . . q10,10

⎤
⎥⎥⎥⎦ (9)

where the element qrs is the total usage of r area consumed by each sector in s area.

Figure 2. Model structure of virtual-flow-driving mechanism in the Yellow River Basin.

141



Int. J. Environ. Res. Public Health 2022, 19, 7345

Table 2. Summary table of multi-regional input–output in the Yellow River Basin.

Item

Intermediate Use Final Demand

Export
Total

Output

Qinghai . . . Henan
Other

Regions Qinghai
. . .

Henan

Other
RegionsSector1

. . .
Sector42

. . .
Sector1

. . .
Sector42

Sector1
. . .

Sector42

Intermediate
input

Qinghai
Sector1

z1,1
1,1

. . .
z1,1

1,42

. . .
z1,9

1,1
. . .

z1,9
1,42

z1,10
1,1
. . .

z1,10
1,42

f 1
1,1

. . .
f 9
1,1

f 1,10
1 e1

1 X1
1

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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z1,1

42,1
. . .

z1,1
42,42

. . .
z1,9

42,1
. . .

z1,9
42,42

z1,10
42,1
. . .

z1,10
42,42

f 1,1
42
. . .
f 1,9
42

f 1,10
42 e1

42 X1
42

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Henan
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z9,1
1,1

. . .
z9,1

1,42

. . .
z9,9

1,1
. . .

z9,9
1,42

z9,10
1,1
. . .

z9,10
1,42

f 9,1
1
. . .
f 9,9
1

f 9,10
1 e9

1 X9
1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Sector42
z9,1

42,1
. . .

z9,1
42,42

. . .
z9,9

42,1
. . .

z9,9
42,42

z1,10
42,1
. . .

z9,10
42,42

f 9,1
42
. . .
f 9,9
42

f 9,10
42 e9

42 X9
42

2.2.3. Estimation of Virtual Water Trade Flow

According to the multi-regional input–output model of the Yellow River Basin, the
virtual water trade flow among the nine provinces (regions) can be calculated as follows:

VWTrs =
9
Σ

i=1
qis f is (10)

The virtual water trade flow between the 9 provinces (regions) in the Yellow River
region and other places is:

VWIS =
10
Σ

i=1
q10,i f is (11)

VWOr =
10
Σ

i=1
qri f i,10 (12)

where VWTrs is the virtual water trade flow from region r to region s in the Yellow River
region, VWTs is the virtual water input from other regions from the provinces in this region,
and VWOr is the virtual water output of provinces in this region to other regions.

2.2.4. Water Stress Index and Pull Coefficient

This study aims to determine the relationship between virtual water implied by
regional trade and local water-resource carrying capacity in the Yellow River region. Based
on the research results of Pfister et al. [78], this paper introduces the water stress index,
indicating the shortage of water resources in this region, and then analyzes the external
dependence of virtual water in each region. Synchronously, this research incorporated the
research of Hong et al. [79] and Boero R. et al. [80], using the pull coefficient to explain the
influence of the increase of water usage in a single sector on the water usage among all
sectors to reveal the virtual water flow law among all sectors in various regions.

The water stress index (WSI) is derived from the ratio of total freshwater extraction
to total available freshwater in this region annually [78,81]. This index can measure the
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degree of the lack of water in a region, thus measuring the external dependence of water
usage in the region [37,78,81]. The calculation formula is:

WSI =
1

1 + e−64∗WTA((1/0.01)−1)
(13)

The annual freshwater extraction is measured by the ratio of the WTA to the annual
freshwater supply of different types of users (industry, agriculture, and households) in the
region. It can be seen that WSI = [0, 1]. Referring to the research results of Pfister et al. [80],
when WSI is 0, it means there is no water stress, which indicates that water resources are
abundant; when WSI is 1, that is, the maximum water stress, it means that there is a serious
shortage of water resources. A water stress threshold of 0.5 is considered to be moderate.

The pull coefficient pr
i refers to the increased degree of water usage by all sectors when

the unit water usage of an industrial sector increases, which can be employed to reflect the
contribution degree of the water usage of a sector to the increase in the water usage of the
whole society. The calculation is as follows:

pr
i = qr

i /yr
i (14)

where, pr
i represents the pull coefficient of i industrial sector in region r, qr

i , and yr
i represents

the coefficient of total water usage and direct water usage coefficient of i industrial sector in
region r, respectively. It can be seen that, when pr

i ≥ 1, the closer the economic ties between
sectors are, and the closer the pull coefficient is to 1, and vice versa, the greater the pull
coefficient is.

2.3. Data Source and Processing

The input–output data of the Yellow River Basin applied in this paper are drawn from
the interregional input and output tables (42 sectors) of a total of 31 provinces (autonomous
regions and municipalities) domestically in 2015, as compiled by China Carbon Emission
Database [82]. The entire water usage dataset, GDP data, and the actual water usage of the
agricultural sector of each province (region) are all taken from China Statistical Yearbook.
The actual usage data of the industrial sector comes from the 2008 China Economic Census
Yearbook. Due to the age of the data, this paper takes the GDP growth rate from 2008
to 2015 as the growth rate of actual water usage, and obtains the water usage reported
in the China Statistical Yearbook in 2016. Considering the total industrial water usage of
each province (region), the total industrial water usage of each province (region) in 2015
was calculated [83–86].

In terms of the provincial (regional) water-resources bulletin, the actual water usage
of the service industry is the urban public water usage in each province. The water usage
of each subdivided service-industry sector is based on a proportion of output value along
with the domestic water usage of the residents [87,88]. According to the water usage data
of the actual industrial sectors of each province (region) in the Yellow River region and the
attributes of every industrial sector, and referring to the sector consolidation methods of
scholars such as Shi et al. [89] and Chen et al. [90], the 42 sectors in the input–output table
have been consolidated into 7 sectors (Table 3).

Table 3. Input–output table: Detailed list of 42 combined sectors.

Combined 7 Sectors Department Abbreviation

Agriculture AG
Mining MI

Water supply WA
Electricity and gas supply EL

Manufacturing MA
Construction CO

Services and transport ST
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3. Results and Analysis

3.1. Virtual Water Usage of Different Sectors in the Yellow River Basin
3.1.1. Analysis of Sectoral Water Usage Coefficient

Figure 3 shows the composition of the complete water usage coefficient of 7 industrial
sectors in the lower, middle, and upper reaches of the Yellow River. Within the Yellow
River Basin, it can be seen that certain differences exist in the total water usage coefficients
of a variety of industrial sectors. The total water usage coefficient is the largest in the
upstream area and the smallest in the downstream area. The combined upstream, middle,
and downstream water usage coefficient of the water supply industry turns out to be the
highest, followed by that of agriculture. Specifically, the complete water usage coefficient
of the water supply in the upper reach’s industry is more than 1800 m3/10,000 RMB,
while that of agriculture in the upper and middle reaches is less than 1/5 of the water
supply industry. The complete water usage coefficient of other industrial sectors is small,
not exceeding 150 m3/10,000 RMB. In the upper reaches, the agricultural water usage
coefficient is the highest, close to 400 m3/10,000 RMB, while those of the middle and lower
reaches are less than 100 m3/10,000 RMB, indicating that in the industrial structure of the
Yellow River Basin, the upper reaches pay more attention to agricultural development than
the middle and lower reaches.

Figure 3. Water consumption coefficient in upper, middle, and lower reaches.

3.1.2. Volume of Trade in the Sector of Virtual Water

In all provinces (regions) of the Yellow River region, the virtual water input and
output of the industrial sectors was calculated (Figures 4 and 5), and the water flow varied
greatly among sectors. First of all, a substantial amount of virtual water is input into and
output from agricultural production within the region. It is the largest industrial sector in
input and output, accounting for more than 46%, which also determines that the Yellow
River Basin is in a state of serious water usage and low regional GDP. The virtual water
inputs of the manufacturing, electrical supply, water supply, construction, and service and
transportation sectors also account for a large proportion.

Nevertheless, except for manufacturing and service and transportation, there is no
corresponding virtual water volume output, indicating that the utilization ratio of virtual
water in these sectors is low and the utilization structure of water resources is unreasonable.
Secondly, the proportion of the mining industry sector in virtual water input and output is

144



Int. J. Environ. Res. Public Health 2022, 19, 7345

not high, which is related to the concept of ecological protection and transformation and
development strongly advocated by the state in recent years.

Figure 4. Trade structure of virtual water (%): (a) indicates the percentage of industrial sector output;
and (b) indicates the percentage of industrial sector input.

Figure 5. Pull Coefficient of different industrial sectors in different regions.

In terms of regions, in the upstream region, Sichuan Province is the only province
whose agricultural virtual water output accounts for less than 70%, only 48.10% of the
total, and water resources can be efficiently utilized under favorable circumstances. The
virtual water output of the service and transportation and mining industry sectors in
Sichuan Province accounts for 19.43%, which is the highest level in the Yellow River Basin,
indicating that the tertiary industry in Sichuan Province has frequent foreign exchanges.
This phenomenon is also one of the reasons for the high GDP and abundant water re-
sources in Sichuan Province. Gansu Province is the province with the largest proportion of
agricultural output, accounting for 88.14%.

However, the high water stress index in Gansu indicates that there is extreme water
scarcity in the area. Continuing to export a large number of water-intensive products will
make water resources in Gansu even more scarce. In addition to the agricultural sector, the
virtual water input sector in Qinghai Province is mainly concentrated on the electric power,
water supply, and service and transportation industries. The total proportion of virtual
water input in these 3 sectors is 48.65%, which is slightly higher than that in the agricultural
sector. Nonetheless, the GDP of Qinghai Province is not high, demonstrating that these
sectors have an insufficient utilization of virtual water. In the middle reaches, the province
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with the largest input of virtual water in the manufacturing industry is Shanxi Province,
but its sectoral virtual water output is less than the input, showing that Shanxi Province
has not effectively utilized virtual water input to develop the manufacturing industry.
Simultaneously, the virtual water output of the service and transportation industries in
Shanxi Province account for a large proportion, which can continue to develop. Shaanxi’s
agricultural virtual water output also accounts for a large proportion, second only to Gansu
Province. However, Shaanxi Province has less rain and more sunshine, poor vegetation
distribution, and a poor agricultural development environment.

A large proportion of agricultural virtual water output will aggravate the lack of water
resources in Shaanxi Province, as well as destroy the ecology’s overall coordination. In
the lower reaches, Shandong Province possess the leading input of agricultural virtual
water, which is also the province with the largest input of virtual water in the agricultural
sector of the whole Yellow River Basin, indicating that most of the input virtual water in
Shandong Province is used for agriculture, which is not conducive to the development of
other sectors. However, the output of virtual water in the manufacturing and service and
transportation sectors in Shandong Province accounts for 33.17%, making it quite easy to
create a higher GDP.

3.1.3. Pull Coefficient Analysis

The pull coefficient is used to further analyze the contribution of the virtual water
of various sectors in the Yellow River region to the virtual water of the whole sector, and
subsequently evaluate the degree of connection between various sectors of the Yellow
River region’s virtual water. The pull coefficient of each industrial sector in every province
(region) of the Yellow River Basin is calculated through Formula (14) (Figure 5). As can be
seen, the agriculture and water supply sectors have the lowest pull coefficients among all of
the provinces (regions) in the Yellow River Basin, with values lower than 1.5, indicating that
the economic relationship between these sectors and other sectors is not close. The average
pull coefficients of the manufacturing, mining, and construction sectors is obviously greater
than that of other sectors, demonstrating that these three sectors have strong economic ties
with other sectors, and the increase of unit output in these sectors will require a great deal
of virtual water. From the perspective of regional differences, the pull coefficient of the
same sector in different provinces (regions) is also quite different. The pull coefficient of
the mining, manufacturing, and construction sectors in Inner Mongolia is the largest in
the whole Yellow River Basin, which is related to the coal-rich areas of Inner Mongolia.
In the future, it will be necessary to speed up the transformation of Inner Mongolia’s
resource-based economy, develop a green mining industry, and pay attention to ecological
and environmental protection. To alleviate the water shortage in this region, policymakers
ought to enhance the water efficiency of the mining industry and strengthen the virtual
water input of the manufacturing and construction industries. The pull coefficient of the
manufacturing industry in Sichuan, Shandong and Henan Provinces is also large because
these provinces mainly rely on the manufacturing industry to drive the rapid growth of the
GDP. At the same time, these provinces are virtual water export areas of the manufacturing
industry, thus the high value-added manufacturing industry should be developed. The pull
coefficient of the manufacturing industry in Ningxia and Qinghai Provinces is also relatively
large, but their GDPs lag far behind that of Shandong and Henan Provinces, indicating that
a large number of water resources are wasted in the manufacturing sectors in the Ningxia
Region and Qinghai Province. Therefore, the differences in the pull coefficients of all the
sectors in the same province (region) can be explained by the difference in the number of
employees in those sectors in terms of raw material input and production technology level.
When a sector operates in two different provinces (regions), its pull coefficient differs due
to the differences in water-use efficiency between the local and intermediate rivers.
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3.2. Regional Virtual Flow Pattern in the Yellow River Basin
3.2.1. Trade Volume of Virtual Water

The trade volume of each province (region) in the Yellow River region is calculated ac-
cording to the input–output multi-regional model of the Yellow River Basin (Figures 6–9). It
can be seen that the total input and output of virtual water in this region are 27.45 billion m3

and 18.64 billion m3, respectively, which are in a virtual water net input state, with a total
net input of 8.81 billion m3. The input of virtual water from the outside of this region is
2.61 times that of the local input, while the external virtual water flow is 1.45 times that of
this region, which leads to prominent conflicts between the demand and supply of water
resources, and that is not conducive to regional ecological balance. In general, the net
input areas importing from other places are mainly concentrated in the midstream and
downstream, and the net input virtual water accounts for 96.22% of the total net input of
virtual water, reflecting the lack of rationality of water-resource utilization in the region.
Among them, Ningxia, Gansu and Inner Mongolia are in the area of virtual water net
outflux, and the rest belong to the area of virtual water net influx.

Figure 6. Total virtual water flow of each province in the Yellow River Basin. Note: This figure only
shows the flow direction of virtual water trade flow greater than 104 m3.

Figure 7. Virtual water inflow of each province in the Yellow River Basin: (a) inflow from provinces
outside the Yellow River Basin; (b) inflow within the Yellow River Basin.
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Figure 8. Virtual water outflow of each province in the Yellow River Basin: (a) outflow into provinces
outside the Yellow River Basin; (b) outflow into the Yellow River Basin.

Figure 9. Virtual water trade of each province in the Yellow River Basin: (a) the total outflow of
virtual water; (b) the total inflow of virtual water.

3.2.2. Analysis of Virtual Water and Water-Resource Carrying Capacity

According to Formula (13), it is possible to calculate the water stress index of each
province (region) in this area. Except for Sichuan Province, which has a of WSI = 0.1, which
belongs to a region rich in water resources, the WSI of the other 8 provinces (regions) in this
region are between 0.6–1, which corresponds to regions that are seriously short of water
(Figure 10). Specifically, the WSI of Shandong and Shanxi Provinces are the maximum value
of 1, showing that the water shortage is serious, and a large amount of virtual water must
be input to alleviate the local water pressures, among which the net input of virtual water
in Shandong Province accounts for the largest proportion, and the external dependence
of virtual water is about 1/4. The WSI of Gansu and Ningxia Provinces are close to 1,
indicating that water resources are not abundant, but they output virtual water. The serious
disharmony between WSI and the virtual water trade will aggravate the shortage of local
water and further worsen the ecology. In regions with severe water stress, the lowest WSI
value is the 0.61 of Henan Province, but the net input of virtual water is second only to
Shandong Province, meaning that water resources are not fully utilized, and a large number
of water resources are wasted. There is little difference in the WSI of Inner Mongolia and
Shaanxi Province. However, Shaanxi Province is a virtual water net inflow area, which
can alleviate the pressure of insufficient local water resources. In the meanwhile, the Inner
Mongolian region should speed up its trade links with other regions to alleviate the water
pressure in this region, which would have vital practical significance for the sustainable
development of water resources and ecological protection. Sichuan Province is the only
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region in this region where the WSI is lower than 0.5, at only 0.10. Water resources in
Sichuan Province are quite abundant, but the net input virtual water accounts for 0.28%
of the virtual water. Therefore, the directors of Sichuan Province should appropriately
increase the output of virtual water, and increase trade links within and outside the region,
which is conducive to improving the water ecological balance in the region.

Figure 10. Virtual water external dependence and water stress index.

3.3. Virtual Flow Pattern in the Yellow River Basin

From the virtual water flow table of the Yellow River Basin (Figure 11), it can be seen
that the virtual water trade flow in the Yellow River Basin is closely related to geographical
location. In the upstream area, with the exception of Qingdao Province, the virtual water
output from other provinces in the Yellow River Basin is greater than the virtual water
input, which is in the net outflow area of internal virtual water. Among them, Gansu and
Inner Mongolia are the provinces with the largest net output of virtual water, and they
are the two major sources of virtual water in other provinces (regions) within the Yellow
River Basin. However, it should be noted that the WSI in Gansu Province is too high, and it
is easy to cause a water shortage and damage the ecological environment by excessively
providing virtual water to other provinces. The middle and lower reaches are virtual water
net input regions, and the virtual water net input of Shandong and Henan Provinces in the
lower reaches ranks among the top two in the region, which is consistent with the level of
economic development.

Virtual water trade between provinces in the upper reaches is not frequent, and
the province with the largest trade flow is Sichuan Province, which is conducive to its
good economic development. In the middle reaches, the trade volume of virtual water in
Shanxi and Shaanxi Provinces is less than 70 million m3, so the trade exchange needs to
be strengthened. The interprovincial virtual water-trade flow in the downstream region is
large, which is conducive to the common economic development of Shandong and Henan
Provinces. In addition to strong trade exchanges between the upper region of Sichuan and
Inner Mongolia, as well as the midstream and the upstream, the virtual water-trade flow
between other provinces in the upper reaches and the Shaanxi and Shanxi Provinces is
small, which is inconducive to economic exchanges and development.

The virtual water trade between the upstream and downstream areas mainly comes
from the virtual water output from Gansu and Inner Mongolia to Henan and Shandong
Provinces, of which the virtual water output from Gansu Province to the downstream
accounts for 63.2% of its total output. The virtual water trade exchanges in the middle and
lower reaches are also more frequent, and the virtual water flow basically flows from the
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middle reaches to the lower reaches. Therefore, it is necessary to strengthen the virtual
water trade exchange between the upper, middle, and lower reaches, and make use of the
downstream economy to drive the coordinated economic development of Qinghai, Ningxia,
Gansu, and Inner Mongolia, so as to achieve the aim of the rational utilization and common
development of water resources in all the regions and provinces of the Yellow River Basin.

Figure 11. Virtual water flow in the Yellow River Basin (100 million m3).

4. Discussion

Virtual water trade can promote economic ties between regions because the importa-
tion of virtual water will depend on the water resource endowment of export regions. With
increasingly greater implementation of the virtual water strategy, each region becomes in-
creasingly dependent on water resources in other regions [91,92]. Virtual water net import
is obviously affected by water resource endowment, and regions with good water resource
conditions tend to export virtual water to other regions [30,85]; this is also in line with the
theory of comparative advantage in trade. Our results show that the Yellow River Basin is a
virtual water net import region because the Yellow River Basin faces serious water shortage,
which also confirms that regions with poor water resources usually import virtual water to
relieve local water pressures [31]. From within the Yellow River Basin, the export status
of virtual water in Gansu Province and Ningxia Autonomous Region is in contradiction
with local water resource endowment. However, relevant studies [31,92–94] have also
shown that northern China, which is seriously short of water, still exports virtual water to
southern China through the grain trade, resulting in northern China becoming the main
export area of virtual water [95]. Therefore, the method of coordinating the management of
water resources in water-shortage areas is still an important research topic for the future.
Therefore, this paper puts forward measures for pricing and managing the water resources
in water-shortage areas, so as to stimulate the importation of water-intensive commodities
and reduce the pressures on local water resources.

The results of this study show that the unreasonable industrial structure in the Yellow
River Basin has led to the transfer of local water resources, and the agricultural sector
is the largest water-resource import and export sector (Figure 3), which is consistent
with the conclusions of relevant studies [96,97]. On the one hand, agriculture is a high
water-consumption industry [98], which consumes a lot of blue and green water resources
in the process of crop evapotranspiration [99]. Secondly, the Yellow River Basin is an
important grain production base in China. In 2020, the total grain output of the Yellow
River Basin reached 239 million tons, accounting for 35.6% of the total grain output in
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China. Farmland irrigation water consumption alone will reach about two-thirds of the
water consumption. The backwardness and lack of agricultural irrigation facilities will
further increase the consumption and waste of water resources [100]. In addition, the water
demands of various departments in a region often compete with one another, forming the
characteristics of virtual water trade between regions [72]. For example, the competition
between industrial water, service water, ecological environmental water, and agricultural
water is more prominent in the Yellow River basin where water resources are scarce. The
proportion of agriculture and water-intensive industries in the Yellow River Basin is very
high, and the phenomenon of “competing for water” between economic development
and ecological protection is very prominent, which is also consistent with the relevant
research conclusions [33,35,101]. On the other hand, from the perspective of external factors,
climate change may affect agricultural water use in various ways, especially through the
changes in temperature and precipitation and the intensification of the frequency and
degree of extreme climate events, which will significantly affect the available amount
and quality of agricultural water and thus crop-water demand. As a result, agriculture
is highly vulnerable to climatic conditions and natural disasters (such as droughts and
floods), which inevitably affect interregional food-trade and water-use plans [30,102].
Climate change will not only exacerbate water shortages, but also reduce crop yields,
thereby increasing the water footprint [103,104]. Therefore, in terms of agricultural water-
use performance management in the Yellow River Basin, combined with high standard
farmland construction, promoting large- and medium-sized irrigation areas, building
modern irrigation facilities and developing water-saving agricultural technology will
reduce water resource consumption. In addition, our recommendations include: optimizing
and adjusting the crop planting structures, determining the agricultural industrial structure
and planting structure according to local conditions, strictly controlling the planting area
of high water-consumption crops, expanding the planting proportion of water-saving and
drought-tolerant crops, selecting and promoting new varieties of drought tolerant crops,
appropriately implementing rotation fallow, actively developing rainwater harvesting and
irrigation, enhancing the capacity of water storage and moisture conservation, improving
water-use efficiency, and reducing waste.

In addition, related studies have shown that virtual water flow is closely related to
geographic distribution and economic development [105–107], which is also confirmed by
our study. The virtual water trade volume of Shandong and Henan in the lower reaches of
the Yellow River Basin is large, followed by Shanxi and Shaanxi in the middle reaches, and
the virtual water trade volume of Qinghai and Ningxia in the lower reaches is the smallest.
The advantages of opening to the outside world and strong agricultural development make
the virtual water trade volume of Shandong and Henan higher. Qinghai and Ningxia
in the downstream region are not only geographically remote, which is not conducive
to economic ties, but they also have no obvious industrial advantages. Therefore, the
momentum of cross-provincial virtual water flow between products is small. The study
also found that the virtual water trade volume of the manufacturing, electrical supply,
water supply, construction, and service and transportation industries is high, while the
virtual water trade volume of mining is low, which is closely related to the ecological
protection and “double carbon” strategic measures proposed by China in recent years.
Relevant studies also show that water for power generation is increasing year by year, and
the impact on scarce water resources in the basin is becoming more and more serious. In
addition, the manufacturing sector [78], construction sector, [108] and service sector [109]
are also key industries in the water-saving sector. Therefore, from the perspective of the
Yellow River Basin as a whole, strengthening trade links between economies can improve
water-use efficiency and optimize the water-use structure of key industries, which will be
an important way to alleviate the contradiction between the supply and demand of the
water resources of the Yellow River.

Distinguishing and calculating the virtual water flow of green water, blue water, and
gray water is helpful for accurately implementing management policy regarding water
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resources. Because calculating virtual water in this paper involves various industrial sectors
in nine regions or provinces of this region, considering the limitation of data acquisition and
the inconsistency of differential calculations, only the virtual water flow of blue water has
been calculated. The research results are important for formulating water resource policies,
but they still need to be further deepened. In addition, because the input–output table is
“competitive”, the distinction between domestic and international intermediate inputs is not
considered. Constructing a more accurate, interregional input–output table and considering
virtual water cross-border transfer in the region is the direction of further research.

5. Conclusions

5.1. Conclusions

The efficient and rational utilization of water resources is an essential part of protection
ecologically. Studying the virtual water usage and flow in water shortage areas is helpful
to obtaining an ideal water-resource allocation [110]. By constructing a multi-regional
input–output model of the Yellow River Basin, this paper calculates and analyzes the
virtual water trade and flow pattern of interregional and intraregional industrial sectors in
this region in 2015, and draws the following conclusions:

(1) The whole Yellow River region is in a net input state of virtual water. Among them,
the upstream areas—Gansu, Inner Mongolia, and Ningxia Province—are in the net
output provinces (regions), while the other six provinces belong to the virtual water
net input regions. Gansu’s virtual water input and output state is the most seri-
ously incompatible with the local water-resource carrying capacity among all the
provinces discussed.

(2) Agriculture is the largest import and export sector of all regions. In addition to
agriculture, the upstream region is sufficient in water resources. The main export
sector of virtual water is the water supply industry, and those for the middle- and
downstream regions are the services and transportation and manufacturing industries,
respectively. Obvious differences exist in the pull coefficients of the same sectors in
various provinces (regions). On the whole, the average pull coefficients of mining,
manufacturing, and construction are large. The water management of these sectors is
conducive to rapid water-resource regulation and rational utilization in this region.

(3) The virtual flow of the Yellow River Basin has obvious geographical distribution
characteristics. The trade volume of virtual water in the downstream region is large.
The volume of virtual water trade within the upper reaches is low, and the trade links
with the middle and lower reaches are insufficient. Henan and Shandong Provinces
are the main flow directions in the Yellow River Basin, and Gansu and Inner Mongolia
are the dominant virtual water sources.

5.2. Suggestions

From the perspective of planning the utilization of water resources nationwide, the
research findings suggest reducing water pressures and virtual water-flow imbalances. The
nationwide allocation of water resources and the rational use of precipitation in the territory
can not only prevent floods and droughts, but also bring a sufficient water supply to China’s
industrial and agricultural development and residents’ lives. It also has a certain value in
transportation and power generation. There is little difference between the topography of
North and South China, and water resources can be mobilized from north to south. The
Beijing–Hangzhou canal and the middle route of the South-to-North Water Transfer Project
are examples of the North–South distribution of water resources in China. In addition to
these two major projects, China can also carry out the large-scale networking of rivers,
lakes, and other water areas across the country to make them interconnected. In the case of
a flood in a certain place, the excess water could be transferred to another area with fewer
water resources. In the case of a drought in a certain place, the water resources of other
areas could be mobilized to supplement it, so as to avoid the waste of water resources and
maximize the utilization of water resources. According to the decision-making process and
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the deployment of water-resource management in China, the multi-functional properties
of water resources could be fully accomplished in the near future. Under the overall
framework of the distribution scheme of the available water supply of the Yellow River,
taking into account the ecological water demand, sediment transport volume, external
water transfer volume, and water-use structure of provinces along the Yellow River Basin,
a joint water-supply pattern of the Yangtze River and the Yellow River will be formed,
a dynamic water-distribution scheme of the Yellow River Basin will be constructed, the
water-right transfer and compensation system will be gradually improved, and the linkage
mechanism between water-use indicators and land indicators will be explored. This will
result in comprehensively coordinating the relationship between water, energy, and food;
limiting water use for fossil energy development; improving the utilization efficiency of
agricultural water resources; building a wind–water complementary power generation
system, and implementing the transmission, storage, and utilization of hydrogen energy
at normal temperatures and pressures. Ideally, water-scarce regions will import water-
intensive products to meet the production and consumption of the region, rather than
relying on local production, so as to protect the domestic water resources. In this case,
the water resources required by the whole production chain actually come from export to
import regions through interregional trade.

According to the research results mentioned above, this paper puts forward the
following suggestions in order to achieve the rational allocation of water resources:

(1) China should vigorously implement the ecological compensation policy of water
usage. Although the region is in the virtual water net input area as a whole, the
WSI of Gansu and Ningxia is high, which is seriously inconsistent with the virtual
water net output state. The utilization of water resources should be distributed
comprehensively throughout the country. By reducing the virtual water flow in
Gansu and Ningxia, the local ecological development and water resource allocation
balance can be protected. China should also appropriately increase the output of
virtual water in Sichuan and grasp the advantages of local green water resources.
Meanwhile, we recommend increasing the virtual water output from other surplus
provinces to Henan and Shandong Provinces, reducing the pressures of water outflow,
and ensuring local water safety and ecological security.

(2) All industry sectors should adhere to the principle of “determining production by
water”. The whole Yellow River Basin should develop water-saving agricultural
techniques, change the traditional mode of agricultural production, strictly control
the total water, and improve water-usage efficiency. The upper reaches of the Yellow
River Basin should enforce the technological innovation investment and water-use
efficiency, and the regional water-shortage situation should be alleviated by importing
water-intensive products to water-rich areas; The middle reaches should speed up
the transformation to a resource-based economy, develop water-saving industries,
and vigorously develop the service and transportation industry; The lower reaches
should speed up the development of high value-added manufacturing industries and
strengthen economic ties inside and outside the region.

(3) China should fully strengthen the exchanges and cooperation between the lower,
middle, and upper reaches, and actively explore the institutional mechanism of water
ecological protection. China should establish an internal, cooperative development
mechanism in this region with the goals of common economic development, water
conservation, and ecological protection. Through trade-oriented interprovincial coop-
eration, China should reduce the intermediate links of ineffective water use, make
the virtual water flow to the most needy regions and sectors, improve water sewage
efficiency, and drive economic development. China should also comprehensively
improve the interprovincial virtual water-trade flow, give full play to the economic
ties between the lower, middle, and upper reaches, and jointly realize the sustainable
development of the economy, as well as the ecological environment.

153



Int. J. Environ. Res. Public Health 2022, 19, 7345

Author Contributions: Conceptualization, X.L. and R.X.; methodology, X.L.; software, R.X.; valida-
tion, R.X. and X.L.; formal analysis, R.X.; investigation, R.X., X.L., P.G. and L.N.; data curation, W.L.;
writing—original draft preparation, R.X.; writing—review and editing, J.C. and Q.S.; visualization,
Q.S.; supervision, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
42001257 and Grant No. 71874119), the Philosophy and Social Sciences Research of Higher Learning
Institutions of Shanxi (Grant No. 20210115), the Shanxi Postgraduate Education Innovation Project
(Grant No. 2021Y571), and the Research Project of Social and Economic Statistics in Shanxi Province
(Grant No. KY2021113).

Institutional Review Board Statement: Ethical review and approval were waived for this study, due
to studies not involving humans or animals.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The input-output table data are from China’s carbon accounting database,
and the water use and GDP data can be obtained from China’s statistical yearbook.

Acknowledgments: We also thank our anonymous reviewers and the editor for their helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abd Ellah, R.G. Water resources in Egypt and their challenges, Lake Nasser case study. Egypt J. Aqua. Res. 2020, 46, 1–12.
[CrossRef]

2. Fidélis, T.; Cardoso, A.S.; Riazi, F.; Miranda, A.C.; Abrantes, J.; Teles, F.; Roebeling, P.C. Policy narratives of circular economy in
the EU—Assessing the embeddedness of water and land in national action plans. J. Clean. Prod. 2021, 288, 125685. [CrossRef]

3. Kundzewicz, Z.W. Global freshwater resources for sustainable development. Ecohydrol. Hydrobiol. 2007, 7, 125–134. [CrossRef]
4. Karimidastenaei, Z.; Avellán, T.; Sadegh, M.; Kløve, B.; Haghighi, A.T. Unconventional water resources: Global opportunities and

challenges. Sci. Total Environ. 2022, 827, 154429. [CrossRef]
5. Vahidipour, M.; Raeisi, E.; van der Zee, S.E.A.T. Active saltwater intrusion of shrinking Bakhtegan -Thask Lakes in South Iran

threatens the freshwater resources of coastal aquifers. J. Hydrol.-Reg. Stud. 2021, 34, 100790. [CrossRef]
6. Li, R.; Wu, M.; Aleid, S.; Zhang, C.; Wang, W.; Wang, P. An integrated solar-driven system produces electricity with fresh water

and crops in arid regions. Cell Rep. Phys. Sci. 2022, 3, 100781. [CrossRef]
7. Alsulaili, A.; Alkandari, M.; Buqammaz, A. Assessing the impacts of meteorological factors on freshwater consumption in arid

regions and forecasting the freshwater demand. Environ. Technol. Innov. 2022, 25, 102099. [CrossRef]
8. Elbeih, S.F.; Madani, A.A.; Hagage, M. Groundwater deterioration in Akhmim District, Upper Egypt: A Remote Sensing and GIS

investigation approach. Egypt J. Remote. Sens. 2021, 24, 919–932. [CrossRef]
9. De, O.; Vieira, E.; Sandoval-Solis, S. Water resources sustainability index for a water-stressed basin in Brazil. J. Hydrol.-Reg. Stud.

2018, 19, 97–109.
10. Ercin, E. Overuse of Water Resources: Water Stress and the Implications for Food and Agriculture-ScienceDirect. Encycl. Food

Secur. Sustain. 2019, 1, 206–211.
11. Hemmat Esfe, M.; Toghraie, D. Numerical study on the effect of solar radiation intensity on the fresh water productivity of solar

still equipped with Thermoelectric Cooling System (TEC) for hot and dry areas of Semnan. Case Stud. Therm. Eng. 2022, 32,
101848. [CrossRef]

12. Muratoglu, A. Water footprint assessment within a catchment: A case study for Upper Tigris River Basin. Ecol. Indic. 2019, 106,
105467. [CrossRef]

13. Salehi, M. Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environ. Int. 2022, 158, 106936.
[CrossRef]

14. Ahmed, M.; Wiese, D.N. Short-term trends in Africa’s freshwater resources: Rates and drivers. Sci. Total. Environ. 2019, 695,
133843. [CrossRef]

15. Baluyot, J.C.; Reyes, E.M.; Velarde, M.C. Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in
Asia’s freshwater resources. Environ. Res. 2021, 197, 111122. [CrossRef]

16. Baccour, S.; Albiac, J.; Kahil, T.; Esteban, E.; Crespo, D.; Dinar, A. Hydroeconomic modeling for assessing water scarcity and
agricultural pollution abatement policies in the Ebro River Basin, Spain. J. Clean. Prod. 2021, 327, 129459. [CrossRef]

17. Sabzevar, M.S.; Rezaei, A.; Khaleghi, B. Incremental adaptation strategies for agricultural water management under water scarcity
condition in Northeast Iran. Reg. Sustain. 2021, 2, 224–238. [CrossRef]

18. Li, K.; Hajar, S.; Ding, Z.; Dooling, T.; Wei, G.; Hu, C.; Zhang, Y.; Zhang, K. Dynamic optimization of input production factors for
urban industrial water supply and demand management. J. Environ. Manag. 2020, 270, 110807. [CrossRef]

154



Int. J. Environ. Res. Public Health 2022, 19, 7345

19. Murali, S.; Krishnan, V.S.; Amulya, P.R.; Alfiya, P.V.; Delfiya, D.S.A.; Samuel, M.P. Energy and water consumption pattern in
seafood processing industries and its optimization methodologies. Clean Eng. Technol. 2021, 4, 100242. [CrossRef]

20. Karandish, F.; Hogeboom, R.J.; Hoekstra, A.Y. Physical versus virtual water transfers to overcome local water shortages:
A comparative analysis of impacts. Adv. Water Resour. 2021, 147, 103811. [CrossRef]

21. Adrielly Nahomee, R.Á.; de Fátima, M.S.G.; Mota Idalia, F.D.L.; Francisca Irene, S.A. Reaching sustainability through a smart
water crisis-proof industry. Process Comput. Sci. 2021, 180, 86–92. [CrossRef]

22. Li, X.; Zhang, L.; Zheng, Y.; Yang, D.; Wu, F.; Tian, Y.; Han, F.; Gao, B.; Li, H.; Zhang, Y.; et al. Novel hybrid coupling of
ecohydrology and socioeconomy at river basin scale: A watershed system model for the Heihe River basin. Environ. Modell. Softw.
2021, 141, 105058. [CrossRef]

23. Zhang, Y.; Deng, J.; Qin, B.; Zhu, G. Importance and vulnerability of lakes and reservoirs supporting drinking water in China.
Fund. Res. 2022, 1, 35. [CrossRef]

24. Cao, T.; Wang, S.; Chen, B. Water shortage risk transferred through interprovincial trade in Northeast China. Energy Procedia 2019,
158, 3865–3871. [CrossRef]

25. Mu, Y.; Li, X.; Guo, Y.; Liang, C.; Bai, J.; Linke, S.; Cui, B. Using climatic-geomorphological surrogates to identify complete and
incidental freshwater conservation gaps within large river basins in China. Glob. Ecol. Conserv. 2021, 30, e01744. [CrossRef]

26. Chen, C.; Jiang, Y.; Ye, Z.; Yang, Y.; Hou, L.A. Sustainably integrating desalination with solar power to overcome future freshwater
scarcity in China. Glob. Energy Intercon. 2019, 2, 98–113.

27. Li, D.; Zuo, Q.; Zhang, Z. A new assessment method of sustainable water resources utilization considering fair-ness-efficiency-
security: A case study of 31 provinces and cities in China. Sustain. Cities Soc. 2022, 81, 103839. [CrossRef]

28. Qin, J.; Ding, Y.; Zhao, Q.; Wang, S.; Chang, Y. Assessments on surface water resources and their vulnerability and adapta-bility
in China. Adv. Clim. Chang. Res. 2020, 11, 381–391. [CrossRef]

29. Liu, X.; Tan, T.; Bai, Y.; Chou, L. Restoration performance of regional soil and water resources in China based on index of coupling
and improved assessment tool. Alex. Eng. J. 2022, 61, 5677–5686. [CrossRef]

30. An, T.; Wang, L.; Gao, X.; Han, X.; Zhao, Y.; Lin, L.; Wu, P. Simulation of the virtual water flow pattern associated with
in-terprovincial grain trade and its impact on water resources stress in China. J. Clean. Prod. 2021, 288, 125670. [CrossRef]

31. Deng, J.; Li, C.; Wang, L.; Yu, S.; Zhang, X.; Wang, Z. The impact of water scarcity on Chinese inter-provincial virtual water trade.
Sustain. Prod. Consump. 2021, 28, 1699–1707. [CrossRef]

32. Lin, L.; Gao, X.; Zhao, Y.; Wang, L.; An, T.; Liu, C.; Qiao, Y.; Wu, P. Evaluation of the water consumption of animal products and
the virtual water flow pattern associated with interprovincial trade in China. J. Clean. Prod. 2021, 328, 129599. [CrossRef]

33. Gu, D.; Guo, J.; Fan, Y.; Zuo, Q.; Yu, L. Evaluating water-energy-food system of Yellow River basin based on type-2 fuzzy sets and
Pressure-State-Response model. Agr. Water Manag. 2022, 267, 107607. [CrossRef]

34. Li, X.; Zhang, X.; Wang, S. Managing conflicts and equitability in hierarchical decision making for water resources planning
under fuzzy uncertainty: A case study of Yellow River, China. J. Hydrol.-Reg. Stud. 2021, 38, 100963. [CrossRef]

35. Jiang, L.; Zuo, Q.; Ma, J.; Zhang, Z. Evaluation and prediction of the level of high-quality development: A case study of the
Yellow River Basin, China. Ecol. Indic. 2021, 129, 107994. [CrossRef]

36. Li, M.; Tian, Q.; Yu, Y.; Xu, Y.; Li, C. Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output
Model. Water 2021, 13, 748. [CrossRef]

37. Fan, G.; Zhang, D.; Zhang, J.; Li, Z.; Sang, W.; Zhao, L.; Xu, M. Ecological environmental effects of Yellow River irrigation revealed
by isotope and ion hydrochemistry in the Yinchuan Plain, Northwest China. Ecol. Indic. 2022, 135, 108574. [CrossRef]

38. Chen, Y.; Zhu, M.; Lu, J.; Zhou, Q.; Ma, W. Evaluation of ecological city and analysis of obstacle factors under the background of
high-quality development: Taking cities in the Yellow River Basin as examples. Ecol. Indic. 2020, 118, 106771. [CrossRef]

39. Zuo, Q.; Guo, J.; Ma, J.; Cui, G.; Yang, R.; Yu, L. Assessment of regional-scale water resources carrying capacity based on fuzzy
multiple attribute decision-making and scenario simulation. Ecol. Indic. 2021, 130, 108034. [CrossRef]

40. Khorsandi, M.; Homayouni, S.; van Oel, P. The edge of the petri dish for a nation: Water resources carrying capacity as-sessment
for Iran. Sci. Total Environ. 2022, 817, 153038. [CrossRef]

41. Feng, K.; Siu, Y.L.; Guan, D.; Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin,
China: A consumption based approach. Appl. Geogr. 2012, 32, 691–701. [CrossRef]

42. Zhao, Y.; Wang, Y.; Wang, Y. Comprehensive evaluation and influencing factors of urban agglomeration water resources carrying
capacity. J. Clean. Prod. 2021, 288, 125097. [CrossRef]

43. Peng, T.; Deng, H.; Lin, Y.; Jin, Z. Assessment on water resources carrying capacity in karst areas by using an innovative DPESBRM
concept model and cloud model. Sci. Total Environ. 2021, 767, 144353. [CrossRef] [PubMed]

44. Allan, J.A. Fortunately There Are Substitutes for Water: Otherwise Our Hydropolitical Futures Would be Impossible. Priori-Ties
Water Res. Alloca. Manag. 1993, 13, 26.

45. Oreggioni, F.; Garcia, S.; Gomez, M.; Mejia, A. A machine learning model of virtual water networks over time. Adv. Water Resour.
2021, 147, 103819. [CrossRef]

46. Almazán-Gómez, M.A.; Duarte, R.; Langarita, R.; Sánchez-Chóliz, J. Effects of water re-allocation in the Ebro river basin:
A multiregional input-output and geographical analysis. J. Environ. Manag. 2019, 241, 645–657. [CrossRef]

47. Grazzini, J.; Spelta, A. An empirical analysis of the global input–output network and its evolution. Physica A 2022, 594, 126993.
[CrossRef]

155



Int. J. Environ. Res. Public Health 2022, 19, 7345

48. Sun, J.X.; Yin, Y.L.; Sun, S.K.; Wang, Y.B.; Yu, X.; Yan, K. Review on research status of virtual water: The perspective of ac-counting
methods, impact assessment and limitations. Agr. Water Manag. 2021, 243, 106407. [CrossRef]

49. Zhang, Y.; Hou, S.; Chen, S.; Long, H.; Liu, J.; Wang, J. Tracking flows and network dynamics of virtual water in electricity
transmission across China. Renew. Renew. Sustain. Energy Rev. 2021, 137, 110475. [CrossRef]

50. Garcia, S.; Mejia, A. Characterizing and modeling subnational virtual water networks of US agricultural and industrial commodity
flows. Adv. Water. Resour. 2019, 130, 314–324. [CrossRef]

51. Cegar, S. Water extended input-output analysis of the Croatian economy. J. Econ. Bus. 2020, 38, 147–182.
52. Gkatsikos, A.; Mattas, K. The Paradox of the Virtual Water Trade Balance in the Mediterranean Region. Sustainability 2021, 13,

2978. [CrossRef]
53. Houyin, L.; Yangting, O.; Hong, Z. Water footprint and virtual water flows embodied in China’s supply chain. Int. J. Logist. 2021,

25, 1–16. [CrossRef]
54. Zhang, Y.; Fu, Z.; Xie, Y.; Li, Z.; Liu, Y.; Zhang, B.; Guo, H. Dynamic metabolism network simulation for energy-water nexus

analysis: A case study of Liaoning Province, China. Sci. Total. Environ. 2021, 779, 146440. [CrossRef]
55. Yang, Y.; Liu, S.; Xiao, C.; Feng, C.; Li, C. Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin

of China: An Input-Output Analysis. Sustainability 2021, 13, 7589. [CrossRef]
56. Fu, Y.; Huang, G.; Liu, L.; Li, J.; Pan, X. Multi-hierarchy virtual-water management–A Case Study of Hubei Province, China.

J. Clean. Prod. 2021, 293, 126244. [CrossRef]
57. Zhang, J.L.; Jiang, G.Q.; Yang, L.B.; Zhao, Y.T. Study on Virtual Water Consumption and Trade Based on Input-output Analysis in

Inner Mongolia. Water Res. Power 2018, 36, 52–54.
58. Islam, K.M.N.; Kenway, S.J.; Renouf, M.A.; Wiedmann, T.; Lam, K.L. A multi-regional input-output analysis of direct and virtual

urban water flows to reduce city water footprints in Australia. Sustain. Cities Soc. 2021, 75, 103236. [CrossRef]
59. Qasemipour, E.; Tarahomi, F.; Pahlow, M.; Malek, S.S.S.; Abbasi, A. Assessment of Virtual Water Flows in Iran Using a Multi-

Regional Input-Output Analysis. Sustainability 2020, 12, 7424. [CrossRef]
60. Dong, H.; Geng, Y.; Hao, D.; Yu, Y.; Chen, Y. Virtual water flow feature of water-rich province and the enlightenments: Case of

Yunnan in China. J. Clean. Prod. 2019, 235, 328–336. [CrossRef]
61. Chen, W.; Wu, S.; Lei, Y.; Li, S. China’s water footprint by province, and inter-provincial transfer of virtual water. Ecol. Indic. 2017,

74, 321–333. [CrossRef]
62. Wang, S.; Chen, B. Energy-water nexus of urban agglomeration based on multiregional input–output tables and ecological

network analysis: A case study of the Beijing–Tianjin–Hebei region. Appl. Energ. 2016, 178, 773–783. [CrossRef]
63. Zhang, W.; Fan, X.; Liu, Y.; Wang, S.; Chen, B. Spillover risk analysis of virtual water trade based on multi-regional in-put-output

model—A case study. J. Environ. Manag. 2020, 275, 111242. [CrossRef]
64. Wang, X.; Chen, Y.; Li, Z.; Fang, G.; Wang, Y. Development and utilization of water resources and assessment of water se-curity in

Central Asia. Agr. Water. Manag. 2020, 240, 106297. [CrossRef]
65. Zhang, J.; Chen, Y.; Li, Z.; Song, J.; Fang, G.; Li, Y.; Zhang, Q. Study on the utilization efficiency of land and water resources in the

Aral Sea Basin, Central Asia. Sustain. Cities Soc. 2019, 51, 101693. [CrossRef]
66. Zheng, X.; Huang, G.; Liu, L.; Zheng, B.; Zhang, X. A multi-source virtual water metabolism model for urban systems. J. Clean.

Prod. 2020, 275, 124107. [CrossRef]
67. Wang, Y.; Xian, C.; Jiang, Y.; Pan, X.; Ouyang, Z. Anthropogenic reactive nitrogen releases and gray water footprints in urban

water pollution evaluation: The case of Shenzhen City, China. Environ. Dev. Sustain. 2020, 22, 6343–6361. [CrossRef]
68. Rosales-Asensio, E.; García-Moya, F.J.; González-Martínez, A.; Borge-Diez, D.; de Simón-Martín, M. Stress mitigation of

conventional water resources in water-scarce areas through the use of renewable energy powered desalination plants: An
application to the Canary Islands. Energy Rep. 2020, 6, 124–135. [CrossRef]

69. Gohar, A.A.; Cashman, A.; Ward, F.A. Managing food and water security in Small Island States: New evidence from economic
modelling of climate stressed groundwater resources. J. Hydrol. 2019, 569, 239–251. [CrossRef]

70. Sun, S.; Wang, Y.; Engel, B.A.; Wu, P. Effects of virtual water flow on regional water resources stress: A case study of grain in
China. Sci. Total Environ. 2016, 550, 871–879. [CrossRef] [PubMed]

71. Liu, M.; Wei, J.; Wang, G.; Wang, F. Water resources stress assessment and risk early warning—A case of Hebei Province China.
Ecol. Indic. 2017, 73, 358–368. [CrossRef]

72. Yin, Y.L.; Sun, S.K.; Wang, Y.B.; Li, C.; Sun, J.X.; Wu, P.T. Impact of grain virtual water flow on surface water and ground-water in
China. Adv. Water Resour. 2021, 150, 103848. [CrossRef]

73. Liu, J.; Chen, X.; Shi, W.; Chen, P.; Zhang, Y.; Hu, J.; Dong, S.; Li, T. Tectonically controlled evolution of the Yellow River drainage
system in the Weihe region, North China: Constraints from sedimentation, mineralogy and geochemistry. J. Asian Earth. Sci. 2019,
179, 350–364. [CrossRef]

74. Leontief, W. Quantitative Input and Output Relations in the Economic Systems of the United States. Rev. Econ. Stat. 1936, 18,
105–125. [CrossRef]

75. Rocco, M.V.; Colombo, E. Evaluating energy embodied in national products through Input-Output analysis: Theoretical definition
and practical application of international trades treatment methods. J. Clean. Prod. 2016, 139, 1449–1462. [CrossRef]

76. Guo, J.; Zhang, Y.; Zhang, K. The key sectors for energy conservation and carbon emissions reduction in China: Evidence from
the input-output method. J. Clean. Prod. 2018, 179, 180–190. [CrossRef]

156



Int. J. Environ. Res. Public Health 2022, 19, 7345

77. Richter, J.S.; Mendis, G.P.; Nies, L.; Sutherland, J.W. A method for economic input-output social impact analysis with ap-plication
to U.S. advanced manufacturing. J. Clean. Prod. 2019, 212, 302–312. [CrossRef]

78. Pfister, S.; Koehler, A.; Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol.
2009, 43, 4098–4104. [CrossRef]

79. Hong, S.; Wang, H.; Cheng, T. Analysis of water use characteristics in industrial sectors in Beijing based on an input-output
method. Water Sci. Technol. 2020, 20, 219–230. [CrossRef]

80. Boero, R.; Pasqualini, D. Regional water coefficients for U.S. industrial sectors. Water Resour. Ind. 2017, 18, 60–70. [CrossRef]
81. White, D.J.; Feng, K.; Sun, L.; Hubacek, K. A hydro-economic MRIO analysis of the Haihe River Basin’s water footprint and water

stress. Ecol. Model. 2015, 318, 157–167. [CrossRef]
82. Zheng, H.; Zhang, Z.; Wei, W.; Song, M.; Guan, D. Regional determinants of China’ consumption-based emissions in the economic

transition. Environ. Res. Lett. 2020, 15, 1748–9326. [CrossRef]
83. Zhang, K.; Lu, H.; Tian, P.; Guan, Y.; Kang, Y.; He, L.; Fan, X. Analysis of the relationship between water and energy in China

based on a multi-regional input-output method. J. Environ. Manag. 2022, 309, 114680. [CrossRef]
84. Wang, F.; Cai, B.; Hu, X.; Liu, Y.; Zhang, W. Exploring solutions to alleviate the regional water stress from virtual water flows in

China. Sci. Total Environ. 2021, 796, 148971. [CrossRef]
85. Liu, Z.; Huang, Q.; He, C.; Wang, C.; Wang, Y.; Li, K. Water-energy nexus within urban agglomeration: An assessment framework

combining the multiregional input-output model, virtual water, and embodied energy. Resour. Conserv. Recy. 2021, 164, 105113.
[CrossRef]

86. Gao, X.; Chen, Q.; Lu, S.; Wang, Y.; An, T.; Zhuo, L.; Wu, P. Impact of virtual water flow with the energy product transfer on
sustainable water resources utilization in the main coal-fired power energy bases of Northern China. Energy Procedia 2018, 152,
293–301. [CrossRef]

87. Zhang, S.; Taiebat, M.; Liu, Y.; Qu, S.; Liang, S.; Xu, M. Regional water footprints and interregional virtual water transfers in
China. J. Clean. Prod. 2019, 228, 1401–1412. [CrossRef]

88. Shao, L.; Guan, D.; Wu, Z.; Wang, P.; Chen, G.Q. Multi-scale input-output analysis of consumption-based water resources: Method
and application. J. Clean. Prod. 2017, 164, 338–346. [CrossRef]

89. Shi, C.; Zhan, J. An input–output table based analysis on the virtual water by sectors with the five northwest provinces in China.
Phys. Chem. Earth 2015, 79–82, 47–53. [CrossRef]

90. Chen, W.; Wu, S.; Lei, Y.; Li, S. Virtual water export and import in China’s foreign trade: A quantification using input-output
tables of China from 2000 to 2012. Resour. Conserv. Recy. 2018, 132, 278–290. [CrossRef]

91. Hirwa, H.; Peng, Y.; Zhang, Q.; Qiao, Y.; Leng, P.; Tian, C.; Yang, G.; Muhirwa, F.; Diop, S.; Kayiranga, A.; et al. Virtual water
transfers in Africa: Assessing topical condition of water scarcity, water savings, and policy implications. Sci. Total Environ. 2022,
835, 155343. [CrossRef] [PubMed]

92. Zhang, Y.; Li, J.; Tian, Y.; Deng, Y.; Xie, K. Virtual water flow associated with interprovincial coal transfer in China: Impacts and
suggestions for mitigation. J. Clean. Prod. 2021, 289, 125800. [CrossRef]

93. Xin, M.; Wang, J.; Xing, Z. Decline of virtual water inequality in China’s inter-provincial trade: An environmental economic
trade-off analysis. Sci. Total Environ. 2022, 806, 150524. [CrossRef] [PubMed]

94. Han, X.; Zhang, Y.; Wang, H.; Shi, H. Analyzing the driving mechanisms of grain virtual water flow based on the case of China’s
main grains. Environ. Sci. Policy. 2021, 124, 645–655. [CrossRef]

95. Han, X.; Zhao, Y.; Gao, X.; Jiang, S.; Lin, L.; An, T. Virtual water output intensifies the water scarcity in Northwest China: Current
situation, problem analysis and countermeasures. Sci. Total Environ. 2021, 765, 144276. [CrossRef]

96. Yin, Y.; Luan, X.; Sun, S.; Wang, Y.; Wu, P.; Wang, X. Environmental impact of grain virtual water flows in China: From 1997 to
2014. Agr. Water. Manag. 2021, 256, 107127. [CrossRef]

97. Liu, G.; Zhang, F.; Deng, X. Is virtual water trade beneficial for the water-deficient regions? New evidences from the Yellow River
Basin, China. J. Hydrol.-Reg. Stud. 2021, 38, 100964. [CrossRef]

98. Xia, W.; Chen, X.; Song, C.; Pérez-Carrera, A. Driving factors of virtual water in international grain trade: A study for belt and
road countries. Agr. Water. Manag. 2022, 262, 107441. [CrossRef]

99. Zhai, Y.; Bai, Y.; Shen, X.; Ji, C.; Zhang, T.; Hong, J. Can grain virtual water flow reduce environmental impacts? Evidence from
China. J. Clean. Prod. 2021, 314, 127970. [CrossRef]

100. Cao, X.; Cui, S.; Shu, R.; Wu, M. Misestimation of water saving in agricultural virtual water trade by not considering the role of
irrigation. Agr. Water. Manag. 2020, 241, 106355. [CrossRef]

101. Zhang, F.; Xuan, X.; He, Q. A water-energy nexus analysis to a sustainable transition path for Ji-shaped bend of the Yellow River,
China. Ecol. Inform. 2022, 68, 101578. [CrossRef]

102. Sun, J.; Sun, S.; Yin, Y.; Wang, Y.; Zhao, X.; Wu, P. Evaluating grain virtual water flow in China: Patterns and drivers from a
socio-hydrology perspective. J. Hydrol. 2022, 606, 127412. [CrossRef]

103. Arunrat, N.; Sereenonchai, S.; Hatano, R. Effects of fire on soil organic carbon, soil total nitrogen, and soil properties under
rotational shifting cultivation in northern Thailand. J. Environ. Manag. 2022, 302, 113978. [CrossRef]

104. Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under
CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [CrossRef]

157



Int. J. Environ. Res. Public Health 2022, 19, 7345

105. Thomas, M.; Robertson, J.; Fukai, S.; Peoples, M.B. The effect of timing and severity of water deficit on growth development,
yield accumulation and nitrogen fixation of mung bean. Field Crops Res. 2004, 86, 67–68. [CrossRef]

106. Chen, Y.; Huang, K.; Hu, J.; Yu, Y.; Wu, L.; Hu, T. Understanding the two-way virtual water transfer in urban agglomeration:
A new perspective from spillover-feedback effects. J. Clean. Prod. 2021, 310, 127495. [CrossRef]

107. Deng, G.; Lu, F.; Wu, L.; Xu, C. Social network analysis of virtual water trade among major countries in the world. Sci. Total
Environ. 2021, 753, 142043. [CrossRef]

108. Pomponi, F.; Stephan, A. Water, energy, and carbon dioxide footprints of the construction sector: A case study on developed and
developing economies. Water Res. 2021, 194, 116935. [CrossRef]

109. Khalkhali, M.; Dilkina, B.; Mo, W. The role of climate change and decentralization in urban water services: A dynamic en-ergy-
water nexus analysis. Water Res. 2021, 207, 117830. [CrossRef]

110. Qiao, R.; Li, H.; Han, H. Spatio-Temporal Coupling Coordination Analysis between Urbanization and Water Resource Car-rying
Capacity of the Provinces in the Yellow River Basin, China. Water 2021, 13, 376. [CrossRef]

158



Citation: Cañizares, A.O.; Cantos,

J.O.; Baños Castiñeira, C.J. The Effects

of Climate Change on the Tagus–

Segura Transfer: Diagnosis of the

Water Balance in the Vega Baja del

Segura (Alicante, Spain). Water 2022,

14, 2023. https://doi.org/10.3390/

w14132023

Academic Editor: Adriana

Bruggeman

Received: 25 May 2022

Accepted: 22 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

The Effects of Climate Change on the Tagus–Segura Transfer:
Diagnosis of the Water Balance in the Vega Baja del Segura
(Alicante, Spain)

Antonio Oliva Cañizares *, Jorge Olcina Cantos and Carlos J. Baños Castiñeira

University of Alicante, 03690 San Vicente del Raspeig, Spain; jorge.olcina@ua.es (J.O.C.);
carlos.banos@ua.es (C.J.B.C.)
* Correspondence: antoniogeografia1@gmail.com

Abstract: Climate change is one of the most important problems facing society in the 21st century.
Despite the uncertainty about the behaviour of rainfall due to climate change, what is clear is that
average rainfall has been reduced in the inland areas and headwaters of Spain’s river basins. The
Tagus basin is one of the most affected, with implications for the Jucar and Segura basins. The
working hypothesis is to corroborate with the data collected on the effects of climate change on the
TTS. To this end, the following methodology has been applied: (a) analysis in the headwaters of the
Tagus, using data on precipitation, surface runoff and reservoir water; (b) analysis of the resources of
the Segura basin (supply and demand), based on the basin organisation’s own data; (c) construction
of a water balance adjusted to the Bajo Segura district (Alicante), a user of the water transferred for
agricultural use. Likewise, the data provided by the basin organisation have made it possible to
corroborate the data on consumption and allocation of the corresponding volumes of water. The
results obtained make it possible to put forward a novel proposal in the scientific field related to
hydrological planning based on the principles of sustainability.

Keywords: climate change; Tagus–Segura transfer; sustainable hydrological planning; Bajo Segura

1. Introduction

The sixth report of the Intergovernmental Panel on Climate Change (IPCC) (AR6)
published in 2021 identifies the Mediterranean region (MED) as one of the areas or hotspots
most affected by climate change on a global level [1]. Spain is located in this region. This
country is already suffering from the impacts (social and economic losses) of the effects of
climate change, particularly those related to meteorological phenomena, such as floods,
droughts, heat and cold waves, sea storms and forest fires, among others.

Furthermore, Spain has a wide variety of climates within its territory, which shape
different landscapes, depending on a series of physical elements, such as the geographic
position, altitude, relief, proximity to the sea, the vegetation and fauna and flora of each
territory.

In terms of water resources, this variety of climates implies a structural problem for
Spain, in which two types of area can be distinguished: humid Spain, (the north-east, north
and centre of the peninsula), which receives large annual amounts of precipitation with
surplus water resources; and dry Spain (the east, south-east and south of the peninsula),
where the average annual rainfall is very low, leading to deficits in the availability of water
resources [2]. Paradoxically, some of the optimal lands for growing crops are found in parts
of Spain with a water resource deficit, where the soil is rich and favourable for agricultural
activities and where irrigated crops predominate over rain-fed crops [2].

The most important transfer in Spain constructed in the twentieth century is the Tagus–
Segura Transfer (hereafter, TTS). This is the most important infrastructure given the volume
of water it transfers, the areas it supplies and the political and media repercussions [2,3].
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The introduction of the TTS has contributed a significant amount of water resources for
both urban supply and for agriculture (irrigation) in south-east Spain. This contribution of
water resources is considerable but insufficient, as it has only fulfilled the transfer volumes
contemplated in the Preliminary Project of the Transfer once (water year 2000/2001) [4–6].

It is worth highlighting that in the 1990s (emergence of climate change hypothesis)
to the present (2022) (complete confidence in climate change), the successive situations of
rainfall droughts that affected the centre and south-east of the peninsula revealed that the
TTS was vulnerable to extreme weather situations. In other words, the absence of rainfall in
the Tagus headwaters for prolonged periods of time has a serious impact on the TTS [4–6].
Some authors calculated a period of NO transfers of water resources for approximately
15 months. Furthermore, these authors point out that by applying the same methodology,
it could be said that the TTS would have been inoperative for a total of 59 months (5 years),
from the hydrological year 2004/2005 to 2017/2018 [4].

As noted above, the TTS is vulnerable to extreme atmospheric situations (droughts).
This problem is negatively aggravated considering the climate scenarios of emissions and
effects on temperatures and precipitation in Spain [2,3,7–9], and, in specific terms, in the
south-east peninsular region [10–12], from 2020 to 2050 and from 2015 to 2100, especially in
river basins such as the Tagus and Segura.

Therefore, the relationship between the effects of climate change and water resources
deserves special attention, given that the variations in climate that are occurring on a
global scale are generating a series of effects in the Spanish territory, which is supported by
rigorous scientific data. Some of the most concerning effects are the variation in atmospheric
dynamics [12]; the increase in temperatures and the variations in rainfall [7,10–13]; the
increase in temperature and the increase in sea level [14–18].

All of this has direct repercussions on water planning, given that the headwaters and
resources in the basins are highly important for the development of agricultural activity, as
they favour the accumulation of water resources in reservoirs and aquifers. Future water
plans (third water planning period (2022–2027) and those of the following decades) should
simultaneously contemplate solutions to address the reduction in the volumes of useful
rainwater and the occurrence (ever more frequent) of intense or torrential rains leading to
floods that cause increasing economic damage [10].

Within this context, one of the principal ways to obtain water resources which are
not subject to climate variations is by increasing the so-called non-conventional sources,
particularly wastewater treatment and desalination.

The former is subject to the water consumption of the population in a year. In this
respect, there is a directly proportional relationship: the more water consumed by the
population, the greater the availability of treated water, and vice versa. Regenerated wa-
ter undoubtedly constitutes a buffer for the water resources of the basin and has been
incorporated in the current water plan, acting as a complementary source to the resources
of the TTS. However, from the end of the twentieth century and the beginning of the
twenty-first century, the need to reuse treated water has arisen, giving rise to the passing
of Royal Decree 1620/2007 of 7 December, establishing the legal framework for the reuse
of treated wastewater, thereby promoting the development of the reuse of treated water
and incorporating it into the water resources plan, provided that public health and envi-
ronmental protection can be guaranteed and establishing the necessary requirements to
enable or prohibit the use of treated or regenerated water, according to the afore-mentioned
regulation [19,20].

Similarly to treated wastewater, desalinated water does not depend on climate vari-
ation. It only depends on its own daily and annual production capacity. Desalination is
playing an increasingly prominent role in the hydrological planning of the basins. In Spain,
the promotion of desalination began with the repeal of the Ebro Transfer project, through
the passing of Royal Decree Law 2/2004 of 18 June, which modified Law 10/2001 of 5 July
of the National Hydrological Plan and the implementation of the A.G.U.A. Programme,
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and subsequently with the passing of Law 11/2005 of 22 June which modified Law 10/2001
of 5 July of the National Hydrological Plan [4,21].

This led to the planning and construction of large desalination plants along the Spanish
Mediterranean coast. The largest desalination plant is that of Torrevieja. It has a current
capacity of 80 hm3/year and is managed by a state entity (ACUAMED). It has the largest
capacity in Spain and one of the largest in Europe [22].

Desalination is characterised by being a strategic source and has been used in sit-
uations of severe drought in Spain, cushioning the effects of drought and providing a
complementary water resource to the water of the TTS [4,5]. In fact, in situations of severe
drought and when no transfers have been carried out, the desalination plant of Torrevieja
has operated at full capacity, substituting the role of the transfer, for urban supply and
irrigation [4,5].

While the rest of Europe uses desalinated water basically for urban supply, Spain is
the pioneer in the use of desalinated water for agriculture and irrigation, given the water
scarcity of the region [8,22].

Desalination in Spain has emerged in response to the transfer policy promoted by the
former hydrological policy [5,6], which does not meet today’s sustainability objectives. The
desalination is accepted (socially) by the different economic sectors, and in many territories
of the Spanish Mediterranean coast it has become a principal resource.

In short, the commitment to managing demand and the use of resources in a way
that does not generate a situation in which territories are eternally dependent in terms of
water is an essential and irreversible process [23]. It is necessary to break away from the
traditional paradigm, based on the continuous supply of resources, which has no place in a
scenario of climate change with less rainfall and a reduction in groundwater resources [23].
The growing use of “non-conventional” water resources will become a need in the coming
decades on the Spanish Mediterranean coast, within the paradigm of demand and the
sustainable use of water [23] (Figure 1).

Figure 1. Scheme of the old and new paradigm in water planning in study area. Source: own elaboration.

The working hypothesis of the research is because the Tagus–Segura water transfer is
being affected by the effects of climate change, especially regarding the quantity of water
resources. To verify this hypothesis, a series of secondary objectives were set to corroborate
this approach:
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(a) To ascertain the water situation in the headwaters of the Tagus basin.
(b) To analyse the water balance and relevance of the TTS and non-conventional sources

in the Segura basin, and their effect on the Lower Segura region.
(c) To drawup a water balance adjusted to the Bajo Segura region to identify the agricul-

tural areas with the greatest water demands.
(d) To propose the basis for a new sustainable hydrological plan based on demand

management and the use of own resources that are compromised by the foreseeable
effects of climate change in terms of precipitation [24].

2. Materials and Methods

2.1. Background to the Tagus–Segura Transfer (TTS)

Beforehand, it should be put into context that the origin of the Tagus–Segura Transfer
project dates back to the First National Hydraulic Works Plan (1933), which basically sought
to correct the imbalances between the Atlantic and Mediterranean coasts which, through
the so-called “Plan de Mejora y Ampliación de los Riegos de Levante” (Extension and
Improvement Irrigation Plan in Spanish Levante region), was based on the transformation
of a total area of 338,000 hectares, over the provinces of Murcia, Valencia, Alicante, Almería,
Albacete and Cuenca [25].

After the severe drought of 1967, the TTS project was approved in 1969, the works
were completed, and the diversion started operating in 1979. The diversion is a canal
with a length of 286 km and a flow rate of 33 m3/s. It links the Bolarque reservoir, in
the Tagus basin, with the Talave reservoir, on the river Mundo, the main tributary of the
Segura [25]. The cost of the construction of the diversion and post-transfer systems was
estimated at ESP 90,000 million (La Verdad newspaper, 18 February 1998), equivalent to
EUR 540,910,984 today.

According to the General Proposal for the Joint Management of the Water Resources
of Central and South-eastern Spain, Tajo–Segura System, the final objective was to transfer
an annual volume of 1000 hm3. Of this, 640 hm3/year would be used for irrigation. This
objective would be met in two phases: a first phase, with a transfer of 600 hm3, and a second
phase, with a transfer of 40 hm3. With these estimated volumes, it was expected to transform
a total of 90,000 new hectares and complete the allocations of 46,816 existing deficit hectares.
The latter were already under cultivation but did not have sufficient volumes of water for
optimal irrigation. This was to be solved with the arrival of transferred water.

These planned volumes of water generated a great expectation that led to the trans-
formation of rain-fed crops into irrigated crops (new irrigation), and the area benefited
increased to 135,361 hectares. The area contemplated in the TTS project was 136,816, so
that some authors indicate that “miraculously, it seemed that the objectives outlined in the
preliminary draft had been achieved” [25]. However, the expansion of the surface area oc-
curred during the years of construction of the TTS. Therefore, the increase in irrigated area
was only justified using groundwater (indigenous resources) of the territories [25]. This
implies that, for example, as in the case of the Vega Baja del Segura, most of the aquifers
are overexploited. Consequently, the exploitation of the groundwater resources of the
region, which are protected by the official basin organisation (Demarcación Hidrográfica
del Segura), is currently prohibited.

Furthermore, this explains why the water from the aqueduct has been insufficient
to supply the demand of the Segura basin, as indicated in the respective hydrological
plans (2015–2021) and (2022–2027) [26,27], as the water from the aqueduct has been able
to maintain, as far as possible, part of the transformed areas. Moreover, to make the best
possible use of the water received from the aqueduct for new irrigation, modern irrigation
techniques have been introduced, such as drip irrigation.

An interesting point in the Preliminary Project of the Tagus–Segura Transfer is that
the demand in the Tagus basin was 1447 hm3/year and the own adjustable resources
amounted to 8152 hm3/year, while the demand in the Segura basin was 1045 hm3/year
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and the available resources (basin) amounted to 820 hm3/year, revealing the deficit of
the basin.

With the construction of the aqueduct, demand in the Tagus basin would be main-
tained, although the basin’s resources would decrease by 1000 hm3/year due to the transfer
of water from one basin to another, estimated at 7152 hm3/year. As for the Segura basin,
demand would remain the same, but the available basin resources would increase thanks to
the volumes of water transferred amounting to 2120 hm3/year (offer in the Segura basin).
These figures have never been reached, as the Preliminary Project did not contemplate the
possibility of an increase in demand in both basins (Tagus and Segura) or the absence of
some transfers, for months or even years. In fact, the values estimated in the Preliminary
Project have never been obtained with the transferred water.

2.2. Area of Study

Given that the research is focused on the Tagus–Segura water transfer, the chosen
study area is divided into three parts. These three parts coincide with the presentation of
the sections in the Results section (Figure 2).

 

Figure 2. Study area: (A) Upper Tagus; (B) Segura Hidrological Basin; and (C) Bajo Segura Region
(Alicante). Source: Valencian Cartographic Institute (ICV) and Demarcación Hidrográficadel Tajo
(DHT) and Segura (DHS). Own elaboration.

The first area of analysis focuses on the river Tagus basin, specifically in the headwaters
of the river Tagus, belonging to the sub-basin known as the Upper Tagus. The source of
the river Tagus, the presence of two large reservoirs (Entrepeñas and Buendía) and the
beginning of the hydraulic infrastructure of the Tagus–Segura Transfer are in this area
(Figure 2). The effects of climate change calculated and estimated by the official basin
organisation itself are also considered, in order to indicate the behaviour or trend in
this sector.
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The second zone corresponds to the Segura catchment area. The aspects analysed are
those corresponding to the water balance (supply and demand) to ascertain whether the
water transfer has made it possible to eliminate the existing deficit in the Segura basin, as
was proposed in the Preliminary Project for the water transfer. Once the water balance is
known, special attention is paid to the area corresponding to the province of Alicante. To
this end, the UDAs (Agricultural Demand Units) corresponding to this region were selected.
The purpose of this analysis is to find out the amount of existing gross or irrigable surface
area, and to compare it with the net or irrigated surface area in this region, according
to the data provided by the new Hydrological Planning Cycle of the Segura River Basin
(2022–2027).The gross and net demand of the previously selected UDAs is analysed below.
Gross and net demand is directly related to gross and net surface areas. Therefore, the
demand makes it possible to know the volume of water necessary to supply these areas to
obtain an optimal irrigation for the crops (calculated by the official basin organisation).

Lastly, the effects of climate change in the Segura basin are analysed, calculated by the
basin organisation with respect to rainfall, evapotranspiration, surface runoff and aquifer
recharge; this provides information on the water future of the Segura basin (which is
structurally deficient).

The third area of analysis is centred on the province of Alicante (Valencian Commu-
nity), specifically in the region known as Bajo Segura or Vega Baja del Segura. The choice of
this area is justified by the fact that it is a region directly dependent on the water resources
of the Tagus–Segura water transfer.

In this respect, when the water from the aqueduct reaches the Ojós reservoir, three
water diversion channels start from this reservoir, which correspond to the so-called “Post-
Transfer Infrastructure”. These three channels take different directions. The first heads
towards the province of Alicante, passing through the north of the district of Vega Baja del
Segura, as far as the Crevillente reservoir (BajoVinalopó district and the Júcar basin). The
second channel heads towards the Pedrera reservoir (Bajo Segura district). From this point,
another canal splits into two branches: one heading north-east towards the town of Los
Montesinos; and another heading south, passing through towns such as San Miguel de
Salinas, Orihuela and Pilar de la Horadada (Bajo Segura district). This channel ends when it
reaches the municipality of Cartagena (Murcia). The third canal heads southwards, crossing
the Murcia Huerta, Algeciras, among other localities; it ends in Almería (Andalusia).

Given the great length of the water transfer and its implications for large areas of land,
it has been decided to limit the analysis to the province of Alicante, specifically to the Bajo
Segura or Vega Baja del Segura region (made up of 27 municipalities).

The territory of the district of Vega Baja is included within the Segura basin in terms
of hydrological planning but is influenced by the Tagus basin as it receives resources from
it through the Tagus–Segura Transfer. This reveals the need to analyse the current situation
of each basin in relation to the effects of climate change that are visible in Spain, and their
impact on the available water resources.

Along these lines, the district of Vega Baja del Segura implements a multi-source
system in water management: surface water (River Segura), groundwater, the Tagus–
Segura Transfer, the post-transfer, the reuse of treated wastewater and desalination. This
situation is ideal in areas with a natural scarcity of water resources [24]. However, the
system is vulnerable to the effects of climate change, due to the reduction in surface water
resources predicted for this part of Spain. Therefore, it is necessary to reflect on possible
future solutions to guarantee supply in this territory with natural rainfall scarcity.

2.3. Data Source and Analysis

This article analyses the deficiencies of the Tajo–Segura Transfer and its implications in
the Segura River basin, and, especially, in the region of Bajo Segura or Vega Baja del Segura,
motivated by the effects of climate change.

The methodology applied is based on the hypothetical-deductive model. The hypothetical-
deductive method is one of the most accepted methods currently in the scientific field,
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especially applied to social sciences such as geography, the approach given in this article.
The method consists of a working hypothesis that, based on the analysis of a series of
available data, allows the hypothesis to be corroborated or not. The steps of the hypothetical-
deductive method are: (1) data collection; (2) data evaluation; (3) hypothesis generation;
(4) diagnosis; and (5) final conclusion and/or proposal.

The working hypothesis of the research is based on the fact that the Tagus–Segura
water transfer is being affected by the effects of climate change, especially with regard to
the quantity of water resources. In order to confirm these aspects, information and data
have been compiled from the institutions, bodies and official associations (Figure 3).

Figure 3. Diagram/outline of the methodological steps in this paper.Source: own elaboration. The
innovative contributions of this paper are shown in the shaded areas.

First, the Hydrological Plan of the Tagus Basin (2022–2027) was consulted to compile
information regarding the available water resources of the basin. Particular focus was
placed on precipitation, surface runoff and the volume of water stored in the Entrepeñas
and Buendía reservoirs. The predicted effects of climate change on the Tagus basin were
also identified, specifically in the headwaters or sub-basin of the Tagus.

To obtain the data of the volumes of water stored in the Entrepeñas and Buendía
reservoirs individually and jointly, the website of the Ministry for the Ecological Transition
and the Demographic Challenge (MITERD) through the Centre for Public Works Studies
and Experimentation (CEDEX) was consulted. This organisation has all the yearbooks of
the volumes of all the basins in Spain, by day and month, depending on the time series
chosen. In this way, the years of operation of the TTS have been established as a time series
(1979–2021). The principal element in the search was to identify the reserve figure in hm3

at the beginning of each month in order to analyse the evolution of the water stored in each
reservoir or jointly (Entrepeñas–Buendía), so as to establish whether there are currently
sufficient volumes of water to transfer via the TTS to the irrigated lands of south-east Spain,
and whether these volumes are similar to the theoretical transfer volumes established in
the Preliminary Project of the TTS.

After ascertaining the situation in the Tagus headwaters with respect to the precip-
itation, surface runoff and volume of reservoir-stored water, information and data were
collected regarding the Hydrological Plan of the Segura Basin (1st Cycle 2015–2021) and
the Hydrological Plan of the Segura Basin (2nd Cycle, 2022–2027).

In the case of wastewater treatment, the data were provided by the Regional Depart-
ment of Agriculture, Rural Development, Climate Emergency and Energy Transition based
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on the data of the Entidad Pública de Saneamiento de Aguas Residuales (Public Wastew-
ater Treatment Entity) (EPSAR) of the Region of Valencia, which refer to the wastewater
treatment plants (EDARs) installed in the district, their daily production capacity, their
annual production capacity, the water treated and the water regenerated, among other
information of interest.

With respect to desalination, data on production capacity and the water produced
over the last four to five years were provided by the Torrevieja desalination plant. The
public entity ACUAMED provided the data on the Torrevieja desalination plant and the
cost of production, the energy cost and the future expansion projects contemplated for the
desalination plant.

The different declarations of drought and the adaptation mechanisms adopted were
also consulted for the period 2015–2018 to determine how the price of desalinated water
produced by the Torrevieja plant was established at EUR 0.30 m3 and the measures adopted
by the basin in response to an extreme atmospheric event.

An analysis of these statements reveals a fundamental aspect that is significant for the
future of TTS and traditional irrigation models in relation to water sources and extreme
events. Therefore, it appears that HTM-dependent irrigation models enter a situation of
pre-warning of drought long before the traditional irrigation models that use the basin’s
resources. In addition, traditional irrigation models do not enter a drought early warning
situation until rainfalls fall to half of the drought early warning values in TTS crops. This
justifies greater adaptation to extreme weather phenomena, such as droughts, and therefore
resource-dependent irrigated crops.

Finally, in relation to the TTS and the volumes of water assigned and consumed in each
irrigation community, the study establishes whether with this volume of water profits have
increased or decreased, depending on the greater or lesser amount of available water. To do
this, four key socio-economic indicators were taken into account: the area of production, the
average budget per inhabitant, recruitment in agriculture and unemployment in agriculture
for the district of Vega Baja del Segura.

In this respect, the volumes of water transferred in 2011, 2015 and 2019 were also in-
cluded, together with the desalinated water produced by the Torrevieja plant (ACUAMED)
to establish a relationship between the availability of water and the previously mentioned
socio-economic indicators.

A geographical information system called QGIS was used for the cartographic part.
The layers used to elaborate the location map of the area of study were downloaded in
shape (shp.) format from the Valencian Cartographic Institute (ICV), the National Geo-
graphic Institute (IGN), the Demarcación Hidrográfica del Segura (DHS), the Demarcación
Hidrográfica del Tagus (DHT) and the Demarcación Hidrográfica del Júcar (DHJ) (Table 1).

This analysis seeks to determine the water balance and to estimate the deficit that exists.
It also proposes alternative measures to increase the water supply and a new hydraulic
plan for the hydrographic basins of Spain.

Table 1. Sources and official documents consulted.

Source Documents Consulted Information Used

Spanish
Meteorological

Agency (AEMET)

- Iberian Climate Atlas (2011)
- https://www.aemet.es/

documentos/es/conocermas/
recursos_en_linea/publicaciones_
y_estudios/publicaciones/Atlas-
climatologico/Atlas.pdf (accessed
on 13 June 2022)

- Monthly and annual
rainfall cartographic
data of the study area
(Tagus basin and Upper
Tagus sub-basin).
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Table 1. Cont.

Source Documents Consulted Information Used

Tagus
Hidrográfica
Demarcación

- Hydrological Plan for the Tagus
River Basin (2009–2015).

- https://www.chtajo.es/LaCuenca/
Planes/PlanHidrologico/Planif_20
09-2015/Paginas/default.aspx
(accessed on 13 June 2022)

- Hydrological Plan for the Tagus
River Basin (2015–2021).

- http://www.chtajo.es/LaCuenca/
Planes/PlanHidrologico/Planif_20
15-2021/Paginas/Plan_2015-2021.
aspx (accessed on 13 June 2022)

- Hydrological Plan for the Tagus
River Basin (2022–2027).

- http://www.chtajo.es/LaCuenca/
Planes/PlanHidrologico/Planif_20
21-2027/Paginas/BorradorPHT_20
21-2027.aspx (accessed on 13 June
2022)

- Average precipitation in
the Upper Tagus
sub-basin.

- Average runoff in the
Upper Tagus sub-basin.

Ministerio para la
Transición

Ecológica y Reto
Demográfico
(MITERD)

- Yearbooks of gauges in Spain
(1979–2021)

- https://ceh.cedex.es/
anuarioaforos/afo/embalse-datos.
asp?ref_ceh=3006 (accessed on
13 June 2022)

- Water stored in
Entrepeñas and Buendía,
and all of it, from 1979 to
2021.

Demarcación
Hidrográfica del

Segura

- Hydrological Plan for the Segura
River Basin (2015–2021).

- https:
//www.chsegura.es/es/cuenca/
planificacion/planificacion-2015-2
021/plan-hidrologico-2015-2021/
(accessed on 13 June 2022)

- Hydrological Plan for the Segura
River Basin (2022–2027).

- https:
//www.chsegura.es/es/cuenca/
planificacion/planificacion-2022-2
027/el-proceso-de-elaboracion/
(accessed on 13 June 2022)

- Actual consumption of the
irrigation communities dependent
on the TTS (2020) (data provided by
CHS).

- Water balance (supply
and demand).

- Supply resources.
- Resource demand.
- Urban demand.
- Agriculturaldemand.
-

Climatechangescenarios.

Sindicato
Central de

Regantes del
Acueducto Tajo

Segura (SCRATS)

- Volumes of water transferred for
irrigation in the Segura basin.

- https://www.scrats.es/ (accessed
on 13 June 2020)

- Water volumes corresponding to
Alicante of the water transferred for
irrigation in the basin (data
provided by SCRATS).

- Volumes of water
transferred for irrigation
in the Segura basin.

- Volumes of water
corresponding to
Alicante of the water
transferred for irrigation
in the basin.
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Table 1. Cont.

Source Documents Consulted Information Used

Public Entity for
Wastewater
Sanitation
(EPSAR)

- Information on the existing
wastewater treatment plants
(EDARs) in the region of Vega Baja
del Segura.

- https://www.epsar.gva.es/
estaciones-depuradoras (accessed
on 13 June 2020)

- Number of WWTPs
installed in the Vega Baja
del Segura.

- Number of WWTPs in
operation in the Vega
Baja del Segura.

- Design production
capacity.

- Flows treated per day
(m3/s).

- Flows treated per year
(hm3/year).

- Flows treated and
regenerated.

- Discharge points.

Mediterraneanba-
sinwaters

(ACUAMED)

- Current data from the Torrevieja
plant

- (data provided by ACUAMED).
- Future expansion projects
- (data provided by SCRATS).

- Maximum desalination
capacity at the Torrevieja
plant.

- Energy cost of
desalination.

- Production cost of
desalination.

- Final cost of production
and delivery.

- Environmental costs.
- Future planning

(expansion of
production capacity by
80 > 120 > 160 hm3/year).

Source: own elaboration.

The scientific contribution of this article is based on the analysis of the most current
data offered by basin organisms, the effects of climate change and its involvement in water
resources. First, it is shown that the current water situation at the head of the Tagus is
not the same as in 1969. This implies a reduction in water resources in the Tagus basin
and, consequently, lower volumes of water transferred. These data are demonstrated by
the analysis of a short series of precipitation and runoff (1940–1979 and 1980–2018). To
complete this analysis, we obtained the existing data of water embalmed in Entrepeñas and
Buendía (separately) of the series of operation of the Tajo–Segura Transfer (1979–2020). In
order to proceed with a transfer, it is necessary that the volume of water in the reservoirs of
Entrepeñas–Buendía (as a whole) exceeds a certain amount at the beginning of each month.

The analysis of the water volumes packed in these reservoirs, both individually and
separately, shows a significant reduction in the water resources stored, caused by the effects
of climate change due to the lack of rainfall in the headwaters or the volume of rainfall.
One of the effects demonstrated by the climate change that occurs in Spain is based on the
reduction in rainfall in inland areas as opposed to large discharges that occur on the coast.
This has a serious impact on the basins’ water resources, since if it does not rain at the head
of the rivers, the basins’ water resources are diminished.

The analysis of the data from the Segura basin has allowed us to know the water
balance (offer and demand) and the existing deficit, despite the water contributions of
the Tajo–Segura Transfer. The data obtained have allowed us to know the situation in the
province of Alicante, adjusting it to the region of Bajo Segura.
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Another new aspect of the work corresponds to the construction of a water balance
(supply and demand) and its water deficit, adjusted to the region of Bajo Segura in Alicante.
The data show that the existing deficit is not as high as the above claims and that there is
water for irrigation in the region. In addition, a table was prepared to estimate the situation
for future scenarios in the Vega Baja of the Segura River (2030 and 2050). This table has
been compiled as follows: the calculation of these quantities was established on the basis
of the following method of analysis: (1) analysis of the official water demand and supply
data calculated by the CHS; (2) analysis of the official data on the effect of the decrease in
rainfall on water resources (AEMET, CEDEX) in the study area, especially of the resources
coming from surface water (Segura River and Tajo–Segura water transfer); (3) knowledge
of the territorial dynamics of the study area (for calculating future demands of the different
water uses), which is what the field work was used for; (4) calculation of substitution flows
for surface water and water transfer with non-conventional water (reuse and desalination),
knowing that the reuse of wastewater has a ceiling (depending on the recent evolution of
treated flows and total urban expenditure) and that the great asset is desalination for urban
and agricultural use. Furthermore, in the current energy transfer process, it is estimated
that the final cost of desalinated water will decrease in the coming years, depending on the
installation of solar energy sources to feed the Torrevieja plant.

The most relevant of this analysis are two specific issues: (a) it is identified that the
highest amount of water demand for irrigation cultivation corresponds to the trans-formed
areas from rain-fed to irrigated and is dependent on the waters of the Tagus–Segura Transfer.
It is also observed that irrigated crops dependent on basin water resources have a greater
resistance to extreme weather (droughts) than those dependent on the transfer. In addition,
it has been shown on numerous occasions that the transfer is an infrastructure vulnerable to
such situations. (b) The data provided by the basin body include the volume of concessional
water allocated to each irrigation community dependent on TTS water in the province of
Alicante. However, actual consumption data by irrigation communities are much lower
than the volume of water allocated in 1969.

The fact that they do not receive the amounts of water allocated in 1969 is justified by
the reduction in water available at the head of the Tagus, hence the importance of having
made its analysis earlier. The data show that these irrigation communities will never receive
such volumes of water allocated in 1969, when the climate and water reality was quite
different from the current one (2022).

However, farmers in the region continue to think that they do not receive such amounts
of water for political-social reasons, forming the so-called “water wars”. Examples of this
are exaggerated claims that it is “the end of Europe’s market garden”, “without water there
is not agriculture” or “that there is a deficit of 1000 hm3/year in the Segura basin”. Farmers
are therefore still waiting for water that they will never receive again, hence the importance
of this article to demonstrate the real situation with rigorous scientific data.

The last aspect to be highlighted is that the deficit in the region of Bajo Segura can
be solved by increasing the volume of water from wastewater treatment and desalination,
increasing its annual production capacity, as proposed by the basin body. There are also
other methods of reducing the deficit, such as the use of modern irrigation systems or the
reduction in less productive, if extremist, cultivated land.

All these issues justify the scientific and novel contributions of the article.

3. Results

3.1. The Effects of Climate Change in the Headwaters of the Tagus (Upper Tagus)

According to the Hydrological Plan of the Tagus Basin (2022–2027), the current average
rainfall in all Spanish areas of Tagus basin is 594 mm (1980–2018 series). These data
are something different in the Upper-Tagus sub-basin, where the great reservoirs that
regulate the Tagus–Segura Transfer are located and have experienced a decrease between
the 1940–79series (655 mm.) and the 1980–2018 series (568.5 mm.).Therefore, now the
average rainfall is lower than the average rainfall for the entire Tagus basin.
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Many studies highlight the reduction in rainfall in the headwaters of the Tagus basin,
calculated at a decrease of 12% in the period 1980–2018 [8,9]. This justifies the Tagus
basin plan with the rainfall data (average and maximum) and surface runoff (average and
maximum) for the sub-basin of the Upper Tagus, the headwaters of the Tagus and the
beginning of the Tagus–Segura Transfer [28].

It should first be clarified that there are three series in the Hydrological Plan of the
Tagus Basin: 1940–2018 (long series), 1940–1980 (old short series) and 1980–2018 (current
short series). Only the last two short series were considered, using the mean values.
The headwater rainfall was calculated from the SIMPA model, which is the hydrological
reference model for the calculation of water resources in the hydrological plans. For the
calculation of rainfall, the model establishes average data for each planning area within
the basin, and when there are no long series in the meteorological observatories of the
area, it fills in data from the longest series corresponding to observatories close to the
planning area.

The results clearly show the effects of climate change in the headwaters of the Tagus
basin in relation to precipitation. Although in some months there is an increase, the
general monthly trend corresponds to a considerable decrease. In general terms, it can be
observed that the mean obtained in the short series (1940–1979) was 655 mm and in the
most recent short series (1980–2018) the mean drops sharply to 568.5 mm of precipitation
in the headwaters of the Tagus. This represents a decrease of -86.5 mm of precipitation,
which represents a decrease of 13.2%, at present (Table 2). Consequently, these means are
substantially different, which implies evidence of the impact of climate change in the Tagus
headwaters [28].

Table 2. Calculations of average monthly/annual precipitation decrease and percentages in the
Upper Tagus (series 1940–1979 and 1980–2018).

Series 1940–1979
(mm)

Series 1980–2018
(mm)

Reduced
Quantity (mm)

Percentage
Reduction (%)

October 29.2 30.3 +1.1 +3.8

November 31.3 32.3 +1 +3.2

December 47 53.2 +6.2 +13

January 80.1 67.6 −12.5 −15.6

February 90.4 64 −26.4 −29

March 91.2 68.2 −23 −25

April 79.7 68.8 −10.9 −14

May 68.1 61.2 −6.9 −10

June 45.1 44.4 −0.7 −1.6

July 36.5 31.9 −4.6 −13

August 27.6 24.7 −2.9 −11

September 28.8 21.9 −6.9 −24

Total 655 568.5 −86.5 −13.2

Source: Hydrological Plans for the Tagus Basin (2022–2027; 2015–2021; 2009–15). Monthly collated data Iberian
Climate Atlas (AEMET, 2011). Own elaboration. Color: Identify decreases (red and negative) and increases (green
and positive).

Meanwhile, the Hydrological Plan of the Tagus Basin (2022–2027) also reports a series
of data related to surface runoff. In this respect, the reduction in rainfall has a direct effect
on the surface runoff of the Tagus Basin. These volumes of surface water are used for
the transfer.

Therefore, surface runoff functions as an indicator of the impact of climate change, in
relation to the reduction in mean precipitation in the headwaters of the Tagus. Adding the
monthly averages of surface runoff for the short series (1940–1979) gives a total surface
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runoff of 657.4 hm3 for the 30-year series. For its part, the sum of the monthly averages
of surface runoff for the short series (1980–2018) gives a total result of 380.8 hm3 in the
30-year series. This implies the reduction of a total of 276.6 hm3 in thirty years, which is a
percentage reduction of 42.1% (Table 3) [28].

Table 3. Calculations of average monthly/annual runoff decrease and percentages in the Upper
Tagus (series 1940–1979 and 1980–2018).

Series 1940–1979
(Hm3)

Series 1980–2018
(Hm3)

Reduced Quantity
(Hm3)

Percentage
Reduction (%)

October 30.9 24.9 −6 −19.4

November 44.3 30.6 −13.7 −31

December 55.9 58.4 +2.5 +4

January 84.1 48.4 −35.7 −42.4

February 130 45.8 −84.2 −65

March 157 71.7 −85.3 −55

April 79.6 49.9 −29.7 −37.3

May 50.3 35.8 −14.5 −28.8

June 11.0 11.7 +0.7 +6

July 1.0 0.4 −0.6 −60

August 0.5 0.5 0 0

September 12.8 2.6 −10.2 −80

Total 657.4 380.8 −276.6 −42.1

Source: Hydrological Plan for the Tagus Basin (2022–2027). Own elaboration.

Another aspect that highlights the decrease in rainfall and surface runoff in the Upper
Tagus due to climate change is the volume of water stored in the Entrepeñas and Buendía
reservoirs, particularly when analysing the historical series of 1979–2020, coinciding with
the years of the operation of the TTS.

In the water year 1979–1980, the volume of water stored in the Entrepeñas reservoir
reached a value of 6308 hm3/year. This figure had fallen to 4083 hm3/year in the water
year 2019–2020. Meanwhile, in the Buendía reservoir, in the year 1979–1980, there was a
total volume of 14,268 hm3/year, and in the water year 2019–2020 this figure had fallen
sharply to 3613 hm3/year. However, it should be remembered that the volume of water
authorised for transfer depends on the sum of the two reservoirs (Entrepeñas and Buendía).
In this respect, and following the same line of analysis as in the individual cases, the total
joint volume of water of the Entrepeñas and Buendía reservoirs in water year 1979–1980
amounted to 20,576 hm3/year, with 7696hm3/year in water year 2019–2020, representing a
decrease of 63% (Table 4, Figure 4).

Moreover, it should be noted that in the years of severe drought, as a whole, values
of between 5000 and 9000 hm3/year have been reached, revealing their vulnerability to
extreme atmospheric events.

Therefore, two conclusions may be drawn: (a) the impact of the effects of climate
change on the headwaters of the Tagus is inevitable, as a reduction in rainfall directly
affects the surface runoff and the volumes of water stored in reservoirs; and (b) the TTS is
adversely affected in this respect, given that the theoretical volumes calculated to transfer
to south-east Spain correspond to volumes of water that existed in and prior to 1979–1980,
which are not attainable in the present day. This implies the need to carry out a review of
the calculations made in the Preliminary Project of the Transfer with current data, given
that it is inconceivable that the theoretical water allocations can continue to be planned
based on calculations made over forty years ago, when the climate reality was completely
different to that of today.
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Table 4. Comparison between water stored in the Entrepeñas–Buendía reservoir and volumes of
water transferred by the Tagus–Segura Aqueduct.

Hidrologycal Year Vol. Water (hm3/year) Vol. of Water Transferred (hm3/year)

1979–1980 20,576 36
1980–1981 15,308 463.9
1981–1982 9648 287.9
1982–1983 5853 287.9
1983–1984 5142 287.9
1984–1985 9674 373.6
1985–1986 10,431 386.4
1986–1987 10,129 307.2
1987–1988 10,574 436.9
1988–1989 11,086 438.6
1989–1990 9679 287.9
1990–1991 8628 287.9
1991–1992 6646 287.9
1992–1993 5307 287.9
1993–1994 5025 255.1
1994–1995 3321 150.8
1995–1996 5383 361.1
1996–1997 11,882 457
1997–1998 15,964 302.5
1998–1999 14,229 287.9
1999–2000 9945 287.9
2000–2001 11,798 373.6
2001–2002 10,090 287.9
2002–2003 9276 312.9
2003–2004 9486 382.7
2004–2005 7673 287.9
2005–2006 3635 287.9
2006–2007 4139 253.3
2007–2008 3918 138.7
2008–2009 5298 199.2
2009–2010 9818 259.2
2010–2011 14,202 287.8
2011–2012 11,169 287.8
2012–2013 8926 287.8
2013–2014 9048 287.8
2014–2015 6236 281.2
2015–2016 5396 231.8
2016–2017 4637 127.3
2017–2018 5224 156.6
2018–2019 7297 313.6
2019–2020 7696 210

Source: yearbooks of gauges in Spain. Own elaboration.
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(a) (b) 

Figure 4. Graph comparison between water stored in the Entrepeñas–Buendía reservoir and vol-
umes of water transferred by the Tagus–Segura aqueduct. (a) Evolution of water reservoirs in the
Entrepeñas–Buendía reservoir (1979–2018); (b) evolution of volumes of water transferred by the
Tagus–Segura aqueduct (1979–2018). Source: yearbooks of gauges in Spain. Own elaboration.

Finally, the PHCT (2022–2027) reports the percentage of change in the quarterly runoff,
calculated in average (RCP 4.5) and high (RCP 8.5) climate change scenarios for the Upper
Tagus. For the months of October to December, a reduction of 14% is calculated in an
RCP 4.5 scenario and 20% in an RCP 8.5 scenario, coinciding with the months of most
rainfall [28]. This implies that the rainfall trend, the surface runoff and the volumes of
reservoir-stored water in the Upper Tagus are in continuous decline, constituting a serious
problem for those dependent on the water from the TTS.

3.2. The Water Balance in the Segura Basin: Supply and Demand in Vega Baja

According to the Hydrological Plan of the Segura Basin (2015–2021), the total available
resources of the basin (including the TTS) amounted to 1511hm3/year, and the total demand
of the basin reached a volume of 1841 hm3/year. Given that the demand is higher than the
available resources, the water deficit calculated for the whole of the Segura basin for this
time horizon was 330 hm3/year [26].

Meanwhile, the recent Hydrological Plan of the Segura Basin (2022–2027) indicates
that the total available resources in the basin (including the TTS) amount to 1571 hm3/year,
which implies an increase in water resources in the basin. The total demand of the basin,
meanwhile, amounts to a volume of 1831 hm3/year, representing a decrease in demand with
respect to the previous time horizon, which is justified by the increase in water resources
from non-conventional sources. This is whythe deficit has reduced to 260 hm3/year
(Table 5) [27].

Considering the scenarios contemplated for 2027 and 2039 in the PHCS (2022–2027),
two different trends may be identified: the first is the continued increase in water resources
using non-conventional sources, such as those obtained through wastewater treatment
and desalination in the Segura basin for 2027 and 2039. The second trend is related to the
Segura basin’s own water resources, such as surface and groundwater, which are set to
decrease in terms of total annual volume. Furthermore, the plan considers that less sea
discharges will take place in 2027 and 2039, which suggests an advance in the use and
management of water.

A rising trend can be observed in the urban demand in the Segura basin. This coin-
cides with the increase in agricultural demand for the 2027 and 2039 horizons [27]. This
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constitutes a serious problem for agriculture, given that the Water Law 29–1985 and the
subsequent Law of the National Hydrological Plan 2001 and Law 11/2005, which modifies
the previously mentioned law, indicate urban supply as the priority use. This implies that
in situations of extreme atmospheric events (droughts), priority is given to urban supply
above other uses (ecological, irrigation and agricultural uses, industrial, etc.). Therefore, in
the case of need, water will be extracted from the water allocations assigned to irrigation
and agricultural users, thereby aggravating the consequences for irrigated crops.

Table 5. Segura River basin water balance (2022–2027).

Segura River Basin Water Balance

Average
Resources (hm3/year)

Horizon
(2022–2027)

Available
Resources

Surface water 704

Groundwater 66

Non-draining surface resources to the Segura 15

Returns to the system 268

Desalination 223

TTS 295

TOTAL AVAILABLE RESOURCES 1571

Demand

Urban demand 250

Environmental demand 39

Agricultural demand 1522

Other demands (industrial, golf, etc/. 20

TOTAL BASIN DEMAND 1831

BASIN DEFICIT −260

Source: Hydrological Plan for the Segura River Basin (2022–2027).

With respect to the urban demand of the basin, the calculation of urban demand
conducted by the CHS in the district of Vega Baja del Segura was performed. In 2021,
urban demand was recorded at 39.2 hm3/year, and it is estimated that by 2039 it will
have increased to 43.5 hm3/year [27]. It is interesting to note that the urban demand
corresponding to the district of Vega Baja only represents 16% of the total demand of the
Segura basin.

It is more interesting to analyse the agricultural demand of the district of Vega Baja
del Segura, according to the data included in the PHCS. To achieve this, the gross or usable
agricultural land and the net areas or those cultivated by UDAs (Units of Agricultural
Demand) corresponding to the district of Vega Baja del Segura were chosen (Table 6).

As we can observe in Table 5, the PHCS shows that there is a gross or usable agricul-
tural area of 65,411 hectares, of which 47,636 hectares are cultivated, representing 72.8% [27].
In the afore-mentioned plan, the total gross and net demands per crop and the total demand
for per UDA are reported.

Table 5 shows the UDAs that depend on the waters of the Tajo–Segura Transfer are
52, 53, 56 and 72. This gives a total of 27,837hectares and an annual water demand of
117.9 hm3/year, while the UDAs that depend on available basin resources (46, 48, 51 and
55) add up to a total of 19,799 hectares and an annual water demand of 76,5 hm3/year. These
data show that the UDAs that were rain-fed crops and were transformed into irrigated
crops (new irrigation), because of the Tajo–Segura Transfer project, are the areas with the
highest water demand and, consequently, the causes of the water deficit in the region of
Bajo Segura.
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Table 6. Area (gross and net) and demand (gross and net) by UDAs belonging to the region of Bajo
Segura (Alicante).

Gross Area
(ha)

Gross
Demand
(hm3/year)

Net Area
(ha)

Net
Demand

(hm3/year)

UDA Denomination Horizon 2022–2027 Horizon 2022–2027

46 Traditional Vega Baja 23,780 100.1 15,469 58

48 Vega Baja, post. Al 33 y ampl.
del 53 3067 12.3 1913 8.2

51
Mixed irrigation of aquifers and
wastewater treatment plants
south of Alicante

4538 9.9 1634 7.5

52 Riegos Levante Right Bank 3439 15.9 2886 11.9

53 Riegos Redotados del TTS de
RLMI-Segura 11,046 52.4 8713 36.1

55 Crevillente Aquifer 1306 3.2 783 2.8

56 La Pedrera ZRT TTS Redotados
Irrigations 10,563 52.5 9411 41.4

72 Re-dedicated irrigated lands of
the Vega Baja TTS, left bank 7672 40 6827 28.5

TOTAL 65,411 286.3 47,636 194.4

Source: PHCS (2022–2027).

It is evident that climate change has a significant impact on water, which obliges the
organisations of the basin to take it into account in hydrological planning. In this respect,
the CHS establishes three future periods of 30 years, called impact periods (IP). These
impact periods are IP1 (2010–2040), IP2 (2040–2070) and IP3 (2070–2100), reflecting the
impact in the short, medium, and long term, in accordance with the medium (RCP 4.5) and
high (RCP 8.5) climate scenarios (Table 7) [27].

Table 7. Effect of climate change with respect to an unaffected situation on hydrological variables in
the DHS.

Med RCP 4.5 Med RCP 8.5

Precipitation

PI (2010–2040) −2% −5%

PI (2040–2070) −4% −10%

PI (2070–2100) −8% −14%

Real evapotranspiration

PI (2010–2040) −2% −5%

PI (2040–2070) −4% −9%

PI (2070–2100) −6% −11%

Recharge

PI (2010–2040) −7% −10%

PI (2040–2070) −12% −23%

PI (2070–2100) −20% −36%

Runoff

PI (2010–2040) −7% −9%

PI (2040–2070) −11% −23%

PI (2070–2100) −20% −38%
Source: PHCS (2022–2027).

In fact, the short-, medium- and long-term impacts of climate change related to water
resources reveal a negative scenario for the Segura basin. As we can observe in Table 6,
there will be a reduction in rainfall of between 8% and 14% in the Segura basin by the
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end of the century. The potential and real evapotranspiration translate into negative
effects; the humidity of the soil will also decrease; the aquifer recharge will face serious
problems, oscillating between 20% and 36%; and finally, the surface runoff will decrease
sharply throughout the whole of the Segura basin, with values fluctuating between 20%
and 38% [27].The reason for using the RCP 8.5 scenario, which is characteristic of an
extreme scenario of high emissions, is justified because the trend in emissions is increasing
annually, the effect of climate change on the reduction inwater resources is notorious and,
finally, because it justifies the proposal put forward in this research to carry out sustainable
water planning.

3.3. The Water Balance in the District of Vega Baja del Segura and the TTS

Obtaining data on water resources (supply) in the region of Vega Baja del Segura has
been a complex task. This is because there is no previous study of the water balance in this
region. The data found are only represented in two scales: river basin scale or provincial
scale (+140 municipalities, Alicante).

For this reason, the data that represent the water balance of the region of Bajo Segura
are adjusted to its political limit composed of the 27 municipalities that make up it.In this
sense, the data have been found in different bibliographies of official bodies such as the
Segura River basin or the Diputación de Alicante, among others. All these data have been
adjusted for the regional scale of work (Table 8).

Table 8. Water balance 2021 in the region of Vega Baja del Segura (Alicante).

WaterBalance in the Region of Vega Baja del Segura (Alicante)
Average

Resources (hm3/year)

Offer

Surface water 40

Groundwater 36

Returns to thesystems 32

TTS 61.1

Wastewater treatment 25

Desalination 48.1

TOTAL DISTRICT RESOURCES 242.2

Demand

Urban demand 39.2

Environmental demand 32

Agricultural demand 194.4

Other demands (industrial, golf, etc.) 8

TOTAL DISTRICT DEMAND 273.6

DISTRICT DEFICIT −31.4

Source: own elaboration based on PHCS (2022–2027), SCRATS (2020), EPSAR, ACUAMED, Generalitat Valenciana
and Diputación de Alicante data.

The estimated deficit in the district of Vega Baja del Segura (Alicante) is 31.4 hm3/year.
It should be noted that urban demand is completely guaranteed by the water resources from
the River Taibilla, the TTS and the desalinated water used by the Mancomunidad de los
Canales del Taibilla, which supply the municipalities of Vega Baja del Segura. Meanwhile,
environmental demand is also guaranteed by the circulating waters of the river Segura and
the returns to the system, which are used as ecological flows in the final section of the river
Segura. The other demands (industrial, golf, etc.) are covered using water purified with a
tertiary or advanced treatment. The problem of the deficit resides in agricultural demand,
particularly in the so-called new irrigated lands, because the waters from the transfer are
insufficient to supply the existing demand (Table 9).
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Table 9. Estimated situation for future scenarios in the Vega Baja of Segura River (2030 and 2050).

Water Resources Vega Baja 2021 2030 2050

Surface water 40 38.7 34

Groundwater 36 30 20

Returns to system 32 33.1 35

TTS 61.1 57.4 52.1

Wastewater treatment 25 26.4 29

* Desalination 48.1 80 120

Total Resources 242.2 265.6 290.1

Urban demand 39.2 41.4 45

Environmental demand 32 32 32

Agricultural demand 194.4 194.4 176.9

Other demands (industrial, golf, etc.) 8 8 8

Total Demand 273.6 275.8 261.9

Deficit/Surplus Vega Baja −31.4 −10.2 +28.2

* Desalination: by 2030 the Torrevieja desalination plant will be expanded to 120 hm3/year, of which 80 hm3/year
will be for agricultural use and 40 for urban use. By the year 2050, it is estimated that the production capacity will
be 160 hm3/year, of which 120 hm3/year will be used for irrigation and the remaining 40 hm3/year for urban
use. Source: own elaboration based on the scenarios proposed in the Segura River basin and the medium climate
scenario RCP 4.5.

Of the 194.4 hm3/year of agricultural demand, according to the PHCS (2022–2027),
a total of 160.8 hm3/year correspond to UDAs 52, 53, 56 and 72, which coincide with the
sectors of the new irrigated land (former rain-fed land transformed into irrigated land);
hence, there is high demand for water for two reasons: (a) the lands were originally dry
and modern irrigation systems allow irrigated crops to be grown on them, and (b) the
farms or plots are large with areas similar to those of latifundios (large estates).Therefore, a
large amount of water is necessary to maintain their productivity and enable these areas to
continue to produce irrigated crops (Table 10).

Table 10. Agricultural demand that takes advantage of the waters of the TTS in the Vega Baja del Segura.

Denomination Agricultural Demand hm3/year (2021–2027)

UDA—52. Segura RLMD 15

UDA—53. Segura RLMI 52

UDA—56. Redotated irrigation of the TTS of
the La Pedrera ZRT 52

UDA—72. Vega Baja, left bank redotated
irrigation systems 40

TOTAL 160.8

Source: PHCS (2022–2027). Own elaboration.

In this respect, the Confederación Hidrográfica del Segura provided a series of data
referring to the volume supplied of the transfer water to the 29 irrigation communities in
the water year 2019/2020 (Table 11). This table reflects two relevant aspects: the conces-
sional volume and consumption. The concessional volume refers to the amount of water
assigned to each of the irrigation communities that are beneficiaries of the transfer water,
corresponding to the theoretical values in the Preliminary Project of the Transfer, given that
the total sum of the concessional volumes assigned to each irrigation community amounts
to 123 hm3/year, 30% of which is allocated to the province of Alicante. It would be very
difficult to achieve these theoretical amounts in the current climate and water context and
considering the effects of climate change.
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Table 11. Volume of water supplied by the water transfer to the CC.RR. of Alicante in the hydrological
year 2019–2020.

Transfer Resources

Concesional Volume (m3)
E (m3)

Consumption (m3)

C.R. Albatera 7,815,324 3,969,496

C.R. Las Cuevas 1,491,100 796,865

T.D. Lo Belmonte 666,925 356,416

T.D. Lo Marques 485,366 259,386

T.D. Las Majadas 767,010 409,903

C.R. San Joaquin 479,950 241,840

C.R. Santo Domingo (Grupo 3.490) 2,276,500 1,216,595

C.R. Lo Reche 1,473,892 731,114

C.R. El Carmen 571,739 305,301

T.D. Manachon Candela 111,000 29,380

C.R. Riegos de Levante (M.I.) 77,512,272 26,213,062

C.R. Riegos de Levante (M.D.) 5,500,000 1,299,612

C.R. La Fuensanta Grupo 2000 1,007,750 206,895

C.R. La Estafeta 55,100 20,963

C.R. Murada Norte 2,001,700 1,069,736

C.R. El Mojon 1,156,641 385,076

C.R. Perpetuo Socorro 1,709,400 816,432

C.R. Las Dehesas 961,350 477,008

C.R. Barranco de Hurchillo 239,250 127,858

C.R. San Onofre y Torremendo 1,715,350 916,708

Agrícolas Villamartin 110,200 57,358

C.R. Río Nacimiento 627,850 335,532

C.R. Mengoloma de Orihuela 208,800 111,795

C.R. Pilar de la Horadada 2,621,600 1,401,019

C.R. San Isidro y Realengo 7,500,000 0

C.R. Campo Salinas 2,122,800 1,041,434

C.R. San Miguel 1,922,700 773,152

C.R. Las Cañadas 150,800 81,064

TOTAL 123,262,369 43,651,000

Source: DHS (2020).

It is interesting to know the consumption per irrigation community, given that, if the
value of consumption of each irrigation community has allowed sufficient irrigation for the
crops to grow correctly and produce yields that are profitable for the farmer, this implies
that the net agricultural demand of the beneficiaries of the TTS water fluctuates between
the consumption values of 2020, that is, around 44 hm3/year (Table 11).

To corroborate this point, the data regarding the irrigated area of the district of Vega
Baja del Segura provided by the Valencian Institute of Statistics (IVE) of the Regional
Department of Sustainable Economy, Productive Sectors, Trade and Employment were
consulted. These data reveal that there are variations in the size of the cultivated area in
accordance with the droughts occurring and the availability of water resources. In this

178



Water 2022, 14, 2023

respect, in the years 2014–2016 (years of drought in the Segura Basin), there was an increase
in the irrigated area, with an area of 16,399 hectares recorded in 2014 and 16,955 hectares in
2016. In the following two years of drought (2017–2018), the irrigated area decreased to
values fluctuating between 16,500 and 15,500 hectares. Finally, it should be noted that in
2019, the cultivated area increased again to 16,321 hectares, a value close to that of 2020.

From the data provided by the IVE, it may be concluded that the municipalities with
irrigated crops dependent on the TTS waters (new irrigated land) reduced their cultivated
area in drought situations, as in the case of the municipalities of Orihuela, Albatera, Benferri,
Pilar de la Horadada or San Miguel de Salinas, among others. Meanwhile, the irrigated
crops that depend on the water resources from the Segura basin (Segura River) increase or
maintain the same areas of irrigated crops in drought situations, even in the years of most
severe rainfall and hydrological drought in the basin, as in the case of the years 2012, 2015
and 2018.

The loss of irrigated area dependent on the TTS water resources could have been
even greater in the years 2015–2016 and 2017–2018 (drought in the Tajo, Júcar and Segura
basins, among others), if the desalination plant of Torrevieja had not started operations as a
strategic source to support the TTS in this type of situation [5].

Meanwhile, the data provided on the ARGOS Information Portal of the Regional
Government of Valencia allows the addition of a series of socio-economic indicators that
enable the relationship existing between economic development (agriculture) and the
greater or lesser availability of water to be evaluated (Table 12).

Table 12. Socio-economic indicators in the Vega Baja del Segura in relation to the greater or lesser
availability of water resources.

2011 2015 2019

Regional cultivatedarea 16,425 16,955 16,321

Average budget per
habitant EUR 745.87 EUR 844.30 EUR 938.72

Registered hiring in agriculture 11.87% 21.83% 28.06%

Unemployment in
agriculture 4.22% 6.34% 4.59%

Annual transfer TTS 85.9 32.8 85.5

Desalination N/D * 30 76.4
* N/D: non data. Source: Valencian Cartographic Institute (ICV) (IVE), ARGOS and ACUAMED.

Thus, with respect to the average budget per inhabitant, a gradual increase from the
year 2011 to 2019 may be observed. It continued to rise until 2021, reaching a value of EUR
1026.35/inhabitant.

Regarding the recruitment recorded in agriculture, in the year 2013–2014 an expo-
nential increase in percentage terms can be observed, reaching a figure of 30.68%. This
value decreased in the following year due to the severe drought (21.83%) and continued to
decrease until 2018. From 2019, a growing trend began in the percentage of recruitment
recorded in agriculture, reaching a value of 35.01% in 2021.

On the other hand, registered unemployment in agriculture displays different be-
haviour. From 2007 to 2016, unemployment in agriculture gradually increased. The highest
values correspond to the drought years of 2015 and 2016, reaching 6.16% and 6.34%, re-
spectively. From 2017 until the present day, the number of unemployed in agriculture has
decreased to a level of 4.59 in the year 2020.

These indicators become more significant when they are examined in relation to the
greater or lesser availability of water from both the TTS and desalination.

In March 2015, a drought situation was declared in the Segura basin, for which
12 exceptional measures were implemented for the management of water resources and
EUR 30 million of extraordinary credit was assigned. In September of the same year, the
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drought continued, and the drought declaration was extended until September 2016. In
addition to the measures already implemented, further action was taken with respect to the
control of the continental waters. In October 2015, for the first time in Spanish history and
in the Segura basin, among the new measures announced by the Ministry was the reduction
in the price of desalinated water produced by the Torrevieja plant to 0.30 EUR/m3, with
the authorisation of the production of 30 hm3/year and a subsidy of EUR six million to
reduce the cost of production [29].

This highlights that, thanks to the production of desalinated water in the years 2015
and 2016, the area of irrigated crops in the district of Vega Baja del Segura remained the
same. This is also visible in a similar value maintained of total agricultural income in the
Region of Valencia.

In March 2018, Law 1/2018 of 6 March was passed, referring to the adoption of urgent
measures to mitigate the effects generated by the drought in certain hydrographic basins.
Additionally, the Revised Text of the Water Law, approved by Royal Legislative Decree
1/2001 of 20 July was modified, in response to the continued drought situation in a large
part of Spain. This explains the decrease in the cultivated area in the years 2017, 2018 and
2019 in the district of Vega Baja del Segura, together with the reduction in agricultural
income. Another problem that explains this worsened situation is that, from the year
2016–2017, the price of desalinated water increased to 0.60–0.80 EUR/m3. Farmers could
not afford this price and opted to not cultivate or even abandon their irrigated land due to
the absence of a guarantee of water resources.

However, in the water years 2017–2018, when there was a drought in the headwaters
of the Tagus, the Torrevieja desalination plant reduced the price of its desalinated water (for
the second time) to 0.30 EUR/m3 for irrigators. This cost was farbelow that of production
costs [5]. This coincided with the months of an absence of transferable resources or “no
transfer”, which obliged the desalination plant of Torrevieja to produce desalinated water
at almost maximum capacity in 2019 [29,30]. The effects for the cultivated land and socio-
economic aspects were positive, thanks to desalination.

4. Discussion

The results reveal a series of problems in hydrological planning in Spain which directly
affect the district of Vega Baja del Segura, in relation to the Tagus–Segura Transfer.

The analysis shows that the volumes of water available in the sub-basin of the Upper
Tagus are not the same as those of fifty years ago, given that the average and maximum
rainfall have reduced, the surface runoff has decreased and the volumes of water inde-
pendently stored in the Entrepeñas and Buendía reservoirs have decreased sharply. This
behaviour has also been observed in the joint water resources of Entrepeñas–Buendía since
the beginning of operations of the TTS.

The reduction in rainfall recorded in the last period of climate analysis (1980–2018
series) is 15% with respect to the 1940–1979series and is consistent with what the CEDEX
points out in its report on the impact of climate change on water resources in Spain [8]
and with what Marcos and Pulido point out [31]. A decrease in winter and spring rainfall
is also observed, which are the most effective for hydrological planning purposes (urban
tourist and agricultural demands in summer) and a slight increase in autumn rainfall, in
line with what has been pointed out by various authors [32–35] for the eastern sector of the
Iberian Peninsula. Thus, the monthly distribution of precipitation in the headwaters of the
Tagus tends to be “Mediterranean”, with a more prominent participation of autumn rains.

The climate trends and their effects related to water resources in the Tagus basin
(Upper Tagus) with respect to rainfall, surface runoff and the volume of water stored in
reservoirs reveal a progressive reduction in available water resources. Taking into account
the climate change scenarios (RCP 4.5 and RCP 8.5) and even after undertaking adaptation
tasks, the Tagus basin is experiencing serious problems, which are being demonstrated and
tested with scientific data.
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As mentioned above, the Mediterranean region is the planetary zone where the effects
of climate change will be most devastating [1]. In this sense, there are numerous scientific
publications that have analysed this issue for the Mediterranean region. These studies
show that, although the reduction in precipitation is not linear, but rather amplified (due to
the increase in extreme weather events), two types of behaviours have been observed in the
Mediterranean region. The first of these is obviously the reduction in average precipitation
and the form of rainfall [11]. Greater amounts than historical records can now fall in a very
short time. The second is that rainfall tends to concentrate on the Mediterranean coast
and not in inland areas, where the headwaters of Spain’s main rivers (such as the Tagus
and Segura Rivers) are located [33–37]. If there is no rainfall in the headwaters of these
rivers, there will hardly be any water resources in the basin and, consequently, no transfer
from one basin to another will be possible. Therefore, it is considered that the TTS and the
current hydraulic planning is unsustainable in the context of climate change.

The problems of the Upper Tagus directly affect the hydrological planning of the Se-
gura basin, through the Tagus–Segura Transfer. One of the problems identified in the period
of operation of the TTS (1979–2021), except for one year, is that the theoretical volumes
assigned in the Preliminary Project of the Tagus–Segura Transfer have not been achieved,
not even under the initial operating regulations. In fact, with respect to the demand and
available water resources in the Segura basin thanks to the transfer, the Segura basin has
never reached more than 2000 hm3/year as an available resource, even with the TTS,
wastewater treatment and desalination. Meanwhile, demand has increased exponentially.

This is mainly due to the problems in the headwaters experienced in the Tagus basin
because of climate change. The figure that demonstrates this aspect is the average volume
of water transferred from the origin (208 hm3) and received in the destination (182 hm3),
indicated by the CHS for the period contemplated [27]. Furthermore, the data of the
SCRATS (Central Irrigation Syndicate of the Tagus–Segura Aqueduct) reveal that, of the
400 hm3/year assigned to irrigation in south-east Spain (theoretical), the average volume
of the transfer for the period indicated is 195.6 hm3, that is, less than half of the assigned
amount. Of the 400 hm3/year (theoretical), 30% corresponds to the province of Alicante,
which is 120–125 hm3/year (theoretical). However, the reality is very different. Taking the
data of the CHS into account, and particularly that of the SCRATS, the average volume
of water received in the province of Alicante from the TTS is 61.1 hm3 in the period of
operation (1979–2021). This implies that the province of Alicante receives half of the
theoretical amount of water assigned to it.

This raises the following questions: Why has no reassessment or review been made
of the operating calculations of the TTS in over 50 years? Why is planning undertaken
with values that do not currently exist, nor will exist in the future? Why do the farmers
denounce and call for volumes of water that they will never receive? The answer is clear:
they are being deceived because they have been given no explanation about the current
situation of the hydrographic basins because of climate change.

Therefore, the TTS displays a series of significant weaknesses subject to the variations
in climate, and the territories which are supplied with its water resources must begin to
adopt measures that do not directly depend on it (self-sufficiency). To obtain a greater
volume of water, desalination and wastewater treatment are being used to contribute to the
supply, enabling the deficit of the basin to be reduced to some extent.

However, the trends in urban and agricultural demand are growing, with the latter
having the highest demand. It should be remembered that in the case of drought or
a shortage of urban water supply, the water used to supply the urban nuclei will be
drawn from other uses, such as ecological flows or those used for agriculture. Therefore,
agriculture is losing water resources, and in the medium to long term, if measures are not
taken to correct these problems, it will be seriously affected.

In this respect, and as a proposal for an empirical and demonstrated adaptation, the
new irrigated lands (dependent on the TTS) enter a situation of pre-alert of drought much
before the traditional irrigated lands. This was evident in the drought of 2015, after the
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passing of RD 356/2015 of 8 May, declaring the situation of drought in the territorial region
of the Confederación Hidrográfica del Segura with the adoption of exceptional measures
for the management of resources, due to the reduction in the interannual contributions
(rainfall) in the headwaters of the Segura and Tagus basins and its successive extensions
(RD 335/2016). In other words, the resources of the Segura basin can supply the traditional
irrigated lands in situations of extreme drought, although not the crops dependent on
external resources. This should constitute an incentive for changing the way hydrological
planning is conducted in the Segura Basin, the Vega Baja district and in the rest of Spain.

With respect to the Alicante district of Vega Baja del Segura, the deficit existing is
due to agricultural demand: principally, the irrigation communities that depend on the
water resources of the transfer. This is because after the TTS project was approved, the
construction of the transfer took 10 years until it began operation. During this period, there
was much speculation in Vega Baja del Segura regarding the water that would be received,
based on the afore-mentioned theoretical volumes. This speculation translated into the
transformation of rain-fed crop land into irrigated land using groundwater. Therefore,
the real use of the TTS has not increased the irrigated areas, but has maintained, as far as
possible, all the transformed areas since then.

The current status of the non-conventional sources allows them to considerably reduce
the deficit existing in Vega Baja del Segura, although this does not mean that there is no
longer a deficit. If the desalination plant of Torrevieja operated at its maximum capacity
(80 hm3/year), with the support of the treated wastewater (24–25 hm3/year), the deficit
would be reduced to 10.5 hm3/year. The deficit would be resolved with the extension of
the maximum production capacity of the Torrevieja desalination plant from 80 to 120, and
subsequently to 160 hm3/year. This proposal is contemplated in the PHCS (2022–2027). In
parallel, there would be an increase in the volume of reusable treated wastewater, which
would complement the desalinated water. These two sources would become the principal
water sources of the district of Vega Baja del Segura. The role of the TTS, therefore, would
be a secondary or complementary source to these resources, when needed.

However, this increase in production should be accompanied by mechanisms imposed
by the government based on Law 7/2021 of 2 May regarding climate change and energy
transition, as a framework within which to reduce the cost of production of desalinated
water, based on energy subsidies. In this way, the farmers would be provided with water
for irrigation at a price of 0.20–0.30 EUR/m3, as in the case of the two occasions when the
TTS failed during situations of extreme drought.

Taking all these issues into account, Spain needs to review and reconsider the current
hydrological policy. To do this, first, it should begin by reviewing the values of the
Preliminary Project of the TTS and adjust them to the volumes of water currently available.
Furthermore, the water contributions assigned to each irrigation community dependent
on the water from the TTS should be reviewed, given that they do not reflect the current
situation. This analysis will reveal the available water resources. Second, after determining
the situation of the water resources related to the TTS, it would be appropriate to increase
the maximum capacity of the Torrevieja desalination plant (ACUAMED) in order to obtain
larger volumes of water resources and maintain the plant in full operation as well as
obtaining a price of desalinated water that is affordable for farmers. Third, agricultural
demand should be reduced using new irrigation systems (drip system), a switch to irrigated
crops that require less water or a radical change from irrigated crops to rain-fed crops and,
as a more extreme measure, the reduction incultivable areas.

The new hydrological policy in Spain should be constructed on sustainability, climate
change scenarios, hydrologic planning and on measures of adapting to climate change in a
horizon of 100 years.

The new sustainable hydrological planning should be based on scenarios of climate change
elaborated by the IPCC in its reports and on its regional effects. Sustainable planning means
that, despite the existing resources, this exercise should be contextualised within the worst
climate scenario possible, that is, in RCP 8.5 scenarios. Planning a climate and water
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resources situation based on the RCP 8.5 severity will enable a management of water
resources able to guarantee the resource for the rest of the twenty-first century in Spain.
If the reality is very different to that contemplated in the plan (due to a limitation of
greenhouse gases, the implementation of measures to adapt to extreme atmospheric events
and the respect and fulfilment of all the treaties and agreements in terms of reducing
emissions), there will be a surplus and more water will be available for the assigned
uses (urban supply, ecological flows, irrigation and agriculture, industry, leisure, tourism,
etc.).On the contrary, if the scenarios contemplated in the RCP 8.5 are fulfilled, a prior
adaptation to this situation will have already been contemplated and planned. Furthermore,
the adoption of this approach would enable measures of adaptation to be developed over
the years.

This new planning proposal will significantly slow down the environmental dete-
rioration and socio-economic losses. If these aspects are not considered from today, the
consequences will be much more severe in the medium and long term, and losses running
to millions of euros will be incurred. It would be particularly severe for those crops depen-
dent on the TTS. The implementation of hasty and drastic measures as the RCP 8.5 climate
scenario approaches will lead to greater economic investments with dubious profitability.
Furthermore, this new policy should be flexible and open to modifications which enable
adaptations and adjustments to be made in accordance with the climate situation and the
future scenarios contemplated.

The new planning and management scenario proposed in this paper is in line with
the proposal in the mentioned Law 7/2021 on climate change in Spain, which advocates
the incorporation of the effects of climate change into hydrological planning (art.19) to
increase the resilience of the different uses of water. In particular, agricultural uses must
adapt the demands to the expected resources to minimise the expected impact on future
climate scenarios. The proposal for sustainable hydraulic planning in our study area is in
correspondence with various authors in Spain who advocate a reduction in agricultural
irrigated surfaces compared to the increase contemplated in various current hydrological
demarcation plans (Guadalquivir, Guadiana, Tajo), or the maintenance of existing ones that
are not sustainable, in present day and in climate change scenarios (Segura, Júcar) [36–38].

Moreover, the new sustainable hydraulic plan should focus on the management of
the demand for water, with a commitment to non-conventional sources, desalination
and wastewater treatment, with the afore-mentioned determinants (increase in capacity,
reduction inthe production costs of desalinated water, mechanisms to reduce the energy
and production costs of desalination, applying tertiary treatment to purified water so
they may be reused for agricultural and other uses). After managing the resources of
non-conventional sources, the water resources of the hydrographic basins should then
be included (surface, groundwater, returns to the system, sea discharges, etc.). Next, the
external water resources from other basins should be incorporated, such as those from the
Tagus–Segura Aqueduct, as a strategic or complementary source which, when necessary,
can transport water to satisfy the demands. Furthermore, it is also necessary to calculate
the water needs per crop in order to determine the amount of water that is required to
produce substantial yields of the crop and its fruit, administrating the necessary volume
of water.

Another aspect that the new plan should contemplate isadaptation measures through
water use agreements, such as those in Marina Baja (Alicante), where the irrigators concede
clean water for urban supply while the regenerated water is used for irrigation in agri-
culture. To achieve this, it is preferable to establish an agreement between the interested
parties (farmer, water company and the EDAR, among others).

After planning all these factors, it is necessary to supply all of the demands existing
in the basin and territory as far as possible. Most likely, in the deficit basins which have
transformed areas of rain-fed land into irrigated land (new irrigated land dependent on the
TTS), different alternatives will have to be sought to satisfy their demand: desalinated water,
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treated wastewater, new irrigation systems, changing to soils and crops that require less
water, or, in the most extreme case, reducing the crop areas in order to bring down demand.

The proposal presented in this study adapts to the objectives established by the Spanish
government for the year 2050 which seek to promote the development of alternative sources
of supply (reuse and desalination based on renewable energy), reduce the water lost in the
sanitation and supply network, increase the quality of the water, “renewable water” and
moderate consumption, among other actions.

The energy consumption of these facilities is currently around 3 Kw/h for each m3

of water produced (generally less than 4 in new facilities including auxiliary systems and
other pumping) and has been reduced from values of over 20 Kw/h/m3 in the 1960s to
current values [39,40].

Values of more than 20 Kw/h/m3 in the 1960s to have lowered to current values [39,40]
thanks to improvements in the chemistry and configuration of the membranes and in the
systems for recovering residual energy from the brine.

Energy consumption is the largest cost of desalinated water production, so its reduc-
tion is the key factor in reducing the price of desalinated water. The implementation in
Spain of the National Integrated Energy and Climate Plan (2021–2030) and the EU legisla-
tive package “Fitfor 55” responds to the European Commission’s recent commitment to
reduce net greenhouse gas emissions by at least 55% by 2030.

In this context, projects are being developed for the implementation of solar farms
to supply desalination facilities on the Spanish mainland and in the Canary Islands. In
particular, the Torrevieja desalination plant, a key element in the supply of desalinated
water, is developing a project to install an electrical substation, powered by solar energy,
with the aim of obtaining self-consumption of energy. At present, the desalination plant’s
energy consumption is estimated at 264 GWh, which would increase to 400 GWh with the
expansion of its desalination capacity to 120 hm3/year (from the current 80 hm3/year).

As mentioned above, the production capacity of the Torrevieja desalination plant
is currently 80 hm3/year, where 40 isfor urban supply and another 40 for irrigation in
the Segura River basin. However, the CHS plans to increase this to 120 in the current
Hydrological Basin Plan (2022–2027). According to information provided by ACUAMED,
the current specific consumption value of the Torrevieja plant varies between 3.25 and
3.65 kWh/m3, depending on the delivery point and the required water quality. It is capable
of producing 1 hm3 per day (24 h), obtaining water with a conductivity of 200 μS, i.e.,
with a quality identical to that of mineral water and, therefore, water that can be used for
irrigation. The economic cost of desalination for the years 2019, 2020 and 2021, and the
resulting average tariff over the last years, is approximately 0.45 EUR/m3 (water delivered).

Finally, they are rigorously monitoring the marine ecosystem impact caused by the
discharge of brine or brine overflow. In this case, they ensure that they have zero environ-
mental impact, as before dumping the brine they mix it with seawater and dump it in small
quantities and in different areas to avoid causing damage to the marine environment. The
Torrevieja desalination plant has eight sensors that monitor the salinity level, which have
never once detected an environmental problem.

To achieve these water-related objectives for the year 2050, among the several actions
proposed, the sixth addresses the need to “adjust the management of water resources, preparing
the system that will prevail in a future with a lower availability of water” [41]. Therefore, “a com-
prehensive water management strategy must be designed that promotes reuse and the desalination
of water until its price is competitive, that is, similar to the price of water from traditional sources;
improve the efficiency of the systems of urban supply, agricultural irrigation and the treatment of
drinking water and wastewater, through the modernisation of infrastructures and the introduction
of new technologies; reorder the agricultural and crop uses, acting on the prevailing concessional
regime, prioritising sustainable and socially fair agriculture; increase the resilience of farms to
extreme atmospheric events and the effects of climate change, through the transformation of crops
and production systems, improve training in agricultural management and create adequate financial
and governance mechanisms; and, finally, implement an ambitious strategy for restoring the rivers,
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aquifers and other continental aquatic systems, while strengthening the river reserves and other
protected spaces” [41].

In short, the objectives established for Spain in 2050 are aligned with the proposal of
the new hydraulic planning proposed in this research.

5. Conclusions

The climate and water situation in Spain and its respective hydrographic basins,
particularly the Tagus and Segura basins, is not the same as it was 50 years ago, when the
volumes of water to transfer via the Tagus–Segura Transfer were planned.

The Tagus basin has suffered a significant reduction in rainfall, surface runoff and
volumes of reservoir-stored water in the sub-basin of the Upper Tagus. This is the start-
ing point of the Tagus–Segura Transfer, and the reduction in water resources (surpluses)
available in the Tagus basin has been modified by the effects of climate change. This has
given rise to a serious problem, given that there will be less and less resources available
to transfer. Therefore, the scenario of the Tagus basin will be to plan its own resources in
order to supply the needs of its own basin, without taking into account the Segura basin,
which is dependent on the waters of the TTS.

This implies that the Segura basin and the irrigated lands of south-east Spain will
receive a lower volume of water from the transfer than theycurrently receive, given that
the surplus resources of the Tagus basin are subject to variations in climate, rendering
the transfer an infrastructure vulnerable to the effects of climate change. This is why the
Segura basin should begin to make a firm commitment to using non-conventional sources,
such as treated wastewater and desalinated water, the latter being the most important for
the self-sufficiency of the basin, focusing on three fundamental aspects: (a) increasing the
production capacity, (b) reducing the cost of the desalinated water supplied to the farmers
(0.20–0.30 EUR/m3) and (c) reducing the environmental impacts (brine).

Furthermore, the farmers in south-east Spain, particularly those of the new irrigated
lands dependent on the TTS, should know that they have been deceived with the promise
of water resources assigned through the water contributions for each irrigation community,
when these volumes were calculated more than 50 years ago when the climate reality
was completely different. Furthermore, these volumes are theoretical and have never
been fulfilled, at least in the province of Alicante. The undersupply of the TTS is not
due to a failure to transfer the resources that should be transferred, but because there are
not enough resources in the headwaters of the Tagus that can be transferred to fulfil the
theoretical volumes.

Therefore, in response to the questions posed at the beginning of this article, it is clear
that the Tagus–Segura Transfer is not the only solution for the water future of the district of
Vega Baja del Segura. There are other alternative sources, such as treated wastewater and
desalinated water, which can increase the volume of available resources to supply the urban
and agricultural demands. However, it should be noted that, with the current maximum
capacity for producing desalinated water in the district (80 hm3/year), the demand in
Vega Baja cannot be satisfied. Therefore, it is necessary to extend the desalination plant
of Torrevieja, increasing the production capacity to 120 hm3/year and complemented by
the regenerated volumes of water. In this respect, it is necessary to extend the treatment
plants of the district of Vega Baja del Segura with tertiary or advanced treatment, given
that most of them only perform secondary treatment and the resulting water cannot be
applied directly to the crops.

Finally, Spain should be more ambitious in terms of hydrological planning. It is
incomprehensible that the plan that is in force with respect to the TTS is based on the
theoretical volumes of a Preliminary Project when the climate situation was very different
to that of the present day. No attempt has been made to reconsider the operating water
volumes for the current scenario taking into account the effects of climate change.
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For this reason, to correct the lack of a coherent and rational water plan that contem-
plates the climate reality and effects of future climate change, this study proposes a new
sustainable hydraulic plan.

This new sustainable plan requires a profound restructuring of hydrologic planning,
based on the worst climate scenario (RCP 8.5), enabling a plan to be elaborated with a
long-term horizon (until the end of the century) and adapted to climate change. This
scenario will lead to significant restrictions with respect to the current water allocations,
whereby the assigned volumes of water will be initially reduced or eliminated. The positive
side of this plan is that if the reality in terms of climate evolves over the years into a scenario
with less emissions and a better adaptation and management of water, the volumes of
water assigned to each use may be increased. This is the main reason why the principal
sources in the sustainable hydraulic plan are treated and desalinated water, with the afore-
mentioned improvements, as these resources do not depend on climate variations. Then,
the basin resources will be included. As observed in the severe droughts occurring in Spain,
the basin resources, and, therefore, the traditional irrigated lands that use this water, are
more resilient and are adapted to extreme atmospheric conditions, giving them a clear
advantage for the effects of climate change. Subsequently, the external water resources will
be included, which, depending on the climate evolution over the coming years, will be
based on the transfer or not of resources from the Tagus basin to the Segura basin. Therefore,
in this proposal, instead of playing a principal role, the TTS is used as a strategic-secondary
source to support the principal sources in the proposed plan. Moreover, the uses, crops,
areas cultivated and water allocations will have to be reordered in order to reduce demand
and, therefore, the deficit existing in the Segura basin in Vega Baja.

The new sustainable hydraulic plan is committed to the self-sufficiency of the territory
and only in case of need would it request external resources. However, for a territory to be
resilient to the future effects of climate change, it is necessary to start acting now with respect
to the afore-mentioned aspects to minimise the socio-economic losses (job positions, crops,
desertification, land, cultivated areas, significant economic losses in terms of production
and agricultural income, among many others). All of this is possible through a logical plan
and coherent actions. A failure to take such measures would result in consequences that
will be catastrophic for south-east Spain and, particularly, for the farmers and their way of
life. This proposal establishes the fundamental pillars for a long-term national strategy for
Spain in the year 2050.
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Abstract: The unequivocal global warming has an explicit impact on the natural water cycle and
resultantly leads to an increasing occurrence of extreme weather events which in turn bring challenges
and unavoidable destruction to the urban water supply system. As such, diversifying water sources
is a key solution to building the resilience of the water supply system. An atmospheric water
harvesting can capture water out of the air and provide a point-of-use water source directly. Currently,
a series of atmospheric water harvesting have been proposed and developed to provide water
sources under various moisture content ranging from 30–80% with a maximum water collection
rate of 200,000 L/day. In comparison to conventional water source alternatives, atmospheric water
harvesting avoids the construction of storage and distribution grey infrastructure. However, the
high price and low water generation rate make this technology unfavorable as a viable alternative to
general potable water sources whereas it has advantages compared with bottled water in both cost
and environmental impacts. Moreover, atmospheric water harvesting can also provide a particular
solution in the agricultural sector in countries with poor irrigation infrastructure but moderate
humidity. Overall, atmospheric water harvesting could provide communities and/or cities with an
indiscriminate solution to enhance water supply resilience. Further research and efforts are needed
to increase the water generation rate and reduce the cost, particularly via leveraging solar energy.

Keywords: water supply resilience; atmospheric water harvesting; fog collection; refrigerated
atmospheric water extraction; climate change

1. Introduction

Promising reliable access to safe water is still a big issue all over the world [1,2]. On
the one hand, at least a billion people globally are suffering from severe water shortages,
particularly those living in developing countries and regions [3]. As such, the 2021 edition
of the United Nations World Water Development Report is rooted in “Valuing Water”
and strengthening the societal awareness of water safety [4]. On the other hand, the
unequivocal climate change and the resultant extreme weather bring new challenges to
water accessibility [5] and explicitly sound alarms to the established water supply system [6].
Currently, surface water is still a principal or sole water source for the water supply systems
in most cities, of which the vulnerability has been completely unmasked and experienced,
such as the Day Zero water crisis in Cape Town [7,8]. A severe and unanticipated reservoir
drought left millions of residents thirsty. As such, increasing reliable access to safe water
plays an important role in the sustainable development of society [9].

From a technical point of view, diversifying water sources besides surface water is a
fundamental and vital approach to increasing urban water reliability [10]. In another word,
this principle is covered by the framework of water supply resilience which highlights the
ability of water supply system to promise residents the accessibility to safe drinking water
under extreme events like drought [11]. In terms of water sources, seawater desalination,
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rainwater harvesting [12,13], sewage reuse [14–16], and inter-basin water transfer [17,18]
can be supplements to surface water and enhance water supply resilience. However, these
approaches have their pros and cons in terms of their applicability. Typically, seawater
desalination and rainwater harvesting, are not suitable for inland cities suffering absolute
water shortages while inter-basin water transfer is facing vulnerability of water quality or
ecological safety [19]. Although sewage reuse is universally applicable enough for cities,
public acceptance has been the most serious hurdle for practicing [20]. Moreover, these
approaches cannot be relied on to go through water supply emergencies under which
bottled water is usually the preferential choice [21–23].

Indeed, there is a kind of water reservation always overlooked, namely atmospheric
water or water in the air [24]. As a key and interchange step of the water cycle from ocean
to land, the atmosphere is a huge renewable water reservoir [25]. Roughly, it contains
12,900 trillion liters of renewable water, which is about equivalent to 10% of surface water
reservation [26]. Even in the arid desert, the moisture content in the air is as abundant as
10 g/m3 [27]. As such, atmospheric water harvesting has been proposed and developed to
link the natural water cycle and the urban water cycle [28]. Moreover, water in the air is
distributed everywhere and could be an indiscriminately decentralized water resource [29].
As such, the present study is to introduce and summarize the development of atmospheric
water harvesting in comparison with other water sources. By analyzing the pros and cons
of atmospheric water harvesting in terms of technology, economy, and safety, the role of
atmospheric water harvesting in contributing to water supply resilience is discussed.

2. Characterizing Supplementary Water Sources to Surface Water

Surface water has long been the main water source for potable or non-potable utiliza-
tion [30]. For a long time, surface water has been the only connection point between the
natural water cycle and the urban water cycle as depicted in Figure 1. The water feeding
the cities starts from and wastewater also ends in surface water. In general, the water
bodies receiving wastewater are located downstream. It is the natural water cycle that
refreshes the surface water to meet the demand of human beings [31]. In another word,
the renewal of surface water depends on a whole circle (the blue-lined circle in Figure 1),
that is, evaporation, condensation, and precipitation. Once the water demand outpaces
the renewal capacity of surface water, drought will occur and undermine the safety of the
water supply. As a response, various water sources have been explored to supplement
surface water-based water supply as presented in Figure 1, including seawater desalination,
rainwater harvesting, inter-basin water transfer, and sewage reuse.

As presented in Figure 1, desalination enables seawater to feed the residents by
artificially bypassing the step of water vapor transport. At present, there are about
17,000 desalination plants globally in operation with a total capacity of ~95 million m3/d [32].
Although the accounting percentage of desalination in water supply structures is still very
small, it provides a promising direction to strengthen water supply resilience. However,
desalination is still considered to be an energy and cost-intensive technology and is mainly
implemented by high-income countries and small island countries [33]. As such, geographi-
cal constraints and high capital & operating expense are two hurdles to practicing seawater
desalination [34].

As one of the simplest and oldest water sources, rainwater harvesting can be more
flexible in terms of capacity, sites, and applications [35]. With proper purification treatments,
the rainwater collected can be utilized for potable or non-potable purposes [36]. As such,
rainwater can provide a useful supplementary supply and important backup to the water
supply system. The biggest obstacle to rainwater harvesting is the temporal variation and
geographic locations of rainfall [37]. Although artificial rainfall seems to solve this problem,
this technology is still controversial [38].

Inter-basin water transfer (IBT) is an artificial reallocation of surface water resources
from a donor watershed to a recipient [39]. In other words, IBTs improve the water supply
also by accelerating the water cycle (the blue-line circle) by avoiding evaporation and
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precipitation [40]. However, the solution of IBT to improve the water supply has been
under hesitation and debate since the 1980s [41]. Specifically, hydrological and ecological
risks are associated with the donating and recipient basins [42]. Moreover, the donating
watershed, IBTs’ water source, is also subject to uncertainties from climate change.

Figure 1. Diagram of the water cycle and water sources available for human beings.

Sewage reuse is another long-history-applied approach to conserve water and improve
water supply [43]. Sewage reuse is the one shortening the water cycle most significantly by
bypassing the natural water cycle directly. Compared with the above approaches, one of
the advantages of sewage reuse is its on-site and stable water supply. As such, this feature
endows sewage ruse an indiscriminately applicable solution for cities to enhance water
supply resilience. However, sewage reuse as drinking water is currently unacceptable
to most people, and public attitudes hinder the sewage reuse plans in many developing
countries [20]. Fortunately, aquifer recharge with treated sewage instead of reuse directly
could be a solution to leverage sewage.

These approaches have been applied separately or jointly to enhance water security by
offering more choices and supplements to surface water. According to Figure 1, a common
feature of these water sources is to offer more connection points between the urban water
cycle and the natural water cycle. In other words, these alternatives get the natural water
to the tap of residents (urban water cycle) more quickly [44], which seems to be a principal
justification for whether a supplement is qualified to be an alternative to surface water.
Obviously, atmospheric water owns the potential to be another connection point between
the natural water cycle and the urban water cycle. It means that the water in the air can be
extracted mandatorily (the dotted line) instead of via passive precipitation.

191



Sustainability 2022, 14, 7783

3. Technologies for Atmospheric Water Harvesting

As depicted in Figure 1, atmospheric water is an indispensable part of the natural
water cycle and is the prerequisite and prior step for precipitation. Via evaporation and
transpiration, a vast quantity of water out of water bodies and plants enters the air and
exists in gaseous water vapor. All this vapor goes up with the rising air currents and
condenses into clouds or fogs in the cooler air [45]. Generally, we can only get access to this
part of water after they drop down on the ground via condensation albeit passively and
intermittently [46]. By contrast, various technologies can be leveraged currently to help
extract water directly and constantly from air depending on relative humidity. According
to Figure 2, the water content capacity in the air (humidity ratio) is positively correlated
with temperature and the isohume curves (100%, 80%, and 30%) separate the area into
four zones. The blue line in Figure 2 represents a constant water quantity in the air termed
g-H2O/kg air [47], however, under each zone, the water is in a specific form. In Zone a,
the relative humidity is higher than 80% and close to 100%, and the water will be in the
form of mist or fog, which could easily be adsorbed and captured via proper materials.
This phenomenon always occurs at high altitudes or on the top of high mountains with a
low temperature and 100% relative humidity [48]. In Zone b, the relative humidity of the
blue line is around 30–80%, the air contains a large amount of water vapor that does not
readily nucleate into water droplets [49]. It needs to be artificially converted into liquid
water first. Most living environments are in this zone. In Zone c, the relative humidity is
lower than 30%, which makes the water vapor difficult to transform into liquid droplets
even artificially [50]. The blocks divided by relative humidity and temperature in Figure 2
can help determine the proper method to do atmospheric water harvesting in a specific
area, which will be discussed in detail below.

Figure 2. Water content in the air against various temperatures.
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3.1. Passive Fog Collectors

Passive fog collectors target the fog in the air by mimicking the oldest practice of
collecting drinking water from the leaves in the early morning by our ancestors. From the
relative humidity perspective, Zone a in Figure 2 is the prerequisite condition for scaling
this technology, and such places are usually located in coastal regions and/or mountainous
areas such as Chile, Mexico, Oman, South Africa, and Morocco [51,52]. Generally, a fog
collector is comprised of a flat-panel mesh that is stretched and fixed over a rigid frame.
With wind current, the fog water contacts with and deposits on the surface of the mesh, and
then aggregates into large droplets enough to drain into the container [53,54]. According
to the full-scale project, the water collection rate is in the range of 1.5–12 L/(m2·day) and
can reach 1416 L/(m2·day) with modification (Table S1). On the one hand, passive fog
collectors are energy-free while, on the other hand, their water collection performance
is highly associated with interior and exterior factors. Herein, the key interior factor is
the mesh type including mesh material and weave design. Currently, stainless steel and
plastics are two commonly-used mesh materials in large-scale projects [55]. Stainless
steel is hydrophilic and can resist strong wind loading albeit heavy. The typical plastics
available include polyethylene, polypropylene, and nylon [56]. They usually own the
advantages of hydrophobicity, lightweight, low price, and good anti-aging performance.
The properties of these materials are vitally important as they provide the direct sites
to capture fog water. Besides this, the weave configuration is another principal factor
determining the performance even with the same mesh material. As depicted in Figure 3,
there are three geometric shapes generally adopted in field projects, simply denoted by
triangular mesh, rectangular mesh, and hexagonal mesh [55,57]. Other key variations
associated with performance include the width of mesh wires, pore area, and shading
coefficient. The rectangular mesh is the most simple one made of stainless steel with a pore
area of 0.16 × 0.16 cm2 and a shading coefficient of 49%. Raschel mesh [58] is a typical
representative of triangular mesh and is interweaved by doubled layered polypropylene
ribbons with a width of 1–1.6 mm (shading coefficient of 35%). FogHa-Tin mesh is a
proprietary product and is made of 0.13 mm diameter polypropylene thread into a springy
structure with interleaved sets of embedded hexagonal patterns.

Figure 3. Various weave designs of water collector mesh (a) Raschel mesh (triangular mesh) [59].
(b) stainless-steel mesh (rectangular mesh) [60]. (c) FogHa-Tin mesh (hexagonal mesh) [55,57].

Rivera proposed Equation (1) to calculate the water collection efficiency, which is
determined jointly by aerodynamic collection efficiency, capture efficiency, and draining
efficiency [61]. The pore area or shade coefficient is the key factor influencing aerodynamic
efficiency [62,63]. On the one hand, a large shade coefficient seems to provide more
deposition sites, but a too-large coefficient can divert the wind flow due to resistance and
reduce the water-mesh contact. On the other hand, too small a pore size could cause liquid
film clogging which then jeopardizes the aerodynamic efficiency. In terms of Raschel and
FogHa-Tin mesh (Figure 3a,c), wider ribbons instead of thread and embedded wires in the
pore areas are designed respectively to offset the large pore areas [64]. By contrast, the pore

193



Sustainability 2022, 14, 7783

size of stainless-steel mesh is too small to easily be clogged. Then, a harp mesh by only
placing wires vertically instead of crossing reduces the adhesion to fog droplets and creates
an unobstructed path for fog droplets to move and fall freely [65]. As a result, the water
collection capacity of the parallel arrangement of wires can be 2–20 times higher than cross
arrangement [66]. In addition, this problem can also be solved by co-knitting or coating with
poly material [55]. Indeed, modification of mesh wires with coating materials can not only
improve the aerodynamic efficiency but also optimize the capture and draining efficiency
(Table S1). Knapczyk-Korczak et al. [64] deposited PVDF fibers on the Raschel mesh and,
as a result, the effective surface area to catch droplets increased without sacrificing wind
permeability. With the optimization of wetting properties and draining efficiency, the water
collection rate increased by 300%.

η = ηace·ηcap·ηdra, (1)

where:
η represents the overall collection efficiency,
ηace, ηcap, ηdra represent the aerodynamic collection efficiency, capture efficiency, and
drainage efficiency, respectively.

Another factor that should be taken into consideration is the wind speed [67]. Gener-
ally, the most favorable wind speed for passive water collectors is 4–10 m/s [68]. Notewor-
thy is that the effect of wind speed on the efficiency of fog collection is also related to the
diameter of the droplets and types of mesh. Fernandez et al. [55] evaluated the water col-
lection performance of Raschel mesh, modified stainless steel mesh, and FogHa-Tin mesh.
The results showed that Raschel mesh collected 160% more fog water than FogHa-Tin mesh
at wind speeds less than 1 m/s while 45% less with wind speeds higher than 5 m/s. This is
because the three-dimensional textile mesh will form some sort of a “blockage” at lower
wind speeds while capturing some of the coalesced water droplets that tend to re-entrain
in higher winds. As for modified stainless steel mesh, it collected more water than Raschel
mesh at all wind speeds.

3.2. Refrigerated Atmospheric Water Harvesting

In terms of an environment with a relative humidity of around 30–80%, there are
no readily available water droplets. To capture them, the prior step is to condense the
vapor into droplets artificially [50], which, along with the following capture unit, repre-
sents a typical principle to carry out atmospheric water harvesting in Zone b (Figure 2).
According to Figure 2, lowering the temperature is a simple and direct method to produce
water droplets, by which refrigerated atmospheric water harvesting works [49]. A typical
refrigerated atmospheric water harvesting unit is comprised of four parts, including the
evaporator, condenser, compressor, and throttle valve (Figure 4) [69]. The humid air enters
the evaporator part of the cooling unit, then it is cooled to the dew point temperature and
condensed, purified, and collected on the evaporator coil [70].

The cooling unit (condenser) is the key factor that determines the water extraction
efficiency of refrigerated atmospheric water harvesting. Currently, there are two cool-
ing categories commonly adopted, passive condenser and active condenser. A passive
condenser refers to one operating without any energy input [71]. One such unit is the
radiant condenser, which is commonly used [71,72]. The key function unit in the radiant
condenser is the cooling foil which owns the hydrophilic property and a high emissivity in
the near-infrared. It emits thermal radiation in the wavelength range (8 to 13 μm) where
the atmosphere is transparent and can emit heat radiatively to space [73]. This effect cools
the foil below the dew point temperature of the air, causing water to condense upon it. A
most commonly used cooling foil consists of TiO2 and BaSO4 microspheres embedded in a
polyethylene film [74]. At present, this radiant condenser has a low water production rate.
When the relative humidity is greater than 60%, the water production is commonly less
than 0.8 L/(m2·day) [75]. To improve the water yield performance, some new materials
have been explored and evaluated [76]. Raveesh et al. prepared a polystyrene film with
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hydrophilic bumps that secured a water yield of 1.8 L/(m2·day) [76]. Chen et al. used a
wettability and spectral selectivity engineered coating, and the water collection rate even
reached 251.25 L/(m2·day) [77]. Another challenge of the passive radiant condenser is the
low solar absorption and high mid-infrared emissions required to operate during the day.
Additionally, the process is not completely passive and the condensate needs to be manu-
ally removed. Haechler et al. combined a geometrically optimized radiation shield and a
hydrophobic coating to the surface of the selective emitter to promote the condensation
and removal of droplets which enabled dew mass fluxes up to 1.2 L/(m2·day) [74].

Figure 4. Diagram of refrigerant evaporation–condensation cycle.

In comparison, active condensers exert functions by leveraging external energy to
accelerate the condensation process [78]. Thus, they are working more efficiently than
passive condensers. The two most commonly used cooling methods in refrigerated at-
mospheric water harvesting are vapor compression refrigeration and the thermoelectric
cooling process [79]. The vapor compression refrigeration process is similar to air con-
ditioners and achieves cooling by changing the state of refrigerants such as Freon [80].
By contrast, thermoelectric cooling converts electrical energy into heat energy for cooling
through the Peltier effect and reducing the temperature below the dew point. As such,
thermoelectric cooling could avoid the drawbacks of vapor compression refrigeration
causing ozone layer depletion and global warming problems [81]. However, in terms
of the water yield performance, vapor compression refrigeration owns a higher capacity
and is easy to scale up. With a relative humidity of 90%, vapor compression refrigeration
can produce 22–26 L/day freshwater with energy input around 0.22–0.30 kWh/L [82].
This technology has been applied in the Middle East such as in Iran and Abu Dhabi [83].
Although the cooling capacity of thermoelectric cooling is low [84], it has the advantages
of energy-saving, environmental protection, low maintenance, and high portability [85].
It is applicable and useful for cyclists, hikers, expeditions, and scientific research teams.
In general, with a relative humidity of 60–90% and an input power of 0.8–3.5 kWh/L, the
water production rate of thermoelectric cooling reaches 0.48–0.8 L/day [76].

Indeed, along with the trial to increase the water yield capacity, research effort is
also placed on reducing the energy input associated with refrigerated atmospheric water
harvesting, particularly under a hot environment but with low relative humidity. Precooling
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the inlet air with the cold exit air from the evaporator or providing a preconditioning unit to
improve the psychometric properties of incoming air on the vapor compression system has
become a common way to increase energy efficiency [76]. Ibrahim et al. used condensate
to pre-cool the air entering the condenser, the compressor power input was decreased by
6.1% and the coefficient of performance was improved by 21.4% [86]. In addition, the use
of polymer electrolyte membranes or water vapor selective membranes before the cooling
process to separate water vapor from other molecules in the air can also achieve energy
savings [75]. Roughly, this could reduce energy input by more than 50%. Meanwhile,
this dense polymer membrane can also retain pollutants or pathogens, thereby purifying
water [87]. Moreover, leveraging renewable energy such as solar and wind power could
also be a potential solution to reduce the energy further [88].

3.3. Desiccant-Based Atmospheric Water Harvesting

As discussed above, fog collectors and refrigerated atmospheric water harvesting have
their favorite application environments with a relative humidity higher than 80% and 30%,
respectively. In terms of relative humidity less than 30%, the above processes do not work or
work but with a large quantity of energy input. As such, desiccant-based atmospheric water
harvesting was proposed to extract water from air under low relative humidity (below
15–20%) or low dew point temperature (below 5–10 ◦C) [89]. In general, desiccant-based
water harvesting works in a batch mode [90]. At the beginning of a cycle, the desiccant
is exposed to the atmosphere and adsorbs water vapor in the air. Once the desiccant is
saturated, the system is closed and the water will be released as vapor out of the desiccant
at a rising temperature of 160 ◦C (Figure 5). Then, the vapor condenses on the enclosure
walls and can be collected, meanwhile, the reactivated and unsaturated desiccant will be
cooled down for the next water-capture cycle [74].

Figure 5. Diagram of the desiccant-based atmospheric water harvesting.

One of the key units is the desiccant, which performs the cycle of water vapor adsorp-
tion and water desorption [91,92]. The desiccant not only determines the water collection
rate but also is associated with energy consumption. Currently, a series of single solid
desiccants and composite materials have been developed and studied [93]. Some typical
single solid desiccants include silica gel, activated carbon, and inorganic salts. However,
they need a high temperature to release water after saturation which is energy-intensive
and cannot be completed by conventional solar thermal equipment [94]. By contrast, some
novel composite materials have drawn attention (Table S2). For example, a kind of salt gel
beads made of an alginate-derived matrix with calcium chloride owns a water holding
capacity of 660 kg water/m3 and can release water at a temperature of 100 ◦C [95]. In
addition, some MOF-based desiccants were also explored and presented promising water
adsorption ability [91,96].

Another key issue associated with a desiccant-based water extraction system is to
reduce the energy input as low as possible [69,97]. One of the basic and most greenway
is to leverage solar energy [98]. The glass-covered greenhouse (also called solar still) is
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the simplest device, it uses solar energy to distill out the water molecules adsorbed in the
desiccant [99]. However, the water generation rate (1.0–2.5 L/(m2·day)) is limited due to the
diurnal variation [75]. Therefore, employing an additional condenser as a supplement to a
solar heat collector to ensure a continuous operation is one of the possible solutions [50].
In addition, transforming and/or storing solar energy in the form of either electricity
or heat via thermal collector or photovoltaics can also be coupled to a desiccant-based
water extraction system to utilize the solar energy as more as possible [100]. Especially in
extremely dry climate regions such as deserts, solar photovoltaic modules can be used to
power atmospheric water harvesting. The solar modules developed by Panchenko have an
extended service life and polysiloxane compounds, which do not degrade in such difficult
climatic conditions and are tolerant to cyclical temperature fluctuations [101,102].

4. Link between Atmospheric Water Harvesting and Water Supply Resilience

A reliable water supply is vital to life, and having either too much or too little has
very serious consequences, leading to drought and fires at one extreme, and floods at the
other [103]. Recently, the Intergovernmental Panel on Climate Change (IPCC) released a
new assessment report in August highlighting the changes in the water cycle due to the
temperature rising. As 1 ◦C increases in the air could increase its water holding capacity by
7%, and continued global warming will make air retain more moisture [104]. Specifically,
the rainfall amount will be larger as there is more water to condense and fall out of the
air [105]. Meanwhile, a warmer climate will intensify the evaporation and result in droughts
developing more quickly and lasting longer [106,107]. Indeed, all these extreme weather
patterns have been tangible and jeopardized our water supply system [108,109]. The more
recent flooding disaster in Germany and ongoing extreme droughts in the western USA
consequently make drinking water unavailable or shortage [110,111]. Thus, it is urgent for
each city to proactively enhance its water supply resilience and get ready for the projected
worsening global warming [112,113].

The National Infrastructure Commission of the UK advised a twin approach to ad-
dress the resilience of water supply, which includes demand management and supply
infrastructure [114]. Demand management focuses on increasing water efficiency while
supply infrastructure highlights diversity which refers to developing a range of different
water sources. The different source types have different strengths and vulnerabilities;
therefore, resilience is increased by being used together. Hereinto, how to define the role
of atmospheric water harvesting in building water supply resilience remains to answer.
The current centralized water supply is a symbiotic system composed of four elements,
that is, sources for water intake, treatment at drinking water treatment plants, storage, and
distribution via a pipe network [44]. As discussed by Deng [115], once a natural hazard
impairs one of them due to water source pollution, pipeline destruction, power outage,
personnel shortage, or other causes, the entire water supply system may fail. As such,
Deng proposed a concept of household water treatment highlighting a decentralized water
supply system to respond to possible disruption of the centralized water supply [115]. From
a technical point of view, atmospheric water harvesting is just in line with this concept
in terms of its indiscriminate presence of water source (air) and the decentralized water
supply mode. As such, atmospheric water harvesting seems to be a potential solution to
enhance water supply resilience, particularly under extreme weather conditions.

Water yield capacity and affordability are two factors determining the acceptance and
applicability of a specific water source. As discussed above, atmospheric water harvesting
currently has a much lower water yield than other water sources. In terms of the cost, as
depicted in Figure 6, the water price of conventional surface water source is around $1.2/m3,
and other typical alternatives, desalination, rainwater harvesting, and reclaimed water, fall
within the same level. By contrast, the price of the water from the air is substantially higher
than the above sources and is around 20–90 $/m3 [39,46,116]. Along with the low water
yield, and the temperature and relative humidity will be correspondingly reduced after
the active extraction of water from the air, atmospheric water harvesting is unlikely to be
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used on a large scale as an accessible infrastructure or alternative water source. However,
the water from the air has a price advantage over bottled water which is the only choice
currently under the destruction of the water supply system. Besides this, the environmental
impacts of bottled water are pretty high in species loss and resource consumption [117].
In addition, considering that atmospheric water harvesting has the characteristics of a
decentralized water supply, it is generally used for emergencies or some specific areas at
present. As such, atmospheric water harvesting can be considered in the water management
portfolio at a community- or city-level to increase the capacity to handle water supply
problems [118,119]. Thus, areas that deserve further research are focused on system design,
novel materials (e.g., desiccant) development, and green energy-driven design [120,121].

Figure 6. Water prices of various water sources.

In terms of the water quality out of the atmosphere water harvesting process, the
water generated is generally clean and pollutant-free. Although the air pollution such
as PM2.5 and microplastics in the atmosphere brings concerns about the water quality
via atmospheric water harvesting [122,123], it can be solved by simply installing a post-
purification module to ensure water quality [46]. Indeed, atmospheric water harvesting
technologies manage to filter out any dirt, such as heavy metals, particles, biological
organisms, organic compounds remaining in the harvested water, and by artificially adding
minerals such as calcium and magnesium, the water quality can be upgraded to the level
of natural spring water [124].

Recently, atmospheric water harvesting has been commercialized in many countries
and regions (Figure S1) and some off-the-shelf products have been on the market (Table S3).
These machines can be divided into three models: large, medium, and small. The water
generation capacity is in the range of 2–200,000 L/day to meet the needs of households,
emergencies, hospitals, villages, etc. In the parks and beaches of cities such as Abu Dhabi, Al
Ain, and Abu Dhabi, water-from-air machines are installed to supply high-quality drinking
water for visitors [125]. Indeed, despite the atmospheric water harvesting discussed
above, many innovative solutions to leverage the water in the air have been proposed
and practiced [126,127]. For example, by laying a mesh overhead the farmland or placing
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water-adsorbent hydrogel on the surface of the soil, the crops can be irrigated on-site and
automatically. In a recent study, Lord et al. thoroughly assessed the global potential of
atmospheric water harvesting as a water source by mapping regional horizontal irradiance
from sunlight, relative humidity, and air temperature [128]. The results showed that
atmospheric water harvesting leveraging solar power could serve the drinking water needs
of about 1 billion people. As such, further development and optimization will probably
make atmospheric water harvesting more viable and promising to support the water
supply system.

5. Conclusions

Diversifying the water sources is necessary to get the cities ready and more resilient to
supplement the water supply system. Adoption of atmospheric water harvesting could be
such a solution as they provide another connection point between the natural water cycle
and the urban water cycle. A series of systems and off-the-shelf products are available on
the market to be installed under various relative humidity environments. Although the
higher water generation cost makes atmospheric water harvesting uncompetitive, it can be
a reliable and decentralized household water treatment system to meet the water demand
particularly by leveraging solar power. In addition, it also provides an alternative water
source for regions that have a large bottled water consumer base but have no other favorable
water sources. Overall, atmospheric water harvesting shall be taken into consideration to
enhance the water supply resilience.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14137783/s1, Table S1: Summary of studies or practices of
atmospheric water harvesting; Table S2: Summary of desiccants explored and developed in various
studies; Table S3: Summary of atmospheric water harvesting machines on the market; Figure S1:
Summary of atmospheric water harvesting technologies in practical application. References [129–152]
are cited in the supplementary materials.
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Abstract: Recycling and source separation (R&SS) are believed to have been the first attempt to
minimise waste. This research adopted mixed methods that followed sequential quantitative then
qualitative data collection, combining questionnaire surveys from 100 households, semi-structured
interviews, and participatory observations to study the human dimension of waste generation and
management. Scoring Assessment (with modified Bloom’s Cut Off point) indicated that households
had moderate knowledge and positive attitudes yet poor behaviour, and these three components
indicated no linear associations, tested using Pearson’s Correlation Coefficient. However, age group,
marital status, educational level and living duration showed statistical significance with households’
participation in source separation through Chi-Square Test. Meanwhile, observation data showed
that waste management mechanisms and environment had inefficiently supported households’
participation in R&SS practices (external factors: poor accessibility to services, lack of tangible
incentives, and absence of restriction in consumption). Elicited data indicated that a satisfactory level
of intentions, knowledge, and willingness, together with good habit and quality persuasion (internal
factors), were required to drive good behaviour. Subsequently, a series of recommendations were
formulated to promote gradual yet solid transformation of the waste management system, tapping
on existing initiatives by considering additional parameters upon the gap in households’ knowledge,
attitude, and behaviour.

Keywords: mixed methods; online questionnaire survey; participatory observation; sustainable
waste disposal; sustainable consumption; Malaysian source separation practice

1. Introduction

“The throw-away society is a human society strongly influenced by consumerism.
The term describes a critical view of overconsumption and excessive production of short-
lived or disposable items”, quoted [1], who argues the cost of this throw-away culture in
compromising the needs of future generations and threatening the natural system that the
survival of all living things depends on [2]. As more products are made more affordable,
they are less appreciated, as society can dispose and buy new items, often beyond what
is needed, rather than send them for repair [3]. This marks the peak of the global waste
generation at 2.01 billion tonnes (0.74 kg per person daily), but its rate, amount, and quality
will continue to surge by 70%, without consideration of the concept of distancing in dealing
with waste during post- and pre-consumerism [4,5].

Statistics show that over 90% of waste in low-income countries (compared to 66% for
low-middle-income and 30% for upper-middle-income) is disposed of at open dumps or
landfills, which are the most adopted waste disposal methods [5,6]. These waste disposal
sites have thus become the only and popular method used by cities (with limited municipal
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budget) to dispose of the high volume of (unsorted) waste generated daily. Waste disposal
sites are optimal breeding grounds for disease vectors and sources of toxin release into
the atmosphere and oceans [2,5]. However, they will not be publicly acknowledged as
environmental issues if landfilling remains the only urban waste management service [7].
If waste continues to be collected regularly without a proper sorting system to support it,
and if there are no restrictions on consumption or changes in lifestyle choices, society will
continue to remain in denial and ignorant to the over exploitation and destruction of the
planet’s natural systems as a result of their personal waste footprint [1,2].

Malaysia is one of the upper-middle-income countries that heavily rely on landfill
disposal, with almost 89% of waste collected (from a waste generation rate at 33,130 tonnes
daily) being sent to a total of 170 landfills. Out of these, only 14 are categorised as sanitary.
The official lab report of the country estimates that at least 40% waste diversion can
be achieved [8,9]. Consequently, space and land availability will gradually emerge as
a major limitation to landfilling as the increasing waste volume exceeds the capacity
of the treatment, not to mention other waste problems to be addressed, such as illegal
dumping and plastic waste import [10,11]. The overconsumption of the throw-away society,
together with almost-absent resource recovery attempts and a lack of political will and
social responsibility towards sustainable and integrated waste management, present a huge
barrier for the transition to waste minimisation [7].

The first effective step towards waste minimisation in the European Union waste hier-
archy is recycling. This includes composting, which deals with more waste fractions, for
instance, organic or biodegradable waste and e-waste [12,13]. The integration of recycling
and source separation (R&SS) is crucial to create a compound effect on the waste diver-
sion from landfilling when waste composition and its quality is carefully managed [14].
However, Malaysia’s recycling efforts and implementation have focused on only a few
categories of recyclables, while source separation only came into enforcement in late in 2015,
along with the formulation of Solid Waste and Public Cleansing Management Act 2007
(Act 672) [7]. A community survey showed that only 28% of households in Kuala Lumpur
engage in source separation, even though the legislation has been enforced [15]. This result
denotes several constraints found in the implementation, especially when dealing with
the complexity of human dimensions within the current waste management system and
mechanism [7].

This contrasts with a case reported in Shanghai, China, where source separation was
mandated in 2019. The study in [16] reports that nearly half of the households had negative
emotions towards the policy. Although the households found it difficult to follow the
segregation guidelines, which were rather broad and ambiguous in the details [17], it
was fear towards the heavy fines imposed by the government rather than environmental
protection or sustainability that pressured the households to comply with the regulation [16].
Thus, it deviated from the Chinese government’s initial vision of promoting sustainable
development, which aims to depreciate the culture of throwaway consumerism [18]. The
key idea here is to promote a sustainable society by sustainable waste disposal while
looking into individual daily consumption through lifestyle choice [1,3,18]. However,
diversified urban governances and management systems, as well as different cultural
readiness, lead to different speed and quality of transition to waste minimisation [17,19].

As such, it is important to investigate the potential factors that drive households’ be-
haviour change and their potential adaptation to local context. In identifying these factors,
many researchers relate the discussion of waste management and sustainable consump-
tion with pro-environmental behaviour; the studies in [20,21] suggest that environmental
knowledge is important yet insufficient to drive action. The studies in [22,23] argue that a
high satisfactory level of knowledge, together with attitude, could more likely drive good
behaviour, while [24] explains behaviour is an interactive output of attitude and choice
with the presence of external causality such as constraint (cost, time), habits or routine, dis-
incentives and scepticism. The study in [20] also claims that pro-environmental behaviour
involves both internal and external factors. Meanwhile, [25] categorises non-recyclers into
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three major groups based on the common characteristics of the barriers (or “excuses”, as
referred in the original article) selected through a community survey conducted by Ipsos in
2011. Each group discusses distinctive reasons and psychology behind the action towards
recycling participation; for instance, time consumption, issue of convenience, lack of knowl-
edge, or absence of communal effort or strong influence. These parameters guided them
to weigh their decision together with the current waste management environment they
are provided with. The interpretation of each grouping, as well as the interventions the
author proposed, conveys the relation of multiple internal and external factors (potential
parameters other than knowledge and attitude level) with the behaviour.

This study aims to make locally adaptive recommendations to encourage household
participation in R&SS practices with a case study in Manjung district, Perak. In doing so,
the study examined household KAB, as well as other potential parameters that influence
household behaviour towards waste generation and management. Specifically, authors
ask (1) What are the associations between the households’ level of KAB towards R&SS
practices? (2) What are the enabling factors of households’ participation in R&SS practices?
(3) What are the barriers of non-recyclers or non-waste sorters? (4) What are the practical
recommendations to encourage R&SS participation?

This study contributes to empirical evidence by addressing the gap between the
households’ awareness and the actual sustainable waste disposal rate that relates directly
with the households’ participation in R&SS practices. The authors advocate the idea that
changes in behaviour start with improved level of knowledge and attitude, although
improved level of knowledge and attitude may not necessarily lead directly to change in
behaviour. At a minimum, the public will have some knowledge about the generation
(which would influence the purchasing decision and the material leftover after consuming
products) and disposal of domestic waste so that the demand for products will be shifted
to those that carry sustainable and environmentally friendly qualities and are easier to
manage during disposal. This would have an impact on the supply side of materials, of
which the manufacturers may respond to the demand and redesign the products using eco-
friendly material. Consequently, when the entire chain of production adopts the concept of
sustainability from such market activity, the system could then be elevated to a higher level
in the waste hierarchy: reduce, reuse, and lastly, prevention.

By identifying households’ knowledge level, their attitude towards both practices
and the waste management process, as well as their behavioural pattern on the R&SS
practices, this research intends to establish a basis to support the decision making process
in relation to the waste management system. The proposed recommendations highlight the
importance of further encouraging household involvement on R&SS practices. Discussions
of results concerning expectation and feedback are useful for the municipality and relevant
stakeholders for their service improvement and to help policymakers, waste management
planners, local administrators, and researchers to formulate policies and strategies in
sustainable waste management, as well as serve as a basis to identify further areas of study.

2. Materials and Methods

2.1. Case Study

Sanitation (and therefore waste management) is a matter under the Concurrent List.
The state government has the authority to decide whether to adopt the law related to this
urban management service, thus it is subject to the administration of each local authority.
However, regarding the current governance status in Malaysia, the decision of mandating
the Solid Waste and Public Cleansing Management Act 2007 (Act 672)—the latest source
separation initiative—may vary over a short period of time. Perak is one of eight states
(i.e., Penang, Perak, Terengganu, Kelantan, Selangor, Sabah, Sarawak, and Labuan) that
are yet to mandate the legislative provision of Act 672 [26]. Without law enforcement to
reduce the waste sent to landfills at state level, the capacity will eventually run out, with
Perak’s 0.8842 kg waste generation per capita per day (2002) generated by its 2.30 million
population. This is a higher rate compared to Selangor at 0.8845 kg, yet Selangor has almost
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double the population of Perak. At the local level, Manjung (Figure 1) has exceeded the
national average (0.8500 kg per capita per day) at 1.409 kg, and ranks as the third highest
among the districts [27].

Only a 4.00% recycling rate has been recorded by the study in [28] through the provi-
sion of a recycling service in the Northern Region (Kedah, Perlis, and Perak). On the other
hand, the recorded recycling rate from the database of Manjung Municipal Council is 0.07%,
based on the quotient of the total recyclables collected: approximately 77 tonnes per annum
from the total waste collected from 54,186 housing, which is about 300 tonnes per day [29].
Both the state (region) and local rate of recycling are still distant from that of the national
target: 22.00% in 2020. Being the third most populated city in Perak, Manjung has yet to
generate sufficient awareness of the waste crisis and sustainable waste management [30].

Figure 1. Location of Manjung District [31,32].

2.2. Data Collection and Sampling

This study adopted a mixed-method approach, combining an online questionnaire
survey, semi-structured interviews (through meeting application or phone call) and partici-
patory observation, adjusting to pandemic situations. The purposive sampling strategy
was used throughout the data collection process (except for observation).

Before the actual conduct, pre-testing was carried out to examine the content validity
of the questions asked in the survey (including semi-structured interview). All questions
were refined based on the feedback from both experts in the field and laymen and were
adapted from studies in past literature [30,33–39] to improve their reliability and represen-
tativeness to the study. The questionnaire survey was constructed using an online survey
administration application, Google Form, and distributed through various online platforms
(e.g., Facebook, Instagram, and WhatsApp, popular applications in Malaysia). The ques-
tions were written in three major languages: Malay, Chinese, and English. Respondents
were filtered carefully under two conditions: a person (1) aged 18 years old and above who
(2) has lived in Manjung district for more than a week. It was also mentioned that each
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respondent would be representing a household. The questionnaire consisted of six main
sections: (a) respondent’s profile, (b) knowledge, (c) attitude, (d) behaviour, (e) psychology
behind R&SS practices, and (f) invitation to interview. The targeted sample size for the sur-
vey was 382 respondents for 58,186 house premises (data from Manjung Municipal Council)
based on the calculation by [40]; however, it was not achieved due, in part, to the relatively
less effective channel of survey distribution via online networks. Only 100 respondents
took part in the survey within the scheduled time frame for quantitative data collection.
The mixed methods of this study underwent a sequence arrangement [41], in which the
qualitative data that followed were collected after quantitative data were completed.

Seven respondents, who had answered the survey, were recruited to a semi-structured
interview based on their consent and willingness to contribute to this study. This further
strengthened the perspective of service users through descriptive and abstract primary data
on their waste management process [42]. Questions to them were focused on the advantages
and disadvantages of the R&SS, regardless of their actual participation. On the other hand,
the semi-structured interview included the perspectives of the service providers to explain
the condition and quality of R&SS practices provided, as well as how the households’
needs were addressed. Two personnel from the local authority (the head of recycling
project implementation) and non-governmental organisations (which are actively involved
in R&SS implementation at household level) were interviewed. Questions for service
providers merely focused on the mechanisms involved in providing their respective R&SS
services and how to engage with the community.

Observation was conducted to inspect the current waste management mechanism
and environment of the study area, from waste generation, storage, collection to disposal.
Taking into consideration that presence of the observers might have affected the behaviour
of the observed group, participatory observation was opted to blend in the situation [43].
Observation took place in public areas, including wet markets and neighbourhood streets,
when municipal waste collection was in action. The observed objective focused on how
humans carry out waste disposal, rather than on the humans themselves. Therefore, no
consent was needed, and no personal communication was conducted. No photos were
taken of any individual present at the observation spot.

2.3. Data Analysis

Since the data collected consisted of both quantitative and qualitative data, appropriate
analysis techniques were used for each type of data accordingly.

Microsoft Excel 2019 was used to perform all statistical (quantitative) analysis, ranging
from descriptive, inferential statistics to correlational analysis. Measures of central ten-
dency and dispersion (mean and standard deviation) were used to study data distribution.
In addition, the Chi-Square test, together with Pearson’s Correlation Coefficient, which
was performed at 95% confidence level, were used to determine the association between
variables (two forms: nominal and continuous data). A scoring system was developed to
assess the adequacy level of the KAB through a fixed range of scores modified according to
the widely adopted Bloom’s Cut-Off Point [38,44]. This method allowed the authors to con-
vert different types of data, including nominal—true or false answer and percentages, and
ordinal data—Likert scales, into scores—continuous data. The scores (by level) obtained
were used to test the correlation between KAB components and other variables.

For knowledge (first component), 20 questions were asked in two parts: ten true or
false questions (general knowledge assessment) and ten multiple choice questions (specific
knowledge assessment). A score of 1 was given to each correct answer (for each sample);
in contrast, no score was deducted for a wrong answer, instead it was given a score of 0.
Hence, each part had a maximum and minimum score of 10 and 0, respectively. These
scores were divided into three levels through a modified Bloom’s Cut-Off Point, namely
(a) High for 10 to 8 scores, (b) Moderate for 7 to 5 scores, and (c) Low for scores less than
5. For attitude (second component), there were 14 questions with a 5-Point Likert scale to
assess the degree of importance and agreement. Scores 1 to 5 were given to respective points
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on the Likert scale (in the order from Strongly Disagree to Strongly Agree). This resulted in
a maximum score of 70 and a minimum of 14 for each sample. Modified Bloom’s Cut-Off
Point was also used to establish three levels, namely (a) Positive (70 to 52), (b) Neutral (51
to 33), and (c) Negative (14 to 32), which were equally divided and given the same class
interval. Finally, for behaviour (third component), there were 10 questions with multiple
choice of answers. Similar to the first component, the scores were divided into three levels
through a modified Bloom’s Cut Off Point, namely (a) Good (10 to 8), (b) Satisfactory (7 to
5), and (c) Poor (4 to 0).

Phenomenological (qualitative) analysis was used to carefully record the conduct
of waste management by the service users during the observation and semi-structured
interview processes, respectively. This was to ensure that both observed and elicited data
could be precisely analysed and transformed into useful information for the description of
a phenomenon. Additionally, it could extract the perception of the service providers on the
outcomes of the waste management service [45].

2.4. Research Constraints and Limitations

First, respondents could not be observed while answering the survey during online
pre-testing. This led to limited sources of input to improve the questionnaire; therefore, a
more comprehensive manner of conducting pre-testing in both online and offline platforms
is recommended to extract both observed and verbal feedback. The difficulty in recruiting
sufficient samples during the lockdown due to the pandemic in Malaysia was the key
constraint faced by the authors. Nevertheless, this should serve as a preliminary study,
and similar studies covering a comprehensive sample size targeting 382 respondents
are recommended post-pandemic. Second, the number of interviewees recruited from
the service providers was limited due, in part, to the lack of effective ways to engage,
as no physical visit was allowed due to movement restrictions. No positive response
was obtained from private recycling vendors, probably due to the lack of awareness and
exposure towards the academic research in the related field. Finally, invitation (survey or
interview) through online networks was likely neglected, but this method still had benefits
such as receiving responses quicker and in a more convenient way, therefore a combination
of online and on-site survey distribution and interview invitation were proposed.

3. Results

3.1. Demographic Profile

A total of 100 questionnaire surveys were eligible to be analysed. Most of the respon-
dents are between 18 and 24 years old with pre-university or undergraduate academic
qualifications, female, and single. More than half of the respondents are locals who have
lived in the community for more than 20 years. Nearly all the respondents live with their
family members on landed properties, with the majority having a household size between
5 and 7 persons (Table 1).

3.2. Knowledge Assessment

Both general and specific knowledge levels were tested among the respondents. In gen-
eral, the knowledge level among the respondents was rated as moderate (Table 2) according
to the scores obtained from Tables 3 and 4, with better scores in general knowledge, where
37.0% scored high.

Table 3 shows the general knowledge among respondents of the R&SS with their
benefits and importance to the waste management system, quality environment, and
energy consumption. Most of the respondents answered correctly, except for statement
#9: all plastics that contain numbered symbols (also known as plastic resin identification
codes) can be recycled.
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Table 1. Demographic profile of the respondents.

Variables (n = 100) % Variables (n = 100) %

Gender Duration of Stay
Female 73.0 Less than a year 4.0
Male 27.0 1–5 years 9.0

Marital Status 6–10 years 11.0
Single 87.0 11–15 years 7.0
Married 13.0 16–20 years 17.0
Divorced/Widowed 0.0 More than 20 years 52.0

Age Group Household Size
18 to 24 years old 71.0 1 3.0
25 to 44 years old 26.0 2–4 39.0
45 to 64 years old 3.0 5–7 56.0
65 years old and above 0.0 More than 7 2.0

Educational Level Housing Type
Primary Education 0.0 Bungalow/Semi-Detached 50.0
Secondary Education 4.0 Terrace/Linked House 46.0
Pre university/Undergraduate 77.0 Flat/Apartment/Condominium 2.0
Postgraduate 17.0 Shop House 2.0
Others 2.0 Others 0.0

Living Companion Housing Ownership
Family 95.0 Rent 7.0
Friend(s) and Acquaintance(s) 4.0 Own 83.0
Others 1.0 Other 10.0

Table 2. Waste knowledge level among respondents.

Knowledge Level
General Knowledge Specific Knowledge

High Moderate Low High Moderate Low

Range of Score 10 to 8 7 to 5 4 to 0 10 to 8 7 to 5 4 to 0
Frequency (%) (n = 100) 37.0 59.0 4.0 6.0 65.0 29.0

Table 3. General knowledge level among respondents.

Statement (n = 100) True (%) False (%) Correct Answer

1. Recycling and waste sorting at source cannot help to curb insufficient
landfill capacity. 25.0 75.0 False

2. Recycling and waste sorting can help to reduce the spread of disease like
bacterial or fungal infections. 82.0 18.0 True

3. Waste sorting can prevent emission of harmful chemicals and
greenhouse gasses (methane and carbon dioxide) that contribute to
global warming.

94.0 6.0 True

4. Waste without sorting can be used to create compost for soil
fertility regeneration. 35.0 65.0 True

5. Energy used to make a new product from raw materials is far less than
energy required for recycling. 45.0 55.0 False

6. Waste sorting can prevent contamination of recyclables. 93.0 7.0 True
7. More waste fractions need to be dealt with when practising waste

sorting than recycling. 84.0 16.0 True

8. Recyclables collected can only be recycled once. 26.0 74.0 False
9. All plastics that contain numbered symbols (also known as plastic resin

identification codes) can be recycled. 71.0 29.0 False

10. Waste is sorted and collected at household, but not necessarily recycled. 64.0 36.0 True
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Table 4. Specific knowledge level among respondents.

Selected Waste Item (n = 100)
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1. Used Tissue Paper 52.0 23.0 23.0 2.0 2
2. Food Stained Paper or Plastic Container 14.0 55.0 27.0 4.0 2
3. Light Bulb 7.0 40.0 14.0 39.0 4
4. Vegetable and Fruit Peel 93.0 2.0 3.0 2.0 1
5. Bone and Meat Scrap 89.0 8.0 2.0 1.0 1
6. Dry Leaves 85.0 10.0 5.0 0.0 1
7. Expired Medicine or Supplement 19.0 35.0 3.0 43.0 4
8. Photograph and Paint 7.0 51.0 13.0 29.0 4
9. Electronic, Batteries and Cables 6.0 36.0 14.0 44.0 3
10. Hair or Fur 53.0 36.0 9.0 2.0 1

Table 4 shows the responses to the specific knowledge of R&SS based on waste
categories for selected items. Most of the respondents selected the categories of waste
correctly, except for waste items #1: used tissue paper, #8: photographs and paint, and #9:
electronics, batteries, and cables.

3.3. Attitude Assessment

Overall, the attitude score among the respondents was relatively positive compared to
the knowledge score, where 75.0% of the respondents scored between 52 and 70 (Table 5).

Table 5. Attitude level among respondents.

Attitude Level Positive Neutral Negative

Range of Score 70 to 52 51 to 33 32 to 14
Frequency (%) (n = 100) 75.0 19.0 6.0

Table 6 reveals the results about respondents’ perceived participation in different stages
of waste management, starting from waste generation, waste storage, waste collection,
waste processing, and waste disposal. Overall, the respondents demonstrated a high level
of intention to participate in waste management processes, except for the waste collection
stage, specifically statement #6: I am willing to pay extra service charges for different
waste collection according to its category, and statement #8: I am actively involved in the
collection and transport of sorted waste materials in my neighbourhood.
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Table 6. Involvement in waste management stages.

Level of Importance on Statement (n = 100)
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Importance of Waste Separation as Immediate Solution to Waste Crisis 1.0 2.0 14.0 44.0 39.0 4.18 0.817

Level of Agreement on Statement (n = 100)
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Waste Generation
1. I am responsible for the waste I generated 5.0 0.0 10.0 49.0 36.0 4.11 0.948
2. The purchase decisions that I make can increase or decrease the

amount of waste I need to get rid of. 6.0 0.0 15.0 47.0 32.0 3.99 1.005

3. I feel satisfied when waste is sorted and can be a resource. 6.0 2.0 12.0 45.0 35.0 4.01 1.044
Average Weighted Mean 4.03 Agree

Waste storage
1. I play an important role in sorting waste within my household 5.0 6.0 18.0 38.0 33.0 3.88 1.089
2. I am willing to separate waste into respective category

before collection 4.0 1.0 23.0 41.0 31.0 3.94 0.968

Average Weighted Mean 3.91 Agree

Waste Collection
1. I am willing to pay extra service charges for different waste

collection according to its category 10.0 14.0 26.0 38.0 12.0 3.28 1.150

2. I am satisfied with having different types of waste being transported
to their respective site. 7.0 1.0 20.0 49.0 23.0 3.80 1.030

3. I am actively involved in collection and transport of sorted waste
materials in my neighbourhood 5.0 25.0 35.0 25.0 10.0 3.10 1.044

Average Weighted Mean 3.39 Neutral

Waste processing
1. I am willing to participate in training or programmes to gain

knowledge on correct waste sorting methods. 3.0 9.0 36.0 37.0 15.0 3.52 0.954

2. Waste sorting and disposal should be taught in school as part of
environmental education. 5.0 2.0 7.0 40.0 46.0 4.20 1.010

3. The municipal council is not doing enough to fix the garbage
problem. 8.0 2.0 20.0 36.0 34.0 2.14 1.149

Average Weighted Mean 3.86 Agree

Waste Disposal
1. I do not care that burning garbage can harm my health and the

health of others. 60.0 21.0 7.0 9.0 3.0 1.74 1.110

2. People throw garbage on the streets and in the drains because they
have no other choice to get rid of the garbage. 53.0 24.0 9.0 10.0 4.0 1.88 1.169

Average Weighted Mean 1.81 Disagree
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3.4. Behaviour Assessment

Unlike the scores in the categories of knowledge and attitude, the scores in the be-
haviour category among the respondents tended towards negative, with a score of 68.0%
(Tables 7 and 8).

Table 7. Behaviour level among respondents.

Behaviour Level Good Satisfactory Poor

Range of Score 10 to 8 7 to 5 4 to 0
Frequency (%) (n = 100) 4.0 28.0 68.0

Table 8. Methods of waste disposal among respondents.

Selected Waste Item (n = 100)
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1. Used tissue paper 87.0 2.0 0.0 0.0 1.0 3.0 7.0 87.0

2. Food-stained paper or plastic container 58.0 1.0 1.0 3.0 5.0 26.0 6.0 26.0

3. Light bulb 68.0 4.0 0.0 0.0 3.0 3.0 22.0 25.0

4. Vegetable and fruit peel 46.0 2.0 1.0 17.0 33.0 0.0 1.0 51.0

5. Bone and meat scrap 47.0 2.0 1.0 32.0 17.0 0.0 1.0 50.0

6. Dry leaves 45.0 3.0 10.0 1.0 39.0 1.0 1.0 41.0

7. Expired medicine or supplement 80.0 1.0 0.0 0.0 4.0 3.0 12.0 12.0

8. Photograph and paint 71.0 0.0 1.0 0.0 1.0 8.0 19.0 19.0

9. Electronic, batteries and cables 55.0 0.0 1.0 0.0 3.0 6.0 35.0 41.0

10. Hair or fur 84.0 2.0 2.0 0.0 8.0 2.0 2.0 12.0
Note: Each item can have one or more than one acceptable waste disposal method. Only those highlighted in grey
was added and given 1 score each.

When the relationship between demographic characteristics and KAB was tested, the
Chi-Square test revealed a significant relationship between household size and general
knowledge and between housing type and attitude (p value < 0.05) (Table 9).

Further analysis using Pearson’s Correlation Coefficient at a significant level of a = 0.05
was conducted to test the relationship between KAB. Only general knowledge and specific
knowledge demonstrated a moderate relationship, with some nearly negligible relation-
ships present between specific knowledge and attitude, as well as with behaviour (Table 10).
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Table 9. Relationship between demographic characteristics and KAB.

Demographic
Characteristics (n = 100)

General Knowledge (n; %)
Total (%) p-Value

Low Moderate High

Household Size
Alone 0; 0.0 2; 66.7 1; 33.3 3.0

0.046
2 to 4 2; 5.2 21; 53.8 16; 41.0 39.0
5 to 7 1; 1.8 35; 62.5 20; 35.7 56.0
More than 7 1; 50.0 1; 50.0 0; 0.0 2.0
Total 4.0 59.0 37.0 100.0

Demographic
Characteristics (n = 100)

Attitude (n; %)
Total (%) p-Value

Negative Neutral Positive

Housing Type
Bungalow/Detached House 0; 0.0 3; 13.6 19; 86.4 22.0

0.027
Semi-Detached House 4; 14.3 3; 10.7 21; 75.0 28.0
Terraced/Linked House 1; 2.1 13; 28.3 32; 69.6 46.0
Flat/Condominium 1; 50.0 0; 0.0 1; 50.0 2.0
Shop House 0; 0.0 0; 0.0 2; 100.0 2.0
Total 6.0 19.0 75.0 100.0

Table 10. Correlation between KAB.

Variables p-Value R-Value

General Knowledge and Specific Knowledge 4.90 × 10−19 0.342
General Knowledge and Attitude 7.39 × 10−71 0.049
General Knowledge and Behaviour 2.37 × 10−24 0.059
Specific Knowledge and Attitude 7.12 × 10−73 0.107
Specific Knowledge and Behaviour 6.79 × 10−9 0.104
Attitude and Behaviour 3.61 × 10−73 0.021
Knowledge and Attitude 7.30 × 10−66 0.095
Knowledge and Behaviour 8.43 × 10−49 0.099

3.5. Participation in Recycling and Waste Separation Practices

A total of 62% respondents indicated that they were involved in some extent of recy-
cling practice, while 28.0% practised waste separation. The Chi-Square test also indicated
the significance between recycling and source separation practices, where about two-fifth
of recyclers adopted source separation (Table 11). In addition, a significant association
between demographic profile and source separation practice was revealed through the
Chi-Square test. These included age group, marriage status, educational level, and duration
of stay (Table 12).

Table 11. Association between recycling and source separation participation.

Recycling Participation
(n = 100)

Source Separation Participation (n; %)
Total (%) p-Value

Yes No

Yes 25 (40.3) 37 (59.7) 62.0
0.046No 3 (7.9) 35 (92.1) 38.0

Total 28.0 72.0 100.0
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Table 12. Association between demographic profile and source separation participation.

Demographic Characteristics
(n = 100)

Source Separation
Participation (n; %) Total (%) p-Value

Yes No

Age Group
18 to 24 years old 17 (29.3) 54 (76.1) 71.0

0.04625 to 44 years old 8 (30.8) 18 (69.2) 26.0
45 to 64 years old 3 (100.0) 0 (0.0) 3.0
Total 28.0 72.0 100.0

Marital Status
Single 21 (24.1) 66 (75.9) 87.0

0.026Married 7 (53.8) 6 (46.2) 13.0
Total 28.0 72.0 100.0

Educational Level
Upper Secondary 0 (0.0) 4 (100.0) 4.0

0.027

Pre-university 2 (50.0) 2 (50.0) 4.0
Diploma 0 (0.0) 3 (100.0) 3.0
Bachelor 15 (21.4) 55 (78.6) 70.0
Postgraduate 4 (44.4) 5 (55.6) 9.0
Master 5 (62.5) 3 (37.5) 8.0
Other 2 (100.0) 0 (0.0) 2.0
Total 28.0 72.0 100.0

Duration of Stay
Less than a year 1 (25.0) 3 (75.0) 4.0

0.018

1 to 5 years 7 (77.8) 2 (22.2) 9.0
6 to 10 years 4 (36.4) 7 (63.6) 11.0
11 to 15 years 2 (28.6) 5 (71.4) 7.0
16 to 20 years 4 (23.5) 13 (76.5) 17.0
More than 20 years 10 (19.2) 42 (80.8) 52.0
Total 28.0 72.0 100.0

Tables 13–16 show the statements asked in Section E of the questionnaire, where each
respondent was able to choose multiple answers (reason statements) resulting in varying
numbers of frequency recorded across the tables. Protecting the environment was rated as
the most motivating reason to participate in recycling, consisting of about one quarter of the
total frequency. That the ranking was immediately followed by the feeling of satisfaction in
anticipating that waste would become a new resource and their continuous effort would
influence other household members and neighbours as the reasons for recycling, whereas
the skill of handling and sorting the recyclables was rated as the least important reason to
participate in recycling (Table 13).

Three reasons voted the most by the majority of the respondents for practising waste
separation are as follows (Table 14):

• It provides more environmental benefit than recycling (to prevent hazardous waste
from polluting the landfills).

• It is important to separate biodegradable waste with recyclables to prevent contamination.
• It is more rewarding than recycling because biodegradable waste can be used as other

resources (to feed animals, use as soil fertiliser for crops, etc.).
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Table 13. Reasons to participate in recycling.

Statement Frequency (%) (n = 114)

1. It is very convenient to recycle where I live. 9.6
2. I have spare time to sort out recyclables from the general waste. 7.0
3. Recycling is very cost rewarding (monetary or physical item). 10.5
4. I am good at handling and sorting recyclables. 4.4
5. I believe my continuous recycling effort will influence my

household members and neighbours. 14.0

6. I feel satisfied when waste becomes a new resource. 15.8
7. I practise recycling because it can protect the environment. 26.3
8. It is a habit I developed from my upbringing. 12.3
9. Others. 0.0

Table 14. Reasons to participate in source separation.

Statement Frequency (%) (n = 83)

1. It provides more environmental benefit than recycling (to
prevent hazardous waste from polluting the landfills). 22.9

2. It is important to separate biodegradable waste with
recyclables to prevent contamination. 24.1

3. It is more rewarding than recycling because biodegradable
waste can be used as other resources (to feed animals, use as
soil fertiliser for crops, etc.).

16.9

4. Convenient (collected and transported to collection centre). 13.3
5. Having more spare time. 6.0
6. Good at sorting different waste. 6.0
7. An extension from recycling habits. 10.8
8. Others. 0.0

Table 15. Reasons to not participate in recycling.

Statement Frequency (%) (n = 59)

1. It is not accessible or convenient to where I live. 16.9
2. It takes up too much time (to clean out/prepare recyclables,

to travel to the nearest recycling centre, to look for
information regarding each waste fraction).

20.3

3. I always forget. 13.6
4. Cost over benefit (where the reward from recycling does not

feel worthy which could not cover the time consumed or
transportation cost, and storage cost).

3.4

5. I am not sure which waste belongs to which category. 11.9
6. I do not feel my recycling efforts will make a difference. 6.8
7. I feel uncomfortable having many recyclables bins or bags

for different waste categories in my household. 8.5

8. I do not care about recycling as it is not my priority for
environmental concern. 1.7

9. I do not understand the environmental benefit that
recycling can provide. 3.4

10. None of my household members recycle. 13.6
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Table 16. Reasons to not participate in source separation.

Statement Frequency (%) (n = 174)

1. It is more tedious than recycling. 9.8
2. There is no collection service for each type of waste even if I

sort it out. 22.4

3. There is no monetary reward unlike recycling. 5.2
4. It does not bring more environmental benefit than recycling. 1.7
5. Not convenient. 18.4
6. More time needed. 16.7
7. More knowledge needed. 19.0
8. My household members always ruin my sorting efforts. 6.9
9. Others. 0.0

When asked about the reasons for not practising recycling, time consuming was
ranked as the most important consideration. Absence of an influencer at home, issues
of convenience, and accessibility to the recycling/collection centre, as well as the lack of
knowledge of recyclable wastes were also among the most selected reasons that set the
barriers to recycling practice among the respondents (Table 15). A similar ranking of reasons
(except for no home influencer) was revealed by respondents who did not participate in
waste separation (Table 16).

When asked about action taken when facing uncertainty regarding the waste category,
most of the respondents would place the item in the common trash and only a handful
would refer to the online resources for reference (Table 17).

Table 17. Action taken upon uncertainty of waste category.

Action Frequency (%) (n = 100)

1. Place the item in the trash. 54.0
2. Place the item in the recycling bin. 7.0
3. Refer to the available guide from the local authority. 8.0
4. Contact waste collection service provider for advice. 0.0
5. Refer to someone who you think has more knowledge on

waste sorting. 4.0

6. Refer to online resources. 27.0
7. Others. 0.0

3.6. Perspectives of R&SS Service Users

All 7 interviewees from the service users’ group (including non-recyclers or non-waste
sorters) held a positive attitude towards the products and compost made from recycled
material. They had a satisfactory level of awareness and were able to explain the advantages
and disadvantages of the waste treatment from R&SS. Nevertheless, the disadvantages for
waste separation per se relatively outweighed and discouraged them from the practice,
as opposed to that of recycling (Table 18). All 7 interviewees confirmed that they had no
knowledge of the existing R&SS related efforts or initiatives implemented by Manjung
Municipal Council and any local non-governmental organizations.
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Table 18. Interview responses from the perspective of service users.

No. Questions/Matters Discussed

1.
The interviewees were asked if they knew of or had seen any product made from
recycled materials to confirm the outcomes of recycling itself and whether their
recycling efforts were making an impact [39].

R
esponses

from
Interview

ees

As one of the respondents said:
“I have no idea how the recyclables I have collected are treated at the end of the process.
It keeps me doubtful if truly these recyclables are transformed into useful raw materials
and whether my recycling effort makes a significant impact. At least, products made
from recyclables are not commonly seen in the market yet and can only be found in
shops that are designed to sell such products. Usually, sustainable products that I
encounter are marked “organic” rather than “made from recycled material”.

2.

The interviewees were asked if they knew of or had seen (had experience) compost,
a product generated through recycling food waste (sorted from general waste) to
confirm the level of willingness to participate in the process from waste sorting to
compost making, and in addition to this, they were asked about their challenges or
gains to participate in this process [39].

R
esponses

from
Interview

ees

In terms of composting practice (one of the outcomes from source separation), this
was what one respondent said:
“Composting allows a complete cycle of waste management. It can self-sustain
where the biodegradable waste generated can be turned into fertiliser for plants that
produce food. However, due to the lack of space (land for farming) and lack of
influence from the households’ waste handler, composting is not what I can usually
practice at home. It is less useful to me compared to other households that have the
supporting mechanism and medium (e.g., planting ground where compost is
valuable) to do so”.
Another respondent added:
“Composting is not a practice that households normally do. This is because it
requires a tedious procedure, which is to ensure the right composition of carbon and
nitrogen. Without the proper procedure, it will produce odour and attract pests and
insects. Even the easiest composting method, the Bokashi, is also an unpleasant
process during the accumulation of 9-litre kitchen waste in a week. This is because
the process is not as straightforward as it seems, and it is generally harder to control.
It might contain materials that are not advisable to compost, like oil or liquid, meat,
bones, and dairy. A more complete composting system that includes a wide range of
categories is more expensive at a point that common households cannot afford or are
not willing to pay. For example, the composting machine from MAEKO, even
though it is designed for households, it is still not considered as cost-efficient for
common households’ ability to pay”.

3 The interviewees were further asked if they could consider other waste
minimisation options (moving up the waste hierarchy [12]).

R
esponses

from
Interview

ees

In response to the difficulties in R&SS, a respondent also commented on waste
reduction and where his priority lies:
“Going zero waste is very difficult when my priority does not lie on extreme waste
minimisation as it is not cost-effective based on my affordability for essential
purchases—groceries or daily necessities. This also requires strong determination
that I do not think is worthy for me to trade off if there is no collective effort from a
large population”.

4. Discussion

The population in Manjung is surging, becoming the third most populated district in
Perak. The increasing volume of waste generated as a result of throw-away consumerism
will eventually exceed the capacity of the waste treatment at the only landfill site in Man-
jung, whose lifespan is expected to end within 3 to 5 years (data from Manjung Municipal
Council). The heavy reliance on landfill for waste disposal has created a comfortable
ground for households to throw every type of waste into the garbage bin for weekly mu-
nicipal waste collection. R&SS therefore remains an unpopular option, and this situation
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is not acceptable for a city striving for sustainability within the next decade. This study
investigates the gap between households’ KAB that has delayed the transition towards
sustainable integrated waste management. In addition to the gap, households’ behaviour
is also influenced by potential parameters that not only radiate from their mental charac-
teristics (internal factors) but are also shaped by the physical environment and on how
they deal with waste, from consumption to disposal (external factors). The causation of
households’ behavioural pattern is to be discussed in this section and should be addressed
with relevant improvements in the waste management service to enhance the sustainability
of Manjung district.

4.1. Associations between the Households’ Level of KAB towards R&SS Practices

The relationship between knowledge, attitude, and behaviour is direct in theory, where
knowledge supports the foundation of information processing, attitude bears psychological
and emotional development, and behaviour holds the response and reaction through the
entire process of thinking, feeling, and acting [23,46]. However, KAB relate to each other
differently and inconsistently in reality, resulting in gaps between familiarity, values, and
actions [47].

This gap in KAB also exists in the waste management system in Manjung in regard to
whether the local authority or state government should implement Act 672 for mandatory
source separation, based on the current condition and quality of the system. In reality, the
recyclables, which have been produced and consumed, remain mismatched with the actual
processed recyclables. Households also find it difficult to commit to recycling alone (less
than 1.0% recycling rate compared to total waste generated per year in Manjung), not to
mention source separation, due to additional requirements.

The findings show that households’ knowledge (general and specific) is at a moderate
level, attitude is at a positive level, and behaviour is at a poor level. These results denote
that these three components influence and can be influenced by each other reciprocally,
as suggested by various studies in the literature, if not direct. On the other hand, even
though KAB has no eligible linear associations statistically, their associations are significant
when discussed with multiple sets of conditions, variables, or causal factors. In fact, the
negligible linear associations between these three components have proven that their
associations are rather complex [46]. Similar results have been recorded in several studies;
for instance, ref. [48] agree to the complexity in the study of KAB, especially for the fact
that knowledge and attitude for participation in “green activities” do not lead directly to
behaviour, regardless of the level. They have discussed that their respondents are familiar
with the idea of recycling, yet the practical aspect is absent due to their indifferent attitudes
towards the practice.

Finally, many scholars have also studied the associations between demographic pro-
file and the KAB components. In this study, the findings only show household size and
housing type as having statistically significant associations with one of the components. In
fact, ref. [22] describe the associations of a high satisfactory level of KAB with a medium-
sized household where the adults (parents) possess high educational level and secure jobs.
Landed property has an influence on households’ attitude on the local waste management
system rather than knowledge, as suggested by [30]. Other demographic characteristics
such as age, gender, civil status, and income level are also major determinants in establish-
ing associations with KAB components [30,48]. Similarly, age, civil status, educational level,
and living duration in this study show statistically significant associations with households’
participation in source separation practices, which also influences the reciprocal causation
of KAB components.

4.2. Enabling Factors of Households’ Behaviour on R&SS Practices

Sections 4.2 and 4.3 discuss the understanding of the households’ behavioural pat-
tern (based on the sample at the point of observation, survey, and interview) with the
identified barriers and enabling factors that are categorised into internal and external
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aspects. These parameters can bridge the gap of the KAB and serve as a basis to formulate
recommendations. According to the findings, the internal factors are boiled down to (a)
intentions, (b) knowledge, (c) willingness, (d) habit or routine, together with (e) persua-
sion. Conversely, the external factors identified in this study for the waste management
service include (i) accessibility to services (both storage and collection), (ii) tangible incen-
tives (reward) and disincentives (enforcement of law and penalty), and (iii) restrictions on
consumption (discouragement of throw-away consumerism).

In terms of enabling factors, the findings (survey and elicited data) reveal that envi-
ronmental protection is the fundamental motivation for the participation of R&SS practices
among the respondents. The strength of intentions propels the recyclers (about 40%) to
also participate in source separation, even though they have to deal with inconvenience
within the provided waste management system. Households would have to take their
own initiative to transport sorted waste to the collection centre. In fact, the municipal
council only provides a limited number of recycling containers (a total of 11) and they are
dedicated to collect specific and narrow waste category. This has lowered the willingness
level, as it was ranked rather low as enabling factors for households to participate in R&SS.
To increase this willingness, it may have to couple with other enabling factors such as
tangible incentives (reward) and high accessibility to collection services with a widely
acceptable waste category, as suggested by [33,39].

Knowledge, in this context, refers to the implications of R&SS practices and knowing
the results from their participation in R&SS [35,39]. Interviewees gave positive responses
towards the publicity of the outcomes of waste treatment through R&SS, which they
claimed would greatly encourage them as they could know how their recycling effort
counts. Having this knowledge in mind, this could have strengthened the participation
more as “the feeling of satisfaction for anticipating that waste would become a new resource”
and “continuous effort” are among the enabling factors that are rated high in the ranking.

Finally, Malaysia has a long recycling implementation history [7] and, consequently,
this habit influences the decisions of households [24]. At least 10% of the respondents
engaged in R&SS, behaviour that has been partially enabled by recycling habits. Based on
the elicited data, songs have been created to teach children how to differentiate the colours
of the recycling bin for each type of waste; such methods prompt children to engage in
sustainable processes, for instance, paper must go into the blue recycling bin (when you
see one).

Generally, this part of the discussion could assist service providers, especially the local
authorities, to prioritise their agenda and budget to facilitate the transfer of knowledge
among households [35,39].

4.3. Barriers of Households’ Behaviour on R&SS Practices

Willingness to invest in terms of time, money, and effort was lacking among house-
holds (reasons ranked amongst the highest at first in recycling; fourth in source separation)
as they have been practising a more “convenient” way of consumption and waste man-
agement for the past few decades; for example, taking single-use plastics for granted and
dumping all wastes into garbage bins [37]. A change in lifestyle is difficult, as claimed by
the majority of the interviewees. Dumping, which is a traditional (conventional) practice, is
easier to continue as a habit compared to recycling and composting, which require gaining
new knowledge and taking more steps to apply [49]; knowledge was rated as the second
most selected barrier to participation in source separation.

In fact, there is a disconnection between households’ pro-environmental behaviours
(acted upon a just cause) and the final outcomes of the R&SS practices; when the intervie-
wees were asked if they knew how recycling could protect the environment, most of them
were only able to guess that the recyclables collected are being transformed into secondary
material for production. They were intrigued to know the outcomes of the items they
recycled; however, this information is not made available.
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In fact, the waste management system (current R&SS service) in Manjung operates
without a responsive feedback loop to keep users informed and educated. There are
limited channels for respondents to improve their waste sorting knowledge, rebut recycling
myths, track their contribution in R&SS practices, as well as follow up the aftermath of
the segregated waste after it has been collected. The lack of such information discourages
continuous recycling efforts among households, especially in communities where the idea
that “waste that has been put in a recycle bin does not mean that it has been actually
recycled” is a common belief [50,51]. This feedback is essential to prevent “wish-cycling”:
irresponsibly placing items into a recycle bin and hoping that it would be recycled [52,53].
The discouragement also presents a negative influence towards the impact of one person
recycling, as the lack of communal effort has widely become an excuse (ranked as the third
most selected barrier in recycling) for most households (not convinced without actual and
strong evidence) to refuse in taking up these practices, especially source separation.

Generally, source separation is more complex than recycling, which has caused the
percentage of participation to drop to 28% from that of recycling at 62%. It therefore
depends on the degree of the discussed internal factors, which can determine how poor a
household’s behaviour is, in what ways their behaviour is poor, and to what extent this
behaviour can be improved.

In terms of external factors, the findings (observed and elicited data) show that all
waste management stages in Manjung pose challenges to households’ participation in R&SS,
especially source separation. As observed, households’ waste generation is aggravated
by the culture of throw-away consumerism and the convenience of plastic usage in the
commercial industry. Waste is generated rapidly not only due to the increasing population
(overconsumption), but also the short life cycle of the purchased product (made from non-
decomposable material) [3,6]. Many are contaminated by materials such as food residue
without proper sorting when discarded [36,52]. Additionally, the district has adopted a
waste storage system that does not encourage the action of segregation due to its one-type
design, especially waste containers provided at public areas (e.g., wet market). For waste
collection, most housing developments in Manjung are landed property, where curb side
recycling is claimed to have an overall positive effect for source separation [54], yet this
idea is not celebrated. Integrating source separation with recycling seems impossible, as
almost all local recycling vendors do not accept biodegradable waste and waste with mixed
material (e.g., milk carton). Moreover, recyclables are usually self-transported, and the
accepted recyclable categories are limited and generally remain unclear to most of the
recyclers. A total of 40.3% of the respondents stated that they will still engage in both R&SS
practices even though they have not been well supported by the current waste management
system and environment. This could probably be due, in part, to their pro-environmental
behaviour. However, at the same time, accessibility to R&SS services is also one of the
greatest challenges for them and might result in negative experience when engaging in
R&SS in the long term. This is because accessibility to R&SS services has been rated as
the second most important barrier to participation in source separation by most of the
non-recyclers and non-waste sorters. This barrier has stronger implications for service
users in R&SS, discouraging participation.

The interviewees generally feel negatively towards the use of plastic bags, as they
understand that the ocean and marine life are impacted by this consumption (based on
elicited data). However, when the use of plastic bags grants them great convenience, they
still decide to compromise. This is described as selective empathy, in which people in
general selectively care about one matter instead of the actual problem [55]. This widens
the mismatch between the psychology of households and their behaviour, where mental
characteristics are not strong enough to effectively drive a favourable outcome due to
the lack of a support system from waste management mechanisms at all stages. This
support system can create a convenient environment for households to easily partake in
R&SS [33,39]. This convenience is totally different from the convenience associated with
throw-away consumerism. To date, a series of programmes have been implemented in

224



Sustainability 2022, 14, 8023

Manjung to encourage R&SS participation at the household level. These include (a) edu-
cation programmes for pupils from kindergarten, primary, and secondary school. A total
of 70 kindergartens have been engaged throughout the year to instil recycling habits in
children’s upbringing. Recycling and waste separation habits are generally more cele-
brated among school children; (b) engagement programmes with a group of households to
adopt composting (Takakura method) for biodegradable waste treatment. This compost
is then used for plantation on the land provided by the local authority (Department of
City Planning), named as Taman Communiti, in a planned neighbourhood: Phase 1D
Manjung. The community has been taught to produce their own compost after several
tutorials; (c) monthly recyclables trade-off programmes for daily necessities at the main
lobby of Manjung Municipal Council Office Building every first Saturday of the month;
(d) provision of recycling containers (a total of 11) at public areas to collect textiles from
households, known as SULAM programmes; (e) a pilot project with business owners at
public wet markets with the aim of halting single-use plastics for packaging; and (f) focus
group discussions (shifted from pupils to families) in various neighbourhoods.

Through these existing initiatives, the local authority has noticed the difficulty in
reaching out or to convince the diverse population within the district to participate in their
R&SS implementation. Information is usually disseminated through online platforms—
official portals and social media (Facebook) page—as well as billboard advertisements at
two of the busiest crossroads. Yet, the desirable results have been difficult to achieve. The
lack of effective engagement and communication strategies and long-term trust building
with the community are among the major issues faced by the local authority [56,57]. The
interviewee from the local authority admitted that they were hoping that NGO(s) would
come to them with a R&SS implementation proposal so that they could provide these
NGO(s) with resources.

In addition, the State’s commitment to sustainable waste management has been non-
chalant and, as a result, the local authority’s initiatives have only been sufficient enough to
fulfil the requirements of standard urban management rather than a mission. Additionally,
being a suburban municipality, the economy, technology, and even society are still unpre-
pared for the development of sustainable waste management [47]; the communities in Man-
jung have yet to emerge as a major driving force behind the waste minimisation movement.

4.4. Recommendations to Enhance R&SS Participation

Considering all parameters discussed in 4.2. and 4.3., the authors made the following
recommendations:

In order to increase the willingness of households to participate in sustainable practices,
an education programme with an effective feedback loop system via internet communica-
tion technology is essential [17]. There are a few key elements in this system. First, a reactive
feedback platform (online message, calls, and emails) answers to any uncertainty during
waste sorting—a live version of gomi (Japanese word of “garbage”) guide—becoming an
ultimate go-to reference for waste sorting. This can improve households’ perception of how
easy R&SS can be carried out. Second, concise and practical information or knowledge is
fed through push notifications to spark smaller actions. This further allows households
(especially waste handlers) to react positively towards R&SS, as small actions do not incur
heavy costs. Lastly, networking platforms allow households to share success stories and
motivation. This can cultivate positive peer pressure and redefine subjective norms of the
community to manifest the fact that their effort can make a difference.

Meanwhile, religious and dialect associations are groups that could bring households
together, mobilise them and empower them to accomplish a mission. Households that
are relatively able to placed their trust in these associations and dialogue can be easily
initiated when two groups share similar social-cultural backgrounds [58]. Furthermore,
as demonstrated by the community in Pulau Pangkor through authors’ observation and
interviews with the local NGO, a deep trust is the key driving factor for the third party to
be able to encourage better participation in R&SS practices among households. This trust
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is formed when people share a common vision through long-term communication and
engagement. By doing so, it allows both parties to easily unite under a common interest
or goal when they have achieved the same ideology. A higher success rate is guaranteed
with stronger social capital and creative social innovation [58]. This social innovation is
important for the community to urge local authority to facilitate an enabling environment
for R&SS implementation.

Environmental activities such as recycling and composting are best started off from
these associations while utilising their facilities, as they have set up optimum conditions
for community-driven projects. For instance, in Sentul, Kuala Lumpur, a Sikh community
realised that a huge amount of biodegradable waste was being generated through their
religious activities. This encouraged them to initiate a composting movement in reusing
food and garden waste around their neighbourhood, while at the same time utilising the
space around its religious facility [59]. It has also attracted families to join the action to
contribute to waste reduction.

Regarding this example, the local authority can be the intermediary to connect the
community with various sectors that require R&SS services or products. For instance, the
compost produced by the community can be sold to agriculture-related sectors (e.g., farm
or plantation within or outside the district) via the local authority. The local authority
can also take up a role as an enabler to provide various resources, including space and
location, information such as waste composition and waste handling within a community,
as well as regulations such as legislative by-laws and guidelines for proper practice and
implementation. Merits or incentives should be introduced to those who make a significant
impact on minimising the waste, thus reinforcing their actions and advocating change.

The outcomes of R&SS should be widespread, providing both environmental as well
as economic benefits. Households should be constantly reminded of this knowledge
to shape their attitude slowly but surely. Waste management is a service delivery; the
expenditure should be wisely spent to achieve a more productive result within a limited
budget. Therefore, it is important to let households know that R&SS implementation can
significantly reduce the amount of waste that has been sent to landfills, increasing the
lifespan of landfills, and thus saving municipal budgets.

Furthermore, the authors in [60] have revealed that it is important for local authorities
to stay financially feasible and sustainable through cost recovery, such as from transporta-
tion cost saving through lesser intervals as less generated waste is being sent to landfill.
The authors in [61] support this idea by suggesting the R&SS industry collaborate with
local authorities to improve the efficiency of recycled waste processing. Cost recovery
can also be carried out by formulating by-laws under the “polluter-pays-principle” for
private corporations or companies and business owners to partake in improving the waste
management mechanism as part of their social responsibility. This will optimally reduce
the trade-offs of any non-essential waste generation in commercial industry and household
purchases. Meanwhile, pro-environmental product design guidelines should be formulated
by environmental agencies and endorsed by local authorities for product manufacturers to
comply with.

The current annual report of the Manjung Municipal Council has revealed no in-
formation regarding the expenditure of the service delivered. It is crucial for the local
authority to share their expenditure (to be transparent throughout the administration) via
effective means such as Gender Responsive and Participatory Budgeting (GRPB). GRPB
has been practised by Penang’s state and local governments with the collaboration of
Penang Women’s Development Corporation as an effective tool in making the budget
gender responsive prudent and, most importantly, sustainable [62]. As this type of activity
is voluntary-based, households’ participation can determine how their tax can be used to
create other public benefits from the budget they have saved through R&SS implementation,
improving their willingness to be involved.

Small actions are negligible and simple but vital to shape good behavioural change
in the long run. These small actions include everyday actions such as putting reusable
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containers or shopping bags in the usual hand carry or the vehicle itself, saying “no” to
plastics, and more. Furthermore, they require constant reminders to eventually develop a
habit over time. This can help those who experience difficulties in changing and adapting to
a huge change in their waste management pattern. To amplify this effect, the surrounding
environment should also be designed to influence consumers, such as designing signage at
the doorstep to remind oneself to bring reusables before leaving the house when takeaway
is planned. Essential destinations such as schools and the workplace, where people spend
a significant number of hours in, should also be redesigned. Small tips or life hacks are
essential to foster creative thinking upon negligible things or happenings in life to ensure
these small actions become a routine and habit [63]. This strategy can be widely promoted
using both online and offline platforms (considering not all households have access to
online networks).

The survey findings reveal that most of the respondents acknowledged the importance
of environmental syllabus in schools and universities. These educational facilities should
raise the impact of their education and research by providing the know-how for effective
implementation [64]. The knowledge transfer and skill training of formal education has a
great influence among youth who are more flexible towards changes in their lifestyle [48,65].
The attitude is more effectively shaped at a younger age and recognition should be given
(preferably by the government or relevant industrial players) to reward their effort and
strengthen their intention to commit to R&SS practices. Besides classroom teaching and
social activities, competitions (public speaking, essay writing, art- and craft-related events,
photography, or videography) should be held to boost the capacity, as well as interpersonal
skills of the students at all ages, especially sixth formers (pre-university) and undergrad-
uates. Placing young children in a more competitive ground can also strengthen their
intentions to advocate for the cause they believe in. Youth ambassadors in promoting
R&SS practices can be one of the latest trends to promote households’ participation, as
young leaders often appear more inspiring and exhibit greater charisma to foster social
innovations. Nevertheless, the quality of persuasion should be governed to ensure quality
information processing.

It will be difficult for these recommendations to achieve optimum results if the external
factors are not taken into consideration. An effective support system throughout waste
management stages must be built to provide a convenient environment for households to
conduct R&SS by increasing the accessibility to such services. Households’ waste storage
system should expand along with the waste collection system. By indicating a specific day
for a specific waste category collection, households can save time for waste transportation
to recycling vendors, maximising ease and convenience. With the effective feedback loop
system, households can sort waste correctly, while weight can be recorded into the same
system (mobile application) for further network and database establishment.

During the pandemic, the new normal indeed reshaped people’s lifestyles, especially
considering that digital transformation has influenced how people eat, shop, and pay bills.
Manjung Municipal Council has developed a mobile application, myMANJUNG, for tax
collection and bill payment [66]. This intervention can be included into the system for
constructive management (e.g., ability to identify ownership of sorted waste and account-
ability). Nevertheless, this improvement requires consistent monitoring and evaluation
by trained human resources, whether through a law enforcer hired by the municipality or
collaboration with NGOs (NPOs) or community associations. Tangible incentives such as
vouchers or cash rebates (based on the total weight of the sorted waste collected) can rein-
force households’ actions by eliminating hesitancy in visualising R&SS benefits (economic).
Taiwan implements an integrated waste management system, which is designed to pro-
vide households with great support to recycle and separate waste conveniently. Frequent
waste collection and households can track the service trucks in real time through mobile
application. These service trucks accept wide waste categories, including biodegradable
waste. Designated garbage bags are used to implement a Pay as You Throw (PAYT) scheme
to incorporate the responsibility of households in waste reduction [67]. This integrated
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waste management system can effortlessly maximise the possibility of R&SS integration
and transition from non-sanitary landfill to sustainable waste management.

Finally, the throw-away culture should end through the enforcement of law, an exam-
ple from Shanghai mandatory waste separation in 2019. However, due to political compli-
cations, the local authority can instead implement a by-law to restrict non-essential product
consumption. For instance, Penang has increased the price of a plastic bag from RM0.20
to RM1.00, suggesting that people can no longer take this convenience for granted [68].
A higher cost will be incurred for more damage inflicted towards the environment (more
waste generated). This is necessary for households to abstain from using unsustainable
products and ultimately revise their purchasing decisions. The ideal situation is the total
ban of non-essential products (e.g., single-use and disposable plastic) by shifting focus
and business models to the circular economy [3,6,9]; at the same time, society should be
prepared with adequate knowledge and a convenient environment in which to practice
R&SS with continuous motivation or feelings of commitment [33,39].

5. Conclusions

There was a gap observed between theory and practice in this study where house-
holds’ level of knowledge, attitude and behaviour had no linear associations when tested
with Pearson’s Correlation Coefficient. Moderate knowledge with a positive attitude were
insufficient to drive good behaviours different than that in theory. Therefore, the paper
further examined the potential parameters that would shape households’ behaviour and
thus encourage behavioural change, considering the fact that about two-fifth of recyclers
adopted source separation despite the current less-supported waste management mech-
anisms and environment. It was revealed that environmental protection was the most
important enabling factor for households’ participation in R&SS, while on the contrary,
time consumption and accessibility to R&SS services were among the highest rated barriers
by the non-recyclers or non-waste sorters.

There was also disconnection observed between households and the local authority
where the former was unable to identify existing municipal R&SS initiatives, while the
latter faced obstacles to find effective ways to engage with more diverse household groups
regardless of cultural and social background. The local authority also pointed out the
important roles played by the NGO in bridging the communication and trust gaps between
the community and government.

This paper aimed at providing recommendations to the specific stakeholders in Man-
jung district to improve waste management through R&SS implementation by analysing the
causations between KAB at a household level. By addressing the gap between households’
awareness, more effective and targeted strategies and initiatives can be formulated to tackle
the actual gap. Nonetheless, with the limited number of samplings as identified in the
methodology section, further study is needed to capture more data, which can potentially
be expandable to cover other districts in Perak state, or in other states in the country. In
addition, as identified in this study, further study on the influence of both internal and
external factors will provide in-depth understanding of the linkage between KAB in any
study area.
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Abstract: Climate change in the watershed above the reservoir has a direct impact on the quantity of
streamflow that enters the reservoir and the management of water resources. Developing effective
reservoir rule curves helps reduce the risk of future failures of water resource management. The
purpose of this study was to analyze the influence of climate change on the volume of streamflow
entering the Ubolratana Reservoir, Thailand during the years 2020–2049 with climate simulations
from the CIMP5 model under RCP4.5 and RCP8.5 scenarios. SWAT models were used to forecast
future reservoir streamflow quantities. Moreover, suitable reservoir rule curves using the Honey-Bee
Mating Optimization (HBMO) were developed and the effectiveness of the new rule curves was
assessed. According to the research findings, the average yearly streamflow in the future apparently
grew from 32% in the base years (2011–2019) and 65% under the RCP4.5 and RCP8.5 scenarios,
respectively. It was discovered that the average monthly streamflow was higher in the rainy season
than in the dry season. Both of the projected situations have a form compatible with the present rule
curves in the section of the new reservoir rule curves generated with the HBMO. Furthermore, the
newly constructed rule curves may allow the reservoir to keep more water during the rainy season,
thereby assuring that there will be adequate water during the following dry season. Additionally,
during the dry season, the reservoir was able to release more water that would be able to reduce the
water shortage, indicating that it was able to effectively reduce the amount of water shortage and
average overflow under RCP4.5 and RCP8.5 situations.

Keywords: climate change; streamflow; Honey-Bee Mating Optimization; reservoir rule curves

1. Introduction

Uncertainty has a direct influence on the understanding of hydrology and water
resource cycles caused by global climate change, as well as the growing frequency and
intensity of droughts and floods throughout the world; these events are jeopardizing the
management and development of water resources to meet global demands in all industries,
making management more complex and difficult. For the past two decades, climate change
has had a global impact on water resource management. Several study groups have sought
to create ways for controlling water at its sources in order to deal with the fluctuation
of supply sides and demand sides. The majority of such studies have evaluated the
consequences of future climate change based on prediction findings from climate models
combined with hydrological models to analyze impacts on water allocation efficiency for
consumption [1], irrigation [2,3] hydroelectric power generation [4], and procurement of
new reservoirs in the future [5].

In Thailand after the Great Flood of 2011, numerous watershed areas experienced
drought between 2012 and 2019. The primary reason for this is that rainfall was below
normal [6]. Many rivers’ average discharge was lower than usual [7]. Government agencies
must implement campaign initiatives to encourage consumers and farmers to consume

Sustainability 2022, 14, 8599. https://doi.org/10.3390/su14148599 https://www.mdpi.com/journal/sustainability
233



Sustainability 2022, 14, 8599

water most efficiently and cost-effectively as possible. The northeastern area of Thailand
comprises more than 60% agricultural land and is mostly dependent on seasonal rainfall in
off-season cultivation, especially for rice cultivation, as it requires water from irrigation
systems which rely on the cost of water from reservoirs. Meanwhile, the demand for water
downstream in various sectors tends to increase. Many large and medium-sized reservoirs
are unable to allocate water to meet the needs of all sectors effectively. In addition, the
development of water resource management through efficient tools and methodology,
alongside the consideration of the conditions of complex and nonlinear problems in all
dimensions, is required especially for the management of reservoir water resources in
situations of global climate change volatility [5]. It is, therefore, necessary to make an
urgent adjustment.

Over the past decade, climate and streamflow were included in future hydrological
models. These two factors have been used in combination with reservoir management.
It is an approach that has been widely used in studies across the world. In Thailand, the
Hydro-Informatics Institute created and released the Coupled Model Intercomparison
Project Phase 5 (CMIP5) family of global climate models. This model has undergone bias
correction using a Gamma-Gamma (GG) transformation optimization approach [8] to make
future computation results more dependable. The products from CMIP5 have been used
to analyze the effects of climate change in Thailand’s watershed areas [9], hydrological
systems in Southeast Asia [10], and many other places across the world [11,12].

A hydrological model is used to forecast future streamflow. In this study, a semi-diffuse
hydrological model was investigated. The SWAT [13] is the world’s most popularly used
climate model, because of its integration of geographic information (GIS) data and regional
climatic data in watershed areas of every size. As a result, the analysis is trustworthy.
SWAT has been used in Thailand to examine and analyze the quantity of streamflow in
various scenarios [14,15], and for the future management [16,17] of water resources in
watersheds and reservoirs [18]. The precision of SWAT calculation results could improve
when compared to the real measurements and this was accomplished by employing the
SWAT-CUP model and the SUFI-2 approach [19] to choose the most appropriate sensitivity
variables for analyzing the studied watershed regions. Therefore, based on the strengths of
the CMIP5-derived products, once they were imported into SWAT, the results were expected
to be future streamflow that differ from the new projection of greenhouse gas emissions.
The Representative Concentration Pathway (RCP) as defined in the fifth Assessment Report
(AR5) by the IPCC [20] provides cost information for appropriate reservoir management to
situations of future hydrological variation.

There have already been some studies on applying optimization techniques to reservoir
management, particularly in the development of suitable reservoir rule curves. Mathe-
maticians have created evolutionary optimization approaches throughout the last decade.
Appropriate reservoir rule curves were created using metaheuristic optimization techniques.
Several approaches are popular in Thailand and across the world, such as Genetic Algo-
rithm (GA) [18,21–23] Ant Colony Optimization (ACO) [24], Firefly Algorithm (FA) [25],
Grey Wolf Optimization (GWO) [26], Tabu Search Algorithm (TSA) [27,28], and Particle
Swarm Optimization (PSO) [21,22]. However, a new kind of evolutionary technique has
been created, which is a natural-inspired approach to solving problems and finding answers
in engineering. It is the Honey-Bee Mating Optimization (HBMO) algorithm [29], a process
for optimization by imitating bee swarm behavior.

However, the solution to reservoir water allocation challenges caused by climate
change affects future streamflow volumes. It was discovered that there were not many
studies in the northeastern part of Thailand, along with forecasts of the variance in wa-
ter demand from diverse activities in the downstream areas, especially for reservoirs in
remote places where functionality is essential. Ubolratana Reservoir is the first significant
multi-purpose reservoir in Thailand’s northeast that provides hydroelectric electricity by
combining irrigation and rainwater harvesting to reduce floods during the wet season.
However, in the last ten years, dry-season water resource management has encountered a
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water insufficiency problem. Water intake to reservoirs has been lower than the average
amount. In contracts, in certain years, the volume of water flowing into the reservoir
surpasses the storage capacity during the rainy season. The water must be drained onto the
downstream side, causing floods in residential and agricultural regions. As a result, when
Ubolratana Reservoir has to develop suitable and efficient water distribution criteria, taking
into account the diversity of hydrological circumstances in the past, present, and future to-
gether with the application of evolutionary optimization techniques to create more efficient
rule curves. This would be expected to be of great benefit for water resource management.

In the past, the consideration of improving the reservoir rule curves of Ubolratana
Reservoir, and the other reservoirs in Northeastern Thailand was a case study based on
climate change forecasting from the AR4 models [18,30]. This research draws on climate
forecasting data from the CMIP5 model based on the RCP4.5 and RCP8.5 scenarios that use
bias correction to be more accurate, including there are various types and different model
resolutions. The integration of SWAT hydrological models into the analysis of streamflow
conditions has not been previously studied, and the same applies to experiments that link
these models to the development of the optimal reservoir rule curves with the HBMO
technique. Consequently, the expected outcome of the study is the optimal rule curves,
appropriate outcome for the climate change situation and the variation on streamflow in
many cases.

The purpose of this research was to use the CMIP5 and SWAT models to examine
how global climate change affects the quantity of streamflow input into the Ubolratana
Reservoir, as well as to improve the reservoir rule curves by employing the approach of the
HBMO and considering the objective function, which is to minimize the quantity of water
that is scarce and the amount of water that overflows the reservoir, respectively. The results
of this study were predicted to be useful in predicting water scarcity and extreme water
circumstances for flexible water management, provided as decision-support information
for stakeholders to use as information for climate change policy planning and evaluation
of water allocation guidelines to assist future activities.

2. Materials and Methods

2.1. Research Area

The research site was Ubolratana Reservoir in Ubolratana District, Khon Kaen Province.
The study focused on five watershed areas; Lam Pha Niang, Lam Nam Phue, Upper Lam
Nam Phong, Lam Nam Choen, and Lam Nam Phrom, all of which are tributaries of the
Chi River Basin in northeast Thailand (Figure 1), with a total water intake area of around
12,000 square kilometers. The reservoir is a rock-fill dam with a clay core with a height of
2 m. The dam crest is 185.00 m above sea level. The basin receives an average of 2470 MCM
of water each year. The normal water storage capacity is 2431.3 MCM, with a reservoir area
of 370 square kilometers. The main functions of the reservoir are for generating electricity
with an annual power generation capacity of approximately 56.1 million kilowatt-hours,
irrigation covering an area of approximately 480 square kilometers, flood relief, fisheries,
and intercity transportation travel.
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Figure 1. Study areas of tributaries in the Chi River Basin.

2.2. World Climate Models
2.2.1. CMIP5 Model

GCMs (General Circulation Models) are useful for describing and forecasting future
climate change patterns. The World Meteorological Organization’s Global Climate Research
Program is now collecting data on current global climate change under the acronym Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) [31]. For this study, 10 CMIP5 models
were selected by the investigators: MIROC_ESM, BNU, CanESM, MIROC5, FGOALS_g2,
CESM1_CAM5, GFDL, EC_EARTH, CCSM4, and FGOALS_s2 [32,33]. The data used in the
global climate change analysis were supported by the Hydro-Informatics Institute (HII)
(Public Organization), which revealed that there are a wide variety of models that can
be applied (more than 15 models). However, when comparing the model’s data with the
measurement stations in the study area, (especially rainfall data) and ranked based on
the lowest tolerance. It was found that the models used in this study were among the
10 models with the lowest inaccuracies and were used in this study. Then, in the streamflow
analysis, only the climate data from five of the best models were selected. For ease of use,
the HII, which has downscaled the data model to a 5 × 5 square kilometer grid. Base year
climate data in the study areas used the data for 9 years between 2011–2019, and climate
forecasting data from 30-year models between 2020–2049.

2.2.2. Data Bias Correction

The Gamma-Gamma transformation approach was used in this study to correct for
rainfall inaccuracy from the GCM. For this study, climate data, particularly precipitation
data, courtesy of the Hydro-Informatics Institute (HII), is the agency that produces and
distributes data for use in climate change studies in Thailand. This agency has identified
the Gamma-Gamma transformation method to mitigate discrepancies in rainfall data. In
addition, HII has published a study that applied this method to study the impact of climate
change in Thailand on agricultural water demand [34]. In addition, Sharma (2015) has also
chosen this method to study rainfall in western Thailand, which found that the Gamma-
Gamma transformation was more effective in improving rainfall frequency and intensity
compared to other methods [35]. The concept of this method is to correct for discrepancies
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caused by frequency and rainfall between GCM and measurement stations in the base
year by creating a cumulative distribution function (CDF). This leads to the creation of
appropriate Gamma parameters, with the functionalities and key parameters as shown in
Equations (1)–(4).

F(x; α, β) =
1

βαΓ(α)
xα−1exp

(
x
β

)
; x ≥ xTrunc (1)

F(x; α, β) =
∫ x

xTrunc

f (t)dt (2)

F(xGCM; α, β|GCM) ⇒ F(xHis; α, β|His) (3)

x′GCM = F−1{F(xHis; α, β|His)} (4)

where α is the shape and β is the size of the data from the GCM and base year monitoring
stations at the selected locations to be gamma distribution. xTrunc is the amount of rainfall
from CDF treated with the Gamma parameters, which are developed in Equation (2) for
Equation (3). The α and β values were calculated by applying the maximum likelihood
estimation method to calculate the daily precipitation from the inverse-adjusted GCM as
shown in Equation (4).

2.3. SWAT Hydrological Model

The SWAT (Soil and Water Assessment Tool) model was created to aid in the manage-
ment of water resources, and it was utilized in the evaluations for estimating the impact
of water resource management and water pollution in watersheds and large basins [36],
the quantity of streamflow that has changed, the amount of sediment and water quality
in streams affected by changes in land use and climate in both past, present and future
projections [37], which could be divided into distinct stages of watershed processing. For
example, in the main watershed, sub-watershed zones are being created. Calculations that
demonstrate outcomes daily and at extended intervals are also included. This considers
variables from hydrological processes with the water balance equation as in Equation (5).

SWt = SW0 +
t

∑
i=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(5)

where SWt is the final soil water content; SW0 is the initial soil water content, t is the time
(days), Rday is the precipitation (mm) on the day i, Qsurf is the surface water content on the
day I, Ea is the evaporative transpiration amount on the day I, Wseep is the amount of water
seeping into the basement on the day i, and Qgw is the amount of groundwater returning
to the stream on the day i.

2.3.1. Data Input

In the implementation process, the SWAT method requires the import of basic physical
data, including a digital elevation model (DEM) with elevation values between 90 to 1596 m
(MSL). The watershed area has a slope from the west (mainly mountains and upstream
forests) to the eastern lowland area where the Ubolratana Reservoir is located (see Figure 1).
As for the soil type map (Figure 2a), it indicates that more than 50% of the soil is clay, which
is in the eastern lowland, followed by clay loam soil, which is mainly in the eastern lowland
of the study area. The types of land use in the study area were mostly agricultural areas.
It was found that the use of land for rice farming which is most distributed in the eastern
lowland area, combined with sugarcane and cassava plantation in the central area of the
basin. In the west, most areas are watershed forests. The land use spatial distribution map
is illustrated in Figure 2b.
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Figure 2. Soil Type Map (a), Land use map (b).

Daily climate data includes rainfall, temperature, humidity, wind speed, and solar
intensity. Daily rainfall data were collected from 9 rain gauge stations distributed in the
study area and 1 climate station (Khon Kaen station) located in the southeastern part of
the watershed, as shown in Figure 1. There are 4 stations of streamflow and sediment
data, of which 3 stations are located in the watershed areas above the Ubolratana Reservoir,
are Station E68A (Lam Pha Niang Basin), E29 Station (Upper Phong Basin), and E85
Station (Lam Chuan River). Basin). These data are from 2011–2019 supported by the Royal
Irrigation Department of Thailand. The data used for evaluating the effectiveness of the
SWAT-computed results for the different types, intervals, scales, and data sources used in
this study are summarized and shown in Table 1.

Table 1. Basic data to be used in the SWAT model.

Data Type Period Scale Source

DEM 2015 30 × 30 m

Land Development Department, ThailandSoil type map 2015 1:50,000
River map 2020 1:50,000

Land use map 2015 30 × 30 m
Climate 2011–2019 Daily Thai Meteorological Department, Thailand

Observed inflow 2011–2019 Daily Royal Irrigation Department, Thailand;
Electricity Generating Authority, Thailand

2.3.2. Model Performance Evaluation Using SWAT-CUP

SWAT-CUP (SWAT Calibration and Uncertainty Procedure) is a SWAT-compatible
model. When compared to the old approach of manual correction by trial and error, the
SWAT model’s sensitive variable analysis, calibration, and validation procedures have more
flexibility and take less time. The outcome of altering the sensitivity variable will serve
as a guide for the best calibration and adjustment of the solution(s) between the SWAT
generated results and the station data. The following are five approaches for determining
the proper values: (1) Generalized Likelihood Uncertainty Estimation (GLUE), (2) Particle
Swarm Optimization (PSO), (3) Parameter Solution (Parasol), (4) Mark Chain Monte Carlo
(MCMC), and (5) Sequential Uncertainty Fitting (SUFI-2) [38]. For this study, the use of
the SUFI-2 technique was selected to apply in the operation. The SUFI-2 technique is
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uncertainty analysis consisting of predictive P-factors representing the actual measured
values that appear in the simulation results for 95% of the uncertainty of the simulation.
The prediction (95% prediction uncertainty; 95PPU) and R-factor are calculated as the
ratio of the mean amplitude range of the 95PPU to the standard variance of the actual
data. The calculated 95PPU values were positioned at 2.5% and 97.5% of the cumulative
probability distribution of the variables considered. Using Latin hypercube sampling [38]
as this technique requires the least number of sensitivity variables but can produce the best
results compared to other methods [39]. Eight parameters from the most vulnerable model
types were chosen for examination in this study. Eight parameters from the most vulnerable
model types were chosen for examination in this study. The results of the modification
of the parameters that calculated streamflow from the model closest to the data from the
measurement station are shown in Table 2.

Table 2. Adjusted Model Sensitivity Parameters.

No. Parameter Range Adjusted Values

1 ALPHA_BF.gw 0–1 0.367
2 GW_DELAY.gw 0–500 19.500
3 GWQMN.gw 0–500 179.500
4 ESCO.hru 0–1 0.881
5 GW_REVAP.gw 0–500 129.500
6 SOL_AWC.sol 0–1 0.393
7 CN2.mgt −0.2–0.2 −0.104
8 EPCO.hru 0–1 0.819

Then, the results were compared with the data from the measurement station, and the
efficiency was assessed using two statistical indices to check the accuracy of the results [40],
which showed the level of accuracy of the monthly streamflow comparison results. It is
divided into four levels as shown in Table 3 [41].

Table 3. Typical performance level for accepted statistics in monthly time step.

Level R2 NSE

Very good 0.80 < R2 ≤ 1.00 0.75 < NSE ≤ 1.00
Good 0.70 < R2 ≤ 0.80 0.65 < NSE ≤ 0.75

Satisfactory 0.60 < R2 ≤ 0.70 0.50 < NSE ≤ 0.65
Unsatisfactory R2 ≤ 0.60 NSE ≤ 0.50

1. The Coefficient of Determination (R2), as shown in Equation (6), is between 0–1,
with values greater than 0.6 indicating that the two data are correlated at a level
of reliability.

2. The Nash Sutcliffe efficiency (NSE) coefficient, as shown in Equation (7), is between
−∞ and 1, with values greater than 0.5 indicating that the two data are correlated at a
level of reliability.

R2 =

⎡
⎣
⎛
⎝ ∑n

i=1(Qoi − Qoa)(Qsi − Qsa)√
∑n

i=1 (Qoi − Qoa)
2
√

∑n
i=1 (Qsi − Qsa)

2

⎞
⎠
⎤
⎦

2

(6)

Ens = 1 −
(

∑n
i=1(Qo − Qs)

2

∑n
i=1(Qo − Qsa)

2

)
(7)

where n is the total number of data. Qoi is the i-order value, Qoa is the mean from all
measurements, Qsi is the i-order model, Qsa is the i-order value from all models, Qs is the
calculated value from the model, and Qo is the measurement value.
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2.4. Application of HBMO Algorithm for Reservoir Rule Curves Generation
2.4.1. HBMO Algorithm

The HBMO Algorithm is a hybrid search algorithm based on bee mating behavior.
The biological bee breeding process is transformed into a mathematical modeling program.
As a result, the phases in the adjustment process were properly outlined. Mating is the
first step in algorithm development. Every queen bee makes a flight based on her power
and speed throughout each mating flight. Equation (8) determines the likelihood of mating
between individual male bees and queen bees. The likelihood of mating is high during
the start of the mating flight when the queen bee’s velocity is high, or when a male bee is
sufficiently numerous to mate, the probability of mating is high.

After the movement of the queen bees or after mating, energy, and speed decrease
according to Equations (9) and (10). When all queen bees have completed a pairing flight,
they begin to breed to achieve the required number of embryos. The queen bees are
selected in proportion to the queen bee’s fitness and are artificially inseminated with sperm
randomly selected from the queen bee’s sperm sac. The worker bees would be selected in
proportion to their fitness to be used to improve larval outcomes. After the embryos were
born, they would be sorted according to their fitness. The best larvae replace the worst
queen bees until there are no better embryos than any queen bees. The remaining larvae
are then killed and new matings begin until there is a perfect mating. All predetermined
will be completed or meet converging criteria [42].

Prob (Q, D) = e−
Δ( f )
S(t) (8)

where Prob (Q, D) is the probability of mating between the male bee D and the queen bee
Q or the probability of successful mating; Δ( f ) is the difference between the male bee’s
fitness (f (D)) and the fitness of the queen bee (f (Q)); S(t) is the speed of the queen bee at
the time.

E(t + 1) = E(t)− γ (9)

S(t + 1) = α × S(t) (10)

where E(t) is the queen’s energy; S(t) is the queen’s speed; α is a factor ∈ [0, 1] and γ is the
amount of energy reduction after each transition.

2.4.2. Water Equilibrium Simulation Model

The models HEC-3, HEC-5, and HEC-RAS were used in a simulation study of the
reservoir system in each watershed [43]. Water balance principles were used. In this study,
a simulation model of the reservoir system was created by using the same principles as
in the above model, to facilitate connection with the Honey Bee Mating Optimization and
begin calculating the water balance of each reservoir. To begin calculating the water balance
of each reservoir from the rule curves, the initial storage volume of the reservoir was set
at full capacity or the maximum storage level; the discharge volume could be calculated
following the Standard Operating Rule as shown in Figure 3 and Equation (11). Then,
the available water cost of the reservoir could be calculated for the next month with the
principles of the water balance equation as shown in Equation (12).

Rν,τ =

⎧⎪⎪⎨
⎪⎪⎩

Dτ + Wν,τ − yτ , f or Wν,τ ≥ yτ + Dτ

Dτ , f or xτ ≤ Wν,τ < yτ + Dτ

Dτ + Wν,τ − xτ , f or xτ − Dτ ≤ Wν,τ < xτ

0, otherwise

(11)

where Rυ ,τ is the amount of water discharged from the reservoir during the year υ in the
month τ (τ is 1 to 12 referring to January to December); Dτ is the demand for water at the
bottom of the basin during month τ; xτ is the lower boundary of the rule curves of the
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month τ; yτ the upper boundary of the rule curves of the month τ; and Wυ ,τ is the amount
of original water level available in the basin of the month τ.

Wν,τ+1 = Sν,τ + Qν,τ − Rν,τ − Eτ − DS (12)

where Sυ ,τ is the amount of water stored in the reservoir at the end of the month τ; Qυ ,τ is
the average streamflow in the month τ; Eτ is the evaporation loss in the month τ; and DS
(dead storage) is unused storage volume.

Figure 3. Standard water discharge criteria.

The reservoir rule curves were generated using the HBMO Algorithm Optimal Solution
in this study. In the instance of shortage frequency, the target function for determining the
solution was the least average shortage, as illustrated in Equation (13).

Min(AverSh) =
1
n

n

∑
v=1

Shv (13)

where n is the length of the original water quantity data set; Shv is the amount of water
shortage in the year v (The amount of water released is less than the water demand target).

2.4.3. Reservoir Rule Curves Efficiency Evaluation

By analyzing the frequency of occurrence of an incident, the rule curves assessment
was set to evaluate two parts: water scarcity and excess release water with mean and
maximum values of Magnitude and Duration through the performances of the test rule
curves with future monthly streamflow scenarios from 2020 to 2049. Changes in greenhouse
gas emissions are RCP4.5 and RCP8.5, which are two different types of RCP.

3. Results and Discussion

3.1. Streamflow Analysis Using the SWAT Model
3.1.1. Model Performance Assessment

Evaluation of model performance assessed the accuracy between the calculation of
streamflow from the SWAT model calculated from the average monthly streamflow volume
during 2011–2019 and the streamflow data from 4 measurement stations in the study areas,
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namely E68A Station (Lam Pha Niang River Basin), E29 Station (Upper Phong River Basin),
Ubolratana Dam Station, and E85 Station (Lam Nam Choen River Basin) in the same period.
The model’s performance was evaluated using an index of R2 ranging from 0.62–0.88 and
NSE between 0.50–0.81, which were both within the acceptable accuracy range as shown in
Table 4.

Table 4. Index values for evaluating the accuracy of SWAT calculation results comparing streamflow
volumes from measurement stations.

Assessment Index R2 NSE

E68A Station (Lam Pha Niang River Basin) 0.82 0.52
E29 Station (Upper Phong River Basin) 0.79 0.76

Ubolratana Dam Station 0.88 0.81
E85 Station (Lam Nam Choen River Basin) 0.62 0.50

Comparative results of streamflow volumes from the SWAT model and streamflow
data from Ubolratana Dam Station are shown in Figure 4. The average annual stream-
flow from the SWAT model is 5147.34 MCM and that of the measurement station is
2385.56 MCM.

Figure 4. Comparison of streamflow between the data from Ubolratana Dam Station and the calcu-
lated results from the SWAT model during 2011–2019.

3.1.2. Forecasting of Future Streamflow Volumes

Forecasted future streamflow from 2020 to 2049 were expected to be impacted by
climate change based on the CIMP5 model under the RCP4.5 projection case. In total, there
was a 32% increase in the average annual streamflow in the future. With the MIROC_ESM
model, the streamflow volume was likely to increase to a maximum of 4734.97 MCM
(98.49%), and with the MIROC5 model, it was expected to rise by 3889.10 MCM (63.03%).
In the BNU model, it increased to 2905.53 MCM (21.80%), and in the CanESM model,
it increased to 2758.80 MCM (15.65%). However, the FGOALS_g2 model indicated that
the average annual streamflow in the future was expected to decrease by 1528.95 MCM
(−35.91%) (Figure 5). It was found that, overall, the average monthly streamflow volume
increased during the rainy season, accounting for 2930.95 MCM (29.82%), and in the dry
season, it accounted for 232.53 MCM (81.82%). When considering each model, there were
4 models, MIROC_ESM, BNU, CanESM, and MIROC5. There was an increase in the average
monthly streamflow during the rainy season between 2516.67–4479.10 MCM (11.47–98.40%),
and the monthly average streamflow volume would increase significantly during the dry
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season, especially in October showing a significantly higher proportion (Figure 6). The
highest increase in the MIROC5 model was 356.00 MCM (178.36%). However, the study
from the FGOALS_g2 model expressed a trend of lower average monthly streamflow in
both rainy and dry seasons which were 1467.22 MCM (−35.01%) and 61.73 MCM (−51.73%)
respectively. The results were in line with the average annual streamflow (Table 5).

Climate change was projected to influence future streamflow levels between 2020 and
2049, according to the CIMP5 model under the RCP8.5 forecast. The results showed that
the average annual streamflow across all models tended to increase. The MIROC5 model
rose by 5828.46 MCM (144.32%), the BNU model climbed by 3704.05 MCM (55.27%), and
the CanESM model increased by 3704.05 MCM (55.27%) (55.27%). Model FGOALS_g2
grew to 2854.40 MCM (19.65%) and 3419.62 MCM (43.35%) (Figure 7). Looking at the
seasonal average monthly streamflow volumes, the trend of change in average monthly
water volume was similar under the RCP4.5 projection case but had a greater proportion
of increase. Overall, the average monthly streamflow volume increased during the rainy
season by 3551.80 MCM (57.32%) and by 401.32 MCM (213.81%) in the dry season. The
increase was significant in both the rainy and dry seasons compared to the other models
(Table 5), with a significant increase in percentage in October (Figure 8).

Table 5. Average monthly base year streamflow and seasonal forecasts.

Period RCP GCM

May–November
(Wet Season)

(MCM)

December–April
(Dry Season)

(MCM)

Average
Difference

(%)
Average

Difference
(%)

Baseline
(2011–2019) 2257.67 127.89

2020–2049

RCP4.5

Overall 2930.95 29.82 232.53 81.82
MIROC_ESM 4479.10 98.40 255.87 100.07

BNU 2658.62 17.76 246.90 93.06
CanESM 2516.67 11.47 242.13 89.33
MIROC5 3533.11 56.49 356.00 178.36

FGOALS_g2 1467.22 −35.01 61.73 −51.73

RCP8.5

Overall 3551.80 57.32 401.32 213.81
MIROC_ESM 4902.41 117.14 926.05 624.11

BNU 3409.38 51.01 294.67 130.41
CanESM 3126.56 38.49 293.06 129.15
MIROC5 3654.94 61.89 304.12 137.80

FGOALS_g2 2665.69 18.07 188.71 47.56

Figure 5. Annual streamflow from the base year SWAT model 2011–2019 and under the forecast of
RCP 4.5 between 2020–2049.
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Figure 6. Monthly streamflow from the base year SWAT model 2011–2019 and under the forecast of
RCP 4.5 between 2020–2049.

Figure 7. Annual streamflow from the base year SWAT model 2011–2019 and under the forecast of
RCP 8.5 between 2020–2049.

Figure 8. Monthly streamflow from the base year SWAT model 2011–2019 and under the forecast of
RCP 8.5 between 2020–2049.
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3.2. Optimal Reservoir Rule Curves with HBMO Algorithm Technique
3.2.1. Optimal Reservoir Rule Curves by HBMO Algorithm

The findings of the Ubolratana Reservoir rule curves generated with the HBMO
Algorithm approach based on the CIMP5 climate change impacts of 5 models under RCP4.5
and RCP8.5 projection cases were compared to the present Ubolratana Reservoir rule curves.
The rule curves in both predicted situations were discovered to be identical to the existing
rule curves. However, from July to September, the newly developed upper rule curves were
higher than the current rule curves. This effected an increase in the amount of water stored
in the reservoir, resulting in a sufficient water supply for the next dry season. In the upper
rule curves of the two forecast cases, the shape corresponded to the current rule curves, but
the lower rule curves developed lower than the current ones during the dry season from
December to April. This means that the reservoir can release more water than with the
current rule curves. It can reduce water scarcity, making it possible to respond to water
users in irrigated areas (Figures 9 and 10). According to recent study, applying the Harris
Hawks Optimization (HHO) technique for searching in the Ubolratana reservoir, Thailand,
the optimal rule curves with the HHO technique was similar to the current rule curves.
The upper rule curves developed were higher than the current rule curves throughout the
rainy season, allowing for additional water storage at the end of the rainy season [44].

Figure 9. Rule curves of Ubolratana reservoir developed using HBMO algorithm technique based on
climate change impacts under the RCP4.5 projection case.

Figure 10. Rule curves of Ubolratana reservoir developed using HBMO algorithm technique based
on climate change impacts under the RCP8.5 projection case.
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3.2.2. Reservoir Rule Curves Efficiency Evaluation

The purpose of evaluating the efficiency of reservoir rule curves is to test the functions
of the rule curves in order to know the results that could support the changing water
situations due to various uncertainties, whether in past periods or for scenarios that may
occur in the future. The assessment of rule curves had two parts, namely, water shortage
and excess release water by assessing the frequency of occurrence of an incident through
mean and maximum values of Magnitude and Duration.

We evaluated the efficiency of the current reservoir rule curves and the reservoir rule
curves obtained from future streamflow during 2020–2049, which yielded five CIMP5
models of climate change under the RCP4.5 scenario. In all models except the MIROC5
model, the reservoir rule curves were able to lower the mean water deficit and mean
overflow when compared to the present rule curves. Under the RCP4.5 scenario, the
reservoir rule curves from the MIROC_ESM model were the most efficient ones in reducing
mean water deficit and mean overflow when compared to the reservoir rule curves in
other models (Table 6). Under the RCP8.5 scenario, the results showed that the reservoir
rule curves in all models were able to reduce the average water shortage compared to the
current rule curves. Moreover, the reservoir rule curves from the MIROC5 model could
also help reduce the over-average water flow. The efficiency evaluation indicated that
the reservoir rule curves from the MIROC5 model were able to reduce the average water
shortage and average overflow the best when compared to the reservoir rule curves of all
models (Table 7).

Table 6. Estimated results of water shortage and overflow events of the Ubolratana reservoir rule
curves from the MIROC_ESM model under the RCP4.5 projection case.

Situations Rule Curves
Frequency

(Times/Year)

Magnitude
(MCM/Year)

Duration (Year)

Average Maximum Average Maximum

Water
shortage

Existing 0.2 23.43 478.00 1.7 2.0
MIROC_ESM 0.1 10.93 215.00 1.5 2.0

BNU 0.1 14.87 264.00 2.0 2.0
CanESM 0.1 14.17 295.00 1.5 2.0
MIROC5 0.1 21.90 351.00 1.3 2.0

FGOALS_g2 0.1 13.97 268.00 2.0 2.0

Excess water
release

Existing 1.0 3235.04 8570.84 14.5 19.0
MIROC_ESM 1.0 3181.27 8213.26 14.5 26.0

BNU 1.0 3187.92 8124.91 14.5 26.0
CanESM 1.0 3204.33 8284.15 14.5 19.0
MIROC5 1.0 3216.58 8551.56 30.0 30.0

FGOALS_g2 1.0 3207.96 8585.07 14.5 26.0

Table 7. Estimated water shortage and overflow events of the Ubolratana reservoir rule curves from
the MIROC5 model under the RCP8.5 projection case.

Situations Rule Curves
Frequency

(Times/Year)

Magnitude
(MCM/Year)

Duration (Year)

Average Maximum Average Maximum

Water
shortage

Existing 0.23 36.67 449.00 1.40 2.00
MIROC_ESM 0.17 13.90 233.00 1.67 2.00

BNU 0.07 7.77 195.00 2.00 2.00
CanESM 0.13 12.77 259.00 2.00 2.00
MIROC5 0.10 7.13 169.00 1.50 2.00

FGOALS_g2 0.17 16.00 250.00 1.67 2.00
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Table 7. Cont.

Situations Rule Curves
Frequency

(Times/Year)

Magnitude
(MCM/Year)

Duration (Year)

Average Maximum Average Maximum

Excess water
release

Existing 0.97 2460.08 6281.34 14.5 21
MIROC_ESM 0.93 2460.26 5983.39 14 20

BNU 0.87 2441.62 6165.43 8.667 15
CanESM 0.93 2466.88 6055.38 9.333 15
MIROC5 0.87 2424.31 6436.28 8.667 15

FGOALS_g2 0.93 2452.14 6098.75 14 20

4. Conclusions

There were two primary objectives of this research. The first was to investigate how
global climate change has affected the quantity of streamflow that flows into the Ubolratana
Reservoir in the years 2020–2592. Second, these modifications will be utilized as data for
improving the suitable reservoir rule curves using the HBMO algorithm approach, as well
as evaluating the effectiveness of the newly designed reservoir rule curves.

The results of this study showed that future streamflow data are based on the SWAT
model. The forecast years 2020–2049 were projected to be influenced by climate change
from the CIMP5 model, according to the findings of this study. Both RCP4.5 and RCP8.5
were expected to rise under the anticipated conditions. Under RCP4.5 and RCP8.5, the
future overall average annual streamflow will rise by 32% and 65%, respectively. The
MIROC_ESM model had the highest average annual streamflow compared to other models.
However, there is a different study (FGOALS_g2 model, under the RCP4.5 forecast case),
which indicates that the future annual mean streamflow tends to decline. When we
considered the average monthly streamflow volume in the future according to seasons, it
was found that the trend of change in streamflow volume was consistent with both under
the forecasting cases. The average monthly streamflow volume was expected to increase
markedly during the wet season (August to November) and at the beginning of the dry
season (December).

Then, the Ubolratana Reservoir rule curves developed by HBMO Algorithm was
created. There were five CIMP5 climate models under the RCP4.5 and 8.5 forecast cases, for
which the developed rule curves were shaped in accordance with the current rule curves.
Moreover, the developed rule curves could also allow the reservoir to hold more water
during the rainy season. This should ensure that there will be enough water in the next dry
season. In addition, during the dry season, reservoirs will be able to release more water,
thereby reducing water scarcity. Finally, the future rule curves in the reservoir as a result of
the climate change examined in this study would be able to answer the objective functions,
which is to acquire the least average water scarcity amount. The rule curves will also be
rated for their efficiency in reducing water scarcity and overflow compared to the current
rule curves.
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Abstract: Politicians and the general public are concerned about climate change, water scarcity, and
the constant reduction in agricultural land. Water reserves are scarce in many regions in the world,
negatively affecting agricultural productivity, which makes it a necessity to introduce sustainable
water resource management. Nowadays, there is a number of commercial IoT systems for irrigation
scheduling, helping farmers to manage and save water. However, these systems focus on using
the available fresh water sources, without being able to manage alternative water sources. In this
study, an Arduino-based low-cost IoT system for automated irrigation scheduling is developed and
implemented, which can provide measurements of water parameters with high precision using low-
cost sensors. The system used weather station data combined with the FAO56 model for computing
the water requirements for various crops, and it was capable of handling and monitoring different
water streams by supervising their quality and quantity. The developed IoT system was tested in
several field trials, to evaluate its capabilities and functionalities, including the sensors’ accuracy,
its autonomous controlling and operation, and its power consumption. The results of this study
show that the system worked efficiently on the management and monitoring of different types of
water sources (rainwater, groundwater, seawater, and wastewater) and on automating the irrigation
scheduling. In addition, it was proved that the system is can be used for long periods of time without
any power source, making it ideal for using it on annual crops.

Keywords: irrigation scheduling; alternative water sources; low cost; IoT system

1. Introduction

Globally, the effects of climate change are evident and affect the daily lives of people
and the planet. One of its effects is water shortages in a large number of regions across the
world. Water scarcity often results in reduced agricultural productivity due to shortages
and/or poor water quality. Taking into consideration that agriculture consumes 70 percent
of the available freshwater [1] with low efficiency [2], the need to find sustainable water
resource management solutions becomes imperative.

Most of the existing research reports in the field of irrigation scheduling focus on the
development of low-cost IoT-based solutions [3–5], the use of machine learning and fuzzy
logic [6–8], and the use of different irrigation methods and models [9–11]. A comprehensive
analysis regarding the research on smart irrigation systems was reported by García et al. [12],
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where a detailed overview on the recent trends on sensors and IoT systems for irrigation
was presented. At the commercial level, there are many IoT systems that have been
developed for multiple agricultural purposes, including irrigation (e.g., Libelium [13] and
iMetos [14]). However, some of them only focus on weather and soil monitoring without
taking into account crop water requirements (e.g., WatchDog [15] and Netsens [16]).

Recently, significant research has been reported on the development of IoT systems for
water monitoring both in terms of quality and quantity [17–20]. A large number of these
systems focuses on monitoring natural water sources, such as lakes and rivers [21–23]. Fol-
lowing the research performed in water monitoring, a lot of systems are commercially avail-
able with the most well-known being Libelium [13], as its price is relatively low compared
to other solutions, but none can control different water sources for irrigation scheduling.

Following the Industry 4.0 revolution, a large variety of low-cost processors, con-
trollers, electronic components, and sensors have become available, which can be used for
developing low-cost IoT solutions. The most common example is the Arduino open-source
microcontroller-based development board [24]. These boards provide, at a very low cost,
all the characteristics needed for developing a monitoring/actuating device, namely, an
embedded microprocessor, connections for power supply, analogue and digital I/O chan-
nels for interfacing with peripheral devices (e.g., sensors), dedicated channels (e.g., USB
communication port), and a vast variety of different modules for various purposes (e.g.,
GSM modules). In addition, the extensive use of Arduino boards by a large community has
allowed the establishment of a broad range of supported features, making these boards
mature enough, and with great reliability and flexibility, which is necessary for precision
agriculture applications [25]. For this reason, significant research has been reported during
the last years on developing Arduino-based solutions for agriculture [26–28] and water
monitoring [29,30]. Following this trend, the extensive use of Arduino boards has con-
tributed to the development and further availability of a variety of low-cost sensors in the
market, whose efficiency in agriculture has been investigated with positive results [31–33].

As agriculture may be conducted in an open environment, wireless data transmission
is required. Many different types of wireless data communication protocols are used in
agriculture [34], including broadband cellular network technology protocols (GPRS, 4G,
and 5G), LPWA—Low Power Wide Area Network protocols (LoRaWAN, SigFOx, NB-IoT,
and LTE-M), WLAN—wireless LAN protocols (Wi-Fi), and IEEE 802.15 Protocols (ZigBee
and Bluetooth). Each one of them has its advantages and disadvantages in terms of power
consumption, range coverage, and data collection rate.

In this context, the HYDROUSA H2020 project [35] objectives were the sustainable
management of water and the increase in agricultural production in water-scarce areas
by applying precision irrigation using water that comes from a variety of water sources
(rainwater, groundwater, seawater, and wastewater). Therefore, the main aim of this
study is to develop a reliable and accurate low-cost IoT system to monitor and control
irrigation scheduling, which is able to operate using different water sources. To achieve
this, the system was: (i) developed using open source hardware for minimizing its cost,
(ii) capable of supporting a variety of sensors and actuators, (iii) evaluated for its accuracy,
and (iv) validated for its functionality and capabilities on using different water sources for
automating irrigation scheduling.

The innovation of the present study is the design and development of an Arduino-
based low-cost IoT node with extensive energy autonomy, capable of autonomously han-
dling the various water sources and applying precision irrigation based on weather data
and plant requirements. This study can contribute to increasing irrigation sustainability,
especially in water-scarce areas, as water coming from alternative water sources can be
used for irrigation, minimizing the use of the conventional irrigation water sources.
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2. Materials and Methods

2.1. Design and Development of the IoT Node

The IoT node was designed and developed using Arduino architecture (Figure 1), as it
has a very low price for all the components needed for developing a low cost IoT system.
A typical wireless node consists of a microcontroller that is also capable of performing data
processing; the transceiver, which is responsible for the wireless communication; the power
source; and finally the various circuits needed (e.g., AD converters) for supporting the
reading of analog and digital signals of the sensors and the actuators. To implement the
node, a board was developed by splitting it into 4 distinct layers:

• The power management layer, which was designed using methodologies for minimiz-
ing power consumption;

• The interfacing layer, responsible for the connectivity of peripherals (sensors and
actuators) with the system;

• The processing/controlling layer, responsible for the initial data processing;
• The connectivity layer, responsible for the data transmission to the cloud.

Figure 1. IoT node architecture.

The node (Figure 2) has a small size of 12 × 8 cm and IP67 protection so that it can
be used in a large number of applications in harsh environments. Moreover, it supports
both analog and digital sensors and various communication protocols (e.g., RS-485 serial
communication protocol) for supporting most of the available sensors/actuators (even
industrial ones).

Figure 2. IoT node implementation.

Data can be uploaded using general (GPRS and 4G) or low-power (NB-IoT and LTE-M)
cellular network communication protocols. The communication between the node and the

253



Agriculture 2022, 12, 1044

cloud was bidirectional in order to enable remote control and configuration of the system
(e.g., open/close valve), and it achieved almost real-time measurements with a minimum
sampling rate of 30 s.

To avoid the configuration process on behalf of the user, making the system “plug
and play” and able to work with the simple click of the start button, it was decided that
the developed node should also act as a getaway node, with direct communication to the
cloud. Using this methodology, the nodes were preconfigured, while the cloud services
were developed in such way to make them capable to automatically understand the type of
the sensors connected to each node.

2.2. Reduction in Power Consumption

The power consumption of an IoT system is a quite critical parameter, as there are
cases in which sensors have to be placed into dense and high crops (e.g., maize), where the
charging of batteries is a difficult task. To minimize the power consumption of the node,
3 different prototypes were developed. The first one was developed using a commercial
Arduino board, while the second was developed by designing a custom board for reducing
power consumption. The third one (Figure 2) was an update of the second prototype, which
was developed by enhancing the board design for minimizing the power consumption
even more.

2.3. Sensors Supported

As there are low-cost sensors that are able to provide measurements of high accuracy
with a careful calibration [36] or by using deep-learning-based sensor modelling [37], more
than 80 different sensors were tested and evaluated to select the ones with the highest
accuracy and durability. In the case of the ones that passed these functional tests, in some
cases (pH, temperature, and turbidity sensors), modifications were made to increase their
accuracy and make them waterproof. Waterproofing was achieved by potting the sensitive
electrical/electronic parts, wiring, and connections of the aforementioned sensors using
epoxy resin. Moreover, as the majority of the low-cost sensors were OEM-branded operating
using circuits developed from multiple manufacturers (e.g., TDS, pH, and Ultrasonic level
sensor), new circuits were developed and embedded into the IoT node for ensuring the
proper functionality of the low-cost sensors as well as their measurements’ accuracy. The
sensors that have been supported to date by the IoT node are:

• Weather measurements: Temperature, humidity, atmospheric pressure, precipitation,
wind speed, wind gust, wind direction, solar radiation, and UV index;

• Soil measurements: Moisture content, temperature, pH, and electrical conductivity;
• Water measurements: Temperature, pH, electrical conductivity, turbidity, TDS, water

flow, and storage tank level.

2.4. Actuation

To enable remote control and automation, the communication between the node and
the cloud was bidirectional, and the actuation could be achieved by remote control through
a website in which the user can:

• Open or close an actuator;
• Enter the thresholds of an actuator to change its state (e.g., specific temperature and

water level);
• Enable autonomous operation (e.g., applying precision irrigation).

2.5. Field Trials

The ability of the system to efficiently manage different water sources for automated
irrigation scheduling was evaluated at 3 different pilot sites developed for the needs of
the HYDROUSA project. More specifically, the evaluation procedure was held at Ano
Mera, Mykonos, Greece (37◦26′51.4′′ N 25◦24′15.7′′ E), at Agios Fokas, Tinos, Greece
(37◦31′59.1′′ N 25◦10′44.0′′ E), and at an eco-tourist facility in Tinos Greece (37◦33′56.7′′ N
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25◦12′55.5′′ E). Field trial tests included the evaluation of: (i) low-cost sensors’ accuracy,
(ii) system’s monitoring and water management capabilities, (iii) automated irrigation
scheduling efficiency, and (iv) the system’s energy autonomy.

3. Results

3.1. Evaluation of the Low-Cost Sensors’ Accurancy

The water quality sensors were tested and evaluated at the pilot site of Agios Fokas,
Tinos, Greece, by comparing their measurements with industrial type sensors that were
installed in parallel in closed tanks used for water storing. Both low-cost (Temperature:
DS18B20, AGENSO, Athens, Greece; pH: H-101, HAO SHI, Taiwan) and industrial sensors
(Temperature and pH: Sensolyt 700 IQ, YSI, Yellow Springs, OH, USA) were calibrated
before their installation. The measurement rate was 1 h for the low-cost sensors and
15 min for the industrial sensors. To compare their results, the average daily values of
each sensor were calculated. For pH measurements, the maximum difference recorded
between the low-cost and the industrial sensor was 0.22 with a mean difference at 0.08 and
R2 = 0.8392 (Figures 3 and 4), with the low-cost sensor having an accuracy of ±0.1 at 25 ◦C
and the industrial one ±0.05 (from 0 ◦C to 60 ◦C). For water temperature measurements,
the maximum difference recorded was 1.78 ◦C with a mean difference of 0.75 ◦C and
R2 = 0.9914 (Figures 5 and 6), with both sensors having an accuracy of ±0.5 ◦C (low cost:
from −10 ◦C to +85 ◦C; industrial: from 0 ◦C to 60 ◦C). The average values per day and
their differences are shown in Table 1.

Figure 3. Comparison of industrial and low-cost pH sensors’ measurements.

In order to perform a robust comparison and further determination of the statistically
significant differences between the obtained measurements, an analysis of variance was
performed by conducting a one-way ANOVA using a Fisher’s least significance difference
(LSD) test at a 95% confidence level (p < 0.05). As pH industrial sensors have a temper-
ature compensation function to correct the measured pH value according to the water
temperature, the accuracy of the low-cost pH sensor had to be improved. For this reason,
a firmware update of the IoT node was developed and will be tested in summer 2022, to
regulate the pH results according to the water temperature, for increasing the accuracy of
the low-cost pH sensor. The low-cost temperature sensor that was used showed a very
high level of accuracy (R2 = 0.9914), which was proved also during the initial lab tests that
were conducted.
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Figure 4. Correlation of industrial and low-cost pH sensors’ measurements.

Figure 5. Comparison of industrial and low-cost temperature sensors’ measurements.

As no low-cost sensors for measuring electrical conductivity on water exist, the mea-
surements of a low-cost TDS sensor (TDS-1000, AGENSO, Athens, Greece) were evaluated
in comparison with the measurements of an industrial sensor for measuring electrical con-
ductivity. Thus, the TDS and electrical conductivity (EC) on water are correlated. As shown
in Figure 7, the results show a high correlation between the TDS and EC measurements
at an EC up to 3 mS/cm. After that point, the correlation was lower as the TDS sensor
reached its maximum range. The general rule for the salinity hazard of irrigation water
based upon conductivity is that EC over 3 mS/cm creates severe damage to crops [38,39].
The low-cost TDS sensor can be used to evaluate the quality of the water and its properness
for irrigation, or to select crops that are tolerant to saline water.

In addition, as weather parameters are the most important factors in decision making
in agriculture, the selected low-cost that station (MeteoIoT 2100S, AGENSO, Athens, Greece)
was evaluated in an experiment which run at the Municipality of Trikala, Greece, where
the data of the station were compared with the data of a high-end weather station (Vantage
Pro 2, Davis, Hayward, CA, USA) used by the municipality. This high-end station was
connected to the network of weather stations of the National Observatory of Athens, which
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is the largest network of weather stations in Greece, used for weather monitoring and
forecasting. Both stations were installed in open places within the municipality and their
distance in a straight line was about 400 m. Figure 8 presents the comparison of the daily
average temperature and the total rain recorded using the low-cost and the high-end
weather stations for a 30-day period. The average temperatures recorded using the low-cost
and high-end weather stations were 10.33 ◦C and 10.37 ◦C, respectively, while the total rain
recorded was 142.50 mm for the low-cost weather station and 145.80 mm for the high-end
weather station, proving the reliability of the measurements retrieved with the low-cost
weather station (Table 2).

Figure 6. Correlation of industrial and low-cost temperature sensors’ measurements.

Figure 7. Comparison between the low-cost TDS and industrial EC sensors to determine water
salinity for irrigation needs.
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Table 1. Comparison of the measurements of the low-cost and industrial sensors. The different letters
accompanying daily means and monthly average values of each distinct measurement type (pH
and temperature) for each set of the industrial and low-cost sensors indicate a significant difference
between the measurements, based on a Fisher’s least significance difference (LSD) test (p < 0.05).

Date
pH

Industrial
pH

Low Cost
pH

Difference
Temperature

Industrial
Temperature

Low Cost
Temperature
Difference

10 September 2021 6.61 a 6.80 b 0.19 25.63 a 26.20 a 0.57
11 September 2021 6.58 a 6.80 b 0.22 26.18 a 27.00 a 0.82
12 September 2021 6.52 a 6.70 b 0.18 26.17 a 27.10 b 0.93
13 September 2021 6.52 a 6.70 b 0.18 26.11 a 26.90 a 0.79
14 September 2021 6.53 a 6.70 b 0.17 25.93 a 26.70 a 0.77
15 September 2021 6.53 a 6.70 b 0.17 26.43 a 27.30 b 0.87
16 September 2021 6.48 a 6.60 b 0.12 27.32 a 28.50 b 1.18
17 September 2021 6.43 a 6.60 b 0.17 27.71 a 29.30 b 1.59
18 September 2021 6.42 a 6.60 b 0.18 28.39 a 29.60 b 1.21
19 September 2021 6.40 a 6.50 b 0.10 28.77 a 30.10 b 1.33
20 September 2021 6.37 a 6.50 b 0.13 29.40 a 30.60 b 1.20
21 September 2021 6.30 a 6.40 b 0.10 29.21 a 30.70 b 1.49
22 September 2021 6.30 a 6.40 b 0.10 28.26 a 29.30 b 1.04
23 September 2021 6.17 a 6.10 a 0.07 24.65 a 25.30 a 0.65
24 September 2021 6.11 a 6.10 a 0.01 25.77 a 26.90 b 1.13
25 September 2021 6.52 a 6.60 a 0.08 25.82 a 27.60 b 1.78
26 September 2021 6.41 a 6.40 a 0.01 25.60 a 26.30 a 0.70
27 September 2021 6.45 a 6.40 a 0.05 24.70 a 25.50 a 0.80
28 September 2021 6.57 a 6.60 a 0.03 23.83 a 24.40 a 0.57
29 September 2021 6.73 a 6.80 a 0.07 22.91 a 23.40 a 0.49
30 September 2021 6.74 a 6.80 a 0.06 22.21 a 22.50 a 0.29

1 October 2021 6.75 a 6.80 a 0.05 22.02 a 22.50 a 0.48
2 October 2021 6.79 a 6.80 a 0.01 21.94 a 22.20 a 0.26
3 October 2021 6.75 a 6.80 a 0.05 22.44 a 22.90 a 0.46
4 October 2021 6.61 a 6.70 b 0.09 22.25 a 22.60 a 0.35
5 October 2021 6.47 a 6.50 a 0.03 22.45 a 22.70 a 0.25
6 October 2021 6.54 a 6.50 a 0.04 23.29 a 23.60 a 0.31
7 October 2021 6.67 a 6.70 a 0.03 24.22 a 24.50 a 0.28
8 October 2021 6.79 a 6.80 a 0.01 24.59 a 25.00 a 0.41
9 October 2021 6.80 a 6.80 a 0.00 23.85 a 23.90 a 0.05
10 October 2021 6.66 a 6.70 a 0.04 22.50 a 22.70 a 0.20

Average 6.53 a 6.61 a 0.08 25.18 a 25.93 a 0.75

Figure 8. Comparison of the average temperatures and the total rain recorded using the low-cost and
high-end weather stations.
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Table 2. Comparison of measurements between the low-cost and high-end weather stations. Different
letters accompanying monthly means and monthly sum values of each distinct measurement type
(temperature and total rain) for each set of the industrial and low-cost sensors indicate a significant
difference between the measurements, based on a Fisher’s least significance difference test (p < 0.05).

Date
Average

Temperature
(Low-Cost Station)

Average Temperature
(High-End Station)

Temperature
Difference

Total Rain (Low-Cost
Station)

Total Rain
(High-End

Station)

Total Rain
Difference

11 December 2020 7.00 7.10 0.10 6.00 5.00 1.00
12 December 2020 8.30 8.10 0.20 0.90 1.60 0.70
13 December 2020 9.40 9.10 0.30 8.10 7.60 0.50
14 December 2020 11.50 11.20 0.30 0.00 0.00 0.00
15 December 2020 10.70 10.60 0.10 0.00 0.00 0.00
16 December 2020 8.80 8.90 0.10 0.00 0.00 0.00
17 December 2020 10.50 10.10 0.40 0.00 0.00 0.00
18 December 2020 8.30 8.90 0.60 0.00 0.00 0.00
19 December 2020 9.50 9.10 0.40 0.00 0.00 0.00
20 December 2020 10.50 10.20 0.30 0.00 0.00 0.00
21 December 2020 10.20 10.10 0.10 0.30 0.60 0.30
22 December 2020 9.90 10.00 0.10 0.00 0.00 0.00
23 December 2020 8.20 8.50 0.30 0.00 0.00 0.00
24 December 2020 8.50 9.10 0.60 0.00 0.00 0.00
25 December 2020 12.00 12.80 0.80 0.00 0.00 0.00
26 December 2020 11.90 12.90 1.00 2.10 2.40 0.30
27 December 2020 10.60 10.70 0.10 2.10 1.80 0.30
28 December 2020 10.30 10.10 0.20 1.20 1.00 0.20
29 December 2020 12.60 13.10 0.50 0.00 0.00 0.00
30 December 2020 11.10 11.50 0.40 0.00 0.00 0.00
31 December 2020 11.10 11.00 0.10 6.60 7.00 0.40

1 January 2021 9.30 9.10 0.20 0.00 0.00 0.00
2 January 2021 8.00 7.80 0.20 4.20 4.80 0.60
3 January 2021 9.90 9.60 0.30 27.60 28.00 0.40
4 January 2021 8.50 8.20 0.30 40.80 42.20 1.40
5 January 2021 8.00 8.60 0.60 0.30 0.20 0.10
6 January 2021 8.60 8.50 0.10 0.30 0.20 0.10
7 January 2021 10.00 10.00 0.00 0.00 0.00 0.00
8 January 2021 15.50 15.70 0.20 0.00 0.00 0.00
9 January 2021 15.90 15.70 0.20 0.60 0.80 0.20
10 January 2021 13.10 12.80 0.30 2.70 3.00 0.30
11 January 2021 12.90 12.70 0.20 38.70 39.60 0.90

Average 10.33 a 10.37 a 0.04 142.50
(Sum) a 145.80

(Sum) a 3.30
(Sum)

Daily measurements, meaning daily average temperature and sum of total daily rain,
were obtained from the open source access www.meteo.gr [40], supported by the National
Observatory of Athens, as single point measurements; thus, any further analysis of variance
between the measurements was not applicable due to the lack of access to the hourly data
from which the means and sums were generated. As a result, a statistical analysis was
performed at monthly level, using the available data, for assessing and determining the
statistically significant differences between the monthly values, by conducting a one-way
ANOVA using a Fisher’s least significance difference test at a 95% confidence level (p < 0.05).
The results indicate the lack of statistical differences between the operation of the low-cost
and industrial components for both average temperatures and total rain, indicating the
sufficient function of both components in the long term.

3.2. Management of Stored Water

In Mykonos Island, two open top tanks were constructed for storing rainwater from a
sub-surface rainwater collection system (Figure 9).

The collected water was used for the irrigation of a 0.4 ha oregano field using the
rainwater stored into the open tanks. As the intention was to minimize electrical power
consumption, one small pressure booster pump in combination with electrovalves con-
trolled by the IoT nodes was placed for controlling the water flow between the two tanks
and for enabling irrigation (Figure 10a), while to determine the level of stored water into
the tanks, ultrasonic sensors (SR04T, AGENSO, Athens, Greece) were used (Figure 10b).
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(a) (b)

Figure 9. (a) Open top water tanks; (b) Sub-surface rainwater collection system.

(a) (b)

Figure 10. (a) Electrovalve for controlling the water flow; (b) Level sensor installed in one of the tanks.

Depending on the water quantity monitored in each tank, and according to the thresh-
olds defined by the user, the appropriate electrovalve is opened to irrigate the crop using
the water stored in one of the two tanks. Figure 11 projects the sum of the water quantity
stored in both tanks during the period from 22 July 2021 to 23 September 2021. The small
differences that were observed during the monitoring (±0.5 m3) come from the effect of
sunlight on the accuracy of the level measured by the sensors.

Figure 11. Water quantity monitoring.
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Additionally, on a nearby house, a tank was constructed on its terrace to provide
water for domestic use and to irrigate the 0.2 ha lavender field adjacent to it. To monitor its
quantity, a node with an ultrasonic sensor was installed (Figure 12).

Figure 12. Measurement of the water level in a roof tank.

This tank can be refilled with rainwater collected on the rooftop or by pumping water
from a nearby well. When the tank level is lower than the threshold defined by the user,
the pump of the well is activated by another node. Figure 13 presents the water level of the
aforementioned tank on a daily basis.

Figure 13. Monitoring of the water level in the roof tank.

In the case of rain, the excess water on the rooftop is directed after slow sand filtration
to recharge water into a nearby confined aquifer, mitigating the long-encountered problem
of saline water intrusion. To monitor the water in the aquifer, a well was constructed
(Figure 14a) and its water depth was monitored using a submersible pressure transducer
(SR05W, AGENSO, Athens, Greece) (Figure 14b). The measurements showed that the water
depth reduced day by day in an almost steady rate, leading to the discovery of a fracture
on the selected aquifer, which caused this water loss.
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(a) (b)

Figure 14. (a) Nodes for monitoring the well depth. (b) Water depth in the well (depth of the aquifer).

3.3. Water Quality Measurements for Decision Making According to Its Quality

In Tinos Island, a low-cost desalination system based on the principles of evaporation
and condensation was developed, as shown in the lower part of Figure 15, for irrigating
the crops in the greenhouse that was constructed beside it.

Figure 15. Solar power desalination system.

Seawater was pumped into a tank used for storing sea water, then transferred into the
system for desalination, stored in a second tank (Figure 16a), and finally was transferred to
a third bigger tank used for the irrigation of the greenhouse crops (Figure 16b).

(a) (b)

Figure 16. Monitoring of water quality: (a) seawater tank; (b) irrigation tank.

To evaluate the performance of the desalination process, IoT nodes with water quality
sensors were placed in the tanks for monitoring its quality parameters. Figure 17 presents
the pH measurements in the seawater and desalinated water tanks.
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Figure 17. pH monitoring.

The pH in the seawater tank varied between 8 and 8.2, with the desalinated water
having differentiations on its pH, as it was affected by the performance of the desalination
system, which varies depending on the weather conditions. As the salinity of the water can
affect crop performance, the total dissolved solids (TDS) of the water stored in the irrigation
tank were monitored. When TDS measurements exceeded the threshold defined by the
user, tap water from the municipality’s water supply network was added into the irrigation
tank for mixing the salty water and reducing its final salinity, as shown at Figure 18.

Figure 18. Salinity reduction by mixing the desalinated water with tap water.

Moreover, the proposed system was used to measure the water quality and quantity
of various open and closed type tanks in an eco-tourist facility. The quality measurements
were used by the system to decide whether the water can be used to irrigate edible crops.
In the case that the quality of the water was not acceptable for irrigation of edible crops
as a result of its high turbidity, the water was used for the irrigation of non-food crops
that were cultivated according to EU 2020/741 water reuse standards. Figure 16 presents
the installation of the developed system in an open cistern used for collecting rainwater
(Figure 19a) and in a closed tank (Figure 19b) used for collecting the reclaimed water
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coming from the facility. The pH and turbidity measurements of each tank are presented in
Figure 20a and 20b, respectively.

(a) (b)

Figure 19. Installations of the system for water quality and quantity measurements in: (a) open
cistern; (b) closed tank.

(a) (b)

Figure 20. Water quality measurements retrieved from: (a) open cistern; (b) closed tank.

3.4. Irrigation Scheduling

The accuracy of the data provided in combination with the IoT node, which can be
installed in any agricultural cropping system and activate different actuators, shapes the
system’s ability to perform precise calculations of irrigation water needs and apply auto-
mated irrigation. To achieve this, the FAO56 Penman-Monteith model [41] for computing
crop water requirements was used. All the parameters for determining evapotranspiration
were retrieved from sensors connected to the IoT node for monitoring the microclimate
and the soil, while electrovalves were controlled from the node for enabling automated
irrigation. A greenhouse was split into four plots, in which different tropical crops, such
as bananas and pineapples, were cultivated. The irrigation of each plot was achieved
using a drip irrigation system, and the irrigation schedule was fully automated using the
developed IoT node (Figure 21).
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Figure 21. IoT nodes for automating the irrigation in the greenhouse.

Figure 22 presents the average soil moisture per day and the days in which irrigation
was applied (1 = Irrigation, 0 = No irrigation) from 15 October 2021 to 12 November
2021. From the figure, it is clear that the system was capable of efficiently irrigating the
crops without stressing them, keeping soil moisture between 30 and 38%. Moreover,
as evapotranspiration reduces during the winter, it clearly seems that the frequency of
irrigation is lower in November compared to that in October.

Figure 22. Automated irrigation using the IoT node.

The system was also tested in open crops. Figure 23 presents the average soil moisture
per day, in a clay loam field cultivated with onions that was automatically irrigated by
the system.
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Figure 23. Average soil moisture per day.

3.5. Energy Autonomy

As the developed node can provide extensive autonomy, a node was installed on
1 December 2020 in a forest, configured to have a sampling rate of 8 h for minimizing its
consumption, as the high and dense canopy of the trees does not allow recharging using
solar panels and negatively affects the mobile network signal strength. As a result of the
weak signal, the node communicated using a normal communication protocol (GPRS–2G),
which has a higher energy consumption compared to low-power protocols, but provides a
higher range of coverage. After one year of operation, on 20 February 2022, the remaining
battery capacity was 64%, achieving an average energy consumption of 2.4% per month.

With a sampling rate of one hour, which is acceptable in most cases of agricultural
monitoring (e.g., soil moisture content measurements), the system has an energy autonomy
of 210 days. This makes the IoT node ideal for using it on any annual crop, as it can work
during the entire cropping period without recharging. In the case that more intensive
measurements are needed, a solar panel of less than 0.5 W is capable of providing to the
node the energy required for its operation.

4. Discussion

The findings in this study indicate that low-cost technologies and standards can be
used for developing low-cost, highly accurate, and easy-to-use systems that can be applied
to enable irrigation scheduling and water management. As the node was exclusively based
on the Arduino architecture and components, its hardware cost was very low, making it
affordable to any farmer. The node was developed as a pure IoT device supporting cellular
network technology protocols, making it capable of working in any area in which a cellular
network is available.

Furthermore, as the price of sensors is constantly dropping, farmers can purchase
sensors of high accuracy that can almost provide a perfect coefficient of determination
(R2 = 0.9914) at a very low price, permitting the fast depreciation of the investment for the
system. As these sensors can provide data of high quality, their use can help farmers in
decision making, by minimizing the inputs’ cost and increasing their production. Like-
wise, low-cost actuators can be applied for automating and for remote controlling water
management, increasing the usability of the system.
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The sensors, after small modifications mostly related to making them waterproof,
were introduced to be sufficiently reliable. More testing will be needed for evaluating their
durability over time in the open agricultural environment.

The system was able to provide a variety of different type of measurements, including
weather data, water quantity data, water quality data, and soil data. By computing crop
water requirements, it was possible to automate irrigation scheduling providing the optimal
water quantity, while simultaneously minimizing its consumption. Moreover, the system
proved its capabilities on managing the different water sources in real environment in an
extensive pilot testing that was conducted in three different pilot sites.

The system was developed as a “plug and play” device and pushing its start button is
the only action needed for making the node fully functional. By adopting this simplified
user experience, there is no need of any special knowledge or training for installing and
configuring it, contributing on removing the demographic traits of the farmers barriers,
which affect the adoption of new technologies.

Its small size, its durability, and its extensive energy autonomy make it suitable for
a lot of cases, providing its effectiveness and usability. The final prototype was ready for
testing in an operational environment in January 2020, and to date more than 200 systems
have been installed. The system has proved to be extremely reliable, as to date there have
been no hardware fails. Its development with open source Arduino technologies makes it
modular, flexible, and upgradable to support more sensors and actuators than the existing
ones, finally suggesting its capability for application in a vast number of agricultural
operations in the future.

As the global population is constantly increasing and the cultivated areas are decreas-
ing, new technologies will become a necessity as the only sustainable way for increasing
agricultural output. It seems that low-cost IoT technologies will play a critical role in
this transition, and they will contribute to the entering in the new era of holistic farm
management, assisted by the extensive monitoring of the agricultural environment and
automation of field operations.

Originally, the IoT system was developed for monitoring and controlling water to en-
able smart irrigation in open fields. As a result of its characteristics (very small size, energy
autonomy, automation capabilities, high accuracy, support of different types of sensors,
IP67 protection, and its low price), the node was already tested in various environments as
forestry (monitoring of environmental parameters in forests), large water infrastructures
(monitoring of water quantities), meteorology (for monitoring the weather), and for smart
cities with very promising initial results.

5. Conclusions

From the presented results, it can be concluded that:

• A low-cost, low power consumption, fully autonomous system of IoT for irrigation
scheduling using different water sources was developed and tested successfully;

• The easiness of setting up by incorporating low-cost sensors was proved in the pre-
sented applications;

• The presented applications proved the reliability, accuracy, and flexibility of the pro-
posed configuration of the system;

• Low-cost solutions for automating field operations can be efficiently applied in the
agricultural domain;

• Easy-to-use systems can used by small size and elderly farmers and enhance the
resilience of the farms.
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Abstract: The article presents predicted changes in soil water content in the Bystra river catchment
(eastern Poland) for various scenarios of climate change and adaptation practices obtained on the basis
of a SWAT model simulation for three regional climate models driven by the global climate model EC-
EARTH for the years 2041–2050 and the RCP 4.5 and 8.5 RCP scenarios. Climate scenarios were put
against five adaptation scenarios presenting changes in land use and protective measures compared
against a zero scenario of BaU (Business as Usual) kept in the future climate. Adaptation scenarios 1–5
are modifications of Scenario 0 (S-0). The 0–5 scenarios’ analysis was based on comparing soil water
content and total runoff, sediment yield, actual evapotranspiration. The first adaptation scenario
(AS-1) assumes an increase in afforestation on soils from the agricultural suitability complex of soil
6–8 (semi-dry, permanent dry, semi-wet). The second adaptation scenario (AS-2) assumes the creation
of a forested buffer for the Bystra River and its tributaries. The third adaptation scenario (AS-3) shows
one of the erosion prevention practices, the so-called filter strips. The fourth adaptation scenario
(AS-4) assumes the reduction in plowing on arable land. The fifth adaptation scenario (AS-5) involves
increasing soil organic carbon to 2%. Simulations revealed that each of the adaptation scenarios 1,
2, 3, 5 does not generally contribute to increasing the water content in soil on BARL (spring crops),
CANP (rape), WWHT (winter crops), CRDY (other crops) on arable lands (which together account
for over 50% of the catchment area). However, they can contribute to the reduction in sediment yield,
total runoff and changes in actual evapotranspiration. The adaptation scenario 4 (AS-4) shows a
slight increase in the soil water content on Bystra catchment in the 2041–2050 perspective. Scenario 4
indicated a slight increase in total runoff and a decrease in sediment yield, which in combination
with slightly higher water content reflects the protective role of plant residue mulch, lowering the
evaporation from the bare soil surface during warm seasons. The no-till adaptation practice had
the highest effect in positively affecting water balance at the catchment scale among the adaptation
scenarios considered.

Keywords: SWAT; SWAT-CUP; climate change; adaptation scenarios; soil water content; afforestation;
no plowing; filter strips

1. Introduction

Soil water content is an important component of the hydrological cycle. The formation
of water resources in the catchment area is greatly influenced by the amount of precipitation,
evapotranspiration, temperature as well as soil properties (water storage capacity, texture,
structure), management practices and the existing vegetation [1,2]. The main source of soil
water content is precipitation through infiltration and surface runoff [3]. Temperature, on
the other hand, influences the evapotranspiration process [4].
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There are numerous studies focusing on the calculation of soil water content using the
Soil and Water Assessment Tool (SWAT) model [5,6]. These authors used SWAT to simulate
soil water content at levels of large catchments (Vistula, Odra). They demonstrated the
ability to generate long-term series of soil water content even in the absence of comparative
data. On the other hand, for a small catchment located in Poland, one of the few similar
studies to the present one in terms of climatic scenarios as well as parameters studied (soil
water content, actual evapotranspiration) is a publication concerning the Barycz and Upper
Narwia catchments [7].

In the publication on soil water retention and drought risk assessment based on water
balance for the area of the Lower Silesian province [1], soil retention parameters were
determined: Available Water Capacity (AWC), Wilting Point (WP), Field Capacity (FC)
for soil species found in Poland. The retention parameters were determined by expert
methods [1].

The aim of the article is to analyze five adaptation scenarios (AS-1, AS-2, AS-3, AS-4,
AS-5) in relation to the 2041–2050 climate projections GCMs/RCMs for the RCP 4.5 and
RCP 8.5 climate change scenarios described as scenario 0 (S-0) [8], as well as their assessment
against the current state of knowledge related to research involving similar adaptation
studies. Adaptation scenarios 1–5 are modifications of Scenario 0.

The need for such studies of small catchments (up to a few hundred km2) is due to the
small number of studies that would be based on adequate preparation of soil parameters
(e.g., retention). Moreover, for the Polish area, there are no studies on adaptation scenarios
that would attempt to increase the water content of soil and minimize the adverse effects of
climate change (RCP 4.5, RCP 8.5) in future decades.

Among the many hydrological models in use today, the SWAT model, widely used
by scientists and developed by the USDA [9,10], was selected for this study because of its
ability to predict the impact of practices of land management onto the hydrology and water
quality in the catchment area.

Much research is currently being conducted on climate change and the associated
unpredictability of extreme weather events. This raises legitimate concerns about the
possible emergence of environmental, social and economic threats in the decades to come.
These changes may also have an impact on agriculture in Poland [11]. The increase in air
temperature, which was observed in recent decades, contributed to the increase in potential
evapotranspiration, especially in the last decade 2011–2020. A large increase in potential
evapotranspiration and an increase in the variability of this indicator were found [8,12,13].
Recent decades also brought observations of climate change in Poland resulting from the
world global warming, changes in precipitation and a number of weather extremes [14–16].

These changes also concern the extension of the growing season in Poland. For
the years 1971–2000, the length of the growing season was 218 days (from March 31 to
November 4) [17]. According to studies on the change in the growing length in Poland [17],
the length of the growing season will extend by 18–27 days in the perspective of 2050
compared to the years 1971–2000.

The increase in evapotranspiration, temperature and precipitation in the coming
decades will, to a greater or lesser extent, also apply to all European countries [18,19].

According to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change [20], the average temperature of the Earth’s surface will reach 1.5 degrees Celsius
in the coming decades above pre-industrial levels. Moreover, in Poland, a projected 10-fold
increase in the occurrence of droughts by 2020 [21] is observed in the data; hence, the
predictions using climate change models seem to reflect changing climate quite well for
Poland [22]. Until recently, climate change adaptation received less attention in Poland
than climate change mitigation. The vast majority of national communications have been
devoted to climate projections, vulnerability and impacts. However, recently there has
been increasing attention to adaptation measures in agriculture, among others [16].

There is a need to look for solutions that will reduce the negative impact of climate
change [23], inter alia, the occurrence of weather extremes, including drought [12,24,25] in
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the coming decades. Climate change adaptation in agriculture is associated with a number
of preventive measures (adapting crops to changing thermal and water conditions). These
include changes in adaptation practices and the introduction of new varieties. Protecting
the soil and its water resources is also extremely important. Soil moisture can be maintained
through mulching and water conservation through efficient irrigation and water storage
(small retention, filter strips). Soil fertility and its potential for water storage can also be
increased by increasing soil organic matter [16].

For the sake of this paper, we chose the Bystra river catchment (South-Eastern Poland)
as the study area. In order to check the effectiveness of the designed adaptation solutions,
it was necessary to develop boundary conditions that would indicate the reference level [8].
These conditions show the behavior of the hydrosystem of the Bystra catchment in the
Business as Usual scenario. It takes into account changes in the hydrological cycle caused
solely by climate change while maintaining unchanged conditions of human activity. The
described boundary conditions for the 2050 horizon must be based on simulation modeling,
which is calibrated on archival data. The appropriate tool for this is the SWAT model.

The article presents a comparison of the results of soil water content (profile 1.5 m) for
five adaptation scenarios obtained via a simulation of a calibrated and validated SWAT
model [8] for three regional climate models derived from the global EC-EARTH climate
model for the years 2041–2050 (S-0). Then, the results of scenario 0 were compared with the
results of adaptation scenarios 1–5, which included land use changes and protective measures.

The publication is presented as follows: Section 1 presents the Introduction; Section 2
introduces the methodology and describes the study area. Section 3 describes the results,
and Section 4 presents the discussion in terms of results regarding soil water content, total
runoff and sediment yield, followed by conclusions in Section 5.

2. Material and Methods

This section is divided in 5 sub-sections. The first one describes the study area; the
second and the third describes the SWAT model and SUFI-2 model; the fourth presents climate
change scenarios, and finally the fifth presents climate change adaptation scenarios 1–4.

2.1. Characterization of the Study Area

The Bystra catchment area is situated in the north-western part of the Lubelskie
Province (Figure 1). The length of the Bystra River is 33 km, and it is the right tributary
of the Vistula river. According to the generated SWAT model, the lowest point of the
catchment area is 126 m above sea level, and the highest point is 246 m above sea level. The
catchment area delineated from a 5 m resolution DEM is 296.6 km2 [8].

The Bystra catchment area is part of the Lublin Upland [26–28]. The valley of the Bystra
river and its tributaries are strongly carved in a thick loess layer overlaying calcareous
bedrock. It consists of numerous valley forms with a constant or episodic tributary. The
largest valley with a constant tributary, the Bystra valley, is 35 km long. In the part where
the Bystra valley flows into the Vistula, it cuts up to 35 m in rocks and marls [29–31].

The upland nature of the Bystra catchment area, consisting mostly of loess soils, with
a high slope of the slopes at the mouth of the Vistula, poses a high risk in terms of medium
and very strong water and surface erosion [32].

Most of the Bystra catchment area is made of loess up to 20 m. In the deeper layers,
there are Quaternary Pleistocene sediments: water-glacial sand and gravel and, at a little
deeper level, tilts. On the other hand, there are geodes under the clays. Under the geysers,
on the other hand, there are deposits of the Upper Cretaceous: rocks with lime inserts [33].

The study area consists mainly of podzolic and lessivage (49%) soils, which extend
mainly in the south-eastern part of the catchment as well as cambisols (47%) in the north-
western part. The predominant soil texture in the catchment area is loess (73%) [34–36] and
silt (18%) [8].

In the Bystra catchment area, arable land (78%) and forests (16%) dominate [8]. The
largest part of agricultural land is arable land beyond the reach of irrigation facilities (52%);
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large areas are also orchards and plantations (11%), complex systems of arable plots (9%)
and meadows and pastures (6%) [8].

 

Figure 1. Location of the study area, Bystra catchment, with marked main tributaries and their
catchments (own study).

2.2. Description of SWAT Model and SUFI-2 Model

SWAT was used to model and examine the water balance of the Bystra river catchment
area. SWAT is a model [9,10] developed by the USDA Agricultural Research Service [37].
The model operates on assigning one resource to another (physical, chemical, biological)
using mathematical formulas that were developed to predict the impact of management
practices on water efficiency and agricultural chemistry at the catchment scale [38,39].
We used the QSWAT3 v1.1 model with an interface in Quantum GIS 3.10.13 Coruna [40].
However, the calculations of the SWAT model were performed in the SWAT Editor on
10 December 2012 [41].

The water balance is the fundamental driving force behind all the processes that take
place in the catchment area regardless of the choice of the SWAT model analysis. SWAT
modeling for the catchment area is carried out in the land phase [42] and in the routing
phase [43].
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One of the formulas that is used in the SWAT model is the water balance equation:

SWt = SW0 +
t

∑
i=1

(
Pd − SURQ − E − wseep − GWQ

)

where: SWt is the final water content of the soil (mm); SW0 is the initial water content of
the soil (mm); t is the time in days; Pd is precipitation (mm); SURQ is surface runoff (mm);
E is evapotranspiration (mm); wseep is the amount of water entering the wad zone from the
soil profile (mm); GWQ is the groundwater flow (mm) [10].

Calibration and validation in the SWAT-CUP program are used to adjust the SWAT
model to real conditions in the catchment area. The commonly used example of calibration
is stream flow, which includes water balance processes. The calibration process is used
to adjust the relevant parameters so that the simulated results are consistent with the
observational data. Validation involves running the model using the parameters that were
used during the calibration process. The purpose is to compare simulated results with
observed data that were not used in calibration [44–46]. The SWAT-CUP program is used
to analyze the uncertainty and sensitivity of the model [44,45] using the SUFI-2 algorithm,
also used in small catchments [44,47,48].

2.3. Application of SWAT and SUFI-2

To simulate the water balance in the SWAT model, data were obtained from many
sources (Table 1), which were used to build the SWAT model.

Table 1. Input data used in SWAT model (own study).

Data Type Description Information Source

Digital Elevation Model Watershed delineation Raster, 5 m-resolution Central Geodetic and Cartographic
Documentation Center [49]

Hydrographic
Site hydrographic data (e.g., rivers,

lakes, partial catchments);
(reference scale 1:50.000)

Shapefile
Computer Map of the Polish

Hydrological Department
with descriptions [50]

Land use Land-use classification (r.s. 1:100.000) Shapefile Corine Land Cover [51]

Orthophotomap High resolution orthophotomap WMS Geoportal [52]

Open Street Map Open Street Map data Shapefile Open Street Map [53]

Soil type
Digital maps of soil and agriculture in

digital form (scale 1: 25,000
and 1: 100,000)

Shapefile Institute of Soil Science and Plant
Cultivation in Pulawy [54,55]

Geological Geological data describing lithology Shapefile
Polish Geological Institute in the
form of the Detailed Geological

Map of Poland [33]

Weather
Precipitation (mm), temperature (◦C),

wind speed (m/s), humidity, solar total
radiation (MJ/m2)

Daily

Institute of Soil Science and Plant
Cultivation in Pulawy and

Institute of Meteorology and Water
Management [56]

Streamflow Calibration and validation Monthly Institute of Soil Science and Plant
Cultivation in Pulawy

Sewage treatment plants Average daily water loading (m3/day) Daily National Program of Municipal
Wastewater Treatment [57]

The SWAT model generated for this study consists of 31 generated partial catchments
(Figure 1) [8]. The soil map was developed on the basis of digital soil and agricultural maps
(scale 1:25,000 and 1:100,000) and geological data describing lithology. Descriptive soil data
were collected within the statutory research projects of IUNG-PIB. Available water capacity
and wilting point values were obtained from the study “Assessment of water retention in

275



Water 2022, 14, 2288

soil and the risk of drought based on the water balance for the Lower Silesian Voivodeship”,
which was developed in 2013 by the employees of the Department of Soil Science, Erosion
and Land Protection of IUNG-PIB in Pulawy [1].

The land use map was developed on the basis of Corine Land Cover maps with
additional vectorization of land cover and land use using an orthophoto-map and Open
Street Map data.

Based on the generated maps of soils, lands and slopes, 484 HRU (Hydrological
Response Units) areas were created. When creating HRU areas, the land cover class of
agricultural areas beyond the reach of irrigation CRDY was additionally separated with
WWHT winter crops (43%), BARL spring crops (31%), CANP rape (14%) and other CRDY
(12%) [58]. APPL apple orchards were separated from the land use class of ORCD [58]. On
the other hand, forests were divided into coniferous FRSE forests (49%), deciduous FRSD
forests (13%) and mixed FRST forests (38%) [59].

After generating HRU areas, the following meteorological data were used in the SWAT
model: daily precipitation totals (mm); daily minimum and maximum air temperature
(◦C); average daily wind speed (m/s); average daily relative humidity; daily sums of total
solar radiation (MJ/m2) (Table 2) [8].

Table 2. Meteorological data for the Bystra catchment [8].

Weather Station
Measurement Period

Precipitation (mm) Temperature (◦C) Wind Speed (m/s) Humidity Solar Total Radiation (MJ/m2)

Pulawy 2005–2017 2005–2017 2005–2017 2005–2017 2005–2017

Rogalow 2005–2017

Lublin Radawiec 2005–2017 2005–2017 2005–2017 2005–2017

In the SWAT model, the parameters related to the point discharge of sewage, as well as
for water bodies located outside the river network, for water bodies, rivers, and parameters
for planned non-irrigated arable land management operations (WWHT, BARL, CANP,
CRDY) were supplemented and corrected. The current value of CO2 concentration was
also entered.

In the next stage, the SWAT model simulation was run for the period of 2010–2017 in a
monthly step, with a five-year model start-up period.

Then, calibration and validation of the obtained SWAT model for the Bystra catchment
area [8] was performed using the SWAT-CUP program. To obtain a more accurate coverage
of the model with reality, the average monthly flow velocities (m3/s) obtained under the
statutory projects of IUNG-PIB, obtained near the mouth of the Bystra River to Vistula
for 2010–2014 (calibration) and 2015–2017 (validation), were used. A five-year warm-up
period was used. Calibration and validation were performed in a monthly increment.
This resulted in parameter ranges that fell within the ranges of calibration and validation
accuracy [44,60,61]. The NSE coefficients (calibration: 0.58; validation: 0.70) and R2 (cali-
bration: 0.60; validation: 0.71) for calibration and validation [8] were within the satisfactory
ranges [60].

The results concerning the value of potential evapotranspiration were also analyzed
with the results of the statutory service of IUNG-PIB implemented under the project
Agricultural Drought Monitoring System [62]. It was found that the SWAT model for the
Bystra catchment area accurately reflects the potential evapotranspiration in the study area.

Additionally, the results concerning the soil water content were compared with the
available values of water capacity and the wilting point, which were obtained from the
study prepared in 2013 by the employees of the Department of Soil Science, Erosion and
Land Protection, IUNG-PIB in Pulawy [1].
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2.4. Climate Change Scenarios

The daily grid climate data used in the SWAT model were prepared and tested in the
recent paper on SWAT model calibration in the Bystra catchment [8]. Three RCM (Regional
Climate Models)—RACMO22E, HIRHAM5 and RCA4—were selected for further study.
They were selected to cover the range of the available two climate scenarios RCP (Repre-
sentative Concentration Pathways) in terms of temperature increase and precipitation—
RCP 4.5, RCP 8.5 (Table 3)—reflecting extreme and average variants of climate change,
hence covering the widest range of uncertainty about possible scenarios (three RCM × two
RCP). Most of the data were obtained at a spatial resolution of 0.11 degrees from the EURO-
CORDEX database for the years 1951–2050 (widely available via the ESGF—Earth System
Grid Federation, https://esgf-data.dkrz.de/search/cordex-dkrz for Europe) (accessed on
3 March 2021) [18,63].

Table 3. Description of GCM/RCM simulation with its division depending on radiative forcing.
Comparison of temperature and precipitation changes in 2021–2050 in GCM/RCM simulation for
RCP 4.5 and RCP 8.5 to the base period 1971–2000 (own study).

Models Scenario Assumptions Radiative Forcing

GCM/RCM Simulation

Change in Average Annual Air
Temperature

Change in Average Annual
Precipitation

+4.5 W m−2 +8.5 W m−2

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

EC-EARTH/RACMO22E +1.5 ◦C +1.8 ◦C +15% +6% RCP 4.5.1 RCP 8.5.1

EC-EARTH/HIRHAM5 +1.6 ◦C +1.9 ◦C +12% +5% RCP 4.5.2 RCP 8.5.2

EC-EARTH/RCA4 +1.6 ◦C +2.2 ◦C +15% +11% RCP 4.5.3 RCP 8.5.3

Climate scenario daily meteorological derivatives (minimum and maximum daily
air temperature, daily precipitation, solar radiation, daily average wind speed, relative
humidity) are based on the RCM for two RCPs (three RCM x two RCP). The RCMs are
powered by one GCM (General Circulation Model): EC-EARTH. The RCP corresponds
to the radiative forcing values in 2100 compared to pre-industrial values of +4.5 W m−2

(RCP4.5) while RCP8.5 to + 8.5 W m−2 (RCP8.5) [18,64,65] (Table 3). Table 3 also presents
the boundary values of changes in the characteristics of selected models for the period
2021–2050 in relation to the period up to the base period 1971–2000.

Climate projections that were used in the SWAT model were extracted from grid
cells that correspond to weather stations’ location. Air temperature and precipitation
data were additionally corrected by the SMHI (Swedish Meteorological and Hydrological
Institute) using the DBS (Distribution-Based Scaling) method [48] and regional MESAN
reanalysis (MESoscale Analysis) for the 1989–2010 dataset [66]. The data used were taken
in a rotated polar grid. Therefore, we used bilinear interpolation to remap the dataset to a
common latitude/longitude grid. CDO (Climate Data Operators) software [67] was used
for this purpose.

For the analysis of the climate projections (RCP 4.5.1, RCP 8.5.1, RCP 4.5.2, RCP 8.5.2,
RCP 4.5.3 and RCP 8.5.3), one iteration in SWAT-CUP was used for the set of the best
calibration parameters for the years 2021–2050 in the prepared scenarios (Table 3) [8]. In
the RCP 4.5 and RCP 8.5 scenarios, CO2 concentrations were changed for the periods
2021–2030, 2031–2040 and 2041–2050, developed by the Potsdam Institute for Climate
Impact Research [68,69].

2.5. Climate Change Adaptation Scenarios 1–5

For the main purpose of this article, 5 scenarios for the adaptation of agriculture to climate
change were prepared, which assume changes in land use (adaptation scenario 1 and 2) and
protective measures (adaptation scenario 3, 4, 5) in the area of the Bystra catchment. The
first adaptation scenario (AS-1) assumes an increase in afforestation on soils from the
agricultural usefulness complex of soils 6 (temporarily too dry), 7 (permanently too dry)
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and 8 (temporarily too wet). The second adaptation scenario (AS-2) assumes the creation of
a forested buffer for the Bystra River and its tributaries. The third adaptation scenario (AS-3)
shows one of the erosion prevention practices at the riverbed, the so-called filter strips.
The fourth adaptation scenario (AS-4) assumes the reduction in plowing on agricultural
land. The fifth adaptation scenario (AS-5) involves increasing soil organic carbon to 2%.
Adaptation scenarios are aimed at checking the possibility of increasing the soil water
content in the 2041–2050 perspective. In doing so, the effects of adaptation scenarios on
total runoff, sediment yield and actual evapotranspiration were also checked.

In the zero scenario (S-0), the Bystra catchment area is dominated by agricultural
land (78%) and forests (16%). The largest part of agricultural land is arable land beyond
the range of irrigation facilities (52%); a large area is also orchards and plantations (11%),
complex systems of cultivating plots (9%) and meadows and pastures (6%) (Table 4). For
adaptation scenarios 1 (AS-1) and 2 (AS-2), there will be changes in land use compared
to scenario 0 (S-0), which are described later. In contrast, adaptation scenarios 3 (AS-3),
4 (AS-4) and 5 (AS-5) remain unchanged in terms of changes in land use.

Table 4. Division of the land cover and land use as well as the percentage of land use in the Bystra
catchment generated in the QSWAT interface. CLC code 112–142 means artificial surfaces; code
211–243 means agricultural areas; code 313–324 means forest and semi natural areas; code 411 means
wetlands, and code 511 is water bodies (own study).

Corine Land Cover Legend
CLC SWAT S-0 AS-1 AS-2
Code Code Part (%) Part (%) Part (%)

Discontinuous urban fabric 112 URML 0.92 0.9 0.9

Industrial or commercial units 121 UCOM 1.55 1.49 1.49

Mineral extraction sites 131 UIDU 0.02 0.02 0.02

Sport and leisure facilities 142 FESC 0.02 0.02 0.02

SUM= 2.51 2.43 2.43

Non-irrigated arable land 211 CRDY 52.35 50.57 52.23

Vineyards 221 GRAP 0.03 0.03 0.03

Fruit trees and berry plantations 222 ORCD 10.85 10.55 10.83

Pastures 231 PAST 5.89 5.35 5.55

Complex cultivation patterns 242 AGRL 9.04 8.68 8.86

Land principally occupied by agriculture with
significant areas of natural vegetation 243 CRGR 0.05 0.05 0.05

SUM= 78.21 75.23 77.55

Mixed forest 313 FRST 16.34 19.65 17.37

Transitional woodland-shrub 324 SHRB 2.43 2.18 2.23

Inland marshes 411 WEHB 0.26 0.25 0.21

Water courses 511 WATR 0.27 0.26 0.21

In the first adaptation scenario (AS-1), the land use on all soils of complexes (repre-
senting soil habitats in Polish soil-agricultural mapping)—6 (semi-dry), 7 (permanently
dry) and 8 (semi-wet) (6Bw-pgl.ps, 7Bw-ps, 8A-l)—was changed to mixed forest. The soils
where the land use was changed are described in more detail in Table 1 of the publication
on the water balance of the Bystra catchment [8]. Replacement of the above-mentioned soils
is made through delineating the ranges of these soils on the land use maps and changing
the attributes to mixed forests. After this change, afforestation in the Bystra catchment area
increased by 3.31% (Table 4).

In the second adaptation scenario (AS-2), a forested buffer strip 80 m wide along
the bank of the Bystra River was created and a smaller buffer strip 50 m wide for its
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tributaries [70–72]. The creation of buffer zones by rivers consisted of deleting the ranges
of buffer zones on the land use maps and changing the attributes to mixed forests. The
afforestation area compared to the zero scenario increased by 1.03% (Table 4).

In the third adaptation scenario (AS-3), filter strips were used, which are one of the
protective measures used to drain water slowly from the field, thanks to which larger
particles, including soil and organic material, may be deposited [73].

Filter strips [9,74] are areas covered with vegetation that are located between surface
water bodies (rivers, ponds, lakes) and arable land, pastures and forests. They are generally
found in areas where runoff leaves the field to filter sediment, organic material, nutrients
and chemicals from the runoff. Filter strips are also known as vegetative filters or buffer
strips. Due to the retention of sediment and the establishment of vegetation, nutrients can
be absorbed into the sediment that settles and remain in the field landscape, making it
possible for plants to take it up [73].

A protective treatment is also tillage without plowing [73], which is the fourth adapta-
tion scenario (AS-4).

Plowing is defined as the mechanical disturbance of soil for crop production that
has a significant impact on soil properties such as soil water behavior, soil temperature,
infiltration and evapotranspiration [75]. In the long term, tillage can lead to soil degrada-
tion [76]. An alternative to traditional plowing is protective treatments (tillage without
plowing, minimal mechanical disturbance of the soil) which consist of maintaining the
surface soil cover by retaining crop residues. Retention of harvest residues protects the soil
from direct exposure to raindrops and sunlight, while minimal soil disturbance improves
soil biological activity and air and water movement in the soil [75].

No plowing cultivation was implemented in WWHT, BARL, CANP and CRDY arable
land and simulated in SWAT.

In the fifth adaptation scenario (AS-5), the soil organic carbon content was increased
from 1% to 2%. The original soil organic carbon values were studied as part of IUNG-PIB
statutory research [8]. Soils in Poland are characterized by low soil organic carbon content.
According to the European Soil Bureau (ESB), an organic carbon content of about 1% (Bystra
catchment area) is a very low or low value [77]. The decrease in organic matter in soils
and the associated decrease in organic carbon content result in increased CO2 emissions
(exacerbating the greenhouse effect). The opposite situation, i.e., sequestration of CO2 in
the soil, causes carbon to bind to soil organic matter for a longer period of time. Particularly
large amounts of carbon are stored in peats, organic soils and organic-mineral soils [77].

3. Results

Section 3.1 describes the analysis of soil water content in S-0 for the period 2041–2050.
For the 10-year period (2041–2050), Table 5 presents a comparison of the seasonal soil

water content in the Bystra catchment for each climate projection GCMs/RCMs under the
RCP 4.5 and RCP 8.5 climate scenarios.

For the 10-year period (2041–2050), Figure 2 shows the average soil water content
(1.5 m) for each season of DJF, MAM, JJA, SON for the GCMs/RCMs climate projections
under the RCP 4.5 and RCP 8.5 climate scenarios, while Figure 3 shows the spatial compar-
ison of average soil water content in 31 sub-catchments for the SWAT simulation period
2010–2017 and 2041–2050 for the GCMs/RCMs climate projections under the RCP 4.5 and
RCP 8.5 climate scenarios.

Section 3.2 describes the climate change AS-1, AS-2, AS-3, AS-4, AS-5 analysis for the
period 2041–2050.

For the period 2041–2050, Table 6 presents a comparison of AS-1, AS-2, AS-3, AS-4,
AS-5 with respect to S-0 for seasonal soil water content in the Bystra catchment for the RCP
4.5.1, RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2, and RCP 8.5.3 projections.
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Figure 2. Seasonal average soil water content (1.5 m) for 2041–2050 and for the SWAT 2010–2017
model for individual climate projections RCP 4.5.1, RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2,
RCP 8.5.3 (own study).

 

Figure 3. Comparison of average soil water content in 31 sub-catchments during the SWAT simulation
period 2010–2017 and 2041–2050 for individual climate projections RCP 4.5.1, RCP 4.5.2, RCP 4.5.3,
RCP 8.5.1, RCP 8.5.2, RCP 8.5.3 (own study).

280



Water 2022, 14, 2288

Table 5. Comparison of average soil water content by season for the SWAT 2010–2017 simulation
period with climate projections (RCP 4.5.1, RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2, RCP 8.5.3) for
the years 2041–2050 in the Bystra catchment. Bold numbers indicate soil water content, while shaded
numbers indicate percentage change (red is % decrease in content; blue is % increase in content).
Dark red and dark blue shading means large changes, while light red and light blue shading means
small changes (own study).

Climate Scenario RCP 4.5 RCP 8.5

Climate Projection
Model

2010–2017
RACMO22E
(RCP 4.5.1)

HIRHAM5
(RCP 4.5.2)

RCA4
(RCP 4.5.3)

RACMO22E
(RCP 8.5.1)

HIRHAM5
(RCP 8.5.2)

RCA4
(RCP 8.5.3)

Time interval 2041–2050

Season Seasonal average of soil water content (mm)

DJF 344
332 336 337 340 342 340

−3.5% −2.3% −2.1% −1.3% −0.7% −1.2%

MAM 322
303 311 318 318 321 321

−5.8% −3.3% −1.3% −1.2% −0.1% −0.2%

JJA 309
292 291 303 313 306 306

−5.4% −5.6% −2.0% +1.4% −0.8% −1.0%

SON 328
313 321 322 327 329 328

−4.4% −2.0% −1.8% −0.2% +0.4% +0.2%

Average annual 326
310 315 320 324 325 324

−4.7% −3.3% −1.8% −0.4% −0.3% −0.6%

Table 6. Comparison of average soil water content by season between scenario 0 (S-0) and adaptation
scenarios 1–5 (AS-1, AS-2, AS-3, AS-4, AS-5) for 2041–2050 in the Bystra catchment for climate
projection RCP 4.5.1, RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2, RCP 8.5.3. Bold numbers indicate soil
water content, and shaded numbers indicate percentage change (red indicates % decrease in content
and blue indicates % increase in content). Dark red and dark blue shading indicates large changes,
while light red and light blue shading indicates small changes (own study).

Time Interval 2041–2050

Type of Scenario S-0 AS-1 AS-2 AS-3 AS-4 AS-5 S-0 AS-1 AS-2 AS-3 AS-4 AS-5

Season Seasonal average of soil water content (mm)

DJF 332
318 332 332 333 330

RACMO22E
(RCP 4.5.1)

340
326 340 340 339 339

RACMO22E
(RCP 8.5.1)

−4.2% −0.1% 0.0% +0.1% −0.6% −4.0% 0.0% 0.0% −0.1% −0.1%

MAM 303
290 303 303 303 301

318
305 318 318 318 317

−4.1% 0.0% 0.0% +0.1% −0.7% −4.1% 0.0% 0.0% 0.0% −0.2%

JJA 292
278 292 292 293 288

313
299 313 313 314 312

−4.8% −0.1% 0.0% +0.3% −1.4% −4.6% −0.1% 0.0% +0.1% −0.4%

SON 313
299 313 313 315 310

327
313 327 327 328 326

−4.6% −0.1% 0.0% +0.4% −1.0% −4.4% −0.1% 0.0% +0.2% −0.3%
296 310 310 311 307 311 324 324 325 324Average annual 310 −4.4% 0.0% 0.0% +0.2% −0.9% 324 −4.3% 0.0% 0.0% +0.1% −0.2%

DJF 336
322 336 336 337 335

HIRHAM5
(RCP 4.5.2)

342
328 342 342 342 342

HIRHAM5
(RCP 8.5.2)

−4.1% 0.0% 0.0% +0.1% −0.2% −4.0% 0.0% 0.0% 0.0% 0.0%

MAM 311
298 311 311 311 310

321
308 321 321 321 321

−4.1% 0.0% 0.0% 0.0% −0.2% −4.0% 0.0% 0.0% 0.0% −0.1%

JJA 291
277 291 291 292 288

306
292 306 306 307 304

−4.8% −0.1% 0.0% +0.2% −1.1% −4.6% −0.1% 0.0% +0.1% −0.6%

SON 321
307 321 321 322 319

329
315 329 329 330 328

−4.4% −0.1% 0.0% +0.3% −0.5% −4.3% −0.1% 0.0% +0.2% −0.2%
301 315 315 315 313 311 324 325 325 324Average annual 315 −4.3% −0.1% 0.0% +0.2% −0.5% 325 −4.2% 0.0% 0.0% +0.1% −0.3%

DJF 337
323 337 337 337 336

RCA4
(RCP 4.5.3)

340
326 340 340 340 340

RCA4
(RCP 8.5.3)

−4.1% 0.0% 0.0% 0.0% −0.2% −4.0% 0.0% 0.0% 0.0% 0.0%

MAM 318
305 317 318 318 317

321
308 321 321 321 321

−4.1% 0.0% 0.0% 0.0% −0.2% −4.0% 0.0% 0.0% 0.0% −0.1%

JJA 303
289 302 303 303 300

306
291 305 306 306 303

−4.6% −0.1% 0.0% +0.2% −0.8% −4.7% −0.1% 0.0% +0.2% −0.7%

SON 322
307 322 322 323 320

328
314 328 328 329 327

−4.5% −0.1% 0.0% +0.2% −0.5% −4.3% −0.1% 0.0% +0.2% −0.4%
306 320 320 320 318 310 324 324 324 323Average annual 320 −4.3% −0.1% 0.0% +0.1% −0.4% 324 −4.3% −0.1% 0.0% +0.1% −0.3%

Table 7 presents a comparison of total runoff by season for S-0 and AS-1, AS-2, AS-3,
AS-4, AS-5 for the period 2041–2050 in the Bystra catchment. Next, Table 8 compares
sediment yields by season for S-0 and AS-1, AS-2, AS-3, AS-4, AS-5 for 2041–2050 in the
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Bystra catchment. In turn, Table 9 compares actual evapotranspiration by season for S-0
and AS-1, AS-2, AS-3, AS-4, AS-5 for the years 2041–2050 in the Bystra catchment.

Table 7. Comparison of seasonal total runoff between scenario 0 (S-0) and adaptation scenarios 1–5
(AS-1, AS-2, AS-3, AS-4, AS-5) for 2041–2050 in the Bystra catchment for climate projections RCP 4.5.1,
RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2, RCP 8.5.3. Bold numbers indicate soil water content, and
shaded numbers indicate percentage changes (red indicates % decrease in content, and blue indicates
% increase in content). Dark red and dark blue shading indicates large changes, while light red and
light blue shading indicates small changes (own study).

Time Interval 2041–2050

Type of Scenario S-0 AS-1 AS-2 AS-3 AS-4 AS-5 S-0 AS-1 AS-2 AS-3 AS-4 AS-5

Season Seasonal sum of total runoff (mm)

DJF 35
35 35 35 36 34

RACMO22E
(RCP 4.5.1)

55
54 55 55 56 54

RACMO22E
(RCP 8.5.1)

−1.0% −0.1% 0.0% +3.7% −3.1% −0.8% −0.1% 0.0% +2.4% −1.3%

MAM 31
31 31 31 32 30

47
47 47 47 48 46

−0.5% −0.2% 0.0% +3.6% −3.3% 0.1% −0.1% 0.0% +2.4% −1.1%

JJA 30
30 30 30 31 29

49
49 49 49 50 48

−0.2% −0.2% 0.0% +3.2% −3.9% 0.0% −0.1% 0.0% +2.1% −1.8%

SON 32
32 32 32 34 31

49
48 49 49 50 48

−0.4% −0.1% 0.0% +4.7% −3.5% −0.3% −0.1% 0.0% +3.2% −1.6%
127 128 128 133 123 199 199 199 204 196

Annual sum 128 −0.5% −0.2% 0.0% +3.8% −3.4% 199 −0.3% −0.1% 0.0% +2.5% −1.5%

DJF 39
39 39 39 40 38

HIRHAM5
(RCP 4.5.2)

52
52 52 52 53 51

HIRHAM5
(RCP 8.5.2)

−0.4% −0.2% 0.0% +2.8% −2.7% −0.3% −0.1% 0.0% +2.0% −1.6%

MAM 43
43 43 43 44 42

61
61 61 61 61 60

−0.2% −0.2% 0.0% +2.4% −2.1% −0.2% −0.1% 0.0% +1.3% −1.2%

JJA 36
36 36 36 37 35

53
53 53 53 54 52

+0.3% 0.0% 0.0% +2.3% −3.1% +0.2% 0.0% 0.0% +1.4% −1.6%

SON 36
36 36 36 37 35

51
51 51 51 52 50

−0.4% −0.1% 0.0% +3.5% −3.3% −0.2% −0.1% 0.0% +2.3% −1.7%
154 154 154 159 150 216 216 217 220 213

Annual sum 154 −0.2% −0.1% 0.0% +2.7% −2.8% 217 −0.1% −0.1% 0.0% +1.7% −1.5%

DJF 50
50 50 50 52 50

RCA4
(RCP 4.5.3)

71
71 71 71 72 70

RCA4
(RCP 8.5.3)

−0.4% −0.1% 0.0% +2.5% −1.7% −0.2% −0.1% 0.0% +2.1% −1.3%

MAM 51
50 51 51 52 50

68
68 68 68 69 67

−0.2% −0.1% 0.0% +2.2% −1.3% −0.2% −0.1% 0.0% +1.8% −1.0%

JJA 39
39 39 39 40 39

60
60 60 60 61 59

+0.2% 0.0% 0.0% +2.4% −2.0% 0.0% 0.0% 0.0% +1.6% −1.3%

SON 44
44 44 44 46 44

70
69 70 70 72 69

−0.3% −0.2% 0.0% +3.4% −1.9% −0.5% −0.1% 0.0% +2.5% −1.1%
184 185 185 190 182 268 268 268 274 265

Annual sum 185 −0.2% −0.1% 0.0% +2.6% −1.7% 268 −0.2% −0.1% 0.0% +2.0% −1.2%

Table 8. Comparison of seasonal sediment yield between scenario 0 (S-0) and adaptation scenarios
1–5 (AS-1, AS-2, AS-3, AS-4, AS-5) for 2041–2050 in the Bystra catchment for climate projections RCP
4.5.1, RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2, RCP 8.5.3. Bold numbers indicate soil water content,
and shaded numbers indicate percentage changes (red indicates % decrease in content, and blue
indicates % increase in content). Dark red and dark blue shading indicates large changes, while light
red and light blue shading indicates small changes (own study).

Time Interval 2041–2050

Type of Scenario S-0 AS-1 AS-2 AS-3 AS-4 AS-5 S-0 AS-1 AS-2 AS-3 AS-4 AS-5

Season Seasonal sum of sediment yield (t/ha)

DJF 0.17
0.16 0.17 0.05 0.12 0.16

RACMO22E
(RCP 4.5.1)

0.25
0.23 0.25 0.07 0.18 0.24

RACMO22E
(RCP 8.5.1)

−9% −1% −72% −28% −5% −9% 0% −71% −30% −5%

MAM 0.08
0.07 0.08 0.02 0.07 0.07

0.07
0.06 0.07 0.02 0.06 0.06

−9% 0% −71% −14% −8% −7% 0% −71% −7% −7%

JJA 0.15
0.14 0.15 0.05 0.13 0.12

0.22
0.20 0.22 0.06 0.16 0.18

−9% −1% −70% −13% −21% −9% 0% −72% −28% −17%

SON 0.15
0.14 0.15 0.04 0.08 0.13

0.18
0.16 0.18 0.05 0.11 0.17

−7% −1% −72% −48% −14% −11% −1% −72% −41% −5%
0.51 0.55 0.16 0.40 0.49 0.65 0.71 0.20 0.50 0.65

Annual sum 0.55 −9% −1% −71% −27% −12% 0.72 −9% 0% −72% −30% −9%
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Table 8. Cont.

Time Interval 2041–2050

Type of Scenario S-0 AS-1 AS-2 AS-3 AS-4 AS-5 S-0 AS-1 AS-2 AS-3 AS-4 AS-5

DJF 0.11
0.10 0.10 0.03 0.08 0.10

HIRHAM5
(RCP 4.5.2)

0.12
0.11 0.12 0.04 0.09 0.12

HIRHAM5
(RCP 8.5.2)

−10% −1% −72% −23% −4% −9% 0% −71% −22% −4%

MAM 0.13
0.12 0.13 0.04 0.12 0.12

0.24
0.22 0.24 0.07 0.21 0.22

−6% 0% −71% −7% −8% −8% −1% −71% −13% −8%

JJA 0.12
0.11 0.12 0.03 0.09 0.10

0.21
0.20 0.21 0.06 0.16 0.17

−11% −2% −72% −25% −16% −8% −1% −71% −23% −18%

SON 0.19
0.17 0.19 0.05 0.10 0.16

0.22
0.20 0.22 0.06 0.12 0.20

−9% −1% −73% −49% −13% −10% −1% −72% −44% −10%
0.50 0.54 0.15 0.39 0.48 0.72 0.79 0.23 0.59 0.71

Annual sum 0.54 −9% −1% −72% −29% −11% 0.79 −9% −1% −71% −25% −11%

DJF 0.11
0.10 0.11 0.03 0.09 0.11

RCA4
(RCP 4.5.3)

0.14
0.12 0.14 0.04 0.10 0.13

RCA4
(RCP 8.5.3)

−9% −1% −73% −23% 0% −9% −1% −72% −24% −7%

MAM 0.15
0.14 0.15 0.05 0.14 0.13

0.16
0.15 0.16 0.05 0.15 0.14

−11% 0% −70% −7% −12% −9% −1% −72% −6% −14%

JJA 0.11
0.10 0.11 0.03 0.08 0.09

0.14
0.12 0.14 0.04 0.13 0.11

−12% −1% −73% −25% −21% −11% −1% −71% −7% −23%

SON 0.20
0.18 0.20 0.06 0.12 0.18

0.57
0.51 0.56 0.16 0.32 0.50

−9% 0% −72% −42% −10% −10% −1% −72% −43% −12%
0.52 0.57 0.16 0.43 0.51 0.90 0.99 0.28 0.71 0.87

Annual sum 0.57 −10% −1% −72% −26% −11% 1.00 −10% −1% −72% −29% −13%

Table 9. Comparison of seasonal actual evapotranspiration between scenario 0 (S-0) and adaptation
scenarios 1–5 (AS-1, AS-2, AS-3, AS-4, AS-5) for 2041–2050 in the Bystra catchment for climate
projections RCP 4.5.1, RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2, RCP 8.5.3. Bold numbers indicate
soil water content and shaded numbers indicate percentage changes (red indicates % decrease in
content, and blue indicates % increase in content). Dark red and dark blue shading indicates large
changes, while light red and light blue shading indicates small changes (own study).

Time Interval 2041–2050

Type of Scenario S-0 AS-1 AS-2 AS-3 AS-4 AS-5 S-0 AS-1 AS-2 AS-3 AS-4 AS-5

Season Seasonal sum of actual evapotranspiration (mm)

DJF 27
27 27 27 27 27

RACMO22E
(RCP 4.5.1)

29
29 29 29 29 29

RACMO22E
(RCP 8.5.1)

−0.9% −0.1% 0.0% −0.2% −0.4% −0.7% 0.0% 0.0% −0.4% −0.5%

MAM 154
151 154 154 154 156

156
154 156 156 156 157

−1.9% −0.1% 0.0% 0.0% +1.4% −1.7% −0.1% 0.0% −0.3% +0.7%

JJA 166
169 166 166 163 168

165
168 165 165 162 166

+2.0% +0.2% 0.0% −1.5% +1.4% +1.8% +0.2% 0.0% −1.5% +1.0%

SON 70
70 70 70 67 70

70
70 70 70 68 70

+0.4% 0.0% 0.0% −4.0% +0.1% +0.3% 0.0% 0.0% −3.2% +0.1%
417 416 416 411 421 420 420 420 415 423

Annual sum 416 +0.1% 0.0% 0.0% −1.3% +1.1% 420 +0.1% 0.0% 0.0% −1.3% +0.7%

DJF 24
24 24 24 24 24

HIRHAM5
(RCP 4.5.2)

23
23 23 23 23 23

HIRHAM5
(RCP 8.5.2)

−0.7% 0.0% 0.0% −0.2% −0.4% −0.7% 0.0% 0.0% −0.3% −0.4%

MAM 149
146 148 149 148 150

135
133 135 135 136 137

−1.9% −0.1% 0.0% −0.1% +1.2% −1.7% −0.1% 0.0% +0.1% +1.0%

JJA 152
155 152 152 150 154

152
155 153 152 150 154

+2.0% +0.2% 0.0% −1.2% +1.7% +1.7% +0.2% 0.0% −1.3% +1.3%

SON 61
61 61 61 59 61

65
66 65 65 63 65

+0.3% 0.0% 0.0% −3.6% 0.0% +0.1% 0.0% 0.0% −3.3% 0.0%
386 386 386 382 390 377 377 377 372 380

Annual sum 386 +0.1% 0.0% 0.0% −1.1% +1.1% 377 0.0% 0.0% 0.0% −1.1% +0.9%

DJF 31
31 31 31 31 31

RCA4
(RCP 4.5.3)

34
34 34 34 34 34

RCA4
(RCP 8.5.3)

−0.7% 0.0% 0.0% −0.2% −0.6% −0.8% 0.0% 0.0% −0.2% −0.5%

MAM 136
134 136 136 136 137

141
138 141 141 141 142

−1.7% −0.1% 0.0% −0.2% +0.8% −1.6% −0.1% 0.0% −0.1% +0.8%

JJA 168
170 168 168 165 170

158
161 158 158 156 160

+1.5% +0.2% 0.0% −1.4% +1.3% +1.7% +0.2% 0.0% −1.5% +1.3%

SON 69
70 69 69 67 69

72
73 73 72 69 72

+0.4% 0.0% 0.0% −3.5% 0.0% +0.2% 0.0% 0.0% −4.2% 0.0%
405 405 404 399 408 406 406 406 400 409

Annual sum 404 +0.1% 0.0% 0.0% −1.3% +0.8% 406 +0.1% 0.0% 0.0% −1.4% +0.7%

3.1. Analysis of Soil Water Content in Zero Scenario for 2021–2050

This section compares the obtained seasonal average soil water content results for
2010–2017 (SWAT model) with the results for 2041–2050 for individual climate change
projections (RCP 4.5.1, RCP 4.5.2, RCP 4.5.3, RCP 8.5.1, RCP 8.5.2, RCP 8.5.3).
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Regardless of the individual climate change projections evaluated, the seasonal aver-
age soil water content for the Bystra catchment is projected to decrease between 2041 and
2050 for most seasons compared to 2010–2017 (Table 5).

Lower soil water content will be especially evident for RCP 4.5.1 (MAM, JJA, SON)
and RCP 4.5.2 (JJA) where the value of average soil water content may be lower by up to
5.8% compared to the 2010–2017 simulation period. Lower values in the MAM and JJA
seasons, especially for the RCP 4.5.1, RCP 4.5.2, RCP 4.5.3 projections, may affect plant
growth during the growing season. However, higher soil water content (1.4% higher) was
found for the RCP 8.5.1 (JJA), RCP 8.5.2 and RCP 8.5.3 (SON) projections.

Regardless of the regional climate model, the seasonal average soil water content
will be lower for climate projections RCP 4.5.1, RCP 4.5.2, RCP 4.5.3 compared to climate
projections RCP 8.5.1, RCP 8.5.2, RCP 8.5.3. This is particularly evident when comparing
the average annual soil water content results, where, for RCP 4.5.1, RCP 4.5.2, RCP 4.5.3,
the average annual soil water content results (2041–2050) are lower between 1.8% and 4.7%,
while, for RCP 8.5.1, RCP 8.5.2, RCP 8.5.3, these average annual results are lower between
0.3% and 0.6% compared to the SWAT 2010–2017 model.

The average soil water content by season for 2041–2050 and the SWAT model 2010–2017
is shown in Figure 2 (Figure 2). It shows that the average soil water content decreases
throughout the year. The highest soil water values are reached during the winter season of
DJF. On the other hand, in spring (MAM), during the growing season period, the average
soil water content decreases, maintaining the lowest values in summer (JJA). In autumn
(SON), the soil water content increases.

Analyzing the spatial distribution of changes in the average water content in soil in
31 sub-catchments for the simulation period in 2010–2017 in relation to the period 2041–2050
(Figure 3) in the climate forecasts RCP 4.5.1 and RCP 4.5.3, the average water content in
the soil will decrease by a few percent points in the Northwest region for most of the
projections. In the projections RCP 4.5.1, RCP 4.5.2 and RCP 4.53, a reduced water content
in the soil will occur throughout the catchment area, while in the projections RCP 8.5.1,
RCP 8.5.2 and RCP 8.5.3, the changes will be small.

3.2. Climate Change Adaptation Scenarios Analysis 1–5 for 2041–2050

The results presented in Section 3.1 indicate a decrease in soil water content in most
seasons during the period 2041–2050 (Table 5, Figure 2). To counteract the negative effects
of changes in soil water content, five adaptation scenarios (AS-1, AS-2, AS-3, AS-4, AS-5)
were prepared and tested. They were designed to maintain or increase soil water content.
The analysis covers the period 2041–2050. Additionally, the impact of adaptation scenarios
on total runoff, sediment yield and actual evapotranspiration was compared.

AS-1 of increasing forested areas on soils of complex 6, 7, 8 compared to S-0 for all
projections shows a decrease in soil water content for all seasons in the Bystra catchment
(Table 6). The soil water content decreases from 4.0% to 4.8% for all seasons.

AS-2, which assumes a forested buffer zone near the Bystra River, shows a slight
decrease in soil water content between 2041 and 2050 (Table 6).

AS-3, establishing filter strips, shows no change in soil water content (Table 6).
In AS-4, the application of plowing on arable land—BARL, CANP, CRDY, WWHT—

was eliminated. This treatment showed a slight increase in soil water content. The increase
ranged from 0% to 0.4%. The largest increases occurred in the JJA and SON seasons
(Table 6).

AS-5 increased soil organic carbon to 2%. This treatment showed a slight decrease in
soil water content. The decrease in soil water content ranged from 0% to 1.4% (Table 6).

Regardless of the GCMs/RMCs and the RCPs evaluated, the results are the same. This
means that AS-1 is associated with a greater decrease in soil water content compared to
S-0. AS-2 and AS-5 are associated with a decrease of a smaller magnitude compared to
AS-1. AS-3 does not predict any significant change in soil water content. In contrast, AS-4
is associated with a small increase in soil water content.
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Regardless of the regional climate model, the seasonal average soil water content
will be lower under the RCP 4.5 climate change scenario compared to the RCP 8.5 climate
change scenario. This is described in more detail in Section 3.1.

Differences in annual average soil water content between AS-2, AS-3, AS-4, AS-5 and
S-0 are small. However, for AS-1, the annual average soil water content varies between
296 and 311 mm. In contrast, for S-0, the average annual soil water content is 310–325 mm
(Table 6).

AS-1 and AS-2 show a slight decrease for most seasons of total runoff for 2041–2050
compared to S-0 in all climate projections. Changes in total runoff range from 1% (decrease)
to 0.3% (increase) (Table 7).

Total runoff in AS-3 did not change (Table 7).
AS-4 shows an increase in total runoff for all seasons in all projections. The increase

ranges from 1.3% to 4.7% (Table 7). For climate projection RCP 4.5.1, the increase in total
runoff stands out from the other projections in all seasons (above 3%).

In contrast, AS-5 shows a decrease in total runoff for all seasons across all projections.
The decrease ranges from 1.0% to 3.9% (Table 7). For climate projections RCP 4.5.1 and RCP
4.5.2, the decrease in total runoff stands out from the other projections in all seasons (above
2%) (Table 7).

Moreover, for total runoff regardless of the GCMs/RMCs and RCPs evaluated, the
results are the same. AS-1 and AS-2 have smaller total runoff compared to adaptation S-0.
AS-5 has an even smaller total runoff compared to AS-1 and AS-2.

In AS-3, the total runoff does not change. In contrast, AS-4 shows an increase in total
runoff compared to all adaptation scenarios.

Regardless of the regional climate model, the average seasonal total runoff will be
lower for the RCP 4.5 climate change scenario compared to the RCP 8.5 scenario [8].

Table 8 presents the seasonal sediment yield data (Table 8). AS-1, AS-2, AS-3, AS-4,
AS-5 were compared to S-0 for the climate projections. For most adaptation scenarios, there
is a reduction in sediment yield from 0% to as much as 73%. The smallest, slight decreases
in sediment yield occur in AS-2 compared to S-0. Slightly larger decreases compared to
S-0 and AS- 2 occur in AS-1 and AS-5. Large decreases in sediment yield occur in AS-4
(ranging from 6% to 49%). However, the largest occur for AS-3 (over 70%).

For sediment yield, regardless of the GCMs/RMCs and RCPs evaluated, the results
are also the same (Table 8).

Regardless of the regional climate model, the seasonal sediment yield will be lower
under the RCP 4.5 climate change scenario compared to the RCP 8.5 scenario. Differences
in annual sum sediment yields range from 0.54–0.57 t/ha for RCP 4.5 to 0.72–1.00 t/ha for
RCP 8.5 in S-0 (Table 8). For AS-4, the annual sum ranges from 0.39–0.40 t/ha for RCP 4.5
to 0.50–0.71 t/ha for RCP 8.5, while for AS-3, the annual sum ranges from 0.15–016 t/ha for
RCP 4.5 to 0.20–0.28 t/ha for RCP 8.5.

Table 9 presents data on seasonal actual evapotranspiration (Table 9). The highest
evapotranspiration values occur during the MAM and JJA seasons.

AS-1, AS-2, AS-3, AS-4, AS-5 were compared to S-0 for all climate projections. AS-1
shows a decrease in actual evapotranspiration from 1.7% to 1.9% for the MAM season. In
contrast, there is an increase between 1.5% and 2.0% for the JJA season.

AS-2 shows little change in actual evapotranspiration (Table 9).
The actual evapotranspiration in AS-3 remains unchanged compared to S-0 (Table 9).
In AS-4, for the MAM and JJA seasons, actual evapotranspiration varies from 1.5%

(decrease) to 0.1% (increase) (Table 9) compared to S-0. However, large decreases occur for
the SON season (from 3.2% to 4.2%).

In contrast, AS-5 has increases in actual evapotranspiration of 0.7% to 1.7% for the
MAM and JJA seasons compared to S-0.

For actual evapotranspiration, regardless of the GCMs/RMCs and RCPs evaluated,
the results are the same (Table 9).
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Regardless of the regional climate model, seasonal actual evapotranspiration will be
similar under the RCP 4.5 climate change scenario compared to the RCP 8.5 scenario [8].

For AS-1, AS-2, AS-3, the annual sum of actual evapotranspiration changes little.
However, for AS-4, the annual sum of actual evapotranspiration increases from 1.7% to
3.8% compared to S-0. In contrast, for AS-5, the annual sum decreases from 1.2% to 3.4%
(Table 9).

Table 10 shows the percentage sets of changes in soil water content, sediment pro-
ductivity, total runoff, and actual evapotranspiration under AS-1, AS-2, AS-3, AS-4, AS-5
with respect to S-0 (Table 10). The table was created based on supplementary Material:
Figures S1 and S2, for averages of three GCMs/RCMs combinations under two RCP climate
change scenarios (RCP 4.5, RCP 8.5).

Table 10. Percent summary of changes in soil water content, sediment yield, total runoff and actual
evapotranspiration under adaptation scenarios 1–5 (AS-1, AS-2, AS-3, AS-4, AS-5) compared to
scenario 0 (S-0) (created from Supplementary Material: Figures S1 and S2), for averages of three
GCMs/RCMs combinations under two RCP climate change scenarios (RCP 4.5, RCP 8.5). The
summary is for four seasons (DJF, MAM, JJA, SON) in the Bystra catchment. Shaded numbers
indicate percentage changes (red indicates % decrease in content, and blue indicates % increase in
content). Dark red and dark blue shading indicates large changes, while light red and light blue
shading indicates small changes (own study).

RCP 4.5 RCP 8.5

Season
Soil water

Content (mm)
Total Runoff

(mm)
Sediment

Yield (t/ha)

Actual Evapo-
transpiration

(mm)

Soil Water
Content (mm)

Total Runoff
(mm)

Sediment
Yield (t/ha)

Actual Evapo-
transpiration

(mm)
DJF −4.1% −0.6% −9.3% −0.7% −4.0% −0.4% −9.1% −0.7%

AS-1
MAM −4.1% −0.2% −8.7% −1.9% −4.0% −0.1% −8.5% −1.7%

JJA −4.7% +0.1% −10.4% +1.9% −4.6% +0.1% −9.1% +1.7%
SON −4.5% −0.4% −8.5% +0.4% −4.3% −0.4% −10.5% +0.2%

Average −4.4% −0.3% −9.2% +0.1% −4.2% −0.2% −9.5% +0.1%
DJF 0.0% −0.1% −1.0% 0.0% 0.0% −0.1% −0.4% 0.0%

AS-2MAM 0.0% −0.1% 0.0% −0.1% 0.0% −0.1% −0.8% −0.1%
JJA −0.1% −0.1% −1.3% +0.2% −0.1% 0.0% −0.7% +0.2%

SON −0.1% −0.1% −0.6% 0.0% −0.1% −0.1% −0.9% 0.0%
Average −0.1% −0.1% −0.7% 0.0% 0.0% −0.1% −0.8% 0.0%

DJF 0.0% 0.0% −72.4% 0.0% 0.0% 0.0% −71.5% 0.0%
AS-3MAM 0.0% 0.0% −70.4% 0.0% 0.0% 0.0% −71.3% 0.0%

JJA 0.0% 0.0% −71.6% 0.0% 0.0% 0.0% −71.4% 0.0%
SON 0.0% 0.0% −72.5% 0.0% 0.0% 0.0% −72.2% 0.0%

Average 0.0% 0.0% −71.8% 0.0% 0.0% 0.0% −71.7% 0.0%
DJF +0.1% +2.9% −25.3% −0.2% 0.0% +2.2% −26.2% −0.3%

AS-4MAM 0.0% +2.6% −8.5% −0.1% 0.0% +1.8% −9.8% −0.1%
JJA +0.2% +2.6% −20.3% −1.4% +0.2% +1.7% −20.9% −1.4%

SON +0.3% +3.8% −46.2% −3.7% +0.2% +2.6% −42.7% −3.6%
Average +0.2% +3.0% −27.3% −1.2% +0.1% +2.1% −28.2% −1.2%

DJF −0.3% −2.4% −3.1% −0.5% −0.1% −1.4% −5.1% −0.5%

AS-5
MAM −0.4% −2.1% −9.6% +1.1% −0.1% −1.1% −9.8% +0.9%

JJA −1.1% −2.9% −19.5% +1.5% −0.6% −1.6% −18.8% +1.2%
SON −0.7% −2.8% −12.2% 0.0% −0.3% −1.4% −10.5% 0.0%

Average −0.6% −2.5% −11.2% +1.0% −0.3% −1.4% −11.2% +0.8%

4. Discussion

The results concerning the water content in the soil were compared with the available
values of water capacity and the wilting point obtained from the study “Assessment of
water retention in soil and the risk of drought based on the water balance of the Lower
Silesia Voivodshi”, developed in 2013 by the employees of the Department of Soil Science,
Erosion and Land Protection, IUNG-PIB in Pulawy [1]. Based on the above-mentioned
study, we prepared data on soils in the catchment area of the Bystra River. For a 1.5 m soil
profile, the results of the above-mentioned studies are consistent with this publication.

The lowest water content in soil occurs in the summer (JJA), while the highest occurs
in the winter (DJF) (Figure 2). For 2041–2050, the largest decreases in soil water content are
associated with GCMs/RCMs for RCP 4.5, while small changes occur for RCP 8.5.

The analyzed adaptation scenarios present different results of the influence on the
water content in the soil. AS-1 for an increase in forest area on soils of the complex 6, 7, 8
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compared to S-0 for all projections shows a reduction in soil water content for all seasons
across the entire Bystra catchment (Tables 6 and 10, Figures S1 and S2 in Supplementary
Material). The same is true for total runoff. Again, for most seasons, there is a reduction
in total runoff (all projections) compared to S-0 (Tables 7 and 10, Figures S1 and S2 in
Supplementary Material). Sediment yields for all seasons also decrease (Tables 8 and 10,
Figures S1 and S2 in Supplementary Material). In contrast, actual evapotranspiration
shows a decrease in the MAM season and an increase in the JJA season (Tables 9 and 10,
Figures S1 and S2 in Supplementary Material).

Forests play an important role in absorbing CO2, which is an important factor in
reducing the adverse effects of climate change [78]. In addition to absorbing CO2, forest
ecosystems can counteract soil erosion and drainage. Within forests, there may be small
retention reservoirs, increasing the areas’ abundance of water. Forest ecosystems play
very important natural, social and productive functions [79]. The results indicate that
increasing afforested area in the Bystra catchment has to go beyond the scheme of using
soil complexes less favorable for agricultural production, and the areas should be picked
with care, focusing on locating forested areas close to catchment borders, so they can slow
runoff and help accumulate water at its highest point from the river bed [80].

The large-scale research aimed at estimating the amount of tree stand in the world
shows that there are currently 46% fewer trees than before the advent of human civiliza-
tion [81]. Climate change may affect the condition of forest areas [19] manifested in extreme
weather phenomena that begin to lose their anomaly status (hurricanes, droughts). More-
over, the species status of plants and trees may not be flexible enough to adapt to changing
climate components (temperature, precipitation, etc.) [82]. Forests therefore should be
probably re-designed to cope with changing biotopes. For many years, many concepts
regarding forest formation in relation to a changing climate have been considered. These
plans are based on the development of actions to reduce the effects of unfavorable phenom-
ena which are occurring now and which may intensify in the future. Another concept will
be activities aimed at adapting forest ecosystems to all current and future threats [82].

A program of increasing forest cover is implemented in Poland [83]. According to the
report on the condition of forests in Poland in 2020 [84], the level of forest cover in 2020
amounted to 29.6% of the total area of the country. After 2050, the forest cover in Poland
is expected to be 33%. The program assumes afforestation of land of low agricultural
suitability [85], reflected in AS-1 of this study.

Research using afforestation scenarios was carried out on four sites in Bolivia and
Ecuador [86]. They show that the water content in the soil and the total runoff decreased to
a varying degree after the application of the forest ecosystem. AS-1 and AS-2 also show
a reduction in soil water content (Tables 6 and 10, Figures S1 and S2 in Supplementary
Material) and a slight reduction in total runoff (Tables 7 and 10, Figures S1 and S2 in
Supplementary Material). Sediment yield also decreased (Tables 8 and 10, Figures S1 and S2
in Supplementary Material). The decrease in soil water content for AS-1 and AS-2 in the
Bystra catchment may be caused by increased water uptake by the root system of forest
vegetation species.

The afforestation scenario has the potential for further research, in which it is possible
to design an appropriate location of forest ecosystems in the Bystra river catchment area,
relying not only on the afforestation of soils of complex 6, 7 and 8, but also good tree planting
practices in rural areas [87], the use of forested embankment fortifications (also preventing
erosion) [72], which would counteract the unfavorable agro-forest checkerboard [88]. The
unfavorable location of forest ecosystems near cultivated fields may result in a reduction in
the yield of agricultural plants [89,90]. When designing afforestation, one should also take
into account the adaptation possibilities of stands to new climatic conditions [82].

Increasing forest cover from 16.34% (S-0) to 19.65% (AS-1) or to 17.37% (AS-2) (Table 4)
according to Lambo’s forest cover index [91] allows for increased forest retention capacity
that, among other things, counteracts the effects of flooding [92]. In addition to increasing
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forest cover, equally important is the location of forested areas within the catchment area
which has a significant impact on runoff [93].

A buffer zone with a well-developed tree stand, located directly next to watercourses,
can prevent the runoff of nutrients and suspensions from agricultural land, contribute to
the strengthening of banks and prevent lateral erosion [72,87,94]. A marsh zone forming
a belt of wetland and rush vegetation, flooded or boggy for most of the year or all the
time, can also be a buffer. Such a zone with well-developed vegetation contributes to the
retention of a significant amount of nitrogen and phosphorus from the catchment area,
preventing eutrophication of waters [72,95].

AS-3, for the creation of filter strips in a planned management operation on BARL,
CANP, CRDY, WWHT arable land, shows no changes in soil water content, total runoff
or actual evapotranspiration (Tables 6, 7, 9 and 10, Figures S1 and S2 in Supplementary
Material). On the other hand, the filter strips effectively reduce the sediment yield (t/ha)
(Tables 8 and 10, Figures S1 and S2 in Supplementary Material). Similar results were
obtained in the article describing the use of the filter strips in various scenarios on the
example of the catchment area in Thailand [96], where, as a result of their use, the sediment
yield was significantly reduced.

Adaptation scenarios involving increasing forest cover, creating buffers next to rivers
and creating filter strips can help reduce erosion risk in the 2050 climate horizon in the
Bystra catchment by reducing total runoff and decreasing sediment yield.

AS-4, for the cessation of plowing on BARL, CANP, CRDY, WWHT arable land, shows a
slight increase (especially in the JJA and SON season) in soil water content (Tables 6 and 10,
Figures S1 and S2 in Supplementary Material). The elimination of plowing also shows a signif-
icant reduction in sediment yield (t/ha) (Tables 8 and 10, Figures S1 and S2 in Supplementary
Material). This may have the effect of reducing soil erosion. However, the total runoff in-
creased, which is induced mainly by the reduction in actual evapotranspiration, especially
limited evaporation form the soil surface covered by plant residue mulch (Tables 7, 9 and 10,
Figures S1 and S2 in Supplementary Material). Observations by Wawer and Kozyra [97]
confirm the prominent role of mulching in preserving soil water by covering the surface of
the soil in warm periods.

The discontinuation of plowing is the subject of many articles as well as studies that
mention as benefits the reduction in soil erosion, the reduction in surface and subsurface
runoff, the reduction in sediment yield, nitrogen yield and phosphorus yield, the increase
in soil water content, etc. [76,98–101], which are supported by numerous studies. The
abandonment of plowing in the catchment areas in the climate of 2050 also shows a
reduction in the sediment yield. On the other hand, the water content in the soil increases.
This provides the grounds that new agricultural practices in the coming decades may
prevent the negative impact of watershed water deficits from occurring.

Agriculture is closely related to the prevailing climatic conditions, but it also has a large
impact on them. The risk of an increase in the frequency of unfavorable climatic conditions
in agriculture may result in yield variability from year to year. The reduced amount of
water in the soil during plant growth, illustrated in the climate change scenarios (Table 5,
Figure 2), will become more frequent and more severe. Other threats will also include
droughts, heavy precipitation, erosion [80], floods, landslides and strong winds [102].

AS-5, increasing soil organic carbon to 2%, shows reductions in soil water content,
total runoff and sediment yield (Tables 6–8, Figures S1 and S2 in Supplementary Materi-
als). However, actual evapotranspiration increases (Tables 9 and 10, Figures S1 and S2 in
Supplementary Materials). In a paper on soil organic carbon changes and their response to
climate warming and soil water content changes, a study of the Jinghe catchment in China
was described [103]. The study showed that temperature and precipitation will increase
by the end of the 21st century under three scenarios—RCP 2.6, RCP 4.5, RCP 8.5—and
consequently soil water content will also increase, while organic carbon content will de-
crease, depending on the climate change scenario. The study also showed that there is a
threshold in soil water content that can mediate the loss of soil organic carbon (when the
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change in soil water content was lower than the threshold, higher content accelerated the
loss of organic carbon, while when the change in soil water content was higher than the
threshold, higher content reduced the loss of soil organic carbon) [103]. The mechanism for
the decrease in soil organic carbon (despite increased soil water content) due to a warming
climate in the future is not fully known [103]. Global studies have found a link between
faster CO2 increases in warmer years with less water availability. This demonstrates the
importance of warming on the decomposition of soil organic carbon [104]. There are studies
in pols on the effect of soil organic matter on soil water management [105]. According to
some estimates in the article, increasing soil organic matter by 0.01% increases the amount
of organic matter by 480 kg (from 1 hectare of arable soil layer). This corresponds to 278 kg
of organic carbon. On the scale of the national area (Poland), this means the sequestration
of 11 million tons of CO2 from the entire arable land area of Poland. This represents more
than 3% of the total greenhouse gas emissions from the Polish area [77].

A convenient tool for carrying out beneficial changes (afforestation, retention reser-
voirs, irrigation) in terms of water retention in the landscape is land consolidation on an
extended scope [80,106,107]. Several agricultural research centers in Poland deal with the
issues of recomposing the rural landscape, including IUNG-PIB in Pulawy. At IUNG-
PIB, a broader consolidation formula, called the Composite Development of Rural Areas
CDRA [106], was developed, covering extended land consolidation, rural area management
and rural development, which are included in addition to classic land consolidation works
meant as the transformation of land, water drainage, water supply to farms aimed at
improving the conditions for agricultural production on farms [106]. The comprehensive,
holistic land consolidation approach remains the most effective way of introducing a wide
range of changes in the agricultural landscape, also focusing on water management [106].
Based upon the outcomes of this study, the team plans to simulate a scenario of a fully
designed land consolidation with the CDRA scheme as one of the options towards a better
holistic water management in rural landscapes.

One of the more recent publications describing the methods of managing water re-
sources and thus counteracting climate change in agriculture for the Polish area is the
Code of Good Water Practices in Agriculture, which was commissioned by the Ministry
of Agriculture and Rural Development [22]. The Code describes various sustainable and
solidarity-based water management practices that can be successfully applied to agriculture
in the coming decades in response to an increasing scarcity of water resources. We plan to
model the effects of introducing the practices covered by the Code in future studies.

5. Conclusions

AS-1, AS-2 and AS-5 did not increase the water content of the soil. However, they can
help to reduce sediment yield and total runoff. AS-1 and AS-2 have potential for further
research using the SWAT model. The research would be aimed at adopting an appropriate
strategy for spreading the location of afforestation in the catchment to reduce the adverse
effects of climate change. Soil organic carbon sequestration (AS-5) also has potential for
further research due to the reduction in negative effects of climate change.

The filter strips in AS-3 contributed to a reduction in sediment yield. Soil water content,
total runoff and actual evapotranspiration remained unchanged. The lack of change may
be due to suboptimal discretization of the filter strips in the SWAT input files. Further
research on this issue will be conducted.

Practices for reducing or eliminating water shortages in soil can be those presented in
AS-4 for no-tillage cultivation. Removal of plowing may also contribute to the reduction
in sediment yield (t/ha). This may have the effect of reducing soil erosion. However,
the positive influence on soil moisture contents throughout the season using the no-till
simulation indicated an increase in runoff, which is mainly caused by limiting evaporation
from bare soil covered by the mulch of crop residues.

The obtained results cover 150 cm of the soil layer as described by the Polish soil-
agricultural map, which does fully reflect the conditions for plants, especially during
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sawing and in early stages of growth. Further research has to be conducted on discretizing
soil hydrology dynamics in the SWAT input configuration to take into consideration the
plough horizon as a separate hydrological entity to be modeled.

Higher soil water content, higher total runoff and higher sediment yield for the RCP 8.5
climate change scenario compared to the RCP 4.5 climate change scenario may be related
to higher precipitation in 2041–2050 (Badora et al., 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14152288/s1, Figure S1: Summary of changes in soil water
content, sediment yield, total runoff and actual evapotranspiration in adaptive scenarios 1–5 (AS-1,
AS-2, AS-3, AS-4, AS-5) compared to scenario 0 (S-0), for averages of three GCM/RCM combinations
in the RCP 4.5 climate change scenario. The list covers four seasons (DJF, MAM, JJA, SON) in the
Bystra catchment area. The first adaptation scenario assumes the growth of afforestation on soils from
the agricultural usefulness complex of soil 6–8 (semi-dry, permanent dry, semi-moist, permanently
wet). The second adaptation scenario assumes the creation of a forested buffer for the Bystra River
and its tributaries. The third adaptation scenario shows one the erosion prevention practices in
the river bed, the so-called filter strips. The fourth adaptation scenario assumes the reduction of
plowing on agricultural land. The fifth adaptation scenario assumes an increase in soil organic carbon
content to 2%. Adaptation scenarios 1–5 are modifications of scenario 0. Scenario 0 only covers
climate change in 2041–2050 (own study); Figure S2: Summary of changes in soil water content,
sediment yield, total runoff and actual evapotranspiration in adaptive scenarios 1–5 (AS-1, AS-2,
AS-3, AS-4, AS-5) compared to scenario 0 (S-0), for averages of three GCM/RCM combinations in the
RCP 8.5 climate change scenario. The list covers four seasons (DJF, MAM, JJA, SON) in the Bystra
catchment area. The first adaptation scenario assumes the growth of afforestation on soils from the
agricultural usefulness complex of soil 6–8 (semi-dry, permanent dry, semi-moist, permanently wet).
The second adaptation scenario assumes the creation of a forested buffer for the Bystra River and
its tributaries. The third adaptation scenario shows one the erosion prevention practices in the river
bed, the so-called filter strips. The fourth adaptation scenario assumes the reduction of plowing on
agricultural land. The fifth adaptation scenario assumes an increase in soil organic carbon content to
2%. Adaptation scenarios 1–5 are modifications of scenario 0. Scenario 0 only covers climate change
in 2041–2050 (own study).
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E. Podstawy systemu monitoringu suszy rolniczej. Woda-Sr.-Obsz. Wiej. 2012, 12, 78–91.

13. KLIMADA 2.0, 2019. KLIMADA 2.0–Baza Wiedzy o Zmianach Klimatu, Scenariusze Zmian Klimatu. 2022. Available online:
https://klimada2.ios.gov.pl/ (accessed on 12 January 2020).
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24. Doroszewski, A.; Jóźwicki, T.; Wróblewska, E.; Kozyra, J. Susza Rolnicza w Polsce w Latach 1961–2010; Wyd. IUNG: Pulawy, Poland,
2014; p. 144.

25. Doroszewski, A. Susza Rolnicza w Polsce w 2015 Roku. Warszawa, Poland. 2016. Available online: http://gwppl.org/data/
uploads/prezentacje/4.%20Susza%20rolnicza_ADoroszewski.pdf (accessed on 18 November 2020).
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Realizacji z Perspektywy Lokalnej/National Program for Expanding of Forest Cover-Implementation and Its Difficulties
from a Local View. Available online: https://www.researchgate.net/publication/322358247_Krajowy_program_zwiekszania_
lesistosci_-_stan_i_trudnosci_realizacji_z_perspektywy_lokalnej_National_Program_for_Expanding_of_Forest_Cover_-_
implementation_and_its_difficulties_from_a_local_view (accessed on 11 January 2022).

84. Report on the Condition of Forests in Poland 2021, Wydano na Zlecenie Dyrekcji Generalnej Lasów Państwowych, p.o. Dyrektora
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85. Kaliszewski, A. Krajowy program zwiększania lesistości-stan i trudności realizacji z perspektywy lokalnej/National Program for
Expanding of Forest Cover-implementation and its difficulties from a local view. Studia I Mater. CEPL W Rogowie. 2016, 49, 7–19.

86. Trabucco, A.; Zomer, R.; Bossio, D.A.; van Straaten, O.; Verchot, L. Climate change mitigation through afforestation/reforestation:
A global analysis of hydrologic impacts with four case studies. Agric. Ecosyst. Environ. 2008, 126, 81–97. [CrossRef]
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Communication and Communications: Warsaw, Poland, 1965.

92. Bogusz, A.; Tokarczyk, T. Rola Terenów Zalesionych w Kształtowaniu Retencji Wód Opadowych w Zlewniach Zurbanizowanych;
Monografie Komitetu Gospodarki Wodnej PAN: Warsaw, Poland, 2016.
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Abstract: Access to clean drinking water is essentially required for human existence. It is a formalized
fact that contaminated drinking water poses a serious threat to human life as the endowment of
unpolluted drinking water to Pakistan’s inhabitants is the local government’s foremost duty. Thus, to
conquer this purpose, the local government, with the coordination of the community development
department (CD), fixed drinking water filtration plants at several places in Lahore. This study aimed
to discover the health threats and health-associated costs endured by households in the target study
areas and the effects of drinking water on infants’ and children’s health in areas having and lacking
water filtration plants by employing the health lifestyle model. Moreover, this study compared
waterborne disease incidence in households in targeted areas with and without local government
filtration plants. For this purpose, a multistage random sampling technique was employed to collect
the data from 300 households residing at different locations in Pakistan. This study revealed that
people who make life choices to drink filtration plants’ water installed by the local government
are less likely to contract waterborne diseases. Besides, class circumstances such as the size of the
family, education of the family head, and plant water usage are highly correlated to the quality and
use of drinking water and, ultimately, to the health-associated outcomes by improving a healthy
lifestyle. In contrast, the age of the household head was found to be insignificant in making choices
regarding drinking water choices and reducing waterborne illness. The more the education of the
family head, the fewer family members found to indulge in practices for using plant water. Thus,
infants/children and other people are less likely to contract waterborne incidents in areas equipped
with these filtration plants. Moreover, the probability of contracting waterborne illness is higher in
males than in females in areas lacking filtration plants.

Keywords: clean drinking water; filtration plants; waterborne diseases; induced morbidity

1. Introduction

Living creatures on this earth need water as an essential element. Almost 70% of the
human body is made up of water. Access to clean drinking water is not merely required for
human existence but is also considered one of the basic human rights [1]. However, the
manifestation of several organic and inorganic toxins, such as pesticides, phenol, chlordane,
arsenic fluoride, nitrate, copper, etc., cause the population to consume poor quality water,
which is perilous to their health [2]. According to UNICEF and the WHO, all over the
world, approximately 2.2 billion people lack access to clean and innocuous drinking water
sources. However, about 2 billion people live in high-water-stress countries [3]. According
to the WHO, by 2025, almost half of the entire world’s population will be forced to live in
areas with scarce water sources. Moreover, 6.8 billion individuals worldwide have access
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to basic drinking water services, while 785 million people around the globe lack access to
these services [4].

Contaminated drinking water poses a serious threat to human life across the world.
Diseases transmitted due to drinking contaminated water include cholera, diarrhea, ty-
phoid, and dysentery [5]. Waterborne diseases, especially diarrhea, kill approximately one
million people globally, and, mostly, children under five years of age are at a higher risk of
diarrhea [6]. According to estimates by the World Bank [6], all over the world, because of
diarrhea, a well-known disease allied with poor quality of drinking water, about 2.5–3.5 million
people are infected, while 485,000 die yearly. Moreover, almost 80 percent of children
annually become water-related syndrome victims. Several non-diarrheal illnesses are also
associated with the unavailability of adequate and safe drinking water sources. Numerous
chemicals (i.e., organic and inorganic) also have an adversative effect on human health in
several diseases such as cancer, vomiting, skin rashes, and nausea [6]. Contaminated water
causes about 4% of all deaths and 7.5% of all illnesses worldwide [7].

Similarly, in Pakistan, sources of clean drinking water are diminishing swiftly, and
drinking water quality is viewed as a grave issue [8]. Poor and indecorous arrangements
of the water supply and sewage ejection systems result in the sewage and mess being
directly released into drains which ultimately flows into the sea, rivers, or canals and
adversely damages water quality [9]. According to a World Bank report [6], 64 percent of
Pakistan’s population lacks access to clean and innocuous drinking water sources. Only
36 percent of Pakistan’s population has access to safely managed and clean drinking water.
Therefore, the environmental performance index ranked Pakistan at 140 out of 180 countries
regarding safe water and sanitation. Moreover, a report by the World Bank highlighted
that 25 percent of the total population in Pakistan is at high risk of consuming arsenic-
contaminated water [6]. Pakistan is among the top 10 countries that lack access to clean
drinking water, where rich people have more access to safe drinking water sources than
poor households [9].

Likewise, the public faces problems regarding access to safe and suitable drinking
water in Pakistan. Pollution of drinking water causes a greater threat to Pakistan’s public
health. Out of 122 nations, Pakistan is in 80th place in terms of following the drinking
water quality standards [10]. According to the World Bank report [6], about 53,000 children
die annually in Pakistan due to severe diarrhea or waterborne illness. Moreover, drinking
contaminated water infected 4 out of 10 children in the country [6]. Moreover, from 2010
to 2019, approximately 250,000 deaths occurred in Pakistan due to drinking contaminated
water [11]. Additionally, arsenic, a hazardous pollutant and chemical, has been cited as a
key cause of waterborne diseases in several areas of the country. The high level of arsenic
in drinking water endangered the health of more than 60 million inhabitants, especially in
Punjab, Pakistan [12].

To cope with this problem, the local government has instigated a platform to install
safe drinking water filtration plants in each city in Pakistan. The reason for the installation
of these plants is to meet the Millennium Development Goal (M.D.G.) by delivering non-
toxic drinking water to the public by the end of 2030 [13]. To attain this tenacity, the
government of Pakistan, in the middle of 2005, instigated an initiative termed the Clean
Drinking Water Initiative (CDWI) to fix about 452 WPEPs (Water Purification Filtration
Plants) practically in every tehsil of the Punjab province. Conversely, instead of enormous
exertions to provide access to safe drinking water from WPFPs, the community is still
facing several problems, for instance, a long-time shutdown of plants due to huge load
shedding or closure of plants during holidays, and the non-functionality of a few plants
because of a lack of supervision [14].

1.1. Background of Local Government Filtration Plants Project

Lahore is one of the most populous cities and is considered the second-largest city in
Pakistan, with 12,642,000 inhabitants [3]. Likewise, the public of Lahore city is also suffering
from problems associated with drinking water quality. According to the Pakistan Council
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of Research in Water Resources (PCRWR) documentation in 2020 [11], in several areas of La-
hore, drinking water quality is exceedingly tainted. Thus, the local government has started
an initiative to ease this concern. Local government is a public administration found in
cities, districts, and counties. In a community, the local government is liable for numerous
services to meet the community’s needs. Likewise, in Pakistan, the local government is
held accountable for services such as waste management and collection, services related to
infrastructure, health-associated services (i.e., water and food and water scrutiny, sewerage
and toilet-related facilities, other water-based services, welfare, as well as community care
services, transportation, and education-related services). At the outset, local government
and community administrations were not involved in decisions associated with the pro-
vision and supply of water in the country. However, local governments were obligated
to provide drinking water-related supplies in 2001 under an ordinance termed the Local
Government Ordinance (L.G.O.). Hence, in Pakistan, the local government provides vital
services associated with health and secure water supply. Besides, federal and provisional
governments were held liable for providing sufficient funds to local governments to ensure
the delivery of effective and good services to the public [15].

The endowment of unpolluted drinking water to the inhabitants of Pakistan is the
foremost duty of the local government. Thus, to fulfill this purpose, the local government,
coordinating the community development department (CD), fixed drinking water filtration
plants at several places in Lahore. This decision of plant fixation by the government is based
on the level of the arsenic chemical in water, microbiological and other viral contamination
in drinking water, public income, as well as public access level, while the number of these
water filtration plants fixed by the local government reached 215 in May 2020 in Lahore [15].
Each of these plants can filter about 500 gallons of water an hour. The elementary purpose
of the fixation of these water plants is to remove contamination, chemicals, microbes, and
arsenic from the water to convert it into a safe form for consumption and drinking by
the public [16].

This study was devised to gauge the effect of polluted water on public health and to
relate the probability of waterborne illnesses ensued in selected households in two types of
study areas (i.e., areas retaining water filtration plants and areas abstaining from plants) in
Lahore under the health lifestyle theory, which argues that several regular lifestyle prac-
tices implicate deliberations on health-related outcomes [17]. In this study, health-related
behavior under collective patterns such as class circumstances, socialization/experience,
dispositions to act (habitus), and practices (actions) based on drinking filtration plant water
choices conferring on their life chances of waterborne illness was assessed. Thus, the main
aim of this study was to discover the health threats and health-associated costs endured by
households in the target study areas and the influence of drinking water on infants’ and
children’s health in areas having and lacking plants. The impact of class circumstances
(age, education, and family size), experience, or awareness in making life choices based on
drinking filtration plant water was also measured.

Moreover, this study compared waterborne disease incidence in households in tar-
geted areas with and without local government filtration plants. Studies which deeply
investigated the association between drinking water, morbidity, and related concerns in
filtration plants are scarce. Besides, no comparative study of filtration plants’ projects and
non-project areas under the health lifestyle theory has been conducted yet. This assessment
discoursed a comprehensive layout concerned with the quality of drinking water in Pak-
istan through an exceptional focus on key water impurities, water degradation sources,
and subsequent health-associated concerns. Thus, this review substantially contributes
to endorsing consciousness in realizing hazards and threats of the factors causing water
pollution and waterborne diseases.

This comprehensive investigation will likewise advance the public’s ability to quanti-
tatively comprehend the effects of drinking water effluence and the efficiency of prevailing
inventiveness regarding clean drinking water for the public, undertaken by the local gov-
ernment by the fixation of filtration plants. However, this enumerated evaluation will
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be a helpful instrument for the government to formulate and implement better strategies
for the endowment of impurity-free drinking water to the community. Additionally, this
evaluation will significantly contribute to the literature regarding health-associated issues.
Another value of this detailed study is that it will be considered a strong reference tool
in impending studies. As a whole, it will assist in enhancing the progression of research
focused on concerns associated with drinking water quality.

1.2. Drinking Water Degradation and Human Health

Drinking water is becoming highly contaminated. The main reason behind this
contamination is municipal solid waste leachate. Thus, highly toxic elements and chemicals
are destroying water quality [18,19]. Contamination of drinking water is one of the major
health concerns in today’s world. In Pakistan, the high level of arsenic in drinking water
endangered the health of more than 60 million people, especially in the province of Punjab.
Moreover, the pollution of drinking water poses a greater threat to Pakistan’s public health
than any other factor. Despite violating drinking water quality standards established by the
WHO, there is a lack of research regarding the drinking water risk perception of households
in-country [6,8,10,12].

According to studies, cholera is caused by contaminated drinking water, untreated
surface water, the detoxification points of water use, and poor sanitation. Moreover, this
water contamination also causes waterborne diseases such as diarrhea. Thus, important
interventions are needed to protect the public from the harmful impacts of waterborne
illness [20,21]. In the same regard, a study by Adimalla [22] demonstrated that nitrate
concentration in drinking water has adverse impacts on the health of residents in India.
Nitrate concentration crossed the critical limit regarding non-carcinogenic risk. A high
nitrate level had poor effects on children’s and women’s health.

Additionally, studies in different countries, including Mexico, Pakistan, and China,
revealed that fluoride and arsenic concentration in drinking water poses a great threat
to human life. This arsenic consumption is a cause of cancer among households due
to households bearing the burden of illness. Arsenic in drinking water results in Type
2 Diabetes Mellitus (T2DM). Moreover, people were found to have arsenic skin lesion
disease. As a result, arsenic-contaminated water seriously threatens human health [23–26].
Moreover, contaminated drinking water destroys the health of living beings around the
globe. Different bacteria destroy the quality of drinking water. Contaminated drinking
water causes cardiovascular diseases, skin disorders, respiratory problems, liver and splenic
ailments, gastrointestinal tract complications, kidney and bladder infections, neurotoxicity,
reproductive failure, and cancer. The immediate consequences of contaminated water
are less well documented. Other waterborne diseases are cholera, hepatitis, diarrhea,
dracunculiasis, ulcers, typhoid, endocrine damage, and arsenicosis [26–29].

Worldwide, drinking water quality is not meeting the standards the WHO and the
environmental protection agency set. Thus, awareness regarding the adverse effects of
contaminated water must be enhanced [30]. Treatment of these diseases at an early stage is
essential; otherwise, they may lead to death [20,28]. Furthermore, previous research found
that a high proportion of households drink contaminated water, while others use water
from improved sources. Moreover, arsenic concentration risk is significantly associated with
location and type of water source, place of residence, and living district. Thus, household
water should be regularly tested to reduce the risk associated with arsenic. Moreover,
arsenic-contaminated water adversely impacts human health, which ultimately forces
people to lose their jobs and live a sub-standard life [31,32].

Moreover, studies in China, Korea, and Pakistan revealed that heavy metals toxify
the quality of drinking water, whose consumption is harmful to human health. Different
treatment methods can be applied to reduce the harmful effects of heavy metals in drinking
water. Thus, water treatment by different methods helps reduce microbial, inorganic,
heavy metal, and other types of contamination from drinking water and makes water safe
for human consumption and health. Additionally, piped water helps in reducing infant
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mortality, and both males and females gain equal health benefits from drinking piped water.
Moreover, this piped water has a greater impact on post-neonatal mortality as compared
with neonatal mortality [33,34].

1.3. Knowledge, Waterborne Illness, and Health Expenditures

Socioeconomic characteristics with psychological factors to study drinking water be-
havior are important as they provide a holistic framework to understand human behavior.
Moreover, knowledge and norms play an important role in using water after treatment.
Similarly, education and income levels were significant with water treatment before drink-
ing. Thus, findings revealed that demographic and socioeconomic attributes such as age,
education, income, past experiences, and social networks played an important role in per-
ceiving vulnerability. Moreover, the health vulnerability of households is affected by their
access to information, health facilities, and the availability of safe water [35–37]. Studies in
Bangladesh revealed that households bear the cost of having access to safe water sources
due to poor water quality and insufficient and unreliable water supply. The poor spend
more income on having access to improved water resources [7,38].

In the same regard, studies have revealed that drinking contaminated water causes
diarrhea in children and other family members; 50% of children suffered from acute watery
diarrhea (AWD), with a mean age of five. Fewer respondents were found to know about
drinking water quality and waterborne illnesses. Additionally, studies in Uganda and India
revealed that demographic factors such as mother’s education, income level of households,
age of children, gender, and awareness of water quality and waterborne diseases influence
the reduction of acute watery diarrhea and other waterborne illnesses. However, the
government’s role is essential in providing clean water to the public [37,39,40].

Similarly, according to Thakur and Gupta [41], in India, high arsenic levels in drinking
water cause arsenisois. Awareness regarding arsenic contamination in drinking water and
arsenisois played a vital role in the reduction of this waterborne disease. As a result of
arsenicosis, people have to bear health care and treatment costs due to visiting doctors.
This illness mostly attacks females as compared with males. Moreover, access to improved
drinking water sources and income levels can potentially reduce arsenicosis. Children are
found to be at greater risk of waterborne illness as compared with other age groups.

Furthermore, because they have access to safe drinking water sources, the general
public expends less physical effort and time collecting water. Moreover, access to safe and
clean drinking water resources causes fewer water-related illnesses, ultimately reducing
public health expenditures [7,42]. In the United States and Pakistan, Surface water quality
is seriously diminishing. Nationwide degradation of drinking water causes 90 million
illnesses. This illness may result in a financial burden, healthcare, and hospitalization
costs [8,43]. Likewise, in Europe, Australia, and China, lack of public awareness and
ineffective political measures are huge hurdles to drinking safe water and taking preventive
measures by the public. More knowledge and awareness must be created among the public
to reduce water-related risks. Moreover, the governance system must be strengthened to
communicate water-related risks to the public [44–46].

1.4. Drinking Water and Government Roles

One of the prominent roles played by any country’s government is to resolve water
quality issues. Governments spend large subsidies in low- and middle-income countries on
improving water sources. According to a recent World Bank report, government spending
on water resource improvement accounts for 2% of total G.D.P. However, findings in ten
countries revealed that 56% of these subsidies benefited the wealthiest people, while only
6% benefited the poorest [6]. The government spends a lot on improving drinking water
resources. Although the government enhanced its spending on water improvements in the
U.S. and Americas, there is still a violation of standards regarding water pollution [47–49].

According to studies conducted in Germany, South Africa, India, and Pakistan, water
treatment is necessary to protect people from the hazards of waterborne illness. Point-of-use
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water treatment effectively makes drinking water safe and achieves the sustainable goal of
clean drinking water [33,50,51]. The facilities for clean water provided by the government
are declining drastically. Thus, people mostly rely on private water sources. Therefore,
government policies need to be revised to overcome this waterborne disease problem [48,49,52].

Although the government has installed filtration plants in various cities of Pakistan,
these plants are not fully reliable sources of safe and clean drinking water. A few samples
were found to be contaminated. Due to the electricity shortage and poor water connections,
some plants are not properly operational. Besides, in Punjab, the working conditions of
filtration plants are much better than in other provinces [11,53,54]. Additionally, polluted
water poses a greater threat to human life. Different private and government bodies such
as T.M.A., district councils, PHEDs, and WASA provide services related to the public’s
provision and supply of clean drinking water. Still, water management by these bodies is
not effective in urban areas. Coordination between the federal and interim governments
appeared lacking [55]. In Nigeria, Uganda, and USA, people are mostly dependent on
private water sources as facilities related to the government’s provision of clean drinking
water have been declining. Consequently, there is an urgent need for government actions
to tackle this issue [39,48,52].

Thus, it is concluded from the literature that drinking water sources are degrading in
Pakistan due to arsenic, fluoride, heavy metals, and other organic and inorganic pollutants.
Drinking contaminated water has severe impacts on the health of people. Diseases that
mostly occur due to drinking contaminated water are kidney infections, cholera, hepatitis,
diarrhea, dracunculiasis, ulcers, typhoid, endocrine damage, arsenicosis, and respiratory
tract infections. Any country’s government plays a critical role in ensuring that the pop-
ulace has access to safe drinking water. Water from improved drinking water sources
or water filtration plants can prevent households from contracting waterborne illnesses.
Moreover, the literature reveals that age, education, income, and family size are important
determinants in choosing to drink water from improved sources; thus, waterborne illness
is reduced.

2. Underpinning Theory and Hypothesis Development

Healthy lifestyles are collective patterns of health-related behavior that focus entirely
on available options or choices for people conferring more life chances [17]. This description
integrates the indigenous relationship among the life choices and life chances anticipated
by Weber in one of his most important conceptions regarding lifestyle. According to the
Weberian viewpoint, life choices and agency are alternatives, while life changes can be
seen in structure form. Whereas lifestyle choices and health exist in a voluntary nature,
on the other hand, life chances largely symbolize the class position, which may endow
or restrict choices, as choices and chances work off each other to regulate the behavior-
related outcomes.

Furthermore, Gochman [56] pointed out that if lifestyle behaviors are positive, they
oppose risk behaviors such as good nutrition, which is the converse of bad nutrition. The
twofold nature of health-related lifestyle practices refers to consequences resulting from
the interchange of choices and changes that reflect positive or negative health impacts.
Gochman detected that health-related lifestyles are anticipated to escape associated risks
and stay slanted towards inclusive health or fitness. Nevertheless, a “healthy lifestyle” is
intended to embrace healthy living.

Historically, people took their health less for granted, but this is not true in present
cases. In this modern era, health is viewed as a great achievement. People imagine making
an effort to boost their life quality or reduce the risks of persistent illness and untimely
deaths [57]. However, Giddens [58] stated that lifestyle preferences are more important
for people becoming more responsible for their health. These circumstances instigate the
variations in (i) disease patterns, (ii) modernity, and (iii) social identities.

Health lifestyle theory argues that several lifestyle practices reflect health-related out-
comes [17]. Thus, everyone is responsible for themselves by choosing healthy living options
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to have a healthy lifestyle. It must be a life or death issue for the person to be responsible for
achieving a healthy lifestyle. Figure 1 elaborates the flow of integral components of health
lifestyle theory where class circumstance highlights age, education, gender, race/ethnicity,
living conditions, and commonalities as all of these factors significantly impact the se-
lection of drinking water and raise awareness about the waterborne illness; as stated by
Bourdieu [59], the dispositions to act are built through socialization and experience. More-
over, experience establishes the basis for life choices, which means “the self-direction of
one’s behavior”, which may lead to fewer occurrences of waterborne illness if households
make life choices of using plant water. The interface of life choices and life chances takes
the individual dispositions towards action, as shown in Figure 1—such dispositions are
instituted as habits. Habitus refers to the cognitive/mental map or the perceptions that
usually help evaluate and guide the person’s options and choices. The disposition of an act
(the preference to use clean drinking water) indulges households in practices. Practices
refer to action; therefore, the arrow is pointing from the disposition of an act to practices.
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Figure 1. Research framework based on Health Lifestyle Theory. Note: Solid arrows show the
relationship directions among variables, and dotted lines show the relationships among variables.

(1) Class circumstances

This category comprises age, education, gender, race/ethnicity, living conditions, and
commonalities. Age, education of the household head, and family size are considered
class circumstances in this study because these factors significantly impact the selection of
drinking water and raise awareness about waterborne illnesses. Thus, we hypothesize as
follows:

Hypothesis 1 (H1). The greater the age of the household head, the lesser the occurrence of
waterborne disease.

Hypothesis 2 (H2). An increase in the education of household heads decreases the occurrence of
waterborne diseases.
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(2) Socialization/Experience

Box 1 in Figure 1 depicts the social framework for the socialization/experience involv-
ing class circumstances and associated variables, as illustrated by the arrow pointing to
Box 2. Thus, this concept is supported by Bourdieu’s [59] suggestion that the dispositions to
act are built through socialization and experience. In this study, variables in box 1 provide
the basis for experience and influence the decision that either household has to go for plant
water or not, as illustrated by the arrow from box 1 to box 2. Thus, we hypothesize as
follows:

Hypothesis 3 (H3). Family size has a positive relationship with waterborne diseases.

(3) Life Choices

The model in Figure 1 indicates that experience establishes the basis for life choices,
as illustrated in box no. 3. As described earlier, Weber introduced the term “life choices”,
which means “the self-direction of one’s behavior”. In this study, “life choice” refers to
plant or tap water for drinking.

(4) Life Chances

As reflected in box no. 1, class circumstances and additional variables led to life
chances (referring to structure) as revealed in box no. 4. Dahrendorf [60] dictated that
Weber’s work-life chances refer to “glazed chances of finding satisfaction for wants, needs,
and interests, hence the possibility of manifestation of the events which ultimately carry
out such satisfaction”. In the context of this study, life chances mean fewer occurrences of
waterborne illness by using plant water.

(5) Dispositions to Act (Habitus)

The interface of life choices and life chances takes the individual dispositions towards
action, as shown in box 5 of Figure 1—such dispositions are instituted as habits. Habitus
refers to the cognitive/mental map or the perceptions that usually help evaluate and guide
the person’s options and choices. Here, in this study, when households realized drinking
plant water prevents them from waterborne illness, as the local government installed these
plants to provide clean drinking water, they showed the disposition of the act by using
plant water more for drinking purposes. Hence, we propose the following hypothesis:

Hypothesis 4 (H4). Households using local government filtration plant water are healthier than
households not using local government filtration plant water.

Hypothesis 5 (H5). Infants and children using local government filtration plant water have fewer
waterborne diseases than families not using local government filtration plant water.

(6) Practices (actions)

The disposition of an act (the preference to use clean drinking water) indulges house-
holds in practices. Practices refer to an action, as illustrated in Figure 1. These actions
involve either bringing water from plants or incurring expenditures to bring water from
plants. These practices ultimately lead to health improvement by decreasing the occurrence
of waterborne illnesses. In this regard, the hypothesis is framed as follows:

Hypothesis 6 (H6). More expenditure on drinking water reduces the incidence of waterborne illness.

3. Study Area

The city of Lahore was chosen as the target site for this study. Lahore is the capital of
Punjab province and one of the most populous cities in Pakistan, considered the second-
largest city in Pakistan, comprising 12,642,000 inhabitants (Figure 2) [3].
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Figure 2. Study area.

In the city, 40 percent of the population is under the age of 15, with an average expected
lifetime of no more than 60 years. Besides, the literacy rate is lower than 41% [61]. The
public of Lahore city is also suffering from problems associated with the quality of drinking
water [11]. To ensure the delivery of hygienic and pristine drinking water to residents of
Lahore, the local government fixed several water purification plants at numerous locations
around the city, including Shalamar Garden, Mishri Shah, Sabzazar, Lahore Zoo, Walled
City, Gulshan-i-Iqbal, Shahdara, Aik Moria Pul, Pani Wala Tabla, Mughalpura, Data Darbar,
Harbanspura, City Railway Station, at Blind School, outside Lohari Gate, Lorry Adda, and
inside New Anarkali. These sites were selected based on the level of impurities, arsenic,
residents’ income, and ease of accessibility for citizens [62].

4. Methods and Materials

This study is cross-sectional, meaning that the study’s population comprises house-
holds residing in four different areas of Lahore. These four areas were chosen using a
multistage random sampling technique, where two areas constitute local government water
purification plants, while two areas lack these plants [63]. The sites with local government
purification plants were Shahdara and Harbanspura, and the sites missing these plants
included the Nishatar colony and Zia Colony Township. These four sites were either
semi-slums or slums. The income level of the households residing in these areas is low,
with a high illiteracy rate. In addition, another purpose for selecting these areas was the
level of arsenic, which is a life-threatening chemical. Contamination of drinking water with
arsenic causes several chronic pulmonary and skin infections. According to WHO [4], the
safe arsenic level in drinking water is up to 50 ppb. The level of arsenic in Shahdara is
76.8 ppb; in Harbanspura, it is 74.0 ppb; in the Nishatar colony, it is 82.0 ppb; and in Zia
Colony Township, it is 66.9 ppb [16].

Potential respondents/households were carefully chosen through a simple random
sampling technique. Seventy-five households were selected from every selected area.
Hence, a total of 300 households were selected as a sample size. Primary data needed to
be gathered to evaluate waterborne sickness’s influence and determine the association’s
strength among variables. Data were collected from households in the studied localities
using a structured questionnaire. The questionnaire covers all the pertinent information
such as demographics (age, level of education, number of family members, average family
income), drinking water sources, drinking water expenditures, waterborne associated
incidences, and extent. A post-questionnaire development pilot study was conducted by
administering 50 questionnaires with and without filtration plant areas to ensure that the
questionnaire has valid measures for data collection. Furthermore, face-to-face interviews
were conducted with the household head or another family member in their absence to
learn their perspectives on the adulteration of drinking water, the underperformance of
the water purification plant, the waterborne sickness they experienced, and the impact
of this sickness on infants and children. Before starting the interview, the purpose of the
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study was explained to the participants, and informed consent was obtained for inclusion
in the final manuscript. The identity information of the participants was removed from the
shared data.

4.1. Statistical Model

The current study utilized the measurements developed by the previous studies.
Therefore, class circumstances were sorted by three demographic items, comprising age of
the family head, education level of the family head, and family size, to assess the impact
of these demographics on the choice of drinking water by households. Life choices were
measured by asking the respondents about tap or plant water use, and example items
were included regarding why they make these choices. This study employed frequency
distributions to describe demography and the variables involved in class circumstances. An
independent group t-test was performed to measure the mean difference in the occurrence
of diseases in both with and without local government filtration plant areas.

Moreover, the impact of various variables refers to class circumstances; namely, re-
spondent’s area (with and without plants), income, expenditure on drinking water, use of
plant water, family size, education, and age of household head are regressed on waterborne
diseases referring to life chances using logistic regression. The waterborne disease was
measured through a dichotomous variable, having only two values assigned: value 1 if the
respondent suffered from waterborne disease; otherwise, value 0 was assigned. Similarly,
a binary variable also measures respondents’ area and use of plant water. The functional
form of the logistic regression curve is

f (t) =
et

1 + et (1)

where is Euler’s number and can be any linear combination of predictors such as β0 + β1x.

f (t) =
eb0+b1x

1 + eb0+b1x (2)

we want to end up with the “typical” formula of the logistic regression, something like:

f (x) = L(b0 + b1x + . . . . . . . . . . . .) (3)

where L is the Logit, i.e.,

f (t) = ln
(

et

1 + et

)
= b0 + b1x (4)

4.2. Deriving the Formula

In the first step, let us take our p(Y + 1) = f (t) and divide by the probability of the
complementary event. If the probability of event A is p, the probability of not-A is 1 − p, Thus,

f (t)
1 − f (t)

=

et

1 + et

1 − et

1 + et

(5)

So, we replaced f (t) by
et

1 + et and thereby computed the odds. Next, we multiply the

equation by
1 + et

1 + et (which is the neutral element, 1) yielding

=
et

(et + 1)
(

1 + et

1 + et −
et

et + 1

) (6)
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In other words, the denominator of the numerator “wandered” down to the denomi-
nator. Now we can simplify the denominator:

et

(et + 1)
(

1 + et − et

et + 1

) (7)

Simplifying the denominator further

et

(et + 1)
(

1
et + 1

) (8)

However, the denominator simplifies to 1, as can be seen here

et

et + 1
et + 1

=
et

1
= et (9)

The above equation tells us that the odds simplify to et. Now, let us take the logarithm
of this expression.

Ln
(
et) = t (10)

By the rules of exponents algebra

t = β0 + β1x (11)

in sum,

ln
(

f (t)
1 − f (t)

)
= β0 + β1x (12)

The left part of the previous equation is called the Logit, which is the “odd plus

logarithm” of f (t), or rather, more precisely, the logarithm of the odd of
p

1 − p
. The logistic

regression formula can now be obtained by taking the Logit of any linear combination. We
can use our standard regression terminology because of the Logit’s linearity: The Logit of
dependent variable changes by β1 if x is increased by one unit. Simply replace the Logit
with the appropriate value; the rest of the statement is standard regression jargon. In the
meantime, because the curve’s slope is not linear, β1 is not equal for all x values. The
logistic regression equation for the current model can be expressed as follows:

Logit (p) = Log
(

p
1 − p

)
= β0 + β1 AH + β2EH + β3FS + β4UPW + β5EDW + β6RD + μi (13)

Solve this equation for p,

p
1 − p

=
1

exp(β0 + β1 AH + β2EH + β3FS + β4UPW + β5EDW + β6RD + μi)
(14)

Pain the formula for the probability P(WBD = 1) = p

p =
exp(β0 + β1 AH + β2EH + β3FS + β4UPW + β5EDW + β6RD + μi)

1 + exp(β0 + β1 AH + β2EH + β3FS + β4UPW + β5EDW + β6RD + μi)
(15)

Thus, adding criterion and predictor variables equations becomes,

Ln [p/(1 − p)] = β0 + β1 AH + β2EH + β3FS + β4UPW + β5EDW + β6RD + μi (16)

WBD = β0 + β1 AH + β2EH + β3FS + β4UPW + β5EDW + β6RD + μi (17)
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Variable Measurement

W.B.D.: Waterborne disease is a controlled dummy variable in the model, which can post
two values of 0 or 1. If a person suffered from waterborne disease in the last
three months, this value represents 1, but 0 if a person did not suffer from
waterborne disease.

A.H.H.: The age of the household head is measured in a complete number of years by
asking the respondent what the household head’s age is.

E.H.H.: The education of the household head is also measured in a complete number of
years by asking the respondent what the education of the household head is.

F.S.: Family size was another quantitative variable that varies from 1 to 18 family
members.

U.P.W.: The use of plant water as a predictor variable is binary (yes or no), which can
posture two values, either 0 or 1. Households using plant water are assigned
value 1, and otherwise assigned value 0.

E.D.W.: Expenditure on drinking water represents the treatment costs beard by
households due to suffering from waterborne diseases in the last three months.

R.A.: The respondent’s area is another binary variable that postures two values, either
0 or 1. Value 1 is assigned if the house is located in the plant area; otherwise, 0
value is assigned.

μ: Random error, in the model, is a residual variable that accounts for the lack of
perfect goodness of fit.

5. Results and Discussion

Human survival depends on the availability of water. Meanwhile, water resources in
Pakistan are constantly degrading because of the mixing of various chemicals and trash.
The public’s health is jeopardized when this polluted water is consumed. This sickness
is more likely to affect infants and children. Furthermore, due to these ailments, people
must shoulder the cost of health treatment. The local government set up filtration facilities
in various parts of Lahore so that the general population may profit from them. This
research investigated the effects of waterborne diseases on newborns, children, and other
households and their healthcare expenses. Furthermore, by comparing the probability of
diseases in areas with drinking water filtration plants installed by their local government
versus areas without this facility using a healthy lifestyle model, it was determined that
people benefit from drinking water filtration plants whether their local government installs
them or not.

5.1. Demography

There is evidence in the literature that demographic factors such as household income
level, family size, and education level are major predictors of waterborne illnesses. Shah
et al. [36] demonstrated that demographic and socioeconomic attributes such as age, educa-
tion, income, past experiences, and social networks played an important role in perceiving
vulnerability. Moreover, households’ health vulnerabilities are affected by their access to
information, health facilities, and the availability of safe water. Thus, respondents were
first asked about demographics, referring to class circumstances in the health lifestyle
research model.

To follow is some information concerning the demographic profile of the data respon-
dents. The median age of household heads in the plant and control regions was 47.20 and
44.68 years old, respectively, whereas the overall mean age in both areas was 45.94 years old.
The mean education of household heads in the plant area was 9.38, whereas the mean
education in the control area was 10.8, and the overall mean education in both regions
was 10.09. In both the plant and control zones, respondents’ family sizes ranged from one
person to eighteen per home. The average family size in the plant area is 6.49, whereas it is
6.52 in the control area. Furthermore, in the plant area, the mean household income from
all sources was 29,387.33 rupees, while in the control region, it was 26,608.67 rupees. The
average income in both locations was 27,998.00 rupees. The mean demographics in both
the plant and control areas are shown in Table 1.
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Table 1. Demographics.

Variables
Control Area

(Mean)
Plant Area

(Mean)
Overall
(Mean)

Education of Household Head (Years) 10.8 9.38 10.09

Age of Household Head (years) 44.68 47.20 45.9400

Family Size 6.52 6.49 6.50

Income (Rupees) 26,608.67 29,387.33 27,998.0000

People were polled on their drinking habits, whether from a plant or the tap, to
learn more about the link between drinking water and healthy lifestyle choices, disease
incidence, and life chances in both areas with and without local government filtration
facilities. The local government set up filtration plants to ensure that the public can access
safe drinking water. However, the water from these plants might not be completely safe to
drink. Some homes in the plant area claimed that they do not drink plant water because it is
contaminated and detrimental to their health or could not detect a difference between plant
and tap water during this study. Other respondents stated that transporting plant water for
large families is challenging; thus, they rely on tap water. Plant water was recorded in 67
(44.7%) of the area’s houses with plants, and tap water was found in 67 (44.7%) households
with plants. Meanwhile, 16 (10.7 percent) households in plant areas said they could obtain
drinking water from a plant or a tap. A total of 19 (12.6 percent) households in areas
without filtration plant facilities said they had to travel a long distance to drink plant water.

The use of drinking water is also determined by family size, which is a social class
factor. Because more water is needed if the family grows larger, bringing plant water for
a large family becomes a little more difficult. Small families are more likely to use plant
water in both plants and control areas, followed by medium-sized families, whereas large
families are less likely to use plant water. Small families have 1 to 4 members, medium
families have 5 to 8 members, and large families have 9 to 18 members.

There are 9 (6.0 percent) small households in the plant area and 1 (0.7 percent) small
family in the control area that uses plant water. As a result, a total of 10 (3.3 percent) tiny
families were discovered as employing plant water to make life decisions. As a result, as
the size of the family grows, the amount of water used by plants decreases. Table 2 shows
the results in both the plant and control areas in this regard. Another element of class
condition in the health lifestyle model, the household head’s education, was discovered
to be substantially linked with drinking water consumption. Educated household heads
appeared to be more aware of water contamination and the harmful health effects of dirty
water. Therefore, literate households opted to use plant water compared with illiterate
families.

In the study region, 205 families were literate, whereas 95 were illiterate; 64 (42.7%)
literate households used plant water in the plant area, while 20 (13.3%) literate households
used plant water in the control area, for a total of 84 literate households (28.0 percent).
Even though both locations had a total of 205 literate households, plant water was used by
41.0 percent of literate homes in both plant and control regions. Thus, a total of 19 families
(6.3 percent) in both districts were using plant water. The number of houses consuming
tap water in the plant and control areas was 31 (20.7%) and 45 (30.0%), respectively, for
a total of 95 households. When the total number of illiterate homes was 95, 19 out of 95,
or 20% of illiterate households, used plant water. According to the findings, plant water
use is higher in literate families than illiterate families. In this regard, Table 2 presents the
contrast between plant and control areas.
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Table 2. Relationship between drinking water and target variables.

Use of Drinking
Water

Control Area
(Percent)

Plant Area
(Percent)

Total
(Percent)

Tap 130.0 (86.6) 67.0 (44.7) 197 (65.7)

Plant 19.0 (12.7) 67.0 (44.7) 86 (28.6)

Plant and Tap 1.0 (0.6) 16.0 (10.7) 17 (5.7)

Total 150.0 (50.0) 150.0 (50.0) 300 (100.0)

Family Size
Use of drinking water

Total
Plant Area Control Area

Small
(1–4 members)

Plant (Percent) Tap (Percent)
Plant

(Percent)
Tap

(Percent)
Plant (Percent)

Tap
(Percent)

9.0
(6.0)

3.0
(2.0)

1.0
(0.7)

14.0
(9.3)

10.0
(3.3)

17.0
(5.7)

Medium
(5–8 members)

65.0
(43.3)

59.0
(39.3)

18.0
(12.0)

98.0
(65.3)

83.0
(27.7)

157.0
(52.3)

Large
(9–18 members)

9.0
(6.0)

5.0
(3.3)

1.0
(0.7)

18.0
(12)

10.0
(3.3)

23.0
(7.7)

Total
83.0

(55.3)
67.0

(44.7)
20.0

(13.4)
130.0
(86.7)

103.0
(34.3)

197.0
(65.7)

Education
Use of drinking water

Total
Plant Area Control Area

Literate

Plant (Percent) Tap (Percent)
Plant

(Percent)
Tap

(Percent)
Plant (Percent)

Tap
(Percent)

64.0
(42.7)

36.0
(24.0)

20.0
(13.3)

85.0
(56.7) 84.0 (28.0) 121.0

(40.4)

Illiterate 19.0
(12.7)

31.0
(20.7)

0.0
(0.0)

45.0
(30.0)

19.0
(6.3)

76.0
(25.3)

Total 83.0
(55.3)

67.0
(44.7)

20.0
(13.3)

130.0
(86.7)

103.0
(34.3)

197.0
(65.7)

5.2. Waterborne Diseases in the Study Area

Water is a necessary component of life on earth, and contaminated water causes
a variety of ailments. Throughout the investigation, 24.22 percent of the households,
or 462 out of 1907, said they were suffering from waterborne infections, significantly
impacting their lives. Although filtration of plant water does not guarantee absolute purity
or disease-free safety, it has been demonstrated that people who drink plant water have
a lower risk of contracting waterborne infections than those who drink tap water. In the
study area, diarrhea was the most common waterborne disease after hepatitis, tuberculosis,
skin infection, kidney infection, lung infection, typhoid, abdominal pain, vomiting, and
stomach infection.

The mean differences in health in study areas with and without local government
filtration plants were assessed using independent group t-tests. According to this survey,
waterborne infections were prevalent in locations without filtration facilities. Plant water
is a major source of drinking water in plant areas, and most people choose to drink it.
Waterborne infections are less common in these locations because they demonstrate the
disposition of acts due to class circumstances and bring treated water for drinking. In terms
of waterborne infections in newborns, children, females, and males, Table 3 compares plant
and control areas.
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Table 3. Independent samples test for the occurrence of waterborne diseases.

t-Test for Equality of Means

Control Area Plant Area Difference t Sig.

Occurrence of Waterborne
Disease in infants/children 4.4533 2.0533 −2.4000 −5.322 0.000

Occurrence of Waterborne
Disease in females 3.1267 1.6533 −1.473 −2.823 0.005

Occurrence of Waterborne
Disease in males 3.4867 1.8867 −1.6000 −7.927 0.000

According to the findings, there is a mean difference in waterborne infections in new-
borns, children, females, and males. In the plant area, the mean occurrence of waterborne
infections in infants and children is 2.0533, while in the control area, it is 4.4533. As a
result, the mean difference in both areas is −2.4. Furthermore, in the case of the occurrence
of waterborne infections in infants and children, the t-value and significance value were
−5.322 and 0.000, respectively. Because the t-value was −5.322 and the sig value was 0.000,
which is less than 0.05, it is clear that the disposition of the act resulted in a significant
difference in the mean occurrence of waterborne infections in infants and children in plant
and control regions. Because they do not engage in such behaviors, waterborne infections
among infants and children are higher in control areas than in plant areas. In the case of
waterborne disease in females, the mean value of the plant area, the mean value of the
control area, and the value of the mean difference in both areas were 16.533, 3.1267, and
−1.473, respectively. Furthermore, the t-value was −2.823, with a significance value of less
than 0.005 and less than 0.05. Therefore, the findings indicated a considerable difference in
the mean occurrence of waterborne infections in females in plant and control areas. As a
result, females are more likely to contract the waterborne disease than in the plant area in
the control area.

Similarly, the mean value of the plant area, the mean value of the control area, and the
value of the mean difference in both areas were 18.867, 3.4867, and −1.6000, respectively, in
the event of the occurrence of waterborne disease in males. The t-value was also −7.927,
and the significance value was less than 0.000 or less than 0.05. As a result, it demonstrates
a considerable difference in the mean occurrence of waterborne infections in men in the
plant and control areas. As a result, females are more likely to contract waterborne diseases
than in the plant area in the control area. In short, the mean occurrence of waterborne
infections differs significantly across infants, children, females, and males. In the control
region, the incidence of waterborne diseases or bad life chances in newborns, children,
females, and males was higher than in the plant area due to a lack of life options from
drinking plant water.

5.3. Econometric Model for Waterborne Illness

Waterborne diseases are considered dependent variables measured by dummy values
0 or 1. If a person is suffering from waterborne diseases, then the value of dummy variables
is 1; otherwise, value 0 was assigned. Furthermore, family size is a quantitative variable
that ranges from 1 to 18. It is theorized that the household head’s age and education reduce
the occurrence or probability of waterborne sickness in that family. Waterborne infections
are less likely to arise when households spend more on drinking water.

In the same way, increasing plant water use reduces the risk of waterborne sickness
in that home. The results of the binary logistic model summary are revealed in Table 4.
Logistic estimates of household head education (E.H.), use of plant water (U.P.W.), drinking
water expenditures (E.D.W.), and respondent area (R.A.) were negatively correlated with
the probability of waterborne diseases, whereas respondent family size (F.S.) was positively
correlated with the probability of waterborne diseases. However, the current study’s
household head (A.H.) age was insignificant in reducing waterborne illness. Moreover,
the robustness regression was also analyzed to verify the results of logistic estimates, as
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shown in Table 4 [64]. Robust regression is a form of regression analysis designed to
overcome some limitations of traditional parametric and non-parametric methods. The
current findings of robust regression are almost similar to the output of the binary logistic,
indicating that the current model outputs are valid.

Table 4. Regression model summary for waterborne diseases.

Binary Logistic Regression Robustness Regression

β p-Value Exp (β) β p-Value

Age of HH 0.004 0.699 1.004 0.003 0.714

Education of HH −0.082 0.011 0.921 −0.083 0.009

Family Size 0.245 0.000 1.278 0.242 0.000

Use of plant water −1.380 0.021 0.252 −1.379 0.022

Expenditures on Drinking water −0.001 0.000 0.999 −0.002 0.000

Respondent’s area −0.903 0.003 0.406 −0.900 0.004

Constant 0.645 0.361 1.907 0.689 0.381

−2 Log likelihood 306.831

Nagelkerke R Square 0.376

Cox and Snell R Square 0.278

Lemeshow Sig. 0.221

Df 08

Chi-square 10.672
Dependent Variable: Waterborne Disease.

Moreover, in the current model, the value of Cox and Snell R square was 0.278,
representing that a 28 percent change in the explained variable is due to the study’s
independent variables, while its value range was always between 0 and 0.75. On the
other hand, the value of Nagelkerke R Square was 0.376, which indicates that 38 percent
of the variation in the dependent variable is due to the independent variables, while its
value always ranged between 0 and 1. The value of −2 Log-likelihood was detected at
306.831 at df = 8, significant at a 5 percent significance level. The Lemeshow test value for
this model was 0.221, which is greater than 0.05, indicating that the model is statistically
significant. The intercept term was 0.645, indicating the average prevalence of waterborne
infections (life chances).

The current findings showed that education of the household head, expenditures on
drinking water, use of plant water, and respondent’s area all have a negative effect on the
occurrence of water bone diseases, with odd ratios (Exp-) less than 1, and these results
are statistically significant at the 5% level of significance. Meanwhile, family size has an
odd ratio (Exp-β) greater than 1, indicating that an increase in family size will increase
the probability of waterborne illness for that household, and this result is significant at
the 1 percent significance level. However, age is ineffective in reducing the probability
of waterborne diseases because this variable is statistically insignificant, as its p-value
was 0.699, greater than the significance level. An increase in the education of household
heads creates more awareness regarding waterborne illnesses and, as a result, households
with a higher level of education will have a lower probability or chance of occurrence of
waterborne diseases. Similarly, increased use of plant water refers to making life choices
using plant water; the occurrence of waterborne illnesses leads to positive life chances. A
rise in the cost of drinking water (as defined in our research model) indicates that more
plant water is being used to bring water from plants. People must travel a certain distance
and pay a certain amount of money. As a result, increasing plant water use lowers the
risk of contracting waterborne infections. As a result, in the respondent’s location, people
in the plant area prefer to drink plant water, lowering the risk of waterborne sickness
in those families. In the same regard, Shah et al. [36] demonstrated that demographic
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and socioeconomic attributes such as age, education, income, past experiences, and social
networks played an important role in perceiving vulnerability to such waterborne illnesses.
Similarly, Khalid and Khaver [55] concluded that polluted water poses a greater threat to
human life.

Furthermore, access to information, health facilities, and clean water influences house-
holds’ health vulnerability. Waterborne sickness is reduced through increased education,
household per capita expenditures on safe drinking water, and access to safe drinking water.
They also demonstrated that families without access to a water supply spend significant
time obtaining water, resulting in additional costs for the poor household. Because of the
high cost of disinfection methods for treating drinking water, low-income families were
extremely unlikely to use them, preventing poor households from reaping the benefits
of clean water. The results revealed that the value of all coefficients except the age of the
household head is significant in regression at 1 and 5 percent levels of significance.

6. Theoretical and Practical Implications

This study has several theoretical and practical implications. As findings of this study
exposed a negative association between clean drinking water sources and waterborne
illness, it may positively influence people’s mindsets regarding drinking water quality
and drinking water plants installed by government bodies. Moreover, this study revealed
that the water from filtration plants installed by the local government is clean and safe
for human consumption. Still, different private and government bodies, such as T.M.A.,
district councils, PHEDs, and WASA, provide services related to providing and supplying
clean drinking water to the public. Still, water management by these bodies is not effective
in urban areas. Coordination between the federal and provisional governments seemed
lacking. Thus, this study will draw the government’s attention to the installation of more
drinking plants for the benefit of society and will show the government of Pakistan that
the availability of such plants is a good option for the sustainable management of drinking
water in hard-hit and water-scarce areas of Pakistan.

Besides, class circumstances such as the size of the family and the education of the
family head are enormously correlated to the quality and use of drinking water and
ultimately to health-associated outcomes by improving healthy lifestyle. Thus, this study
has the potential for realizing households to be more educated and have small family sizes
to have improved lifestyles in terms of drinking water quality.

This assessment has provided a comprehensive layout of concerns with the quality
of drinking water in Pakistan through an exceptional focus on key water impurities,
water degradation sources, and subsequent health-associated concerns. Thus, this review
contributed substantially to endorsing consciousness in realizing the hazards and threats
of the factors causing water pollution and waterborne diseases. This comprehensive
investigation will likewise advance the public’s ability to quantitatively comprehend the
effects of drinking water effluence and the efficiency of prevailing inventiveness regarding
clean drinking water for the public, undertaken by the local government by the fixation of
filtration plants. However, this enumerated valuation will also be a helpful instrument for
the government to intend better strategies for providing impurity-free drinking water to the
community. As water hails from easily accessible and improved sources, households must
spend less effort and time collecting it. Additionally, as local governments install filtration
plants to make clean drinking water conveniently available to the public in various places,
it will allow the public to avoid risky journeys for collecting clean drinking water.

Moreover, as the study’s findings exposed, people bear fewer health expenses due to
having access to better drinking water sources because they are less likely to become victims
of waterborne diseases. Thus, this study is useful for realizing the local government’s
public importance of drinking water filtration plants. Additionally, this evaluation will
significantly contribute to the literature regarding health-associated issues. Another value
of this detailed study is that it will be considered a strong reference tool in impending
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studies. As a whole, it will assist in enhancing the progression of research focused on
concerns associated with the quality of drinking water and clean drinking water sources.

7. Conclusions and Recommendations

The findings of this study revealed the conclusion that people who make life choices of
drinking filtered plant water are less likely to contract waterborne diseases. Besides, class
circumstances such as the family size, the family head’s education, and plant water usage
are enormously correlated to the quality and use of drinking water and ultimately to the
health-associated outcomes by improving healthy lifestyle. While the age of the household
head was found to be insignificant in making choices regarding drinking water choices and
reduction in waterborne illness, the education of the family head, the number of family
members, and households were found to be more habitual in engaging in practices for
using plant water. Thus, in areas with these filtration plants, infants, children, and other
people are less likely to contract waterborne incidents. In short, it is concluded from the
study’s results that the impacts of clean drinking water are significantly different from
unclean drinking water. Clean drinking water from any source helps prevent waterborne
illness and reduce waterborne associated costs, while unclean water is found unsafe for the
health of residents.

Thus, it is recommended that awareness campaigns be launched by the public and
private sector/civil society about the advantages of drinking water to enhance the ratio
of plant water users in treatment areas. The local government must boost the number of
these filtration plants to cover the large proportion of the population and maximize the
benefits of impurity-free water for the public. To ensure water availability throughout the
day, even during electricity load shedding in the country, generators should be fixed with
these plants. Areas adjacent to the plants must be focused on cleanliness regularly to build
a positive image of these plants near the public. Awareness campaigns must be launched
to increase public awareness concerning drinking water contamination, hazardous and
quality hits to take preventive measures to protect themselves from the perilous effects of
bad quality water.

8. Limitations and Future Recommendations

This study has some limitations as well. This study lacks data about the mother’s age
and education, which greatly influence life choices and life chances. Future studies can
collect data regarding the mother’s age and education, which greatly influence life choices
and life chances. Waterborne diseases are influenced by various factors, including poor
hygiene practices and a family history of the disease, which are the focus of this study.
These factors can also be manipulated in future studies.

Moreover, this study only measured the impacts on the income of households in terms
of waterborne expenditures, while the impacts on income due to losing work productivity
and working days were ignored. Thus, future studies could examine the loss of workers’
productivity and the consequent impacts on income due to waterborne illness. The general-
izability of this study can be enhanced by focusing on other areas of Lahore having filtration
plant facilities. This study was just meant to check the impact of filtration plants installed
by the local government on disease elevation while not focusing on determining whether
these filtration plants’ water quality meets the standards set by WHO or not. Further study
can be conducted to determine the water quality of these filtration plants installed by the
local government and other government authorities.

Additionally, this study is limited to filtration plants installed by local government
and community development, whereas other authorities such as T.M.A., district councils,
PHEDs, WASA, and private bodies have also installed filtration plants for the provision of
clean drinking water to the public of Pakistan; therefore, further studies can be executed to
check the impacts of filtration plants on water other than local government at the household
level. Moreover, further studies can be conducted in other countries, especially those with
or without water crises or safety issues, to enhance the generalizability of the findings. The
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local government installed filtration plants for the benefit of the public. As a result, the
government had to bear some cost, which was not measured in this study; therefore, further
studies can be conducted to perform a cost–benefit analysis of these filtration plants.
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Abstract: Urban river pollution is considered a ‘necessary evil’ consequence of disproportionate
developmental expansion in metropolises. Unprecedented expansion and anthropic activities lead
to the deterioration of urban rivers with municipal and industrial sewage. The construction of
sluices is one of the irrefutable parts of the process. In order to prevent floods and drought, many
cities build sluices and dams in rivers to balance water quantity in different seasons. To explore
the change characteristics of the water quality in urban rivers after the construction of sluices and
dams, the change in the total phosphorus (TP) and total nitrogen (TN) concentrations upstream and
downstream of rivers was investigated under the condition of sluices closure in Wuxi. According to
the results, when the sluices were closed, the pollutants of TP and TN would accumulate upstream in
rivers, which caused the water quality in the upper reaches to be worse than that in the lower reaches.
Specifically, the TN and TP concentrations downstream of urban rivers in Wuxi were approximately
14.42% and 13.80% lower than those upstream when the sluices were closed. Additionally, the water
quality in urban rivers was usually better in summer and autumn than in the other seasons, showing
obvious seasonality after the construction of the sluices. The research will provide a theoretical basis
for future sluice operation and the water resources management of urban rivers.

Keywords: sluices and dams; urban rivers; water pollution; Taihu Lake; total phosphorus; total nitrogen

1. Introduction

Rivers are an integral part of urban ecosystems [1]. Rapid urbanization and economic
development have caused urban river pollution globally, and human activities directly
or indirectly lead to changes in river environments. Under natural flow conditions, river
water can self-purify, while during the process of urban expansion, the water quality of the
river is more or less affected, and the river cannot fully play its original function [2]. In the
last decade, the number of hydraulic structures such as sluices and dams has increased with
rapid urbanization. It is expected that by 2025, these structures will be present in 70% of
rivers around the world [3,4]. The small size of urban rivers and the excessive construction
of sluices will undoubtedly affect the material transport movements in rivers and then the
river environment [5]. The factors affecting the water quality of the regulated rivers are
more complex and are susceptible to the influence of water diversion and storage by sluices
and dams [6]. They can largely result in the degradation of water quality in rivers [7]. The
water quality of rivers in cities directly or indirectly affects human health, and thus the
health of regulated rivers and the attainment of water quality standards are essential to the
high-quality development of the urbanization process [8].

According to the 2020 statistics of the World Commission on Dams (WCD), the
number of dams worldwide has reached 59,071, of which the number in China reached
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23,841, accounting for about 40% of the world [9]. Urban rivers play a significant role
in water extraction, navigation, and stormwater drainage, and also in urban domestic
sewage as well as part of the industrial wastewater discharge. Furthermore, the impact of
sluices and dams on river environments and ecology is increasing for watersheds with high
population density, relatively concentrated production and life, and more serious water
pollution [10]. Especially in some areas with abundant stormwater, various flood control
sluices and dams have been built in urban rivers to prevent urban waterlogging. These
sluices and dams inevitably affect the hydrological status of the rivers, thereby affecting
the diffusion and distribution of pollutants in urban rivers. Studies have shown that the
accumulation of nitrogen and phosphorus pollutants without treatment will bring great
risks to the water environment [11].

Currently, there are many studies focusing on the impact of sluice and dam construc-
tion on the water quality of rivers. Dou et al. [12] analyzed the effect of sluice operation on
water quality in the Shaying River and developed a hydrodynamic model incorporating
sluice operation and a water quality transport and transformation model that incorporated
the release of endogenous loads and identified that the influent concentration, size, and the
number of sluices were the main factors affecting water quality. Wang et al. [13] reported
the effect of sluice operation around Poyang Lake on water quality and found that sluice
operation slowed down the water flow rate and increased the risk of water eutrophication.
Young et al. [14] found that the opening of the Arase Dam resulted in a significant decrease
in the concentrations of As, Zn, Pb, and the total sulfur in the mudflat sediments of the
Kuma River and the aquatic environment improved. Tang et al. [15] demonstrated that
the construction and operation of a large number of sluices in the Yangtze River Basin
changed the natural transport rhythm of the runoff, suspended solids and nutrients, and
reduced flow velocities, resulting in the decline of water exchange, the narrowing of the
connectivity between rivers and lakes, and the accumulation of nutrients and SS, which
led to water eutrophication. Soukhaphon et al. [16] concluded that the sluices in the
Mekong River Basin affected fish migration, river hydrology, and sediment transport and
consequently had a negative impact on regional food economic security. Obviously, the
impact of sluices and dams on the river water environment is multifaceted. However, the
environmental effects of large dams or sluices are universally known, but those of these
small sluices or dams (≤15 m or ≤3 × 106 m3) have rarely been considered [17]. In view
of the proliferation of flood-prevention dams in the world’s river systems, the challenge
appears as to their cumulative impacts on water environments. An endeavor to evaluate
these flood-prevention facilities’ cumulative environmental impacts suggested that a large
number of small dams or sluices may have an immeasurable impact on energy generation
than that of large ones [18]. Thus, there is an urgent requirement to understand the multiple
environmental impacts of small flood-prevention development and to understand how
these dams or sluices might be better developed and managed.

This study focuses on urban regulated rivers in Wuxi, and the water quality data of
rivers within the city are compared and analyzed to explore the differences in the changes of
major pollutant concentrations upstream and downstream of urban rivers when the sluices
are closed, and then to explore the impact of small sluices construction and operation on
urban rivers water quality. The harmonious balance between the urban water environment
and ecology is a critical basis for sustainable urban social and economic development;
however, the interaction between them is extremely complex [19]. The target of China’s
water resources management has been changing from “water quantity management” to
“water quality management” [20]. The results of this study can provide a basis for the
management of water resources in urban rivers, ecological regulation, and the construction
of small sluices and dams and promote the coordinated development of socio-economic
and urban rivers.
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2. Materials and Methods

2.1. Study Area

Wuxi is one of the cities with numerous rivers in China, and it is located on the north
shore of Taihu Lake in the Yangtze River Delta [21]. There are more than 3100 rivers in Wuxi,
with a total length of 2480 km. The total length of the rivers in the city is approximately
150 km, with the volume of the water body being 8 million m3 during the flat water
period. Wuxi is relatively rich in surface water and is well recharged by external water
sources. The storage capacity of the city is 63.49 million m3, and the annual recharge is
64.53 million m3 [22]. Wuxi has now built more than 1200 large and small sluices because
of rapid industrialization and urbanization. In 2020, Jiangsu Province invested about
5.9 billion dollars focusing on the implementation of flood control projects in the Taihu
Lake Basin, which has greatly improved the flood control capacity of Taihu Lake [23]. The
construction and operation of these new sluices and dams, as well as the regulation of
existing ones, will have a direct impact on the water quality of Wuxi’s rivers and Taihu Lake.

Currently, about 50% of rivers in Wuxi fail to meet the requirements of Class III
“Water Environmental Quality Standards of China” (WEQSC) (GB3838-2002). Among
them, the ones in Wuxi’s downtown were the most seriously polluted, and the main
pollution indicators are total nitrogen (TN) and total phosphorus (TP) [24]. The pollution
sources in Wuxi are mainly municipal solid waste, industrial pollution, and agricultural
irrigation and fertilization. In this study, we selected 8 major rivers with a total length
of 159.34 km (Figure 1). Among them, Bodugang River, Xibei Canal, Jiuli River, and
Liangtang River, and their water quality are required to meet the Class III of WEQSC
(TN ≤ 1.0 mg·L−1; TP ≤ 0.2 mg·L−1). Meanwhile, the water quality of the Xicheng Canal,
Beijing–Hangzhou Grand Canal, Beixingtang River, and Ancient Canal is required to meet
Class IV (TN ≤ 1.5 mg·L−1, TP ≤ 0.3 mg·L−1) (GB3838-2002).

Figure 1. Research area and sample points.

A new “Flood Control Plan of Wuxi” was issued at the end of 2001, which would
protect a 136 km2 region. In May 2003, the construction of flood control facilities began and
was completed at the end of 2008 [22]. This project contained eight flood control stations:
Yandaigang flood control station, Beixingtang flood control station, Jiuli River flood control
station, Bodugang flood control station, Limin Bridge flood control station, Xianli Bridge
flood control station, Liangtang flood control station, and the Jiangjian flood control station.
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These stations are applied not only to prevent floods in Wuxi but are also used for ship
navigation [25]. The floodgates are controlled by the relevant government departments
according to the annual precipitation and total water quantity of Wuxi City.

2.2. Sampling and Experiment

In this study, the main rivers in Wuxi city were selected, and the sampling points were
concentrated in eight flood control stations. Point 1 was at Beixingtang River, point 2 was at
Bodugang River, point 3 was at the Dongting Maritime Section of Xibei Canal, point 4 was
at the Ancient Canal, point 5 was at Jiuli River, point 6 was at Liangtang River, point 7 was
at the Water Conservancy Bureau section of the Huancheng River, and point 8 was at
the Canal Park section of the Huancheng River. Points 1–8 include two points upstream
and downstream, respectively. For example, point 1 includes 1u and 1d, and 1u means
point 1 upstream, and 1d means point 1 downstream (Figure 1). The water samples were
collected and analyzed for the upstream and downstream areas of the eight flood control
stations (Figure 1). In addition, sampling site No. 9 is located in Taihu Lake, and No. 10 and
No. 11 are located in the Beijing–Hangzhou Grand Canal. These three water samples were
used to compare and analyze the water quality differences between the urban rivers and
Taihu Lake and the Beijing–Hangzhou Canal when the sluices were closed.

This study was conducted from 2018 to 2019, including the flat-water season, wet
season, and dry season. A suitable temperature was required to reduce the interference
from external factors, such as rainstorms, on water quality. Meanwhile, when collecting the
water samples, the water samples were taken 0.5–1.0 m below the water surface and far
away from the river shore to reduce the impact of edge effects due to the shallow rivers.
The sluices were all closed when the samples were collected.

Before sampling, the river water was taken to clean and moisten the water extractor.
Then, the polyethylene storage bottle was washed more than 3 times by the water in
the water extractor, and the water sample was immediately taken full and put into the
cryogenic storage box for preservation. In order to reduce errors and to simulate the real
situation as much as possible, the number of water samples was six at each point, and
all water samples were measured three times. After sampling, all of the water samples
were placed in the laboratory refrigerator at 4 ◦C, and all of the water quality data were
measured within 24 h.

TN and TP are significant indicators for evaluating the water quality of the Taihu Lake
Basin to meet WEQSC (GB3838-2002) [26]. Therefore, TN and TP were selected as the water
quality indicators in this study. According to the national standards of HJ636-2012 and
HJ671-2013, the detection of TN concentration adopts the “Alkaline potassium persulfate
ablation UV spectrophotometric method” [27], and TP adopts the “Ammonium molybdate
spectrophotometric method” [28].

2.3. Methods
2.3.1. Relative Difference

This study introduces the concept of “relative gap” to compare and analyze the
difference between the upstream and downstream pollutant concentrations [29]. It is
defined as:

DR =
Cu − Cd

Cu
× 100% (1)

where DR is the relative difference between the pollutant concentrations upstream and
those downstream, Cu is the pollutant concentration upstream, and Cd is the pollutant
concentration downstream.

If the calculated result is negative, it means that the pollutant concentration down-
stream of the river is higher than that upstream, while if it is positive, it means that the
pollutant concentration downstream is lower than that upstream.
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2.3.2. Gaussian Fitting

In order to more deeply quantify the difference between pollutant concentrations
upstream and downstream when the sluices are closed, the frequency distribution of the
relative difference of pollutant concentrations was fitted using the Gauss fitting method in
the normal distribution model in OriginLab software. The formula is as follows:

y = y0 +
A

w
√

π/2
e
−2(x−xc)2

w2 (2)

where y0 is the baseline, x0 is the mean, w is the discrete degree parameter, and A is the
shape parameter.

3. Results and Discussion

3.1. Variation of Water Quality Indicators in Different Seasons

Urban rivers often take into account the role of discharging domestic sewage, most of
which are nutrient pollutants. Nutrient pollutants mainly include nutrients represented by
nitrogen and phosphorus, which are not considered pollutants in themselves. However,
when the level of nutrients contained in sewage is relatively high, it will contribute to the
proliferation of algae in the water and eutrophication of the water body, which leads to a
series of hazards [30]. Furthermore, some studies have indicated that the main pollutants in
inlet and outlet rivers around the whole of Taihu Lake are dominated by nitrogen pollutants,
followed by organic pollution such as phosphorus [31]. Combined with the cyanobacterial
water pollution events that have occurred in Taihu Lake [32], TN and TP are selected as
water quality indicators in this study. The comparison results of TN and TP are shown in
Figures 2 and 3.

The concentrations of TP and TN were relatively low during the wet and dry seasons
compared to those in the flat-water season due to the fact that the wet and dry seasons
are the summer and autumn seasons in Wuxi, with more rainfall. On the one hand, the
high precipitation leads to the high storage capacity of rivers and the constant turnover of
the water body. These are conducive to pollutant concentration reduction. On the other
hand, for flood control purposes, the sluices are opened to release flood water when there
is excessive rainfall. Furthermore, the river flows faster, and some pollutants from the
river will flow into larger water bodies such as the Beijing–Hangzhou Grand Canal, which
contributes to reducing pollutant concentrations.

In addition, there are some cases of excessive pollutant concentrations during the wet
and dry seasons; for example, the TN concentrations upstream of the rivers in the wet
seasons (Figure 2c,e,h) and the TP concentrations upstream of the rivers during the wet
and dry seasons (Figure 3f,h), respectively. This is due to the fact that summer and autumn
are not only the peak season of precipitation in Wuxi but also the peak period for industrial
production and domestic sewage discharge. The combination of effluent discharge, sluice
closure, and high temperatures during periods brings about high concentrations of these
pollutants, especially during the time when it does not rain. This result is similar to previous
studies [33].

3.2. Variation of Water Quality Indicators in the Upstream and Downstream

To further analyze the variation in the pollutant concentrations upstream and down-
stream of the rivers, the relative differences in the pollutant concentrations were calculated
by Equation (1). The relative differences upstream and downstream of the rivers for TN
and TP pollutants are shown in Tables 1 and 2.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 2. Comparison of TN upstream and downstream of the rivers in the closed state of the sluices.
(a) TN concentrations at point 1; (b) TN concentrations at point 2; (c) TN concentrations at point 3;
(d) TN concentrations at point 4; (e) TN concentrations at point 5; (f) TN concentrations at point 6;
(g) TN concentrations at point 7; (h) TN concentrations at point 8.
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3. Comparison of TP upstream and downstream of the rivers in the closed state of the sluices.
(a) TP concentrations at point 1; (b) TP concentrations at point 2; (c) TP concentrations at point 3;
(d) TP concentrations at point 4; (e) TP concentrations at point 5; (f) TP concentrations at point 6;
(g) TP concentrations at point 7; (h) TP concentrations at point 8.
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Table 1. Relative difference in TN concentration.

Points
Relative Difference (%)

Flat Wet Dry

1 12.0 83.3 8.7
2 17.7 0 29.7
3 7.1 37.5 −10.9
4 6.3 27.2 −20.4
5 26.4 219.7 52.6
6 222.8 125.3 28.3
7 14.3 175.2 57.3
8 71.8 90.6 0.7

Table 2. Relative difference in TP concentration.

Points
Relative Difference (%)

Flat Wet Dry

1 20.8 12.5 −7.1
2 9.4 0 26.1
3 10.7 19.0 10.0
4 7.4 −4.6 20.0
5 37.5 41.2 0
6 205.3 73.3 260.1
7 2.9 34.8 52.6
8 160.1 60.0 −3.3

The 24 groups of TN concentrations are compared in Table 1. Two groups of TN
concentrations in the upper sites were smaller than those in the lower sites, and the rela-
tive difference between the upstream and downstream was not obvious. While another
22 groups of TN concentrations upstream were higher than those downstream, among
which 13 groups, relative differences ranged from 0 to 30% between upstream and down-
stream, the relative differences of the five groups ranged from 30 to 100%, and four groups
relative differences exceeded 100% between the upstream and downstream.

The results indicated that the water quality in the upper reaches of the river was worse
than that in the lower reaches when the sluice status was closed, with the maximum relative
difference between the upper and lower reaches of the TN concentration being greater than
100%. Meanwhile, the TN concentrations were relatively high in all rivers. There were a
few rivers where the differences in TN concentrations between the upper and lower reaches
were not significant, but the comparison of the differences in TN concentrations between
the upper and lower reaches in most rivers was very obvious.

The TP concentration in the rivers of Wuxi was relatively lower compared to TN
(Figure 2 and Table 2). Among the 24 sets of data, there were eight sets of relative differences
within 10%, which is not a significant comparison. Furthermore, among the remaining
16 sets of data, the TN concentrations in three sets were in the upper reaches, less than
those in the lower reaches, and the other 13 sets in the upper reaches were greater than
that in the lower reaches. Meanwhile, of these 16 sets, there were seven sets with relative
differences between upstream and downstream from 10% to 30%, six sets were between
30% and 100%, and three sets where the difference exceeded 100%. The concentration of
TP was not high in general, and some of the data were not obvious enough for a clear
comparison. However, for the 16 groups of data, it can still be concluded that the water
quality in the upper reaches of the rivers is worse than that in the lower reaches.

Generally, the concentrations of TP were relatively low, and the degree of variation
in TP was not as great as that of TN. Furthermore, the levels of TP and TN also differed
significantly at different times of the year at the same site in the same river, reflecting
seasonal variability. In addition to this, an important preliminary conclusion was drawn:
the pollutant concentrations in the upper reaches of the Wuxi rivers were higher than those
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in the lower reaches when the sluices were closed. The result is highly consistent with the
previous investigations [34,35].

In order to further quantitatively analyze the pollutant concentrations in the upper
and lower sites of rivers, the interval length of 20% was firstly selected for the frequency
distribution map for frequency distribution statistics, and then the frequency distribution
was fitted by applying Equation (2). The specific frequency distribution plots, as well as
the fitted curves, are shown in Figure 4.

  
(a) (b) 

Figure 4. Relative difference frequency distribution and Gauss fitting curve (a) TN (b) TP.

The value of the Gauss fitting curve parameter xc for the relative disparity frequency of
TN was 14.42 (Figure 4). That is, under the normal distribution model, the average value of
the relative differences between the TN concentrations in the upper and lower reaches when
the sluices were closed was 14.42%. Similarly, the mean value of the relative differences
in TP concentration was 13.80%. This indicates that the TN and TP concentrations in the
upper reaches of urban rivers in Wuxi were 14.42% and 13.80% higher than those in the
lower reaches under the closed state of the sluices, respectively. This is consistent with our
preliminary conclusions.

3.3. Variation of Water Quality Indicators in Urban Rivers

When the sluices are closed, the water quality upstream of urban rivers may be worse
than that downstream. The reason for this phenomenon is inextricably linked to the water
quality conditions of the urban rivers themselves.

First of all, the pollution sources of urban rivers have special characteristics compared
to the general large rivers such as the Yangtze River and the Yellow River, has a great
distinction. Some studies have concluded that the main pollutants in the Yangtze River
come from urban domestic sewage and agricultural pollution [36]. Furthermore, the cross-
sections below the Three Gorges Dam are mainly located in the main urban living area,
which causes some pollutant indicators in the lower reaches of the sluices and dam to be
significantly higher than those in the upper reaches [37]. For urban rivers, in Wuxi, the city
is located in the middle and upper reaches of rivers, where domestic sewage and industrial
sources are the most important sources of nutrients and pollution [38]. These effluents
flow into the rivers from the middle and upper sites, and these pollutants accumulate in
the upper reaches of the sluices when they are closed. The presence of numerous sluices
leads to the accumulation of large amounts of industrial wastewater, domestic sewage, and
solid waste sediment in the upper reaches of the sluices. Although domestic, agricultural,
and industrial wastewater is also discharged into the middle and lower reaches of urban
rivers, the lower reaches usually connect to larger water bodies, such as Taihu Lake and the
Beijing–Hangzhou Grand Canal. Consequently, the water quality upstream of urban rivers
is often worse than that downstream.
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Secondly, the lower reaches of urban rivers connect to larger water bodies, which own
large volumes and lightly polluted water, as well as relatively clear water quality compared
to that of urban rivers, and the concentrations of TN and TP are also relatively low. The
concentrations of TN and TP in Taihu Lake and the Beijing–Hangzhou Grand Canal are
shown in Figure 5.

  
(a) (b) 

  
(c) (d) 

Figure 5. TN and TP concentration in Taihu Lake and Beijing–Hangzhou Grand Canal. (a,b) Point 9 at
Taihu Lake; (c,d) Point 10 and point 11 at Beijing–Hangzhou Grand Canal.

It can be seen from Figure 5 that although the concentrations of the TN and TP in Taihu
Lake and the Beijing–Hangzhou Grand Canal have partially exceeded the standards of Class
III or Class IV WEQSC (GB3838-2002), they were still much lower than the average levels
of TN and TP concentrations in urban rivers, as shown in Figures 2 and 3. In addition, the
water storage volume of Taihu Lake and the Beijing–Hangzhou Grand Canal are more than
other rivers in the city, and their dilution effect on pollutants is more obvious. Therefore,
when the downstream of the river is connected with these water bodies with relatively
clear water quality and huge water volume, the pollutants can be effectively diffused and
decomposed, and the water quality downstream of the sluices is better than upstream.

4. Conclusions

The effect of the construction of sluices on the water quality of urban rivers in Wuxi
was investigated, and the difference between TN and TP in the upper and lower reaches of
the urban rivers after the construction of the sluices was detected. In this paper, the water
quality in the urban rivers showed obvious seasonality and was usually better in seasons
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that have more rainfall, such as summer and autumn. However, irregular sluice regulation
often causes some water quality pollutant concentrations to rise abnormally. Additionally,
in the state of sluice closure, the water quality of the urban rivers upstream was worse
than that downstream; the concentrations of TN and TP downstream were, on average,
14.42% and 13.80% lower than that upstream, respectively. The concentrations of pollutants
showed different degrees of variation with time and space, and there were discrepancies
between the data and conclusions at individual monitoring sites. For example, the pollutant
concentrations in the Ancient Canal and Huancheng River were higher downstream than
upstream as well as the relative difference between the upstream and downstream pollutant
concentrations in the Liangtang rivers was extremely obvious. In the future, additional
sample sites and numerous data will be required for in-depth exploration.
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Abstract: Climate change is a significant force influencing catchment hydrological processes, such
as baseflow, i.e., the contribution of delayed pathways to streamflow in drought periods and is
associated with catchment drought propagation. The Weihe River Basin is a typical arid and semi-
arid catchment on the Loess Plateau in northwest China. Baseflow plays a fundamental role in
the provision of water and environmental functions at the catchment scale. However, the baseflow
variability in the projected climate change is not well understood. In this study, forcing meteorological
data were derived from two climate scenarios (RCP4.5 and RCP8.5) of three representative general
circulation models (CSIRO-Mk3-6-0, MIROC5, and FGOALSg2) in CMIP5 and then were used
as inputs in the Soil and Water Assessment Tool (SWAT) hydrological model to simulate future
streamflow. Finally, a well-revised baseflow separation method was implemented to estimate the
baseflow to investigate long-term (historical (1960–2012) and future (2010–2054) periods) baseflow
variability patterns. We found (1) that baseflow showed a decreasing trend in some simulations of
future climatic conditions but not in all scenarios (p < 0.05), (2) that the contribution of baseflow
to streamflow (i.e., baseflow index) amounted to approximately 45%, with a slightly increasing
trend (p ≤ 0.001), and (3) an increased frequency of severe hydrological drought events in the future
(2041–2053) due to baseflows much lower than current annual averages. This study benefits the
scientific management of water resources in regional development and provides references for the
semi-arid or water-limited catchments.

Keywords: baseflow; Weihe River Basin; Loess Plateau; climate change; General Circulation Models

1. Introduction

Distinguishing the contributors of different streamflow components is vital to the
effective management of catchment water resources. Baseflow is the contribution of de-
layed pathways to stream discharge that maintains streamflow during drought periods,
characterized by low precipitation, the dominance of groundwater discharge and/or snow
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meltwater from upstream regions [1–3]. Baseflow influences the water quality/supply and
the health of the catchment ecosystem in regional development [4]. It has a profound influ-
ence on the hydrologic cycle in prolonged dry periods [5–7]. It is essential for the provision
of water resources and water security that can be influenced by climate conditions [8–10].
Therefore, estimating projected baseflow drought is critical to escalating our understanding
of hydrological processes in the changing climate.

Climate variability is the primary factor influencing the terrestrial hydrologic cycle
(e.g., baseflow) at regional and global scales [11–14]. For example, baseflow has a close link
with the redistribution of precipitation due to infiltration providing a vital contribution to
groundwater flow [15], which is characterized by a close interaction between groundwater
and surface water. Trancoso, et al. [2] showed that reduced precipitation diminished
baseflow and precipitation and positively affected baseflow in eastern Australia. However,
the land-surface air temperature has increased over the past three decades and led to
an energized/accelerated hydrological cycle by influencing precipitation amounts [16,17]
and by capturing longwave radiation [13]. Li, et al. [18] used an analytical approach that
integrated water balance and the Budyko hypothesis (evaporative index (ET/P) and aridity
index (PET/P) were used to describe the long-term water and energy balance [19,20]) to
separate the contributions of climate and anthropogenic effects on streamflow. Li, et al. [21]
investigated the response of baseflow to climate variability in a large forested catchment
and found that the contribution of climate variability to annual baseflow were greater
than the impacts from forest disturbance. Trancoso, et al. [2] predicted a decreasing
baseflow trend under certain climate changes (e.g., decreasing precipitation and increasing
evapotranspiration related to CO2–vegetation feedbacks). Ficklin, et al. [16] assessed
the impacts of climate change on baseflow and stormflow and found that baseflow had
consistent trends with stormflow across the northeastern and southwestern United States.
Additionally, Singh, et al. [4] quantified the response of baseflow levels to climate variability
cycles (e.g., the Pacific Decadal Oscillation) in the Flint River.

Hydrological models are often used to estimate the effects of climatic factors on water
yield. Climate projections have predicted that the frequency and intensity of extreme events
(e.g., droughts and floods) will increase under future climate conditions [22]. However, the
direct consequences of baseflow responses to future climate change are poorly understood.
Therefore, assessing baseflow responses under climate change is imperative to facilitate
the understanding of groundwater-related hydrological processes and provides scientific
guidelines for water adaptation measures [23] in water-limited regions to face future
droughts.

Generally, this approach uses alternative emission scenarios to investigate hydrolog-
ical responses to climate change [24,25]. For instance, Yang, et al. [26] used 16 climate
models from CMIP5 (the fifth phase of the Coupled Model Intercomparison Project) to
assess the responses of hydrologic drought/aridity to climate change. They demonstrated
that climate models did not capture vegetation water use under elevated CO2 condi-
tions. Semi-distributed rainfall-runoff models based on SWAT (Soil & Water Assessment
Tool, https://swat.tamu.edu/, accessed on 9 July 2016) have been widely used to eval-
uate streamflow variations in complex catchments [27]. Zhang, et al. [28] compared the
performances of two distributed hydrological models (e.g., SWAT and the Distributed
Hydrology Soil Vegetation Model) in separating the impacts of climate change and LUCC
(land-use cover change) on catchment hydrology. Lauffenburger, et al. [29] evaluated the
effects of agricultural irrigation and future climate change on groundwater recharge in
the northern High Plains aquifer, USA, and found a significant bidirectional shift, leading
to a reduction in future groundwater recharge. While those efforts improved our under-
standing of climate-variability effects on hydrological processes, baseflow responses to
future climate change are poorly understood for semi-arid catchments in loess deposition
regions, in which baseflow provides a significant water source for ecological restoration
and environmental protection.
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The Weihe River Basin (WRB) is a representative catchment on the Loess Plateau. It
is one of the most important water sources for the environment and regional society of
northwest China. In this study, to attenuate the uncertainties of baseflow estimation (e.g.,
signal and magnitude [30]), historical daily streamflow data and future streamflow data
projected by two climate scenarios from three presentative GCMs were used to assess
temporal variations in baseflow and the dynamics of baseflow characteristics under future
climate changes in the WRB. The specific objectives were (1) projecting baseflow under
two scenarios (RCP4.5 representing a lower emissions scenario, and RCP8.5 representing a
higher emission scenario) from three GCMs (CSIRO-Mk3-6-0, MIROC5, and FGOALSg2);
(2) assessing baseflow responses under future climate conditions; and (3) highlighting
the role of baseflow in drought events at the catchment scale. Thus, this study provides
drought assessment for water-resource managers to face the future changing climate.

2. Study Area and Data Sources

2.1. Study Area Description

The Weihe River has a total length of 818 km and is located in the northern Qinling
Mountains. It is the largest tributary of the Yellow River. The WRB covers three terrain
sections, i.e., the Loess Plateau, the Guanzhong Plain, and the Qinling Mountains, and
spans 6.72 × 104 km2 from north to south (Figure 1). The Weihe River has its source at
Niaoshu Mountain (3485 m) in the Gansu Province, flows from west to east, and joins the
main channel of the Yellow River in Tongguan County. The longitudinal inclination of the
river is about 1.7‰ [31], and the lowest and highest elevations are 325 and 3485 m [32],
respectively.

Figure 1. Study area, hydrological and meteorological stations in this study.

The climate of this basin is characterized by the continental monsoon with cold, dry,
and rainless winters; hot and rainy summers [33]; average annual temperature changes
between 7.8 and 13.5 ◦C; and annual precipitation between 558 and 750 mm [34]. The
seasonal distribution of precipitation is uneven, and high precipitation and flow mainly
occur in flood periods (June to September). Both precipitation and runoff have substantial
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inter-annual and intra-annual variabilities. The mean annual potential evaporation is
approximately 800 mm in the south to 1200 mm in the north [35].

The WRB has extensive loess deposits across the mid and northern catchment. Its
soil has a relatively high infiltration potential, and its southern part is primarily covered
by forested land in the Qinling Mountains. The predominant land use is agricultural (i.e.,
wheat and cotton production [36]) in the center of the basin, where cultivated soils have
been subjected to long-term agricultural development. Cultivated land covers more than
50% of the basin, followed by woodland and grassland [33]. The basin is highly productive
and supplies water and food for the region. However, streamflow and groundwater
have decreased rapidly with historical increases in population, agricultural production,
industries, and related developmental activities [35]. Land-use changes, particularly due to
the large ecological plan (e.g., the Grain for Green Program [37,38]) launched in the 1990s,
have significant impacts on the catchment’s hydrology [1,39].

2.2. Data Sources

Daily precipitation data, covering 1960 to 2012, from the 13 standard meteorological
stations (Table 1) in the WRB were obtained from the China Meteorological Administration
(http://cdc.cma.gov.cn, accessed on 22 August 2015). These meteorological stations are
maintained according to the standard methods of the National Meteorological Admin-
istration of China. For the same period, daily streamflow data from the Huaxian gauge
(Figure 1) was obtained from the Hydrological Yearbooks of China (http://loess.geodata.cn,
accessed on 10 May 2016). All meteorological and hydrological data used in this study
have been submitted to quality control by government agencies before release.

Table 1. Meteorological stations used in this study.

Station ID Station Latitude Longitude Elevation (m)

53738 WuQi 36.95 108.17 1331.4

53821 HuanXian 36.58 107.3 1255.6

53903 XiJi 35.97 105.78 1916.5

53915 PingLiang 35.55 106.57 1346.6

53923 XiFengZhen 35.73 107.63 1421

53929 ChuangWu 35.2 107.8 1206.5

53942 LuoChuan 35.82 109.5 1159.8

53947 TongChuan 35.08 109.07 978.9

57006 TianShui 34.58 105.75 1141.7

57016 BaoJi 34.35 107.13 612.4

57034 WuGong 34.25 108.22 447.8

57036 XiAn 34.3 108.93 397.5

57046 HuaShan 34.48 110.08 2064.9

3. Methods

3.1. Baseflow Separation Algorithm

To improve the accuracy of baseflow estimates in this study, revised and validated
baseflow separation was implemented [40]. Baseflow has a lag time concerning the last
precipitation event [41]. Generally, the baseflow recession is linked with the surface and
sub-surface flow characteristics and follows an exponential decay curve [42]:

Qb = Q0αt (1)
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where Qb is the baseflow at time t, and α is the recession constant determined by recession
analysis. The baseflow can be calculated using the baseflow separation method.

Baseflow separation is a fundamental issue that has been comprehensively docu-
mented [8,43,44]. Several algorithms have been proposed to separate baseflow from total
observed streamflow [45–47] and can be classified as trace-based, water balance, and graph
approaches according to general applications. Digital filters are the most widely used
tools for small-data input and is reducible (e.g., only daily streamflow records and more
objective) [40]. The Lyne–Hollick method was used here, expressed as [48]:

Qq (i) = αQq (i − 1) +
1 + α

2
(Qi − Qi − 1) (2)

where Q is total streamflow (m3/d), Qq is quick flow (mm/d), i is the time step (day), and α
is the filter parameter (recession constant, in 1/day). Baseflow (Qb, m3/d) can subsequently
be calculated as Qi minus Qq. The baseflow index (BFI, calculated as total Qb/total Q), is a
standard indicator of the baseflow contribution to total streamflow. Herein, the calibrated
Lyne–Hollick method was employed to separate the long-term baseflow. This approach
has been validated by Zhang, et al. [40].

The recession constant can be obtained using the recession analysis developed by Brut-
saert, et al. [43]. This recession approach efficiently reduces uncertainties when estimating
the initial points in the recession limb. Details of recession analysis are given in Cheng,
et al. [44].

3.2. Selection of General Circulation Models

The general circulation model (GCM) is widely used to estimate the impacts of future
climate conditions on hydrological cycles [26,49–52]. The GCMs used in this study (Table 2)
were available in the Intergovernmental Panel on Climate Change (IPCC) data archive
(https://pcmdi.llnl.gov/mips/cmip5/, accessed on 16 October 2016). Based on monthly
precipitation data from 40 GCMs for two representative concentration scenarios (RCP4.5
and RCP8.5) and the future climate scenario period based on CMIP5, we divided GCM
data into two sections. The 45 years from 1960–2004 (historical climate period, HCP) were
considered the baseline period, and the 45 years from 2010–2054 were the future climate
period (FCP).

Table 2. Summary of 40 general circulation models (GCM) selected in this study.

ID GCM Originating Group (s) Country Resolution (◦)

1 ACCESS1.0 CSIRO-BOM Australia 1.88 × 1.25
2 ACCESS1.3 CSIRO-BOM Australia 1.88 × 1.25
3 BCC-CSM1.1 BCC China 2.81 × 2.81
4 BCC-CSM1.1.M BCC China 1.13 × 1.12
5 BNU-ESM BNU-ESM China 2.81 × 2.81
6 CanESM2 CCCMA Canada 2.81 × 2.79
7 CCSM4 NCAR USA 1.25 × 0.94
8 CESM1(BGC) NCAR USA 1.25 × 0.94
9 CESM1(CAM5) NCAR USA 1.25 × 0.94
10 CESM1(WACCM) NCAR USA 2.5 × 1.89
11 CMCC-CM CMCC Italy 0.75 × 0.75
12 CMCC-CMS CMCC Italy 1.88 × 1.88
13 CNRM-CM5 CNRM-CERFACS France 1.41 × 1.40
14 CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1.88 × 1.88
15 EC-EARTH MOHC UK 1.13 × 1.13
16 FGOALS-g2 LASG-GESS China 2.81 × 3.05
17 FGOALS-s2 LASG-IAP China 2.81 × 1.41
18 FIO-ESM FIO China 2.81 × 2.81
19 GFDL-CM3 NOAA GFDL USA 2.50 × 2.00
20 GFDL-ESM2G NOAA GFDL USA 2.50 × 2.00
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Table 2. Cont.

ID GCM Originating Group (s) Country Resolution (◦)

21 GFDL-ESM2M NOAA GFDL USA 2.50 × 2.00
22 GISS-E2-H NASA GISS USA 2.50 × 2.00
23 GISS-E2-H-CC NASA GISS USA 2.50 × 2.00
24 GISS-E2-R NASA GISS USA 2.50 × 2.00
25 GISS-E2-R-CC NASA GISS USA 2.50 × 2.00
26 HadGEM2-AO KMA/NIMR UK/Korea 1.88 × 1.25
27 HadGEM2-CC KMA/NIMR UK/Korea 1.88 × 1.25
28 HadGEM2-ES KMA/NIMR UK/Korea 1.88 × 1.25
29 INMCM4 INM Russia 2.00 × 1.50
30 IPSL-CM5A-LR IPSL France 3.75 × 1.89
31 IPSL-CM5A-MR IPSL France 2.50 × 1.27
32 IPSL-CM5B-LR IPSL France 3.75 × 1.89
33 MIROC5 MIROC Japan 1.41 × 1.40
34 MIROC-ESM MIROC Japan 2.81 × 2.79
35 MIROC-ESM-CHEM MIROC Japan 2.81 × 2.79
36 MPI-ESM-LR MPI-M Germany 1.88 × 1.87
37 MPI-ESM-MR MPI-M Germany 1.88 × 1.87
38 MRI-CGCM3 MRI Japan 1.13 × 1.12
39 NorESM1-M NCC Norway 2.50 × 1.89
40 NorESM1-ME NCC Norway 2.50 × 1.89

In the context of climate change, three GCMs (i.e., the dry, moderate, and wet effects)
were chosen to represent the future climate conditions. Then, daily precipitation and
temperature derived from GCMs were used as forcing data to project streamflow in the FCP.
The representativeness of the ensemble GCMs is considerably improved in the projection
of climate variables [53]. Among the 40 GCMs under the two scenarios in CMIP5, the
numbers of GCMs predicting increasing and decreasing future precipitation were 36 and 4,
respectively. To choose representative models and reduce uncertainties, three models
were selected to simulate future climate conditions, i.e., CSIRO-Mk3-6-0 (predicting dry
conditions with the largest precipitation declines), MIROC5 (wet conditions with the
largest precipitation increases), and FGOALSg2 (median conditions with a median change
in precipitation) (Figure 2).

Figure 2. General circulation model selection of the dry, moderate, and wet simulated effects for two
scenarios (RCP4.5 and RCP8.5).
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To generate the mean climate conditions, the GCMs’ climate projections were bias-
corrected with the delta-change method (for details, see Navarro-Racines, et al. [54]),
which simply superimpose the mean monthly anomalies between the GCMs-simulated
baseline and the future period on the observed historical precipitation and temperature to
represent future climate. Specifically, first, we calculated the ratio between the observed
and simulation precipitation data of the three selected GCMs in the historical period
(1960–2004). Second, we multiplied or added the precipitation and temperature data of the
three GCMs in the future period (2010–2054) with this ratio to obtain simulation data for
the FCP. Finally, we used the simulation data as forcing input data for running SWAT (Soil
and Water Assessment Tool) to estimate daily streamflow.

3.3. SWAT Model

The SWAT hydrological model is a continuous-time, computationally efficient, and
semi-distributed catchment-scale hydrologic model [55]. The catchment was divided into
hydrological response units (HRUs), and surface runoff volumes were simulated for each
HRU. SWAT has been widely used in different catchments worldwide and proved to be
an effective tool to examine hydrological responses to land use and climate changes [56].
More details on SWAT are given in Easton, et al. [57], Guo, et al. [58].

This study used daily meteorological data (precipitation, maximum and minimum
temperature, mean wind speed, radiation, mean relative humidity) from 1960–2012 as
forcing data to simulate daily runoff in the WRB. The performance of predicted runoff was
assessed against observed daily streamflow data in the same period. In the SWAT simula-
tion, 1983–2012 was the calibration period (warm-up period: 1983–1993), and 1960–1982
was the validation period (warm-up period: 1960–1969). Comparing the simulated runoff
between the calibration and validation period, the simulation of monthly runoff using the
SWAT model had a good performance in WRB (Figure 3).

Figure 3. The streamflow simulation using SWAT model in calibration (a) and validation (b). The
blue line is the 1:1 line. The rug represents the data distribution density.

3.4. Trend Analysis

Trend analysis can provide effective and useful information on possible tendencies in
the future [59]. The nonparametric Mann Kendall test was used to identify trends and
trend significance in baseflow in this study. This test provides two parameters, i.e., the
significance level and slope magnitude [60]. p values ≤ 0.05 were considered significant.
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The Z (derived from a certain climate element sequence) and S are the trend and order
column and are used to detect the significance test. This test method has been widely
employed to detect significant monotonic increasing or decreasing trends in long-term
time-series data [8]. Method details can be found in previous studies [61,62].

3.5. Baseflow Drought Determination

Due to the hydrological drought with a higher accumulation period [63] and to provide
insights for water planning and drought alerts for other basins facing water shortage events,
the annual baseflow anomalies were implemented to determine hydrological droughts in
historical and future climate conditions.

4. Results

4.1. Baseflow Estimation

The meteorological outputs in the GCMs were extracted as the inputs to the SWAT
model to predict the streamflow in the future climate change, and then, a well-revised
Lyne–Hollick method was used to implement the baseflow separation. Overall, the SWAT
model had a good performance in both the calibration (Figure 3a) and validation (Figure 3b)
stages to simulate the streamflow on a long-term scale (e.g., with R2 > 0.7). In addition, the
annual mean baseflow in the calibration and validation of the SWAT model also is shown
in Figure 4.

Figure 4. Relationship between the simulated and observed annual mean baseflow in the historical
period. The black and red error bars represent standard errors in simulated and observed annual
total baseflow. The black line is the 1:1 line.

The baseflow time scale of predicted streamflow and recession constants are shown
in Table 3. The K and α are ranged from 62 ± 6 days (SD) and 0.98 ± 0.002 (SD) 1/day
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in the two future climate scenarios, respectively. For the CSIRO and FGOALSg2 models,
the prediction of streamflow under the two scenarios was very close. For the highest
streamflow condition, the MIROCS baseflow results were much higher than those of the
other two models.

Table 3. Recession analysis derived from three general circulation models and two scenarios for
future climate conditions (2010–2054).

Scenario GCM K (days) α (1/day)

RCP4.5
CSIRO-Mk3-6-0 53.2 0.981

FGOALSg2 64.5 0.985
MIROC5 69 0.986

RCP8.5
CSIRO-Mk3-6-0 54.3 0.982

FGOALSg2 67.1 0.985
MIROC5 63.7 0.984

4.2. Detection of Baseflow Changes

All three models showed an insignificant increasing trend in both scenarios before
2020 in the future period (Figure 5). From the perspective of changing points, there was
a similar and/or general pattern over a long future period; nevertheless, the numbers of
changing points were different. In 2020, 2026 and 2034, changing points occurred for CSIRO
and FGOALSg2 in both scenarios and for MIROC5 in the RCP8.5 scenario. After 2020, all
three models showed an insignificant decreasing trend in both two scenarios. Specifically,
in the FGOALSg2 model, there was a significant decreasing trend, and in the MIROC5
model, this trend occurred after 2049.

Figure 5. Mann Kendall test statistics for three GCMs in two scenarios (RCP4.5 and RCP8.5). UF
is the sequential values of a statistic under the random hypothesis; UB is the reversed UF data
statistic series. The positive and negative values indicate the increasing and decreasing trend. The
intersections of UF and UB present the changing point.

The baseflow derived from the observed daily streamflow (Figure 6) showed a chang-
ing point in 1970. Before this year, baseflow showed an insignificant trend. However, after
this year, there was a decreasing trend, both in 1977–1983 and after 1995.
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Figure 6. Mann Kendall test statistics for the baseflow separated from historical observed daily
streamflow data. The abbreviations are the same as Figure 5.

4.3. Quantitative Baseflow Analysis Combining Historical and Future Climatic Conditions

The baseflow exhibited a decreasing trend in the long-term periods (all p ≤ 0.005, see
Figure 7). Herein, we first calculated the baseflow anomaly for the entire time series and
then added the regression line for each GCM using local polynomial fitting. Specifically,
CSIRO had a relatively more variation compared to the other two GCMs in both climate sce-
narios. Despite the trend with fluctuations, the three GCMs showed a similar performance
in the two climate scenarios.

 
Figure 7. Baseflow anomaly plot from the entire streamflow time series in three models and two
scenarios. The blue line is the linear regression line. The red vertical dashed line divides the time
series into historical and future periods.
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5. Discussion

5.1. Baseflow Trends in Historical and Future Climate Periods

The baseflow separation algorithm used in this study was derived from the revised ver-
sion of the Lyne–Hollick algorithm. The outcomes of this method were more reproducible
than the traditional methods (e.g., graphical approaches and empirical function [40]), thus
this approach would greatly reduce the uncertainties of baseflow estimation. As baseflow
was not directly measured under experimental conditions and was often estimated from
the original total streamflow [40], in addition, the digital filter combined the recession
analysis with more physical meanings containing more catchment-specific groundwater
drainage characteristics [44] and provides a robust tool to decrease uncertainties in baseflow
estimation [64].

The climate scenarios provided a robust tool to project the water balance of the
catchment [65], and detecting trend characteristics was beneficial to understanding the
hydrological variability at a long-term scale. In this study, the MK test was adopted to
detect baseflow changes under future climate conditions (Figures 4 and 5). A declining
baseflow trend was predicted for future climate scenarios. The baseflow change point years
were 1970 and 1990. These years are not consistent with the streamflow change points
reported by Zhan, et al. [33]. It was demonstrated that runoff had a decreasing trend in
this basin after 1990 due to human activities, and the changing points of streamflow lagged
the baseflow changes by about 20 years. However, the baseflow change points were in the
range of the streamflow change points in another catchment on the Loess Plateau. Herein,
the streamflow change points for different sub-catchments ranged from 1970 to 1990 [66].
As a delayed water resource, baseflow provides water to the land surface and sustains
ecological health under dry spells.

Projections of baseflow and trend analysis are important to prevent and palliate
drought losses on the catchment and regional scale [67]. Analyses of climate variability
and baseflow improve our understanding of the effects of drought on environmental
protection [4]. A drier trend has been reported for most areas of China based on PDIS (the
Palmer Drought Severity Index) [67]. The degree of drought is characterized by a high
frequency and has a long-term effect on hydrological connections in the WRB. Baseflow
characteristics were used to evaluate hydrological droughts because baseflow is relatively
steady and can represent catchment water storage [68]. Quantifying the impacts of climate
variability on baseflow can provide insights for future water-resources plans [4]. Yang,
et al. [41] showed that baseflow recovery had a longer lag than streamflow recovery
across 130 unimpaired catchments in eastern Australia. Further, it has been reported that
the hydrological cycle is intensified with changes in global mean precipitation in GCM
projections [69]. This means that dry areas with limited water may become much drier.

5.2. Variability of the Baseflow Index

The BFI is an important hydrological indicator representing the water flow from
groundwater/delayed resources to streamflow. It contains a lot of information on catchment
characteristics [70,71], which reflects the holistic attribute of baseflow and terrestrial water
balance [72]. The relationship between total baseflow, streamflow, and the baseflow index
was demonstrated in Figure 8. To address the total baseflow contribution to streamflow,
we also assessed the BFI for the historical observed and the simulated results for the three
GCMs (Figure 9). There was an increasing trend in the BFI in the long-term climatic period.
This means that the role of baseflow was remarkably strengthened in the sustenance of
local water in this catchment. Compared to baseflow yield, the BFI is a relative ratio that
varied from 0.42 to 0.49 and averaged 0.45 in our study. This means that the contribution
of baseflow from groundwater storage or delayed sources accounted for 45% in the WRB
from the perspective of future climate conditions in GCM projections. The magnitude of
baseflow was very similar in the three models. Nevertheless, streamflow showed relatively
greater variations. This confirmed that the baseflow is a relatively stable flow that sustains
the terrestrial hydrological ecosystem [73].
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Figure 8. Total baseflow and streamflow for each GCM. Numbers in bars are the baseflow index. Red
bars are the total baseflow, and blue bars are the total streamflow.

 

Figure 9. Variation in the baseflow index derived from historical observed streamflow data
(1960–2010) and the ensemble means of three general circulation models for two scenarios (sim-
ulated from six models) for the future climate changes (2010–2054). The line and equation represent a
linear regression.

Additionally, to clarify baseflow and streamflow trends, the relationships of historical
data and/or projected streamflow and baseflow from the three models under two scenarios
were also assessed (Figures 4 and 5). The response of baseflow to streamflow had a relative
laggy time interval. This may be related to the increasing degree of anthropogenic activities
in this basin due to the heavy exploitation intensity of groundwater resources. Singh,
et al. [72] reported that groundwater abstraction significantly influenced flow regimes, with
higher baseflow under constrained pumping conditions. Further, the effects of baseflow
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increase vary among river reaches, and baseflow and stormflow increases have relatively
greater impacts on downstream areas by increasing flow volume [16]. Estimating other
anthropogenic pumping effects is a meaningful way to assess the baseflow response to
local hydrological variations.

5.3. Factors Influencing Baseflow Variations

It has been reported that climate change and anthropogenic activities are drivers of
groundwater storage [74,75]. The baseflow yield is associated with the interactions between
climate variability and vegetation changes [66,76] and would be influenced by a variety
of catchment physical factors [72]. It is characterized by seasonal precipitation variations,
i.e., from June to September, which creates the summer-dominated baseflow feature in
this basin [1]. Furthermore, land-use change has affected 50% of the area on the Loess
Platea [66]. This directly influences streamflow and leads to changes in baseflow. The basin
covers three geological classes. Land use was predominantly agricultural in the long term.
However, due to the widely distributed loess-deposition areas is in this region, extensive
agricultural development causes heavy soil erosion and water-conservation issues [77]. To
sustain the water quality and supply of the WRB, the government has taken measures to
prevent ecosystem recession (e.g., soil-conservation measures [78]). This should lead to
delayed surface runoff and increase the baseflow in small catchments [60]. However, in dry
seasons on a long-term scale, the baseflow should be reduced by the loss of groundwater
through more plant evapotranspiration. This is associated with vegetation-type changes
from grass/bare land to the forested area [79]. Additionally, this complex effect is also
influenced by other potential conditions such as topography. For example, Li, et al. [80]
showed that the topography plays a paramount role in low flows (flow magnitudes ≤ Q75%)
in snow-dominated catchments.

The effects of anthropogenic activities associated with agricultural production also
strongly control the water cycle in catchments [35]. It has been shown that the plantation
intensity on agricultural land reduces downstream water availability [76]. Irrigation is
an important factor influencing groundwater processes [29], leading to variations in base-
flow [8]. The WRB is the main agricultural region, with large irrigation areas responsible for
the food production for the regional population. To maintain living standards and sustain
ecological health, the water demands have been increased for decades, and groundwater
pumping supports much of the municipal water demand. Additionally, from the perspec-
tive of water depletion, agricultural development, and ecological recovery projects were all
needing a large amount of water, including surface water and groundwater, it would create
a baseflow shortage event for the Loess Plateau. For example, large-scale afforestation may
exacerbate baseflow conditions as evapotranspiration increases through the amplification
of leaf area and rooting depth [2,81]) for the catchment with constant precipitation input.
This impact on baseflow variations would be amplified by climatic variations in this basin.

5.4. Implications of Baseflow Droughts

To provide insights for water planning and drought alerts for other basins facing
water-shortage events, the annual baseflow anomalies were implemented to determine
the hydrological droughts in historical and future climate conditions (Figure 7). It is
noted that the baseflow has an apparent decreasing trend overall. Specifically, there was a
relatively richer baseflow in approximately 2035. However, there was a lack of baseflow
in 2041–2050, leading to a prolonged impact on the hydrological cycle (e.g., baseflow
hydrological droughts) in the long term (~10 years).

It has been reported that, when disentangling climatic effects (e.g., precipitation) on
hydrology, the uncertainties were much larger in the high-emission scenario RCP8.5 than
the relatively low-emission scenario RCP4.5 [52]. In the baseflow estimation in the FCP,
there was no remarkable difference between higher- and lower-emission scenarios, and
the annual baseflow anomalies were very similar (Figure 7). The uncertainties of this
study were likely associated with coarse temporal or spatial resolution and systematic
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errors derived from GCMs [67]. Besides, the baseflow relies upon runoff estimates in
the model, confined by temperature and precipitation [82]. The variations of the climate
phenomenon of wet-getting-wetter and dry-getting-drier [83] also influence baseflow
changes in the catchment.

6. Conclusions

Climate selection is an important factor influencing hydrological processes. In this
study, a physical-based baseflow separation filter was used to separate baseflow from
total streamflow to assess baseflow responses to climate (e.g., varying temperature and
rainfall). Three representative general climate models with two climate scenarios were
used to predict baseflow and analyze trends and driving forces in the Weihe River Basin.
Our analyses proved that the GCMs could capture the streamflow variations under future
climate conditions and could be used to investigate baseflow characteristics at the basin
scale. Our findings showed that the selection of climate had an approximate impact on
the baseflow projection. The baseflow derived from three climate models (i.e., the future
climate conditions) with two representative scenarios demonstrated a decreasing baseflow
trend in this basin, reaching a strong decreasing trend approximately in 2040. For the
historical periods, the baseflow had two intersects using the MK test, showing that the
response of baseflow was much more sensitive than that of streamflow. Streamflow flow
lagged about 20 years behind baseflow. Annual baseflow anomalies are an efficient tool
that can be used to evaluate drought events under future climate conditions. Our study
predicted baseflow droughts (~10 years) in this catchment starting in 2041. Although it
is challenging to forecast water-storage variations accurately (e.g., drought events), the
baseflow projection from climatic scenarios in GCMs is a promising way to assess baseflow
responses to future climatic changes.
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Abstract: Groundwater irrigation is essential to sustain food production, and aquifer depletion
represents a major sustainability challenge for humanity. There is a need for adequate modelling tools
to assess the impacts of farming practices on groundwater resources with policy-makers and farmers
in different contexts, especially in the case of smallholder farms in the tropics. We introduce the
NIRAVARI model, which was designed to represent the Indian farming and water resource context.
NIRAVARI is a parsimonious model integrating biophysical and decisional processes dealing with
the farming system and the water table processes. A specific focus is given to how to irrigate with
multiple water resources. Its formalisms include equations from well-tested published models for soil
moisture and plant water stress simulations. The programming and graphic user interface is based
on Excel VBA. We illustrate the ability of NIRAVARI to simulate a broad range of farmer adaptation
strategies using four scenarios of cropping systems and water resources policies, and therefore, its
interest for participatory scenario design and assessment with stakeholders.

Keywords: irrigation strategy; modelling; climate change; India; farming systems

1. Introduction

Groundwater depletion represents a major sustainability challenge for humanity
in the 21st Century, given that groundwater is overexploited worldwide, particularly
for agriculture [1]. About 38% of global consumptive irrigation water demand is met
by groundwater [2]. With being a decade away from Sustainable Development Goals,
the need for concrete policies for groundwater management has become urgent, and all
water authorities call for methods to assess the effectiveness of policies. Furthermore,
climate change is expected to intensify this threat, especially in regions where irrigation
sustains agriculture and where population increases. Both influence the need for adaptation
strategies, and for methodological approaches to identify and evaluate these same strategies.
This is the case in India, where irrigation by groundwater is fully deployed [3].

The awareness that water resource management must account for interactions and
feedback between biophysical processes determining movement of water and human
behavior in a given socio-economic context has gained significant recognition among
scientists in the past few years [4]. Different approaches exist to work on such interactions.
Scenario modelling and evaluation is a standard way to explore adaptation strategies
in the water resource domain in the context of climate change [5]. These methods are
rooted in the more classical Story and Simulation approach [6]. They are often associated
with participatory approaches and, in recent decades, several participatory stakeholder
frameworks have been designed and implemented in projects that address adaptation
strategies for groundwater management [7].
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Simulating decisions on the farm and the technical operations of the system is a good
way to test management practices, as it integrates the dynamics of resource sharing and
constraints of the farm depending on the weather and the crop’s phenological stage [8].
Linking soil-crop models and decision-making models is an appropriate approach for
analyzing the adaptation of practices to face new agricultural challenges, such as climate
change [9]. However, in order to use modelling and simulation as a tool to provide new
insights on the impacts of different water policies on farmers and on groundwater resources,
there is a need for simple models which can be utilized to assess scenarios with policy-
makers, extensionists and farmers [10]. However, given the large diversity of farming
systems in the world, there is no “one fits all” model which could adequately represent all
types of agriculture. In particular, few models can represent smallholding farms, which
account for a large proportion of agriculture in Africa and South Asia, and especially in
India [11]. Such a model needs to be parsimonious [12], integrate farmers’ decision-making
on crops and crop management [13], allow integrating rainfed crops and represent the
effect of conjunctive use of surface water and groundwater on the resource and different
irrigation techniques [14].

One can find different types of numerical models to manage irrigation for Indian
agriculture. Some are based on testing the adequacy of different crop models for the
specific conditions in India (see for example Aquacrop and DSSAT-CERES in [15] or [16]).
Others are more concerned with more specific biophysical processes, such as salinity [17].
Others are based on linear programming and optimization processes [18], or on artificial
intelligence with neural networks and remote sensing data [19] or even the Internet of
Things and machine learning [20]. Actually, very few take into account the farmer’s
decision-making process as proposed by [21,22]. Ref. [23] represents an interesting attempt,
but is mainly focused on channel irrigation that is not the only water resource for irrigation.

Our paper presents NIRAVARI, a simple and parsimonious biodecisional model, able
to test policy schemes regarding pond, borewells and irrigation equipment. The paper
mainly focuses on the farmer’s decision-making part of the model, and the complexity
of dealing with different water resources to irrigate their farms. The initial ideas of the
model were initiated with some policy-makers during a workshop held in Bangalore in
March 2019. It was then quite clear that a simple tool was necessary to test a large range of
scenarios. Section 1 presents the Indian context, regarding farming system and irrigation
management. Section 2 presents the model; i.e., the formalism and the equations. At the
end of this section, we present the different scenarios simulated to demonstrate the ability
of the model. Section 3 presents the model developed and we elaborate on the outputs of
the simulated scenarios. In a final section, we discuss the potential and limits of the model
to elaborate and test irrigation strategies at the farm level with stakeholders.

2. Materials and Methods

2.1. Specificities of Groundwater Irrigated Farms in India

The dramatic development of groundwater irrigation in the recent decades in India
has increased the irrigated area, simultaneously increasing food production to sustain the
demand of a growing population. However, this came at the cost of tremendous impacts on
energy consumption [24], resource depletion [25] and pollution [26,27], which now calls for
an urgent rationalization of groundwater use. However, solutions are not straightforward,
and recent detailed studies conducted in a groundwater-irrigated region in southern India,
belonging to the Kabini Critical Zone Observatory in Karnataka ([28]; SNO M-tropics,
https://mtropics.obs-mip.fr/, accessed on 11 October 2022) have illustrated the complex
interactions and feedback between water resource availability and cropping systems, docu-
menting the complex technical functioning of a diversity of farming systems [29,30]. Most
Indian farmers are smallholders (less than 1ha on average), and their land is composed
of one or several independent pieces of land, called “jeminu”, in Karnataka. The size of a
jeminu can vary greatly (from 0.1 to several hectares), but typically are about half a hectare,
which can be divided into several plots for growing different crops in rotation. When
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jeminus are irrigated, they share the same water sources: a borewell and/or, more rarely,
a farm pond. In hard rock aquifers, pump yields are small and often insufficient to fully
satisfy the needs of water-intensive crops on large surfaces [25], and they vary in time
with water table level as hydraulic conductivity decreases sharply with depth [31,32]. In
addition, the energy required to operate submersible pumps is provided by the government
at no cost but for a limited number of hours per day. Therefore, irrigated cropping systems
are still largely dependent on rainfall, and farmers need to elaborate complex strategies
involving the combination of different crops in the same jeminu, and allocate the adequate
irrigation water to each of them to optimize their crop yield and economic returns. The
system can become even more complex, as farm ponds, encouraged by local governments
for securing alternate sources of irrigation and/or for enhancing the aquifer recharge [14],
are increasingly present, adding further complexity to the system. Model-based decision
support systems can therefore be of great help to farmers and decision makers in assessing
a range of irrigation strategies.

2.2. Overall Description of the System

The modeled system (Figure 1) is composed of a jeminu (i.e., a farm) divided in n beles
of the same size (i.e., plots). A jeminu can be rainfed or have a pond (water reserve) and/or
a borewell equipped with a submersible pump. The pond can either be used to irrigate the
bele or to recharge the groundwater table. The pond is represented as an inversed truncated
pyramid. The surface of the pond can be removed from the productive area of the jeminu
or not. This is an important feature for very small farms. The pump is used to irrigate the
beles, but may also be used to refill the pond. The pump withdraws water from the aquifer
and its flow rate depends on the pump characteristics and on the groundwater table depth.
On each bele, a different crop can be grown. The crop growth depends on the duration
since sowing. Crop management is described in a descriptive manner, i.e., date and action
(sowing or harvest). Only irrigation practices follow a more complex decision-making
process formalism. Different types of irrigation techniques can be used (e.g., drip, sprinkler
or furrow) which differ by the amount of water they provide when irrigation is triggered.
The model is run at a daily time step. Exogeneous variables are the climatic values: rainfall
(R(t), mm) and potential evapotranspiration (E0(t), mm).

 

Figure 1. Schematic representation of a jeminu.
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In the following, we describe the decision-making aspect of the model. The main
biophysical equations that are more “classical” are given in Appendix A. Crop and water
budget processes are based on FAO56 [33]. This decision-making model is based on farmers’
interviews carried out in 2015 [29]. This survey was aimed at understanding farmers’ farms
structure and farmers’ assets, and specific attention was given to the irrigation system:
whether they are irrigating; whether they are using a pond and/or borewells; irrigation
costs; how they pay for the irrigation systems and other equipment. A total of 684 farmers
were interviewed with the help of local translators from September 2014 to March 2015,
which represents 12.5% of farms in the watershed. The survey consisted of a face-to-face
interview lasting 2–3 h. The survey was divided into three parts. The first part focused
on household characteristics, farm structure, assets, partnerships and farm objectives. In
the second part, we asked farmers about their performances and practices over the past
two years. In the last part, in-depth questions were asked about irrigation, borewells
and rainfall. Since no yearly records were kept by farmers, information about historical
management went no further than the past two years. To develop the decision-making
model, we used the approach developed by [34].

2.3. Decision-Making Processes
2.3.1. Management Processes at the Bele Level

On each bele, there is a decision model that allows: (i) to sow the crop; (ii) to harvest
the crop; (iii) to irrigate the crop.

Sowing/Harvesting/Crop Succession

Sowing, harvesting and crop succession are based on a prescriptive model; i.e., the
user gives the crop succession and the date to sow. Harvest time is automatically calculated
by the model. This corresponds to the time it takes for the crop to reach maturity. For
example: “Beetroot is sown on the 1st of April and harvested on the 1st of July. It is followed by an
Onion, sown on the 1st of August and harvested on the 4th of November. A fallow period follows
during the Summer season.”

Irrigation Model at the Bele Level

The irrigation campaign for each bele depends on the crop grown on the bele (1). The
campaign is bordered by a starting crop age (I1) and an ending crop age (I2). Between these
two thresholds, irrigation can occur if the crop is stressed. The stress is defined as the ratio
of the actual evapotranspiration (AET) and the maximum evapotranspiration (MET):

i f
[
(I1 < A(t) < I2) and (

AET(b, t − 1)
MET(b, t − 1)

< I3)

]
then I(t) = TRUE (1)

The irrigation amount depends on the irrigation technique chosen at the bele level,
and on the available water for irrigation either pumped from the ground water table or
coming from the pond. Three irrigation technique are available: furrow, drip and sprinkler;
but others may be added.

2.3.2. Management Processes at the Jeminu Level
Irrigation Model at the Jeminu Level

Competition between the irrigation required by each bele and the availability of water
for the jeminu is managed in the irrigation model at the jeminu level. This is an adaptation
of the algorithm developed in [35]. The general principles are as follows (Figure 2):
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Figure 2. The general algorithm of the irrigation decision-making model at the jeminu level.
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• Each day, the model checks if an irrigation cycle is running. If yes, the duration of the
cycle is decreased by one, and the crops on the beles that would have needed irrigation
are stressed by one more point.

• If there is no irrigation cycle running, then the model checks if the different beles
need irrigation. Irrigation triggering once irrigation campaign has started is based on
Equation (1).

• Priority between beles requiring irrigation is computed first (see below) and irrigation
is then performed one after the other in decreasing priority.

• Irrigation water may come either from the pond or the groundwater table (through
the pump).

• When irrigation is requested, if the pond can be used for irrigation, its water volume
is used first to irrigate.

• For a bele needing irrigation, the amount provided by the irrigation cycle depends on
the type of irrigation equipment (drip, sprinkler or furrow).

• The amount of irrigation water is given on the first day of the irrigation cycle on
the bele.

• However, the amount to refill the pond (if any) is given on the last day of the irrigation cycle.
• If the amount required can be given in one day, the bele is irrigated and the remaining

water can be used to irrigate another bele or to fill the pond, depending on the number
of beles requiring irrigation. This is an optional possibility.

• If several days are required to irrigate, the irrigation cycle length is computed.
• If the irrigation cycle length may lead to crop failure (too large water stress), the bele

is not irrigated and the next bele is tested for irrigation.
• If some water remains, it can be used to refill the pond.
• When an irrigation is performed, the pump is “blocked”, meaning that it cannot be

used for another purpose.

Irrigation Priority between Beles

If different beles require irrigation the same day, priority rules are needed if not enough
water is available. To calculate irrigation priorities, we use a weighted average approach
corresponding to a priority index, �, calculated for each bele (2). The priority bele is the
bele with the smallest �. This approach makes it possible to integrate all the factors that
impact the decision-making related to the management of irrigation. The choice of factor
coefficients makes it possible to build different irrigation strategies.

� = a·Rcrop + b·Rstress + c·Rage + d·Rtechnic (2)

where a, b, c and d are the weight coefficients.

• Rcrop represents the crop priority.
• Rstress represents the water stress priority factor. This factor is linked to the cumulative

stress of the crop (number of days without water supply). For this factor, two strate-
gies are possible: (i) favor the most stressed crops to prevent them from failing, or
(ii) favor the least stressed crops, because the most stressed have already lost their
yield potential.

• Rage represents the crop cycle priority factor. This factor is linked to the relative
(normalized) state of achievement of the culture cycle. For this factor, two strategies
are possible: (i) favor crops close to the end of the cycle to ensure harvest, or (ii) favor
crops at the start of the cycle, to ensure their successful development during the first
phases of the cycle.

• Rtechnic represents the irrigation amount priority factor. This factor is linked to irrigation
technique (drip, sprinkler and furrow). The idea is to classify beles by their irrigation
technique; from the techniques requiring the least water to the techniques requiring
the most water. Two strategies are possible: (i) favor the irrigation technique with the
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larger amount of water to provide; or (ii) favor the irrigation technique with the less
amount of water to provide.

� is calculated for each bele requiring irrigation. In case of ex aequo, a final factor is
used, Rbele, the bele priority factor. The advantage of this formalism is that we separate the
strategy from the code and give the user the chance to choose his own irrigation strategy.
An example of this algorithm is given in Table 1. The first four lines of the table {1–4}
provide the priority given to the four priority factors. Rcrop is priority one, Rstress priority 2,
Rage priority 3 and Rtechnic is not considered. For Rstress and Rage, the option of how to
consider stress and age is given, respectively. For Rstress, we favor the more stressed crop
first; while for Rage, we favor first the more aged crop.

Table 1. An example of the algorithm to determine the priority between the different beles to be
irrigated. In this case, the bele irrigated is bele 1 as it has the lowest �. See text for details.

Priorities Option

1 Rcrop: crop priority 1
2 Rstress: stress priority 2 favor more stressed crop
3 Rage: crop cycle priority 3 favor aged crop

4 Rtechnic: irrigation
technic priority 0 -

Weights

5 a 0.167 =1/(1 + 2 + 3)
6 b 0.333 =2/(1 + 2 + 3)
7 c 0.500 3/(1 + 2 + 3)
8 d 0.000 0/(1 + 2 + 3)

Daily data

9 Bele 1 2 3
10 Crop cucurma beetroot onion
11 crop priority 1 2 3
12 Irrigation Drip Furrow Sprinkler
13 Irrigation amount (mm) 15 50 25
14 Crop length (d) 240 90 90
15 Crop age (d) 230 30 2
16 Crop water stress level 10 6 5

17 Number of days
without irrigation 5 5 4

Priority calculation

18 Rcrop 0.167 0.333 0.500
19 Rstress(j) 0.50 0.17 0.20
20 Rage(j) 0.04 0.67 0.98
21 Rtechnic 0.3 1 0.5
22 Overall priority 0.22 0.44 0.64

23 In case of equal Rbele,
bele prioriy 1 3 2

The next four lines {5–8} give the computation for the different weights (see (2)). For example,
as Rcrop is priority 1 and that {priority(Rcrop) + priority(Rstress) + priority(Rage) + priority(Rtechnic)}
equals 6, then (a) equals 1/6 = 0.167.

Lines {9–17} give the status of the system on an example day to demonstrate the
computation: there are three beles, with each a different crop {10}. Priority between these
different crops is given on {11}. These three beles can be irrigated with a different irrigation
equipment {12} providing a given amount of water {13}. Lines {14–17} give the status of
the crop regarding their age and their water stress. From this information the different
priorities are calculated {18–21}. Rcrop is calculated using {11} and the same algorithm used
to calculate the weights (see above); Rstress is calculated as {17}/{16}; Rage is calculated as
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1- {15}/{14}; and Rtechnic is calculated as {13} divided by the value of the technic given the
largest amount of water; here, it is a furrow with 50 mm. Line {22} calculates the final value
of � using (2). In the case of ex aequo, we use {23} to decide the bele to irrigate.

2.3.3. The Dynamic of the System

The general dynamic of the model is as follows:

1. Initialization of the simulation:

1.1. Create the jeminu.
1.2. Create the different beles and initialize the bele (soil water amount).
1.3. Create a pump and a pond, if any.
1.4. Initialize the pond (water amount).
1.5. Create a dictionary of crops and a dictionary of irrigation practices.
1.6. Read the full climatic series.

2. Daily simulation:

2.1. For each bele, manage the crop (check for sowing, harvesting and crop failure).
2.1. On the jeminu, manage the irrigation.

2.1.1. Check for beles that need irrigation.
2.1.2. Manage priorities between beles.
2.1.3. Provide irrigation if water is available.

2.3. Update crop water stress on the different beles.
2.4. Perform the water budget on the different objects (beles; pond, if any; and

groundwater table)

3. At the end of the simulation period:

3.1. Write an output file (dump memory).
3.2. Create graphs to analyze the scenario.
3.3. Clean the memory and end-up the simulation.

2.4. Modeling Approach

The model was developed under VBA Excel© using an object modeling structure [36].
Graphic user interface was based on an Excel worksheet facilitating data validation and error
checking. Each simulation creates a new workbook with simulated data and explanatory graphs.

2.5. Testing Scenarios

In order to demonstrate the use of the model, we proposed a set of example scenarios:

1. Sc0 (ref): The reference scenario corresponds to a rainfed farm with two plots (5000 m2

each). For rainfed farms, crops are grown only in two seasons, Kharif and Rabi, which
is a widely used crop practice in the area. For each season, the farmer grows the two
major crops of the area, each crop in one plot: for Kharif, sorghum and sunflower, and
for Rabi, maize and horse gram. Rainfed crops are drought resistant, but these crops
fail at a stress of 0.2 or less over a 5-day period.

2. Sc1: For Scenario 1, the farmer chooses to keep the same cropping system as in Sc0,
but to install a pond that is filled by the runoff of rainwater on his watershed. This
pond is lined and covered in order to avoid losses and to make the best use of the
collected water, in protective irrigation. The surface of the pond is removed from
the jeminu area. The irrigation is triggered when the crop is stressed to 0.4, to avoid
its failure. For this scenario, furrow irrigation is used, the most common irrigation
technique in the area. In case of competition for irrigation water, the farmer favors the
most stressed crop closest to the end of its cycle in order to maximize the chance of
a harvest.

3. Sc2: For Scenario 2, the farmer intensifies his production system compared to Sc0, by
installing an 80 m-depth borewell, and by developing cash crops on four plots. The
farmer grows beetroot in Kharif, tomatoes in Rabi and watermelon in Summer. These
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crops are quite common in the area. Crop failure occurs when a crop has a stress less
than or equal to 0.45 over a 5-day period (Table 2). The irrigation system is a furrow,
and it is activated when the crop is at 0.6 stress. In case of competition for irrigation
water, the farmer favors the crop with the highest stress level in order to avoid losing
production quality.

4. Sc3: For Scenario 3, the farmer has the same cropping system and the same structural
aspects as Sc2, but he decides to install a pond in addition. The functioning of this
pond is different from that of Sc1. The pond in Sc3 is filled with water from the
borewell in addition to the runoff, in order to store water on days when there is no
irrigation demand, or if there is excess water after irrigation.

Table 2. Crop parameters regarding crop water stress (see A3 for details).

Crop
p1

[0; 1]
p2

[mm]
p3

[Number of Days]
Scenario

Beetroot 0.45 20 5 3
Horse gram 0.2 20 5 1, 2

Maize 0.2 20 5 1, 2
Sorghum 0.2 20 5 1, 2
Sunflower 0.2 20 5 1, 2

Tomato 0.45 20 5 3
Watermelon 0.45 20 5 3

For all the scenarios, the farm size assumed is 1 ha with a typical black soil. We used
the 15-year Maddur climatic series (Latitude: 12◦35′3.01′′ N; Longitude: 77◦02′41.64′′ E) to
run the simulation. The full parametrization of Sc0 is given in Appendix B.

3. Results

3.1. Model Graphic User Interface

When the user opens NIRAVARI, only three worksheets are initially visible: (i) a “read
me” sheet explaining how to use the model; (ii) a Climate sheet, allowing the integration
of the requested climatic data; and (iii) an Init sheet, allowing the user to parametrize
the simulation. The Graphic User Interface allows the user to parametrize the simulation
(Figure 3) with different validation processes (based on “data validation” from Excel).
Information is given to the user whereby they have to fill in some data. Only cells in yellow
can be modified. Once the parametrization is performed, the user clicks on the “Run”
button, allowing for the simulation to run. When the simulation is over, a new workbook is
opened with the computed data and some standard graphs, to then analyze the simulation.

A second button, “Load”, allows the user to load a previous run to test a modification
on a base scenario.

357



Water 2022, 14, 3211

 

Figure 3. The upper screen of the graphic user interface. This Graphic User Interface allows for
parametrizing of the simulation. Information and data validation are performed at this step.
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3.2. Playing with the Model

The first indicator we observed was the level of crop failure over the 15-year climatic
period (Table 3). Crop failure process is explained in A3. Growing using a rainfed system,
(Sc0) shows a failure of 15% of the crops developed over the 15 years. Adding a pond in
the jeminu (Sc1) improves the result (8% failure). This is due to the use of some irrigation
to remove water stress to crops. However, it is impossible to avoid all failures, since the
amount of water in the pond is not sufficient to irrigate all the crops in case of drought
years. Moving to a pump and borewell system with more water-sensitive crops (but more
expected economic return), (Sc2) shows a higher percentage of crop failure (29%). This
high level of crop failure, despite irrigation possibilities, is due to two factors. The first is
the use of more water-deficit-sensitive crops (Table 2). The second is due to the irrigation
process itself. All beles cannot be irrigated on the same day, and the amount provided to
the crops due to the irrigation technique (furrow) implies long irrigation cycles. Some beles
are therefore not irrigated when needed, increasing the crop water stress leading to crop
failure. This demonstrates the impact of the choice of water-intensive crops in spite of the
addition of a bore well. If a buffer pond is added (Sc3), the situation improves with only
8% of crop failure.

Table 3. Percentage of crop failure over the 15-year climatic serie.

Scenario Number of Crops Failure

Sc0 60 15%
Sc1 60 8%
Sc2 180 29%
Sc3 180 8%

The second indicator is an economic estimation (Figure 4). We used the net return
indicator (NR) to compare the scenario estimated as (3):

NR =
n

∑
i=1

[Ai /10, 000·((Yi ∗ wi∗ pi)− Ci ] (3)

where Ai: crop area (m2), Yi: crop potential yield (T·ha−1), wi: mean crop water stress; p:
crop price (Rs·t−1); Ci: crop costs (Rs·ha−1). We carried out a survey with farmers in the
region to estimate the production costs, the market price and the potential yield for each
crop. In case of crop failure, which can occur at any time during the crop cycle, we estimate
that the farmer loses all production costs.

Sc0 situation allows farmers to earn 48,600 Rs (median), with a consequent number of
years of loss. Adding a pond for protective irrigation (Sc1) drastically reduces the years of
losses and low net return. The system with irrigated crops with a borewell (Sc2) improves
the median net return (336,000 Rs), but makes it very variable due to the crops’ failure and
high-value crops’ sensitivity to water shortages and droughts. Adding a buffer pond (Sc3)
not only improves the median net return (489,000 Rs), but also reduces variability.

The third indicator is based on the pond water budget (Figure 5). This figure is more
complex as it integrates the different components used to compute the dynamic of the pond
water budget. The dynamic of the volume of the pond is given in clear blue on the first
y-axis (left-hand). Input variables for the pond are on the first y-axis: rain (red), refill from
the borewell (yellow) and runoff from the watershed (gray). The output variables are given
on the second y-axis (right hand) in inverse order, the zero value being at the top of the
graph: pond over flooding (orange), pumped for irrigation (lilac) and evaporation (light
red). Depending on the parameters used for simulation, some of these variables will be
null, or will change during the simulation. Scenarios Sc1 and Sc3 show two different modes
of using the pond. In Sc1, the pond contributes to storing runoff water for irrigation when
crops are most stressed. The pond is filled from time to time and quite slowly (Figure 5A).
In Sc3, the pond is used as a buffer in order to store the water available by the pump and
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by the runoff. The pond is therefore filled quite often. It is used when the pump flow rate
is not sufficient to provide the required irrigation needs.

Figure 4. Net return distribution over the 15-year simulation period by scenario.

A 

 

Figure 5. Cont.
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B 

 

Figure 5. Pond water budget for Sc1 (A) and Sc3 (B).

The last indicator we propose is water table evolution due to the use of the different
systems (Figure 6). The use of the pond in Sc1 has a low impact on the water table
(comparing Sc0 and Sc1). The slight decrease in water table levels in Sc1 comes from the
reduction of crop failures, which consequently reduces the water that is drained into the
groundwater, as it is used by the saved crops. The 100% irrigated cropping system of Sc2
impacts the level of the water table, because the long-term pumping pushes the water table
to a quasi-constant decline. On the other hand, in Sc3, and in addition to the phenomenon
explained before (the reduction of crop failure), the amount of water pumped is important
because all the water available from the pump for one day is pumped even if there is
no irrigation demand or if the irrigation demand is lower than the water available from
the pump.

 
Figure 6. Evolution of the water table depth depending on the four scenarios of farming practices.
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4. Discussion

So far, no model exists to deal with farmers’ decision-making to irrigate their farms
with multiple irrigation sources in the Indian context. NIRAVARI has been developed to be
used as a tool by policy makers and technical advisors to assess different policies better
placed to manage water resources in the broader context of climate change. To develop such
a tool, we reused simple but robust, already existing models, such as the FAO model for
crop growth and other simple models for other processes. The originalities of NIRAVARI
regarding other irrigation models in India (see for example) are: (1) the decision-making
model and its ability in testing a large range of decisions based on simple criteria; (2) its
ability to study the distribution of water from the same source to different crops; (3) its
ability to study two irrigation sources simultaneously; and (4) to consider the feedback
between the cropping system and the water source.

Instead of using complex modelling languages, we chose a wide-spread language
(VBA), allowing for object-oriented modelling and programming. Each element of our
farm system is then modeled as an object, and a multiplicity of objects (such as beles or
crops) are dealt with as structured containers. The use of Excel allows users to manage
simple graphic user interfaces with validation processes in order to avoid any false input
to the model parameters.

The scenarios tested show that rainfed systems can maintain a balance in the water
table, but the income from these systems is very low and highly variable due to climate
variability. However, adding a pond to this system reduces the vulnerability of these
farms to climate variability while preserving the water table. On the other hand, a 100%
irrigated system with high-added value crops leads to a significant improvement in income,
but a drastic decrease in the water table. Indeed, this system leads to an instability of
income that systematically decreases with the lack of water. Adding a pond buffer to
this system limits the variability of income, but accentuates the decline of the water table,
which limits the sustainability of the groundwater resource. These simulations can provide
valuable considerations to policymakers, to decide on production systems and water
storage technologies, and for their use to be promoted.

Creating such a parsimonious, simple and handy model is also limited to the range of
model applications, and the interpretation of some outputs should be considered with care.
For example, the choice of the FAO-56 single coefficient formalism [33] implies that the
model represents evaporation and transpiration as a single flux, and therefore, calculating
the crop water use efficiency for different scenarios is not possible. Similarly, as in the
FAO-56 formalism, there is no impact of the water stress on crop water demand, the stress
is probably overestimated for rainfed crops—adapted to reduce their demand during
drought—compared to strictly irrigated crops. Finally, the impact of water stress on the
marketable yield, although drastically simplified (with no account for the disproportionate
effect of stress during few critical phenologic stages and being more pronounced for water
intensive crops than for more rustic ones), implies that the economic outputs of the model
must be considered only as rough estimates.

Moreover, the size of the jeminu, the number and size of plots being fixed, the crop
rotation being a forced variable for each simulation, and the adaptation of farmers to
variations of water availability can be only partially accounted for in the model. This is
the case of the “Jevons paradox” observed in Indian systems, where access to water-saving
irrigation technologies can induce an increase of the irrigated area, and therefore, a faster
depletion of the aquifer [37].

Finally, while one original feature of NIRAVARI is to account for the feedback between
agricultural practices and groundwater resources, it can only represent one farm at a time,
and therefore, the results of the simulations should not be interpreted as predictions of what
is likely to happen in a farm, which could be surrounded by other farms with very different
practices, all foraging the same aquifer. Instead, users should keep in mind that the type of
questions to ask the model are rather of the type: “What is likely to happen if all farmers in
a small region adopt the same practices as the one that is simulated in NIRAVARI?”.
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5. Conclusions

NIRAVARI was developed to help farmers and advisers, and to provide some analysis
to policy-makers, move toward schemes they would like to implement. NIRAVARI can be
used for a large range of questions and can, thanks to its simplicity (parsimonious) and
genericity, be applied much beyond the Indian context. Crop parametrization, ground
water transfer process and farm structure are easily changeable to represent a wide range
of water management situations from countries other than India. Even if NIRAVARI was
at first aimed at policy-makers, it can also be used as a training media for students to
understand the impacts of irrigated agriculture on groundwater resources.

As a follow-up of the initial meeting with the policy-makers during a workshop held in
Bangalore in March 2019, NIRAVARI is due to be presented to the officers of the Watershed
Department in December 2022.

6. Patents

The NIRAVARI model is freely available on request to the main corresponding author.
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Appendix A. Equations of the Biophysical Model

Let us call b the index to represent a bele and t the index for the time.

Appendix A.1. Soil Water Budget

The state variable of interest is the soil water content (W(b,t), m3). Water inputs
(iW(b,t), m3·d−1) are irrigation (I(b,t), m3·d−1) and part of the rainfall in case of runoff
(Rf (b,t), m3·d−1). Runoff is based on the curve number formalism [38]. Water outputs
(oW(b,t), m3·d−1) are actual evapotranspiration (Ea(b,t), m3·d−1, see crop process) and
drainage (Dr(b,t), m3·d−1). Drainage occurs when the soil water capacity is full (tipping
bucket formalism, [39]).
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δW(b, t) = iW(b, t)− oW(b, t)
iW(b, t) = R f (b, t) + I(b, t)
oW(b, t) = Ea(b, t)
R f (b, t) = [R(t)− runo f f (t)] ∗ size(b)/1000⎧⎪⎪⎨
⎪⎪⎩

i f (kc(b, t) > 0) then

⎧⎨
⎩

i f
(

W(b,t−1)
Wx(b)

)
> fw then Ea(b, t) = min(W(b, t − 1), kc(b, t)·E0(t))

else Ea(b, t) = min
(

W(b, t − 1),
(

W(b,t−1)
Wx(b)

)
∗ fw ∗ kc(b, t)·E0(t)

)
else Ea(b, t) = min(W(b, t − 1), ks ∗ E0(t) ∗ size(b)/1000

i f (W(b, t − 1) + δW(t) > Wx(b)) then
{

Dr(b, t) = (W(b, t − 1) + δW(t))− Wx(b)
W(t) = Wx(b)

else
{

W(t) = W(t − 1) + δW(b, t)
Dr(b, t) = 0

(A1)

where kc is the evaporation crop coefficient (see Appendix A.2. Crop Processes), ks is the
evaporation bare soil coefficient, Wx(b) is the maximum soil water capacity of bele b (m3)
and size(b) is the size of the bele (m2)

Appendix A.2. Crop Processes

Let us call A(t) the age of the crops (in days). From crop sowing to crop harvest (see
2.3.1. ), A(t) follows a simple linear function: A(t) = A(t − 1) + 1.

Crop coefficient (kc(t)) is modelled by a multilinear function from FAO56 [33] (Figure A1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i f (0 < A(t) < d1) then kc(t) = kc1

else i f (d1 < A(t) < (d1 + d2)) then kc(b, t) = (A(t)− d1) ∗ (kc2−kc1)
d1

+ kc1

else i f ((d1 + d2) < A(t) < (d1 + d2 + d3)) then kc(b, t) = kc2

else i f ((d1 + d2 + d3) < age(t) < (d1 + d2 + d3 + d4)) then kc(b, t) = ((d1 + d2 + d3 + d4)− A(t)) ∗ (kc2−kc3)
d4

+ kc3

else kc(b, t) = kc3

(A2)

where d1, d2, d3 and d4 are duration between growing phases (in days) and kc1, kc2 and kc3
are specific kc values. All these parameters are crop dependent.

Figure A1. The multistage crop coefficient. From FAO56 [33].

Representing Crop Water Stress

The crop water stress is calculated using a simple algorithm. If the crop requires water
and no water is provided, its stress increases by one. If the level of stress reaches a given
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threshold, then the crop dies. The level of stress can be zeroed if a sufficient amount of
water is provided to the crop:⎧⎪⎨

⎪⎩
i f
{

AET(t)
MET(t) < p1 and I(t) = 0

}
then Ns(t) = Ns(t − 1) + 1

i f (I(t) + R(t) > p2 ) then Ns(t) = 0
i f Ns(t) ≥ p3 then crop die

(A3)

where AET(t) is the actual evapotranspiration, MET(t) is the maximum evapotranspiration,
I(t) is the amount of irrigation water provided, Ns(t) is the stress level, R(t) is the daily
rainfall p1, p2 and p3 are crop dependant parameters. Modifying p1, p2 and p3 allows to
represent different crop sensitivity to water stress.

Appendix A.3. Pump Process

The pump flow rate (f, m3 s−1) follows a power function depending on the depth of
the ground watertable (see Appendix A.5. Water Table Processes). This is based on pump
flows measurements on the Berambadi watershed [26,32].

f (t) = a·H(t − 1)b (A4)

where a and b are parameters and H represents the height of the water table (m)

Appendix A.4. Pond Processes

The pond is modelled as a right prism (Figure A2). Pond water contents (Wp(t),
m3), depends on the water level in the pond (hp(t), m). Water input (iWp(t), m3·d−1) are
rainfall (Rp(t), m3), refill by the pump when water is available (Rf (t), m3—see management
processes) and runoff (Ro(t), m3). Water output are pumping for irrigation (Ip(t), m3—see
management processes), surface evaporation (Ep(t), m3) and recharge of the ground water
table if the pond is permeable (Dp(t), m3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δWp(t) = iWp(t)− oWp(t)
iWp(t) = Rp(t) + R f (t) + Ro(t)
oWp(t) = Ep(t) + Ip(t) + Dp(t)
Rp(t) = R(t) ∗ sur f0/1000{

i f (R(t) < γ1then Ro(t) = 0
else Ro(t) = γ2·(R(t)− γ1)

Ep(t) = min(Wp(t − 1), E0(t)·sur f (t − 1)/1000
Dp(t) = ∂·Wp(t − 1)

(A5)

where γ1 and γ2 are parameters to deal with the runoff process, surf 0 is the upper surface
area when the pond is full (m2), surf (t − 1) is the actual upper surface area (m2). Due the
geometrical structure of the pond, there Wp and surf are linked. Detailed calculations are
not given here.

Figure A2. The pond geometrical representation.
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Appendix A.5. Water Table Processes

The ground watertable height (H(t), m) varies depending on the net recharge (nR(t),
m3·d−1), ie the difference between input (drainage from the different beles and recharge by
the pond) and output (irrigation to the different beles and lateral losses (Q(t), m3·d−1).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

′
H(t) = H(t − 1) + nR(t)/Sy
nR(t) =

(
Dp(t) + ∑n

b=1 D(b, t)
)− ∑n

b=1 I(b, t)

i f

(
′

H(t) > Hx

)
then

′
H(t) = Hx

Q(t) = (H(t)− H)·Sy·α′

H(t) =
′

H(t)− Q(t) / Sy

(A6)

where H(t) is an intermediate variable, Sy is the specific yield of the aquifer, α is the
groundwater recession coefficient.

Appendix B

 

 

Figure A3. Parameters of Sc0.
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Abstract: In recent years, urban flooding has become an increasingly serious problem, posing a
serious threat to socio-economic development and personal safety. In this paper, we consider the
Dongfeng Canal area in Zhengzhou City as an example and build a 1D/2D coupled urban flood
model using the InfoWorks ICM. This study area uses six scenarios with rainfall return periods of 5 a,
20 a, and 50 a, corresponding to rainfall ephemeris of 1 h and 2 h to assess the flood risk. The results
of the study show that (1) The flood depth, inundation duration, and extent of inundation in the
study area vary with the return period and rainfall history. Generally, most of the water accumulation
is concentrated in the low-lying areas adjacent to the river and near the roadbed. (2) As the rainfall
recurrence period and rainfall duration increase, the proportion of overflow at the nodes becomes
more pronounced and the overload from the pipe network flows mainly to the overload. (3) The
high-risk areas under the different scenarios are mainly distributed on both sides of the river, and
most of the low-risk areas transform into medium- and high-risk areas as the rainfall recurrence
period and rainfall duration increase. This study analyses the flood risk situation under different
scenarios, as well as the elements and areas that should be monitored in case of flooding, with the
aim of providing a reference for flood prevention and control in the study area and formulating
corresponding countermeasures. It also serves as a reference for flood risk analysis in other areas
with similar situations.

Keywords: urban flood simulation; risk assessment; InfoWorks ICM; urban drainage 1D/2D modelling

1. Introduction

Urbanisation and changes in land use have had a considerable impact on the processes
and elements of the water cycle [1,2], whereas in recent years, global climate change and
extreme weather have occurred frequently, and urban flooding caused by heavy rainfall
has gradually become a hot topic of concern for scholars [3]. The frequent occurrence of
urban flooding disasters has brought substantial economic losses and casualties to society
and seriously threatened urban public safety [4]. Therefore, it is essential to understand
the risk areas of urban flooding and conduct flood risk assessments to prevent and control
urban flooding and reduce the losses caused by such disasters [5].

A common method for conducting an urban flood risk assessment is the historical
disaster statistics method [6], which focuses on using statistical methods to analyse the
development pattern of flooding, predict possible future flooding hazards, and estimate
possible losses due to flooding based on historical flooding information and rainfall data
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in the study area [7]. For example, Hans de Moel et al. analysed trends in flood risk in
time and space and made projections for future land use and flood inundation risk in the
Netherlands. Their findings show that over spatial spans, flood losses are greater in areas
of high economic growth than in areas of low economic growth. However, high-economic-
growth areas are more resilient to flood risk than low-economic-growth areas [2]. Man
Qi et al. analysed the effects of topography, rainfall, and impervious surfaces on urban
flooding and their spatial patterns of variation for four recent storm events in Cincinnati,
USA. They used the kriging interpolation of estimated rainfall depths to measure the
impact of rainfall on urban flood hazards [8].

With the development of computer technologies, hydrological hydrodynamic sim-
ulation methods are increasingly being applied to urban flood risk assessment. Some of
the more widely used numerical models in urban hydrological simulations are SWMM,
MIKE, and InfoWorks ICM [9]. For example, Zhao et al. used the coupling of two models,
SWMM and MIKE21, to simulate in detail the spatial distribution and water depth of the
inundated area in the central part of Cangzhou City under different rainfall return periods
and evaluate the economic losses from flooding in the risk area [10]. Sidek et al. used the
InfoWorks ICM hydrological-hydraulic model of the Baisala basin as an example to model
the response of the basin to rainfall based on the Probabilistic Distributed Moisture (PDM)
model to generate flood hazard maps based on several average repetition intervals (ARI)
and uniform rainfall depths and analyse the main influences affecting the flood depth and
extent [11]. Tabari et al. used the InfoWorks ICM hydraulic model to quantify the impact
of anthropogenic climate on urban rainfall flooding in Antwerp, Belgium, using a risk
assessment framework and causal counterfactual probability theory [12]. Compared to the
analysis of flood risk through historical hazard scenarios, hydraulic modelling provides
a more accurate risk assessment method and allows for a more comprehensive analysis
of flood risk conditions [13–17]. The existing models work well on a large regional scale.
For urban areas, flood risk modelling needs to be more precise, for example, down to a
particular road or square. However, the lack of monitoring of relevant data at the urban
scale, such as check-well level data and data from drainage networks, has led to only a
few academics working on flood risk models for small urban catchments [16,18–26], so this
paper constructs an urban flooding model using the Dongfeng canal area in Zhengzhou
City as an example to analyse the flood risk within this small urban catchment.

The objectives of this study are (1) to comprehensively consider the hydrological
processes between river–urban drainage system–surface runoff and construct a 1D/2D cou-
pled urban flood model based on InfoWorks ICM and an analysis of urban flood processes;
(2) to use the storm intensity formulae to design different rainfall scenarios; analyse the in-
undation depth, duration of inundation, and inundation extent under different recurrence
period design storms; and analyse the overflow distribution and drainage capacity of the
pipe network at the nodes; and (3) to construct an urban flood risk assessment system to
analyse the urban flood risk for the study area.

2. Materials and Methods

2.1. Study Area

Zhengzhou is the capital of Henan Province, located in the north-central part of
Henan Province, where the middle and lower reaches of the Yellow River divide, be-
tween longitude 112◦42′–114◦14′ E and latitude 34◦16′–34◦58′ N. Zhengzhou is mostly a
plain, except for the hills in the southwest, and the terrain is flat, with elevations generally
less than 284 m, the lowest being only 79 m. There is a difference of 205 m between the
highest and lowest points in the territory.

The Dongfeng Canal drainage area of Zhengzhou City was selected as the study area
for this study. This study area is located in the northern part of the main urban area of
Zhengzhou. The study area covers an area of approximately 80 km2.

The study area has a temperate continental monsoon climate with an average annual
precipitation of 632.4 mm and an average of 78 days of precipitation per year [27]. The ex-
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treme annual maximum rainfall is 1339 mm and the extreme annual minimum rainfall is
380.6 mm, with rainfall concentrated between June and August each year and the heaviest
rainfall occurring in August.

The main major river network in the study area is the Dongfeng Canal. The Dongfeng
Canal is a man-made river that was dug in 1958. Originally used as a channel to divert
water from the Yellow River for irrigation, it now fulfils important functions in flood control,
ecology, and landscape. The Dongfeng Canal starts at the Yellow River embankment and
joins the Sosu and Jalu rivers to the south. At the same time, the Dongfeng Canal also
intersects with a number of tributaries in the city centre. The Dongfeng Canal is one of
the most important north–south oriented rivers in the city and has the task of draining
flood water. The total length of the stormwater pipe network laid in the study area is
295.62 km. Stormwater in the study area is mainly discharged into the Dongfeng Drainage
Canal through the stormwater pipe network laid on arterial roads such as the North Third
Ring Road, Garden Road, Zhongzhou Avenue, East Yellow River Road, and East Dongfeng
Road. Figure 1 shows the location of the study area, the distribution of the stormwater pipe
network, and the elevation schematic.
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Figure 1. Location of the study area, stormwater network distribution, and elevation data.

2.2. Data Collection and Manipulation

The basic data required to build the hydrodynamic model during the study included
the following: road-building data, stormwater pipe network and node distribution data,
5 m accuracy DEM data, and land use/land cover data.

Road construction data were obtained from OSM (https://www.openstreetmap.org
(accessed on 6 April 2022)). Stormwater pipe network and node data with a 5 m accuracy
provided by Zhengzhou Planning and Survey Design Institute were used for the construc-
tion of the 1D stormwater pipe network and 2D surface diffuse flow model underlying the
study area.
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Land use data were classified using ArcGIS PRO for the supervised classification of
satellite image data. Image data were obtained from the Geospatial Data Cloud (www.
gscloud.cn (accessed on 6 April 2022)), Landsat8 OLI-TIRS remote sensing imagery [28].
Based on the current land use situation in the study area and the needs of the study, the land
use in the study area was classified into five categories: building land, green space, water
bodies, bare soil, and roads.

The river network data in the study were river shapes determined using satellite
imagery and DEM data were used to extract features from river cross-sections.

2.3. Research Methodology
2.3.1. InfoWorks ICM Hydrodynamic Modelling

(1) Basic theory

This study integrates the water exchange between the pipe network and the two-
dimensional surface and river channels and uses InfoWorks ICM software to construct a
one-two-dimensional coupled urban flood model [29].

The model is mainly concerned with hydrohydraulic processes such as rainfall, surface
runoff, and the drainage of the pipe network [30]. The Infoworks ICM model is used to
simulate the diffusion and transport of water in pipes by completely solving the system of
St.Venant equations with the control equations in Equations (1) and (2).

∂A
∂t

+
∂Q
∂x

= 0 (1)

∂A
∂t

+
∂

∂x

(
Q2

A

)
+ gA

(
cos θ

∂h
∂x

− S0 +
Q|Q|

K2

)
= 0 (2)

where Q is the flow rate, m3/s; A is the pipe section area, m2; t is the time, s; x is the length
of the pipe along the flow direction, m; h is the water depth, m; g is the acceleration of
gravity, m/s; θ is the horizontal angle in degrees; K is the water transfer rate, determined
by Manning’s formula; S0 is the slope of the pipe bottom.

The Infoworks ICM model generalises the river channel to a piped open channel
when simulating the flood evolution of the river network and uses a one-dimensional
hydrodynamic model for the simulation [31,32], with the basic control equations being

∂A
∂t

+
∂Q
∂x

= q (3)

∂A
∂t

+
∂

∂x
β

(
Q2

A

)
+ gA

(
∂y
∂x

)
+ gAS f − uq = 0 (4)

where Q is the flow rate, m3/s; A is the cross-sectional area of the river crossing, m2; t is
the time, s; x is the horizontal coordinate along the flow direction, m; y is the water level,
m; g is the acceleration of gravity; β is the momentum correction factor in degrees; K is the
water transfer rate, determined by Manning’s formula; S f is the frictional slope drop; u is
the flow rate of the lateral incoming flow in the river direction; q is the lateral incoming
flow rate of the river, m3/s.

It uses the two-dimensional finite volume method to solve the shallow water equations
in the simulation of two-dimensional surface diffuse flow by using the TVD excitation tech-
nique and the Riemann solver to solve the model computationally. The two-dimensional
surface model can effectively and accurately simulate the flow of water on complex urban
surfaces and provide support for engineering planning and design [31,33]. The shallow
water control equations used in the simulation are as follows:

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= q1D (5)
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∂(hu)
∂t

+
∂

∂x

(
hu2 +

gh2

2

)
+

∂(huv)
∂y

= S0,x − S f ,x + q1Du1D (6)

∂(hv)
∂t

+
∂

∂x

(
hv2 +

gh2

2

)
+

∂(huv)
∂y

= S0,y − S f ,y + q1Dv1D (7)

where h is the water depth, m; u is the velocity component in the x-direction, m/s; v is the
velocity component in the y-direction; S0,x is the bottom slope component in the x-direction;
S0,y is the bottom slope component in the y-direction; S f ,x is the friction component in the
x-direction; S f ,y is the friction component in the y-direction; q1D is the outflow rate per unit
area, m3/s; u1D is the velocity component of q1D in the x-direction, m/s; v1D is the velocity
component of q1D in the y-direction, m/s.

(2) One-dimensional stormwater pipe network data pre-processing

Before constructing a 1D drainage model of the study area, the raw data were pre-
processed, for example, by checking the connections to the pipe network. For areas without
a drainage network, the discharge of rainwater directly into the nearby mains network
was considered. To reduce the calculated pressure, the stormwater pipe network was
generalised. For example, pipes with several branches located in the same catchment
area were combined into one drainage pipe based on their drainage capacity. After the
simplification, the total length of the stormwater pipes was 295.62 km, with a total of 1837
inspection wells and 69 outlets.

(3) Catchment delineation

The overall topographical variation in the study area was not significant and the data
from the stormwater network were relatively similar, so the Tyson polygon method was
used for sub-catchment delineation. The Tyson polygon method was used to delineate
the sub-catchments. All adjacent inspection shafts were joined into a triangle and the
perpendicular bisectors of the sides of these triangles were made so that a number of
perpendicular bisectors around each inspection shaft formed a polygon. In addition, some
sub-basins were manually adjusted according to the layout of the pipe network and field
surveys. A total of 1837 sub-catchments were finally delineated.

(4) Determination of model parameters

The flow-producing surfaces were divided into four categories according to land use:
building sites, roads, green spaces, and bare soil. Green areas and bare soil are permeable
surfaces. The fixed runoff coefficient method was used for impervious surfaces and the
Horton method was used for permeable surfaces [32]. The SWMM nonlinear reservoir
method was used to simulate the confluence of the study area based on topographic data.
The parameters of different types of flow-producing surfaces were also set according to
previous research results in similar areas [34–37]. The specific values of the parameters are
given in Table 1.

Table 1. Model production sink parameters.

Type of
Landuse

Type of
Maternal

Flow

Production Flow Parameters
Runoff
Routing

Value

Fixed
Runoff

Coefficient

Initial
Infiltration

Rate

Stable
Penetration

Rate

Attenuation
Factor

Building site Fixed 0.9 - - - 0.019
Road 0.9 - - - 0.02

Green land Horton - 76.5 2.5 2 0.13
Bare area - 65 2.5 2 0.05

(5) Two-dimensional model setup
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The gridding interval was set for the study area and the size of the triangular grid
was adjusted to meet the study requirements. Considering that the accuracy of the DEM
may not reflect the inundation of the road, the grid elevation of the area where the road
is located was reduced by 15 cm in order to better simulate the actual road conditions
in the study area. In order to be able to reduce the amount of computation as much as
possible while meeting the conditions of simulation accuracy, in the modelling process, the
calculation grid was encrypted for key areas such as roads, and as large a grid as possible
was used for areas with a single land use type. The final triangular grid was divided into
97,112, with a minimum grid area of 20 m2 and a maximum grid area of 1000 m2.

(6) Validation of the model

In order to check the applicability of the parameters in the study area, the simulation
results need to be validated. A rainfall event with a 50-year rainfall intensity was used as
the boundary condition for the model to compare the distribution of the simulated flooding
points in the study area with the actual flooding points. The actual distribution of the
flooding points was obtained from the information on flood-prone points published by the
Zhengzhou traffic department.

Comparing the historical statistical inundation points in red in Figure 2 with the
inundation extent of the simulation results, it can be seen from the figure that the inundation
points simulated by the model match the distribution of the actual inundation points. Most
of these inundation points are located where the duration of inundation is relatively long.
The model parameters are therefore considered to be appropriate and the simulation results
are reliable.

Q

Q

Q

Q

Q
Q

Q

Q

Q

Q

Q
Q

±

Q

Figure 2. Distribution of simulated results compared to measured water accumulation points.

2.3.2. Scenario Setting

In this study area, several sets of rainfall scenarios were set up based on the storm in-
tensity formula to analyse the flooding impacts of different rainfall scenarios [37]. The storm
intensity equations used for the study are as follows:

q =
7057.6(1 + 0.794 lg P)

(t + 25.8)0.948 (8)
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where q is the average storm intensity in mm/min; P is the return period in a; t is the
rainfall time in min.

The design recurrence period of the pipe network in the study area is 2 a. Combining
the historical rainfall and flood control needs of the study area, the flooding situation of
the Dongfeng canal area was simulated under the rainstorm scenario, and six rainstorm
scenarios with a rainfall duration of 1 h and 2 h for 5 a, 20 a, and 50 a events were designed
as the different rainfall scenario driving models. The rainfall process time interval was set
to 5 min and the design rainfall process line was obtained according to the rainfall intensity
formula and using the ICM design rainfall generator as shown in Figure 3.
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Figure 3. Rainfall processes with different rainfall return periods and different rainfall durations:
(a) Rainfall duration of 1 h rainfall process. (b) Rainfall duration of 2 h rainfall process.

2.3.3. Flood Risk Analysis Methodology

According to the UK Environmental Protection Agency, the flood risk rate is calculated
by combining two key physical variables, water depth and flow velocity. During the
calculation of flood risk rates, the type of subsurface is also considered to be an important
factor [38]. The calculation is as follows:

RH = h(v + 0.5) + CDF (9)

where RH is the risk rate, with a scale of one; h is the flood inundation depth, m; v is the
flood flow velocity, m/s; CDF is the debris factor, i.e., the increased risk factor due to debris
carried in the flood.

The CDF is mainly used to increase the weight of the impact of road floats on flood
risk and is often used in flood risk analysis [39,40]. The CDF is assigned to 1 if the type of
bedding surface is a road or a building site and the flood velocity is greater than 2, whereas
the rest are assigned to 0. The flood risk rate value RH was quantified for any point in the
study area. In addition, the flood risk rating was divided into four zones. When RH is less
than 0.75, it means that the area is in a low-risk zone; when Rh is between 0.75 and 1.25, it
means a medium-risk zone; when Rh is between 1.25 and 2.00, it means a high-risk zone;
and when Rh is greater than 2.00, it means that the current area is in a very-high-risk zone.
The flood risk classification is shown in Table 2.
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Table 2. Flood risk classification.

Inundation Hazard Index
Threshold (Rh)

Risk Level Description

<0.75 Low risk
Shallow standing water or the

presence of shallow static
waterlogging

0.75∼1.25 Medium risk Deep water or
fast-flowing water

1.25∼2.0 High risk Hazardous area with deep
water and high flow rates

≥2.0 Very high risk Very dangerous area,
no access

The methodological route of the study is shown in Figure 4.

Figure 4. Distribution of simulated results compared to measured water accumulation points.

3. Results and discussion

3.1. Analysis of Urban Flood Simulation Results
3.1.1. Analysis of Flood Inundation Water Depth

As a result of the InfoWorks ICM simulations conducted in the study area, the inunda-
tion depths were compared for a variety of rainfall return periods and rainfall ephemerides.
Figure 5 illustrates the distribution of the simulated maximum water depth on the ground
in the study area. In different rainfall return periods and calendar periods, water accumu-
lated on the ground to a depth of usually less than 0.3 m, followed by 0.3∼0.5 m. The depth
of flood inundation increased with the increasing rainfall return period for the same rainfall
duration. The depth of flooding increased with the increasing rainfall duration for the
same rainfall return period. Overall, the ponded water was primarily concentrated in areas
adjacent to rivers and low-lying roads, mainly because the water level of the rivers is higher
than the drainage inlets or the terrain of the ponded areas is lower than the surrounding
terrain resulting in inundation.
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Figure 5. Simulated inundation depth map.

3.1.2. Analysis of the Duration and Extent of Flood Inundation

In addition to the inundation depth, the duration of inundation and the inundation ex-
tent are essential indicators for evaluating inundation hazards. The amount of precipitation,
the type of subsurface, the drainage capacity of the pipe network, and the drainage capacity
of natural watercourses are the main causes of persistent flooding. When precipitation is
low, the type of subsurface and the drainage capacity of the pipe network control the extent
and duration of flooding. Conversely, when rainfall is relatively high, the water level in
the river rises and the stormwater pipe network is unable to re-drain or the water in the
river can reverse its flow into the stormwater pipe network. At this point, the drainage
capacity of the river becomes an important factor in the occurrence and duration of flooding.
Analysis of the flood inundation duration and flood extent, therefore, has an important role
to play in flood risk assessment. Figure 6 shows the inundation duration and inundation
extent of the study area simulated under different scenarios. The simulation results showed
that the inundation duration of the study area was mainly from 0∼3 h. At the study area
scale, the extent of inundation increased with the duration of rainfall, whereas the extent of
flood inundation tended to increase with increasing rainfall return periods. The elevation
range of the study area according to the DEM data is 85.05 m 100.34 m. The areas with
longer inundation durations are mainly concentrated on the banks of rivers and low-lying
areas of the terrain, mainly because the areas with longer inundation durations tend to have
deeper inundation, and the areas with deeper inundation generally have lower terrain,
which makes it difficult to drain the accumulated rainwater within a short period.

According to the characteristics of precipitation in the study area, normal precipitation
can recede within two hours, and precipitation with an inundation time of less than two
hours does not affect our normal activities or pose too much of a threat to people’s safety.
An inundation time of greater than four hours affects people’s travel activities. In view of
the above, we subdivided the inundation time into five ranges [41]. For each inundation
calendar time classification, the inundation area was calculated based on the simulation
results for the different scenarios of rainfall recurrence. According to Table 3, under the 1 h
rainfall calendar, the inundated areas for the rainfall recurrence periods 5 a, 20 a, and 50
a were 4283.11 ha, 4977.61 ha, and 5238.07 ha, respectively, and the total inundation area
increased by 954.96 ha from 5 a to 50 a. The inundated areas under the 2 h rainfall duration
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were 4453.39 ha, 5079.15 ha, and 5527.19 ha, respectively, with a total increase of 1073.8 ha
from 5 a to 50 a.
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Figure 6. Simulated inundation durations and inundation ranges.

Table 3. Flooded area statistics for different scenarios (ha).

Rainfall
Return Period

Duration of
Rainfall

Duration of Inundation Area
Inundated<1 1∼2 2∼3 3∼4 >4

5a 60 1734.56 983.55 500.85 431.26 632.89 4283.11
120 1497.61 1129.96 600.91 786.67 438.24 4453.39

20a 60 1736.95 1264.00 558.58 444.71 973.37 4977.61
120 1416.91 1374.89 684.36 872.79 730.20 5079.15

50a 60 1696.68 1368.74 590.29 410.83 1171.53 5238.07
120 1245.03 1539.00 781.14 855.37 1106.65 5527.19

Under the scenarios with rainfall recurrence periods of 5 a, 20 a, and 50 a, the inundated
areas with a rainfall duration of 2 h were compared with those with a rainfall duration of
1 h. The simulation results showed that the inundated areas with an inundation duration
<1 h decreased by 236.95 ha, 320.04 ha, and 451.65 ha, respectively; the inundated areas
with an inundation duration of 1∼2 h increased by 146.41 ha, 110.89 ha, and 170.26 ha,
respectively; the inundated areas with an inundation duration of 2∼3 h increased by
100.06 ha, 125.78 ha, and 190.85 ha, respectively; the inundated areas with an inundation
duration of 3∼4 h increased by 355.41 ha, 428.08 ha, and 444.54 ha, respectively; and the
inundated areas with an inundation duration >4 h decreased by 194.65 ha, 243.17 ha, and
64.88 ha, respectively. The inundated areas with inundation times <1 h and >4 h showed
a decrease with increasing rainfall calendar time, indicating that the longer the rainfall
calendar time, the faster the drainage of the study area.

The modelling results showed that the inundated areas increased with increasing
rainfall return period for the 1–2 h inundation time scenario. For the 1–2 h inundation
time scenario, the inundated areas increased by 146.41 ha, 110.89 ha, and 170.26 ha. For in-
undation durations of 2 to 3 h, the inundated areas increased by 100.06 ha, 125.78 ha,
and 190.85 ha. Inundation areas with inundation durations of 3 to 4 h increased by
355.41 hectares, 428.08 hectares, and 444.54 hectares. Inundated areas with inundation
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durations <1 h and >4 h decreased with increasing rainfall duration, with inundation de-
creasing by 236.95 ha, 320.04 ha, and 451.65 ha at inundation durations <1 h. The inundated
areas with an inundation duration >4 h decreased by 194.65 ha, 243.17 ha, and 64.88 ha.
The above results indicate that the longer the rainfall duration, the faster the drainage rate
of the study area.

3.1.3. Flood Flow Rate Analysis

Flood flow velocities are an important indicator of urban flood risk conditions [31,42,43].
As shown in Figure 7, the flood flow velocity distributions under different scenarios are
shown for the study area. In the study area, the flood flow velocities were usually between
0 and 0.5 m/s for different return periods of rainfall. The flood flow rates tended to increase
with increasing rainfall return periods, and increasing rainfall durations also contributed to
the increase in the flood flow rates. The areas with a high flood flow velocity are located
near the main drainage network’s outlet and in densely populated areas. The magnitude of
the flood flow can affect the travel and safety of people in the study area. Excessive flood
velocities can impede traffic and float objects on the ground, posing a threat to human life.
This is particularly important for the subsequent flood risk analysis.
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Figure 7. Simulated flood flow map.

3.2. Analysis of Drainage System Load Conditions

The stormwater pipe network in the study area is mainly located in the paving of
main and secondary roads such as the North Third Ring Road, Garden Road, Jing San
Road, Zhong Zhou Avenue, Sha Men Road, East Huang He Road, and East Dong Feng
Road. Stormwater is discharged into the stormwater pipe network through the catchment
area and eventually discharged into the Dongfeng Drain after collection by the stormwater
pipe network.

The drainage system load conditions were analysed in terms of both the nodal overflow
conditions and drainage network load conditions. Figure 8 presents the distribution of the
node overflows in the study area simulated under the different scenarios. It can be seen
that most of the nodes showed varying degrees of overflow, which is relatively obvious.
According to the statistical results in Table 4, the percentage of overflow at the nodes with
a rainfall duration of 1 h increased from 79.01% to 87.36%, whereas the percentage of
overflow at the nodes with a rainfall duration of 2 h increased from 79.43% to 87.36% under
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the conditions of 5 a, 20 a, and 50 a rainfall recurrence periods. Under the same recurrence
periods, the proportion of nodal overflows with a 2 h rainfall ephemeris increased by 0.42%,
0.26%, and 1.58%, respectively, compared with those of nodal overflows with a 1h rainfall
ephemeris. The overall pattern was that the proportion of nodal overflows increased with
the increases in the rainfall return period and rainfall ephemeris.
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Figure 8. Simulated node overflow condition diagram.

Table 4. Overflow statistics for different scenario nodes.

Rainfall Return
Period

Duration of Rainfall
(min)

Number of
Overflows Occurring

at Nodes

Proportion of
Overflows Occurring

at Nodes

5a 60 1506 79.01%
120 1514 79.43%

20a 60 1593 83.58%
120 1598 83.84%

50a 60 1635 85.78%
120 1665 87.36%

In this study, the overload state of the pipe network was judged according to its water
flow state. According to the simulation results, when the overload state was less than 1, it
meant that the pipe network was in a non-full gravity flow state, which means that the pipe
network was in a normal state. When the overload state was equal to 1, the pipe was in a
pressure flow state and the hydraulic gradient < pipe slope. The main reason for this state
is the insufficient overflow capacity of the downstream pipeline, which causes the pipeline
to be in an overload condition. When the overload state was equal to 2, the pipe was in a
pressure flow state and the hydraulic slope > pipeline slope; the pipe was overloaded due
to its own drainage capacity being insufficient. The pipe network was generally considered
to be overloaded in the case of overload states 1 and 2. As can be seen in Figure 9, the pipe
networks in the study area were generally in an overload condition, with the flow overload
being the dominant overload pipe network. The length of the overloaded pipe network
increased with increasing precipitation return periods.
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Figure 9. Simulated pipe network load conditions.

According to the overload statistics of the pipe network under rainfall return periods
of 5 a, 20 a, and 50 a, as seen in Table 5, the overload water depth lengths of the pipe
network with a rainfall duration of 1h were 49.07 km, 42.38 km, and 38.81 km, and the
corresponding overload flow lengths of the pipe network were 241.33 km, 249.56 km, and
253.87 km. The overload flow lengths of the pipe network corresponding to 2 h were
235.16 km, 239.91 km, and 245.25 km. The above results show that the length of the
overloaded pipe network increased with the increase in the rainfall return time, whereas
the length of the overloaded pipe network decreased with the increase in the rainfall
recurrence period.

Table 5. Statistics for overloading of the pipe network for different scenarios.

Rainfall Return
Period

Duration of
Rainfall (min)

Length of Pipe
Network

Overloaded by
Water Depth

(km)

Length of Pipe
Network with
Flow Overload

(km)

Total Length of
Overloaded

Pipe Network
(km)

5a 60 49.07 241.33 290.4
120 55.44 235.16 290.6

20a 60 42.38 249.56 291.94
120 52.43 239.91 292.34

50a 60 38.81 253.87 292.68
120 48.17 245.25 293.42

3.3. Urban Flood Risk Analysis

The flood risk rate analysis method proposed by the UK EPA has been used to express
the flood risk rate as a combination of two key physical quantities, namely water depth
and flow velocity. The type of subsurface is also considered to be an important factor
influencing the flood risk rate. Finally, an RH value characterising the flood risk was
calculated to characterise the degree of flood risk.

Figure 10 shows the distribution of the flood risk in the study area, simulated under
the different scenarios. It can be seen that the distribution of risk is dominated by low-risk
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areas with very few very high-risk areas. The medium- and high-risk areas are mainly
located on the banks of rivers, in built-up areas, and on low-lying urban terrain.
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Figure 10. Inundation flood risk for different scenarios in the study area.

A detailed analysis of the change in the flood risk area during the rainfall return
period for the 5 a, 20 a, and 50 a scenarios is presented based on the simulation results in
Table 6. For a rainfall duration of 1 h, the low-risk areas were 7195.39 ha, 7058.04 ha, and
6959.16 ha and the medium-risk areas were 51.44 ha, 87.18 ha, and 101.74 ha, respectively.
At a rainfall time of 2 h, the low-risk areas were 7148.54 ha, 6981.60 ha, and 6740.90 ha;
the medium-risk areas were 62.38 ha, 107.33 ha, and 125.89 ha; the high-risk areas were
112.65 ha, 225.05 ha, and 430.37 ha; and the very-high-risk areas were 14.75 ha, 24.33 ha,
and 41.16 ha, respectively.

Table 6. Area statistics for inundation flood risk rates for different scenarios (ha).

Rainfall Return
Period

Duration of
Rainfall (min)

Flood Risk

Low Risk
Medium

Risk
High Risk

Very High
Risk

5 a 60 7195.39 51.44 81.96 9.53
120 7148.54 62.38 112.65 14.75

20 a 60 7058.04 87.18 173.29 19.81
120 6981.60 107.33 225.05 24.33

50 a 60 6959.16 101.74 251.47 25.95
120 6740.90 125.89 430.37 41.16

The shift in the rainfall return periods from the 5 a to the 50 a risk zones was then
analysed under the same rainfall calendar. For a rainfall duration of 1 h, the shifts from
low- to medium-, high-, and very-high-risk zones were 99.19 ha, 134.43 ha, and 2.61 ha,
respectively; from medium- to high- and very-high-risk zones were 48.08 ha and 0.80 ha,
respectively; and from high- to very-high-risk zones was 13.01 ha. With a rainfall duration
of 2 h, the shifts from the low-risk zone to the medium-, high-, and very-high-risk zones
were 124.84 ha, 277.79 ha, and 5.01 ha, respectively; from the medium-risk zone to the high-
and very-high-risk zones were 60.30 ha and 1.02 ha, respectively; and from the high-risk
zone to the very-high-risk zone was 20.38 ha. The combination of the risk distribution
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ranges in Figure 10 indicates that the upgraded risk areas are mainly located on both sides
of the river and in the study area, which are low-lying and have poor drainage capacity.

There are also some characteristics of the change in the flood risk zones from a 1 h
to a 2 h rainfall ephemeris for the same rainfall return period. When the rainfall return
period was 5 a, 34.58 ha and 12.32 ha of low-risk zone converted to medium- and high-risk
zones, respectively, and 0.05 ha of medium-risk zone converted to low-risk zone, 23.45 ha
to high-risk zone, and 0.14 ha to very-high-risk zone. When the rainfall return period was
20 a, the areas of low-risk zone converted to medium- and high-risk zones were 58.31 ha
and 18.02 ha, respectively, and the area of medium-risk zone converted to high-risk zone
was 38.39 ha. When the rainfall return period was 50 a, the areas transformed from low-risk
areas to medium- and high-risk areas were 104.15 ha and 113.66 ha, respectively, and
the area transformed from medium-risk area to high-risk area was 79.99 ha. The area
transformed from medium-risk zone to high-risk zone was 79.99 hectares. Combined with
Figure 10, it appears that the risk areas close to the river are more likely to be upgraded,
and the high-risk areas are also generally concentrated near the river.

The above results show that for the same rainfall return period, the area covered by
low-risk areas decreased with increasing rainfall calendar time, and most of the reduced
low-risk areas transformed into medium- and high-risk areas. The area covered by all the
risk classes, except for low-risk areas, increased with increasing rainfall calendar hours.
For the same rainfall calendar time, the area covered by low-risk areas decreased with
increasing rainfall return periods. The area covered by all risk classes, except for low-risk
areas, increased with increasing rainfall return periods. The above analysis indicates that
increases in the rainfall return period and rainfall duration will result in more severe
flooding. It is also important to focus on high- and very-high-risk areas when undertaking
flood management and when flooding occurs. It is important to consider that the flood risk
varies with the duration and intensity of rainfall ephemeris. It is therefore also important
to focus on flooding in low-risk areas that could easily convert into high-risk areas.

4. Conclusions

In this study, a 1D/2D coupled urban flood model was constructed using InfoWorks
ICM software based on data pertaining to pipe networks, inspection wells, roads, water
systems, land uses, and elevations in the Dongfeng Canal area of Zhengzhou. Six scenarios
were set up according to different rainfall recurrence periods and rainfall ephemeris using
the Zhengzhou storm intensity formula. According to the simulation results, the flood
inundation depth, inundation extent, duration of inundation, flood flow, and drainage
system load were analysed. Finally, the flood risk was quantified and spatially analysed
using the flood risk rate analysis method proposed by the UK EPA. The main findings of
this study are as follows.

(1) This study uses the InfoWorks ICM model to construct a coupled hydrological-
hydraulic model for a small urban watershed area. The two-dimensional hydraulic pro-
cesses of the urban one-dimensional pipe network, river, and surface are coupled and the
model effects are compared using the flood inundation locations of historical precipitation.
The results show that the model is effective in simulating rainfall and flooding in the
Dongfeng Canal area. The model can be applied to the analysis of flood risk.

(2) According to the simulation results, inundation depths in the study area are mainly
0∼0.3 m, followed by 0.3∼0.5 m. Inundation is mainly concentrated in areas near rivers
and low-lying areas of road topography. The extent of inundation in the study area at a
2 h rainfall ephemeris is greater than that at a 1 h rainfall ephemeris, and the extent of
inundation tends to increase with increasing recurrence periods. The extent of inundation
at <1 h and >4 h appears to decrease with increasing rainfall ephemeris, indicating that
the longer the rainfall ephemeris, the faster the study area drains. The distribution of
flood velocities shows a tendency to increase with increasing return periods, with higher
velocities being distributed mainly in drainage inlets near the main drainage network and
densely built-up areas.
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(3) The proportion of nodal overflows occurring increases with increasing rainfall
return periods and rainfall ephemeris. The pipe network in the study area is generally
overloaded under the different scenarios, with flow overloading dominating and the length
of the overloaded pipe network increasing with the rainfall return period. The length of
the bathymetric overload pipe network increases with increasing rainfall return periods,
whereas the length of the flow overload pipe network decreases with increasing rainfall
return periods.

(4) The distribution of the flood risk in the study area is dominated by low-risk areas,
with very few very high-risk areas. The medium- and high-risk zones are mainly located on
both sides of the river in built-up areas and low-lying urban areas. The simulation results
under the different scenarios show that the areas of medium-, high-, and very-high-risk
zones increase with the increasing rainfall return period and rainfall duration. The area of
low-risk zones decreases with the increasing rainfall return period and rainfall duration,
and most of the reduced low-risk zones are transformed into medium- and high-risk zones.
Increases in rainfall return periods and rainfall durations can lead to more severe flooding.
It is therefore important to focus on high- and very-high-risk areas, as well as low-risk areas
that can easily transform into high-risk areas when managing floods when flooding occurs.

This study analyses the flood risk situation in the study area in various aspects and
from various perspectives. It can provide a reference for the prevention and control of
flooding and the formulation of flood countermeasures in the area and help to improve the
management of flood risks in the urban construction process. At the same time, the model
lacks further validation due to limited measurement data. The construction of the flood
risk indicators is relatively singular and does not take into account more comprehensive
factors such as socio-economic factors. Therefore, a more detailed collection of hydrological
and socio-economic data in the study area to further improve the accuracy of the model
and construct a more comprehensive urban flood risk system will be the focus of our work
in the next phase.
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Abstract: Reference evapotranspiration (ET0) is an integral part of the regional hydrological cycle and
energy balance and is extremely sensitive to climate change. Based on temperature data from 24 global
climate models (GCMs) in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this study
developed a multi-model ensemble based on delta statistical downscaling with multiple interpolation
methods and evaluation indicators to predict the spatial and temporal evolution trends of ET0 in the
Yellow River Basin (YRB) under four emission scenarios (SSP126, SSP245, SSP370, and SSP585) for
the near- (2022–2040), mid- (2041–2060), and long- (2081–2100) term future. Results demonstrate that
regional data generated based on delta statistical downscaling had good simulation performance
for the monthly mean, maximum, and minimum temperatures in the YRB, and the developed multi-
model ensemble had better simulation capability than any single model. Compared to the historical
period (1901–2014), the annual ET0 showed a highly significant increase for different future emission
scenarios, and the increase is faster with increasing radiative forcing. The first main cycle of ET0

change was 52, 53, 60, and 48 years for the SSP126, SSP245, SSP370, and SSP585, respectively. ET0 in
the YRB had positive values for EOF1 under all four emission scenarios, responding to a spatially
consistent trend across the region. Compared to the historical period, the spatial distribution of ET0

under different future emission scenarios was characterized by being larger in the west and smaller
in the east. As the radiative forcing scenario increased and time extended, ET0 significantly increased,
with a maximum variation of 112.91% occurring in the western part of the YRB in the long-term
future under the SSP585 scenario. This study can provide insight into the water cycle patterns of
watersheds and scientific decision support for relevant departments to address the challenges of
climate change.

Keywords: reference evapotranspiration; CMIP6; delta statistical downscaling; Hargreaves model;
Yellow River Basin; EOF analysis

1. Introduction

Climate change and its impacts on the water cycle, particularly on regional hydro-
logical systems, are major global challenges in the 21st century [1–3]. As an important
factor in the regional hydrological cycle and energy balance, reference evapotranspiration
(ET0) can be used to make total energy estimates of actual evapotranspiration [4], and is
the component of the water cycle that is directly affected by climate change. Changes in
ET0 have a significant impact on the global water cycle and water resources [5], thereby
leading to droughts and floods, water scarcity, and ecosystem degradation. In the context
of climate change, ET0 is an important guide for understanding the hydrological cycle and
formulating water resource plans in watersheds [6–8].

Although studies on ET0 have been conducted recently [9–14], most existing studies
focused on the historical period. With the development of global climate models (GCMs),
exploring the future ET0 of watersheds based on historical data has become a topic of
research interest in the context of climate change. GCMs are the most powerful tools for
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climate change modeling and future predictions [15,16], and the modeling results can
provide valuable data to support studies on climate change-induced impacts at regional
and continental scales. Nevertheless, low-resolution data will lead to large biases in the
prediction of regional climate change when climate studies are conducted at regional scales.
Downscaling is an effective method for transforming large-scale, low-resolution outputs
from GCMs into small-scale, high-resolution regional ground information [17,18]. Current
mainstream downscaling methods include dynamic downscaling [19] and statistical down-
scaling [20]. Compared to statistical downscaling, dynamic downscaling requires a large
number of complex inputs and computational requirements [21,22], and sometimes fine
and reliable climate data at regional scales are not available [22,23]. Statistical downscaling
is the most widely used and established downscaling technique in basin climate change
studies because of its low computational cost, easy model construction, multiple implemen-
tation methods, ease of operation, and lack of consideration of the influence of boundary
conditions on prediction results [24].

Two methods are widely used for ET0 prediction under future climate scenarios: (1)
input of future meteorological data from GCMs into ET0 models [25,26]; and (2) directly
predicting future ET0 via downscaling methods based on historical ET0 [1,27]. Liu et al. [28]
used Coupled Model Intercomparison Project Phase 5 (CMIP5) and Coupled Model Inter-
comparison Project Phase 6 (CMIP6) climate models to compare global potential evapotran-
spiration and found that both models could effectively simulate the increasing trend; they
also revealed that CMIP6 multi-model results simulated higher values of global potential
evapotranspiration than CMIP5 for the same emission scenario. Nistor et al. [29] assessed
the impact of climate change on ET0 in Turkey in the 21st century based on the Thornth-
waite equation and the CMIP5 dataset. They revealed that ET0 will increase in southern
and southeastern Turkey and along the Mediterranean coast in the coming period owing to
climate warming.

The Yellow River Basin (YRB) is an important component of China’s strategic eco-
logical security pattern, and most of the YRB is an arid and semi-arid region. Because of
its unique geographical location, its environment is fragile and highly sensitive to global
climate change [21,30], making it a good indicator of climate change. Despite the high
sensitivity of the region to climate change, studies on the evolution of ET0 in the YRB in
the context of future climate are limited, and most of the existing studies on future ET0
in other regions are at the CMIP5 stage [21,30,31], with no downscaling treatment [1], a
single spatial interpolation method [21], or a single indicator for climate model prefer-
ences [32]. Therefore, against the backdrop of global warming, the ET0 predictions in the
YRB can provide a theoretical reference basis for water resource planning and management,
as well as a scientific basis for relevant authorities to formulate future climate change
response strategies.

This study used the YRB as the study area and developed a multi-model ensemble
based on the delta statistical downscaling using multiple interpolation methods and mul-
tiple evaluation indicators to predict the spatial and temporal evolution characteristics
of ET0 in the YRB under different CMIP6 emission scenarios. Studies on ET0 not only
enhance the understanding of hydrological processes in the YRB but also provide data
to support and guide future water resource management and drought mitigation. The
specific objectives are to: (1) obtain monthly mean, maximum, and minimum temperature
datasets in the YRB with a resolution of 1 × 1 km based on CMIP6 climate model data and
delta statistical downscaling; (2) select the best simulated climate model and multi-model
ensemble by evaluating and validating historical measured data; and (3) predict the spatial
and temporal changes in ET0 under different emission scenarios in the future based on the
Hargreaves formula and downscaled temperature data from 2022 to 2100.
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2. Materials and Methods

2.1. Study Area

The Yellow River, the second-largest river in China, starts from the Bayankara Moun-
tains in the west, crosses the Qinghai–Tibetan Plateau, Loess Plateau, and Huang-Huai-Hai
Plain, and flows into the Bohai Sea in Shandong Province. The total length of the basin is 5464 km,
covering an area of approximately 79.5 × 104 km2 (95◦53′E–119◦05′E, 32◦10′N–41◦50′N),
accounting for 8% of China’s land area (Figure 1). The YRB is in the mid-latitude zone,
with complex natural conditions and undulating basin topography, and is influenced by
atmospheric and monsoonal circulation, making the climate different from that of the other
basins in China [33,34]. The average annual precipitation in the basin is 495 mm, with
concentrated and highly variable interannual precipitation and an evident downward trend
from the southeast to the northwest [35]. The average annual temperature ranges from
−4 to 14 ◦C, varying with latitude and altitude [36]. The basin’s evapotranspiration varies
markedly, with an average annual ET0 of 700–1800 mm and an increasing trend from the
southeast to the northwest. As the basin straddles arid, semi-arid, and semi-humid zones, it
is in the transition zone between semi-arid and semi-humid climates, rendering it extremely
sensitive to climate change [21]. Climate change has exacerbated the uneven spatial and
temporal distributions of water resources in the YRB, and the contradiction between water
resource supply and demand has become evident, seriously affecting the production and
life of human society and restricting the high-quality economic development of the region.

 

Figure 1. (a) Location and digital elevation model of the Yellow River Basin in China and (b) the
distribution of 93 national meteorological stations in the Yellow River Basin.

2.2. Data Collection
2.2.1. Ground-Based Observation Data

In this study, monthly monitoring data from 93 national meteorological stations in
the YRB from 1980 to 2014 were obtained from the National Meteorological Information
Centre-China Meteorological Data Network (http://data.cma.cn/ (accessed on 11 March
2022)), including monthly mean temperature (tas), monthly mean maximum temperature
(tasmax), monthly mean minimum temperature (tasmin), and monthly pan evaporation.
Some of the missing data were reasonably interpolated via the hydrologic analogy method
and the linear interpolation method. The tas, tasmax, and tasmin were used to assess
the accuracy of the climate model simulations, and the converted value based on pan
evaporation data [4] were used to assess the ET0 values based on the multi-model ensemble
and Hargreaves formula.
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2.2.2. Reference Data on Downscaling

The national 30-year cumulative mean, mean maximum, and mean minimum tem-
perature datasets with a resolution of 1 km from 1971 to 2000 were selected as the regional
high-resolution reference data to construct the delta statistical downscaling model in this
study. Data were obtained from the National Ecosystem Science Data Center (NESDC)
(http://www.nesdc.org.cn/ (accessed on 9 May 2022)).

2.2.3. Future Climate Data

In this study, 24 GCMs were selected from CMIP6 (https://esgf-node.llnl.gov/search/
cmip6/ (accessed on 13 May 2022)) for the historical period (1901–2014) and three future
periods (near-term 2022–2040, mid-term 2041–2060, and long-term 2081–2100). The tas,
tasmax, and tasmin data of the models were presented, which contained 21, 19, and
21 GCMs, respectively; the basic details about each model and variable are summarized in
Table 1. For future forcing scenarios, the recent shared socioeconomic pathways (SSPs), such
as SSP1-2.6 (low-forcing scenario, SSP126), SSP2-4.5 (medium-forcing scenario, SSP245),
SSP3-7.0 (medium to high-forcing scenario, SSP370), and SSP5-8.5 (high-forcing scenario,
SSP585), were selected [37]. Notably, the future scenarios of the climate model were set
for the 2015–2100 period; the historical period in this study did not extend back to 2021,
and the future period did not extend forward to 2015 to ensure the reasonability of the
data. The selection of the periods for downscaling the simulation accuracy and Hargreaves
model validation were based on these considerations.

Table 1. Introduction to climate models with temperature variables.

Serial Number Climate Models Variables
Research Institution,

Country
Spatial Resolution

1 ACCESS-CM2 tasmax, tasmin ACCESS, Australia 1.9◦ × 1.3◦
2 ACCESS-ESM1-5 tas, tasmax, tasmin ACCESS, Australia 1.9◦ × 1.3◦
3 AWI-CM-1-1-MR tas, tasmin AWI, Germany 0.9◦ × 0.9◦
4 AWI-ESM-1-1-LR tasmax, tasmin AWI, Germany 1.9◦ × 1.9◦
5 BCC-CSM2-MR tas, tasmax, tasmin BBC, CMA, China 1.125◦ × 1.125◦
6 BCC-ESM1 tasmax, tasmin BBC, CMA, China 2.8◦ × 2.8◦
7 CanESM5 tas, tasmax, tasmin CCCMA, Canada 2.8125◦ × 2.8125◦
8 CMCC-CM2-SR5 tas CMCC, Italy 1.250◦ × 0.938◦
9 CMCC-ESM2 tas, tasmin CMCC, Italy 1.25◦ × 0.9375◦

10 E3SM-1-0 tas LLNL, ANL, LANL, LBNL,
ORNL, PNNL, SNL, U.S.A 1◦ × 1◦

11 EC-Earth3 tas, tasmax, tasmin EC-Earth, 10 European
countries 0.7◦ × 0.7◦

12 EC-Earth3-Veg tas, tasmax, tasmin EC-Earth, 10 European
countries 0.703◦ × 0.703◦

13 FGOALS-f3-L tas IAP, CAS, China 1◦ × 1.25◦
14 FIO-ESM-2-0 tas, tasmax, tasmin FIO, China 0.9424◦ × 1.25◦
15 GFDL-ESM4 tas, tasmax, tasmin GFDL, U.S.A 1◦ × 1.25◦
16 GISS-E2-1-G tas, tasmax, tasmin NASA-GISS, U.S.A 1◦ × 1.25◦
17 INM-CM5-0 tas, tasmax, tasmin INM, Russia 2◦ × 1.5◦
18 IPSL-CM6A-LR tas, tasmax, tasmin IPSL, France 1.2676◦ × 2.5◦
19 MIROC6 tas, tasmax, tasmin MIROC, Japan 1.389◦ × 1.406◦
20 MPI-ESM-1-2-HAM tas, tasmax, tasmin MPI, Germany 1.865◦ × 1.875◦
21 MPI-ESM1-2-HR tas, tasmax, tasmin MPI, Germany 0.9375◦ × 0.9375◦
22 MPI-ESM1-2-LR tas, tasmax, tasmin MPI, Germany 1.875◦ × 1.875◦
23 MRI-ESM2-0 tas, tasmax, tasmin MRI, Japan 1.124◦ × 1.125◦
24 NESM3 tas, tasmax, tasmin NUIST, China 1.865◦ × 1.875◦

Note: In the variable column, tas is the average temperature, tasmax is the average maximum temperature, and
tasmin is the average minimum temperature.
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2.3. Research Methodology
2.3.1. Delta Statistical Downscaling

The delta statistical downscaling method is a simple bias correction technique recom-
mended by the U.S. Global Change Research Program (see http://www.nacc.usgcrp.gov
(accessed on 6 June 2022)) that is easy to understand and operate, requires fewer factors, and
is widely used in a wide range of fields related to climate change impact studies [21,38,39].
For the temperature variables used in this study, the delta method was used to compare
the temperature of different periods of each simulation grid with the simulated average
temperature of the base period, calculate the absolute change in temperature in each period
of each simulation grid, and add the measured average temperature of each base period
with the change in the grid based on the spatial interpolation of the change to obtain the
temperature scenarios of different periods in the reconstruction grid [21]. The calculation
equation is as follows:

Tf = T0 +
(

TM f − TM0

)
(1)

where Tf is the grid temperature data reconstructed by the delta method, TM f is the
simulated grid temperature data for a certain period, TM0 is the simulated grid multi-
year average temperature data for the base period, and T0 is the measured multi-year
average temperature data for the base period. In this study, five interpolation methods
were considered: bilinear interpolation (BI), inverse distance weighted (IDW), kriging,
natural neighbor interpolation (NNI), and spline. The delta statistical downscaling process
is shown in Figure 2.

 
Figure 2. The delta downscaling process of the climate models over the Yellow River Basin.

2.3.2. Climate Model Accuracy Assessment and Multi-Model Ensemble

To effectively assess the accuracy and applicability of climate model forecasts in the
YRB, the evaluation metrics used were mean absolute error (MAE) [40], Taylor diagram-
based quantile S [41], spatial skills score (SS) [42], and temporal skills score (TS) [43]. The
closer the MAE and TS are to 0, the better the simulation ability of the model. The closer S
and SS are to 1, the better the simulation ability of the model.

The downscaling results of different GCMs differ, and the performance of multi-model
averaging is considered to be better than that of individual models [44,45]. In this study,
multi-model ensemble averaging of preferred climate models was performed using the
equally weighted ensemble averaging (MME) method commonly used in multi-model
prediction studies.

2.3.3. ET0 Calculation Model

The Hargreaves model, which can reveal the physics of the evaporative process, was
used for calculating monthly ET0 based on a future climate. It has been widely demon-
strated to be able to provide reliable estimations [31,46,47]. The Food and Agriculture
Organization of the United Nations (FAO) [4] also suggests it as the simplified standard al-
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gorithm for ET0 under the missing meteorological observations as required by the Penman–
Monteith formula. Several improvements were made to the original equation [48,49]. The
form used in this study was published in 1985 [50] and expressed as follows:

ET0(Har) = 0.0023Ra(Tmax − Tmin)
0.5(Tmean + 17.8) (2)

where ET0(Har) is the ET0 calculated by the Hargreaves empirical formula (mm/d); Tmax
and Tmin are the mean maximum and minimum temperatures for the calculation time
interval (◦C), respectively; Tmean is the mean temperature for the calculation time interval
(◦C); and Ra is the zenith radiation (mm/d); the applicable time scale is 30 or 10 days.

2.3.4. Methods for Spatial and Temporal Trend Analysis

In this study, Morlet wavelet analysis was used to study the significant cycle changes
in ET0 time series at different time scales, which has significant advantages in revealing the
multiscale configuration and main climate change cycle [51]. Empirical orthogonal function
(EOF) analysis produces a set of orthogonal spatial and temporal patterns in the order
of explained variance, reducing the dimensionality of the analyzed system and finding
relatively few independent variables that can provide comprehensive information about
the variability of the raw data [52]. EOF analysis, supplemented by the North test [53],
was used to study the spatial and temporal patterns of the ET0 climate field in the YRB. In
addition, spatial changes in the near-, mid-, and long-term future relative to the historical
period were estimated by comparing historical long-term (1901–2014) annual ET0 averages
for different emission scenarios of ET0.

3. Results

3.1. Simulation Accuracy Assessment of Regional Temperatures and Multi-Model Ensemble

For the three temperature variables, tas, tasmax, and tasmin, out of all interpolation
methods, IDW exhibited the lowest overall error for all four different evaluation metrics,
and therefore, it was used to further assess the effectiveness of the temperature simula-
tions for all climate models (Figures 3–5). For tas, the climate models ACCESS-ESM1-5,
CMCC-CM2-SR5, and GISS-E2-1-G were ranked high for each evaluation index; for tasmax,
ACCESS-CM2, NESM3, and ACCESS-ESM1-5 were ranked high for each evaluation index;
for tasmin, ACCESS-CM2, ACCESS-ESM1-5, and GISS-E2-1-G were ranked high for each
evaluation index. Because some climate models do not have data on future emission
scenarios, considering the data integrity and actual fitting performance of climate mod-
els, tas selected ACCESS-ESM1-5, CMCC-CM2-SR5, and INM-CM5-0; tasmax selected
ACCESS-CM2, ACCESS-ESM1-5, and MRI-ESM2-0; and tasmin selected ACCESS-CM2,
ACCESS-ESM1-5, and MPI-ESM1-2-LR for the ensemble analysis of subsequent tempera-
ture patterns in the YRB. The fitting results of the simulated data of the selected climate
model for each variable and MME of the 1995–2014 period to the observed data from
93 ground-based meteorological stations (Figure 6) show that, although the simulated tas,
tasmax, and tasmin of the YRB by CMIP6 were slightly lower than the observed values,
most of the points were near the 1:1 line, and the R2 and regression coefficients were greater
than 0.9, with all passing the 99% confidence level test. The simulated and observed values
of the MME dataset were more concentrated than those of the three independent climate
models, and the R2 values of the three variables were 0.9418, 0.9226, and 0.9362, respectively
(Figure 6d,h,l), which reduced the errors caused by outlier points and slightly improved
the fit of the simulated data. The above analysis reveals that climate models have high
application potential in the YRB, and the CMIP6 multi-model ensemble is a good reference
value for predicting ET0 trends in the YRB under future climate scenarios.
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Figure 3. Fitting performance ranking of 21 climate models simulating tas monthly series of the
Yellow River Basin from 1995 to 2014 under different interpolation methods and evaluation metrics.
a, b, c, d, and e under each evaluation method are the evaluation rankings of the five interpolation
methods: BI, IDW, kriging, NNI, and spline, respectively. The higher the ranking, the higher the
model’s fitting accuracy.

Figure 4. Fitting performance ranking of 19 climate models simulating tasmax monthly series of the
Yellow River Basin from 1995 to 2014 under different interpolation methods and evaluation metrics.
a, b, c, d, and e under each evaluation method are the evaluation rankings of the five interpolation
methods: BI, IDW, kriging, NNI, and spline, respectively. The higher the ranking, the higher the
model’s fitting accuracy.
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Figure 5. Fitting performance ranking of 21 climate models simulating the tasmin monthly series
of the Yellow River Basin from 1995 to 2014 under different interpolation methods and evaluation
metrics. a, b, c, d, and e under each evaluation method are the evaluation rankings of the five
interpolation methods: BI, IDW, kriging, NNI, and spline, respectively. The higher the ranking, the
higher the model’s fitting accuracy.

Figure 6. Scatter density plots of measured and selected climate models and multi-model ensem-
bles simulating monthly temperatures in the Yellow River Basin at stations from 1995 to 2014.
(a−c) correspond to the fitting effects of ACCESS-ESM1-5, CMCC-CM2-SR5, and GISS-E2-1-G, re-
spectively, under tas variable; (d) corresponds to the fitting effect of MMEtas; (e–g) correspond to
the fitting effects of ACCESS-CM2, ACCESS-ESM1-5, and MRI-ESM2-0, respectively, under tasmax
variable; (h) corresponds to the fitting effect of MMEtasmax; (i–k) correspond to the fitting effects
of ACCESS-CM2, ACCESS-ESM1-5, and MPI-ESM1-2-LR, respectively, under tasmin variable; and
(l) corresponds to the fitting effect of MMEtasmin.
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3.2. Simulation Accuracy Assessment of Regional ET0

The scatter density plots of the actual monthly pan evaporation converted values
(ET0(pan)) and simulated ET0 values based on the multi-model ensemble-Hargreaves for-
mula (ET0(Har)) for the YRB from 1980 to 2014 (Figure 7) showed that the CMIP6-simulated
ET0(Har) for the YRB correlated well with the evaporation dish converted ET0(pan) at the
monthly scale, with a fitted line regression coefficient of 0.9439 and R2 of 0.8523, passing the
99% confidence level test. Although the Hargreaves formula partially underestimated ET0,
most of the points were near the 1:1 line, making them good reference values for calculating
the monthly ET0 under the conditions of missing meteorological observations in the future.
Therefore, future ET0 can be simulated using the Hargreaves formula.

 
Figure 7. Scatter density plot of monthly observed pan evaporation converted values (ET0(pan)) and
multi-model ensemble simulations (ET0(Har)) in the Yellow River Basin from 1980 to 2014.

3.3. Temporal Trends and Cyclic Characteristics of ET0

Based on the 1 km high-resolution regional climate data generated by the delta statisti-
cal downscaling and multi-model ensemble, annual ET0 trends were estimated for the YRB
from 1901 to 2100 (Figure 8). The annual ET0 of the basin under the different future emis-
sion scenarios (2022–2100; SSP126, SSP245, SSP370, and SSP585) substantially increased
with time relative to the historical period (1901–2014), and all passed the 99% confidence
test. Among all scenarios, the SSP585 scenario had the most pronounced upward trend in
ET0, increasing at a rate of 22.9 mm/10a, reaching 1170.39 mm in 2100. It was followed
by the SSP370 scenario, which increased at a rate of 16.6 mm/10a, reaching 1120.42 mm in
2100. However, SSP245 and SSP126 scenarios had relatively small trends in ET0, increasing
at rates of 10.4 and 3.3 mm/10a, reaching 1062.71 and 987.68 mm in 2100, respectively. In
general, the annual ET0 in the YRB will rapidly increase with increasing levels of radiative
forcing in the future.
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Figure 8. Interannual variations in ET0 in the Yellow River Basin over the historical period (1901–2014)
and under different future emission scenarios (2022–2100; SSP126, SSP245, SSP370, and SSP585) (p is
an indicator of significance obtained by the F-test).

To comprehensively understand the temporal ET0 variations in the basin, Morlet
wavelet analysis was used to investigate the cyclic variations in ET0 in the YRB under the
four future emission scenarios (Figure 9). In the SSP126 scenario, three distinct peaks were
observed in the wavelet variance of ET0 in the YRB, corresponding to the time scales of 52,
35, and 8 years, with the most pronounced periodic oscillation of approximately 52 years
and a cyclic pattern of 34–38 years for ET0 in the basin under this time scale (Figure 9a,b). In
the SSP245 scenario, the ET0 in the YRB considerably oscillated for approximately 53 years,
and there was a cyclic pattern of approximately 34 years in the basin ET0 at this time
scale (Figure 9c,d). In the SSP370 scenario, the ET0 in the YRB considerably oscillated
for approximately 60 years, and there was a cyclic pattern of approximately 39 years
in the basin ET0 at this time scale (Figure 9e,f). In the SSP585 scenario, the ET0 in the
YRB substantially oscillated for approximately 48 years, and there was a cyclic pattern of
approximately 27–32 years in the basin ET0 at this time scale (Figure 9g,h).

3.4. Spatial Evolution Characteristics of ET0

The EOF analysis of ET0 was conducted under four future emission scenarios in the
YRB for 2022–2100, and the results were tested for modal significance using the North test,
which are presented in Table 2 and Figures 10 and 11. As presented in Table 2, the first three
modes of ET0 in SSP126 passed the North test with a cumulative variance contribution
of 88.68%; the first two modes of ET0 in SSP245 passed the North test with a cumulative
variance contribution of 90.18%; the first two modes of ET0 in SSP370 passed the North
test with a cumulative variance contribution of 94.32%; and the first mode of ET0 in SSP585
passed the North test with a cumulative variance contribution of 93.55%.
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Figure 9. Wavelet analysis of ET0 in the Yellow River Basin under four future emission scenarios
(SSP126, SSP245, SSP370, and SSP585), including wavelet coefficient contour plots of the real part
(a,c,e,g) and wavelet variance plots (b,d,f,h).
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Table 2. Main modes and contributions of ET0 under future climate scenarios in EOF analysis.

Climate Scenarios Corresponding Modes Variance Contribution Cumulative Variance Contribution North Test

SSP126
EOF1 68.12% 68.12% pass
EOF2 13.51% 81.63% pass
EOF3 7.05% 88.68% pass

SSP245
EOF1 81.75% 81.75% pass
EOF2 8.43% 90.18% pass

SSP370
EOF1 89.85% 89.85% pass
EOF2 4.47% 94.32% pass

SSP585 EOF1 93.55% 93.55% pass

Figure 10. Main modal eigenvectors of the EOF of the ET0 spatial field in the Yellow River Basin
for 2022–2100 under scenarios SSP126 (a–c), SSP245 (d,e), SSP370 (f,g), and SSP585 (h), where
SSP126/245/370/585–EOFi (contribution/%) in each figure represents the i-th modal eigenvector
(EOFi) of ET0 under scenarios SSP126/245/370/585, with the contribution of each mode in parenthe-
ses. The red dashed lines in (b,c,e,g) are the positive and negative dividing lines of the eigenvectors.

Under the SSP126 scenario, the first EOF modal eigenvector (EOF1) of ET0 in the YRB
was positive, reflecting a spatially consistent trend of ET0 across the region, and exhibited
an increasing trend from the northwest to the southeast, indicating a more pronounced
increase in ET0 in the lower YRB (Figure 10a). EOF2 and EOF3, which explained 20.56% of
the variations, reflected the secondary spatial characteristics of ET0 with opposite trends
from northwest to southeast and from north to south (Figure 10b,c). Combined with the
temporal coefficients (Figure 11a), PC1 and PC2 exhibited roughly the same trend, with an
increasing trend from 2022 to 2100, particularly after the 2150s when PC1 and PC2 remained
positive, indicating that ET0 remained high throughout this period. PC3 fluctuated at a
value of approximately 0, reflecting no significant trend in ET0. Under SSP245 and SSP370,
the EOF1 eigenvectors of ET0 in the basin were all positive, exhibiting spatial trends of
larger values in the upper and middle reaches and smaller values in the lower reaches, as
well as larger values in the central and western parts and smaller values in the northern
and eastern parts (Figure 10d,f). All the EOF2 eigenvectors exhibited a secondary spatial
trend of positive in the northwest and negative in the rest of the basin, with a relatively
larger increase in ET0 near the source area in the upper part of the basin and a relatively
larger decrease in ET0 in the south. Combined with the temporal coefficients (Figure 11b,c),
PC1 and PC2 exhibited an increasing trend from 2022 to 2100 under the SSP245 and SSP370
scenarios, and PC1 increased more than PC2, particularly after the 2060s, when PC1 and
PC2 always maintained positive values, indicating that ET0 remained high during this
period. The distribution of EOF1 eigenvectors for ET0 in the basin under the SSP585
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scenario was similar to that of EOF1 under the SSP245 scenario (Figure 10h), with an
increasing trend in the time coefficient PC1 (Figure 11d), indicating an increasing trend in
ET0 in the basin and a significant increase in ET0 after the 2060s.

 
Figure 11. Principal component time coefficients (PC1–PC3) and their polynomial fits for the EOF
analysis of future ET0 in the Yellow River Basin under four emission scenarios ((a) SSP126, (b) SSP245,
(c) SSP370, and (d) SSP585).

As observed from the spatial variations in annual ET0 in the YRB in the near-, mid-,
and long-term future relative to historical periods in the 21st century (Figure 12), the near-
annual ET0 growth was generally low on an annual scale, and the rate of ET0 change was
even negative in parts of Tai’an, Shandong Province, located in the lower reaches of the
YRB, at −6.09% under the SSP370 scenario. In the mid- and long-term future scenarios,
the ET0 rate of change gradually increased in the whole basin, and the areas with high
ET0 variations were primarily concentrated in the YRB source area and a small part of
the northern basin. In the lower reaches, the ET0 change rate was low, and the variations
were spatially distributed as high in the west and low in the east. As the radiative forcing
increased, the increase in ET0 became more significant, ranging from −3.08 to 50.78% under
SSP126, from −1.32 to 68.88% under SSP245, from −6.09 to 89.30% under SSP370, and from
−1.27 to 112.91% under SSP585. A maximum variation of 112.91% was observed in the
western part of the YRB in the long-term future (2081–2100) under the SSP585 scenario.
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Figure 12. Spatial variations in the near (2022–2040; a,d,g,j), mid- (2041–2060; b,e,h,k), and long
(2081–2100; c,f,i,l) term future annual ET0 of the Yellow River Basin relative to the historical period
(1901–2014) under four SSP scenarios (SSP126, SSP245, SSP370, and SSP585).

4. Discussion

4.1. Influence of the ET0 Model

The models commonly used internationally for ET0 estimation can generally be di-
vided into four major categories [54]: temperature methods, such as the Hargreaves [50]
and Blaney–Criddle models [55]; mass transfer methods, such as the Rohwer [56] and
Penman models [57]; radiation methods, such as the Priestley–Taylor [58] and Jensen–Haise
models [59]; and synthesis methods, such as the Penman–Monteith model [4]. Although the
Penman–Monteith model is considered the standard method for calculating ET0, accurate
predictions of future ET0 in watersheds require more reliable meteorological data, and
the outputs of existing GCMs and downscaling methods typically have low modeling
accuracy for meteorological parameters such as wind speed, relative humidity, and radia-
tion. Compared to other models, temperature-based models have lower data requirements
and are computationally simple, and downscaling methods have a clear advantage in
modeling temperature [60,61], with correlation coefficients generally above 0.90 (Figure 6),
making them more widely applicable [31]. In addition, several studies have revealed strong
relationships between future ET0 and temperature in other basins or regions. Xing et al. [27]
attributed the increase in ET0 in the 21st century to an increase in temperature, and Ding
and Peng [31] found that global warming led to a change in the main sensitive factor for
potential evapotranspiration in the Loess Plateau from the average temperature in the his-

400



Remote Sens. 2022, 14, 5674

torical period to the maximum temperature in the future period. The results of both these
studies theoretically supported the use of the temperature-based ET0 model. Ahmadi and
Baaghideh [25] explored the effect of climate change on ET0 in pistachio cultivation areas
in Iran using the Hargreaves model. Yan and Mohammadian [47] evaluated the perfor-
mance of the evaporation model based on the Hargreaves formulation using various fitting
methods, and the results showed that the simulation was satisfactory. Among the many
ET0 simplification methods, this study also selected the Hargreaves model, a temperature
method recommended by the FAO [4] and researchers [62,63], to estimate the spatial and
temporal characteristics of ET0 in the YRB under four future emission scenarios. The fitted
scatter density plot had an R2 of 0.8523 at the monthly scale (Figure 7). The Hargreaves
model can effectively simulate basin ET0; reflecting the rationality of the formula selection
in this study. Notably, this study only considered the effect of temperature on ET0, thus,
there may be some bias in the estimation results. The applicability of temperature models in
specific regions [64,65] should be improved, and the effect of other meteorological elements
on future ET0 [66] should be explored in future studies.

4.2. Spatial and Temporal Variations in Future ET0

As a result of global climate change, the hydrometeorological elements and hydrologi-
cal environment of the YRB have been significantly affected [67]. Although many studies
have examined the trends and attribution of ET0 in the YRB [36,68], previous studies were
based on site-scale and historical data. Studies on future water balance and hydrological
cycles in the YRB are relatively weak owing to the lack of studies on ET0.

This study predicted ET0 trends in the YRB for different periods under four future
emission scenarios based on CMIP6 temperature data with high spatial and temporal
resolution generated by the delta statistical downscaling method and the Hargreaves
model. This study revealed an overall significant increase in ET0 in the YRB from 2022
to 2100 (p < 0.01) (Figure 8), without the “evaporation paradox” [69], which is similar
to the future ET0 trends predicted by many studies [28,69,70]. Based on the Hargreaves
model (i.e., Equation (2)), the change in ET0 is proportional to tas and the difference
between tasmax and tasmin. With general global warming, tas, tasmax, and tasmin in
the YRB in the future period showed sudden increases relative to the historical period
(Figure S1). Therefore, the abrupt increase of ET0 can be attributed to the abrupt increase
of temperature-like variables in the future period [27]. Radiative forcing is expected to
stabilize at 2.6 W/m2 by 2100 for SSP126 and 8.5 W/m2 by 2100 for SSP585, and radiation
values and temperature are positively related to ET0 [4]. The positive effects of increasing
climatic factors, such as temperature and radiation, on ET0 in the YRB were greater than
the negative effects of other factors, and therefore, the latter trend was greater than the
former as emission concentrations increased in the YRB (Figure 8). The ET0 changes in the
YRB in the near-, mid-, and long-term future under different future scenarios exhibited
high spatial heterogeneity (Figures 10 and 12), with a spatial distribution high in the west
and low in the east, and the ET0 increase became more significant as the radiative forcing
scenario increased. Consistent with the results of Ding and Peng [31], the increase in ET0
was generally greater at higher elevations than at lower elevations in the basin, with the
most pronounced change in ET0 in the western part of the basin, reaching a maximum
variation of 112.91% compared to that in the historical period (Figure 12). According to the
ET0 equation (i.e., Equation (2)) and Figure S2, this change can be attributed to the largest
temperature difference between tasmax and tasmin in the western part of the basin. In
addition, as shown in the change in future precipitation in the YRB relative to the historical
period (Figure S3), precipitation in the western part of the basin showed less growth overall
and even negative growth in some phases. Warming and decreasing precipitation caused
an increase in dryness in the western part of the basin, and the warm-dry trend intensified.
Wang et al. [71] found that the evapotranspiration process was more sensitive to relative
humidity in the western part of the basin, and a decrease in relative humidity caused an
increase in evapotranspiration. Therefore, ET0 predictions based on the Hargreaves model
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were greater in these areas. Water loss in the YRB is likely to accelerate in the future than in
historical periods, which will threaten the food and ecological security of the region; thus,
developing flexible mitigation strategies tailored to local conditions is critical to coping
with climate change [72].

4.3. Climate Model Uncertainty Analysis

Because of the differences in the feedback processes of different GCMs, a certain degree
of uncertainty exists in their response to future greenhouse gas emissions, and the actual
generalized optimal climate models and ET0 models cannot be determined [73]. Inevitable
uncertainties exist in future ET0 predictions stemming from climate scenarios, climate
models, and ET0 models [74], which greatly affect the confidence of the prediction results.

In response to the uncertainty of climate scenarios, this study selected the CMIP6
data, which had the largest number of participating models, the richest design of numer-
ical experiments, and the largest amount of simulated data available than other CMIP
generations for more than 20 years of the CMIP [37,75], initiated by the current Working
Group on Coupled Models (WGCM). Compared to previous generations (CMIP3, CMIP5,
etc.), CMIP6 uses a new scenario combining shared socio-economic pathways and typi-
cal concentration pathways to constrain multi-model predictions of key climate change
indicators such as global surface temperature and ocean heat content based on historical
observations, climate simulations, and climate sensitivity awareness, reducing uncertainty
in predictions and providing higher resolution and reliability [76], thereby making the
results more informative and time-sensitive than those based on CMIP5 for future ET0
studies, such as in Ahmadi and Baaghideh [25], Ding and Peng [31], Kundu et al. [6] and Le
and Bae [77]. In response to the uncertainty of climate models, this study selected 24 GCMs
with historical and future emission scenarios, which is more extensive than the studies of
Li et al. [70], which only used one climate model (HadCM3) under two emission scenarios
(A2 and B2), and Nooni et al. [1], which used only one climate model (CNRM-CM6). In
addition, this study reduced the uncertainty of future temperature data by preferentially
selecting climate models based on multiple interpolation methods, multiple evaluation
indicators, and equal weight sets on a downscaling basis. The MAE was controlled within
2.5 mm, S and SS were approximately 1, and TS was approximately 0, indicating very high
simulation accuracy (Table 3). Wang and Chen [24] reduced the spatial resolution of GCMs’
data to 0.5◦ based on the delta method, and the MAE of tas was in the range of 1.6–5.7 ◦C.
However, the MAE of tas in this study was controlled in the range of 2.2–2.6 ◦C and had a
higher spatial resolution of 1 km.

Although this study provides a comprehensive theoretical basis for future ET0 as-
sessments, the uncertainties in the downscaling of GCMs [78] and in the selection and
accuracy of ET0 models [74] may impact the prediction results. To improve ET0 estimates
in future studies, consideration should be given to the long-term goal of the United Nations
Framework Convention on Climate Change (Paris Agreement) to limit the increase in
global average temperature to less than 2 ◦C compared to the pre-industrial period and to
further efforts to limit it to less than 1.5 ◦C [79], as well as to achieve China’s 2060 carbon
neutrality and global carbon neutrality. Describing and quantifying the relative importance
of various uncertainty sources and the risks they pose in the assessment is important in
current and future climate change impact studies and water resource assessments that
should be strengthened to reduce prediction uncertainty.
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5. Conclusions

Based on the 24 GCMs in CMIP6 and temperature data with high spatial and temporal
resolution generated by the delta statistical downscaling model, this study assessed the
evolution of ET0 in the YRB under four emission scenarios (SSP126, SSP245, SSP370, and
SSP585) for the near (2022–2040), mid- (2041–2060), and long (2081–2100) term future. The
major conclusions are as follows:

The regionally high-precision climate data generated by delta statistical downscaling
based on multiple interpolation methods reduced the uncertainty in the GCM dataset. For
the YRB, tas selected the climate models ACCESS-ESM1-5, CMCC-CM2-SR5, and INM-
CM5-0; tasmax selected ACCESS-CM2, ACCESS-ESM1-5, and MRI-ESM2-0; and tasmin
selected ACCESS-CM2, ACCESS-ESM1-5, and MPI-ESM1-2-LR. The equal-weighted multi-
model ensemble had smaller mean absolute errors and higher correlation coefficients
than single climate models, and CMIP6 efficiently simulated the temperature and ET0 in
the YRB.

Compared with that of the historical period (1901–2014), the annual ET0 in the YRB
under different emission scenarios (SSP126, SSP245, SSP370, and SSP585) in the future
(2022–2100) substantially increased; the rate increased with the increase in emission con-
centration, and the ET0 in 2100 under the SSP585 scenario reached 1170.39 mm. Morlet
wavelet analysis revealed that ET0 in the YRB had cyclic patterns of 34–38, 34, 39, and
27–32 years under the SSP126, SSP245, SSP370, and SSP585 scenarios, respectively.

Compared with that in the historical period, the ET0 variation in the YRB in the
near-, mid-, and long-term future under different future scenarios exhibited strong spatial
heterogeneity. EOF analysis revealed that ET0 had positive EOF1 values under all four
emission scenarios, exhibiting a spatially consistent trend of ET0 variation across the region.
A maximum variation of 112.91% occurred in the western part of the YRB in the long-
term future (2081–2100) under the SSP585 scenario. Without a scientific response, future
increases in ET0 could further reduce the shortage of water resources in the YRB.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14225674/s1. Figure S1: Interannual variations in tas (a)/tasmax
(b)/tasmin (c) in the Yellow River Basin over the historical period (1901–2014) and under different
future emission scenarios; Figure S2: Spatial variations in the near (2022–2040; (a,d,g,j)), mid- (2041–
2060; (b,e,h,k)), and long (2081–2100; (c,f,i,l)) term future difference between tasmax and tasmin of
the Yellow River Basin relative to the historical period (1901–2014) under four SSP scenarios (SSP126,
SSP245, SSP370, and SSP585); Figure S3: Spatial variations in the near (2022–2040; (a,d,g,j)), mid-
(2041–2060; b,e,h,k), and long (2081–2100; (c,f,i,l)) term future annual precipitation of the Yellow River
Basin relative to the historical period (1901–2014) under four SSP scenarios (SSP126, SSP245, SSP370,
and SSP585).
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Abstract: Sustainable water resources management assessment frameworks (SWRM-AF) with as-
sociated indicators and benchmarks have appeared widely during the last decades to improve or
maintain water resources. Examination or evaluation of their appropriateness and refinement for
particular arid and semi-arid regions is a relatively unexplored area. To fill this gap in knowledge, a
systematic review of relevant 21st century studies identified within two extensive databases, Scopus
and Engineering Village, and in grey literature, is undertaken in this study. Therein, 17 studies are
identified and thoroughly explored to identify their focus, application, and framework construction.
The results of the comparative analysis among these frameworks show that the average numbers of
components and indicators are 4.5 and 17.6, respectively. Meanwhile, categorical rescaling (47.1%),
equal weighting (47.1%), arithmetic technique (82.35%), local scale (52.8%), and interval of the final
index value of [0–100] (41.2%) are the most commonly used normalization methods and elements.
The paper concludes that none of the existing tools reviewed is 100% applicable for arid and semi-arid
regions, and therefore the case is made for developing a new bespoke SWRM-AF. The outcomes
of this paper provide some useful insights into what should be included therein (e.g., stakeholder
engagement and specific indicators to fit the context).

Keywords: water resources management; sustainable assessment; water sustainable index; stakeholder;
framework; indicator

1. Introduction

As a result of significant agricultural and industrial advancements in parallel with the
peace and security afforded after the second world war, the global population has almost
tripled from 2.7 billion to 7.5 billion in just seventy years [1]. This increase, accompanied
by the changes in lifestyle (including eating habits) seen in many regions, is now placing
significant stress on various natural resources (including but not limited to water) vital
for human requirements. These requirements are categorized into basic, psychological,
and self-fulfilment needs, based on Maslow’s hierarchy of needs [2,3]. This research
focuses on the water requirement, which might be considered the most important yet basic
requirement for humans to survive. Nevertheless, the demand for this resource has never
been greater than in the last few decades [4–6], especially in developing countries, where
exceptional population growth, increased urbanization [7], and expansion in industrial and
agricultural sectors have resulted in extreme water demand and water stress. The previous
conditions could highly exacerbate the situation in some arid and semi-arid regions (ASAR)
where limited natural water resources (WR) are available. Therefore, special attention and
preparation should be given to this issue to ensure the longevity of these crucial resources,
especially in regions with difficult climatic and weather-related issues, such as ASAR.
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The term arid is typically used to describe the climate of regions that suffer from very
high temperature and receive less than 100 mm of rainfall per year [8]. In contrast, the term
semi-arid describes regions where the annual rainfall is between 250 and 500 mm/year [9].
Both types of regions feature evapotranspiration rates that are higher than the precipita-
tion rate, with the potential for frequent severe droughts and infrequent but considerable
floods [10]. Moreover, these regions are globally characterized as the most water-stressed
areas, where the groundwater (GW), stored in aquifers, is the primary water source [11].
However, since some ASAR are characterized by low rainfall rates, and rain is essential
to the speed and recharge time of aquifers, the use of GW is not very sustainable [12,13].
Furthermore, high dependence on GW with intensive pumping makes it prone to pollution,
such as salinity intrusion [14,15]. Conversely, in coastal regions, water supply from desali-
nation plants with many of the current technologies is unsustainable, given the high energy,
environmental impact, and economic cost [16–18]. Therefore, water resources management
(WRM) in such regions requires careful planning and assessment of sustainability, and thus
requires appropriate tools.

Furthermore, global warming phenomena and the impacts of climate change are fur-
ther pressurizing WR over the globe [5,19–22], not least in ASAR, requiring new solutions
and approaches on both the demand and supply sides. Thus, the scientific community
has conducted several meetings and studies during the last decades to address the conse-
quences of such a trend [23–27]. One of the early attempts to deal with this issue was in
1992 during the International Conference on Water and the Environment [28], which ended
with the declaration of the four Dublin principles, the third one stating clearly that any
“development and management” in regard to water “should be based on a participatory
approach . . . at all levels”. Hence, this principle informed one of the main strategies to
enhance WRM and ensure the continuity of WR.

Assessing and managing WR in ASAR in a way that usefully informs decision-making
is fraught with difficulty, especially with what appears to be a lack of region-specific
frameworks, a lack of data collection and in the context of the natural and socio-economic
(i.e., Sustainability) settings in which this needs to happen. A research gap exists in terms
of identifying what general sustainable water resources management (SWRM) assessment
frameworks exist, and whether they are applicable to ASAR. This is a key underlying
philosophy behind this paper, the findings of which will be used to identify whether
(a) existing frameworks are fit-for-purpose in ASAR; or (b) a bespoke framework should
be derived. Moreover, if the latter outcome is found to be true, and in order to avoid
reinventing the wheel, the systematic review and analysis of existing frameworks can be
used to inform its derivation.

1.1. Sustainability and Sustainable Water Resources Management (SWRM)

The water cycle and its impact on related ecosystems represent a great example of a
sustainable process that has existed for millions of years. However, current water demands
and global climatic changes are impacting its ability to remain so [29,30].

The use of the terms “sustainability” and “sustainable development” has become ever
more popular since Bruntland’s [31] definition: “to ensure that the current development meets
the needs of current generation’s without negatively impacting the capability of future generations
to meet their needs”. This has never been more important than for SWRM in ASAR, where
GW is becoming depleted, negatively impacting the ability of future generations to draw
down water and meet their needs—which due to growing populations, will be greater
than today.

Another definition or principle for sustainability was introduced by Elkington [32] as:
“sustainability aims to ensure that the range of economic, social, and environmental options would
stay open and not limited for the future generations because they were not hindered by the current
human actions.” This has paved the way for the introduction of 17 sustainable development
goals (SDG), the sixth of which is to “ensure availability and sustainable management of water
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and sanitation for all” [33]. This study is significant and motivated by such a global goal, and
has never been more relevant in ASAR.

Sustainability itself has been widely recognized to stand on three common pillars or
dimensions: the environment, the economy, and the society [34–38]. In other words, to
obtain a sustainable system, its environment should be protected, the economy should be
viable, and social equity and acceptance should be considered as much as possible.

Meanwhile, the importance of achieving a balance (rather than a trade-off) between
these dimensions of sustainability has been a catalyst for much discussion [39–42]. For
example, selling water in plastic bottles is both profitable for companies (economic) and
satisfies the needs of many people (Social). However, the impact of this business on
the environment is harmful if the bottles are not recycled. Therefore, to enhance the
sustainability of any system, all three pillars need to be in balance. Moreover, for ASAR,
the points at which the pillars interact for SWRM need to be considered ever more readily.

1.2. Assessment Frameworks for Sustainable Water Resources Management

To improve the sustainability of any WRM system, it is crucial to have an appropriate
amount of different related indicators (i.e., quantitative and qualitative), metrics, and
benchmarks contained within an assessment framework or index in order to help decision-
makers and concerned stakeholders determine the current level (or performance) of their
SWRM and improve it accordingly, should it be underperforming [43,44]. (N.B. The terms
framework or index are used interchangeably within the literature; however, in this paper,
they are considered to be one and the same.) The advantage of forming an indicator-
based framework is its ability to help evaluate and elucidate multi-dimensional factors
or thoughts that cannot be measured directly [45] and cannot be understood by only one
component or indicator [46].

Indeed, collaboration among different stakeholders in developing a WR index is (and
should always be) significant to ensure the index is acceptable [45]. By developing and
using a suitable framework, all interested parties can understand the main issues that
threaten sustainability in their system, and work co-operatively toward mitigating them.
These issues can be simplified within the framework to a single number representing the
general sustainability level of the whole WRM system. In most cases, having a quantifiable
number would have a more substantial effect on the ability of the public/decision-makers
to understand and therefore act in a more helpful way [47].

Furthermore, it is both beneficial and necessary to build any indicator-based frame-
work based on a wide array of indicators [41] that have been widely vetted and endorsed
and that can guide the assessment and improvement of the sustainability credentials for
WRM systems [48]. Moreover, from a policy-making and management perspective, consid-
ering both water availability and access indicators is likely to be more emphasized (and
therefore carry a higher weighting) for frameworks adopted in developing and water-poor
countries than those in developed and water-rich countries [49]. Similarly, this would apply
in countries in ASAR where appropriate “bespoke” frameworks are needed to improve or
reform their WRM systems.

On the other hand, this study aims to review research published in the last two decades
related to assessment frameworks for SWRM, focusing on checking to what extent they can
be applicable for ASAR. Key objectives in the form of questions for the research include:

• Since the turn of the century, what indicator-based frameworks and/or indices have
been used to assess the sustainability of WRM?

• What similarities and differences exist amongst indicator-based sustainability assess-
ment frameworks of WRM, such as the number of components (and indicators) and
the scaling, aggregating, and weighting methods?

• How effective are the current water resource indices or frameworks in assessing the
sustainability of WRM in ASAR?

By answering these questions, it would be possible to ascertain whether a bespoke
SWRM framework were needed within the context of ASAR.
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The paper is divided into six sections. In Section 2, the methodology used to answer
these questions is outlined. In Section 3, some general definitions of SWRM, along with
criteria and related guidelines for making indicator-based frameworks are subsequently
presented. In Section 4, the main elements of the indicator-based sustainability assessment
framework of the WRM system are briefly illustrated. Section 5 provides the search results
based on the criteria given in Section 2. These results include overviewing and analyzing the
existing Sustainable Water Resources Management Assessment Framework(s) (SWRM-AF)
developed since the turn of the century. A critique is provided that includes the advantages
and disadvantages of each framework, followed by a brief comparative analysis. Section 6
discusses the results with a final evaluation of all frameworks included in this review to
check their applicability for ASAR. Finally, conclusions are provided in Section 7, along
with recommendations for future research.

2. Methodology

To answer the previous questions posed in Section 1.2, a systematic literature search
using the two well-known databases Scopus and Engineering Village was conducted to
check relevant studies. In the first stage, a group of pertinent keywords were identified and
used to search databases using the title/abstract/keywords included in the papers. The
first step required a filter, since the area of sustainability is extensive within the literature.
Moreover, looking through a confined yet credible quantity for a literature review paper
is crucial.

Therefore, the scope of this search was exclusive to peer-reviewed articles and peer-
reviewed conference papers. Additionally, the search had two conditions for all included
documents: (a) documents should have been produced in the period from 2000 to 2021
and (b) documents should be written in the English language only. This period was
selected because several frameworks for assessing the WRM system were produced after
2000. Furthermore, this is consistent with the method applied by other authors, such
as Topal et al. [50]. This method uses a four-step clustering algorithm (i.e., Scope, Target
Group, Subject Domain, and Methods) to narrow the research area. This narrowing process
would mean excluding, to some degree, any unrelated studies by using the OR operator
within each category’s keywords and the AND operator within each cluster [50]. The idea
of this process is straightforward, requiring all studies covered in this review to be included
in the intersection area of all four clusters.

2.1. Keyword Selection

In the Scope cluster, many terms mainly related to sustainability and WRM were used
to define the largest frame with which the search should start. These specific terms and their
derivatives were “#water resources management”, “#water management”, “#water shortage”,
“#water assessment”, “#SWRM”, “#sustainable assessment”, “#sustainable measurement”, “#water
sustainable index”, “#sustainability principles”, “#sustainable development”.

The Target Group of this study concerned the primary sectors that received water or
were affected by any decisions related to its supply and demand. The main terms used for
the Target Group cluster were: “domestic water”, “municipal”, and “stakeholder”.

The Subject Domain keywords were specific for the required method and its main parts
that could evaluate the combination of the Scope and the Target Group and the geographic
areas that needed to be investigated. The terms used in this search for these purposes
were “indicator”, “indicator-based”, “framework”, “criteria”, “index”, “component”, “arid”, and
“semi-arid”. It is worth mentioning that this category (i.e., Subject Domain) was used twice
in the exact search. The first one included all required fields (i.e., Subject/Title/Abstract in
the Engineering Village database, and Title/Abstract/Keywords in the Scopus database).
The second one was only in the title, that is, one of the keywords needed to be in the article’s
title. This action was essential to reduce the enormous number of unrelated studies.
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The fourth group, the methods of data collection or treatment based on the participa-
tory approach, was assigned. The terms included in this cluster were “survey”, “interview”,
“questionnaire”, and “participatory”.

2.2. Database Search

The search through the Scopus and Engineering Village databases was undertaken on
the 14th of October 2021 and returned with 1428 and 1316 articles, respectively. However,
the Engineering Village database was a combination of three databases: (1) Compendex,
(2) GEOBASE, and (3) Inspec. For this reason, many of the 1316 articles were duplicated in
the search output. Fortunately, the search engine had a feature to remove these duplications,
and the number was subsequently reduced to 721 articles. This result, plus that from
Scopus (i.e., 2149 articles) were merged in EndNote Library, which also has the advantage
of automatically removing duplications, reducing the total number to 1627 articles. Among
these papers, 174 were conference papers, while the remaining were peer-reviewed articles.

Before starting the manual search, inclusion and exclusion criteria needed to be
assigned and followed generally. Under these criteria, any articles unrelated to the main
scope (i.e., both WRM and sustainability), whether directly or indirectly, would be excluded
right away. For example, many articles related mainly to the medical, education, and
energy sectors were removed. In addition, if this criterion were applicable, another specific
check was required to ensure that these studies had considered a framework or index by
mentioning that clearly in either the title or the keywords. Consequently, both conditions
were applied in the first screening stage by checking each title and all keywords of the
1627 papers. This stage resulted in a reduction in the number of articles to 400.

In the second round, abstracts were investigated concerning the target group and
main elements of the subject domain (i.e., indicator, indicator-based, and component). The
results dropped to 45. This round was supposed to be the last round, but after checking
some articles among the 45, it appeared they lacked an applicable framework or index that
included specific indicators. Therefore, a final round was added to skim-read each of the
45 papers and ensure that they contained these essential elements to be included in the
full-text review. Consequently, 23 studies were selected to be included in the analysis. All
these screening stages were summarized and illustrated below in Figure 1.

At the end of the systematic review, key methodological steps were applied to help
meet underlying objectives, namely:

• Identification of SWRM definitions, guidelines and criteria (Section 3);
• Establishment of the main elements of indicator-based frameworks (Section 4);
• Provision of an overview of existing sustainable water resources management assess-

ment frameworks (SWRM-AF) (Section 5).
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Figure 1. The selection process for articles.

3. Sustainable Water Resources Management (SWRM): Definitions, Guidelines,
and Criteria

3.1. Definitions

While the definition of sustainability was previously mentioned in Section 1.1, it is
essential to clarify further definitions used within this paper—not least WRM. Firstly, WR
can be defined as any shape or state of natural waters that exist on the planet, whether
above (e.g., rainwater in clouds), on (e.g., oceans and rivers), or under the ground (e.g.,
GW), that has the potential to be used by humans [51]. Secondly, management can be
defined simply as the way to manage something. In terms of WRM, these definitions
pertain to the supply of and demand for water and all matters related to them.

Furthermore, it can be considered that the definition of WR includes both the natural
freshwater and saltwater that usually react to or are affected by the processes of the
hydrological cycle and other species’ activities. Humans are one of the species that can
impact WR in their use of them, but what does it mean to make this process sustainable?
Gleick et al. [52] defined sustainable water use as:

“the use of water that supports the ability of human society to endure and flourish into
the indefinite future without undermining the integrity of the hydrological cycle or the
ecological systems that depend on it.” [52] (p. 24)
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However, humans have the most significant impact on the environment in general and
on WR in particular due to their activities [19,53,54]. These impacts on WR are expected
to expand in the future and cause more uncertainty in terms of water availability, more
extreme weather events of droughts and floods, and quicker evaporation of surface water
resources [53]. Hence, it is important to prepare carefully for these risks before they happen
or increase to improve the sustainable management of WR systems.

Accordingly, the three definitions for the three terms (i.e., sustainability, water re-
sources, and management) can be combined to present a possible explanation for SWRM.
The function of such a definition is to help stakeholders from different backgrounds under-
stand the target in a simple way, which would assist in the communication process, thereby
gaining their trust and cooperation.

Pertinently to this matter and its purpose, the term integrated water resources man-
agement (IWRM) is defined as:

“a process which promotes the coordinated development and management of water, land
and related resources, in order to maximise the resultant economic and social welfare
in an equitable manner without compromising the sustainability of vital ecosystems”.
[23] (p. 1)

Although the previous definition is widely known and broadly accepted by the scientific
community, the understandable main aim is to maximize the benefits to the economy and
society without harming the ecosystem or the environment. Meanwhile, it can be argued
that the purpose of sustainability is slightly different, being more about obtaining the best
result (i.e., optimizing) for all three aspects (i.e., economy, society, and environment) in as
balanced a way as possible.

Therefore, the suggested definition for SWRM used in this paper is “to ensure that
the current management of water resources meets the need of the present generation in a way
that balances between social, economic, and environmental factors avoiding negatively impacting
future generations’ capability to meet their water needs”, accepting that future needs are not
always easy to identify and require a range of foresight methods to predict. This definition
requires a breakdown into several objectives or components that constitute indicators and
sub-indicators to measure the performance of SWRM.

3.2. Guidelines for the Development of the SWRM Framework

Sustainability frameworks and their indicators, in general, could (and should) have
different interpretations based on the perspective, context, and local conditions they are
used for. For example, frameworks assigned for business or construction per se would be
different than those for WRM. Indeed, each sector should have specific guidelines and
criteria for any suggested indicator that matched its context [44,55].

First of all, the consideration and linkage of the three dimensions of sustainability (i.e.,
environmental, economic, and social) [56], in addition to the technical side in the criteria
overall, are crucial to handling the complexity and uncertainty of water-related issues [57].
Hence, a sustainable system would not only facilitate the management of the infrastructure
of water utilities with the supply and demand sides, but would also assure integration
and fairness among the previously mentioned three core areas. Thus, it is essential in
the developing stage of an SWRM framework to check whether any suggested indicator
belongs (or not) to one of these four categories (i.e., technical or physical, environmental,
economic, and social) before considering it.

The second general guideline can be elicited from one of the Dublin principles [28]
(i.e., the third), which emphasizes the importance of a participatory approach for any
development for WR. Thus, the involvement of stakeholders in developing an SWRM-AF,
or at least the process of indicator selection, is necessary.

Another guideline is that the number of indicators should be appropriate. In other
words, they should not be too numerous, since this would complicate the process of
application and interpretation [58,59] and challenge the capacity of the financial and
human resources in collection and analysis. Conversely, too small a number could result in
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inaccurate conclusions that would lead to weak policy decisions—not least because they
would be based on inadequate data [44]. Hence, it is instrumental during the selection
process to focus on just the right number of indicators whose details (i.e., data) are available,
unambiguous, and comprehensive. Nevertheless, following the above guidelines as a first
stage would require more specific criteria for the selection process of each indicator, as
outlined in Section 3.3.

3.3. Criteria for Selection of SWRM Indicators

Specific criteria must be considered in order to select appropriate indicators for assess-
ing SWRM-AF. One of these criteria is that these sustainable indicators should (1) work as
a set; (2) be both simple and clear, and (3) contain sufficient information to help decision-
makers provide efficient actions [60].

Moreover, Bell and Morse [61] identified other criteria as conditions for selecting
indicators. Indicators must:

• Be relevant to the purpose for which they are used;
• Be comprehensive in the field of sustainability in parallel with the definition used;
• Have data available for all regions pertaining to the framework, and these data should

be available from public sources, scientific or institutional.

Therefore, sustainability indicators should be filtered by the previous criteria to decide
whether they are applicable and relevant to the system and whether they fit its definition.
Additionally, data availability is significant; data must be authentic and from open sources,
allowing access for all stakeholders. Furthermore, the United Nations [59] suggested
additional selection criteria for sustainable development indicators, some of which could
benefit the development of the SWRM framework, as follows:

• Designed on a national scale;
• Able to assess the progress of sustainability;
• Clear and understandable;
• Part of a conceptual foundation;
• Representative of an international consensus as much as possible, based on the context;
• Within the capacity of the government with regard to development;
• Reliant on cost-effective data of recognized quality.

Thus, it can be considered that any indicator should have specific features to be
considered, such as being measurable, understandable, conceptual, and adaptable based
on the function for which it is used.

Next, in Section 4, a brief overview of the main elements of the indicator-based
assessment framework or index is outlined and briefly illustrated.

4. Main Elements of an Indicator-Based Assessment Framework

Before establishing or developing any assessment framework, it is vital to recognize
and identify its main pillars. This process would ensure that the framework or index
would be built clearly on a solid foundation. Therefore, the seven main elements of the
indicator-based assessment framework, expressed explicitly and implicitly based on the
literature analysis, are presented briefly below.

Overall, it can be said that any sustainability framework (or index) is constituted of
several key parts: (1) a set of headline categories (components); (2) a set of underpinning
indicators for each component, and (3) a set of second-order and possibly third-order
sub-indicators [43]. To illustrate, a visual example for one of the SWRM-AFs included in
this review (i.e., West Java Water Sustainability Index (WJWSI)- See Section 5.1) is presented
in Figure 2, where the components are represented by the blue boxes, the indicators by the
green ones, and the sub-indicators by the orange boxes.
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Figure 2. A visual example of the main parts that form an index/framework.

It can be observed that the index in Figure 2 is in a hierarchy shape, where the
aggregating direction is a bottom-up process. A particular calculation method (i.e., rescaling
or normalization) to have an equivalent value for each indicator and sub-indicator would
be applied. Then, the aggregation and the weight of the output value of each sub-indicator
would produce the indicator value. The same process is applicable for the resultant values
of indicators and components in obtaining the final value of the index (i.e., the top grey box
in Figure 2).

4.1. Indicator

The first element in forming an assessment framework or index is the indicator itself,
which has the feature of being able to:

• combine with other indicator(s) to produce a component, and/or
• split to create more sections related to the same indicator, with each branch called a

sub-indicator.

At the same time, a question might arise about what is meant by an indicator and what
is the purpose of using it? Indicators present data about the case of a phenomenon [56],
used mainly to measure/assess progress toward sustainability [62]. Moreover, indicators
can reveal how countries (or regions) are coping with internal and external goals (e.g.,
SDGs) and conditions in terms of their sustainability obligations [60].

Indicators and sub-indicators are often objective and quantitative—representing a
quantity or change based on metrics (e.g., water leakage rate [%], litres of water per person
[l/p]). They may also include other aspects, such as area (e.g., [l/m2]) or time periods
[l/p/d] [l/p/yr]). On the other hand, they can be qualitative and subjective—dealing
with cases that cannot be measured by a number, such as opinions, which differ from
one person to another [44]. For example, they may be elicited by such questions as “How
happy are you with your water provider (5 being very happy and 0 being very unhappy)”?
However, in several SWRM frameworks in the literature, the value of a qualitative indicator
or sub-indicator is converted into a number based on a pre-defined conditions or criteria to
simplify the aggregation process, enabling the calculation of a final equivalent score for
each component [63–65]. In general, combining the two types or classifications of indicators
in the SWRM frameworks is not uncommon [66], although using only one or the other is
more popular [63,65,67,68].

4.2. Benchmark

Furthermore, the second element of the indicator-based assessment framework is the
benchmark or target (i.e., an aspired level of performance) with which any indicator and
sub-indicator is usually measured or compared [44,68,69]—for example, domestic potable
water consumption of 160 l/p/day. Thus, a baseline and specific range (i.e., roadmap
and timeline) of values can be developed from any related benchmark to achieve this end
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goal, which might be to reach 120 l/p/day by 2025 and 80 l/p/day by 2040. This process
is considered helpful for stakeholders and decision-makers to gain more comprehensive
knowledge about the output of these indicators and enhance their contributions to moving
towards, rather than away from, such an end goal.

4.3. Application Scale

Another vital element of the indicator-based assessment framework that needs to
be carefully dealt with is the application scale. The scales assigned in the literature for
SWRM indices in descending order are usually global, territorial (or regional), local, and
community scales, in addition to river basins. Indeed, it is important to understand that
the application of each scale might require different criteria and specific guidelines for the
selection process of indicators that would form a suitable framework. For example, the
Water Poverty Index (WPI) [67] (see Section 5.1) has two different versions/values of the
same indicator because of the scale change. In other words, the original version was on a
global scale with specific indicators of commonly available data among countries that can
serve for this scale [67], while the second version was on a community scale, adding and
removing some indicators to fit with the requirements of the case studies [70]. Therefore,
knowing the appropriate application scale is essential.

4.4. Normalization Method

The fourth element of the indicator-based framework is the method of calculating
sub-index values, or the normalization method (i.e., obtaining equivalent component values
for each set of indicators and their following sub-indicators if applicable, as shown above
in Figure 2). Before going further, it is essential to note that many indicators under the same
index or framework would have different unit values. To illustrate, the water coverage
or access indicator, which is common to numerous sustainable water indices, is usually
measured as a percentage (%) of people who already have (or are connected to) the water
service. On the other hand, the water quality indicator, which is also popular, is typically
quantified by a unique summation of different sub-indicators. For instance, water turbidity,
which refers to the solutions spectral light absorbance property, or “transparency”, and
is measured in nephelometric turbidity units (NTU), while another sub-indicator is the
concentration of total suspended solids (TSS), measured in (Mg/L) [71]. Furthermore,
if these indicators (i.e., water coverage and water quality) are categorized under one
component with different unit values, they cannot be aggregated or compared directly.
Therefore, a particular method to combine and compare their values as a normalization
process should be chosen based on the features of the data and the goal of creating such a
framework [43,46].

There are two widely used normalization methods in the literature for sustainable
water indices addressing the issue of calculating the sub-index values:

(a) continued re-scaling [67,68], and
(b) categorical scaling [63,65].

The first method is also referred to as empirical normalization [72]. This method is
proposed to re-scale the actual values of indicators by converting them mathematically into
comparable numbers belonging to an identical interval of numbers ranging from either 0
to 1 or 0 to 100, based on the Equations (1) and (2), respectively [43]:

Si =
Xi−Xmin

Xmax−Xmin
(1)

Si =
Xi−Xmin

Xmax−Xmin
× 100 (2)

where Si is the component value for indicator i, Xi is the actual value for indicator i, and Xmin
and Xmax are the minimum and maximum threshold values of the indicator, respectively;
or in some cases, it can be said that Xmin is the least-preferred value and the Xmax is the
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most-preferred value, which means that to be able to use this method, the threshold values
including the minimum and maximum should be identified for each indicator [43]. The
advantage of this method is that it is easy and efficient in comparing the initial state of the
indicator with alternatives [72]. Overall, this method might be more applicable when the
assessment framework has a majority of quantitative indicators in terms of their data.

The second method for obtaining equivalent indicator values is categorical scaling,
where the values of indicators are categorized and assigned based on pre-defined crite-
ria [43]. These categories can be numbers, such as from 1 to 10, or descriptions and opinions,
such as “low”, “medium”, or “high”.

The general Equation (3) for using this method is presented below [43]:

Zj if Xi meets criteria 1

Zj if Xi meets criteria 2

Si = . . . . . . (3)

Zn if Xn meets criteria n

where Si is the component value for the indicator i, Xi is the actual value for indicator i,
Zj is the category for Xi that meets criteria j, and n is the number of categories. Overall,
this method has the advantage of providing the ability to work on both quantitative and
qualitative data. For instance, because of the diversity of scales and units in their indicator-
based system, Silva et al. [65] used a quali–quantitative scale working as a normalization
step to aggregate and compare contrasting model elements.

4.5. Weighting Scheme

The fifth element of the indicator-based framework is the weighting scheme that
should be considered before doing any aggregation for the product of the previous element
(i.e., the normalization method). The weighting scheme is a process of multiplying each
part of the indicator-based framework or index by a value representing its importance
or weight during each calculation stage to get the final index number. These weighting
techniques are classified in general, according to Nardo et al. [46], into two broad categories:
(a) statistical-based methods, where weights are given based on the analysis of the indicator
data (e.g., [73–76]), and (b) participatory-based methods, where weights are assigned based
on the preference of expert decision-makers or stakeholders [43].

However, since the first approach is more complex and not used in most frameworks
covered in this study, it is considered outside of the scope of this current paper. In addition,
the participatory-based methods are preferred for use in SWRM because they match the
Dublin principles’ requirements and the definition of the IWRM. Moreover, participatory
processes in these assessment types proved valuable and tended to lead to system change
through cooperation [77,78]. Nevertheless, it is mandatory prior to using the participatory-
based methods to consider providing appropriate justifications for the type of experts or
people who have been selected [43], not least because this process might involve subjective
judgment [43] and bias.

Furthermore, the weighting distribution scheme can be classified based on the liter-
ature of sustainable water indices, particularly in the participatory-based methods, into
two schemes:

(a) the equal weights scheme, and
(b) the non-equal weights scheme.

According to Nardo et al. [46], most of the composite indicators, in general, have
historically relied on equal weighting, and this also applies to some WR sustainable in-
dices [63,65,67,68]. Indeed, it might be argued that a truly sustainable assessment system
should equally balance the main elements of sustainability without introducing bias to-
ward one aspect. For example, carbon and the race to achieve carbon neutrality is one key
aspect here.
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4.6. Aggregation Technique

The sixth element of the indicator-based framework is the aggregating method for the
values of sub-indicators, indicators, and components. There are two common aggregating
techniques, which are usually linked to the weighting schemes.

(a) Arithmetic (or linear) method
(b) Geometric method

The first one is the arithmetic (or linear) method, where all the output values of the
indicators (or sub-indicators) are added together, then divided by their total number to
obtain an equivalent value for each component (or indicator). This method is commonly
called the mean or the average, which has the advantage of being simple, and the disadvan-
tage of being sensitive to outlier values. The general expression for this method is shown
in Equation (4) [79]:

I =
N

∑
i=1

wiSi (4)

where I is the aggregated component (or indicator), N is the total number of indicators (or
sub-indicators) that needs to be calculated, Si is the sub-index for the indicator i, and wi
is the weight of indicator i. Another feature of this method is that it can ensure perfect
substitutability and compensability among sub-index values [46]. However, this method
has been criticized, since it might hide or compensate for poor (or low) indicator quality if
combined with a high-quality one [43,46,79].

The second method is the geometric aggregation method, where all the weighted
sub-index values are multiplied instead of being added as in the arithmetic. Then, the result
is powered by the inverse of their total numbers. Moreover, the geometric aggregation
method does not have the feature of creating perfect substitutability and compensability
among the sub-index values [43]. The general Equation (5) for using this method is given
below [79]:

I =
N

∏
i=1

Si
wi (5)

where the symbols for Equation (4) are the same as for Equation (5); meanwhile, the
weights wi in both equations reflect the relative significance of Si, and the summation of
these weights should always equal one [79].

4.7. Final Index Value

The seventh element of the indicator-based framework is the final index value, which
is the final goal of having an index. This element is usually represented by one number, and
it is the final score of the standardized procedures of the fourth, fifth, and sixth elements
of the indicator-based framework (i.e., normalization method, weighting scheme, and
aggregation technique, respectively) [80]. This number is most likely to be from 0 to
100 or 0 to 1. The benefit of having such a number is to make the result of the whole
framework easy to understand, not least by a range of different stakeholders, without
the need for a more detailed assessment. Furthermore, classified interpretations for the
overall sustainability level are sometimes given based on specific ranges of the final index
value. For example, in a framework where the final index value is from 0 to 1, the low,
intermediate, and high level of sustainability are interpretations for any final value lower
than 0.5, from 0.5 to 0.8, and higher than 0.8, respectively [63].

5. Existing Sustainable Water Resources Management Assessment Frameworks
(SWRM-AF): An Overview

After the previous brief exploration and explanation of the main elements of the
indicator-based assessment framework, it would be helpful to provide an overview of the
existing SWRM-AFs and check whether they are applicable to ASAR. Those presented
in this section represent the result of the systemic literature review. This section is vital
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to finding any limitation or knowledge gap(s) in their respective application(s), and to
ascertaining whether they would be suitable for application in different local contexts
and conditions. For this reason, a specific search was conducted in this paper for every
SWRM-AF available in two literature databases since the year 2000 (See Section 2).

Before going further, it is important to remember that this study focuses on the par-
ticipatory method for the development of an SWRM-AF. This method is a critical process
recommended by the principles of IWRM [81], where it is emphasized that stakehold-
ers should be involved in the planning and implementation process [82]. However, in
reality, the application of IWRM has faced different issues ranging between the com-
plexity in measuring its effects and the difficulty in applying prescriptive ideals to the
decision-making process [83]. Thus, considering that any indicator-based framework re-
lies on a participatory technique would overcome the flaws of the application of IWRM.
Additionally, this technique could gain the public’s trust and would likely ensure their
cooperation with any developed future plans and interventions after assessing their WRM
system’s sustainability.

5.1. Results of Systematic Literature Review

As illustrated previously in Figure 1 and discussed in Section 2.2, the final number
of studies that matched the systematic review requirements from the two databases was
narrowed in the final stages to only 23 studies. Of these 23 studies, which were supposed to
be taken to the full review stage, 17 original frameworks were identified (Table 1). Inevitably,
each of these frameworks has different purposes, uses different assessment techniques, and
was made for a specific application at different scales and within diverse local contexts and
conditions. Nevertheless, each of them was presented as a supportive tool to either measure
or improve the level of sustainability of the WRM system, individually or collectively.

The other six studies were excluded for several reasons. One of these is that they
applied one of the other 17 frameworks but with only minor changes. For example, by
varying only the case study, which happened with a journal article [30] that applied
the same Watershed Sustainability Index (WSI) [63] to a different region. Therefore, it
was decided to only include the paper that introduced the original index in this review.
In addition, a conference paper that suggested the application of the Canadian Water
Sustainable Index (CWSI) to evaluate a specific case study had very few details about the
index itself [84]. This was consequently replaced by the original framework published
in a previous report [68]. Likewise, a conference paper [85] about some procedures used
in developing the Water Needs Index (WNI) was excluded because the same index was
provided in full detail in another paper [86] that was included in the review.

Another reason for excluding other papers was when their research served either as
guidance on how to make indicators and frameworks with examples [58], or as criticism of
the indicators assigned for the SDG number 6 [87].

The last reason for not including some studies in the final comparison, even though
they had a framework and indicators, was that their purpose and indicators were not
sufficiently focused on improving/assessing the sustainability of WRM. The first study of
this type was a conference paper focused on evaluating the United States’ infrastructure
performance related to the water sector, without careful consideration of other dimensions
of sustainability [88]. Similarly, to some degree, another study concentrated to some degree
on evaluating the already existing performance indicators related to the water supply
network that targeted the issue of water losses [89]. There were three main issues with
the previous study: (1) the final product was not compatible with the definition of an
index/framework; (2) it had too much technical detail in its indicators that were not all
specifically related to sustainability, and (3) the final number of performance indicators
reached 117, which did not comply with the guidance with regard to having a simple
sustainable framework. Thus, this study was excluded. The remaining studies, ordered
from the oldest to newest, are shown in Tables 1 and 2. Further comparative analysis
among all frameworks included in Tables 1 and 2 is provided in Section 5.2.

421



Su
st

ai
na

bi
lit

y
2

0
2

2
,1

4,
15

29
3

T
a
b

le
1
.

Su
m

m
ar

y
an

d
co

m
pa

ri
so

n
of

m
ai

n
el

em
en

ts
of

ex
is

ti
ng

SW
R

M
-A

Fs
.

S
W

R
M

-A
F

N
a

m
e

A
cr

o
n

y
m

A
u

th
o

r(
s)

,
Y

e
a

r

N
u

m
b

e
r

o
f

In
d

ic
a

to
rs

B
e

n
ch

m
a

rk
S

ca
le

[L
o

ca
ti

o
n

]
N

o
rm

a
li

z
a

ti
o

n
M

e
th

o
d

W
e

ig
h

ti
n

g
S

ch
e

m
e

A
g

g
re

g
a

ti
o

n
T

e
ch

.
F

in
a

l
In

d
e

x
V

a
lu

e
C

o
m

p
o

n
e

n
t

In
d

ic
a

to
r

S
.

In
d

ic
a

to
r

W
at

er
Po

ve
rt

y
In

de
x

W
PI

(L
aw

re
nc

e
et

al
.,

20
02

)
[6

7]
5

17
15

ye
s

G
lo

ba
l

C
on

ti
nu

ou
s

re
sc

al
in

g
Eq

ua
l

A
ri

th
m

et
ic

0–
10

0

C
an

ad
ia

n
W

at
er

Su
st

ai
na

bi
lit

y
In

de
x

C
W

SI

(P
ol

ic
y

R
es

ea
rc

h
In

it
ia

ti
ve

,
20

07
)

[6
8]

5
15

×
ye

s
C

om
m

un
it

y
2

[C
an

ad
a]

C
on

ti
nu

ou
s

re
sc

al
in

g
Eq

ua
l

A
ri

th
m

et
ic

0–
10

0

W
at

er
sh

ed
Su

st
ai

na
bi

lit
y

In
de

x
W

SI
(C

ha
ve

s
an

d
A

lip
az

,2
00

7)
[6

3]
4

15
×

ye
s

Lo
ca

l&
re

gi
on

al
2

[B
ra

zi
l]

C
at

eg
or

ic
al

re
sc

al
in

g
Eq

ua
l

A
ri

th
m

et
ic

0–
1

W
es

tJ
av

a
W

at
er

Su
st

ai
na

bi
lit

y
In

de
x

W
JW

SI
(J

uw
an

a
et

al
.,

20
10

)
[9

0,
91

]
3

9
6

ye
s

Te
rr

it
or

ia
l

(r
eg

io
na

l)
2

[I
nd

on
es

ia
]

C
on

ti
nu

ou
s

+
C

at
eg

or
ic

al
re

sc
al

in
g

Eq
ua

l+
no

n-
eq

ua
l

G
eo

m
et

ri
c

0–
10

0

W
at

er
N

ee
ds

In
de

x
W

N
I

(M
og

lia
et

al
.,

20
12

)
[8

6]
6

9
×

ye
s

Lo
ca

l(
w

ar
d

&
di

st
ri

ct
)

[V
ie

tn
am

]
C

on
ti

nu
ou

s
re

sc
al

in
g

N
on

-e
qu

al
(u

se
r

de
fin

ed
)

A
ri

th
m

et
ic

0–
10

0

W
at

er
&

Sa
ni

ta
ti

on
Su

st
ai

na
bi

lit
y

In
de

x
W

A
SS

I
(I

ri
ba

rn
eg

ar
ay

et
al

.,
20

15
)

[4
8]

9
15

2
ye

s
Lo

ca
l(

ur
ba

n
&

pe
ri

-u
rb

an
)

[A
rg

en
ti

na
]

C
on

ti
nu

ou
s

+
ca

te
go

ri
ca

l
re

sc
al

in
g

Eq
ua

l
A

ri
th

m
et

ic
0–

10
0

G
lo

ba
lW

at
er

Se
cu

ri
ty

In
de

x
G

W
SI

(G
ai

n
et

al
.,

20
16

)
[7

]
4

10
×

ye
s

G
lo

ba
l

C
on

ti
nu

ou
s

re
sc

al
in

g
N

on
-e

qu
al

(a
ut

ho
rs

de
fin

ed
)

A
ri

th
m

et
ic

0–
1

H
yb

ri
d

Tr
ip

le
Bo

tt
om

Li
ne

&
M

ul
ti

-c
ri

te
ri

a
D

ec
is

io
n

A
na

ly
si

s
TB

L-
M

C
D

A
1

(C
ol

e
et

al
.,

20
18

)
[9

2]
3

44
×

ye
s

Lo
ca

l&
co

m
m

un
it

y
[U

SA
]

C
at

eg
or

ic
al

re
sc

al
in

g
Eq

ua
l

A
ri

th
m

et
ic

1–
5

3

Fr
es

hw
at

er
H

ea
lt

h
In

de
x

FH
I

(V
ol

lm
er

et
al

.,
20

18
)

[9
3]

3
11

31
ye

s
Lo

ca
l&

re
gi

on
al

2

[C
hi

na
]

C
on

ti
nu

ou
s

+
ca

te
go

ri
ca

l
re

sc
al

in
g

Eq
ua

l+
no

n-
eq

ua
l

G
eo

m
et

ri
c+

A
ri

th
m

et
ic

0–
10

0
3

A
ss

es
si

ng
W

at
er

Se
cu

ri
ty

&
W

at
er

–
En

er
gy

–F
oo

d
N

ex
us

W
EF

ne
xu

s
1

(M
ar

tt
un

en
et

al
.,

20
19

)
[4

9]
4

17
×

ye
s

N
at

io
na

l
[F

in
la

nd
]

C
at

eg
or

ic
al

re
sc

al
in

g
×

×
×

M
un

ic
ip

al
En

vi
ro

nm
en

ta
l

M
an

ag
em

en
t

M
EM

(C
ri

ol
lo

et
al

.,
20

19
)

[9
4]

4
40

×
ye

s
Lo

ca
l&

re
gi

on
al

[C
ol

om
bi

a]

C
on

ti
nu

ou
s

re
sc

al
in

g
N

on
-e

qu
al

(u
se

r
de

fin
ed

)
A

ri
th

m
et

ic
0–

1

422



Su
st

ai
na

bi
lit

y
2

0
2

2
,1

4,
15

29
3

T
a
b

le
1
.

C
on

t.

S
W

R
M

-A
F

N
a

m
e

A
cr

o
n

y
m

A
u

th
o

r(
s)

,
Y

e
a

r

N
u

m
b

e
r

o
f

In
d

ic
a

to
rs

B
e

n
ch

m
a

rk
S

ca
le

[L
o

ca
ti

o
n

]
N

o
rm

a
li

z
a

ti
o

n
M

e
th

o
d

W
e

ig
h

ti
n

g
S

ch
e

m
e

A
g

g
re

g
a

ti
o

n
T

e
ch

.
F

in
a

l
In

d
e

x
V

a
lu

e
C

o
m

p
o

n
e

n
t

In
d

ic
a

to
r

S
.

In
d

ic
a

to
r

R
iv

er
Ba

si
n

W
at

er
Su

st
ai

na
bi

lit
y

In
de

x
R

BW
SI

(S
ilv

a
et

al
.,

20
20

)
[6

5]
3

8
19

(5
4)

ye
s

Te
rr

it
or

ia
l

re
gi

on
al

2

[N
/A

]

C
at

eg
or

ic
al

re
sc

al
in

g
Eq

ua
l

A
ri

th
m

et
ic

0–
1

W
at

er
Se

ns
it

iv
e

C
it

ie
s

In
de

x
W

SC
(R

og
er

s
et

al
.,

20
20

)
[7

8]
7

34
×

ye
s

Lo
ca

l(
m

et
ro

po
li-

ta
n/

m
un

ic
ip

al
)

[A
us

tr
al

ia
]

C
at

eg
or

ic
al

re
sc

al
in

g
×

A
ri

th
m

et
ic

1–
5

3

M
al

ay
si

a
M

an
uf

ac
tu

ri
ng

In
du

st
ry

W
at

er
Be

nc
hm

ar
ki

ng
Sy

st
em

M
IW

A
BS

(B
ah

ar
et

al
.,

20
20

)
[8

0]
4

9
×

ye
s

Fa
ct

or
ie

s
le

ve
l

[M
al

ay
si

a]

Pr
ox

im
it

y-
to

-
ta

rg
et

+
ca

te
go

ri
ca

l
re

sc
al

in
g

N
on

-e
qu

al
(u

se
r

de
fin

ed
)

A
ri

th
m

et
ic

0–
10

0

In
di

ca
to

rs
of

In
te

gr
at

ed
W

at
er

R
es

ou
rc

e
M

an
ag

em
en

t
II

W
R

M
1

(B
en

-D
ao

ud
et

al
.,

20
21

)
[9

5]
4

12
×

ye
s

Lo
ca

l2

[M
or

oc
co

]
C

at
eg

or
ic

al
re

sc
al

in
g

Eq
ua

l
A

ri
th

m
et

ic
1–

5

Su
st

ai
na

bi
lit

y
In

de
x

SI
(N

aj
ar

an
d

Pe
rs

so
n,

20
21

)
[9

6]
3

14
82

ye
s

Lo
ca

l
[S

w
ed

en
]

Su
rv

ey
(c

at
eg

or
ic

al
re

sc
al

in
g)

Eq
ua

l
A

ri
th

m
et

ic
0–

2

R
ur

al
W

at
er

Su
st

ai
na

bi
lit

y
In

de
x

R
W

SI
(C

ri
sp

im
et

al
.,

20
21

)
[9

7]
5

21
58

ye
s

R
ur

al
&

co
m

m
un

it
y

[B
ra

zi
l]

C
at

eg
or

ic
al

re
sc

al
in

g
N

on
-e

qu
al

(u
se

r
de

fin
ed

)
A

ri
th

m
et

ic
0–

10

A
ve

ra
ge

4.
5

17
.6

30
.3

1
In

di
ca

te
s

a
su

gg
es

te
d

ac
ro

ny
m

;2
de

si
gn

ed
fo

r
ri

ve
r

ba
si

n
sc

al
e;

3
do

es
no

th
av

e
a

fin
al

in
de

x
va

lu
e

bu
ta

fin
al

va
lu

e
fo

r
ea

ch
co

m
po

ne
nt

on
ly

.

423



Su
st

ai
na

bi
lit

y
2

0
2

2
,1

4,
15

29
3

T
a
b

le
2
.

Su
m

m
ar

y
of

w
hy

an
d

ho
w

th
e

ex
is

ti
ng

SW
R

M
-A

Fs
ha

ve
be

en
de

ve
lo

pe
d

w
it

h
pr

os
an

d
co

ns
.

A
cr

o
n

y
m

[R
e

fe
re

n
ce

]
P

u
rp

o
se

S
e

le
ct

io
n

P
ro

ce
ss

fo
r

In
d

ic
a

to
rs

S
ta

k
e

h
o

ld
e

rs
In

v
o

lv
e

d
A

d
v

a
n

ta
g

e
D

is
a

d
v

a
n

ta
g

e

W
PI

[6
7]

To
fin

d
th

e
re

la
ti

on
be

tw
ee

n
th

e
w

at
er

av
ai

la
bi

lit
y

or
sc

ar
ci

ty
im

pa
ct

s
on

th
e

w
el

fa
re

le
ve

lo
fh

um
an

po
pu

la
ti

on
s

am
on

g
14

7
co

un
tr

ie
s

Li
te

ra
tu

re
re

vi
ew

th
en

st
ak

eh
ol

de
r

op
in

io
n

Ph
ys

ic
al

&
so

ci
al

ex
pe

rt
s,

ac
ad

em
ic

s,
pr

ac
ti

ti
on

er
s,

ot
he

rs

G
oo

d
ra

ng
e

of
st

ak
eh

ol
de

rs
,

he
lp

fu
lf

or
ge

ne
ra

lc
om

pa
ri

so
ns

G
en

er
al

na
tu

re
(o

r
ba

se
)o

f
in

di
ca

to
rs

ca
n

ne
gl

ec
ti

nt
er

na
l

im
po

rt
an

ti
ss

ue
s

re
la

te
d

to
th

e
co

nt
ex

to
fs

pe
ci

fic
re

gi
on

s

C
W

SI
[6

8]

To
ev

al
ua

te
w

at
er

su
st

ai
na

bi
lit

y
an

d
w

el
l-

be
in

g
in

C
an

ad
ia

n
co

m
m

un
it

ie
s

co
nc

er
ni

ng
fr

es
hw

at
er

Li
te

ra
tu

re
re

vi
ew

th
en

st
ak

eh
ol

de
r

w
or

ks
ho

p
G

ov
er

nm
en

to
ffi

ci
al

s,
ac

ad
em

ic
s,

co
ns

ul
ta

nt
s

Pa
rt

ic
ip

at
or

y
m

et
ho

d
w

it
h

st
ak

eh
ol

de
rs

in
re

fin
in

g
th

e
se

le
ct

ed
in

di
ca

to
rs

D
ev

el
op

ed
on

ly
fo

r
co

m
m

un
it

ie
s

th
at

de
pe

nd
on

ri
ve

r
ba

si
ns

W
SI

[6
3]

To
co

m
bi

ne
th

e
tr

ea
tm

en
to

ft
he

th
re

e
pi

lla
rs

of
su

st
ai

na
bi

lit
y

w
it

hi
n

an
in

te
gr

at
ed

an
d

dy
na

m
ic

pr
oc

es
s

Li
te

ra
tu

re
re

vi
ew

N
on

e
Eq

ua
lw

ei
gh

ti
ng

of
in

di
ca

to
rs

to
en

su
re

m
ut

ua
lr

es
pe

ct
am

on
g

al
l

se
ct

or
s

N
o

st
ak

eh
ol

de
r

en
ga

ge
m

en
t,

de
ve

lo
pe

d
on

ly
fo

r
ri

ve
r

ba
si

ns

W
JW

SI
[9

0,
91

]

To
id

en
ti

fy
m

ai
n

fa
ct

or
s

he
lp

im
pr

ov
in

g
W

R
,t

o
as

si
st

in
pr

io
ri

ti
ze

is
su

es
of

W
R

M
,

an
d

to
co

m
m

un
ic

at
e

cu
rr

en
tc

on
di

ti
on

of
W

R
to

co
m

m
un

it
y

Li
te

ra
tu

re
re

vi
ew

th
en

co
nc

ep
tu

al
fr

am
ew

or
k,

th
en

D
el

ph
i

ap
pl

ic
at

io
n

&
st

ak
eh

ol
de

rs
’i

nt
er

vi
ew

A
ca

de
m

ic
s,

co
ns

ul
ta

nt
s,

go
ve

rn
m

en
to

ffi
ci

al
s,

co
m

m
un

it
y

re
pr

es
en

ta
ti

ve
s

Pa
rt

ic
ip

at
or

y
m

et
ho

d
w

it
h

st
ak

eh
ol

de
rs

in
re

fin
in

g
th

e
se

le
ct

ed
in

di
ca

to
rs

,
go

od
ra

ng
e

of
st

ak
eh

ol
de

rs

D
ev

el
op

ed
fo

r
ri

ve
r

ba
si

ns
pa

rt
ic

ul
ar

ly
in

In
do

ne
si

a,
un

cl
ea

r
w

ay
of

co
m

bi
na

ti
on

of
no

rm
al

iz
at

io
n

m
et

ho
ds

W
N

I
[8

6]

To
pi

np
oi

nt
pe

rs
is

te
nt

w
at

er
pr

ob
le

m
s

an
d

ho
ts

po
ts

th
at

lo
ca

lw
at

er
au

th
or

it
ie

s
sh

ou
ld

ad
dr

es
s

Li
te

ra
tu

re
re

vi
ew

th
en

st
ak

eh
ol

de
r

w
or

ks
ho

p

A
ca

de
m

ic
s,

go
ve

rn
m

en
t

of
fic

ia
ls

Pa
rt

ic
ip

at
or

y
m

et
ho

d
w

it
h

st
ak

eh
ol

de
rs

in
re

fin
in

g
th

e
se

le
ct

ed
in

di
ca

to
rs

&
as

si
gn

in
g

w
ei

gh
ts

fo
r

co
m

po
ne

nt
s

on
ly

In
di

ca
to

r
w

ei
gh

ti
ng

s
as

si
gn

ed
by

re
se

ar
ch

er
s

al
on

e,
co

m
po

ne
nt

of
aq

ua
ti

c
ec

os
ys

te
m

s
is

sp
ec

ifi
c

fo
r

su
rf

ac
e

w
at

er

W
A

SS
I

[4
8]

D
ev

el
op

ed
as

a
to

ol
to

su
pp

or
t

go
ve

rn
an

ce
pr

oc
ed

ur
es

fo
r

m
or

e
SW

R
M

,
ap

pl
ie

d
to

fo
ur

ci
ti

es
in

no
rt

he
rn

A
rg

en
ti

na

D
ev

el
op

ed
in

co
lla

bo
ra

ti
on

w
it

h
th

e
pr

ov
in

ci
al

w
at

er
co

m
pa

ny

G
ov

er
nm

en
t

of
fic

ia
ls

,
w

at
er

C
om

pa
ny

H
el

pf
ul

in
co

m
pa

ri
ng

le
ve

lo
f

SW
R

M
am

on
g

ci
ti

es
,

ne
w

in
fo

rm
at

io
n/

da
ta

ea
si

ly
up

lo
ad

ed
to

w
eb

-i
nt

er
fa

ce

W
eb

si
te

in
Sp

an
is

h,
on

ly
on

e
st

ak
eh

ol
de

r
gr

ou
p

in
vo

lv
ed

in
th

e
in

di
ca

to
r

se
le

ct
io

n
pr

oc
es

s

G
W

SI
[7

]
To

in
te

gr
at

e
ph

ys
ic

al
an

d
so

ci
o-

ec
on

om
ic

as
pe

ct
s

of
se

cu
ri

ty
w

it
hi

n
a

SW
R

M
in

de
x

Li
te

ra
tu

re
re

vi
ew

N
on

e
H

el
pf

ul
fo

r
ge

ne
ra

lc
om

pa
ri

so
ns

,
w

at
er

se
cu

ri
ty

ev
al

ua
ti

on
m

ap
s

ar
e

w
el

ld
ev

el
op

ed

G
en

er
al

na
tu

re
(o

r
ba

se
)o

f
in

di
ca

to
rs

be
ca

us
e

of
gl

ob
al

sc
al

e,
no

st
ak

eh
ol

de
r

en
ga

ge
m

en
t

TB
L-

M
C

D
A

[9
2]

To
ev

al
ua

te
th

e
pi

lla
rs

(l
en

se
s)

of
su

st
ai

na
bi

lit
y

re
la

te
d

to
us

in
g

al
te

rn
at

iv
e

w
at

er
su

pp
ly

st
ra

te
gi

es
ve

rs
us

m
ai

nt
ai

ni
ng

th
e

co
nv

en
ti

on
al

sy
st

em
.

D
ev

el
op

ed
in

co
lla

bo
ra

ti
on

w
it

h
te

ch
ni

ca
le

xp
er

ts
&

st
ak

eh
ol

de
rs

Te
ch

ni
ca

le
xp

er
ts

,c
it

y
de

pa
rt

m
en

ts
,n

on
-p

ro
fit

or
ga

ni
za

ti
on

G
oo

d
ra

ng
e

of
st

ak
eh

ol
de

rs
,

pe
rf

or
m

an
ce

in
di

ca
to

rs
us

ed
w

it
h

st
ak

eh
ol

de
r

pr
ef

er
en

ce
s

to
su

pp
or

t
de

ci
si

on
-m

ak
in

g

U
nc

le
ar

if
lit

er
at

ur
e

re
vi

ew
us

ed
,

In
di

ca
to

r
nu

m
be

r
to

o
la

rg
e

to
be

im
pl

em
en

te
d

in
pr

ac
ti

ca
lw

ay
,

no
fin

al
in

de
x

va
lu

e
ca

lc
ul

at
ed

.

FH
I

[9
3]

To
in

te
gr

at
e

th
e

m
ul

tip
le

so
ci

al
,e

co
lo

gi
ca

l,
an

d
go

ve
rn

an
ce

di
m

en
si

on
s

to
w

ar
d

th
e

su
st

ai
na

bi
lit

y
of

fr
es

hw
at

er
m

an
ag

em
en

t.

Li
te

ra
tu

re
re

vi
ew

th
en

sc
ie

nt
ifi

c
w

or
ks

ho
ps

&
st

ak
eh

ol
de

r
op

in
io

n

Sc
ie

nt
ifi

c
ex

pe
rt

s,
lo

ca
ls

ta
ke

ho
ld

er
s

St
ak

eh
ol

de
r

en
ga

ge
m

en
t—

in
cl

ud
e

fo
r

in
di

ca
to

r
se

le
ct

io
n

an
d

pa
rt

ia
lly

in
w

ei
gh

ti
ng

s

N
o

fin
al

in
de

x
va

lu
e

ca
lc

ul
at

ed
.

D
ev

el
op

ed
fo

r
ri

ve
r

ba
si

ns

W
EF

ne
xu

s
[4

9]

To
ev

al
ua

te
w

at
er

se
cu

ri
ty

an
d

it
s

tr
en

ds
in

th
e

fu
tu

re
th

ro
ug

h
a

pa
rt

ic
ip

at
or

y
pr

oc
es

s,
an

d
to

an
al

ys
e

co
nn

ec
ti

on
s

w
it

h
w

at
er

,e
ne

rg
y,

an
d

fo
od

se
cu

ri
ty

in
Fi

nl
an

d

Li
te

ra
tu

re
re

vi
ew

th
en

st
ak

eh
ol

de
r

w
or

ks
ho

p
A

ca
de

m
ic

s,
go

ve
rn

m
en

to
ffi

ci
al

s,
se

cu
ri

ty
or

ga
ni

za
ti

on
s

St
ak

eh
ol

de
r

en
ga

ge
m

en
t,

hi
gh

-l
ev

el
in

te
rv

ie
w

s,
ex

ce
lt

oo
lw

it
h

di
ff

er
en

ts
he

et
s

H
ig

hl
y

qu
al

it
at

iv
e,

m
is

se
d

th
re

e
m

ai
n

el
em

en
ts

,
di

ffi
cu

lt
to

us
e

in
ot

he
r

co
nt

ex
ts

/s
et

ti
ng

s

424



Su
st

ai
na

bi
lit

y
2

0
2

2
,1

4,
15

29
3

T
a
b

le
2
.

C
on

t.

A
cr

o
n

y
m

[R
e

fe
re

n
ce

]
P

u
rp

o
se

S
e

le
ct

io
n

P
ro

ce
ss

fo
r

In
d

ic
a

to
rs

S
ta

k
e

h
o

ld
e

rs
In

v
o

lv
e

d
A

d
v

a
n

ta
g

e
D

is
a

d
v

a
n

ta
g

e

M
EM [9
4]

To
cr

ea
te

,a
s

a
bo

tt
om

-u
p

ap
pr

oa
ch

,a
W

R
M

th
at

ca
n

m
ea

su
re

lo
ca

lg
ov

er
nm

en
t

ad
m

in
is

tr
at

io
ns

’d
ed

ic
at

io
n

to
su

st
ai

na
bi

lit
y

Li
te

ra
tu

re
re

vi
ew

&
st

ak
eh

ol
de

r
op

in
io

n
th

en
In

te
rv

ie
w

s
an

d
on

lin
e

su
rv

ey
s

A
ca

de
m

ic
s,

go
ve

rn
m

en
t&

m
un

ic
ip

al
of

fic
ia

ls
,s

oc
ia

lo
rg

an
iz

at
io

ns

Pa
rt

ic
ip

at
or

y
m

et
ho

d
w

it
h

st
ak

eh
ol

de
rs

in
re

fin
in

g
th

e
se

le
ct

ed
in

di
ca

to
rs

an
d

w
ei

gh
ts

,
R

es
ul

ts
pu

bl
is

he
d

in
a

w
eb

si
te

En
vi

ro
nm

en
ta

lf
oc

us
,

la
rg

e
nu

m
be

r
of

in
di

ca
to

rs
th

at
ne

ed
ed

ag
gr

eg
at

io
n

R
BW

SI
[6

5]

To
ev

al
ua

te
an

d
gu

id
e

th
e

de
ci

si
on

-m
ak

in
g

pr
oc

es
s

in
pr

om
ot

in
g

w
at

er
su

st
ai

na
bi

lit
y

as
pa

rt
of

in
te

gr
at

ed
ri

ve
r

ba
si

n
m

an
ag

em
en

t(
IR

BM
)

Li
te

ra
tu

re
in

te
rr

og
at

io
n

N
on

e
Li

te
ra

tu
re

re
vi

ew
ed

us
in

g
an

in
du

ct
iv

e
ap

pr
oa

ch

N
o

st
ak

eh
ol

de
r

en
ga

ge
m

en
t,

la
rg

e
nu

m
be

r
of

su
b-

in
di

ca
to

rs
th

at
ne

ed
ed

ag
gr

eg
at

io
n,

de
ve

lo
pe

d
fo

r
ri

ve
r

ba
si

ns

W
SC

[7
8]

To
ev

al
ua

te
a

ci
ty

’s
w

at
er

se
ns

it
iv

it
y,

cr
ea

te
as

pi
ra

ti
on

al
go

al
s,

an
d

gu
id

e
m

an
ag

em
en

ta
ct

io
ns

to
en

ha
nc

e
w

at
er

-s
en

si
ti

ve
pr

oc
es

se
s

Li
te

ra
tu

re
re

vi
ew

th
en

co
ns

ul
ta

ti
on

w
it

h
st

ak
eh

ol
de

rs
In

du
st

ry
ex

pe
rt

s,
ac

ad
em

ic
s

Pa
rt

ic
ip

at
or

y
m

et
ho

d
fo

r
de

ve
lo

pi
ng

in
di

ca
to

rs
an

d
sc

or
in

g
sy

st
em

H
ig

h
nu

m
be

r
of

in
di

ca
to

rs
,

w
ei

gh
ti

ng
s

se
em

am
bi

gu
ou

s,
no

fin
al

in
de

x
va

lu
e

M
IW

A
BS

[8
0]

To
ev

al
ua

te
th

e
in

du
st

ri
al

se
ct

or
’s

w
at

er
pe

rf
or

m
an

ce
w

it
hi

n
a

fa
ct

or
y-

le
ve

ls
ca

le
in

M
al

ay
si

a

Li
te

ra
tu

re
re

vi
ew

th
en

st
ak

eh
ol

de
r

w
or

ks
ho

p
to

sc
re

en
&

fil
te

r
In

du
st

ry
ex

pe
rt

s,
ac

ad
em

ic
s

W
ei

gh
ti

ng
us

ed
an

al
yt

ic
al

hi
er

ar
ch

y
pr

oc
es

s
(A

H
P)

ap
pl

ie
d

to
qu

es
ti

on
na

ir
e

ou
tp

ut

M
et

ho
d

fo
r

ag
gr

eg
at

io
n

no
t

re
po

rt
ed

,s
ca

le
ap

pl
ic

ab
le

to
fa

ct
or

y
al

on
e

II
W

R
M

[9
5]

To
pr

od
uc

e
an

in
di

ca
to

r-
ba

se
d

fr
am

ew
or

k
to

ev
al

ua
te

th
e

ap
pl

ic
at

io
n

of
IW

R
M

w
it

hi
n

M
ek

ne
s

ci
ty

,M
or

oc
co

Li
te

ra
tu

re
re

vi
ew

th
en

su
rv

ey
of

st
ak

eh
ol

de
r

vi
a

qu
es

ti
on

na
ir

es
G

ov
er

nm
en

to
ffi

ci
al

s
(w

at
er

se
ct

or
ac

to
rs

),
pr

ac
ti

ti
on

er
s

Ea
sy

to
in

te
rp

re
tr

ad
ar

di
ag

ra
m

us
ed

fo
r

di
sp

la
yi

ng
re

su
lt

s

N
o

ev
id

en
ce

/j
us

ti
fic

at
io

n
fo

r
ca

lc
ul

at
io

ns
or

w
ei

gh
ti

ng
sc

he
m

e
pr

ov
id

ed

SI [9
6]

To
ev

al
ua

te
an

d
gu

id
e

Sw
ed

en
’s

m
un

ic
ip

al
w

at
er

an
d

w
as

te
w

at
er

se
ct

or
s

to
be

m
or

e
su

st
ai

na
bl

e

Sw
ed

is
h

W
at

er
an

d
W

as
te

w
at

er
A

ss
oc

ia
ti

on
(S

W
W

A
)d

ev
el

op
ed

fr
am

ew
or

k

M
em

be
rs

of
SW

W
A

,
w

at
er

ut
ili

ti
es

of
th

e
m

un
ic

ip
al

it
ie

s

A
nn

ua
ls

ur
ve

y—
ri

go
ro

us
ly

de
ve

lo
pe

d
an

d
w

el
l-w

ri
tt

en
,s

im
pl

y
to

us
e/

un
de

rs
ta

nd
,r

es
ul

ts
pu

bl
is

he
d

in
a

w
eb

-b
as

ed
da

ta
ba

se

H
ig

h
nu

m
be

r
of

su
b-

in
di

ca
to

rs
,

ye
ar

ly
ap

pl
ic

at
io

n
w

ou
ld

ha
ve

hu
ge

ti
m

e,
re

so
ur

ce
im

pl
ic

at
io

ns

R
W

SI
[9

7]

To
he

lp
de

ci
si

on
-m

ak
er

s
in

th
e

pr
oc

es
s

of
fin

di
ng

an
d

pr
io

ri
ti

zi
ng

ru
ra

l
co

m
m

un
it

ie
s

th
at

ne
ed

st
at

e
in

te
rv

en
ti

on
w

it
h

re
ga

rd
to

w
at

er
pr

ov
is

io
n

Li
te

ra
tu

re
re

vi
ew

th
en

D
el

ph
i

m
et

ho
d

vi
a

qu
es

ti
on

na
ir

es
to

st
ak

eh
ol

de
rs

Po
lic

ym
ak

er
s,

te
ch

ni
ci

an
s,

ex
pe

rt
s,

ot
he

rs

Pa
rt

ic
ip

at
or

y
m

et
ho

d
w

it
h

st
ak

eh
ol

de
rs

in
re

fin
in

g
th

e
se

le
ct

ed
in

di
ca

to
rs

an
d

w
ei

gh
ts

H
ig

h
nu

m
be

r
of

in
di

ca
to

rs
,

m
os

tl
y

ap
pl

ic
ab

le
to

ru
ra

l
co

m
m

un
it

ie
s

425



Sustainability 2022, 14, 15293

5.2. Comparative Analysis of Existing SWRM-AFs

After the brief illustration of all the frameworks obtained from the systematic literature
review (see Tables 1 and 2) a comparative analysis is performed in order to collectively
get valuable observations and insights. The comparative analysis is undertaken using the
aspects previously detailed in Section 4 and the key headings shown in Tables 1 and 2.

5.2.1. Number and Type of Components

The first observation was in regard to the number of components (Figure 3), where their
total number was 76, while the different investigated frameworks used an average number
of 4.5 components. Moreover, thirteen frameworks (76.5% of the total) opted for three to five
components, with four being the most widely adopted featuring within six studies (35.3%
of the total), whilst three and five components were featured in four and three frameworks
(i.e., 29.4% and 17.6% of total), respectively. The other frameworks adopted six, seven, or
nine components (23.5% of total). The highest number of components (9) was found in
WASSI [48] and the least numbers of components (3) were found in RBWSI [65], FHI [93],
TBL-MCDA [92] and WJWSI [90,91]. Based on this observation, it can be suggested that
for any new SWRM-AF being developed, the number of components should preferably
stay within the threshold of three to five, with a preference of four, since it was the most
repeated number.

 
Figure 3. Total number of components used in each framework.

Regarding the types of components, a thematic analysis was conducted to categorize
them in two steps. The first step was to check the common words in the title of the compo-
nents that were repeated based on their numbers. A criterion was suggested to eliminate
any word repeated less than three times. Therefore, only 63 components distributed among
14 main words were included in this analysis, as seen in Figure 4. The most-repeated words
were “resource” and “water” (i.e., seven times for each), followed by “environment” and
“access”, which were mentioned six times. In contrast, “capacity”, “social”, “infrastructure”,
“quality”, and “service” were the least-repeated words, with only three repetitions for each.
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Figure 4. Number of most repeated-words in the titles of components.

Further investigation, which was the second step, highlighted that thematic catego-
rization was possible by combining those categories in Figure 4 that served the same theme,
as shown in Figure 5.

 
Figure 5. Main themes of components based on their repeated number.

Overall, it can be seen that the infrastructure, environmental, and socio-environmental
components are critical in any SWRM-AF, since they have the biggest shares.

5.2.2. Number of Indicators

The second observation concerned the number of indicators. From the interrogation
of Table 1, it can be seen that the average number of indicators in all included frameworks
was 17.6 indicators. However, it can also be seen that most frameworks (twelve–70.6%
of total) had a total number of indicators ranging between 9 [73,83,88] and 17 [49,67]
(inclusive), leading to an average of 12.75 in this discrete group. The most repeated number
of indicators therein were nine [80,86,91] and fifteen [48,63,68], where each of these numbers
was found in three of the seventeen frameworks. Four of the remaining frameworks (i.e.,
23.5% of total) had a higher number of indicators, 21 in RWSI [97], 34 in WSC [78], 40 in
MEM [94], and 44 in TBL-MCDA [92], respectively, while only one study (i.e., RBWSI [65])
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had a lower number, with eight indicators. The lower number was not typical; however,
this framework had a unique design, with two orders of sub-indicators.

5.2.3. Number of Sub-Indicators and Benchmarks

In terms of sub-indicators, Table 1 shows that they were not always available. In other
words, only seven frameworks (41.1% of total) included them. The average number was
30.3 sub-indicators, with a minimum of 2 in WASSI [48] and a maximum of 82 in SI [96]. In
terms of benchmarking, all frameworks reviewed contained these (see Table 1)

5.2.4. Scale of Application

Various scales can be seen within the frameworks reviewed (Figure 6).

 
Figure 6. Scale of Application.

The global scale appeared only twice in WPI [67] and GWSI [7], likely because the
amount of time, effort, and required data are extensive. The scale with the most significant
share (9 studies or 52.8%) tended toward the local (mainly city) scale whilst the remaining
six studies were evenly split between the community scale [68,92] and territorial (regional)
scale [63,94], which refers to large areas, such as those with several cities. The last of these
is the “other” category, with two frameworks, which included the national and factory
scales [80,96]. It is also worth noting that six studies (i.e., 35.3% of total) considered areas
with river basins [63,65,68,90,93,95].

5.2.5. Normalization Process

All percentages for the process of normalization are shown in Figure 7. Eight studies
used categorical rescaling [49,63,65,78,92,95–97], and five studies used continuous rescal-
ing [7,67,68,86,94], with 47.1% and 29.4% of the total share, respectively. Three studies
(17.6% of total) used a combination of both [48,90,93]. This option is not common, because
this task would be confusing for non-expert stakeholders. On the other hand, only one
framework (i.e., MIWABS [80]) used a different approach: the Proximity-to-Target [80],
which happened to be a very close match to continuous rescaling, albeit with subtle,
nuanced differences.
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Figure 7. Percentage of Normalization Method.

5.2.6. Weighting Process

The process of weighting indicators and components was seen in 15 of the 17 (90%)
frameworks reviewed (Figure 8). Out of all the frameworks reviewed, the preference
for allocating equal weights was dominant in eight studies [48,63,65,67,68,92,95,96] with
a percentage of 47.1%. This aligns with the ethos of sustainability, which is about bal-
ancing, rather than trading off, respective pillars. Five studies [7,80,86,94,97] considered
the non-equal weights (user-defined), with a percentage of 29.3% of the total. Only two
frameworks [90,93] (11.8% of total) adopted a combination of both approaches.

 
Figure 8. Percentage of Weighting Scheme.

5.2.7. Aggregation Technique and Final Index Value

The next element is the aggregation technique, which is used in combination with the
weighting scheme in order to reach a final index value. Most frameworks [7,48,63,67,68,
78,80,86,92,94–97] (i.e., 14 or 82.35%) relied on the arithmetic technique—calculating the
average rescaling value of indicators. The geometric technique was used twice: one time
alone [90] and the other in combination with the arithmetic technique [93]. In contrast, the
WEF nexus framework [49] used neither aggregation technique nor final index value.

In Figure 9, it can be seen that the most widely adopted interval for the final index value
(with 41.2% of total) was 0 and 100 [48,67,68,80,86,90,93]. Therefore, it can be suggested that
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this interval was the most preferred choice for both experts and stakeholders within the
frameworks reviewed. The second most widely adopted interval for final index value (with
23.5% of total) was 0 and 1 [7,63,65,94]. The third most widely adopted interval for final
index value (with 17.6% of total) was 1 to 5 [78,92,95]. A category called “other” was used
to combine any final index value with a unique range that appeared once in the frameworks
reviewed. This happened in only two indices [96,97] (11.8% of total). The last category
called “without” for the WEF nexus framework [49] (5.9% of total), which does not have
any final index value. Meanwhile, only the final assessment for each indicator (or criterion
as they called it) is provided with a qualitative description in an individual assessment
card without aggregating all indicators or components to get a single final value.

 
Figure 9. Interval of Final Index Value.

5.3. SWRM-AF for ASAR

After going through the systematic literature review, it was clear that no dedicated
SWRM-AF had been explicitly made for or applied to ASAR—these areas lack any perma-
nent rivers or river basins. That said, the frameworks reviewed in Sections 5.1 and 5.2 had
considerable use in being developed (in whole or part) for such purposes.

By furthering the scope of the review to the grey literature outside the two databases
that were checked previously, another two additional frameworks were identified, namely
the Arab Water Sustainability Index (AWSI) [98] and the Abu Dhabi Water Index (ADWI) [99].
Thus, an overview and brief analysis is provided in the following sections to check
their effectiveness.

5.3.1. Arab Water Sustainability Index (AWSI)

The AWSI is presented as a monitoring tool to address the water sustainability state
relative to a base condition or period [98]. The scale of its application could be considered a
national scale. In this index, 22 Arab countries, where 82.2% of their weather is either arid
or semi-arid, were evaluated through four main components that were divided into only
eight indicators. These components can be classified by checking their indicators and main
themes or categories from Figure 5, as follows:

1. water crowding (related to WRM category);
2. water dependency (related to SWRM category);
3. water scarcity (related to SWRM category);
4. environmental sustainability (related to socio-environmental category).

Based on our comparative analysis above, it can be said that four components are
an adequate number; however, the number of indicators (eight only) is lower than the
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average number of indicators, which was found to be approximately 18. Other main
elements of indicator-based framework were used, such as the benchmark, the aggregation
technique (i.e., arithmetic), and the final index value ranging between 0 to 100%. The
normalization method of AWSI is based on a statistical method (i.e., principal components
analysis (PCA)), which was also used to assign weights, which were not equal, for each
component and indicator. A unique advantage of AWSI is the consideration of conventional
and non-conventional WR (e.g., GW and desalination water, respectively), which is crucial
for ASAR.

Meanwhile, the continuous rescaling method as a normalization method was men-
tioned, but whether that was for application or just information was unclear. Overall, even
though the pillars of sustainability were considered, the stakeholders’ participation in all
phases did not exist in AWSI, which does not match the general guidance in developing
such a framework. Therefore, to avoid such limitations, it is still required to have a more
helpful framework that can gain public trust and cooperation.

5.3.2. Abu Dhabi Water Index (ADWI)

The other framework is the ADWI, which was developed through the adoption of the
cause–effect approach (DSR—Driving force, State, Response) to deal with the challenging
context of WRM of the United Arab Emirates (UAE) (i.e., very much at a local scale) [99].
The selection of indicators was based on a review of the literature, followed by checking of
the availability of their data and whether they were relevant to the UAE environment. This
process resulted in four categories (i.e., components), nineteen indicators, and twelve sub-
indicators. Then, the benchmark for most of the indicators was obtained from the literature.
These components with our main themes or categories from Figure 5 are as follows:

1. water availability (related to WRM category);
2. water quality (related to socio-environmental category);
3. water use efficiency (related to SWRM category);
4. policy and governance (related to policy & governance category).

Overall, the methodology for building ADWI was well-organized and systematically
illustrated. In addition, taking the conventional and non-conventional WR into account is
essential for the context of ASAR, which is another advantage similar to AWSI.

On the other hand, while considering all sustainability pillars in any SWRM-AF is
significant, little attention was given here to the economic pillar. Additionally, ADWI
seemed to lack any stakeholder participation or involvement. However, an indicator to
measure the public participation in water activities existed, but it was based only on the
researchers’ evaluation. Moreover, the normalization method seems to equate to categorical
rescaling. Still, the scoring criteria were not entirely clear (i.e., all scores were either good,
represented by happy face, or poor, represented by sad face, while only one seemed neutral).

Furthermore, the weighting scheme, aggregation technique, and final index value
did not exist in this methodology, except for the calculation of sub-indicators. Therefore,
it can be said that ADWI was an attempt to develop a particular framework for ASAR,
but with many limitations. Hence, it is important to build or develop an SWRM-AF
that could avoid these flaws and is suitable to fit the main requirements and contexts of
ASAR by considering stakeholder participation. A summary of the main elements that
form the above two SWRM-AFs is presented in Table 3 to make the process of comparing
them simpler.
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Table 3. Summary and comparison of existing SWRM-AF for ASAR.

SWRM-AF
Number of indicators

Benchmark
Scale

[Location]
Normalization Weighting

Scheme
Aggregation

Tech.
Final Index

ValueComponent Indicator S. Indicator

AWSI 4 8 × yes
National

[Arab
countries]

Principal
components

analysis
Non-equal Arithmetic 0–100

ADWI 4 19 12 yes Local
[UAE]

Categorical
rescaling × × ×

6. Discussion

This research sought to identify whether any existing SWRM-AF would be suitable
for application in arid or semi-arid regions; by way of Section 6.1, this is explored further.
Section 6.2 identifies the shortfalls of this research before the next steps of research are
determined in Section 6.3.

6.1. Existing SWRM-AFs and Their Applicability for ASAR

The review has helped identify six key requirements that a framework would need
in order for it to be considered appropriate for application in ASAR. In other words,
they should:

1. adopt a participatory approach (i.e., stakeholder engagement) during the selection
process of indicators and assigning weights;

2. have appropriate numbers of indicators;
3. include all seven primary elements of the indicator-based framework (Sections 4.1–4.7).
4. include water scarcity (WS) as a key theme;
5. consider all Water Resources (WR)—conventional and non-conventional;
6. fit with an ASAR context.

With this in mind, Table 4 provides a synthesis of the analysis to evaluate (by way of
grading) the 19 frameworks, including those from the systematic review and the previous
two SWRM-AFs found in the grey literature. All of the checking aspects are based on
the six requirements mentioned above. The first three aspects (i.e., 1 to 3) are considered
general but essential for inclusion in any SWRM-AF. The last three aspects (i.e., 4 to 6) are
specific and considered vital to any SWRM-AF for ASAR. In Table 4, one point was assigned
for each aspect included—based on its existence, except for the participatory approach,
where a point was equally divided between the selection and weighting. Additionally, half
of the maximum point was given if the aspect was either partially fulfilled or partially
existed. This meant a maximum value of 6 could be achieved where a framework met all
six criteria fully.

Table 4. Evaluation of the applicability of each SWRM-AF for ASAR.

SWRM-AF
Participatory Approach Number of

Indicators
7 Main

Elements

Water
Scarcity All WR Fit ASAR Total

Selection Weighting

WPI 0.5 0 1 1 1 0 0.5 4

CWSI 0.5 0 1 1 1 0 0 3.5

WSI 0 0 1 1 0 0 0 2

WJWSI 0.5 0 1 1 1 0 0 3.5

WNI 0.5 0.25 1 1 0 0 0 2.75

WASSI 0.5 0 1 1 1 0 0 3.5

GWSI 0 0.25 1 1 1 0 0.5 3.75
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Table 4. Cont.

SWRM-AF
Participatory Approach Number of

Indicators
7 Main

Elements

Water
Scarcity All WR Fit ASAR Total

Selection Weighting

TBL-MCDA 0.5 0.25 0 0.5 0 0 0 1.25

FHI 0.5 0.25 1 0.5 0 0 0 2.25

WEF nexus 0.5 0 1 0 0 0 0 1.5

MEM 0.5 0.5 0 1 0 0 0 2

RBWSI 0 0 0 1 1 0 0 2

WSC 0.5 0.25 0 0.5 0 0 0.5 1.75

MIWABS 0.5 0.5 1 1 0 0 0 3

IIWRM 0.5 0 1 1 0 0 0 2.5

SI 0.5 0 1 1 0 0 0.5 3

RWSI 0.5 0.5 0 1 1 0 0.5 3.5

AWSI 0 0 0 1 1 1 1 4

ADWI 0 0 1 0 1 1 1 4

Table 4 shows that the highest total points was 4 out of 6, found in three frameworks
(i.e., WPI, AWSI, and ADWI). While two of these frameworks were developed mainly for
ASAR (i.e., AWSI and ADWI), there were some general requirements identifiable by a zero
in the respective columns. In other words, this research showed that there is no SWRM-AF
that could be considered fully fit-for-purpose for application in ASAR. Hence, steps should
be taken to address this gap in knowledge (See Section 6.3).

6.2. Shortfalls of this Research

This review paper goes some way towards filling the gap in knowledge with respect
to identifying whether an SWRM-AF for ASAR exists. However, it should be noted that the
review was restricted to two well-known academic databases (i.e., Scopus and Engineering
Village) in addition to the search terms and filtering process adopted herein. Broadening the
review to other databases (e.g., Google Scholar and Research Gate, to name just two) may
have identified more literature (including grey literature) beyond the two most applicable
papers found. In addition, this research was very much focused on the derivation of the
frameworks themselves, and not on the detailing (and usefulness) of individual indicators
or the data availability enabling the actual measurement of their values. Hence, whilst
the need for a new framework was identified by this review, more stages of research are
required during its derivation (See Section 6.3).

6.3. Next Stage of Research

The next area of research will seek to develop a SWRM-AF for ASAR that satisfies all
six aspects outlined in Section 6.1 In order to ensure it is both practical and meaningful for
application, a conceptual framework for ASAR will be developed. This will involve some
key steps:

• providing a detailed map of all components, indicators and sub-indicators;
• developing the methodology for selecting important indicators for each component;
• justifying (by way of stakeholder engagement) indicators and weights adopted;
• applying the framework to case studies (likely Kingdom of Saudi Arabia and elsewhere).
• refining SWRM-AF based on user feedback.
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7. Conclusions

The sustainability of water supply to match proper demand is crucial for any future
planning for the WRM system. This strategy became more significant in areas with limited
WR and located in ASAR with challenging water conditions. During the last few decades,
many scientific meetings and recommendations were conducted and presented to tackle
the WRM issues, such as the Brundtland’s definition, the Dublin principles, and the IWRM
definition and principles. These efforts were the foundation for introducing guidance
and criteria that led to the creation of several SWRM-Afs, such as those manifested above.
However, it is essential to remember that sustainability does not mean focusing only on one
pillar. Attaining a balance between the three pillars (i.e., environmental, social, economic)
would generate the best results. This consideration should be accounted for during the
development process of any tool that aims to improve and monitor sustainability progress.
One of these tools is the indicator-based framework for assessing sustainability. Therefore,
having specific and clear SWRM-AF to measure the level of SWRM would undoubtedly
help improve the longevity of such vital resources.

Whilst many SWRM-AFs were developed for this purpose in the past, such as those
described briefly in this review, it has been shown that they are insufficient to assess
some ASAR. Moreover, even where frameworks have been developed specifically for
ASAR, many shortfalls exist. That said, this review helps recognize the primary ele-
ments required to establish this type of framework. Moreover, detailed investigation and
comparison among SWRM-AFs have helped identify similarities, differences, and limita-
tions/knowledge gaps. As such, several recommendations are suggested based on the
results of this review:

• Before establishing or developing an SWRM-AF, it is important to consider and comply
with the specific guidelines and criteria for having one. Otherwise, the output of this
process would not be practical and rigorous enough.

• Then, having all seven standard main elements of SWRM-AF clearly defined and
justified during both the development and application stages will make the SWRM-AF
less challenging to reapply in general. This includes its adoption by the scientific
community and water authorities in regions with similar conditions. In contrast,
ignoring some of these elements could reduce the whole benefit of the framework and
make it obsolescent.

• For any new SWRM-AF, it would be preferred to select elements and normalization
methods with a higher application rate, such as those highlighted in Section 5.2. For
example, while the application of local scale (52.8%) and the final index value of
[0–100] (41.2%) seem more popular in many frameworks, categorical rescaling (47.1%),
equal weighting (47.1%), and the arithmetic technique (82.35%) are the most commonly
used normalization methods. Thus, choosing them might ensure more confidence in
both decision-makers and the public in the output of such a framework.

• The participation of stakeholders in developing SWRM-AF is essential, and helps
reveal their main concerns. Their involvement could occur during the process of
indicator selection, in the weighting stage, or in both stages. Hence, bias in the output
of SWRM-AF can be eliminated or at least reduced, while motivation and awareness
of SWRM among stakeholders would be higher. More importantly, this participation,
especially by expert stakeholders, could be part of the validation for the SWRM-AF,
making it more credible.

• Finally, it was found that the SWRM-AF for ASAR for particular countries without
any permanent rivers or lakes is needed, since water shortage conditions are a serious
threat for these countries, and little or inadequate research has been conducted to
develop such a tool.

Therefore, a conceptual SWRM-AF for ASAR is recommended to tackle this issue, and
its development is currently underway.
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Abbreviations

Abbreviations Notations

ADWI Abu Dhabi Water Index i indicator (or component)
AHP Analytical hierarchy process I aggregated indicator (or component)
ASAR Arid and semi-Arid regions j criteria
AWSI Arab Water Sustainability Index N total number of indicators
CWSI Canadian Water Sustainability Index S sub-index value
CVI Climate Vulnerability Index w weight
DSR Driving force, state, response X actual value
FHI Freshwater Health Index Xmax maximum threshold value
GW Groundwater Xmin minimum threshold value
GWSI Global Water Security Index Z category
IIWRM Indicators of integrated water resources management
IRBM Integrated river basin management
IWRM Integrated water resources management
MEM Municipal environmental management
MIWABS Malaysia manufacturing industry water benchmarking system
NTU Nephelometric turbidity units
PCA Principal components analysis
PTT Proximity-to-target
RBWSI River basin water sustainability index
RWSI Rural water sustainability index
SI Sustainability Index
SDG Sustainable development goal
SWRM Sustainable water resources management
SWRM-AF Sustainable water resources management assessment framework
SWWA Swedish Water and Wastewater Association
TBL-MCDA Hybrid triple bottom line & multicriteria decision analysis
TSS Total suspended solids
UAE United Arab Emirates
WASSI Water & Sanitation Sustainability Index
WEF nexus Water–energy–food nexus
WJWSI West Java Water Sustainability Index
WNI Water Needs Index
WPI Water Poverty Index
WR Water resources
WRM Water resources management
WSC Water Sensitive Cities Index
WSI Watershed Sustainability Index
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Abstract: As an important ecological security barrier in northern China, the Inner Mongolia Au-
tonomous Region (hereinafter referred to as Inner Mongolia) is seriously affected by drought. It is
of great significance to characterize the spatial distribution of drought and identify the influencing
factors of drought. Due to complex interactions among drought driving factors, it is difficult to
quantify the contribution of each driving factor to drought using linear correlation analysis alone. In
this study, we used the Standardized Precipitation Evapotranspiration Index (SPEI) as a quantitative
indicator of drought to discuss the spatiotemporal variation of drought during growing seasons in
the Inner Mongolia from 2000 to 2018. We quantitatively characterized mode, scope, and intensity of
changes in SPEI caused by drought-influencing factors such as weather, water, topography, soil, and
human activities using the Geodetector and Geographically Weighted Regression (GWR) models.
We concluded that about 20.3% of the region showed a downward trend in SPEI, with the fastest
rate of decline in the central and western Inner Mongolia. Air temperature, precipitation, elevation,
and distance to rivers are the main controlling factors in drought change, and the factor interactions
showed nonlinear enhancement. The drought driving effect was obvious in Alxa League, Wuhai
City, Ulanqab City, and Baotou City. The results will help us to understand the effects of the driving
factors on drought and eventually help policymakers with water-resource management.

Keywords: growing season; driving factors of drought; Geodetector; GWR model; Inner Mongolia

1. Introduction

As one of the most serious meteorological and environmental disasters, drought can
severely impact the natural environment, crop production, social economy, and human
life, but its impact mode is not easy to be quantified [1]. The Sixth Assessment Report
(AR6) of the Intergovernmental Panel on Climate Change (IPCC) points out that in the past
30 years, the global average temperature has increased by 1.5 ◦C, extreme climate events
occur frequently, and the degree of drought will continue to increase in the future. Drought
impacts species and structure of vegetation. It is an important factor affecting vegetation
growth, vegetation restoration, and soil desertification [2–4]. Changes in hydrothermal
conditions can lead to biomass loss and ecosystem destruction. Therefore, investigating the
spatiotemporal variation of drought during the growing season (from April to September)
in Inner Mongolia, identifying causes of drought, and separating and quantifying relative
contributions of the controlling factors of drought are of practical significance for drought
remediation and ecosystem restoration.

Due to uncertainties in starting and ending times, spatial scale, time lag effects, and
other factors of drought events, researchers mainly monitor and analyze drought effects
through a series of drought indicators [1,5]. The Palmer Drought Severity Index (PDSI)
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is the most widely used water-balance-based meteorological drought index, which com-
prehensively considers water supply and demand. However, it has limitations in judging
short-term droughts [6]. The Standardized Precipitation Index (SPI) calculates the probabil-
ity of precipitation distribution; however, it is difficult to handle the task of meteorological
drought monitoring under the context of global change [7]. The Standardized Precipitation
Evapotranspiration Index (SPEI) leverages the advantages of PDSI and SPI [8,9]. It not only
considers the balance of water and energy, but also reflects the deficit and accumulation
process of surface water. Therefore, it is widely used in climate studies [7,10], agricul-
ture [11], hydrology [12,13], and so on. At the same time, SPEI can be calculated at multiple
time scales. SPEI-3, used to characterize drought in a seasonal scale, reflects short-term
regional meteorological drought. It has a direct correlation with grassland biomass and
vegetation growth [14,15], and is an important index of vegetation to study drought in a
growing season.

The China-Mongolia Arid and Semiarid Area (CMASA) is one of the eight major arid
regions in the world, and it is also an inland arid region with the highest latitude. Inner
Mongolia is located in the transition region between the arid and semi-arid areas in the
east of CMASA. Due to the perennial influence of the westerly wind system, atmospheric
circulation, and pressure field of Qinghai-Tibet Plateau, temperature rise in the west of Inner
Mongolia is significantly higher than that in the inland and surrounding areas of China, and
is particularly sensitive to climate change [16,17]. Inner Mongolia is China’s main grassland
for pasture and agriculture. It is an important ecological barrier to the North of China.
For a long time, Inner Mongolia has suffered from frequent regional and local droughts,
which have significantly impacted the local economy. The intensification of desertification
caused by droughts has become the primary ecological and environmental concern in Inner
Mongolia [18]. There are many research activities on long-term drought monitoring in
Inner Mongolia: An et al. [19] analyzed the spatiotemporal variation of droughts in Inner
Mongolia in the past 60 years; Pei et al. [20] compared the differences and applicability of SPI
and SPEI drought indexes at different time scales; Tong et al. [21] used linear regression and
wavelet analysis to identify drought changes and drought patterns; however, few studies
have quantitatively explained the causes of the droughts. In the past, drought analysis
and regional water resource planning were mainly based on linear correlation between
factors [22–24]. However, drought is a complex regionalization event. It is generally hard
to refine intensity and interaction among various factors in different regions using just the
traditional linear regression analysis [25,26]. At the same time, drought is closely related
to natural conditions, human activities, and their interactions. However, interactions
among these factors have not been well-investigated [27]. Different land cover types,
soil conditions, topography, and other factors may cause spatial differentiation of local
drought. Geodetector and GWR are statistical models considering spatial nonstationarity
and the modeling process is simple but intuitive. A combination of the two can accurately
describe the action, path, and intensity of the influencing factors and has a good application
prospect [28–30].

In this study, the seasonal SPEI-3 index (SPEI for short) was calculated based on the
data at the meteorological stations in Inner Mongolia; the spatiotemporal variation trend
of SPEI in the growing season from 2000 to 2018 was obtained using univariate linear
trend analysis. The main controlling factors of drought change were identified through
Geodetector. The GWR model was used to quantitatively evaluate the effect of various
driving factors on SPEI change during the growing season, and to explain the interaction
between the main controlling factors for spatial heterogeneity.

2. Materials and Methods

2.1. Study Area

Inner Mongolia is located in the northern border of China, spanning three major
regions of northwest, north, and northeast, spreading along a long and narrow belt. The
region covers a total area of about 1.183 million km2 that accounts for about 12.1% of
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China’s total area. The region is rich in resources, with grasslands, forests, and arable land
per capita ranking first in China. The Greater Khingan Range runs through the east of
the study area in the north-south orientation. The Yin Mountains extend east-west in the
south. Large deserts such as the Badain Jaran Desert, Tengger Desert, and Mu Us Desert
are located in the west. The study area has an average altitude of about 1000 m. The climate
in the region varies from arid-semiarid monsoon climate to humid-semi humid climate.
It is often affected by cyclones on the Mongolian Plateau with strong wind in spring and
by Lake Baikal, the world’s largest freshwater lake by volume containing 22–23% of the
world’s fresh surface water. The climate is often controlled by prevailing westerlies belts or
subtropical high-pressure belts, with high temperature and little rain in summer. Annual
rainfall showed a decreasing trend from east to west and from north to south [22,31].

2.2. Data Sources and Preprocessing
2.2.1. Meteorological Data

Daily mean air temperature, monthly cumulative precipitation, daily mean wind
speed, and daily mean sunshine duration at 110 meteorological stations (Figure 1a) in and
around Inner Mongolia from 2000 to 2018 were selected as meteorological data, which
were provided by the China Meteorological Data Service Centre (http://data.cma.cn/).
A homogeneity test of the meteorological data was carried out to fill in unavailable data.
A statistical analysis on the mean air temperature (◦C), accumulated precipitation (mm),
mean wind speed (m·s−1), and mean sunshine duration (h) at stations was performed for
the growing seasons from 2001 to 2018. Spatial resolution for ordinary Kriging interpolation
was set to 1 km × 1 km; the geographic reference was set as WGS84/UTM zone 48◦N.

Figure 1. (a) The Digital Elevation Model (DEM) and meteorological station distribution, and
(b) the vegetation types in Inner Mongolia (A—Hulunbuir, B—Hinggan League, C—Xilingol League,
D—Chifeng, E—Tongliao, F—Ulangab League, G—Baotou, H—Hohhot, I—Bayannur League,
J—Erdos, K—Wuhai, L—Alxa League).

2.2.2. DEM Data

DEM (Digital Elevation Model) was the Shuttle Radar Topography Mission (SRTM)
data with a resolution of 90 m downloaded from the United States Geological Survey (USGS)
data portal (http://earthexplorer.usgs.gov). After preprocessing, such as mosaicking and
void-filling, the accuracy of the input topographic data had a standard error of 1 m. The
DEM data were resampled to 1 km × 1 km and slope and aspect were then derived from
the DEM data.
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2.2.3. Other Data Sets

Population density data was from the population dataset produced by the Landscan
Global team (https://landscan.ornl.gov/), with a spatial resolution of 0.01◦ × 0.01◦ (about
1 km). The data were produced according to the community standard of global popula-
tion distribution data constructed from multivariable geographic dasymetric modeling
and remote sensing image analysis [32]. Land use conversion type can effectively reflect
intensity of human activities [33]. It is also an important surface condition for drought
research. The land cover data in 2000 and 2018 were from the Resource and Environment
Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn). The data set
was obtained by visual interpretation of Landsat TM/ETM+ images for different periods
and was widely used [25]. Land cover was classified into six basic categories: cultivated
land, forest, grassland, water area, construction land, and unused land. A land use con-
version map from 2000 to 2018 was generated. Soil sediment contents were from the
1:1 million soil type map and the soil profile data was obtained from the second soil survey
(http://www.resdc.cn). Soil texture was classified according to the content of sand, silt, and
clay. The content of particles in different soils was shown as a percentage. Spatial data of
main rivers and county stations were derived from the 1:4 million vector database provided
by the National Geographic Center of China (http://ngcc.sbsm.gov.cn). Distance to Rivers
(DTR) and Distance to Cities (DTC) were obtained through buffer zone analysis, and the
spatial resolution was set to 1 km × 1 km. The 1:1 million vegetation type data released by
the Resource and Environment Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn) were used. The vegetation in Inner Mongolia was reclassified into
8 classes: coniferous forest, broad-leaved forest, shrub, grassland, meadow, swamp, desert,
and cultivated vegetation.

2.3. Methods
2.3.1. Calculation of the Standard Precipitation Evapotranspiration Index (SPEI)

The difference between precipitation and potential evapotranspiration (PET), PD, is a
key parameter for SPEI calculation. PET was calculated using the Thornthwaite method
because fewer meteorological elements are required [9], as follows:

PDi = Pi − PETi (1)

PET = 16.0 ×
(

10Ti
H

)A
(2)

A = 6.75 × 10−7H3−7.71 × 10−5H2+1.79 × 10−2H+0.492 (3)

where Pi is the monthly precipitation of the i-th month, PETi the monthly evapotranspira-
tion, A a constant, and H the annual heat index. The log-logistic function based on three
parameters (α, β, γ) was used to perform the normal fitting to the time series of PDi and
compute the probability distribution function F(x). The log-logistic probability distribution
function is given as below:

F(x) = [1 + (
α

x − γ
)

β
]
−1

(4)

where α is the scale parameter, β the shape parameter, and γ the position parameter; all are
obtained by the linear-moment method.

The probability distribution function was standardized to obtain the cumulative
probability Q (Equation (5)):

Q = 1 − F(x) (5)

and the SPEI value was then calculated as:

SPEI =

⎧⎨
⎩

w − a0+a1w+a2w2

1+d1w+d2w2+d3w3 , w =
√−2 ln(Q)(Q ≤ 0.5)

−(w − a0+a1w+a2w2

1+d1w+d2w2+d3w3 ), w =
√−2 ln(1 − Q)(Q ≥ 0.5)

(6)
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where the constants a0 = 2.515517, a1 = 0.802853, a2 = 0.010328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308. The degree of drought (Table 1) was classified according to the local
climate conditions [21,34].

Table 1. Drought classification based on SPEI.

SPEI Value Drought

>1 Severe wet
(0.5, 1] Moderate wet
(0, 0.5] Light wet

(−0.5, 0] Light drought
(−1, −0.5] Moderate drought

<−1 Severe drought

2.3.2. Trend Analysis

The univariate linear regression equation (Equation (7)) was used for trend analysis to
calculate the variation trend of SPEI during the growing seasons from 2000 to 2018:

θslope =

n × n
∑

i=1
(i × SPEIi)−

n
∑

i=1
i

n
∑

i=1
SPEIi

n × n
∑

i=1
i2 − (

n
∑

i=2
i)

2 (7)

where n (n = 19) is the length of time series and θslope is the slope in the linear regression
equation. θslope > 0 indicates that the drought trend is reduced; otherwise, the drought
is aggravated. The variation trend of SPEI was divided into five levels based on the
standard deviation (STD), i.e., significant degradation (θslope < −STD), slight degradation
(−STD < θslope < −0.5STD), substantially unchanged (−0.5STD < θslope < 0.5STD), slight
improvement (0.5STD < θslope < STD), and significant improvement (θslope > STD).

2.3.3. Geodetector

Geodetector is a spatial statistical model based on spatial autocorrelation theory to
reveal the spatial differentiation of geographic elements and their driving factors [30]. We
mainly used the factor detector, ecological detector, and interactive detector within the
model. The factor detector quantifies the contribution of influencing factors to dependent
variables, and it is calculated as follows:

q= 1 − SSW
SST

(8)

SSW =
l

∑
h=1

Nhσh
2, SST = Nσ2 (9)

where SSW is the sum of factor variances over all layers and SST is the total sum of variance,
where h = 1, . . . l is the number of strata of the dependent variable or independent variable;
Nh and N are the number of units in class h and the whole region, respectively; and σh

2

and σ2 are the variances of the dependent variable for the units in class h and the whole
region, respectively. The larger the q-value is, the stronger the explanatory power of the
factor to the drought phenomenon. The effective range of q is [0, 1].

The ecological detector uses an F test to measure the significant difference of the
impact of different influencing factors on the spatial distribution of drought. The F value is
determined as follows:

F =
Nn=1(Nn=2 − 1)σ2

n−1

Nn=2(Nn=1 − 1)σ2
n−2

(10)
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where Nn=1 and Nn=2 refer to the sample size of two random factors, and F reflects the
significance level.

The interaction detector was used to identify whether two driving factors, x1 and x2,
increase or decrease the explanatory power of the drought index SPEI when they work
together (Table 2).

Table 2. Independent variable interaction type.

Judgement Condition Interaction

q(x1 ∩ x2) < Min(q(x1), q(x2)) Non-linearly weaken
Min(q(x1), q(x2)) < q(x1 ∩ x2) < Max(q(x1), q(x2)) Non-linearly weaken by one factor

q(x1 ∩ x2) > Max(q(x1), q(x2)) Mutually enhanced
q(x1 ∩ x2) = q(x1) + q(x2) Independent effect
q(x1 ∩ x2) > q(x1) + q(x2) Non-linearly enhanced

In addition to the influences of meteorological variables, droughts are also affected
by other factors including geographic location, topography, soil, land cover type, human
activities, etc. Land cover type affects runoff, infiltration, and evapotranspiration of surface
water through water absorption [35]. We selected 12 potential drought driving factors
as follows: Mean Air Temperature (MAT), Mean Precipitation (MP), Mean Wind Speed
(MWS), and Mean Sunshine Duration (MSD) during the growing season, representing the
meteorological conditions; Percent of Sand (POS) in soil, representing soil texture; elevation,
slope, and slope aspect, representing topographic conditions; Distance to rivers (DTR),
representing potential water availability; Distance to Prefecture Cities (DTC), Land-Use and
Land-Cover Change (LUCC), and Average of population Density (AOPD), representing
human factors that can transform and regulate the local environment [36]. These factors
are easy to be quantified [25,37,38]. Since Geodetector can only handle discrete variables,
the 12 variables need to be discretized individually. The LUCC factors were divided into
36 grades according to the land use type conversion maps from 2000 to 2018, the slope
and aspect were divided into 9 grades, and each of the other 10 factors was divided into
6 grades by the Jenks Natural Breaks Classification Method (Figure 2).

2.3.4. The GWR Model

The GWR model is an extension of the ordinary linear regression analysis method [39],
which can effectively estimate the data with spatial autocorrelation and reflect the spa-
tial heterogeneity of parameters in different regions. The multi-variate linear regression
equation is given by:

yi = β0(ui, vi) +
n

∑
j=1

β j(ui, vi)xij + εi (11)

where β0 represents the intercept; (ui, vi) represent the coordinates of the i-th sampling point;
βj (ui, vi) the j-th regression parameter on the i-th sampling point, which has geographic
significance; xi1, xi2, xi3,· · · , xin are n regression variables at this point; and ε represents
random error. Finally, the revised Akaike Information Criterion (AIC) was compared with
the ordinary least squares (OLS) results. AIC is defined as:

AIC = −2InL(êL, y) + 2c (12)

where y represents the sample set of the fitting value of the dependent variable SPEI, L(êL, y)
is the likelihood function, êL is the maximum likelihood estimate of eL, and c is the number
of unknown parameters. The smaller the AIC is, the higher the fitting degree will be.
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Figure 2. Factor grading (MAT(a), MP (b), MWS (c), MSD (d), DTR (e), DTC (f), Elevation (g),
Aspect (h), Slope (i), AOPD (j), POS (k), LUCC (l) (CPL: CropLand; F: Frost; CRL: Crass Land;
W: Water Area; COL: Construction Land; UL: Unused Land)).

3. Results and Analysis

3.1. Spatiotemporal Variation Characteristics of SPEI

The result of SPEI interpolation cross-validation shows a Pearson correlation coefficient
of r = 0.85 and root-mean-square error RMSE = 1.15, indicating that the SPEI interpolation
result has high accuracy. The statistical results of SPEI in the study area over the years
show that (Table 3) the average annual SPEI of the growing season in Inner Mongolia from
2000 to 2018 is −0.03, representing a mild drought. The area in mild drought during the
growing season reached 532,600 km2, accounting for 52.39% of the total study area. The
area in mild drought was the largest in 2000, accounting for 99.60% of the total, followed
by 2001 and 2017, and that in 2012 was the smallest, accounting for only 6.01% of the total.
Among the various types of droughts, the average annual area of mild drought accounted
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for about 74.34%, the highest proportion. The largest areas of moderate drought and severe
drought occurred in 2000 and 2005, accounting for 73.10% and 36.17%, respectively.

Table 3. Change of drought area and proportion of various types of drought area in the study area
from 2000 to 2018.

Year
Drought Area

(Ten Thousand
Km2)

Percentage
of Study

Area

Percentage
of Light
Drought

Percentage
of Moderate

Drought

Percentage
of Severe
Drought

SPEI

2000 101.25 99.6% 23.28% 73.10% 3.62% −0.62
2001 96.49 94.98% 20.44% 68.36% 11.21% −0.68
2002 55.60 54.79% 73.00% 20.60% 6.39% −0.01
2003 7.74 7.62% 100% 0 0 0.66
2004 51.40 50.59% 60.17% 39.82% 0.02% 0.03
2005 69.74 68.65% 33.45% 30.38% 36.17% −0.43
2006 65.55 64.52% 98.63% 1.37% 0 −0.06
2007 84.12 82.80% 25.98% 40.67% 33.35% −0.59
2008 16.74 16.48% 96.58% 3.42% 0 0.29
2009 73.59 72.43% 35.96% 53.26% 10.78% −0.39
2010 66.59 65.54% 99.68% 0.32% 0 −0.03
2011 62.57 61.59% 69.74% 30.26% 0 −0.16
2012 6.11 6.01% 90.94% 9.06% 0 0.77
2013 29.32 28.86% 52.46% 26.51% 21.03% 0.51
2014 11.19 11.02% 100% 0 0 0.36
2015 17.87 17.59% 99.99% 0.01% 0 0.37
2016 34.37 33.80% 100% 0 0 0.19
2017 88.27 86.88% 28.08% 49.06% 22.86% −0.61
2018 73.46 72.31% 68.36% 31.64% 0 −0.21

Annual
average 53.26 52.39% 74.34% 18.89% 6.7% 0.03

The study area has high elevation in the west and low in the east (Figure 1a), and high
in the south and low in the north. The spatial distribution of SPEI shows an increasing
pattern from west to east with a rate of change of 0.008/degree and an increase of 0.01/de-
gree from south to north (Figure 3). SPEI is highly sensitive to elevation gradients. Areas
with high SPEI were mainly distributed in the 40~52◦N area below 800 m in elevation,
including Hinggan League, Hulunbuir City, Bairin Left Banner of Chifeng City, and other
areas (Figure 1b); low SPEI appeared in areas with elevation between 1100 m~1400 m, in
longitude between 105~115◦E, and latitude between 40~45◦N, mainly including Bayannur
City, Baotou City, Ulanqab City, and West Ujimqin Banner of Xilingol League. In the Banner
area, land covers are mainly grasslands, meadows, and deserts (Figure 1b).

Figure 3. Spatial distribution of multi-year mean values of SPEI during the growing season in the
study area from 2000 to 2018. (a) Longitude and elevation statistics. (b) Latitude and elevation
statistics.
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Trend analysis results show that (Figure 4a) there are significant differences in SPEI
changes between the east and west of the study area. SPEI decreased with time signif-
icantly at a rate of −0.40~−0.25·(10a−1) in the west including Alxa Left Banner in Alxa
League, Dorbod Banner in Ulanqab City, Darhan Muminggan United Banner in Baotou
City, and Wuhai City, while SPEI increased significantly with time at a rate of change of
0.25~0.75·(10a−1) in Hulunbuir City, Hinggan League, Tongliao City, and the eastern part
of Xilingol League. On the whole, the area with elevated SPEI was about 819,190 km2,
accounting for 79.70% of the study area. The land cover in the study area was relatively
high in grassland, desert, and cultivated vegetation, reaching 43.68%, 11.94%, and 11.07%,
respectively. The area of marsh was the smallest, accounting for only 3.69%. There are
significant differences in the spatial distribution of vegetation (Figure 4b). The results of the
SPEI variation trend in different land cover types showed that the area with a significantly
higher SPEI (SPEI > STD) accounted for about 44.10% of the study area. The increasing
trends of SPEI in swamp, coniferous forest, and broad-leaved forest were the most obvi-
ous, accounting for more than 85%. These land covers were located in a high-latitude,
low-altitude forest area. The area has a large amount of precipitation, abundant water
resource, and a low probability of drought. About 93.12% of the area where SPEI dropped
significantly was located in the desert, accounting for about 61.53% of the total desert area.
In the past 20 years, the mean annual precipitation in the desert areas of Inner Mongolia was
less than 150 mm. Under the high-temperature and high-evaporation climatic conditions,
water loss became severe and terrestrial carbon productivity was restricted, leading to an
increased risk of drought [40].

Figure 4. (a) The distribution of SPEI trend and (b) area percent in different land cover type.

3.2. Identification of Main Control Factors

The factor detection and ecological detection show that (Table 4) precipitation was
the most explanatory factor (q = 0.73). From the q-values (Table 4), we can see the top four
impact factors in decreasing order were MP > Elevation > MAT > DTR, and all passed the
significance test (p < 0.05). Slope, aspect, LUCC, AOPD, and DTC have lower explanatory
power for drought.
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Table 4. q statistics and ecological detector.

Factor Tag p Value q-Value Rank

MAT X1 0.05 0.43 3
MP X2 0.05 0.73 1

MWS X3 0.05 0.13
MSD X4 0.05 0.22
DTR X5 0.05 0.42 4
DTC X6 0.05 0.03

Elevation X7 0.05 0.53 2
Aspect X8 >0.1 0.01
Slope X9 0.05 0.11

AOPD X10 >0.1 0.06
POS X11 0.05 0.23

LUCC X12 0.05 0.26

SPEI rates of change (θslope) versus factor level for various factors were shown in
Figure 5. We can see that θslope shows a decreasing trend (Figure 5a), with increasing factor
level for factors MAT (X1), MSD (X4), DTR (X5), and elevation (X7). The elevation factor
has the greatest influence on θslope when the factor level is low (≤2), while factors MAT
and MSD have a larger impact at a high factor level (>4). The elevation increases from
the first level (100~500 m) to the fifth level (1500~3500 m), and the θslope decreases from
0.58·(10 yr−1) to −0.02·(10 yr−1). Compared with other factors, the influence of DTR on
θslope is approximately linear, and θslope drops to the lowest value (0.08·(10 yr−1)) in the
DTR interval of 90~321.6 km. On the contrary, θslope shows an increasing trend (Figure 5c)
with the increasing factor level of MP (X2), MWS (X3), and Slope (X9). Precipitation
has the greatest impact on θslope. The amount of precipitation increases from level 1
(61.2~108.2 mm) to level 5 (262.6~305.8 mm), and θslope rises from −0.075·(10 yr−1) to
0.53·(10 yr−1). The relationship between θslope and any of the following factors, DTC (X6),
aspect (X8), AOPD (X10), and POS (X11), does not show a significant linear trend (Figure 5b).
When POS is at the second level (38~47%), θslope reaches a peak value. This may imply that
appropriate amount of sand is conducive to the respiration of plant roots, retaining soil
moisture, and transportation of nutrients. However, a percentage of sand that is too high
can easily cause surface degradation, soil moisture loss, and soil erosion. DTC, aspect, and
AOPD have much smaller variation ranges of θslope, which indicates that these factors have
little influence on the change of SPEI rate. SPEI over most land cover types (X12) increased
from 2000 to 2018, and SPEI decreased over only two land covers, in which cases water
area was converted to construction area and unused land (Figure 5d). The θslope of the two
land covers was −0.09·(10 yr−1) and −0.03·(10 yr−1), accounting for 0.1% and 11.5% of the
study area, respectively. Among all land conversion types, the SPEI of unaltered forest land
increased at the fastest rate 0.51·(10 yr−1).

Overall, the factors with strong explanatory power in the factor detector have a larger
fluctuation range of θslope. The θslope values of factors such as MP, elevation, MAT, and DTR
are in four ranges of −0.07~0.55, −0.02~0.58, −0.04~0.53, and −0.09~0.44·(10 yr−1), respec-
tively. The change range of SPEI rate influenced by natural factors, such as meteorology
and topography in the study area, was larger than that influenced by human factors.

The ranking of the influence by interacting pair of factors was given in Table 5. Only
the precipitation ∩ DTC (X2 ∩ X7) and wind speed ∩ elevation (X1 ∩ X2) pairs of the
first 15 interacting pairs showed nonlinear enhancement; the others were dual-factor
enhancement. Among them, the influence by the interaction between precipitation and
elevation is the strongest, with a q-value of 0.870, followed by that between temperature and
precipitation; the interaction between wind speed and elevation has the lowest explanatory
power, with a q-value of 0.686. As expected, precipitation is an important source of
water and a crucial driving factor in the process of drought changes. The difference in
precipitation between the east and west of Inner Mongolia contributes mainly to the spatial
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differentiation of drought condition. Elevation also has a strong explanatory power for
drought. It is an important topographical factor for driving drought in Inner Mongolia, and
it is also an important factor in combining other factors to form a drought spatial pattern.

Figure 5. SPEI’s variation trend with the influence of (a) MAT (X1), MSD (X4), DTR (X5), Elevation
(X7); (b) DTC (X6), Aspect (X8), AOPD (X10), POS (X11); (c) MP (X2), MWS (X3), Slope (X9); (d) LUCC
(X12) with their levels. The meanings of the land cover and land use codes for land use conversion
types can be found in Figure 2.

Table 5. Influence of the interacting pairs of factors.

q = A ∩ B Results Comparison Interaction Type Rank

X1∩X2 = 0.852 X1 + X2 > Max(X1, X2) Double-factor Enhance 2
X1∩X7 = 0.753 X1 + X7 > Max(X1, X7) Double-factor Enhance 8
X2∩X3 = 0.846 X2 + X3 > Max(X2, X3) Double-factor Enhance 3
X2∩X4 = 0.836 X2 + X4 > Max(X2, X4) Double-factor Enhance 4
X2∩X5 = 0.742 X2 + X5 > Max(X2, X5) Double-factor Enhance 11
X2∩X6 = 0.770 X2 + X6 < X2∩X6 Nonlinear Enhance 5
X2∩X7 = 0.870 X2 + X7 > Max(X2, X7) Double-factor Enhance 1
X2∩X9 = 0.745 X2 + X9 > Max(X2, X9) Double-factor Enhance 10
X2∩X10 = 0.756 X2 + X10 > Max(X2, X10) Double-factor Enhance 7
X2∩X11 = 0.751 X2 + X11 > Max(X2, X11) Double-factor Enhance 9
X2∩X12 = 0.762 X2 + X12 > Max(X2, X12) Double-factor Enhance 6
X3∩X7 = 0.686 X3 + X7 < X3∩X7 Nonlinear Enhance 15
X4∩X7 = 0.737 X4 + X7 > Max(X4, X7) Double-factor Enhance 12
X5∩X7 = 0.695 X5 + X7 > Max(X5, X7) Double-factor Enhance 14
X7∩X10 = 0.703 X7 + X10 > Max(X7, X10) Double-factor Enhance 13

Note: Only the first 15 combinations are ranked.

3.3. Spatial Difference of Main Control Factors

The GWR model was used to perform spatial regression analysis on the four main
controlling factors, i.e., MAT, MP, Elevation, and DTR, and local adjusted R2 and Akaike
Information Criterion (AIC) as the evaluation indexes of the model fitting. Results show
that the adjusted R2 of the GWR model is 0.88, and the AIC value is −540.58. The action

451



Remote Sens. 2022, 14, 6007

direction of the factor is reflected by the sign of the coefficient of the fitting equation. A
negative coefficient in an area and the absolute value of the coefficient indicate that the area
is drought-stricken and the strength of the driving effect, respectively.

The effects of the two meteorological factors, i.e., temperature and precipitation, have
significant spatial differences. The overall fluctuation ranges of the two are relatively large,
and the regression coefficient intervals are (−1.20, 0.60) and (−1.4, 0.55), respectively. The
area in drought driven by temperature accounted for about 70.2%, of which the areas
with strong temperature driving (−0.6~−1.20) were mainly located in Alxa Left Banner
of Alxa League, Wuhai City, Hanggin Banner and Otog Banner of Ordos City, Urad Rear
Banner of Bayannur City, and parts of Xilingol League (Figure 6a). Due to the large
temperature difference between the east and west of the study area (up to 12.7 ◦C), the
surface vegetation in the western hot area had strong transpiration and respiration, and the
dry matter consumption and soil water loss were larger, which further expanded the arid
area [41,42]. The difference of the driving results between precipitation and temperature
factors is mainly in the semi-arid grasslands (Figure 6b), such as Xilinhot City, West
Ujimqin Banner and East Ujimqin Banner in Xilingol League. The average precipitation
in the growing season in this region was greater than 150 mm, which was enough for the
growth of vegetation such as grassland, shrubs, and other vegetation [43].

 

Figure 6. Distribution of the regression coefficient of SPEI with (a) MAT, (b) MP, (c) Elevation, and
(d) DTR.
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The influence of elevation mainly reflects the effect of the terrain. The GWR regression
coefficient interval is (−1.25, 1.2), with the Great Khingan Range-Yin Mountains-Helan
Mountains range as the boundary, and the SPEI driving coefficients on both sides are
obviously different (Figure 6c). The central and western regions of Inner Mongolia (Alxa
Left Banner, Dalate Banner, Zhungeer Banner, etc.) dominated by the Mongolian Plateau
are generally higher than 1000 m in elevation, which has a significant effect on drought.
The average GWR coefficient is −0.75. The eastern foothills of the Great Khingan Range-Yin
Mountains and the southern foothills of Helan Mountains have lower average elevations,
ranging from 100 to 500 m, and the average GWR coefficient is 0.5. The DTR factor
reflects the water conservation within the basin, and the range of coefficient is the smallest
(−0.17, 0.12). Due to low water conservation in Alxa League, Wuhai City, Ordos City, and
Erguna in Hulunbuir City, the impact by DTR is shown in Figure 6d: the drought mitigation
area driven by DTR is mainly located at the tributary of the Yellow River in Ordos City
in the southwest of Inner Mongolia, Tabu River in Ulanqab City, and Dahei River (River
inflow area), and the areas where Liaohe River, Songhua River, Nenjiang River, and other
rivers adjacent to the Northeast Plain flow through.

4. Discussion

4.1. Driving Analysis of Drought in the Inner Mongolia

Drought is mainly caused by the imbalance of regional precipitation and evapotranspi-
ration. We found that the change rate of SPEI during the growing season in Inner Mongolia
from 2000 to 2018 ranged from −0.4 to 0.75·(10 yr−1), and the area with decreasing SPEI
accounted for 20.3% of the total area. The areas where the SPEI increased significantly
(θslope is between 0.25 and 0.75·(10 yr−1)) are mainly located in Hulunbuir City, Hinggan
League, and Tongliao City. The distribution characteristics of SPEI shown in this study are
similar to the results of previous drought monitoring based on long-term series [19,20]. The
differences are mainly manifested in the areas such as Hinggan League and Tongliao City,
where drought changes increased significantly. Around 2000, the SPEI time series of the
Mongolian Plateau showed a significant turning point from increasing to decreasing [34,44].
The results of the Geodetector modeling showed that the SPEI change was driven by four
main controlling factors: air temperature, precipitation, DTR, and elevation (Table 4) during
the growing season in the study area. Precipitation is a direct factor in drought (q = 0.73).
Relevant studies have shown that in arid and semi-arid areas, vegetation growth and
ecosystem health status depend directly on atmospheric precipitation [45]. The interaction
detection results show that the joint effect of precipitation and elevation has the most
explanatory power (q = 0.87). Conclusions about attribution analysis of drought agreed
with a previous study [36]. However, we considered the special climatic background of
Inner Mongolia in this study of meteorological drought. The impact of elevation reflects the
influence of topography on mass and energy transportation and distribution of temperature
and water availability that affect regional ecosystems through altering vegetation species
and distribution and the formation and evolution of regional climate [46]. According to the
drought trend (Figure 4a) and the spatial distribution of the regression coefficient of SPEI
with GWR model factors (Figure 6), it was found that significantly reduced SPEI at a rate of
−0.40~−0.25·(10 yr−1) occurred in Alxa Left Banner in Alxa League, Dorbod Banner chain
Ulanqab City, Darhan Muminggan United Banner in Baotou City, and Wuhai City in the
western part of the study area. The drought in Alxa League and Wuhai City was caused by
a synergy of hot air temperature, lack of precipitation, high elevation, and high DTR, while
the drought in Ulanqab City and Baotou City was mainly caused by hot air temperature,
lack of precipitation, and high elevation.

4.2. Variation of Explanatory Power of Factors in Different Elevations

Due to the large and high terrain environment of the Qinghai-Tibet Plateau in the
region of the China-Mongolia Arid and Semiarid Area (CMASA), the lack of water vapor
transported over the central and western Inner Mongolia has resulted in scarce precip-
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itation [47]. The central and western part of the study area is dominated by plateaus
and mountains. Due to the barrier and uplifting effects of the Great Khingan Range-Yin
Mountains-Helan Mountains on water vapor, the eastern and southern piedmont of the
mountains are the East Asian monsoon zone (elevation is about 150~500 m) and the west
piedmont of the mountains is the non-monsoon zone (the elevation is generally higher than
1000 m).

As an important terrain factor, elevation has a significant impact on the spatial corre-
lation of factors. We found an interesting pattern to speculate the relative importance of
environmental and anthropogenic factors in our study area by elevation gradients. As the
statistical results of q-values of various factors in different elevation intervals (Figure 7a), in
the 100–500 m elevation interval, the average precipitation (X1) in the growing season is
261.5 mm, and the q-value is the smallest. When the precipitation reaches a certain level,
the impact of precipitation on SPEI decreases [48]. For the forest area, the ecological water
storage is sufficient and the correlation between SPEI and sunshine duration (X4) is stronger.
In the elevation range of 800~1000 m, the q-values of factors such as air temperature (X1),
precipitation (X2), sunshine duration (X4), slope (X9), POS (X11), and LUCC (X12) increased
significantly, indicating that the change in SPEI was mainly affected by natural factors
and some human activities. When the elevation increases to 1000~1300 m, the q-values
of POS (X11) and LUCC (X12) reach the maximum of 0.38 and 0.42, respectively, and the
q-values of other factors show a downward trend. In the area above 1300 m in elevation,
the explanatory power of all factors decreases significantly with increasing elevation.

Figure 7. The change in q statistics of influencing factors on SPEI along the gradient of Elevation (a)
and R2 statistics of prefecture cities (b).

It is worth mentioning that the conversion of land use types is an important influencing
factor reflecting human activities, as well as an important explanatory factor for drought
changes (Table 3). Between 2000 and 2018, in the 800~1300 m elevation interval, SPEI was
significantly enhanced by the land use conversion. According to statistics, the land use
types that account for the largest area in this elevation interval are unaltered woodland
and unaltered grassland (Table 6), which account for 48.3% and 15.5% of the total area of
the region, respectively. The growth rates of SPEI are 0.52·(10 yr−1) and 0.018·(10 yr−1),
respectively, indicating that the series of ecological restoration projects such as “closing hills
for afforestation and reforestation, retiring grazing and raising grass” implemented by the
Chinese government in Inner Mongolia since 2000 have played an important role [49]. In
addition, in the conversion of land use from unused land to grassland and from farmland
to grassland, SPEI increased by 0.24 and 0.58, respectively, which alleviated the drought
conditions in the area to a large extent (Figure 5d). The SPEI of the unchanged farmland
increased by 0.57, and the SPEI growth rate was 0.019·(10 yr−1). This may be related to
improvement in irrigation. Modern irrigation technology has improved the utilization
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rate of water resources and increased the field water holding capacity [50]. At the same
time, grassland degradation caused by overgrazing and long-term abandonment of land
aggravated the degree of drought [51,52]. For example, the grassland in the 800~1300 m
elevation range was converted to unused land; as a result, the SPEI decreased by 0.42, while
the SPEI of unaltered unused land decreased by 0.21.

Table 6. The area of specific land use conversion in 800~1300 m.

2000/2018
Unit: Km2 Croplands Forests Grasslands

Water
Areas

Construction
Lands

Unused
Lands

Croplands 14,143.289
(3.5)

948.394
(0.2)

7180.634
(1.8)

464.368
(0.1)

1530.627
(0.4)

1758.953
(0.4)

Forests 1357.162
(0.3)

61,982.534
(15.5)

17,312.724
(4.3) 0 0 811.536

(0.2)

Grasslands 5566.708
(1.4)

5677.182
(1.4)

193,072.543
(48.3)

1278.544
(0.3)

735.711
(0.2)

13,980.681
(3.5)

Water areas 477.401
(0.1) 0 952.564

(0.2)
2410.992

(0.6) 0 986.008
(0.2)

Construction
lands

1372.649
(0.3)

159.97
(0.1)

1920.498
(0.5) 0 1092.653

(0.3)
492.902

(0.1)
Unused

lands
626.973

(0.2)
3200.702

(0.8)
14,295.369

(3.6)
871.862

(0.2)
117.173

(0.1)
43,698.632

(10.9)
Note: The numbers in parentheses are the percentage of specific land use conversion to the total area (%).

4.3. Advantages and Limitations of GWR

The adjusted R2 value from the GWR model is 0.88, and the AIC value is −540.58.
Compared with the OLS model (R2 = 0.54, AIC = −504.22), the AIC value is reduced by
36.36 and the degree of fit is higher, but there are regional differences. The regional statistics
of R2 shows that (Figure 7b) the largest value occurred in Wuhai City, Inner Mongolia (K)
R2 = 0.96, followed by Hohhot City (H) R2 = 0.92, and the two prefecture-level cities with
the smallest R2 were Hinggan League (B) and Bayan. In Bayannur City (I), R2 is 0.64 and
0.67, respectively. The difference in the accuracy of regional fitting may be related to the
influence of elevation changes on the distribution of other factors in the large east-west
span of the study area. Areas with small R2 (A, B, I) have an average elevation of less than
800 m, and the average single factor q-value is 0.17. The average elevation of Wuhai City
(K) and Hohhot City (H) are 1193 m and 1379 m, respectively, and the average q-value is
0.32 and 0.28, respectively. On the other hand, the area of each city is quite different, so
is the statistical sample size, and the collinearity of the factors within the region may be
another reason for the low fit in Hinggan League (B) and Bayannur City (I) [11,53,54].

4.4. Future Directions

Compared with traditional statistical models, we quantified the non-linear responses
of independent variables and their interactions to SPEI change, without input of complex
parameters. Further research may include: (1) using long-term SPEI data and more accurate
PET calculation methods, such as the Penman and Hargreaves–Samani formula to produce
more generalizable drought-driven results; (2) refining the spatial scale both horizontally
and vertically, especially in eastern Inner Mongolia and western Mongolia, to generate
results at higher resolutions.

5. Conclusions

Based on the multi-source data at the 110 meteorological stations, DEM, and veg-
etation types in Inner Mongolia and its surrounding areas, this study investigated the
spatiotemporal variation of SPEI during the growing season in Inner Mongolia from 2000
to 2018. Through the introduction of time rate of change in SPEI, we used Geodetector
and GWR models to screen the main controlling factors and then effectively quantified
the impact of the factors on drought changes and the results are of great significance for
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drought-driven research. We made the following conclusions. (1) The SPEI in the growing
season from 2000 to 2018 in Inner Mongolia showed a spatial variation pattern from dry
west to wet east. The area with light drought accounts for the largest proportion in the
whole region. (2) The inter-annual variation of SPEI shows an upward trend and the area
of elevated SPEI accounted for 79.70% of the study area. These results indicate that the
drought condition became alleviated with time during the growing season in Inner Mongo-
lia. (3) The drought changes in Inner Mongolia were generally controlled by natural factors,
with nonlinear interaction between factors enhancing drought impact. The aggravated
drought in the central and western regions of the study area, such as Alxa League, Ulanqab
City, Baotou City, and Wuhai City, were mainly driven by a synergy of hot air temperature,
scarce precipitation, and high elevation, with significant impact from soil and LUCC at an
elevation of 800~1300 m. The results from this study should be helpful for decision-making
and management of regional water resources.
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Abstract: For decades, nations around the world have been promoting irrigation expansion as a
method for improving agricultural growth, smoothing production risk, and alleviating rural poverty.
Despite its apparent advantages, suboptimal adoption rates persist. According to the existing
literature, determinants of irrigation adoption are often highly dependent on cultural, contextual,
and/or local institutional factors. Yet, studies from diverse geographies identify a consistent set of
factors. Thus, to be able to make generalizable inferences from such studies, a global geographic
representativeness assessment of irrigation adoption studies was conducted to determine whether
identified factors influencing irrigation were the result of geographic, epistemological, or disciplinary
biases. The results indicate that multiple geographic biases exist with respect to studying farmers’
irrigation adoption decision-making. More research on this topic is being conducted in regions that
have little to a high percentage of irrigation (>1%), are readily accessible, receive moderate amounts of
average annual rainfall, and have moderate amounts of cropland cover. The results suggest the need
to expand research efforts in areas with little to no irrigation to identify constraints and help accelerate
economic growth, poverty reduction, and food and livelihood security for rural communities in these
regions.

Keywords: agriculture technology; diffusion and adoption; farmers; climate change adaptation;
systematic review

1. Introduction

One of the major global environmental issues confronting us today is climate change,
which threatens our ability to meet the growing population demands for basic resources
like food and water [1,2]. Due to its inherent link to natural resources, agriculture is highly
sensitive to changing climatic conditions [3] and is among the most vulnerable sectors to
climate change risks and impacts [4]. Changes in temperature and rainfall patterns will have
direct and indirect impacts on our food systems, ranging from reduced crop production
to volatility in markets and food prices [5,6]. Even though food production trends of the
last 40 years have more or less kept pace with the rising food demands [7], pressure on our
food systems will only intensify with changing consumption patterns, lifestyles, and diets
in the coming years [1,8]. Additionally, in most developing countries, agriculture provides
the main livelihood and employment opportunities for rural populations and contributes
significantly to the national GDP [9]. Therefore, any reductions in production will impact
agricultural economies and challenge the resilience of agricultural-dependent communities
as well [9,10]. Hence, there is a need to strengthen local capacity to deal with forecasted
and/or unexpected climatic changes [3], and this requires adaptation [11].

Adaptation is considered a vital component of any policy response to climate change in
addition to mitigation [4], and often involves changes in processes, practices, or structures
to reduce potential adverse impacts [3]. Sakschewski et al. (2014) in their assessment of
agricultural production argued that production increases can be accomplished either by
increasing land productivity or by increasing land resources, but since cropland expansion
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is limited, engineered or technological adaptive responses remain the most common in
this sector [12]. One such adaptation strategy is to augment rainfed production with the
use of irrigation [13]. Irrigation has the potential to buffer climate stress and increase
production on existing agricultural lands, smooth production risks, and improve the
growth of agricultural economies [9,13–15]. According to the UN Food and Agriculture
Organization (FAO), the global area equipped for irrigation worldwide increased from
184 million ha in 1970 to 324 million ha in 2012 [16]. Much of this expansion has occurred in
developing Asian countries [17], with China having the largest irrigated area in the world,
followed by countries like India, the United States of America, Pakistan, and Iran in the top
five [18,19].

Despite the multiple benefits, irrigation adoption among farming communities has
been slow or the long-term investments needed delay its adoption [20]. This is because
adoption of any technology, in general, is a complex sociological phenomenon [21] that
involves a large number of factors affecting the adoption decision [21] and is seldom
rapid [20]. Globally, many attempts from different disciplinary backgrounds have been
made to identify the factors that act as barriers to irrigation technology adoption by farm-
ers [22–27]. Studies from diverse geographies identify a consistent set of factors, with the
cost of technology cited as the most common barrier to its adoption/uptake [28]. However,
the existing literature also asserts that the determinants of irrigation adoption are often
dependent on local culture, context, and/or policies [29]. For example, Alabama in the
south-eastern U.S. receives an average of 55 inches of precipitation annually which allows
for a long growing season in the state. However, the recent increase in flash drought
instances within the state is a cause of worry for those practicing rainfed agriculture,
especially the small farm owners, making them the most vulnerable to these changing
climatic conditions (For more details see the U.S. Drought Monitor for Alabama from the
year 2000–Present available at: https://www.drought.gov/states/alabama, accessed on
15 October 2022). Accordingly, this identification of factors influencing irrigation adoption
across a wide range of geographic contexts will be useful when climate change necessitates
adaptation in such unprecedented areas.

One explanation for this disconnect concerning the different factors affecting irrigation
adoption, which we explore in this paper, is that the geographic contexts in which irrigation
adoption studies are often conducted might be biased, and this bias has influenced the set
of factors identified as having explanatory power. If such a bias exists, it would not be
unique to irrigation adoption studies. For instance, Martin et al. (2012) found the global
distribution and context of ecological field study sites to be biased toward more accessible
locations with limited human influence. According to the authors, the geographical context
of selected study sites greatly influenced the observations made within these locations [30].
Therefore, to better understand the reasons as to why a farmer chooses to adopt or not
adopt irrigation, it is first essential to recognize the global extent and context-dependency of
irrigation adoption. This can be achieved through a geographic representativeness analysis.
Using this analytical approach, the representativeness of studies examining factors affecting
the diffusion and adoption of irrigation by farmers from around the world will be assessed
to determine whether the identified factors (influencing irrigation adoption) from a set of
case studies selected through a systematic review were the result of certain geographic
biases or not. Accordingly, to identify these potential biases, we test the following two
hypotheses:

H1. The geographic context of irrigation adoption studies is biased towards locations with substantial
levels of existing irrigation, relatively low annual precipitation, and greater accessibility to markets.

H2. The same factors (affecting farmers’ decision-making) are observed regardless of the geographic
context of these studies.

Thus, the goal of this review is to understand whether the apparent consistency of
factors influencing irrigation adoption is the result of the geographic contexts in which it
is studied. Given the emerging challenges presented by climate change, we suspect that
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there are settings in which irrigation (and the study of its adoption) is currently limited
but would be beneficial (i.e., improved yields, profits). If this is the case, then the set of
factors influencing the irrigation adoption process may be different than in contexts with
established irrigation practices. To answer this question, we narrowed our review to articles
that explicitly addressed the irrigation adoption process, rather than broader investigations
of the adoption of climate-smart agriculture or best management practices, e.g., [31] or
those that assessed the benefits of irrigation adoption, e.g., [32].

This paper is structured as follows. Sections 1.1–1.3 give a brief overview of the
motivations behind irrigation adoption and the technological and theoretical perspectives
commonly used to study the adoption process. Section 2 describes the procedure followed
for this systematic review, followed by the presentation and discussion of the results of the
geographic representativeness and adaptation factors’ analyses in the subsequent sections
and some concluding remarks.

1.1. Why Irrigation?

Irrigation refers to the systematic and artificial application of water to plants at regular
intervals to assist in the growing of crops and maintenance of landscapes [33–35] and is
usually classified as surface, sprinkler, and micro-irrigation [35,36]. Irrigated agriculture,
which accounts for more than 70% of total global freshwater withdrawals [15,37], pro-
vides for about 40% of the world’s agricultural production [38] from less than 20% of its
area [39–41]. Asia continues to contribute the largest share of total irrigated area, followed
by Latin America, while sub-Saharan Africa only contributes 6% of its cultivated area to
irrigation [18,38].

Irrigation use increases and stabilizes crop production in areas that do not receive
enough precipitation [42–44], and has helped shape the economies of many semi-arid and
arid regions around the world [45,46]. It also contributes toward income stabilization of
dependent communities by improving agricultural growth and smoothing production
risk [47–49]. According to a study by Bhattarai et al. (2007) [50], irrigation use can provide
direct benefits like increased crop production that go to individual farm owners and/or
entire community(s), and indirect benefits that are accrued to the wider sectors of the
economy. There can also be spillover effects, which is brought by the increased household
spending in the local economy due to enhanced income and employment as a result of
increased land productivity made possible by irrigation [48].

1.2. Technology Adoption and Related Theories

Adoption is the decision to use a particular technology or innovation by an individ-
ual [51,52], which then leads to its diffusion or dissemination within a social system [52,53].
There exists a plethora of literature on factors that determine the adoption of a technology.
Various researchers even define ‘technology’ itself in different ways and based on their
definitions and disciplinary backgrounds use different theories or models to study its adop-
tion [29,54–57]. For instance, in marketing research, the purchase of a technology is often
the focus rather than its actual use [53]. Within agriculture, scholars have commonly used
economic models and theories to explain individual technology adoption decisions [57,58],
which allow for only rational and objective decision-making behaviors of farmers, rather
than their perceptions, and assume that they adopt technology only for profit or utility
maximization [59,60]. Alternatively, some research has shifted analytical focus to the role
of individual knowledge, perceptions, and/or attitudes in the decision-making process,
which in turn are conditioned by extrinsic factors, such as characteristics of the individual
(~age, gender, education levels, etc.) and their external environment [29,61]. While others
have taken a relatively more macro-perspective as they focus not only on the individual but
also on the characteristics of the technology in question and the infrastructure needed for
its successful diffusion to comprehensively understand its spread across the entire society
(or market) over time [51,62,63]. A more recent strand of literature on agricultural tech-
nology adoption has also included the role of social networks in influencing the adoption
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of agricultural technologies [64–68]. Another key element associated with the adoption
decisions is that of uncertainty or risk, which refers to the suitability of technology with an
individual’s characteristics including his/her experience or skillset, and with their local
conditions (~agronomic, economic, and/or climatic) [57,69].

Since there exists no single model for understanding the decision-making processes in
which an individual engages before adopting a certain technology, adoption is examined
through a combination of research paradigms [55,57]. Moreover, these studies mostly
utilize regression models to explain the uptake of technology as a function of several
independent variables [70,71] including personal characteristics, preferences, individual
attitudes, economic or institutional constraints, that are gathered either through census
data, surveys, or personal interviews or a combination of it [29].

1.3. Factors Affecting Irrigation Adoption

Studies suggest that uptake of a new technology is rarely rapid, particularly among
small farmers in developing countries [61,72,73], and with a wide range of factors acting
as possible deterrents [72,74,75]. For example, a study in Burkina Faso (West Africa) of
629 farmers highlighted the need for farmers’ training and information dissemination
on irrigation to increase adoption [76]. Another study investigated factors affecting the
adoption and application of sprinkler irrigation technology by farmers in the county of
Famenin, Iran, and showed that the adoption was influenced by both environmental factors,
such as farm size, access to water, water quality, and non-environmental factors, including
workforce number in the family, employment diversity, and participation in extension
education and courses on agricultural water management [77]. Another study investigated
the sources of variation for on-farm irrigation systems across producer fields in Nebraska
(USA) [42]. Their findings showed that biophysical factors such as soil, crop type, and
weather, explained about half of the observed variations in field irrigation. However, the
rest of the variations remained unexplained, suggesting that both producer behavior and
skills played a significant role in shaping these decisions. Another study looked at the effect
of production risk on irrigation technology choice among small-scale farmers in Chile and
their results indicated that more educated farmers, with credit access, receiving extension
services, and living in communes with other adopters were more likely to use modern
irrigation techniques [78]. Another study of 1500 farmers from Henan Province in China
found that the farmers who believed in climate change adopted adaptation measures like
irrigation to respond to and mitigate its negative impacts [79]. Thus, understanding the
kinds of factors influencing adoption decisions is crucial not only for the propagators of
these technologies to increase the likelihood of their adoption but also for identifying the
overall determinants of agricultural growth and development [80].

2. Materials and Methods

2.1. Data Collection
2.1.1. Literature Search Strategy

A literature search was conducted using Science Direct and Scopus databases. The
search was limited to only research articles written in the English language and published
in peer-reviewed journals between 2000 and 2021. Articles prior to 2000 were excluded
as the global irrigation dataset used in this analysis is based on the nationally reported
statistics from around the year 2000 (more details about this dataset are presented in
Table 1). Moreover, this also reflects the broader trends in irrigation adoption globally
because the percentage of reported data on irrigation use from around the world is largest
from the year 2000 onwards compared to the earlier years [81]. The steps taken in the
search and screening process are presented in Figure 1. First, a target set of 10 articles
containing both ‘true positives’ and ‘true negatives’ was assembled from a wide range of
disciplines to represent the full range of publications in this research domain and assemble
a set of search keywords. Target set articles are listed in Appendix A. Different keywords
such as irrigation, technology adoption, agriculture, farmer decisions, water management,
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and climate change adaptations were combined using Boolean operators to download
relevant studies. The specific search terms used were: ((“irrigation”) AND (“technology”
OR “adoption”) AND ((“reasons and constraints”) OR (“attitudes”) OR (“drivers”) OR
(“perception”) OR (“barriers”)) AND (“climate change adaptation” OR “climate smart
agriculture” OR “climate change” OR “adaptive capacity”) AND ((“drought”) OR (“water
management practices”)) AND ((“farmers”) OR (“farmer decisions”))).

Table 1. Description and sources of all the datasets used in this analysis.

Dataset Name Description Source

Global Administrative Areas
(GADM)

A spatial database of the location of administrative areas of all
countries, at all levels of sub-division. GADM (2018–2022) [82]

GLOBE Land Units (GLUs)
GLUs are equal-area hexagonal cells that cover the Earth’s land

surface and are based on the geodesic Discrete Global Grid (DGG)
system of Kevin Sahr (2003).

GLOBE (2012)

Average Annual Precipitation
Average annual precipitation (mm/year) from 1950–1999.

Native resolution is 30 arcminutes projected in Geographic
Coordinate System WGS 1984.

Willmott & Matsuura
(2001) [83]

Percent Crop Area

Percent crop land cover area per grid cell derived from HYDE
(History Database of the Global Environment) land cover data.
Native resolution is 0.5◦ projected in Geographic Coordinate

System WGS 1984.

Klein Goldewijk et al.
(2011) [84]

Market Access Index Global grid of a normalized market access index based on travel
time to cities with populations of at least 50,000 and 750,000. Verburg et al. (2011) [85]

Percent Area Equipped for
Irrigation

Global map of irrigation areas showing the amount of area
equipped for irrigation around the year 2000 in the percentage of

the total area on a raster with a resolution of 5 min.
Siebert et al. (2005) [86]

 
Figure 1. Steps involved to assemble research articles for this analysis.
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2.1.2. Selection of Case Studies

After the literature search, the resulting dataset consisted of 438 publications. The
next step was article screening to identify case studies that should be used in this meta-
study. Both study titles and abstracts were checked and critically reviewed for suitability
for this analysis. Articles were excluded if they did not (1) investigate the different fac-
tors/reasons affecting technology adoption within the agricultural sector, and (2) present
an assessment of farmers’ views or opinions. Conference proceedings, grey literature,
reports, and duplicate articles were also excluded from the dataset. The initial screening
reduced the number of eligible articles to 119. The second round of screening was per-
formed using the full text of each remaining article. Articles were primarily screened to
determine specifically if irrigation adoption by farmers was studied or not, irrespective
of the type of irrigation system. For instance, many studies examined the adoption of
several different agricultural practices together, in the form of climate change adaptation
strategy, conservation agriculture, or as sustainable farming practices adopted by farmers
including high-yielding crop varieties, different soil, and water management practices see,
e.g., [87–89]. All the studies that did not include irrigation as one of the technologies or
practices being studied were discarded. Moreover, studies that were conducted at a very
large-scale and reported aggregated results (e.g., for entire U.S. mid-west region [90] or 11
African countries together [91]), were excluded to ensure comparability of results, since the
goal was to examine the geographic contexts of these studies that would otherwise have
been difficult to capture. Additionally, studies that investigated the benefits of irrigation
adoption, assessed its impact on crop production under climate change, or estimated future
adoption rates were also not considered, e.g., [92–95]. As a result, 50 case studies, which
passed the inclusion and exclusion criterion were selected and used in this meta-study. A
complete list of the studies included in this review is also provided in Appendix A.

2.2. Data Analysis

A representativeness analysis provides a robust statistical test to enable the user to
investigate potential geographic biases within a collection of primary data observations
(e.g., case studies) [96]. Using this analytical approach, for a given global variable of interest
(e.g., average annual precipitation), the frequency distribution of the global variable within
a user-specified geographic extent was compared with the frequency distribution of the
observations in the sample collection, and the degree to which the sample collection’s
distribution is representative of the distribution of the global variable was quantified [96,97].
The null hypothesis for this analysis was that the frequency distributions of the global
variable and sample collection are not statistically different. If the null hypothesis can
be rejected with a low probability of type I error, then the sample can be declared as
significantly biased. To enable comparability between values of the global variable and
sample collection observations, which might include case study geographies of diverse
extents, the standardized, hexagonal, and equal-area geographic units from the GLOBE
system were used, known as GLOBE land units (GLUs). The degree of representedness (r)
was then computed with a chi-squared (χ2) test and was characterized as follows:

r = 0 if fe(gv) = fo(gv)
−(1 − p) if fe(gv) > fo(gv)
(1 − p) if fe(gv) ≤ fo(gv)
undefined if fe(gv) = 0 ∧ fo �= 0

where fe(gv) was the expected frequency of the bin to which GLU g belonged (calculated
from the population set), fo(gv) was the observed frequency of that bin (calculated from the
sample set), and p was the p-value for the χ2 test. The range of r is between [−1 to 1], with
0 indicating perfect representedness, negative numbers indicating under-representedness,
and positive numbers indicating over-representedness [96].
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Several data preparation steps were followed to produce the sample and global (~pop-
ulation) datasets. Table 1 describes all the datasets used for this analysis. After shortlisting
the case studies, the locations of the study sites (total = 53) mentioned in each of the se-
lected 50 articles were mapped using the shapefiles of administrative boundaries from
the GADM dataset in ArcGIS Pro software (see Figure 2). Next, the global GLU feature
layer obtained from GLOBE was filtered using several context variables (see Table 2) to
restrict the global dataset to the expected geographic extent of agricultural areas. Case
study locations were also intersected with the filtered GLU layer to form the sample dataset
and to maintain a similar unit of analysis for both the layers. For each GLU, values of three
variables—average annual precipitation (mm/year), percent crop area, and market access
index were calculated. For the area equipped for irrigation (%) variable, mean values were
computed using zonal statistics within each GLU for both the above feature layers. The
extent/range of the selected four variables within both the global and sample layers are
shown in Figures 3–6. For each of these four variables, these two datasets were divided into
different intervals or bins. The binning strategy was kept the same as their source datasets
(see Table 1 for dataset details) except for average annual precipitation variable for which a
geometric interval was used. Finally, Pearson’s χ2 test for the independence of two datasets
was conducted to compare the frequency distributions of the sample and global datasets
for each of the selected four variables to determine the geographic representativeness of
the assembled case studies on irrigation adoption and answer the first hypothesis.

 

Figure 2. The map shows the location and distribution of selected cases.
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(a) 

 
(b) 

Figure 3. (a) Global extent for % Area Equipped for Irrigation variable. (b) Sample extent for % Area
Equipped for Irrigation variable.
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(a) 

 

(b) 

Figure 4. (a) Global extent for Avg Annual Precipitation variable. (b) Sample extent for Avg Annual
Precipitation variable.
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(a) 

 

(b) 

Figure 5. (a) Global extent for Percent Cropland variable. (b) Sample extent for Percent Cropland
variable.
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(a) 

 

(b) 

Figure 6. (a) Global extent for Market Access variable. (b) Sample extent for Market Access variable.
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Table 2. Description of all the filters applied to the GLU layer obtained from GLOBE.

Variable Name Description and Source Filter(s) Applied

Olson Biomes Terrestrial ecoregions of the world defined by climate, geology,
and evolutionary history from Olson et al. (2001) [98]

Biomes—Boreal forests and
Tundra removed.

Average Annual
Temperature

Average annual temperature (◦C) from 1951–2002. Values range
from −28 ◦C to 31 ◦C. See [97] for more details.

Values greater than 28.57 ◦C and
less than −12.2058 ◦C removed.

Average Annual
Precipitation

Average annual precipitation (mm yr−1) from 1950–1999 [83].
Values range from 0–10,572 mm/year.

Values greater than
2948.79 mm/yr and less than

30.0 mm/yr removed.

Population Density Global model of population density from HYDE population
model 2000 [84]. Values range from 0–62,018. Values equal to ‘0’ removed.

Percent Land Area
Percentage of land area contained within each GLU cell based on
LandScan 2007 by Oak Ridge National Laboratory (2008). See [97]

for details. Values range from 0–100%
Values less than 1 removed.

Percent Crop Area Percent crop land cover area per grid cell derived from HYDE
land cover data (2000) [84]. Values range from 0–100% Values equal to ‘0’ removed.

Slope Suitability Class Global grid of land suitability for agriculture based on combined
slope constraints [99]. Total 8 classes.

Classes 7 and 8 corresponding
to ‘Very Frequent Severe

Constraints’ and ‘Unsuitable for
Agriculture’, respectively,

removed.

To test the second hypothesis, first a list of factors reported to influence irriga-
tion adoption decisions of farmers was compiled from the selected case studies. Fac-
tors affecting farmers’ adoption decisions are often classified into broad clusters like—
financial/economic, physical, institutional, and individual characteristics, but depend-
ing on the researchers’ preferences and disciplinary backgrounds this categorization can
vary [57,70]. For our study, based on the background literature, the different (influential)
factors were clustered into seven broad categories—biophysical, demographic, geographic,
technology-specific, social capital, farm enterprise, and institutional factors (Figure 7). Indi-
vidual factors were coded using these broad categories for frequency analysis. Next, the
relationships between these seven factor categories and their corresponding geographical
contexts were examined using correspondence analysis. Correspondence analysis (CA)
is a multivariate statistical technique and a useful visualization tool for summarizing,
examining, and displaying the relationships between categorical data in a contingency
table [100,101]. No underlying distributional assumptions are needed for this analysis
and therefore, it accommodates any type of categorical variable—binary, ordinal, or nom-
inal [102]. Moreover, the row and column points from the contingency table are shown
together on a multi-dimensional map called biplot, which allows for easier visualization of
the associations among variables [103,104]. CA uses the chi-square statistic to measure the
distance between points on the map, but it does not reveal whether these associations are
statistically significant and is therefore used only as an exploratory method [104].

All the above-mentioned statistical tests were conducted and developed in the Py-
Charm IDE (Integrated Development Environment) using pandas, Matplotlib, Prince, and
Scipy Stats libraries.
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Figure 7. Categorization of different factors influencing farmers’ irrigation adoption decision-making.

3. Results

3.1. Geographic Representativeness of Irrigation Adoption Studies

Geographic representativeness analyses were conducted for the percentage of GLU
area equipped with irrigation, percentage of GLU area in cropland, average market acces-
sibility, and average annual precipitation. Pearson’s χ2 tests for independence for each
of the four variables (Tables 3–6) found that the observed (~sample) distributions were
statistically different from the expected distributions.

Table 3. Pearson’s χ2 test results with percentage of area equipped for irrigation variable.

Bins
Frequency

χ2 Statistic p-Value *
Representedness Degree

Observed Expected r-Value ** Representedness

0.0–0.1 11469 20997 4951.870159 0.0 −1 Highly under

0.1–1.0 3634 5705 524.5160253 4.41 × 10−116 −1 Highly under

1.0–5.0 5375 4079 203.1462568 4.30 × 10−46 1 Highly over

5.0–10.0 3571 1769 654.2752213 2.63 × 10−144 1 Highly over

10.0–20.0 3875 1710 906.3700068 4.05 × 10−199 1 Highly over

20.0–35.0 3589 1236 1225.836112 1.48 × 10−268 1 Highly over

35.0–50.0 2482 719 1013.405549 2.19 × 10−222 1 Highly over

50.0–75.0 2536 694 1096.828508 1.62 × 10−240 1 Highly over

75.0–100 749 369 130.4361647 3.29 × 10−30 1 Highly over

Total Frequency 37280 37280 Dist.χ2= 24137.36522 Dist. p-value = 0.0 Diagnosis: Highly biased

* At 0.05 significance level; ** r-value calculation based on criteria defined in Section 3.2.
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Table 4. Pearson’s χ2 test results with percentage of cropland variable.

Bins
Frequency

χ2 Statistic p-Value *
Representedness Degree

Observed Expected r-Value ** Representedness

0.0–0.1 6219 15900 5962.41 0.0 −1 Highly under

0.1–0.2 4595 5556 104.6993983 1.42 × 10−24 −1 Highly under

0.2–0.3 5366 3863 278.0312679 2.02 × 10−62 1 Highly over

0.3–0.4 6522 3245 1259.874418 5.93 × 10−276 1 Highly over

0.4–0.5 6063 2856 1304.727198 1.06 × 10−285 1 Highly over

0.5–0.6 3990 2551 345.7343162 3.60 × 10−77 1 Highly over

0.6–0.7 2870 1954 185.2504582 3.46 × 10−42 1 Highly over

0.7–0.8 2002 1319 146.4197305 1.05 × 10−33 1 Highly over

0.8–0.9 203 416 73.20047746 1.17 × 10−17 −1 Highly under

0.9–1.0 372 543 31.96753669 1.57 × 10−08 −1 Highly under

Total Frequency 38202 38202 Dist.χ2= 15313.11155 Dist. p-value = 0.0 Diagnosis: Highly biased

* At 0.05 significance level; ** r-value calculation based on criteria defined in Section 3.2.

Table 5. Pearson’s χ2 test results with market accessibility variable.

Bins
Frequency

χ2 Statistic p-Value *
Representedness Degree

Observed Expected r-Value ** Representedness

0.0–0.1 10902 20736 5215.919285 0.0 −1 Highly under

0.1–0.2 4340 3907 25.36746844 4.74 × 10−07 1 Highly over

0.2–0.3 4618 3186 292.2496414 1.61 × 10−65 1 Highly over

0.3–0.4 4448 2677 484.9267588 1.81 × 10−107 1 Highly over

0.4–0.5 3919 2075 614.9158442 9.54 × 10−136 1 Highly over

0.5–0.6 3187 1481 663.2799333 2.89 × 10−146 1 Highly over

0.6–0.7 2398 1335 317.6479106 4.71 × 10−71 1 Highly over

0.7–0.8 2228 1172 342.6063765 1.73 × 10−76 1 Highly over

0.8–0.9 1503 994 106.8413592 4.82 × 10−25 1 Highly over

0.9–1.0 659 640 0.253736593 0.61 0.4 Well-represented

Total Frequency 38202 38202 Dist.χ2 = 12191.37033 Dist. p-value = 0.0 Diagnosis: Highly biased

* At 0.05 significance level; ** r-value calculation based on criteria defined in Section 3.2.

Table 6. Pearson’s χ2 test results with average annual precipitation (mm/year) variable.

Bins
Frequency

χ2 Statistic p-Value *
Representedness Degree

Observed Expected r-Value ** Representedness

30–287 1680 3293 558.91 1.45 × 10−123 −1 Highly under

287–463 3449 5289 437.02 4.83 × 10−97 −1 Highly under

463–584 6537 4397 488.33 3.28 × 10−108 1 Highly over

584–666 3444 2457 178.54 1.01 × 10−40 1 Highly over

666–786 3819 2999 108.02 2.66 × 10−25 1 Highly over

786–962 6864 3658 1132.16 3.39 × 10−248 1 Highly over

962–1219 6137 4917 157.17 4.71 × 10−36 1 Highly over

1219–1595 5319 5660 12.30 4.54 × 10−04 −1 Highly under

1595–2145 835 3261 1517.03 0.0 −1 Highly under

2145–2949 118 2270 2000.03 0.0 −1 Highly under

Total Frequency 38202 38202 Dist.χ2= 10070.33756 Dist. p-value = 0.0 Diagnosis: Highly biased

* At 0.05 significance level; ** r-value calculation based on criteria defined in Section 3.2.
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The observed frequencies of the two lowest percent areas of irrigation were signifi-
cantly lower than their expected frequencies (see Figure 8) and highly underrepresented
(Table 3). Similarly, the remaining seven bins were highly over-represented in this collection
as the observed frequencies of these bins were higher compared to their corresponding
expected frequencies. Case studies of irrigation adoption were thus biased toward areas of
existing agriculture, and studies were generally more over-represented as the area equipped
for irrigation increased.

 

Figure 8. Percentage of Observed (~Sample) vs. Expected Counts for Irrigation Variable.

Similarly, in the case of the percent cropland variable (Table 4 and Figure 9), four
out of ten bins (with very low and high cropland cover) were highly underrepresented.
Irrigation adoption studies were more frequently conducted in areas with moderate extents
of agricultural land use, and thus biased against areas of low or high cropland. This
likely had implications for the irrigation adoption decisions studied. Locations that were
dominantly or exclusively agricultural likely had better support services and infrastructure
and did not compete with other land uses, which would presumably facilitate irrigation
adoption. Conversely, farmers in low agricultural areas face the opposite conditions and
may experience more barriers to irrigation adoption.

 

Figure 9. Percentage of Observed (~Sample) vs. Expected Counts for Cropland Variable.

In the case of the market access index, most of the bins (8 out of 10) were highly
over-represented (Table 5 and Figure 10) with a bias toward areas having moderate-high
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market access. Market signals that might favor irrigation adoption were likely dampened
in low market accessibility areas, which may not have been enough to overcome economic
barriers to irrigation adoption. Additionally, remote areas are generally understudied
due to access difficulties for researchers [30]. As a result, irrigation adoption studies were
skewed toward locations with greater accessibility, including a well-represented sample of
the most accessible locations.

Figure 10. Percentage of Observed (~Sample) vs. Expected Counts for Market Accessibility Variable.

Finally, regions receiving moderate average annual rainfall (463–1219 mm/year) were
highly over-represented, while regions with very low and high average annual rainfall were
under-represented and understudied (Table 6 and Figure 11). The underrepresentation of
low rainfall areas was surprising, but these may be neglected by irrigation adoption studies
due to the necessity of irrigation and limited variability in decision-making. The limited
sampling of high precipitation areas was not surprising, since areas receiving high average
annual precipitation were more likely associated with rainfed agriculture. However, such
areas may also include those in which seasonal drought is a concern despite high aggregate
rainfall (e.g., humid southeast United States) and which potentially have unique sets of
adoption decision factors.

Figure 11. Percentage of Observed (~Sample) vs. Expected Counts for Average Annual Precipitation
Variable.
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3.2. Similarity of Irrigation Adoption Factors across Geographic Contexts

Most of the studies conducted in low irrigated regions of the world and that were
highly underrepresented in this collection were from countries located in Africa and Latin
America (see Table 7 and Figure 12). Further, Table 8 lists the different clusters of factors
affecting irrigation adoption identified from the case studies, broken down by world regions.
The frequency of each of the causal factors as reported in the case studies are provided in
this table as an absolute number (this method of frequency analysis is based on the Geist &
Lambin (2004) study). Only two case studies had a single variable (factor category) that
explained farmers’ decision-making regarding irrigation adoption, thus suggesting that the
decision to adopt (or not) irrigation is best explained using a combination of factors (see
Table 8). Dominating the broad clusters of factors affecting irrigation adoption decisions
of farmers was the combination of—Biophysical, Demographic, Farm Enterprise, and
Social Capital factors (B, D, F, S), followed by the cluster with Biophysical, Demographic,
Farm Enterprise, Institutional, and Social Capital factors (B, D, F, I, S), with clear regional
variations as both these clusters feature mainly in case studies from Asia and Africa. Cases
from both these regions share a greater number of factors in common as compared to
other regions. Demographic category that includes factors like age, gender, household
size, and more (see Figure 7 for more details) featured the most, while both institutional
and technology-related factor categories were least observed within these case studies.
Further, demographic and social capital related factors together formed the most robust
combination, although one that often occurred in combination with other clusters.

Table 7. Distribution of number of cases based on percentage of irrigation.

Percentage of Irrigation No. of Cases Degree of Representedness

0.0–0.1 4 Highly under
0.1–1.0 14 Highly under
1.0–5.0 7 Highly over
5.0–10.0 9 Highly over
10.0–20.0 6 Highly over
20.0–35.0 7 Highly over
35.0–50.0 2 Highly over
50.0–75.0 4 Highly over

Figure 12. Distribution of study regions based on the percentage of area equipped for irrigation.
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Table 8. Frequency of broad clusters of factors affecting irrigation adoption.

Factors

Study Sites
Asia

(n = 20)
Africa

(n = 20)
Australia

(n = 1)
Europe
(n = 2)

Latin
America

(n = 6)

North
America

(n = 2)

Near East
(n = 2)

All Cases
(n = 53)

SINGLE-FACTOR
B 0 1 0 0 0 0 0 1
D 1 0 0 0 0 0 0 1

TWO FACTORS
B, I 0 1 0 0 0 0 0 1
D, S 2 1 0 0 0 0 0 3
B, D 1 0 0 0 0 0 0 1

THREE FACTORS
D, S, T 0 0 0 1 0 0 0 1
B, D, G 0 1 0 0 0 0 0 1
I, S, T 0 1 0 1 0 0 0 2
B, D, F 0 0 0 0 1 0 0 1
D, F, S 1 0 0 0 0 0 1 2
B, D, T 0 1 0 0 1 0 0 2
B, S, T 0 1 0 0 0 0 0 1
D, G, S 1 0 0 0 0 0 0 1
B, D, S 1 0 0 0 1 0 0 2

FOUR FACTORS
B, D, F, S 3 2 0 0 0 0 1 6
B, D, F, G 1 0 0 0 0 0 0 1
B, D, I, S 0 0 0 0 0 1 0 1
D, G, I, S 0 1 0 0 0 0 0 1
D, G, S, T 0 1 0 0 0 0 0 1
B, F, G, S 0 1 0 0 0 0 0 1
D, F, I, S 0 1 0 0 0 0 0 1
D, F, S, T 0 0 1 0 1 0 0 2
B, D, G, T 0 1 0 0 0 0 0 1
D, F, G, S 1 1 0 0 1 0 0 3

FIVE FACTORS
B, D, G, I, S 0 1 0 0 0 0 0 1
B, D, F, I, S 2 2 0 0 0 1 0 5
B, D, F, G, S 2 0 0 0 1 0 0 3
B, D, G, S, T 0 1 0 0 0 0 0 1
B, F, G, I, S 0 1 0 0 0 0 0 1

B, D, F, G, T 1 0 0 0 0 0 0 1

SIX FACTORS
B, D, F, G, I, S 3 0 0 0 0 0 0 3

TOTAL CASES 20 20 1 2 6 2 2 53

B = Biophysical; D = Demographic; F = Farm Enterprise; G = Geographic; I = Institutional; S = Social Capital;
T = Technology-specific.

Additionally, the CA biplot between the study regions and set of causal factors
(Figure 13) was also prepared to visually identify and understand these regional vari-
ations. In this symmetric scatterplot, component 0 was represented by the horizontal axis
and component 1 by the vertical axis. Together both the components explained about
45.68% of the variance/inertia in this dataset. Europe had high positive values along
component 0 (horizontal axis), while Australia had high positive values along the vertical
axis. Similarly, North America had high negative values and low positive values along
vertical and horizontal axis, respectively. Moreover, from just visually inspecting this
biplot it was evident that the set of factors influencing irrigation adoption (of farmers) in
cases from Europe, Australia and North America were very different from each other as
they were placed in separate quadrants and were also far from the origin. Australia and
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Latin America study regions were placed in the same quadrant and thus, shared similar
profiles, i.e., within both these regions similar combination of causal factors was observed
as compared to say Europe or other regions (see Table 8 for more details). Further, the map
also revealed that irrigation adoption by farmers from case studies in Europe was explained
by a combination of only demographic, social capital, institutional, and technology-specific
attributes. Whereas in case of North America, the strongest association was seen with
factors like demographic, social capital, farm enterprise, institutional and biophysical.

 
Figure 13. 2-D Correspondence Analysis biplot of Study Regions and Factors affecting Irrigation
Adoption.

4. Discussion

In this paper, we explored the geographic contexts where irrigation adoption studies
were conducted and the set of causal factors that were reportedly associated with irrigation
adoption decisions. Based on the results of the systematic review, our first hypothesis
held true. That is, the geographic contexts in which irrigation adoption studies were often
conducted were biased. Geographic regions with less than 1% area equipped for irrigation,
very low (less than 0.2%) and high (above 0.8%) percent of cropland, low market accessibil-
ity index (less than 0.1), and average annual precipitation with less than 463 mm/year and
greater than 1219 mm/year, were highly underrepresented in this collection of case studies.
In other words, these case studies were significantly biased toward areas where at least
some amount of irrigation was already being practiced. An explanation for this bias towards
irrigated areas could be that the research was motivated by the need to identify challenges
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and/or opportunities associated with further expansion. Additionally, low cropland areas
were also understudied, because research might have been focused more on areas having a
moderate or higher amount of cropland cover to encourage further agricultural growth
and development. Usually, farmers in areas with a high percentage of cropland cover,
because of the limited scope for further (land) expansion, are more likely be using intensive
agricultural practices (like irrigation) to increase their crop productivity, hence the focus
was towards areas with moderate amount of cropland. Further, highly accessible regions
were over-represented in this collection, because research is often conducted in locations
(and with communities) that are easily accessible (or reachable) as compared to remote or
hard to reach locations [105]. There is also evidence that farmers with greater market access
had stronger incentives to adopt irrigation for market production [106]. Hence, regions with
low market accessibility were understudied and accordingly underrepresented. Similarly,
regions with low and high average annual rainfall were also underrepresented and this
might be due to the overall ‘unsuitability’ of this technology within these regions. For
instance, if a region receives abundant rainfall, farmers might have a natural inclination
to rely on rainfall for agricultural activities rather than investing in new technology, as
irrigation is generally a substitute for rainwater [107]. For regions with low average annual
rainfall, although irrigation technology can be very useful nevertheless, reliable access to
water might hinder its widespread diffusion and subsequent adoption [108].

The second hypothesis that we tested in this paper held partially true as only the
Demographic category of factors was observed as the most common among all the case
study regions. This indicated that demographic factors such as a farmer’s age, gender,
household assets, income diversification options, and perceptions toward climate change
(see Figure 3 for a complete list), significantly affected farmers’ decisions to adopt (or
not) irrigation irrespective of the geographic context. However, some distinct regional
variations were also seen. For instance, studies from North America explained irrigation
adoption behavior of farmers using a combination of only demographic, biophysical, social
capital, farm-enterprise, and institutional factors. Factors related to place or technology did
not feature in the case studies from this region. Similarly, for cases from Near East, only
categories of factors such as demographic, farm enterprise, biophysical and social capital
were observed. Both institutional and technology related factors were least observed among
all these case studies. Further, the highest frequency was of the cluster with Biophysical,
Demographic, Farm Enterprise, and Social Capital factors (B, D, F, S), followed by the
cluster with Biophysical, Demographic, Farm Enterprise, Institutional, and Social Capital
factors (B, D, F, I, S), suggesting that irrigation adoption decisions around the world are best
explained by the combination of multiple and coupled factors instead of a single variable.

Moreover, majority of the case studies in this collection were from geographic regions
of Asia and Africa and were clustered with a greater (and often similar) number of factors
as compared to the rest. This suggests that some common challenges might possibly exist
with regard to irrigation technology diffusion and adoption within these regions, even
though the study sites within these regions (See Appendix A for more information on study
locations) were different from each other in many other aspects beyond just percentage of
irrigation or average annual precipitation (national wealth, population densities, etc.). A
recent study on understanding sustainability challenges in three different rural landscapes,
namely, Australia, central Romania, and southwestern Ethiopia, found similarities among
these three different social-ecological systems, even though the systems examined appear
to be very different on the surface [109], thus, highlighting the need for a comprehensive
analysis to identify and better comprehend such common challenges.

Although a nearly similar set of factors were observed from case studies of Asia and
Africa, many of the study sites from Africa with little to no irrigation (less than 1%) were
understudied, while all those from Asia were over-studied and hence over-represented in
this collection (Figure 12). One explanation for this research bias could be that the farmers
in the study sites within Africa might still be in their early adoption phase. Given the
low percentage of irrigated areas, one can argue that in these sites only a few individuals
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are taking the risk of investing in this technology. Moreover, this technology might not
have been completely diffused within these sub-regions of Africa (east, west, and south),
and as a result, this topic might be highly understudied within these sites because there
is first a need to properly introduce this technology to the people, make them aware of
its use and benefits, and only then can the adoption process be studied. Furthermore,
based on the results of the frequency analysis, institutional and social capital related factors
were most commonly observed in cases from this study region compared to others. These
categories include factors like access to informational services, credit facilities, extension
services, skill development programs, supporting policies, incentives, and subsidies. A
study by Wozniak (1987) [110] highlighted the important role played by education and
information on the new technology, particularly for early adoption. Another study by
Diederen et al. (2003) [111] presented empirical evidence for explaining the differences in
adoption behavior of innovators, early adopters, and laggards. Their findings suggested
that innovators (~first or early users of technology) made more use of external sources
of information. In a more recent study on the adoption of improved seed varieties by
farmers in Ethiopia, the findings suggested that farmers’ awareness about the available
seed varieties is an important factor for the actual adoption to take place [112]. Teha
& Jianjun (2021) [113] in their study on the adoption of small-scale irrigation found that
‘government promotion’ in the form of incentives and training positively affected a farmer’s
irrigation adoption decision. Thus, some kind of external support like extension and credit
services are vital for farmers for enhancing the diffusion and adaptation of successful
technologies and practices [114,115]. With limited information and support, a farmer’s
decision-making is primarily based on intuition and can be less efficient [116].

However, the results of this meta-study are limited in scope, since only peer-reviewed
research articles that were available in the English language, in the two selected databases,
and published on and after the year 2000 were considered for this analysis. Such a restriction
on the publication date was imposed because the global irrigation dataset used in this
analysis is based on the nationally reported statistics from around the year 2000. Further
only articles that investigated the factors associated with irrigation adoption were selected
for this analysis irrespective of the theoretical frameworks applied to examine a farmer’s
adoption behavior. Due to this, certain factors might be emphasized more than others.
For instance, a social network analysis approach was used to assess the barriers to climate
change adaptations in Spain [117]. Because of the specific framework used in this study, the
barriers identified were mostly categorized within social capital and institutional categories
(see Appendix A for study details). Similarly, another case study from Nepal, used risk
perception and motivation theory to understand farmers preparedness to cope with the
impacts of climate-change hazards [118], and as a result, only the factors characterized
as demographic were identified from this case study. Moreover, conference proceedings
and grey literature were also excluded from the dataset due to inconsistent methodology
and results reporting. Such sources may have contained useful and unique insights, but
issues of comparability with information gathered from peer-reviewed would have unduly
complicated the analysis.

Despite the limitations mentioned above, the global representativeness analysis high-
lights the multiple (geographic) biases that exist with respect to studying farmers’ irrigation
adoption decision-making. More research on this topic is being conducted in regions that
have little to high percentage of irrigation (>1%), are readily accessible, receive moderate
amounts of average annual rainfall, and have moderate amounts of cropland cover. These
results suggest the need to expand research efforts, particularly in areas with low irrigation
and cropland cover to identify constraints to and help accelerate economic growth, poverty
reduction, and food and livelihood security for rural communities in these regions.

5. Conclusions

Food production is still risky in many parts of the world, particularly in Sub-Saharan
Africa, due to limited information about changing weather patterns, market access and
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demands, and unequal access to efficient technologies [116]. Additionally, this pressure on
our global food systems will only intensify in the coming years with not only the changing
consumption patterns but with the changing climatic conditions as well. For example, yield
declines resulting from climate change (e.g., higher temperatures, increased seasonality,
more frequent and severe hydroclimate events) have already occurred [119] and are ex-
pected to decrease the production of global consumable food calories by another 1% to 7%
by the end of the century [120]. Irrigation currently remains one of the most critical inputs to
farming today and is a key adaptation to variable precipitation and droughts resulting from
changing climatic conditions [38]. New investments in irrigation infrastructure together
with improved water management practices can not only minimize the impact of water
scarcity but can also aid in meeting the water demands for global food production [121].
Further, managing and improving irrigation efficiency will, in turn, support global water,
food, and energy goals [122]. Therefore, understanding the diverse reasons, motivations,
and/or factors underlying the choices of producers regarding its adoption (or rejection),
especially when climate change demands some kind of adaptation in unprecedented areas,
will help better anticipate future food, energy, and water demands [123].

There is still much room left for improvements in both agricultural practices and
water-use efficiency, but farmers’ reluctance to adopt new technologies needs to be better
understood if such sustainability targets are to be achieved [72], and societal resilience must
be built to mitigate the impacts of future climatic changes [11]. In this study, we identified
multiple geographic biases that exist with respect to studying farmers’ irrigation adoption
decision-making, thus, suggesting the need for extensive research even in areas with no
irrigation and/or low cropland cover to identify opportunities for the implementation of
other sustainable solutions to support agricultural development in these areas. Moreover,
apart from these biases, some commonalities were observed in terms of constraints faced by
farmers regarding irrigation technology adoption across different geographic landscapes.
However, our findings also indicated that there may not be a ‘standard set’ of factors for
understanding irrigation adoption, and nuances in the local context are just as important to
identify as commonalities across settings. This suggests the need for more geographically
comprehensive analyses that would enable comparative analysis of different landscapes, as
well as studies that delve into the adoption process beyond individual technology adoption
behaviors. Further, this kind of systems analysis will help unravel common challenges,
drivers, and opportunities regarding agriculture development under changing climatic
conditions across multiple systems, while also being attentive to local context offers the
potential for co-learning [109,124].
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Abstract: This study explores the impacts of climate change on the major components of the water
balance such as surface runoff (Q), water yield (WY), and evapotranspiration (ET) in the Central Rift
Valley Basin (CRVB) in Ethiopia. Projected climate data from the climate emission scenarios were
used for the analyses. Representative concentration pathway (RCP) data from the MIROC-RCA4
ensemble driving climate models were downscaled, bias-corrected, and applied for impact analyses.
Climate scenario analyses for the near-term (2031–2060) and long-term (2070–2099) periods were used
to assess the conditions of the water balance components. The endo hydrogenic CRVB was divided
into three sub-basins, and their respective hydroclimatic impacts were simulated separately with
calibrated Arc-SWAT models. The future impacts simulated on the annual average basis vary in their
maximum ranges from −65.2% to +85.8% in Q, from −42.2% to +23.9% in WY, and from −4.1% to
+17.3% in ET compared to the baseline data outputs in the individual sub-basin. Water management
options according to the water balance sensitivities to the climate impacts were proposed for each of
the sub-basins. SWAT-based studies aimed at balanced water resources management in combination
with agricultural practices within the CRVB are recommended for future research.

Keywords: Arc-SWAT; climate change; climate scenario; water balance sensitivity; water management

1. Introduction

Sub-Saharan Africa is a region that is very sensitive to, and is highly affected by
recurrent droughts, flooding, and untimely weather conditions. Floods and droughts have
affected water supplies and have set a challenge for water management. At the same time,
water management practices in these developing regions are not adequate for dealing with
the challenges of significant changes in climate [1–4]. Increasing pressure on land and
water resources due to population growth and human activities have also resulted in the
degradation of vulnerable ecosystems and in reduced biodiversity [4–6]. Moreover, this
degradation of ecosystems hinders the potential use of ecosystem services [7].

In addition, climate change is a driver of many societal and environmental problems
of the 21st century [8,9]. Together with the impacts of population growth, it puts pressure
on the management of natural resources such as water resources [5,10]. It can also alter the
hydrological cycle, resulting in large-scale impacts on water availability. These impacts
could be temporal or become permanent. Climate change can also affect the temporal
conditions of the water balances [11]. Water balances are components of the water cycle
that exist at different scales and in different conditions in each locality. They are highly
affected by the state of the environment and by the climate. Climate change highly affects
the water balance conditions both spatially and temporally at the local or regional scale. For
instance, Africa is vulnerable to inter-annual climate variations due to the El-Niño southern
oscillations [12,13]. To evaluate the conditions of water resources in a basin or region, it
is essential to know the water balance conditions under certain circumstances. The water
balance components may vary due to different spatial and temporal aggregations, reference
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periods, and climate change impacts, as well as the interventions of humans for the purpose
of water use [14].

Climate change refers to changes in conditions such as temperature and rainfall over
long periods of time in a region. It has been caused by the increasing concentration of
greenhouse gases (GHGs) in the atmosphere since the pre-industrial era. The Intergovern-
mental Panel on Climate Change (IPCC) concluded that more than 90% of the accelerated
warming of the past five decades has been caused by the industrial release of GHGs such
as CO2 into the atmosphere [15].

In the CRVB, there are high levels of rainfall variability, water scarcity, and weather
variability, and it is a place where water resources planning and management are greatly
challenged by the impacts of climate change [16]. For example, an increase in temperature
and variability in rainfall affected the seasonal and total water supply and led to the
occurrence of extreme hydrological events [17]. It is therefore essential to know the trend of
climate change over a long period of time to manage possible extreme hydrological events,
either droughts or flooding, in the region [15,18–20].

A climate impact study can also provide a reliable basis for water resources plan-
ning [21]. Nowadays, long-term water resources planning studies need to take into consid-
eration ongoing and future global climate changes in order to curb the uncertainties in the
management of water resources [22]. In such studies, the effects of climate change must be
quantified with high spatial and temporal resolutions at basin scale [1,23–25].

Various studies have been carried out on the water resources of the Central Rift
Valley Basin (CRVB) in an attempt to describe and evaluate the impact of climate change
on existing water resources [16,26–30]. However, only a few of these studies have been
aimed at analyzing the impacts of climate change based on various regional concentration
pathway (RCP) simulations in different climate scenarios to evaluate the conditions of
the components of the water balance in the sub-basins. For example, in Ethiopia, Legesse
et al. (2003) used the Precipitation Runoff Modeling System (PRMS) model to simulate
runoff, and they predicted a 30% decrease in runoff in response to a 10% decrease in
the amount of precipitation [26,31]. A 1.5 ◦C increase in temperature resulted in a 15%
decrease in runoff [32]. Similarly, it was indicated that a higher temperature leads to an
increase in evaporation rates, reductions in stream flow, and an increase in the frequency
of droughts [28]. In addition, a vast number of studies have been conducted to analyze
the impacts of climate change on crop productions [17,18,33–35]. However, very little
consideration has been given to the potential impact of climate change on the current
and future water balance components in the region and on their management methods.
Therefore, a deep understanding of the effects of climate change on the components of the
water balance for identifying site-specific climate-smart agricultural water management
measures is necessary. In this context, the findings of this study can contribute the input
information for the purpose of agricultural water management in the CRVB to adapt to the
impacts of climate change.

An analysis of the impact of climate change on the components of the water balance
involves hydrological models and projected plausible future climate change variables from
global circulation models (GCMs) [23,36–38]. The GCMs determine the effects of changing
concentrations of greenhouse gases on global climate variables such as temperature, rainfall,
evapotranspiration, humidity, and wind speed [38]. Similarly, global circulation models that
predict long-term climate trends (rainfall, temperature, and humidity) are often unsuitable
for regional scale studies because of their coarse grid-size resolution. It is therefore essential
to downscale GCM data to the region-specific climate impact through the use of statistical
or dynamical downscaling techniques [38,39].

Various hydrological models can be applied to analyze the impacts of changes in the
climate [10]. These models investigate the degree to which observed changes in climate may
affect the resources due to natural variability, human activity, or a combination of both [40].
The results and projections produced by such models provide essential information for
making decisions of local, regional, and national importance on matters such as water
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resources management, agriculture, transportation, and urban planning [41]. However,
hydrological models need to be calibrated to site-specific conditions before they are used
for climate change impact analyses [22].

The general procedure for assessing the impacts of climate change on water resources
and on watershed processes can be determined by physically-based distributed models.
Due to its wider applicability and utility, different versions of SWAT have been used
for several studies throughout the world [38]. SWAT has been used for hydrological
modeling, soil erosion and sediment transport modeling, climate impact studies on stream
flows, and modeling land use change and management impacts on sediment and stream
flows. It can also be used for nutrient transport modeling in agricultural fields [38]. These
studies have confirmed the successful use of the SWAT model across different watersheds
on different scales and across different environmental, climatological, and hydrologic
conditions [36,42,43].

The study presented here is therefore aimed at analyzing the impacts of climate
change according to the regional RCP scenarios on the water balance components of the
CRV sub-basins in Ethiopia. The results of the SWAT models integrating CMhyd, WGEN,
and SWAT-CUP software packages, were used to identify possible sub-basin-wide water
management options.

2. Materials and Methods

2.1. Description of the Study Location

The Central Rift Valley Basin (CRVB) is in Ethiopia between 38◦15′ E and 39◦30′ E
longitude and 7◦10′ N and 8◦30′ N latitude, (Figure 1). It covers an area of approximately
9112.5 km2. It is a hydrologically closed lakes region with no known outlets for its total
basin [27]. The study basin is a vast closed area and thus was divided into smaller sub-
basins with known outlets (Ketar, Meki, and Shalla sub-basins).

 

Figure 1. Location of Ethiopia in Africa, and the major river basins (bottom left); location of the study
area within Ethiopia (top left), and the study sub-basins with their major stream outlets.

The mean annual rainfall of the study area varies between 600 mm near the lakes
and 1200 mm–1600 mm in the highlands. The average minimum temperature is 10.5 ◦C,
while the average maximum temperature is 24.3 ◦C [16]. CRVB comprises four major lakes:
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Ziway, Shalla, Abiyata, and Langano. It also has perennial rivers, which include the Meki,
the Ketar, and the Jidu rivers [16].

The CRVB has diverse soil types. It has varying infiltrability and associated runoff
potential. Coarse-textured soils (LT Leptosols) with high infiltrability are dominant in
the eastern and western highlands and in the valley floor around the lakes. Medium-
textured soils (Euvertisols) with moderate infiltrability dominate the eastern and western
mid-altitudes of the CRVB, whereas the lower reaches of the western highlands and some
places in the central part of the eastern CRVB are dominated by fine-textured black soils
(Vertisols) with lower infiltrability (Figure 2) [19].

Figure 2. Distributions of land use, soil, slope, and elevation ranges in the CRVB (Note: the land use
and soil codes are according to the SWAT classification standard as indicated in Tables S1 and S3 in
the Supplementary File).

2.2. Sub-Basin Selection Methods (Boundary Delineation)

The hydrologically closed CRVB comprises many sub-basins. It was delineated and
subdivided into major sub-basins in GIS according to their river systems, using the outlet
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points [16] as indicated in Figures 1 and 3. The DEM data were delineated in Arc SWAT
and with the spatial analyst tool in ArcGIS. The total area of CRVB was delineated based
on the watershed boundaries or water divide lines obtained from the Ministry of Water
Resources of Ethiopia. The CRVB is an endo hydrogenic basin [27]. Since there is no single
outlet for the CRVB, this study aims to investigate the hydroclimatic impacts via its major
sub-basins with monitored outlets (Ketar, Meki, and Shalla). The selected sub-basins form
parts of the CRVB with different characteristics which, when summed up, can generally
characterize the climate impact conditions of the CRVB. The sub-basins were selected based
on differences in agroecology, microclimate, and socio-environmental interactions. The
analyses were performed for each of the sub-basins separately. The outlet locations of each
sub-basin are indicated in Figures 1 and 3.

Figure 3. Locations of meteorology stations (Meteorology STN), CORDEX grid point (CORDEX STN),
and outlets (Discharge monitoring stations).

2.3. Data Definition
2.3.1. Spatial Data

The spatial data used for the modeling were analyzed step-by-step. Initially, the
digital elevation model (DEM) data of the CRVB was delineated with GIS into Ketar,
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Meki, and Shalla. They were divided into sub-basins based on the topography and the
river systems. Each sub-basin was consequently subdivided into hydraulic response units
(HRUs) according to the land-use features, soil profile, and slope within SWAT. The major
data inputs and their utilization are indicated in Table 1. The land uses characterize the
hydrological process in the sub-basins. The land use map of the CRVB was obtained from
the Ethiopian Geospatial and Information Institute (GSII).

The soil hydro-physical properties determine the existence and the quantity of each
component of the water balance [44]. The soil physical properties and the area coverage
of each of the soil types were classified based on the SWAT classification standards. The
digitalized soil data for the study region with a resolution of 1ha was obtained from the
Ministry of Agriculture and Natural Resources (MANR) of Ethiopia. The details are in
the Supplementary File in Table S1. The spatial information maps of the study region
including land use information, distribution of soil types, slope, and elevation information
are indicated in Figure 2.

Table 1. Major input data used in the SWAT model.

Data

Type Format Source Year/scale Resolution Purpose

Weather data

Relative
humidity .xls NMA 1984–2010 Daily Analyze water balance (WB)

Rainfall .xls NMA 1984–2010 Daily Analyze rainfall trend and WB
Sunshine

hours .xls NMA 1984–2010 Daily Analyze WB and solar radiation

Temperature
(Max and Min) .xls NMA 1984–2010 Daily Analyze WB, and temp trend

Wind .xls NMA 1984–2010 Daily Analyze WB and wind trade

Spatial data
Land use .shp GSII 1996–2008 ha Model land use and runoff

Soil .shp MANR NA ha Determine soil hydrology group
DEM .tiff OBANR 2003–2008 30 m Analyze location data sets

Hydrology data River
Discharge .xls MW 1900–2010 Monthly

average
Analyze discharge trend, for

model calibration and sensitivity

Note: NMA—National Meteorological Agency, GSII—Geospatial and Information Institute, MANR—Ministry
of Agriculture and Natural Resources, OBANR—Oromia Bureau of Agriculture and Natural Resources,
MW—Ministry of Water Resources.

2.3.2. Climate Data

Daily data on minimum and maximum temperature, hours of sunshine, relative
humidity, wind speed, and precipitation from six meteorological stations, located in and
near the sub-basins, were introduced into the model to simulate the water balances of the
sub-basins (Table 1 and Figure 3). Hydrology data for stream flows were collected at the
outlets indicated for each sub-basin. The CORDEX grid locations in the study area, based
on which the climate data were downscaled and extracted, are also presented in Figure 3.
The coordinate locations of the meteorology stations are indicated in Supplementary File in
Table S2.

2.3.3. Baseline Data Processing with SWAT Weather Generator (SWAT-WGEN)

The weather data were statistically analyzed, and data qualities such as errors and
outliers were assessed and adjusted by the weather database generator software (SWAT-
WGEN). The data and their respective station coordinates (X, Y, and Z) were synchronized
by the SWAT-WGEN. As a result, the SWAT model recognized the spatial distribution of
the data supplied. SWAT-WGEN helps in statistical analyses, in data coding for SWAT use,
and for data gap analyses as well as for spatial interpolation of the missed datasets. Special
care was given to the input data within this study. The background data provided by the
authorities were carefully checked and missing data were supplied if available. The data
gaps in the collected baseline data were scattered, but on some days, they were sequential.
These sequential data gaps ranged from one to only ten days maximum for some stations.
The gaps were filled via interpolation by the software. These data gaps accounted for not
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more than 65 days out of the total 27 years per station, which is less than 0.66% of the
data items. Simple arithmetic means (taking the averages of the values of the data series
available before and after the missed data dates) were also applied to those stations where
the gaps were scattered and not sequential to restore the missing values.

2.4. Arc SWAT Application

Arc SWAT 2012 was used for the hydroclimatic impact assessment of the CRVB. Arc
SWAT 2012 is an Arc GIS extension program used for watershed modeling. The Soil and
Water Assessment Tool (SWAT) is a widely used model for analyzing the water balances of
a basin using long-term meteorological and spatial data of the area [45]. It is a physically-
based, deterministic, continuous, watershed-scale simulation model developed by the U.S.
Department of Agriculture—Agricultural Research Service (USDA) [45,46]. It is a model
written in Fortran to analyze mainly water, nutrient, and sediment conditions in large
basins and the behavior under climate changes [46]. It can also be applied to evaluate the
impacts of various human, environmental, and infrastructural management interventions
in basins. It involves systematic and interconnected spatial and weather data analyses to
evaluate the intended goal at each hydraulic response unit (HRU).

In the application of the model, the Penman–Monteith method for evapotranspiration,
the soil conservation service (SCS) curve number method for surface runoff determination,
and the variable storage method to simulate channel water routing are employed to analyze
the water balances.

The Water Balance Equations

In the analysis of the impacts of climate change on water balance components, the
model operates based on the water balance equation indicated in Arnold et al. (2011) which
is defined as:

SWt = SW0 +
t

∑
i
(Rdayi − Qsur fi − Eai − Wseepi − Qgwi) (1)

where SWt is soil water content (mm) at time t, SW0 is initial soil water content (mm), t is
simulation period (days), Rdayi is amount of precipitation on the i-th day (mm), Qsurfi is
amount of surface runoff on the i-th day (mm), Eai is amount of evapotranspiration on the
i-th day (mm), Wseepi is amount of water entering the vadose zone from the soil profile on
the i-th day (mm), and Qgwi is amount of base flow on the i-th day (mm) [45].

Moreover, one of the critical parameters that are evaluated for sustainable water
resource management of the study area is the water yield. The water yield is the aggregate
sum of water leaving the HRU and entering the principal channel during a time step [45].
The water yield within a basin is evaluated by the model based on Equation (2). Considering
the hydrological processes taking place continuously in the basin, the water yield, i.e., the
net amount of water flowing past a given point on a stream during a given period, can be
described by a basic model equation:

Wyld = Qsur + Qlat + Qgw − Tloss (2)

where Wyld is the water yield (mm), Qsur is the surface runoff (mm), Qlat is the contribution
of the lateral flow to the stream (mm), Qgw is the contribution of the groundwater to the
streamflow (mm), and Tloss is the transmission losses (mm) from the tributary in the HRU
by means of transmission through the bed.

2.5. Model Parameter Sensitivity Analysis

For a particular area of interest (CRVB), Arc-SWAT contains many hydrological pa-
rameters that need to be considered. However, not all the parameters may be contributing
significantly to the model output, and it is therefore necessary to identify the input param-
eters that are significant [46]. In addition, the heterogeneity of the area makes it difficult
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for all SWAT parameters to be monitored simultaneously. Calibration and validation are
required to identify the parameters to use for the specific area in a balanced way [47]. The
parameter sensitivity scale developed by Lenhart et al. (2002) was used to classify the
sensitivity of the parameters in the sub-basins [48]. It was scaled to the mean of index (I)
values (Table 2).

Table 2. Parameter sensitivity scale classes assigned in SWAT as adapted from Lenhart et al. (2002)
[48]).

Class Mean of Index (I) Category of Sensitivity

1 0 ≤ I ≤ 0.05 Small to negligible
2 0.05 ≤ I ≤ 0.2 Medium
3 0.2 ≤ I < 1 High
4 I ≥ 1 Very high

In addition, the most sensitive parameters used for stream flow analyses in the CRVB
were selected on the basis of a tropical nature environment review recommendations [49].
The sensitivity ranking of the parameters (mean of index) is defined through an analysis
of the values of the “t-stat” and “p-value” indexes in SWAT-CUP during calibration. The
“t-stat” values are the t statistics. The t statistic is a measure of how extreme a statistical
estimate is, and is calculated as:

t =
M − μ

Sm
(3)

Where t = t-stat, M = sample mean, μ = population mean and Sm = estimated standard
error. The identified sensitive parameters are indicated in Table 3 with their descriptions.

Table 3. The most sensitive SWAT parameters identified in the CRV sub-basins, and their descriptions.

Parameter Description

1 CN2 SCS runoff curve number
2 ALPHA_BF Base flow recession constant (days)
3 GW_DELAY Ground water delay time for recharging the aquifer (days)
4 GWQMN Water limit level in the aquifer for the occurrence of base flow (mm)
5 REVAPMN Water limit level in the aquifer for revap to occur (mm)
6 GW_REVAP Groundwater revap coefficient
7 ESCO Soil evaporation compensation factor
8 EPCO Plant uptake compensation factor
9 SURLAG Delay time of direct surface runoff (days)

10 SOL_AWC Available water capacity of the soil layer (mm mm−1)
11 SOL_K Saturated hydraulic conductivity of the soil (mm h−1)
12 CH_K2 Effective hydraulic conductivity of the main channel (mm h−1)
13 SOL_Z Depth from soil surface to the bottom of the layer (mm)
14 RCHRG_DP Deep aquifer percolation fraction
15 HRU_SLP Average slope steepness (m m−1)
16 BIOMIX Bio-mixing efficiency

2.6. Model Calibration and Validation

Calibration and validation of the SWAT models were carried out using SWAT-CUP, a
calibration uncertainty program for SWAT with the SUFI-2 algorithm, which is sequential
uncertainty fitting, version 2. The program performed calibration, validation, sensitivity
analysis (one at a time), and uncertainty analysis. In addition, the program links SUFI2,
GLUE, ParaSol, MCMC, and PSO algorithms to SWAT [50]. The models were calibrated
and validated using monitored stream flows from the outlets of the Ketar, Meki, and Jidu
(Shalla) Rivers. The outlet locations were set at the flow gauging stations. The models were
set to run for the baseline periods from 1984 to 2010 for each of the sub-basins (Ketar, Meki,
and Shalla).
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Calibration and validation help the model to resemble the study area in its operation
by adjusting the sensitive model parameters. In this study, the observed stream flow data
from 1990 to 2001, obtained from the Ministry of Water Resources of Ethiopia (MW), were
used for calibration, and data from 2004 to 2010 were used for validation. The models of
each of the sub-basins were calibrated and validated separately with their respective stream
flow data from each sub-basin outlet (Figure 4). During calibration, the data from the first
three years were kept as a warming-up period. These data allow the model to warm up,
initialize, and approach reasonable initial values of the state variable of the model [50].
The adjusting values, as modified by SWAT-CUP to fit the values of the parameters to
site-specific ranges, and the adjusting methods are presented in Table 4. The adjusting
methods are indicated in the prefix of the parameter (V_, R_, and A_) and they are described
in the table caption.

Table 4. Adjusting values and methods as adjusted by SWAT-CUP for the parameters.

Ketar Meki Shalla

Parameter Adjusting value Parameter Adjusting value Parameter Adjusting value

R__CN2.mgt −0.44 R__CN2.mgt −0.586 R__CN2.mgt −0.155
V__ALPHA_BF.gw 0.629 V__ALPHA_BF.gw 0.348 R__ALPHA_BF.gw −0.35
A__GW_DELAY.gw 12.251 A__GW_DELAY.gw −17.291 A__GW_DELAY.gw 3.283
A__GWQMN.gw 336.23 A__GWQMN.gw 109.676 A__GWQMN.gw −819.543
A__REVAPMN.gw 13.917 A__REVAPMN.gw −126.446 A__REVAPMN.gw 213.915
A__GW_REVAP.gw 0.0403 A__GW_REVAP.gw 0.143 V__GW_REVAP.gw 0.18
V__ESCO.bsn 0.98 V__ESCO.bsn 0.43 V__ESCO.bsn 0.412
V__EPCO.bsn 0.221 R__EPCO.bsn −0.662 V__EPCO.bsn 0.417
A__SURLAG.bsn 20.086 A__SURLAG.bsn 16.174 V__SURLAG.bsn 25.349
R__SOL_AWC(..).sol 1.29 R__SOL_AWC(..).sol 1.274 R__SOL_AWC(..).sol NA*
R__SOL_K(..).sol −0.661 R__SOL_K(..).sol 0.166 R__SOL_K(..).sol 0.149
V__CH_K2.rte 79.915 V__CH_K2.rte NA* A__CH_K2.rte −74.91
R__SOL_Z(..).sol 0.665 R__SOL_Z(..).sol NA* R__SOL_Z(..).sol NA*
R__RCHRG_DP.gw −0.122 V__RCHRG_DP.gw NA* V__RCHRG_DP.gw 0.093
R__HRU_SLP.hru NA* R__HRU_SLP.hru 0.783 R__HRU_SLP.hru NA*
R__BIOMIX.mgt NA* R__BIOMIX.mgt 0.205 R__BIOMIX.mgt NA*

Note: R = relative, the parameter will be multiplied by the relative value as follows: value* (1 + R); V = replace,
the parameter value will be replaced by the new values in the model; A = absolute, the parameter value will be
added to the values in the model as follows: value + A; NA* = unchanged default values in the model.

2.7. Model Performance Evaluations

Before applying for analysis, the models’ performances were assessed. Three main
statistical parameters were used to evaluate the performance of the models: the coefficient
of determination (R2), the Nash–Sutcliffe efficiency (NSE), and the percentage of bias
(PBIAS) [51]. R2 is calculated as :

R2 =

⎡
⎣ ∑N

i=1(Oi − O)(Si − S)

[∑N
i=0 (Oi − O)2]

0.5
[∑N

i=0 (Si − S)2]
0.5

⎤
⎦

2

(4)

R2 ranges from 0.0 to 1.0. A higher value of R2 indicates better performance of the
model. The formula for calculating NSE is:

NSE = 1 − ∑N
i=1 (Oi − Si)

2

∑N
i=1 (Oi − O)2 (5)

Nash–Sutcliffe Efficiency (NSE) is a normalized statistic, which measures the relative
magnitude of the residual variance in comparison with the variance of the measured data.
Like R2, the higher the value of NSE, the better the performance of the model. NSE indicates
the statistical relationship between simulated model values and observed values. It was
stated that the “values of NSE vary from −∞ to 1” [51,52].
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(a) 

 
(b) 

Figure 4. Calibration (a) and validation (b) results of the models for the CRV sub-basins.

500



Water 2023, 15, 18

PBIAS is calculated as:

PBIAS =
∑N

i=1( Si − Oi

)
∑N

i=1 Oi
× 100 (6)

PBIAS measures the average tendency of the simulated values to be larger or smaller
than their respective observed values. Positive PBIAS values indicate underestimation by
the model, and negative values indicate overestimation. From the general statistics, the
range within ±25% is acceptable [52].

In Equations (4)–(6), S is the mean of the simulated stream flows, O is the mean of the
observed stream flows, Si is the simulated stream flows, Oi is the observed stream flows,
and N is the number of observations.

2.8. The Climate Scenario Application and Analyses Methods
2.8.1. Climate Scenario Analyses Setting and Simulation

An Arc-SWAT-based modeling approach to analyzing the impacts of climate change in
the sub-basins of the CRV lakes region, and optimum agricultural water use and optimiza-
tion strategies with respect to the identified impacts were carried out. Separate modeling
for the selected sub-basins was performed. The climate scenarios (CSc) were set to analyze
the impacts of climate change on the components of the water balance in the near-term
(2031–2060) and in the long-term (2070–2099) periods for each of the regional concentration
pathway (RCP) emission scenarios. The emission scenarios are RCP2.6 (low emission
scenario), RCP4.5 (medium emission scenario), and RCP8.5 (high emission scenario). The
simulations were categorized into seven CSc analyses, including the baseline data as listed
in Table 5. The options for agricultural water use management are indicated based on the
resulting water balance components affected by the changes in climate for each sub-basin.

The climate data were downscaled, bias corrected, analyzed, and simulated in an
integrated manner with WGEN, CMhyd, and Arc SWAT. The WGEN software interlinks
station coordinates and elevations with their respective data. All data statistics, such as
average, standard deviation, mean, variance, etc., for each of the weather components
downscaled were calculated and synchronized to their respective stations with WGEN. Rain
Years, dew point, and other important variables useful for calculating the water balance
components were also calculated and generated in WGEN. Finally, these climate data were
imported into the SWAT models and simulated to see the changes in the components of the
water balance that are especially useful for surface water sources.

2.8.2. Data Downscaling

Climate data stored in the World Climate Research Program (WCRP) databases were
used. The data are from the experiments of CMIP5–RCP (RCP2.6-CMIP5, RCP4.5-CMIP5,
and RCP8.5-CMIP5). These data were derived by the MIROC-RCA4 ensemble driving
climate models under the GCM. The GCM data of these RCP data variables were region-
alized to the regional climate model (RCM) with the Coordinated Regional Downscaling
Experiment (CORDEX) for Africa, CORDEX-AFR-44. Both, historical data as well as the
data of RCP2.6, RCP4.5, and RCP8.5 were downscaled by RCA4 models. RCA4 is the fourth
version of the Rossby Center Regional Atmospheric model. It was originally developed by
the Swedish Meteorological and Hydrological Institute within the CORDEX initiative. It is
a dynamic downscaling method widely used with the CORDEX [23,53]. The downscaled
datasets were daily precipitation, daily maximum near-surface air temperature, daily mini-
mum near-surface air temperature, daily sunshine duration, near-surface relative humidity,
and near-surface wind speed for future periods from 2006 to 2100. The duration of daily
sunshine in units of seconds (s) was extracted from the model and adjusted to daily solar
radiation with the units of kilowatt per square meter (KW/M2) for SWAT use and to the
SWAT input data standard units using Angstrom techniques [54].
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2.8.3. Bias Correction

The data for precipitation and temperature were bias-corrected via linear scaling
methods with CMhyd software, which is a SWAT community tool, before they were
applied in the SWAT simulation. The need for bias correction is mainly due to onshore and
offshore trade wind disturbances. The historical data from the model and the observed
locational dataset from six stations in the study region were applied to the software. Data
ranges from 1990 to 2006 were applied from the historical dataset of the climate model.
Furthermore, observed datasets from the same periods were used to correct the biasedness
created due to trade winds in the climate models. Parameters or correction factors for each
month were developed in relation to the observed data range of the same time periods.
Based on the parameters, the software adjusted the predicted rainfall and temperature
values from the downscaled data. The corrected data values were applied to WGEN for
statistical analyses and then to SWAT for simulation.

Table 5. Applied climate scenarios for analyzing the impacts of climate change on the major compo-
nents of the water balance in the sub-basins.

Climate Scenario

No. Code Description (Years)

1 NT-RCP2.6 RCP2.6 (2031–2060)
2 LT- RCP2.6 RCP2.6 (2070–2099)
3 NT-RCP4.5 RCP4.5 (2031–2060)
4 LT- RCP4.5 RCP4.5 (2070–2099)
5 NT-RCP8.5 RCP8.5 (2031–2060)
6 LT-RCP8.5 RCP8.5 (2070–2099)
7 BD Observed baseline data (1984–2010)

Note: NT = Near term and LT-Long term.

3. Results and Discussion

3.1. Results of the Model Parameters Sensitivity Analyses

The parameter sensitivity analyses were carried out together with the calibration
process, as it is necessary to include the flows estimated by SWAT and the monitored
flows in the sub-basins. In general, a higher “t-stat” and a lower p-value indicate that the
parameter is sensitive [55]. Based on the sensitivity scale developed by Lenhart et al. (2002),
shown in Table 2, the following parameters were identified as highly sensitive in the Ketar
sub-basin: EPCO, RCHRG_DP, SOL_K, GW_DELAY, CN2, REVAPMIN, and SURLAG.
Similarly, ESCO, REVAPMIN, GWQMN, HRU_SLP, and GW-DEALY were very highly
sensitive parameters in the Meki sub-basin, and ESCO, CH_K2, SOL_K, and GWQMN
were very highly sensitive in the Shalla sub-basin. The description of the parameters is
presented in Table 3. The differences in the sensitivity of the hydrological parameters in the
sub-basins indicate that the sub-basins are heterogeneous, although they refer to a single,
closed, lakes region. The differences are mainly due to land use, soil, hydrogeologic, and
anthropogenic variations. The t-stat values of each of the selected parameters for each
sub-basin are indicated in Table 6. The parameter description and their adjusting values
are indicated in Tables 3 and 4.

3.2. Results of the Calibration and Validation of the Model

The calibration results indicate good agreement between the simulated and observed
discharges in the sub-basins. The results for simulated and observed discharges in the
sub-basins were evaluated against R2, NSE, and PBIAS during calibration and validation.
The values in the Ketar sub-basin are in good agreement with R2 > 0.6, NSE > 0.5, and
PBIAS ≤ “±”25, (Figure 4a,b). Similarly, the results showed that the simulated and ob-
served monthly discharges were in a good agreement during calibration and validation for
the Meki and Shalla sub-basins (Table 7).
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Table 6. Sensitivity or mean of index I values of the selected parameters for the sub-basins, according
to their “t-stat” results as per the scale indicated in Table 2.

Ketar Meki Shalla

Parameter ** t-stat value Sensitivity t-stat value Sensitivity t-stat value Sensitivity

R__CN2.mgt 1.408 Very high −0.394 Negligible −0.111 Negligible
V__ALPHA_BF.gw 0.046 Low −0.997 Negligible −1.643 Negligible
A__GW_DELAY.gw 1.206 Very high 1.951 Very high −1.032 Negligible
A__GWQMN.gw 0.783 High 1.564 Very high 2.685 Very high
A__REVAPMN.gw 1.970 Very high 1.441 Very high −1.116 Negligible
A__GW_REVAP.gw 0.710 High 0.844 High NI* NI*
V__ESCO.bsn 0.905 High 1.181 Very high 1.739 Very high
V__EPCO.bsn 1.013 Very High −1.210 Negligible −1.513 Negligible
A__SURLAG.bsn 2.329 Very high −1.242 Negligible 0.744 High
R__SOL_AWC(..).sol −1.034 Negligible −3.957 Negligible NI* NI*
R__SOL_K(..).sol 1.202 Very high −1.417 Negligible 1.197 Very high
V__CH_K2.rte −0.551 Negligible NI* NI* 1.926 Very high
R__SOL_Z(..).sol NI* NI* NI* NI* NI* NI*
V__RCHRG_DP.gw 1.137 Very high NI* NI* −1.986 Negligible
R__HRU_SLP.hru NI* NI* 1.799 Very high 0.084 Low
R__BIOMIX.mgt NI* NI* 1.669 Very high 0.798 High

Note: NI* = not identified, ** Parameter description is presented in Table 3.

Table 7. Model performance statistics for the Ketar, Meki, and Shalla sub-basins.

Sub-Basin
Calibration Statistics Validation Statistics

R2 NSE PBIAS R2 NSE PBIAS

Ketar 0.61 0.54 −22.5 0.85 0.84 −2.6
Meki 0.64 0.63 −4.81 0.72 0.64 −32.17
Shalla 0.67 0.66 0.2 0.77 0.74 1.34

Overall model performance statistics (R2, NSE, and PBIAS) for the Ketar, Meki, and
Shalla sub-basins are presented in Table 7.

3.3. Climate Scenario Analyses Results and Discussion

The results of the impacts of climate change on the major components of the water
balance such as surface runoff (Q), water yield (WY), and evapotranspiration (ET) were
evaluated in terms of their annual, seasonal, and monthly variations. The Q, WY, and
ET were identified as the most sensitive elements of the water balance components in the
CRVB. The simulated impacts of the climate scenarios on the water balance components
are substantial. The percentage change in the Q, WY, and ET from their baseline simulated
outputs for each sub-basin are presented in Table 8, together with the indication of the
baseline annual rainfall data (averaged for years 1984–2010).

Table 8. The simulated mean annual changes, as a percentage, from the annual average values of the
baseline outputs for the major components of the water balance in the sub-basins.

Sub-Basins Ketar Meki Shalla

Annual average rainfall (mm) 798.1 674.4 713.4
Water balance components Q WY ET Q WY ET Q WY ET
Baseline annual average output (mm) 103.8 492.2 282.5 53.5 257.5 393.1 44.2 326.7 363.8

% of Δ
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Table 8. Cont.

Sub-Basins Ketar Meki Shalla

Scenarios

NT-RCP2.6 −62.2 −34.9 17.3 58.1 17.0 4.5 −3.5 0.9 12.2
LT-RCP2.6 −55.0 −30.3 13.3 60.2 19.9 2.6 31.6 12.0 9.3
NT-RCP4.5 −13.7 −35.9 −4.1 6.0 −1.1 5.6 −21.9 −10.1 9.2
LT-RCP4.5 22.9 −28.7 −9.4 47.7 11.2 2.6 32.8 4.2 7.8
NT-RCP8.5 −65.2 −42.2 7.4 58.3 13.0 6.4 −7.7 −2.4 10.8
LT-RCP8.5 −60.5 −39.7 8.8 85.8 23.9 9.4 23.5 7.1 15.1

Note: % of Δ = Percentage of change of the component from its baseline output.

3.3.1. Ketar Sub-Basin

The resulting simulated ET, WY, and Q mean monthly values for the Ketar sub-basin
are graphically displayed in Figure 5a. Changes in the Q pattern over the seasons in the
Ketar sub-basin can be observed in Figure 5a. The highest Q season has shifted both in the
near and long term of RCP4.5 to the months from March to May while it used to be between
mid-June to the end of September in the baseline data outputs. The simulated annual
variations from the base data are between −65.2% (LT-RCP8.5) and 22.9% (LT-RCP4.5).
RCP 2.6 and RCP 8.5 analyses indicate that the expected runoff will decrease both in the
near term and in the long term in relation to the baseline data simulation outputs. In all
the seasons, for all RCPs, the runoff condition in the long term (LT) is higher than the
runoff in the near-term (NT) period. However, the general trend indicates that the runoff is
decreasing in this sub-basin in relation to the historical (baseline) period, but the rate of its
reduction differs from one RCP to another and from one period to another.

In similar analyses, the WY in the Ketar sub-basin decreases for all RCPs, in both the
NT and LT periods, except in the long-term periods of RCP4.5 for the months from April
to June (Figure 5a). Generally, the impact is expected to reduce the WY in all projected
scenarios, especially for the periods from July to October. However, the rate of reduction
varies from RCP to RCP and varies from season to season. Nevertheless, the annual WY
generation capacity of the Ketar sub-basin is higher than in the Meki and Shalla sub-basins,
corresponding to the annual precipitation that is supplied. Almost half of the rainfall, 50%
on an average, goes to the WY in all the scenarios, while the proportion is about 40% in
the Meki sub-basin and about 44% in the Shalla sub-basin. The simulated WY in the RCPs
follows a similar pattern to the observed base year simulations. It means that the seasonal
change in WY is not disturbed in pattern but in quantity.

The ET in the sub-basin has bi-annual peaks between March and mid-May, and
between July and September (Figure 5a). The ET is relatively low between mid-May and
June. The rate of ET decreases between March and May in all the scenarios in relation to
the observed data simulations except between June and September. ET will be higher in
the Ketar sub-basin for RCP2.6 and RCP8.5, between June and September, than outputs
from the base data. The significant change in ET mainly reflects the increase in temperature.
Therefore, according to the RCP2.6 and RCP8.5 climate projections, the increase in ET
will be higher than the RCP4.5 projections for ET. This is in line with the works of Musie
et al. (2020) and Gadissa et al. (2019) in the Lake Ziway and CRV basins in Ethiopia,
respectively [21,33]. Musie et al. (2020) used the SWAT model to evaluate the impacts
of regional climate variabilities and land use change on the water resources in the Lake
Ziway basin. They found an increase in surface runoff and water yield due to the climate
scenarios from the year 2000 to 2017. Gadisa et al. (2019) used projected climate scenarios
to evaluate stream flows for the medium-term (2040 to 2070) periods for the RCP4.5 and
RCP8.5 scenarios.
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Figure 5. The simulated monthly distributions of Q, WY, and ET in the Ketar, Meki, and Shalla
sub-basins for the applied climate scenarios. (a) Ketar, (b) Meki, (c) Shalla.

The results reported in both studies, and in Getnet et al. (2014), in the CRVB indicated
that the hydrologic variations in water balance due to climate variability were highly
significant [20,27,32]. However, in contrast to the study by Musie et al. (2020) [20], the
hydroclimate in our study was more predominant in WY than ET in the Ketar sub-basin.
Another study conducted in the CRVB in 2007 on climate change impacts on water availabil-
ity with a SWAT model indicating an increase of averaged annual rainfall from 2001 to 2099
can also be found [56]. However, Gadissa et al. (2019) projected a reduction in precipitation
by 7.97% and 2.55% under RCP4.5 and RCP8.5 respectively for the future period from 2040
to 2070 [32]. Reduction in precipitation has strong correlation with reduction in water yield
and surface runoff. Our study is thus in line with the findings of Gadissa et al. (2019) [32]
with minimal differences in the periods of occurrences. There are seasonal shifts in the
pattern of occurrences of the components of the water balance when compared with the
baseline data sets. These shifts are mainly from the changes in precipitation, temperature,
and humidity patterns caused by greenhouse gases and other emissions.
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3.3.2. Meki Sub-Basin

The Meki sub-basin is characterized by greater annual amounts of ET than in the
Shalla and Ketar sub-basins. The annual surface runoff rises in all the RCP scenarios. There
will be a seasonal shift of the peak runoff period from the usual July-to-September period
to April-to-June in the sub-basin (Figure 5b). In the long-term periods of RCP2.6 and
RCP8.5, the runoff will increase greatly in relation to the baseline data simulation outputs.
However, RCP4.5 will create a moderate range of changes in relation to RCP2.6 and RCP8.5.
The change in annual average runoff varies from 6% to 85% in reference to the baseline
outputs. The projected monthly distribution shows that this water balance component
varies significantly over the months in both the NT and LT period.

The change in averaged annual WY ranges from −1.1% to +23.9% in relation to the
baseline data simulated. The scenario analysis also showed a remarkable increment in
the WY amount between May and October for all RCP outputs. ET is the major water
balance component of the sub-basin (Figure 5b). About 56% of the rainfall on average
turns into ET. This indicates that the sub-basin water balance is highly sensitive to changes
in temperature. Even though WY is good in the rainy seasons, most of it will be lost via
ETs. Thus, for the Meki sub-basin, the impacts were more predominant in ET than in
WY. This indicates the high seasonal weather variabilities in the sub-basin and its low
hydroclimatic impact resilience. Similar findings were reported by Gadissa et al. (2019) and
Musie et al. (2021) for this sub-basin. They used modeling approaches of RCM projections
to assess the conditions of the Q, ET, and stream flows using the SWAT and WEAP models,
respectively. In addition, Molla, (2014) has used physical assessment methods to indicate
the sub-basin climate conditions [16,17,36]. These studies reported that the Meki sub-basin
is the most hydroclimate-sensitive region. The strong weather variabilities in the sub-basin
have resulted in wide ranges of changes in water resources similar to the findings of another
study conducted by Getnet et al. (2014) in the CRVB [16,26,27]. The annual variations in
this study are also relatively large for the sub-basin (Table 8). The modeling results in this
study for the sub-basin are thus inconsistent with the above study findings.

3.3.3. Shalla Sub-Basin

The response of this sub-basin to the analysis in the model indicates a stronger range
of variations in its water balance components. However, the Shalla sub-basin has a lower
annual runoff amount than the Ketar and Meki sub-basins (Figure 5c). However, the
changes in annual runoff vary between −21.9% and +32.8% from the baseline data simula-
tion outputs. The average annual changes in WY vary from −10.1% to +12.0% because of
the impacts. The changes in ET vary from +7.8% to +15.1%. The detail annual variations
in percentage for each CSc and each component in each sub-basin are indicated in Table 8.
ET increases significantly between June and September for all RCP projections. ET is the
largest component, and most of the rainfall turns into ET. Because of the high ET and the
small runoff, the entire sub-basin is characterized as a water-scarce region. The WY result
for the Shalla sub-basin was moderate for all the CSc. Compared to other previous studies
(for example Ayenew, 2007; Gadissa, et. al., 2018), Shalla has small WY output, but in the
analyses conducted in this study, the sub-basin yielded a relatively higher amount [5,32].
The difference could possibly be due to its complex hydrogeologic setting that needs to be
verified in further studies. However, there is agreement on the fact that its surface water
availability will be depleted due to the high ET and the low Q occurrences.

The projected monthly average values of each of the water balance components in
each sub-basin with their respective baseline monthly average output values for each of
the scenarios are presented in Figure 6. It indicates that the hydroclimatic impacts in the
future in the CRVB are very high. The baseline data outputs are indicated with yellow rings
around their graphs.

506



Water 2023, 15, 18

 

Figure 6. Monthly average values of 30 years of surface runoff (Q), water yield (WY), and evapotran-
spiration (ET) in the Ketar, Meki, and Shalla sub-basins for different climate scenario simulations in
relation to the baseline data simulation outputs.

4. Discussion for Water Management Options

From the projected analyses of the impacts of climate change in the model, the major
water balance components such as surface runoff and water yield are mainly expected to
decrease, and evapotranspiration is projected to increase in the sub-basins. This will have
an impact on the increasing demands for agricultural water in the sub-basins. Seasonal
shifts in the patterns of the projected water balance distributions were also observed.
Therefore, water management strategies that help mitigate the impacts should be identified
and applied. Their application might help to face the food security challenge caused by the
water shortage that would occur due to climate changes.

Based on the resulting projected water balances, agricultural water management in
the Ketar sub-basin should, in the future, focus on the time modification of farm operations,
and on water harvesting to store excess water occurring in the unusual months. Scarcity of
water for agriculture is inevitable from the analyses (Figure 5a). Therefore, water saving,
and water use optimization must be sought and applied in the future. The WY is the major
water balance component of the Ketar sub-basin in all the scenarios, and its enhancement
together with conservation, will make the basin rich enough in water to curb the impacts
of climate change. In addition, irrigation water supply scheduling based on the modified
climate pattern is the recommended method of agricultural water management for the
Ketar sub-basin.

High water losses through ET in the Meki sub-basin can be mitigated by water manage-
ment interventions such as crop mulching, farm operations during minimum evaporation
seasons, favoring minimum tillage to reduce soil evaporation, selecting crops that are more
resistant to high levels of evaporation, favoring efficient irrigation water application, and
introducing regular soil and water conservation practices to reduce the high seasonal runoff
and ET. In the Meki sub-basin, water harvesting and storage during periods of high runoffs
can also reduce water scarcity during peaks in demand. High runoff management and
protection infrastructures are also inevitable as there will be untimely and repeated higher
runoff expected beyond the usual baseline trends, as per the analysis.

The high ET rates and low runoff makes the Shalla sub-basin a water-scarce region.
The water scarcity problem in the sub-basin should be mitigated by improving WY via
yield enhancement approaches that also help to reduce evaporation losses. These include
soil and water conservation to improve subsurface storage, crop selection, farm operation
scheduling based on the new climate pattern and minimum tillage to reduce soil evapora-
tion, and the selection of highly ET-resistant crop varieties. Investigating afforestation for
controlling ET losses, and controlled farm operations are also very crucial. Furthermore,
inter-basin water transfers are recommended for adapting to the impacts on the sub-basin.
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A study conducted by Kassie et al. (2015) applied an effective fertilizer with irrigation
water as an adaptation measure to climate change for the maize crop in the CRVB. The
study assessed the potential impacts of climate change on maize yield and explored specific
adaptation options under climate change scenarios for the CRVB of Ethiopia by mid-century.
They used GCM, RCPs, and crop models to search for adaptation options. The climate
change impacts in their study are consistent with our study results. Their adaptation option
offsets the severe impacts of yield loss in the area due to the climate impacts [34]. Thus,
the effective application of fertilizer while producing the maize crop in the region together
with irrigation water is crucial. In addition, the positive effects of changing the planting
date were indicated in their study in offsetting the severe climate impacts on the maize
crop [34].

Amare and Endalew (2016) assessed the importance of farm mechanization in rural
Ethiopia for smallholder farmers. In their assessment, they indicated that mechanized
farming helps in reducing water loss at the farms [57]. The study results showed that
water distribution efficiencies in irrigated farms have been improved in the study regions,
including the CRVB. This may be achieved by incorporating land use planning in a manner
that its water allocations and use efficiencies will improve, for instance, farm mechanization
and land leveling to minimize water loss and enhance even distribution [57]. Therefore,
extensive farm mechanization and land leveling works are recommended as a means to
improve water use and reduce its loss in the sub-basins’ irrigated farm fields. These will
help to increase the resilience capacity of the CRVB to the impacts of future climate changes.

Adaptation to climate impacts via water allocation planning based on weather, soil,
and ecological characteristics and social benefit priorities can also reduce the unnecessary
loss that may occur due to misallocation and weather variabilities. For instance, the
cropping pattern alternatives that favor better gain based on the rainfall patterns of the
rift valley region were adopted by some farmers, as indicated in the study conducted by
Belay et al. (2017) [2]. The farmers applied a method of using different crop varieties of
maize during long rainy seasons and during short rainy seasons. This has improved the gain
in the worst water shortage seasons in the region, as reported in [2]. Accordingly, preparing
alternative plans for seasonal climate change conditions for agricultural production, and for
water use plans that can mitigate the dual impacts of climate and environmental changes
while maximizing the benefits during the worst climate seasons are thus necessary. Hence,
the possible alternative plans and the locally adopted measures by the farmers should
be further assessed, tested, and applied in the worst seasons in the CRVB and in similar
regions in the country. The plans need to be based on reliable data and on studies carried
out for particular areas. This study aims to contribute to such a knowledge helping in the
creation process of such adaptation plans for the CRVB in Ethiopia.

In addition, Kifle and Gebretsadikan (2016), conducted an experiment on the controlled
application of irrigation water for potato production in the water-scarce region of Tigrai
in Ethiopia [58]. They found positive effects of controlled irrigation water applications on
potato production without losses for the deficit application of water with proper timing as
means to curb water shortage due to climate changes. One of the best adaptation options
for agricultural water uses in the sub-basins is thus the introduction of controlled irrigation
that applies the water resources efficiently and that applies only the required amount of
water at the proper time for effective use of the crops [58]. Controlled irrigation also helps
avoid seepage and salinity problems via water applications to the required depth [58].
In addition, selecting fast-growing, highly productive quality seeds will help to save the
resource for other economic and social uses. Controlled irrigation is thus recommended as
a mitigating strategy for water scarcity and for environmental challenges that would occur
due to the impacts of climate change and population growth.

For the CRVB, Musie et al., (2020) used SWAT models to assess the water conditions of
terminal lakes in the CRVB and water management adaptation options. They recommended
avoiding pollution of water sources and conserving the terminal lakes from pollution
damages, both from sedimentation and other environmental pollutants. Thus, controlling
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the water level of the lakes, avoiding water quality degradations due to industrial and
environmental wastes, and improving the storage capacity in the sub-basins will favor
better use of the resources during peaks in demand [20].

Climate-based integrated development and use plan for the utilization of water re-
sources according to its economic and social benefits, while safeguarding environmental
sustainability, should be further assessed, modeled, and applied for its equitable use in
equilibrium in the closed CRVB. Moreover, considering the response of the sub-basins to
hydroclimatic impact while planning water use is crucial.

5. Conclusions

This paper investigated the impacts of future climate change on the major compo-
nents of the water balance in the central rift valley basin in Ethiopia from the seasonal
and spatial points of view. The evaluations are based on the magnitude of water yield,
evapotranspiration, and surface runoff components change in relation to the baseline
data outputs. Regional climate models (RCM) data in CORDEX—Africa were applied
for the investigation. RCP data from the MIROC-RCA4 ensemble driving climate models
were downscaled, bias-corrected, and used for the analyses. The methodology followed
a calibrated Arc-SWAT modeling approach to search for basin-wide climate impacts on
water resources and to indicate possible agricultural water management and adaptation
strategies. The findings are solely based on model simulation outputs within the scope of
its evaluations and error limitations.

Accordingly, the study identified a general decrease in water yield and surface runoff
and a seasonal increase in evapotranspiration in the Ketar and Shalla sub-basins in both
the near-term (2031–2060) and long-term (2070–2099) periods in comparison to the baseline
period (1984–2010). However, all three water balance components projected were showing
an increment in the Meki sub-basin for all the periods. The sub-basins were also found to
be heterogeneous, and they showed variabilities in terms of their hydroclimatic reactions to
the impacts of climate change even though they are in one endo hydrogenic region. In the
sub-basins, some similarities were also found in the ways in which the pattern of the water
balance components will be changed. However, the magnitudes of the impacts varied from
sub-basin to sub-basin, between the RCPs, and between near-term and long-term periods
due to the projected climate changes. These indicate that each of the sub-basin has a unique
water balance environment.

The study also indicated the huge impacts of regional climate models (RCM) on
surface components of the regional water cycle. These RCMs are a derivative of the Global
Circulation Models (GCM).

The management interventions to mitigate the climate impacts should therefore be
carried out according to the sub-basin water balance sensitivities while keeping the equilib-
rium in the closed CRVB water requirements. Finally, an investigated integrated watershed,
agricultural water use, and farm management in the water–agriculture–land and climate
nexus approaches following each sub-basin’s climate responses, and other alternative
resource management options for the closed CRVB must be determined and applied to
cope with the hydroclimatic impacts.

The calibrated SWAT model has proved to be a useful tool for analyzing and iden-
tifying the temporal and spatial conditions of the water resources at a basin level under
different climate change conditions in the CRVB. Therefore, further studies dealing with
climate-based water resource management in combination with farming practices using
the SWAT model would bring additional benefits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15010018/s1, Table S1: Some physical properties of major soils
in the CRV sub-basins; Table S2: Location of meteorological stations used for the analysis of the
weather parameters in the CRVB; Table S3: SWAT land use code and their description.
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Abstract: Different dynamics of climate change, population growth, and urbanisation challenge
water service providers (WSPs) and those managing urban planning. The scientific community has
been evidencing the concept of sustainable urban water management (SUWM) as a driver to foster
the integration of the urban water cycle with its environmental, economic, and social sustainability
dimensions. This article studies the approaches addressed by recent research on sustainable urban
water management, focusing on the attention given by the scientific community to the way WSPs
and city planners address the new challenges brought by climate change. A systematic review of
existing literature shows how emergent challenges address the articulation between urban water
cycle management and city planning. The results underline the need for the technical and economic
evaluation of the overarching concept of SUWM systems, integrating values that go beyond financial
issues; the need to address water scarcity not only from the supply side but also from the demand
point of view; and the deepening of the relationship between new sources of water, such as the reuse,
with the city planning in a context of climate change. Nevertheless, strategies for collaboration are
still poorly addressed. The insights and gaps emerging from the analysis suggest new paths for
research and practice in the field.

Keywords: climate change; adaptation; sustainable urban water management; city planning; urban
planning; urban water management

1. Introduction

The world is rapidly urbanising. From 1950 to 2020, the population residing in cities
increased from 0.8 billion (29.6%) to 4.4 billion (56.2%), and recent projections point towards
it could reach 6.7 billion (68.4%) by 2050 [1].

The latest IPCC report highlights that global net anthropogenic GHG emissions in
2019 were 12% higher than in 2010 and 54% higher than in 1990 [2]. The implied global
emissions by 2030 exceed pathways consistent with 1.5 ◦C and are near the upper end of
the modelled pathways range, which keeps temperatures likely to limit warming to 2 ◦C [2].
In urban environments, observed climate changes impact human health, livelihoods, and
critical infrastructure systems, which will be increasingly vulnerable if their design does
not consider changing climate conditions [3].

Controlling greenhouse gas emissions and conserving dwindling water resources
while feeding and serving a growing population is, in fact, a daunting task [4].

Whilst in the last century, the population grew three times, water consumption in-
creased six times, following the average level of income, the evolution of habits, and a
different demand for food [5], increasingly dependent on water, which represents, on a
global average, about 70% of water consumption [6]. The area needed for irrigated agricul-
ture increased, and consequently, so did the water needed for its production, which in turn
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is a competitor of the water required for other uses, such as industry, hydroelectric power
production [7], and urban.

Furthermore, managing water resources, essential for human life, economic activities,
and ecosystem functioning faces enormous challenges in a changing climate. It is known
that water availability is not evenly distributed in the territory or in time [8]. The effects of
climate change, namely through extreme phenomena such as droughts or floods, make the
management process even more complex. Extreme hydrological events such as prolonged
droughts and floods are increasingly frequent, creating great uncertainty about cities’ water
security [9]. This context can compromise the objectives of the United Nations Sustainable
Development Goals (SDGs), especially the SDG11 Sustainable Cities and Communities and
the SDG6 Clean Water and Sanitation [10].

In the “excess of water” dimension, it can be seen [11] that urban areas are particularly
vulnerable to strong rainfall episodes due to their impermeable surfaces (such as roads,
parking lots, and roofs) that prevent rainwater infiltration and, consequently, increase
surface runoff and the risk of rain flooding [12]. Urban sprawl and a potential lack of water
storage capacity in rainfall peaks lead to an insufficient drainage capacity of the water
system, resulting in rain floods [12,13].

In the “water scarcity” dimension, i.e., when demand exceeds availability, the health
and wellbeing of citizens, the quality of the urban environment, and socio-economic
development are put at risk [8]. Related to the phenomena of scarcity due to climate change,
the adoption of water reuse or rainwater harvesting efforts is critical, especially when
considering urban development needs in warmer climates, the decline of water resources,
the difficulty of transporting water between basins, and efforts to increase sustainability in
urban planning and management [14–17].

On the one hand, water service providers need help with new problems concerning
adaptation to climate change and the simultaneously evolving context, such as population
growth, increasing urbanisation, and changes in consumption patterns [18,19]. On the other
hand, critical aspects of managing the supply/demand balance are related to the dynamics
of the territory and how the spatial planning and demography introduce new needs and
consumption patterns [20], as well as new threats. For example, spatial distribution and
consumption habits in the Barcelona region led to water consumption about ten times
higher in peripheral areas (typically houses with lawns) compared to the urban core area
with multifamily buildings [21]. Another challenge has to do with how these drivers
call land planning for new solutions that integrate not only the necessary resilience to
extreme drought and flood phenomena but also contribute to positive externalities at the
level, for example, of blue and green infrastructures, enabling a better urban environment
and improving the quality of life of populations [22–25]. Adapting cities to the effects of
climate change on the water cycle is, therefore, a pressing issue. This involves assessing
the adequacy of existing (often obsolete) infrastructures and their resizing and adaptation,
whether in terms of the asset or how it is operated. Given the complexity of these challenges
and the issues that must be addressed, including how and when they should be tackled, it
requires the involvement of different actors in urban planning and water governance as
well as risk management [26–28].

Entities responsible for managing the urban water cycle and associated social and
ecological needs (water services, regulators, legislators) are thus called upon to rethink their
decision-making processes [29]. However, they cannot act alone. The challenges of climate
change reinforce the importance of the interrelationship between the management of water
management services and the entities responsible for the planning and management of the
urban territory [20,30]. The relative location of the economic activities that consume/reject
water and the socio-economic relationships are aspects to consider for sound management
of water resources, considering the supply, demand, and sustainability of the entire urban
water cycle.

Faced with emerging water management challenges in cities, Marlow et al. ([31], p. 2)
propose the overarching concept of sustainable urban water management (SUWM) “as an
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aspiration, SUWM reflects a generalised goal to manage the urban water cycle to produce more
benefits than traditional approaches have delivered”. Hurlimann and Wilson ([30], p. 1) consider
that even if the concept of SUWM is not definitively enshrined, it “implies the consideration
of climate change and the inclusion of both supply and demand side initiatives”.

From what has been said, given the context of rapid change that is approaching,
reaching “sustainable urban water management” is necessary [30].

While several studies have covered different aspects of the relationship between
climate change, spatial planning, and the water cycle over the last few years, to our
knowledge, there has yet to be a study that identifies, catalogues, and integrates consoli-
dated expertise in these fields. Thus, this article aims to clarify and systematise existing
knowledge, to systematise learnings and gaps, and to point out approaches that need
further development. It undertakes a literature review focusing on two major questions:
(i) What are the main themes addressed by contemporary research on sustainable urban
water management? (ii) How is the scientific community addressing the collaboration
between water management and urban planning agencies, and how is the relationship
between climate change and the urban water cycle considered?

In this context, research and related dissemination become increasingly essential to
support decision makers, water service providers, and communities for more robust climate
change adaptation, infrastructure design, and operation in a potential new urban landscape.
The article is organised into five sections. Following this introduction, Section 2 describes
the methodology used to undertake the literature review. Section 3 presents the results, and
Section 4 discusses the findings, insights, and gaps. Section 5 presents the main conclusions.

2. Methodology

A systematic literature review was chosen to identify, analyse, and interpret all
the available research in this domain. This section describes the methodological pro-
cess to initiate the search and to collect, screen, and analyse selected papers from the
existing literature.

This review was conducted based on the Preferred Reporting Items for Systematic
Review and Meta-Analysis (PRISMA) guidelines to guarantee the review process’s repro-
ducibility, traceability, and transparency. The review’s objective is to find and analyse
scientific literature framing urban adaptation in the context of climate change and its ar-
ticulation with the urban water cycle and, with this, to respond to the research questions
previously presented. Chronologically these steps were followed:

(a) The search string used in this review was first initiated by selecting an initial list of
15 relevant articles based on the expertise of the authors in the field, which were also
chosen in the final set considered for analysis;

(b) Out of these articles, the first set of keywords was chosen and considered in the first
search. Next, several test searches were performed with alternative combinations be-
tween keywords and their variants. The results from the test searches were discussed
among the authors to refine the search strings until we were fully accomplished with
the capability of the string to detect as much of the initial set of relevant and related
publications as possible. The search strategy and results are presented in Table 1;

(c) Following this iterative strategy and after a series of test executions and reviews, which
led to the selection of articles considered to be more relevant, we obtained the selected
and unique set of search terms and keywords: climate change, sustainable urban
water management, urban planning, and city planning. This step led to identifying
328 articles (from an initial universe of 524 items, from which we excluded the non-
articles). The articles identified by the search engine were directly extracted into an
Excel file offered by Scopus;

(d) For the quality evaluation, that is, relevance to the response to the research questions,
the PRISMA tool was used for each article, providing an objective comparison between
the articles and their classification, which resulted in a universe of 39 articles;
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Table 1. Results of the combination of keywords in the iterative process.

Search Strategy for Scopus Conducted on 18 October 2022
Period: until 18 October 2022

Language: English
Document Type Limits: Scientific Articles in Journals

Search within the Title, Abstract, and Keywords

Iteration Query
Records

Retrieved

a (TITLE-ABS-KEY (climate AND change) AND TITLE-ABS-KEY
(urban AND planning) AND TITLE-ABS-KEY (water AND reuse)) 33

b (TITLE-ABS-KEY (climate AND change) AND TITLE-ABS-KEY
(water AND utilities) AND TITLE-ABS-KEY (municipalities)) 25

c
(TITLE-ABS-KEY (climate AND change) AND TITLE-ABS-KEY

(urban AND planning) AND TITLE-ABS-KEY
(water AND management))

867

d (TITLE-ABS-KEY (risk) AND TITLE-ABS-KEY (urban AND
planning) AND TITLE-ABS-KEY (water AND management)) 828

e (TITLE-ABS-KEY (climate AND change) AND TITLE-ABS-KEY
(sustainable AND urban AND water AND management)) 667

f

(TITLE-ABS-KEY (climate AND change) AND TITLE-ABS-KEY
(sustainable AND urban AND water AND management) AND

TITLE-ABS-KEY (urban AND planning) OR TITLE-ABS-KEY (city
AND planning))

328

The next step of filtering was performed to select additional relevant papers through the
snowballing process. This step added 40 other articles and reports to the 15 previously identified.

Figure 1 synthesises the screening process and the number of articles excluded from
the initial database and those that were added later. After concluding this screening process,
the resultant set of articles was extracted into a final Excel file.

 
Figure 1. Methodological flow diagram summarising the steps to retrieve the articles (PRISMA).

3. Results and Content-Based Analysis

This section analyses the content of the selected articles, searching for how water
service providers and urban planners respond to the challenges of climate change and
how they respond, when they do, together. The information obtained is systematised and
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integrated into figures and tables. The presentation of results is first concentrated on the
bibliometric analysis, then on the scientific literature, and finally on the grey literature.

3.1. Bibliometric Analysis

The evolution of articles published in recent years related to the selected keywords
is represented in Figure 2, which shows a very sharp growth and attests to the growing
scientific interest in the relationship between climate change, sustainable urban water
management, and urban planning.

Figure 2. Annual distribution of the number of articles after Scopus search for the selected keywords
and criteria. Figure source: Scopus.

The geographical distribution of articles and case studies, represented in Figure 3a,b,
shows a prevalence of the Netherlands, USA, Australia, China, and the UK, which confirms
the pancontinental nature of interest in this theme. That said, a joint analysis of those
figures also suggests that most of the articles focus on the authors’ territory, being the
majority from developed countries, which makes it possible to infer that underdeveloped
countries still need to be subject to such an in-depth analysis. The contribution of authors
from Israel and Singapore should also be underlined, especially considering the perspective
of the size of each of these countries, although it is known that these two countries are
among the ones that faced severe water scarcity.

  
(a) (b) 

Figure 3. (a) Geographical distribution of the articles considered in this article (1st author). Figure
source: Datawrapper; (b) Geographical distribution of the case studies considered in the article.
Figure source: Datawrapper.
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3.2. Concepts of Sustainable Water Management in Cities
3.2.1. From the Scientific Literature

With the concept of SUWM, some authors [31,32] associate decentralisation, resource
efficiency, and sustainability as critical factors. Also associated with this concept are
technical configurations, such as the collection and reuse of rainwater [33], “grey water”
recycling [34,35], design of “blue” and “green” infrastructures [36,37], and the optimisation
of water consumption by the final consumer [38]. Within the concept of SUWM, other
urban water cycle management concepts/frameworks are included, such as integrated
urban water management (IUWM), water-sensitive cities, low-impact development (LID),
sustainable urban drainage systems (SUDS), and Sponge Cities, to mention the most
relevant. Despite their complementarity, other innovative city concepts primarily based
on digital development and technology, such as those related to smart cities, will not
be studied here since water management, sustainability, and urban planning are not at
their core [39].

All these concepts, presented in Table 2, seek to respond to the new challenges by inte-
grating the management of water resources with the drivers that most affect their availability
and ecological status: climate change, population growth, and increasing urbanisation.

Table 2. Key sustainability concepts associated with water management and the new paradigms in
the 21st century.

Concept Definition Origin

Low-Impact
Development

(LID)
1977
[40]

- The original intent of LID was to achieve a ‘natural’
hydrology by use of site layout and integrated control
measures. Natural hydrology referred to a site’s balance of
pre-development runoff, infiltration, and evapotranspiration
volumes, achieved through a “functionally equivalent
hydrologic landscape” ([41], p. 3)

- The LID practice is an integrated watershed management
strategy, which provides natural retention, treatment, and
source protection capabilities.

- It utilises natural processes to capture, treat, absorb, and
infiltrate stormwater runoff that has increased in peak rate
and volume with more pollutant contents ([42], p. 1).

USA
New Zealand

(LIDUD)

Integrated
Urban Water
Management

(IUWM)
1995
[43]

- IUWM promotes a coordinated planning approach to drinking
water, wastewater, and stormwater services that takes into
consideration the broader implications of sustainable
development, including energy demand, greenhouse gas
emissions, solid waste generation, nutrient losses, life cycle
costs, and community acceptability ([44], p. 2)

- IUWM provides cities with a new framework for planning,
designing, and managing urban water systems. An IUWM
perspective enables all stakeholders to look at the urban water
system holistically, as an integrated, cooperative venture, and
together supply the capacity to predict the impacts of
interventions across broad resource management units. By
doing so, the framework facilitates the development of
innovative solutions for urban water management and the
prioritisation of resources ([45] p. 58).

-
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Table 2. Cont.

Concept Definition Origin

Water-
Sensitive

Urban Design
(WSUD)

1996
[46]

- Lloyd et al. ([47], p. 2) describe WSUD as a “philosophical
approach to urban planning and design that aims to minimise
the hydrological impacts of urban development on the
surrounding environment. Stormwater management is a
subset of WSUD directed at providing flood control, flow
management, water quality improvements and opportunities
to harvest stormwater to supplement mains water for
non-potable uses”.

- Water-sensitive urban design (WSUD) is supported by an
underlying value of providing urban water services in a
manner that considers the site-specific opportunities and
limitations of development to provide water services in a way
that protects and enhances local hydrological and ecological
integrity. WSUD considers all aspects of the urban water
cycle as a valuable resource. Incorporating WSUD in urban
developments can also improve resilience to reduced yield
from conventional water supply catchments due to potential
climate change impacts ([44], p. 2).

Australia

Sustainable
Urban

Drainage
Systems
(SUDS)

2000
[48]

- SUDS consist of a range of technologies and techniques used
to drain stormwater/surface water in a manner that is
(arguably) more sustainable than conventional solutions.
They are based on the philosophy of replicating, as closely as
possible, the natural pre-development drainage from a site,
consistent with the previously described principles behind
LID.

- Typically, SUDS are configured as a sequence of stormwater
practices and technologies that work together to form a
management train ([41], p. 5).

- ( . . . ) SUDS can improve the sustainable management of
water by replicating natural drainage patterns; reducing the
peak flows, volume, and frequency of flows into watercourses
from developed sites; removing pollutants from diffuse
pollutant sources; and increasing the potential for rainwater
harvesting. Consequently, SUDS can reduce downstream
flooding risks, improve water quality, recharge groundwater
and maintain base flows, reduce potable water demand, and
improve local amenities through the provision of public open
space and wildlife habitat ([23], p. 7).

UK

Sustainable
Urban Water
Management

(SUWM)
2008

[49,50]

- SUWM concepts can be considered the next step in this
co-evolution and reflect growing concerns over community
wellbeing (rather than just public health), ecological health,
and sustainable development, all of which can be collectively
labelled as ‘green’ issues ( . . . ) SUWM reflects a generalised
goal to manage the urban water cycle to produce more benefits
than traditional approaches have delivered ([31], p. 2).

- SUWM is advocated by an increasing number of scholars as
an alternative paradigm to traditional water infrastructure
and approaches, which can address the complex challenges
facing urban water management. ( . . . ) SUWM is an
umbrella concept that encapsulates the concepts of ‘integrated
urban water management’ and “water-sensitive urban
design” (WSUD) ([51], p. 1).

-
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Table 2. Cont.

Concept Definition Origin

Sponge City
2014
[52]

- The Sponge City concept aims to (i) adopt and develop LID
concepts, which improve effective control of urban peak runoff,
and to temporarily store, recycle, and purify stormwater; (ii)
upgrade the traditional drainage systems using more
flood-resilient infrastructure (e.g., construction of
underground water storage tanks and tunnels) and to increase
current drainage protection standards using LID systems to
offset peak discharges and reduce excess stormwater; and (iii)
to integrate natural water bodies (such as wetlands and lakes)
and encourage multi-functional objectives within drainage
design (such as enhancing ecosystem services) whilst
providing additional artificial water bodies and green spaces
to provide higher amenity value ([22], p. 2).

- ( . . . ) “sponge city” concept ( . . . ) represents a new urban
development mode that is intended to manage effectively
urban rainwater. This concept gives priority to protection and
remediation of natural environments in urban planning and
construction to ensure their ecosystem service function of
water conservation. “Sponge city” vividly describes an urban
environment that is devoted to finding ecologically suitable
alternatives to transform urban infrastructures into green
infrastructures so they could capture, control and reuse
precipitation in a useful, ecologically sound way ([53], p. 1).

China

3.2.2. From Grey Literature

The most structured recommendations in grey literature on how to address climate change
in the design of cities, their relationship to water, and in some cases with risk, have been
promoted through organisations such as the International Water Association (IWA (International
Water Association), 2016), the World Bank [26,54], or the United Nations [28], among others.
They are presented in the form of multi-stage frameworks that help build the response of
cities and territories to the challenges of climate change, particularly in water systems. The
methodologies and practices that stand out from the grey literature are shown in Table 3:

Table 3. Structured recommendations from grey literature.

Publication/
References

Main Recommendations
Case Studies

Referred to in the
Publications

United Nations
Educational,
Scientific and

Cultural
Organization
(UNESCO)

Climate Risk
Informed
Decision
Analysis
(CRIDA)

[28]

Publication extract: “( . . . ) the UNESCO International Hydrological Programme
presents, therefore, the Climate Risk Informed Decision Analysis (CRIDA). This
approach provides a crucial framework to enable water managers and policy makers to
assess the impact of climate uncertainty and change on their water resources and work
towards effective adaptation strategies.
This multi-step process embraces a participatory, bottom-up approach to identify
water security hazards, and is sensitive to indigenous and gender-related
water vulnerabilities.
By engaging local communities in the design of the analysis, the information provided
by scientific modelling and climate analysis can be tailored and thus provide more
useful answers to the challenges they are facing. They are also providing a more
informed starting point to assess the different options for adaptation, and design
robust adaptation pathways, in line with the local needs.
The CRIDA approach advocates hereby to move away from the “one size fits all”
approach, and to pursue locally embedded solutions to the specific threats to water
insecurity due to climate and other global changes ( . . . )” ([28], p. 9).
Synthesis: It is a framework that considers a risk analysis and how it should
be managed when a given system is confronted with climate change. It seeks
to develop participatory adaptation methodologies involving different
stakeholders and adapted to each location from a bottom-up perspective.

Colombo
Bangkok

Philippines
Udon Thani

Colombia
Chile

Mexico
Guayaquil

Zambia
Sweden

Rhine river
Lake Ontario

California
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Table 3. Cont.

Publication/
References

Main Recommendations
Case Studies

Referred to in the
Publications

World Bank
Water in Circular

Economy and
Resilience
(WICER)

[54]

Publication extract: “WICER aims to promote a paradigm shift in the water sector.
The shift involves moving away from linear thinking in the way we plan, design, and
operate water infrastructure in urban settings towards a circular and resilient
approach ( . . . ) Applying the WICER framework provides environmental benefits, as
well as social, economic, and financial benefits. It is also a condition for achieving
several of the global Sustainable Development Goals (SDGs) ([54], p. 43).
Synthesis: This report aims to promote a common understanding of the
definition and applications of circular economy principles and resilience in the
urban water sector.
It presents a framework to guide practitioners who are incorporating the
principles in policies and strategies, planning, investment prioritisation, and
design and operations to achieve three main outcomes: (1) deliver resilient
and inclusive services; (2) design out waste and pollution, and (3) preserve
and regenerate natural systems. These will ultimately improve livelihoods
while valuing water resources and the environment. These outcomes are then
deployed into three action plans each.
It also states that cities and water utilities will only achieve a fully circular and
resilient water system with the appropriate policy, institutional, and
regulatory framework in place.
It shows examples that investments in circular and resilient systems yield
economic and financial payoffs and that the WICER framework could help
utilities attract private-sector finance.
To avoid being locked into linear and inefficient systems, low- and
middle-income countries should also consider applying the WICER
framework to design and implement circular and resilient water systems from
the outset.

Durban
Bogota River

Chennai
São Paulo
Monclova

Mostar
Cali

Ridgewood
Santiago

Atotonilco
Indonesia

Phnom Penh
New Cairo

S. Luis Potosi
Nagpur
Dakar

Lingyuan
Arequipa

North Gaza

International
Water

Association
The IWA

Principles for
Water-Wise cities

[55]

Publication extract: “Water-wise” behaviour means that leadership culture,
governance arrangements, professional capacity, and innovative technology are all
aligned with the objective of maximising sustainable urban water outcomes.
Sustainable urban water management means that all water within the city (including
reservoir and aquifer water, desalinated water, recycled water, and stormwater) is
managed in a way that recognises the connection between services, urban design, and
the basin, with an approach that maximises the achievement of urban liveability
outcomes, and resilience to unexpected social, economic, or bio-physical shocks, while
replenishing the environment.” ([55], p. 2)
Synthesis: The ultimate goal of the principles presented above is to encourage
collaborative action, underpinned by a shared vision, so that local
governments, urban professionals, and individuals actively engage in
addressing and finding solutions for managing all waters of the city.
From 5 building blocks and 4 levels of action, the 17 Principles are grouped
into four categories: regenerative water services, water-sensitive urban design,
basin-connected cities, and water-wise communities. Water-wise communities
will use the building blocks to put the principles into action.

Amsterdam
Berlin

Brisbane
Copenhagen

Dakar
Gothenburg

Kampala
Kunshan

Lyon
Melbourne

Perth
Shenzen

Singapore
Sydney
Xi’an

This sub-section presented the status quo of the world’s best-structured practical
references in this field. It aimed to outline if their approaches complement those of the
scientific literature referred to in the previous section. Further research could also help to
assess how the scientific literature validates the grey literature.

3.3. Approaches to Climate Change Adaptation of Water Utilities and City Planning

Since the 19th century, water infrastructure has been centrally built to address hygiene
and health issues, significantly reducing diseases and increasing health [56]. Centralised
systems, the norm in cities, are characterised by extensive treatment, distribution, and
collection facilities for treatment that connect distant points of origin/rejection and their
final consumers [57]. Most developed countries spend between 1% and 6% of their annual
GDP on centralised systems [58], resulting in substantial “sunken costs” and total depen-
dence on water services (by nature with great inertia). Consequently, they face a blocking
situation in which transforming alternatives for water management encounter barriers
to entry [59].

These very centralised systems are based on mainly buried infrastructures whose
main objective is to reach the water to citizens in quality and quantity, drain and treat the
effluents generated, and drive rainwater as quickly as possible out of urban areas. Often,
these infrastructures lead water from distant regions to the populations that need it through
systems that favour the reliability and quality of the water supplied [31]. Similarly, treated
effluents are often rejected from their place of production in large wastewater treatment
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plants. The dimensioning of these infrastructures is made for a distant design horizon
with high initial sunken costs [10], which, in most cases, implies large tariffs for the first
generations that use them and an idle capacity for at least the first years of activity [10].
This means a consequent waste of financial and operational resources, considering the need
to “move” high water resources out of their natural “habitat”, with impacts that go far
beyond your place of consumption [31].

On the one hand, floods often involve the routing (undue if in separative networks) of
rainwater to wastewater collectors, thus implying discharge into the water environment
and in an uncontrolled form of crude effluent, more or less diluted. Besides this impact on
the environment, floods also entail increasing human and property damage to which the
current paradigm cannot respond, not only in developing countries (for instance, Mozam-
bique and Pakistan) but also in developed countries, of which the 2021 floods in Germany
are a recent example [60]. On the other hand, it is neither technical nor economically feasi-
ble [10,19]) to size wastewater and rainwater infrastructure for all extreme situations that
potentially occur.

Concerning water scarcity, despite growing awareness of the effects of climate change,
the transformative process of water management to include new sources (such as water
reuse, rain harvesting, or desalination) or new conceptions (such as decentralised systems,
green and blue infrastructures, etc.) is confronted with several obstacles that still lead
to some inertia [32]. It should be said, however, that this latent stagnation is primarily
presented by the incumbents, which present, among others, barriers to the implementation
of innovative measures such as [32]: greater reliability (general) of centralised water
systems, potentially lower costs of centralised systems (more significant economies of
scale), perception of greater risk to public health by consumers, legislation not yet fully
adequate for water reuse, uncertainties regarding the governance of the different systems
in the future, and the lack of motivation in the entities that manage the status quo. This
“lock-in” effect [61,62] is associated with apparent economies of scale, progress in the
“learning curve”, confidence in existing technologies, and network economies (agents using
the same technology as their peers) [31], which translates into a barrier to innovation and
the entry of more sustainable systems, perpetuating the incumbent.

However, there are also crucial motivations that lead to transformative processes in
the relationship between urban water management and urban planning, such as [32,63,64]:
the need to resize cities according to the variation of their population and consequent
increase in consumption; public perception of the waste of the use of drinking water for
irrigation, flushing of toilets, and washes; climate change, with a particular focus on captur-
ing/deferring rainwater runoff and managing water scarcity; food security, as the lack of
water, together with the degradation of agricultural land, leads to a reduction in agricultural
productivity, which in turn leads to lower incomes and food availability [6,65]; increased
consumption and decreased availability motivated by the average and “peak” increase in
temperatures; sensitivity to phenomena such as self-sufficiency and the circularity of the
economy. Naturally, in very concrete geographies, extreme phenomena of lack or excess of
water are already the biggest catalysts for this paradigm shift, such as the cases of Israel,
China, Australia, California, and Singapore, to report the most studied [66–68]. Thus, even
in well-established and proven systems, the need for reinvestment, the urgent response
to climate change, and the dynamics of urban expansion force a paradigm shift, which
becomes necessary, both in underdeveloped countries and in developed countries.

For their part, in underdeveloped countries, in addition to drivers related to climate
change and population growth, high rates of urban growth, poor trust in institutions [69],
and uncertainty about city planning, combined with a lack of initial capital and high
discount rates, lead to the trend of investing in rapid implementation solutions and in turn
to a strong tendency to avoid significant investments in infrastructure [70].

The progressive hybridisation of centralised and decentralised systems has been
reported as the most likely trend of implementation, combining the reliability and financial
sustainability of centralised systems, so-called conventional, with the need to adapt cities

522



Water 2023, 15, 715

to climate and demographic change, thus ensuring greater resilience. In this context, there
is room for more consolidated studies, particularly about both levels’ systemic and parallel
functioning [32]. As such, the challenges presented above require different approaches
and paradigms.

The way literature faces these challenges can unfold systematically in the following
vectors: operational, organisational, institutional, behavioural, economical, technological,
and urban planning.

Concerning the operational vector, the scientific literature points towards the definition
of strategies to save water, reduce losses [10], minimise undue inflows to urban systems, and
separate the sanitation of wastewater and rainwater [33,42] and the use of stored rainwater
in periods of lower rainfall [71], either in a single-family management analysis [33] or in a
city-level or basin-level approach [71,72]. Of course, some of these operational interventions
must be integrated with the necessary investments corresponding to the economic and
technological vectors.

At the organisational vector, the tendency referred to in the literature is for decentral-
ising infrastructures and systems, corresponding to their greater spraying. The challenge
arises regarding their management—in the local community, municipal, or WSPs—and,
in any case, how centralised and open to citizen participation is. Questions are raised,
as to how the “water decentralised infrastructures” should be created, given the tech-
nologically premature state of the proposed solutions and information regarding explo-
ration costs, monitoring of their performance, and diffuse responsibility regarding their
current management [31,44].

At the institutional level, efforts focus on sharing objectives and knowledge, usually
with very flexible approaches, involving various stakeholders at national, regional, and
local decision-making levels. At the economic vector, no direct savings in technical solutions
related to sustainable water management are evident [31], especially considering the energy
and operating and maintenance costs accompanying solutions such as desalination [35],
rainwater harvesting [33,73], or reused water [32,74], where the “scale” factor is essential.

Concerning the behaviour of the final consumer, studies have been presented in Israel
that correlate their perception of those reuses with their level of treatment, their possibility
of use, and other variables, such as education and age [68,75]. The desire to consume
alternative sources of water and the way the message is passed are fundamental aspects of
its implementation [68,76]. However, some 13% of the consumers in a study conducted in
the United States rejected the use of recycled water, depreciatingly called “from the toilet to
tap” by those opposing it [77].

At the technological vector, the main trends concerning the challenges in the urban
water sector for the 21st century are related to (i) the increased use of alternative sources of
water, namely the reuse of rainwater [33,62,73,78], the reuse of water (direct or indirect),
and desalination and the new technologies related to it that arise (Larsen et al., 2016);
(ii) the “buffering” of extreme phenomena (usually related to floods) [8,42,62,79] in the
search for more sustainable solutions with positive environmental externalities [35,68,80–82],
such as Sponge Cities in China, greenfield expansions in Australia or redevelopment
in the Netherlands [8,22,53,83]; and (iii) the application of information technologies to
the planning of the urban cycle of water and cities [79,84,85]. Considering the various
drivers referred to above, which influence the relationship between the sustainability of
the management of urban water resources in the face of the challenges of climate change,
population growth, and increasing urbanisation, growing literature is addressing the use of
artificial intelligence to integrate the diversity of inputs. This literature seeks to integrate
more technical and socio-economic baseline data, such as spatial planning, localisation
of water infrastructures, impermeable surfaces, green areas, and green roof areas, among
many others [38,84] to understand the practical implications that the future provides,
depending on the simulated scenario. In a more focused way, several studies model and
project the various possibilities of water reuse [86], rainwater reuse [73], or the behaviour
of watersheds in extreme situations [87], among many others.
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Finally, the scientific literature related to urban planning focuses on how positive
externalities can be obtained in the pursuit of sustainable solutions that allow cities to
tackle climate change ([20,22,30,71,88]. These analyses have focused on the preparation of
cities for the management of water retaining [18,20] by defining the constructive details to be
implemented in public/private infrastructures (porous pavements, green roofs, etc.) [42,64],
by xeriscaping [87], through integrative interventions at the neighbourhood level [83,84], by
the adaptation of the blueprint of cities to help landscape management in prioritising urban
development strategies in the water-energy nexus [87] and the significant transformations
of expansion or adaptation of cities considering rainwater management [71]. London is a
paradigmatic example in how it defines water neutrality as a concept to frame the water
stress in cities, integrating spatial data with an integrated urban water management model;
this holistic, systemic design framework is designated CityPlan-Water [38]. In Table 4 we
summarize the vectors presented in Figure 4 with the approaches to tackle climate change
and urbanisation in the water sector.

Table 4. Synthesis of the approaches to tackle climate change and urbanisation in the water sector.

Vectors Approaches Examples

Operational

Strategies to save water and reduce losses [10]
Minimise undue runoff to sewer systems [73]
Separate sanitation of rainwater and wastewater [33,42,76]
Mindset towards the use of reserved rainwater
in periods of lower rainfall [33,71,72]

Organisational

Lack of knowledge
Adaptation needs (WSP)

[24,25]
[31,44]

Decentralisation vs Centralisation [29,31,76]
(Diffused) Responsibility [44]
Circular Economy [15]

Institutional
Inter-organisational practices [89–91]
Water and land management communication [20]
Governance of adaptation [90,92,93]

Economical

Financial (dis)advantages [31]
Costs and scale factor [33,73,74]
Last resort systems cost [76,94]
Food security [6,65]

Behavioural
The context for the acceptance of water reuse [68,75]
Communication strategies for water reuse [68,76]

Technological

Reuse of rainwater [33,61,62,73,78]
Reuse of water (direct or indirect) [35,74,80,86,95–97]
Watershed behaviour [87]
Buffering of extreme phenomena (floods) [33,62,79,85]
Positive externalities [22,53,76,98]
Information technology [79,84,85,87,99]

Urban planning

Symbiosis of adaptation to climate change in
cities and the water sector [20,22,30,71,88]

Interventions at the neighbourhood level [83,84]
Landscape management [87]
Major adaptations in cities [38,71]
Multilevel adaptation [93]

The table above shows the main references found for each vector, outlining the limited
number of those dealing with the relationship between the entities that manage the water
services and the territory.
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Figure 4. Main vectors contributing to the urban water management adaptation to climate change,
according to the literature review.

4. Discussion

Considering the results mentioned above, several issues can be highlighted concerning
the relationship between sustainable water management, urban planning, and climate
change. In fact, despite the lack of practical implementation that does not yet follow the
diversity of existing scientific literature on the sustainable management of the urban water
cycle [38], it already presents a set of learnings/outcomes and gaps that allow us to perceive
the main insights and the gaps to be filled.

One conclusion to be withdrawn from the outset is that the most significant innovations
or need for innovation are mainly at the organisational and economic vectors and in
the relationship between the various stakeholders and citizens/consumers and not so
much in terms of technological development since the main drivers for change still arise
in the paradigm shift from centralised to decentralised systems and how to share their
management with the other stakeholders, including entities that manage the territory.
Although there is a trend in the literature towards responding to climate change through
decentralised systems, some of the best examples of success in adapting to climate change
in the water supply sector, especially in terms of water reuse, occur using concepts of
centralised systems, such as Singapore, Israel, or Southern California in the US.

Of course, in situations where redundancy exists, i.e., where centralised infrastructure
remains a “last resort”, there may be double pricing to sustain the sunken costs related
to that system and the capital and operating cost tariffs associated with more sustainable
methods. There is a need for a broader cost–benefit analysis involving not only the financial
aspects but also the positive/negative externalities resulting from the implementation of
more “sustainable systems” [76,94].

It is important to remark that the relationship between urban planning, WSPs, and
climate change has also focused on flood control and less on water supply. There is,
therefore, a gap in the need for scientific development [30,100]. This gap significantly
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increases when it comes to the integrated management of both “too much” or “too little”
water, i.e., flood control and water supply.

For that matter, WSPs are facing increasing challenges in terms of water availability,
management of consumption patterns, and the need for increased efficiency, which are
alternatives to be developed to address the problem of lack of water [62], here still in the
context of water directly collected from the water environment.

The planning of water infrastructures tends to be subordinate dweller to the planning
of the territory [20] in a way that, in addition to being technically challenging, has also
demonstrated other types of problems, such as complex collaboration in the face of more
controversial situations of land use. On the other hand, the unavailability of staff in
smaller locations and a level of diffuse responsibilities within and between each side, urban
planning and WSPs, tend to hinder the necessary convergence. [20]. Adapting to a changing
climate requires the collaboration of the disciplines of spatial planning and urban water
supply management [30].

Many arguments and practices associated with concrete cases of articulation between
WSPs and those that manage the territory can also be applied to the water supply strand.
Consolidating a projection of the future—a practice to which urban planning is dedicated—with
the projection of climate change is pointed out as being the way forward, to which the
necessary articulation with the drainage and water supply strands of the WSPs is added.

Some of the barriers to overcome in the water sector are related to the “lock-in” effect
related to the already mentioned inertia derived from the sector, often resonating on buried
infrastructure with an extensive lifetime and high capital costs. On the other hand, it
is a sector traditionally averse to innovation [10,76], both technical and operational [31].
The main insights and gaps that stand out from the literature are presented in Table 5,
following Figure 4.

Table 5. Synthesis of the main insights and gaps that arise from the literature review.

Vectors Insights and Gaps

Operational

The pluri-functionality of some installations (e.g., flood control and
management, reuse of waters) contributes to a dispersion of the objectives
to be achieved, often competing with each other or not taking advantage of
their synergies [44].

Regulatory changes and poor anticipation of operating costs are some of
the risks most evidenced by experts dealing with water reuse [81].

Grey water constitutes 50–80% of the total household wastewater
produced, which enhances its future use after treatment [74,101].

The decentralisation of systems can present great advantages in areas
where, under “business as usual” conditions, it would be necessary to
expand a centralised system, thus contributing to a more resilient system
with less investment in capital, thus enhancing greater naturalisation of
the same [31].

Given the lock-in effect, the trend will be the coexistence of centralised and
decentralised systems, thus operating a gradual change between both
philosophies and a path leading to their hybridisation.
The management of water demand, and not only the increase in its supply,
can contribute decisively to the minimisation of the risk of
water scarcity [31,83,99].
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Table 5. Cont.

Vectors Insights and Gaps

Organisational

Theoretical studies are presented that present ways for the adaptation of
WSPs in different contexts and how their adaptability and learning are
essential to meet the challenge of climate change [102].

This adaptation can be facilitated by political and
legislative measures [103].

Reference [103] also demonstrated through an intersectoral study
conducted in the UK that the water supply and flood control sectors are
those in which at the institutional level, there was more significant activity
to adapt to climate change, often from a top-down perspective (above the
local level), with climate change triggers (actual or perished) and
legislation, despite the fact that the need for interventions on the ground
have greater difficulty in implementing if they are only motivated by
climate change.

There is a lack of deepening between sustainable urban water management
measures, citizens’ perception and socio-economic issues, and the use of
the territory [30,63,76].

There is a need for analyses that realise the possibilities of a relationship
between sectoral measures of water resilience with the components of
business and political decisions and studies relating to the relationship
between conventional and decentralised water resource
management systems [104].

There is a gap in the knowledge about the implementation of the resilience
of water systems more qualitatively and less quantitatively towards a more
in-depth risk assessment and the relationship between water resilience
systems—designated at flood level—and water supply, transport, energy,
and waste collection systems [105].

There is a need for more consolidated studies and reports on how to
operate and maintain hybrid systems (centralised and decentralised) and
how to define the attribution of responsibilities [76].

Institutional

The planning of the territory will tend to be more challenging and complex
in the future, not only motivated by an entity—municipality or managing
body of the water service provider—but more integrated towards closer
interests, which may even converge to new structures or allocation of
responsibilities in the management of public services [104].
Bearing in mind the need to create sustainable urban and regional planning
practices, the articulation between institutions and spatial planning policies
and water management tends to become one of the central concerns [93].
Given the constraints of articulating rigid institutional structures, informal
networking structures are beginning to appear between different interests
that fill the gaps between the different, and often conflicting, official
organisations [91].

Economical

In most cases, a financial analysis, pure and complex, that is, intending to
obtain a net present value (NPV) as a central element for the viability of a
given project, will not result in an advantage of SUWM systems, and there
is a need to converge to a more holistic approach that takes into account
the minimisation of the risk inherent to phenomena of scarcity or excess
water, the creation of leisure spaces, the minimisation of heat islands
phenomena, increased resilience and the potential reuse of
captured/reused water [31,83].

There is a need for a deepening of knowledge that further characterises the
vectors that contribute to a more comprehensive “value” of a given SUWM
solution [31,106].
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Table 5. Cont.

Vectors Insights and Gaps

Several analyses are confronted with the need to consider social,
environmental, and economic factors together, and not just a financial
analysis that can often not be shown to be favourable in determining the
solution whose positive externalities are too evident [76,80].

The use of rainwater harvesting systems can also contribute to a decrease
in costs with public drainage systems. A cost–benefit analysis that
highlights the scale of these benefits is necessary [33].

Behavioural

Among the reasons for some resistance on the part of consumers to the use
of recycled water are real or assumed health risks, mistrust of authorities
responsible for managing water and minimising health risks, and disgust
with the idea often referred to as the “yuck factor”. There are even cases
where, although it is proven that treated water is purer than bottled water
or tap water, due to the “yuck factor” acceptance is nil by some consumers.
There is also resistance on the part of consumers to have direct contact with
reused water, especially if there is a perception of health risks [75].

The level of resistance often has to do with the availability of water and
its cost [66].

In Singapore, a positive press speech and a well-founded sense of safety in
the face of water reuse, given the use of state-of-the-art and redundant
technology, were essential aspects for the community’s good acceptance of
reused water, called NEWater, which is used for indirect potable use, to be
introduced into raw water reservoirs. The blended water undergoes
naturalisation and further treatment in conventional waterworks to create
drinking water. A similar situation occurs in Southern California [68,107]

Technological

Water treatment for reuse purposes converges on increasingly advanced
technologies, including membrane bioreactors (MBRs) or MBRs combined
with forward osmose (FO) towards greater energy efficiency, of which
Singapore is the gold standard in integrating water reuse at the scale of a
large city [68,74].

Typically, the most economical reuse of grey water is that associated with
showers and washbasins, and less than associated with kitchen stalls and
washing machines, considering its higher content in fats and detergents.
This knowledge can be necessary in the definition of internal drainage
networks of buildings considering the reuse of grey waters [23,74].

The main forms of water reuse occur through its direct reuse (after
treatment), adequate discharge in water medium with characteristics
adjusted to the receiving medium, or through the recharge of the water
environment through which water will be obtained again for consumption.
In addition to saving the water balance, they also make it possible to know
the reused water available for future use (depending on consumption) and
the possibility of using nutrients in agriculture/irrigation (depending on
the type of treatment) [72,80].

There is still ignorance about the effects and amount of micropollutants of
direct recycled water in humans, so the tendency will still be to avoid its
use for consumption or cooking [35].

The reuse of rainwater is not (directly) economically viable on a small scale
(isolated dwellings or small condominiums), as concluded from studies
carried out in Spain and the Netherlands [33,73].

Desalination is even more expensive than water reuse, and both are more
expensive than direct capture in the water environment [35,68].
Even so, technological development, both in terms of performance and
energy consumption, has been presenting solutions and systems that are
very promising in the fields of desalination and water reuse [95–97,108].
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Table 5. Cont.

Vectors Insights and Gaps

There is a panoply of technical solutions that contribute in a proven way.
For flood damnation and uncontrolled runoff in cities, such as
(bioretention) system sites, artificial wetland sites, infiltration-only systems,
permeable pavements, green roofs, artificial ponds, bioswales). Some
solutions are even quick-fix implementations contributing to a fast and
economic control of the flow, such as draining pavements, as studied in the
cases of Sponge Cities and Parma [22,44].

There is a much greater reference to solutions for flood control than to the
reuse of water or rainwater collection [30].

There is a need to deepen knowledge of the relationship between urban
planning, climate change, and water use using IT tools [99].

Urban planning

The instruments of urban planning and governance of cities are essential
for implementing a strategy of greater water resilience, bringing both
conceptually and physically closer to the various actors that can contribute
to its realisation. Territory planning can even act as an instrument to
facilitate the implementation of these measures [30,63].

The articulation between urban planning and urban water management
can be materialised, for example, by imposing water reuse measures in
multi-purpose projects, careful location of treatment infrastructures, and
reuse of “grey” waters; the location of “blue” and “green” infrastructures
in a manner reconciled with the rainwater network and the conditioned
approximation of industries with high consumption of service water to
WWTP, among many others [32,63,74,83].

Attention has been paid to the potential role of spatial planning in
adapting to climate change in the urban water supply sector. The land use
policy plays a vital role in influencing water use (demand) through
planning mechanisms such as urban shape control, density, and space, as
well as the recognised impact that urban development has on the water
quality of the natural environment. It is not too much to stress the role that
water demand should play in the planning of the territory to ensure
sustainable water supply in the medium and long term [20,30,104,109,110]

The table above systematises the existing insights and gaps, constituting a basis for
future integrated or vector-focused studies.

5. Conclusions

Through a literature review, this paper systematised the main concepts involving
urban planning and the sustainable management of urban water (SUWM) in a context
of demographic, urban, and climate change, as well as the way the scientific community
interprets and tackles these challenges.

It noted an increasing concern for climate change in the context of the urban water
cycle and urban management, mainly concerning flood control and not so much about
cities’ preparation for scarcity and water savings. Studies addressing the maximisation of
water resources were also noticeable but fewer about control and management of demand.
It is also perceived that the growth and adaptation of urban water systems cannot continue
to be done incrementally, as it has been so far.

Knowledge deepening is required in the technical and economic evaluation of the
overarching concept of SUWM systems in a way that integrates values beyond financial
matters and introduces an accurate cost–benefit analysis of the solutions for society. New
forms of growth, contemplating a hybridisation of systems (centralised systems that grow
in a decentralised way), imply new paradigms of assessment, management, and collection
of tariffs for which more consolidated knowledge is required.
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Achieving synergies and economies of scale, in the panorama of cities, for systems
of rainwater harvesting and water reuse are presented as themes in need of development,
in particular in the way they can involve the planning of cities and their stakeholders,
not only from a design perspective but also in its management, decision making, and in
the preparation of the final consumer for the “new water” that can be used in a context
increasingly focused on the circular economy.

The grey literature produced by international organisations has complemented the
scientific literature by presenting frameworks for some of these measures that will allow the
various stakeholders to consider infrastructure planning in the context of climate change
according to risk.

There is also a clear need for further studies and practice on the relationship between
the various actors, particularly those managing the territory and water services, towards a
collaborative response to the challenges of climate change. Despite the evident constraints,
yes, adapting together is possible and desirable. Further research is required, though, to
clarify the design of the new institutional bridges, necessary steps, and means.
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Abstract: To clarify the long-term dynamics of groundwater and its response to precipitation in the
Heilonggang region, China, variation trends of the monitored groundwater were studied according
to the Mann–Kendall statistics. Based on observations from four monitoring wells, the persistence
and periodicities of the loose porous aquifers, and the interrelation between precipitation and
groundwater levels was examined based on a number of tools including autocorrelation, cross-
correlation, spectral analysis, and wavelet transform. The results show that the groundwater levels
at W1 and W2 present a downward trend while those at W3 and W4 show an upward trend. The
dominant time period increases from 2.1 years (upstream) to 3.7 years (downstream). The time lags
between aquifers and rainfall at W1, W2, W3 and W4 are 139.14 ± 59.76 days (2008–2020), 23.27 ± 12.03
days (2005–2014), 145.01 ± 68.00 days (2007–2020), and 59.22 ± 26.14 days (2005–2019), respectively.
The lags for the pumping years are 1.2~2.1 times of those during the years without pumping. The
recharge ratio overestimated by the water table fluctuation method decreases from 0.32 at W2 to 0.17
at W4, suggesting that the site W2 has a good potentiality for groundwater recharge. This research
helps us better understand the local groundwater circulation and provide references for groundwater
management.

Keywords: groundwater; precipitation; correlation; spectral analyses; wavelet transform

1. Introduction

With the increase in extreme weather events induced by climate change, understand-
ing the response mechanism of groundwater systems to precipitation is of critical impor-
tance [1–4]. To date, two valuable correlation methods including the auto-correlation and
cross-correlation function have been typically applied to assess the responses of aquifers
to precipitation [5–7]. The auto-correlation analysis characterizes the degree of “iner-
tia” [8,9], or “persistence” [3], or “memory effect” [10] of an individual time series. The
cross-correlation analysis can provide the response time between rainfall and groundwater
levels (GWLs). In addition, the correlation methods are usually combined with spectral
analysis, such as Fourier analysis, to detect the periodicity of a signal.

Water 2023, 15, 1100. https://doi.org/10.3390/w15061100 https://www.mdpi.com/journal/water
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Jenkins and Watts [11] and Box and Jenkins [12] explained the basic principles of
correlation and spectral analyses. Mangin [13] applied these methods to three karstic
systems in the Pyrenean Mountains (France–Spain), and their work indicated that these
analyses provide an excellent method for the investigation of a hydrological system. After
that, correlation and spectral analyses have been widely used in different aquifer systems,
including karstic systems [14–16], alluvial aquifers [3,5], and coastal aquifers [17,18], etc.

Although correlation and spectral analysis have been widely used in hydrology and
hydrogeology, these methods cannot describe how the frequency of a signal changes with
time. Instead, the wavelet transform method is an effective tool for detecting the periodicity
of a nonlinear system and can provide localized intermittent periodicities [19–21]. Based on
the cross wavelet and wavelet coherence methods, Yu and Lin [22] found that the temporal
lag from rainfall to groundwater was about 3.71–72.07 days for the Pingtung Plain in
Taiwan. Zhang et al. [23] found that the time lag of groundwater depth to precipitation
in the Yellow River Delta during 2006–2010 ranged from 35. 51 to 178. 36 days, and the
relationship between groundwater depth and precipitation is largely affected by land use
types, soil texture, and micro-geomorphic types. Cai et al. [24] show that the response time
of groundwater levels to rainfall during 2006–2018 extended from 80 to ~190 days in Puyang,
Henan, China, and that it increases with the burial depth of groundwater. Although there
are many studies investigating the relationship between rainfall and aquifers, seldom does
research focus on areas facing severe water shortage such as the Heilonggang region, China.

The Heilonggang region is located in the southeast of Hebei Province (Figure 1), a
part of the North China Plain, and serves as an important agricultural planting area for the
nation. Agricultural water accounts for 76% of water resource consumption in this area, and
more than 80% of agricultural irrigation water comes from groundwater [25]. The increasing
demand for groundwater resources has led to the decline in GWLs and caused a series of
ecological problems such as land subsidence, etc. Previous studies of this area mainly focus
on the optimization of irrigation and planting regimes [26–28], and few researchers have
paid attention to the long-term groundwater dynamics and associated responses to rainfall
in this region. Clarifying the relationship between groundwater and precipitation can help
us better understand the local groundwater circulation, provide references for groundwater
resource management, and be conducive to ecological protection [29,30]. Therefore, in this
study, we aim to (1) estimate the persistence of aquifers and their responses to rainfall
through the auto-correlation and cross-correlation functions, (2) identify groundwater
periodicity through spectral analyses, (3) determine the groundwater response time through
cross-correlation and cross spectral analyses, and (4) explore the influences of rainfall
intensity, humidity index, and groundwater pumping on the response time.

Figure 1. Location of the study area.
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2. Materials and Methods

2.1. Study Site

The Heilonggang region covers an area of 34,700 km2. The terrain in this region is gen-
tle and inclines slightly from southwest to northeast with a topographic slope of 0.2~0.1‰.
From west to east, the geomorphic type is dominated by the mountain alluvial-diluvial
plain, the central alluvial-lacustrine plain and the coastal plain, respectively. Accordingly,
from west to east, sediments change from gravel in front of the mountain, to medium
coarse and medium fine sand in the middle, then to fine sand in the coastal area.

The study site is mainly affected by the warm temperate semi-arid and semi-humid
continental monsoon with four distinct seasons. The annual average precipitation is
500~600 mm, mostly concentrated in July and August. The river system in the Heilonggang
area comprises the Zhangweinan Canal system, the Heilonggang Canal system, and the
Ziya River system. All rivers finally drain into the Bohai Sea (Figure 1). Reservoirs have
been built at the upper reaches of almost all rivers, and more than 80% of the surface runoff
is detained by the reservoirs, resulting in long-term drying of the rivers flowing through
the area and greatly reducing the amount of river leakage.

Aquifers in the Heilonggang area are mainly composed of Quaternary strata. The
Quaternary aquifer system can be divided into four aquifer groups from top to bottom
(Figure S1). Among them, the first aquifer group is the aquifer we focused on in this study.
It is composed of Holocene and Upper Pleistocene loose sediments, with a bottom depth of
20~50 m [31]. The vadose zone lithology in this area is mainly composed of silt and silty
clay (Figure 2).

Figure 2. Vadose zone lithology and the flow direction map (2020).

In the 1950s, the degree of groundwater exploitation in this area was very low, and the
whole groundwater flow system was in a natural state. Shallow groundwater generally
flows from southwest to northeast (Figure S2a). Under the influence of human activities, lo-
cal groundwater depression cones have formed in the north part of the region (Figure S2b).
At present, the groundwater depression cones have further expanded towards the west
(Figure 2), and the southwest–northeast hydraulic gradient has decreased greatly compared
to the natural state.
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Shallow fresh groundwater mainly occurs in the west and north of the research area,
and shallow brackish water mainly occurs in the east of the region. The distribution area
of the shallow fresh groundwater accounts for 51.6% of the total Heilonggang area [32].
Rainfall serves as the main source for the river and shallow groundwater.

2.2. Datasets

The groundwater data were obtained from the “Groundwater Almanacs of Geological
Environment Monitoring in China”. Four boreholes monitoring a substantial length of
shallow groundwater were selected in this study, as shown in Figure 1. Detail characteristics
of each monitoring well are presented in Table 1. The rainfall data before 2018 was extracted
daily from the “China meteorological forcing dataset (1979–2018)” [33], and the data
after 2018 was collected from China Meteorological Administration (http://data.cma.cn/,
accessed on 1 June 2022).

Table 1. Detail information of the monitoring wells. The thickness of unsaturated zones was
calculated as the average depth over the observation period.

Well
Number

Surface Elevation
(m a.s.l.)

Monitoring
Depth (m)

Unsaturated
Zone

Thickness (m)

Observation Period
(dd-mm-yyyy)

Frequency
(Day−1)

W1 34.44 11~48 5.6 5 February 2006—30
December 2020 5

W2 25.23 0~10 3.3 10 January 2005—30
October 2015 10

W3 8.51 0.5~4.33 2.2 5 January 2005—30
December 2020 5

W4 2.16 6.4~8.1 1.1 5 January 2005—30
December 2019 5

2.3. Mann–Kendall Trend Analysis

The Mann–Kendall trend test is a nonparametric statistical test [34,35]. It is not
necessary to assume that samples obey a certain distribution and are not disturbed by a
few outliers.

The trend of time series is determined using Z values:

Z =

⎧⎪⎨
⎪⎩
(S − 1)/

√
n(n − 1)(2n + 5)/18 S > 0

0 S = 0
(S + 1)/

√
n(n − 1)(2n + 5)/18 S < 0

, (1)

where S is the testing statistic, and n is the sample size. A positive value of S indicates
an increasing trend, and vice versa. If |Z| ≥ 1.96, it indicates the time series passes the
significance test with 95% confidence.

2.4. Auto-Correlation and Cross-Correlation Functions

The auto-correlation functions were used to depict the persistence degree of the time
series. The auto-correlation coefficient rxx(k) is expressed as [12]:

rxx(k) =
1
N ∑N−k

i=1 (xi − x)(xi+k − x)
σ2

x
=

∑N−k
i=1 (xi − x)(xi+k − x)

∑N
i=1 (xi − x)2 , (2)

where N is the length of the series; k is the time lag; and x is the arithmetic mean of the series.
The cross-correlation coefficient between series x and y is defined as [12]:

rxy(k) =
1
N ∑N−k

i=1 (xi − x)(yi+k − y)
σxσy

=
∑N−k

i=1 (xi − x)(yi+k − y)√
∑N

i=1 (xi − x)2 ∑N
i=1 (yi − y)2

, (3)

where N is the length of the series; k is the time lag; and σx and σy are the standard deviations.
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The cross-correlation functions characterize the relationships between the input and
output signals. Here, we take the rainfall as input signals and the GWLs as output signals.
If the rainfall can be considered random, the cross-correlation functions give the impulse
response of the aquifer.

The sliding-window cross-correlation method followed by Delbart et al. [2] was also
carried out to investigate the influences of rainfall intensity on the response time. The
sliding-window cross-correlation method consists of slicing the x (precipitation) and y
(GWLs) series with partially superposed windows. For each window, the rxy values between
rainfall and GWLs are computed, and the corresponding response time is identified. Then,
a time series of response times is obtained for different windows. In this study, the window
length is 6 months, and the sliding interval is 1.5 months. Note that the correlation
coefficients should be not lower than the standard error of ~2/

√
N, where N is the sample

size, and “2” is the critical value for the 0.95 probability of the normal distribution. That is,
values for which the rxy peak was not significant at a 95% confidence level were left out.

2.5. Wavelet Transform

Hydrologic time series are usually nonstationary with temporal variations in both
frequency and amplitude. Through the continuous wavelet transform, a complete time-
scale representation of localized and transient phenomena occurring at different time
scales can be obtained [36]. The wavelet spectrum is defined as the modulus of wavelet
coefficients. This wavelet spectrum can also be averaged in time, known as the global
averaged wavelet spectrum [20], which helps to identify the characteristic periods within a
single time series. Here, the Morlet wavelet serves as the wavelet mother function [37].

After the continuous wavelet transform, the cross wavelet transform (XWT) is used
to determine the cross wavelet spectrum of two time series, and to examine relationships
between the two series. The XWT is defined as:

WXY
t (s) = WX

t (s)WY∗
t (s), (4)

where WX
t (s) is the wavelet transform of time series xt (rainfall) at frequency scale s; and

WY∗
t (s) is the complex conjugate of wavelet transform WY

t (s) for yt (GWLs). The XWT can
be represented using polar coordinates:

WXY
t (s) =

∣∣∣WXY
t (s)

∣∣∣etϕt(s), (5)

where
∣∣WXY

t (s)
∣∣ is the power of the cross wavelet; and ϕt(s) is the phase angle, which

denotes the delay between the two series at time t and scale s.
The time lag ΔT at a scale s between the two signals is calculated by:

ΔT = T(s)× ϕt(s)
2π

, (6)

where T(s) is the period relative to the scale s.
The distribution of the cross wavelet power is:

P(

∣∣WXY
t (s)

∣∣
σXσY

< p) =
Zν(p)

ν

√
PX

k PY
k , (7)

where PX
k and PY

k are Fourier background spectra of the two series xt and yt; and Zν(p)

is the confidence level associated with the probability p, and p =
∫ Zν(p)

0 fν(z)dz. The 5%
significance level is determined using Z2(95%) = 3.999.

This study performed XWT on the original time series of rainfall and GWLs to understand
their relationships. To exclude the edge effects, the cone of influence is introduced for all
wavelet transforms. Codes used for wavelet analyses were based on those originally written
by Grinsted et al. [19] and finished by Matlab 2014b (MathWorks, Natick, MA, USA).
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3. Results

3.1. Observed Time Series and Trend Analysis

Piezometric levels of all boreholes shown in Figure 3 characterize the behavior of
unconfined aquifers. The average GWLs decrease from upstream to downstream, i.e., from
28.77 m at W1, to 21.90 m at W2, to 6.42 m at W3, and to 1.09 m at W4. The standard
deviation of the GWLs also declines from 1.25 m at W1 in the west, to 0.70 m at W2 in the
middle, and to ~0.5 m for the other two wells in the east of the region. According to the
Pearson Type-III distribution curve, the wet year and dry year are identified and denoted
by the blue and orange bands, respectively. For example, in Figure 3d, the years 2010 and
2014 are identified as the wet year and dry year, respectively.

 

Figure 3. Observed time series of rainfall and GWLs at (a) W1, (b) W2, (c) W3, and (d) W4. The blue
and orange bands indicate the wet year and dry year, respectively.
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According to the Mann–Kendall statistics (Table 2), the GWLs at W1 and W2 present
a downward trend while the GWLs at W3 and W4 show an upward trend (all at the
95% confidence level). For the annual averaged GWLs, piezometric levels of W1 and W2
decrease at a rate of 0.11 m/y and 0.04 m/y, respectively. Annual averaged GWLs of W3
and W4 increase at a rate of 0.03 m/y and 0.01 m/y, respectively. Both W3 and W4 are
located in Cangzhou City. In 2008, Cangzhou City was listed as a national pilot area for
groundwater protection, and the amount of exploitation decreased rapidly. Yan et al. [38]
also reported that after 2008, the amount of artificial mining decreased and the depth of
groundwater decreased. Our study result is in line with them.

Table 2. Test results of the Mann–Kendall trend analysis.

W1 W2 W3 W4

S −114,083 −7903 124,953 127,118
Z −9.7 −3.1 9.6 10.7

3.2. Auto-Correlation and Cross-Correlation Analyses

Figure 4a shows that the auto-correlation coefficients of rainfall decay quickly close to
zero, and all of the correlograms become null within 3 months, implying that the rainfall is
relatively random. By comparison, GWLs present a long memory effect relative to rainfall
(Figure 4b). The auto-correlation functions of GWLs show that the order of increasing
inertia ranks as follows: W2→W1→W3→W4. For example, the auto-correlation slope
(the slope of the auto-correlation coefficient before the curve becomes flat) increases from
−12.7 × 10−2 month−1 at W2 to −5.0 × 10−2 month−1 at W4 (Table 3), and the time
lag required for auto-correlation coefficients to reach 0.2 (k0.2 values) also rises from
W2 (5.7 months) to W4 (12.3 months). Note that without considering W2, there is an
upward trend in persistence from upstream to downstream, which has also been identified
by Duvert et al. [3] in a subtropical agricultural catchment dominated by alluvial aquifers
in southeast Queensland, Australia.

 
(a) (b) 

r x
x r x
x

Figure 4. Auto-correlation functions for (a) rainfall, and (b) GWLs.

Table 3. Parameters of the auto-correlation functions.

W1 W2 W3 W4

Slope (×10−2 month−1) −9.3 −12.7 −5.0 −5.0
k0.2 (months) 7.8 5.7 9.8 12.3

Figure 5 shows that the peak value of rxy between precipitation and GWLs is the
maximum of 0.52 at W2, followed by 0.45 at W1, 0.41 at W3, and 0.40 at W4. It is interesting
that this order is consistent with the above ranking result from the auto-correlation functions
of GWLs. That is, the shorter the memory time, the greater the correlation coefficient. The
time lags corresponding to the peak values are 0.67 months at W2and W3, and 1.33 months
at W1 and W4.
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Figure 5. Cross-correlation diagrams between rainfall and GWLs.

3.3. Continuous Wavelet Spectra

Wavelet power spectra for rainfall and GWLs were plotted in Figure 6. Warmer colors
denote higher power. It is statistically significant that the rainfall spectrum has a clear annual
periodicity throughout the study period, which is mainly caused by the annual wet/dry cycle.
For groundwater, this annual periodicity was identified during 2009–2014 and 2015–2017 for
W1, 2008–2015 for W2, 2006–2011 and 2014–2016 for W3, and 2014–2016 for W4.

It can be seen that high-power frequencies in the rainfall spectra are absorbed and
filtered by the aquifer to produce the groundwater signals. Therefore, aquifers serve as low-
pass filters, which is consistent with the research of Imagawa et al. [5] and Duvert et al. [3].
It is interesting that the period when the maximum value in the global wavelet spec-
trum is achieved increases gradually from 2.1 years at W1 (upstream) to 3.7 years at W4
(downstream). Gómez et al. [39] also identified “longer aquifer regulation times in larger
basins”. The increasing time period from upstream to downstream we observed here
further demonstrates the impacts of regional water circulation.
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Figure 6. Continuous wavelet spectra for both precipitation and GWLs at (a) W1, (b) W2, (c) W3, and
(d) W4, with the global wavelet spectrum right side of each subplot. Zones surrounded by black lines
have significant wavelet power at the 95% confidence level. White lines denote the cone of influence.

3.4. Cross Wavelet Spectral Analysis

Cross wavelet spectra are given in Figure 7. The averaged phase angles are 2.40 rad,
0.40 rad, 2.50 rad, and 1.02 rad for W1, W2, W3, and W4, respectively. That is, the ground-
water lags behind precipitation by 139.14 days at W1, 23.27 days at W2, 145.01 days at W3,
and 59.22 days at W4, respectively (Table 4).
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Figure 7. Cross wavelet spectra (left) with global wavelet spectra (right) between rainfall and GWLs
at (a) W1, (b) W2, (c) W3, and (d) W4. Zones surrounded by black lines have significant wavelet
power at the 95% confidence level. White lines denote the cone of influence. The phase angles are
indicated by the black arrows.
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Table 4. Time lags from the cross wavelet spectra between rainfall and GWLs (period of 365 days band).

Title 1 W1 W2 W3 W4

All significant periods
Lags (days)

2008–2020 2005–2014 2007–2020 2005–2019
139.14 ± 59.76 23.27 ± 12.03 145.01 ± 68.00 59.22 ± 26.14

Wet years 2009, 2013 2008–2009 2009–2010, 2012, 2015 2010
Lags (days) 126.77 ± 11.07 39.07 ± 5.97 132.48 ± 20.30 49.40 ± 2.37

Years of pumping 2009–2011, 2013–2017, 2020 2006, 2008–2009
2014 2007, 2010–2020

2008,
2014–2016,

2019
Lags (days) 156.10 ± 38.79 39.07 ± 6.05 159.19 ± 74.44 88.74 ± 18.25

Years of no or little
pumping 2008, 2012, 2018–2019 2005, 2007, 2010–2013 2008, 2009 2005–2007, 2009–2013,

2017–2018
Lags (days) 112.06 ± 50.74 23.31 ± 8.68 123.38 ± 23.85 44.46 ± 14.29

The temporal lags for the wet years are also calculated. The time lags for the wet years
at W1, W3, and W4 have been shortened by 12 days, 13 days, and 10 days, respectively. This
further strengthens the conclusion that high rainfall shortens aquifer response time [2,3].
However, the time lags for wet years at W2 have been prolonged by 16 days. This is mainly
caused by human pumping activities, which will be further discussed in Section 4.2.

Compared to the results of other studies shown in Table 5, the response times of W1
and W3 are comparable to those of most wells located in the Yellow River Basin [6,23,40,41].
The response time of W2 is close to the minimum value observed in the Yellow River
Delta [23]. The response time of W4 is close to the shortest lags of Jinan Baiquan Spring
Watershed and the largest ones of Pingtung Plain. There are many factors that can affect
the groundwater response time. Here, we only considered the effects of rainfall intensity,
pumping activities, and humidity index in the next section.

Table 5. Time lags of groundwater to rainfall at different study areas.

References Study Sites Study Periods Depth(m) Time Lags (Days)

Yu and Lin [22] Pingtung Plain, Tainwan 2005–2010 - 3.71–72.07
Zhang et al. [23] Yellow River Delta 2006–2010 1.2–2.2 35.51–178.36

Qi et al. [40] Baiquan Spring Watershed, Jinan 1990–2011 ~20–70 80.8–185.37
Cai et al. [6] Puyang area, Henan 2006–2018 1–35.1 128–175

Feng et al. [41] Xiongan New Area, China 1991–2016 30–152 147.56–177.20

4. Discussion

4.1. Rainfall Intensity

The time series of response times obtained from the sliding-window cross-correlation
method is shown in Figure 7. It can be seen that the fluctuation of groundwater at W2 is
almost consistent with that of precipitation: when the rainfall intensity becomes smaller,
the GWLs become lower, and vice versa. The fast response leads to a short response time,
which is within one month through the year. The same is true for W4 under wet and normal
conditions, during which the response time is no more than 1.7 months. However, under
dry conditions such as the year of 2014, the response time becomes larger, reaching up
to 3 months. Generally speaking, aquifers at W2 and W4 react quickly to local rainfall.
In contrast, wells one and three respond slowly to the rainfall with visible time lags as
shown in Figure 7a,c. The variation range of the response time is 0~3.7 months for W1 and
0~3.5 months for W3. These values further verified the time lags as shown in Table 4.

4.2. Pumping

As we have mentioned above, agricultural development in this area relies heavily on
groundwater. To ensure the winter wheat production, groundwater has to be extracted from
March to June if there is not sufficient rainwater. For W2, we can see a significant decline in
the water level from 2008 to 2009 despite the wet year, during which the maximum time
lag could reach 45 days. This phenomenon is also observed at W4: the maximum response
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time over the drought period of 2014–2015 was prolonged to 113 days, which was very
close to the response time obtained from the sliding-window cross-correlation method as
shown in Figure 8.

Figure 8. Time series of rainfall intensity, response time, and 6-month moving average of GWLs at (a) W1,
(b) W2, (c) W3, and (d) W4. The blue and orange bands indicate the wet and dry years, respectively.

To further explore the effect of pumping on the time lags, we counted the lags in the
years of pumping and those in the years of no or little pumping for each well (Table 4).
The results show that the temporal lags for the pumping years are 1.3~2.0 times those
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during the years without pumping. Pumping can lead to a dropdown of the GWLs, with
an increasing unsaturated zone thickness, and thus a longer time is needed for the aquifer
to receive the infiltrated rainfall signal. Therefore, the time lags between groundwater and
precipitation will be enlarged by groundwater pumping activities.

4.3. Humidity Index

The potential evapotranspiration (PET) data were obtained from the “1 km monthly
potential evapotranspiration dataset in China (1990–2021)” [42], based on the Hargreaves
method [43]. The annual average PET at the four stations did not vary greatly, and ranges
from 1190 mm at W1, to 1214 mm at W2, to 1187 mm at W3, and 1069 mm at W4. Seasonal
variations in PET have also been observed (Figure S3). Generally, the variation pattern
of PET is consistent with that of precipitation, though sometimes the peak of PET arrives
~1 month before the precipitation.

The humidity index (the aridity index in UNEP, [44]) can be used to assess the surface-
water stress or the arid degree at a given location [45]. It is defined as the ratio of precipita-
tion P to the PET:

HI =
P

PET
(8)

The results from the cross wavelet spectra between HI and GWLs are given in Table 6
and Figure S4. Compared to the time lags between P and GWLs as shown in Table 4, the
lags between HI and GWLs are shortened by 14% at W1, 36% at W2, 28.5% at W3, and 19.6%
at W4, respectively. This can be understood since not all rainfall can recharge aquifers. Only
the effective rainfall can produce surface runoff or infiltrate into the subsurface. Compared
to the precipitation, the humidity index reflects comprehensive influences of both P and
PET, and to some extent the effective rainfall. Therefore, the GWLs response more quickly
to the HI index than to the rainfall.

Table 6. Time lags from the cross wavelet spectra between HI and GWLs (period of 365 days band).

W1 W2 W3 W4

All significant periods 2009–2017 2005–2014 2008–2012,
2014–2018

2005–2007,
2014–2019

Lags (days) 119.11 ± 39.41 14.85 ± 10.07 103.65 ± 40.20 47.60 ± 22.61

4.4. Comprehensive Analysis

To further investigate the controlling factors of the time lags between aquifers and
rainfall identified using the XWT method, changes in lags induced by different factors
are given in Table 7. It can be seen that variations in the time lags at W2 and W4 are
most sensitive to pumping. In fact, Figure 3 and Table 4 indicate that compared to W1
and W3, W2 and W4 are in areas less affected by human activities with few pumping
years. Therefore, they are very sensitive to the pumping under the regional background of
groundwater level recession. The large percentage change in time lags induced by pumping
at these areas highlights the fragility of local aquifer systems.

On the other hand, variations in the time lags at W1 and W3 are less affected by
pumping, but most sensitive to HI. They are not sensitive to pumping because things could
hardly become worse at these areas that have suffered from pumping to a certain extent.
These unhealthy aquifers that have been affected by pumping, or these somewhat thirsty
aquifers, will try to recover as long as they are replenished by rainfall. Therefore, they are
most sensitive to HI. This highlights the resilience of local aquifers.
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Table 7. Variation in time lags due to different factors.

Factors Variation W1 W2 W3 W4

Wet years Absolute changes (days) −12.37 −12.53 −9.82
Percentage change −8.89% −8.64% −16.58%

Pumping Absolute changes (days) 16.96 15.8 14.18 29.52
Percentage change 12.19% 67.90% 9.78% 49.85%

HI
Absolute changes (days) −20.03 −8.42 −41.36 −11.62

Percentage change −14.40% −36.18% −28.52% −19.62%

Assuming that all rises in water level are due to recharge from precipitation, the water
table fluctuation (WTF) method [46,47] tell us the recharge ratio (α) can be estimated as:

α = Sy
∑ h
∑ P

(9)

where Sy is the specific yield; Σh is cumulative rise in water-level; and ΣP is the total
precipitation in the period corresponding to the water level rise.

Here, the hydrologic year during which the water table rose most significantly is
chosen, and the maximum empirical values of Sy provided by [48] are also used. As a result,
the recharge ratio we estimated as shown in Table 8 is larger than or close to the maximum
value of the empirical values. As a whole, the recharge ratio decreases from upstream to
downstream. Specially, it decreases from W2 to W4, which is in line with the inertia ranks
as shown in Figure 4. Meanwhile, considering the smallest time lags indicated by the cross
wavelet spectra, the site of W2 has a good potentiality for groundwater recharge.

Table 8. Recharge ratio calculated using the WTF method.

W1 W2 W3 W4

hydrologic year 2018 2013 2009 2018
Vadose zone lithology Silty clay Silty clay Silt Silty clay

Sy 0.05 0.05 0.074 0.05
Recharge ratio α 0.27 0.32 0.25 0.17

Empirical values of α 0.18–0.26 0.15–0.26 0.20–0.28 0.12–0.19

4.5. Limitations

There are many factors affecting the groundwater response time. Here, we only
discussed the influences of rainfall intensity, evaporation, and groundwater pumping.
Other factors, such as river water, were not taken into account. In fact, these factors are
not isolated, but interact in various geological and geographical contexts. It is reported
that the partial wavelet coherency method can detect localized and scale-specific bivariate
relationships between predictor and response variables after removing the impact of other
variables [30,49,50]. Therefore, in future research, the partial wavelet coherence method can
be further implemented to distinguish the impacts of climate change and human activities
on the GWLs, for better understanding their impacts on the groundwater flow system.

5. Conclusions

This research provides analyses of the long-term dynamics, the persistence, and the peri-
odicity of shallow groundwater located in the Heilonggang region, China. The interrelation
between precipitation and groundwater levels is also examined based on correlation and
spectral analyses. The results of this research provide a more complete understanding of the
local groundwater circulation system. The major conclusions are as follows.

Firstly, trend analysis shows that the GWLs at W1 and W2 present a downward
trend while the GWLs at W3 and W4 show an upward trend over the observation period.
Therefore, more attention should be paid to the upstream of the aquifer system.

Secondly, auto-correlation analysis indicates a rising trend in the memory time for
aquifers from upstream to downstream. The cross-correlation analysis stresses that the
shorter the memory time, the greater the correlation coefficient between rainfall and GWLs.
The continuous wavelet spectra shows that the dominant period increases gradually from
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2.1 years at W1 to 3.7 years at W4, further demonstrating longer regulation times from
upstream to downstream.

Thirdly, both the cross wavelet spectra and the sliding-window cross-correlation
method display that wells two and four respond quickly while wells one and three re-
spond slowly to the local rainfall. The time lags between aquifers and rainfall at W1,
W2, W3, and W4 are 139.14 ± 59.76 days (2008–2020), 23.27 ± 12.03 days (2005–2014),
145.01 ± 68.00 days (2007–2020), and 59.22 ± 26.14 days (2005–2019), respectively. The
temporal lags of groundwater to precipitation are shortened by 10~13 days during the wet
year conditions, and the lags during the pumping years are 1.3~2.0 times those during the
years without pumping. The time lags between HI and GWLs are reduced by 14~36%,
compared to those between rainfall and GWLs.

Further analysis shows that variations in the time lags at W2 and W4 are most sensitive
to pumping, while variations in the time lags at W1 and W3 are less affected by pumping,
but most sensitive to HI. The overestimated recharge ratio decreases from 0.32 at W2 to 0.17
at W4, suggesting that the site of W2 has a good potentiality for groundwater recharge.

Finally, although this research provides a new insight into relations between precipitation
and groundwater in the study area, there are still some other factors, such as river water, which
were not considered. Future researchers could possibly use the partial wavelet coherence
method to distinguish the effects of human activities and climate change on the GWLs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15061100/s1, Figure S1. Aquifer groups in the Heilonggang
region. Figure S2. Shallow groundwater flow field in (a) 1959 and (b) 2005. Figure S3. Monthly
precipitation (P) and monthly potential evapotranspiration (PET) at (a) W1, (b) W2, (c) W3 and (d) W4.
Figure S4. Cross wavelet spectra between HI and GWLs at (a) W1, (b) W2 (c) W3 and (d) W4.
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Abstract: The relationship between agricultural knowledge and water management is very important.
Indigenous knowledge in agriculture can improve the water crisis situation and alleviate water stress
from dry and semi-arid areas. Therefore, the combination of these two impacts can improve the
agricultural sector and reduce the effects of drought. The purpose of this study was to investigate
the factors affecting indigenous knowledge and the sustainable management of water resources for
optimal water use in agriculture in the Sistan region of Iran. Alongside field research and interviews
with 40 indigenous experts and experts from the Jihad-e-Agriculture sector of the Sistan region,
the required information was collected by means of a questionnaire. Using the fuzzy hierarchy
process (FAHP), the factors affecting indigenous knowledge and the sustainable management of
water resources for optimal water use in the Sistan region were ranked. The final rankings of the
factors influencing indigenous knowledge for optimal agricultural use of water resources indicate that
the educational-extensional factor, with a final weight of 0.37, is the first priority, while social factors,
government support, economics, farmers’ knowledge, and information, with weights of 0.24, 0.21,
0.13, and 0.03, respectively, are the next priorities. It is recommended that the indigenous knowledge
of local authorities be augmented, and that farmers be encouraged to use modern irrigation techniques
to optimize the agricultural irrigation of water.

Keywords: indigenous knowledge; sustainable water resources management; optimal consumption;
fuzzy hierarchy technique (FAHP)

1. Introduction

On a planet where more than two thirds of its surface is covered by water, there is
a misconception that water resources cannot be scarce. In order for the use of water to
continue, it cannot be withdrawn from reservoirs or other water sources at a rate faster than
its natural cycle is capable of restoring and reproducing [1]. Hydrologists and specialists
are of the opinion that whenever the ratio of population to volume of renewable freshwater
resources exceeds a certain limit, noticeable increases in water scarcity and the pressure
and stress caused by water shortage are inevitable. Over the last few decades, this ratio has
reached or exceeded the critical limit in more than 24 countries across the world [2,3]. The
realities of today’s world show that a scarcity of any resource increases tensions and creates
new ones. Water is not humane, and today, with a deficiency of water resources, along
with the rapid increase in consumption demand in the urban, industrial, and agricultural
sectors, water shortage has become the biggest nightmare and challenge for governments.
Today, tension over the distribution of freshwater resources across the world, which spans
all regions of the world, comes in various forms, creating of conflict between the urban
and agricultural need for water and the environment [4,5]. With the growing population,
increasing living standards, and increasing attention paid to environmental issues, the
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attention paid to water resource management has increased. On the other hand, in many
countries, water has become a scarce resource. This has been due to population growth
on the one hand and to the rapid growth of economic, commercial, and developmental
activities on the other [6]. Therefore, when striving for water sustainability, there is a
continuous need for long-term agricultural policies, and the correct and optimal use of
renewable resources is one of the goals of many governments, including that of Iran [7].
In the current situation, across the world, the issue of water has become one of the main
problems and crises and has played an important role in human life compared to previous
years. In the vast and rainy country of Iran, farmers face the challenge of dealing with
water scarcity. The water factor, its economic role, and its effect on social formation are
some of the most important factors affecting the complexities of rural Iran. How water
resources should be managed mainly depends on economic indicators, but the idea of
sustainable development and the sustainable use of water resources has been considered,
which plays a major role in planning and legislation. Therefore, across the world, different
methods regarding the exploitation of water resources have been defined, according to the
socio-economic and indigenous status of communities [8].

Some analysts and experts consider food and job security to be the main prerequisite
for the realization of “national security”; while these two factors are dependent on “water
security”, this issue is much more prominent in countries and regions whose economies
are dependent on agriculture. In terms of national security, the management and planning
of water resources in border areas is more important than in other areas [9]. The most
important economic sector for villages is the agricultural sector, which depends on the
natural potential of the environment for development, progress, and both quantitative and
qualitative increase. For sustainable rural development to take place, any development
program must be based on a mutual understanding of local needs and resources. In
addition, water resources are the most important and basic environmental potential for the
development of the agricultural sector. On the other hand, water security improves the
economic and social situation of farmers. This means that if the role of human resources in
society has been the main axis of development, the role and position of water resources
among natural resources is the center of development and has the highest effect on the
development of human society and rural areas [10].

Part of the national capital of any ethnic group is indigenous knowledge, which encom-
passes indigenous beliefs, values, and ecological knowledge of their living environment,
which has been the result of years of trial and error in the natural, economic, and social
environment. Indigenous knowledge is highly vulnerable to extinction due to its oral
nature; however, there are still ambiguities in the knowledge of odor in each region that
must be examined to help overcome the problems inflicted by water shortage and drought
in a region [11]. The drying up of water sources in big cities is considered to be one of the
reasons for migration, which causes many jobs to disappear in water-scarce regions. The
lack of a systemic approach, inefficient policy making, inappropriate laws, and pressure
put on the agricultural sector under the pretext of increasing employment are among the
main causes of the water crisis. The most important advantage of modern knowledge is
the ability to create new technologies and transfer them from one environment to another,
and one of the important characteristics of indigenous knowledge is its simplicity and
compatibility with the environment. Therefore, the two sources of knowledge can be
complementary, and a combination of the two can be effective in achieving success and
progress. Now it seems that, for several reasons, addressing indigenous knowledge is not a
choice but a necessity [12]. Due to its biological nature, agriculture is the largest consumer
of water resources. In Iran, most water extraction (87 billion out of 95 billion cubic meters)
is consumed by the agricultural sector, a large volume of which (63 billion cubic meters) is
wasted due to improper irrigation methods [13].

The agricultural sector in Iran is in a good position with regard to its potential com-
pared to other countries. In terms of irrigated land, Iran ranks fifth after India, China,
America, and Pakistan, and in terms of the total area of agricultural land (rain-fed and
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irrigated) it ranks twentieth. The per-capita area of irrigated land (8 million hectares) is
equal to 115 hectares per 1000 people, which is 2.5 times more than the per-capita irrigated
land in the world, which is about 45 hectares per 1000 people. On the other hand, the low
yield per unit area has caused the efficiency and productivity to decrease despite the land
and water resources. For example, the yield of wheat in America is 14 tons per hectare,
while in Iran, it is 5.3 tons. The main driver of agriculture across the world is water, so in
order to increase the production of agricultural products, irrigation projects have played
an essential role throughout the last half century. The production of agricultural products
in countries located in arid and semi-arid regions is highly dependent on water, which
accounts for more than 90% of the raw production of agricultural products. The agricultural
sector is considered to be the most important and main source of food supply in the world;
therefore, it plays a significant role in maintaining the balance of food, social, and political
security of countries. In past years, agriculture has faced many fluctuations in the area of
cultivated land and the yield of crops. Many factors, such as lack of water and salinity,
poor management, lack of knowledge and awareness, the existence of competition between
different sectors (environment, industry, and household) with the agricultural sector, the
wear and tear of water facilities, slow development of grain-cultivated land, and land use
change, cause a decrease agricultural product have been produced [2].

In the Sistan region in the southeast of Iran, about 90% of the residents are employed
in agriculture. Due to frequent droughts over the last 20 years, the agricultural sector in
this region has been almost destroyed. Therefore, the study and analysis of water input
as a strategic resource is of great interest to researchers, who can take important steps in
improving the conditions of this region by modeling and predicting the future.

Omani [14] studied the effective factors in the sustainable management of agricultural
resources in the northern part of the Modaress watershed in the Khuzestan province. The
results indicate that five factors, including economic characteristics, variables of educational
and extension activities, the social, knowledge and information, and government support,
together account for 71% of changes in the level of sustainable management of agricultural
water resources. Arfai [15] studied the factors affecting indigenous knowledge in the
optimal use of water in the agricultural sector. Their results indicate that there is a positive
and significant relationship between independent variables—educational-promotional,
cultural-social, economic, and managerial factors—, and the use of indigenous knowledge
for optimal water consumption. Additionally, indigenous knowledge of efficient water use
showed that educational-extension factors and economic factors have a positive role in
optimal water use. Panahi [7] analyzed the factors affecting the optimal management of
water resources in the Iranian agricultural system. In explaining the component of optimal
management of agricultural water using structural equation modeling, it was found that
37% of the total variable dependent changes for the optimal management of agricultural
water resources could be explained by four factors: government activities, extension ser-
vices, individual and physical factors, and the use of management mechanisms by the
producers. Bandani et al. [16] studied and analyzed the role of indigenous knowledge in
the sustainable rural development of the Ghaemabad rural district of the Sistan region.
The results show that being involved in the culture of the villagers and the participatory
aspect of indigenous knowledge has been more effective than other factors in this village.
Indigenizing and organizing various resources, including manpower and material capital,
along with other experiences in the villages, is a complex and difficult task, but a possible
one. Bouzarjomehri et al. [11] studied the local role and local traditions of women in the
production and management of livestock products in the village of Abu Nasr, Bavanat city.
The results indicate that there is a rich local knowledge and local traditions among rural
women in the region, which is due to the traditional (rich) milking system and milk and
dairy management mechanism. Rahimian [17], in a study, investigated the factors affecting
the sustainable management of water resources among irrigated wheat farmers in the
city of Koohdasht. The results, based on a correlation test, indicated that the relationship
between sustainable water resource management and annual income varies according to
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the agricultural sector, the area under total wheat land, training provided to farmers in
water management, and farmers’ perception of direct and significant water shortage crisis,
with variables such as the farmers’ plots and percentage of farm slope being reversed and
significant. Akhavan and Behbahaninia [18] studied the economic factors affecting the
sustainable development and management of water resources in the agricultural sector.
The collective effect of independent variables on the dependent variable through multiple
regression indicated that from the perspective of experts on economic factors, farmers’
knowledge and experts’ insights have had a positive effect on the sustainable development
and management of water resources in agriculture. Afshari et al. [19] investigated the deter-
minants of farmers’ attitudes towards sustainable water resource management in Komijan
city. The results show that there was a significant difference between farmers’ attitudes
towards water resource management according to the type of water source ownership,
so that farmers with private property had a more desirable attitude than farmers with
common ownership. Hassani et al. [20] studied the factors affecting the water resource
management behaviors of farmers in the Hamadan-Bahar plain. Based on their results, the
perception of vulnerability, perception of severity of degradation, perception of barriers
to water resource protection and responsibility had a significant correlation with water
resource management behaviors at a level of one percent. Iglesia and Garot [21] examined
adaptation strategies for managing agricultural water under climate change in Europe. The
results indicate that the greatest opportunities to take action to improve compliance capac-
ity and respond to change according to water needs are to reform water policy, provide
adequate training for farmers, and provide effective financial instruments. Valipour [22]
examined land use policy and agricultural water management in the first half of the present
century in Africa. The results show that Africa needs government policies to encourage
farmers to use irrigation systems and increase cultivation intensity for the irrigated area. In
the same study by Valipour et al. [23], the results showed that trial and error policies should
be avoided, and expert opinion applied to irrigation systems for each crop. Jacob et al. [6]
investigated the relationship between knowledge and practice in sustainable water resource
management. Their research shows that participatory processes in short-term decisions,
such as water allocation decisions, are modifiable and are not suitable for long-term infras-
tructure decisions. Another important result indicated that capacity construction costs for
stakeholders in the water management decision-making process are not known. Thus, a
lack of understanding of the costs and associated complexities may contribute to citizens’
lack of successful acceptance of infrastructure decisions. Kernecker et al. [24] examined
women’s local knowledge of water resources and adaptation to changing landscapes in
the Veracruz Mountains in Mexico. This study shows that women in the study area have
acquired their water management by relying on their local knowledge about landscape,
climate and social networks. These results suggest that women’s local knowledge can
play an important role in planning development projects and helping women to adapt
to sudden changes. Greenland et al. [25] examined in a study the improvement of agri-
cultural water sustainability using farm water management strategy and encouraging
drip irrigation. Research findings show that farmers do not accept drip irrigation due to
cost and a lack of understanding, as well as problems with installation and maintenance.
The solution proposed was to promote effective training programs for drip irrigation.
Shahbakhsh et al. [1] conducted a piece of research titled “assessment of modern approach
of water governance in the development of water exploitation systems in Sistan region”.
The simple additive weighting (SAW) method that is used here is one of the multiple
attribute decision-making (MADM) methods. The indicators of water governance prin-
ciples were derived from the opinions of 30 water experts, faculty members, and water
users in the Sistan region using the SAW method, and weights were assigned to them
to form MADM matrices. According to the results, six indicators were derived as the
indicators determining the principles of water governance. ‘Traditional users’ was selected
as the strongest system and ‘irrigation and drainage networks exploitation companies’ as
the weakest system. Additionally, according to the results obtained from water experts,
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the first rank was assigned to ‘irrigation and drainage networks exploitation companies’
(A2) with a final crisp score of 6.818, followed by ‘water user cooperatives’ (A4) with a
final crisp score of 6.515 in the second rank, and ‘private firms’ (A6) with a final crisp
score of 6.308 in the third rank. Farrokhzadeh et al. [2] studied sustainable water resource
management in an arid area using a coupled optimization-simulation modeling technique.
In the study, a multi-objective optimization model was linked with the water evaluation
and planning (WEAP) software to optimize water allocation decisions over multiple years.
The results were analyzed by comparing purely economic versus multi-objective scenarios
on the Pareto front. Finally, the disadvantages and advantages of these scenarios were
also qualitatively described to assist the decision process for water resource managers.
Abbasian et al. [3] examined a research paper about the economic management of water
using valuation policy in mango orchards, with an emphasis on environmental inputs in
Chabahar County. The study used cross-sectional data for the 2018–2019 crop years in
order to estimate the price of water for mango, and to also estimate its demand, with an
emphasis on environmental inputs. To this end, the real price of water was determined
using the residual method, and the demand function was estimated using the translog cost
function and the equations of the contribution of inputs to cost. The results support the
good fit of the model used for the cost function of mango in the studied county. The results
of the coefficients in Chabahar County indicate that water cost has a positive relationship
with the prices of manure, water, seedling, and crop yield, and a negative relationship
with the prices of pesticides and chemical fertilizers. Based on the results of the water
demand function, water is a substitute for manure, chemical fertilizer, and seedling with
partial elasticities of >1, revealing the impact of water use management and economic
valuation on improving the use of other environmental inputs (pesticides, manure, and
chemical fertilizers) and seedling, as well as the water itself, in mango production in this
region. It is recommended that policies such as optimal pricing of inputs including pesti-
cides, manure, chemical fertilizers, and seedling be adopted in order to curb the resulting
environmental pollution.

This literature review shows that proper management is essential to deal with the
water crisis. The objectives of water resource management include improving the allo-
cation of water resources, improving consumer behavior, promoting methods to reduce
water losses and prevent drought in agricultural activities, and improving the efficiency of
water resource capacity and facilities. On the other hand, indigenous knowledge systems
have much power in the field of sustainable development in rural areas. Looking at the
characteristics of indigenous knowledge systems indicates that indigenous knowledge will
be able to use water more effectively, as it is systematic, preserves biodiversity, relies on
needs, is participatory, accessible and multi-dimensional, and adapts to people’s culture.
Indigenous knowledge can play an important role in the process of the sustainable devel-
opment of a village. For this purpose, one of the objectives of this study was to investigate
the factors affecting indigenous knowledge in water consumption in agriculture, while
our other purpose was to investigate the factors affecting the sustainable management of
agricultural water resources in the Sistan region. Figure 1 shows the geographical location
of the study area.

This paper aims to study the factors affecting indigenous knowledge in the optimal
use of water in the agricultural sector and the factors affecting the sustainable management
of agricultural water resources, and to apply a multi-indicator decision-making modeling
under fuzzy logic.
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Figure 1. The location of the Sistan region in the southeast of Iran [1].

2. Materials and Methods

When using the fuzzy analytic hierarchy process (FAHP), the first step is to determine
the pairwise comparison matrix in FAHP, as follows [26]:

A =

⎡
⎢⎢⎢⎣

1 a12 · · · a1n
a21 1 · · · a2n
...

...
. . .

...
an1 an2 · · · 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 a12 · · · a1n
1/a12 1 · · · a2n

...
...

. . .
...

1/a1n 1/a2n · · · 1

⎤
⎥⎥⎥⎦ (1)

The pairwise comparison matrix is based on the opinion of the decision maker and
the elements of each level, considered separately. Matrices include pairwise comparisons
between the criteria considered and pairwise comparison matrices of the options under
consideration for each criterion.

In general, if the number of options and criteria are M and N, respectively, the pairwise
comparison matrices of the options will be M × M and the pairwise comparison matrix of
the criteria will be an N × N matrix. The elements of the pairwise comparison matrices
with Aij are shown. In the FAHP method, it is assumed that Aij = 1/Aji. To perform the
relative measurement (or degree of importance) of option M, the comparison operation
is performed in pairs. This means that each specific option is not compared to the other
available options at the same time; at any given time, it can only be compared to another
option [26].

In the present study, the Chang (1996) method was used to perform the FAHP tech-
nique. In this method, each criterion is assigned to a fuzzy set of 4, Mi (Li Mi, Ui) is
converted, and after drawing a hierarchical tree, the target levels, criteria, and options are
determined. In the next step, the matrices are agreed upon according to the decision tree,
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and, using the opinions of experts in the form of fuzzy triangular numbers in the form of
matrices, Equation (2) is formed [26].

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1, 1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∼
a121∼
a122

...
∼
a12p12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. . . . . .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∼
a1n1∼
a1n2

...
∼
a1np1n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∼
a211∼
a212

...
∼
a21p21

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1, 1, 1) . . . . . .

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∼
a2n1∼
a2n2

...
∼
a2np2n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

...
...

...
...

...
...

...
...

...
...⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∼
an11∼
an12

...
∼
an1pn1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∼
an21∼
an22

...
∼
an2pn2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. . . . . . (1, 1, 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

In the next step, the arithmetic mean of decision makers’ opinions is calculated as
relation (2):

∼
A =

⎡
⎢⎢⎢⎢⎣
(1, 1, 1)

∼
a12 . . .

∼
a1n∼

a21 (1, 1, 1) . . .
∼
a2n

...
...

...
...

∼
an1

∼
an2 . . . (1, 1, 1)

⎤
⎥⎥⎥⎥⎦ (3)

The arithmetic mean matrix of decision makers’ opinions (jia) is calculated according
to the following equation [26].

∼
Si = ∑n

j=1
∼
aij i = 1, 2, . . . , n (4)

The next step is to calculate the sum of the row elements of the matrix obtained from
the arithmetic mean [26]. In the the next step, Equation (4) is used to normalize the matrix
of rows:

∼
Mi =

∼
Si ⊗

[
∑n

i=1

∼
Si

]−1
i = 1, 2, . . . , n (5)

Now, according to the mathematical relations governing triangular fuzzy numbers, if
it is represented as (Li, Mi, Ui), the above relation is adjusted in the following order:

∼
Mi =

(
li

∑n
i=1 ui

,
mi

∑n
i=1 mi

,
ui

∑n
i=1 li

)
(6)

Determining the degree of probability as being larger, (degree of probability) M2 = (L2,
M2, U2) ≥ M1 = (L1, M1, U1) is calculated as follows:

VM2 � M1 = Suby ≥ x[Min(μM1, μM2)] (7)

where Y and X are the values of the membership functions of each criterion on the fuzzy
function axis.

V(M2 ≥ M1) = μ(d) =

⎧⎪⎨
⎪⎩

1 i f m2 ≥ m1
0 i f l1 ≥ u2

l1−u2
(m2−u2)−(m1−l1)

otherwise
(8)
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Here, d is the maximum distance between the two membership functions 1 M and
2 M. To compare M1 and M2, the value of V (M2 ≥ M1); V (M1 ≥ M2) is needed and K is
estimated as follows:

V(M ≥ M1, M2, M3, . . . ., Mk)
= V[(M ≥ M1)&(M ≥ M2)&(M ≥ M3)& . . . &(M ≥ Mk)] =
⇒ MinV(M ≥ M1)

(9)

It can thus be written as follows:

d′(Ai) = MinV(Mi ≥ Mk)k = 1, 2, 3, . . . , n; k �= i (10)

Thus, the weight of each vector is obtained as follows:

W ′ =
(

d′(A1), d′(A2), d′(A3), . . . , d′(An))
T (11)

Here, W′ is a non-fuzzy number. By normalizing the obtained weights, the final
weights can be obtained:

W ′ =
[

d′(A1)

∑n
i=1 d′(Ai)

,
d′(A2)

∑n
i=1 d′(Ai)

, . . . ,
d′(An)

∑n
i=1 d′(Ai)

]T

(12)

The above weights are definite (non-fuzzy). The last step is the combination of weights;
by combining each of the weights of the options and criteria, the final weight of the options
is obtained [26].

∼
Ui = ∑n

j=1

∼
Wi

∼
r ij (13)

In multi-criteria decision-making models (MCDM), questionnaires and surveys com-
pleted by experts and top experts are used to complete the data. Therefore, in the first
stage, experts related to the subject under study were selected and the questionnaires were
distributed and completed by them. In this study, according to the objectives, 40 experts
from the Agriculture and Water Resource Management Organization were identified, and
a questionnaire was distributed among them to complete the information. FUZZY AHP
software was used for data analysis. The opinions of experts regarding the identification
of factors affecting indigenous knowledge in the optimal use of water in the agricultural
sector and the study of factors affecting the sustainable management of agricultural water
resources are given in Table 1.

Table 1. The factors affecting indigenous knowledge and the level of sustainable management of
agricultural water resources in the optimal use of water in agriculture.

Factors Affecting Indigenous Knowledge in Optimal Water Consumption Indicators

Visiting programs for farmers regarding indigenous knowledge Educational-promotional
Training classes on the use of indigenous knowledge Educational-promotional

Practical projects about indigenous knowledge projects Educational-promotional
Using publications Educational-promotional

Codified training packages, e.g., movies, books, tapes, etc. Educational-promotional
Special seminars for promoting the development of indigenous knowledge Educational-promotional

Internet network and eLearning Educational-promotional
Beliefs about indigenous knowledge Cultural-social

Farmers’ interest in using indigenous knowledge Cultural-social
Positive attitude towards indigenous knowledge Cultural-social

Communication with neighbors regarding the use of indigenous knowledge Cultural-social
Interest in joining social groups Cultural-social

Membership with the water cooperatives association Cultural-social
Providing special human resources for indigenous knowledge projects Managerial
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Table 1. Cont.

Factors Affecting Indigenous Knowledge in Optimal Water Consumption Indicators

Organizing financial mechanisms for officials regarding to indigenous knowledge Managerial
Managers’ attitude toward indigenous knowledge Managerial

Practical participation of managers in indigenous knowledge Managerial
Assigning powers and decisions to farmers and bottom-up decision making Managerial

Transfer of powers and decisions to farmers in decision making up and down Economic
Farmers’ income Economic

Insurance for agricultural products at risk of drought Economic
Extension of drought loan repayment Economic

Drought loans Economic
Bank facilities for purchasing pomp motors and machines Economic

Using publications Educational-promotional
The rate of use of radio and television Educational-promotional
Holding classes and training courses Educational-promotional

Distribution of educational magazines and publication promoting Educational-promotional
Using educational workshops Educational-promotional

Communication with specialists (agriculture promoters) Educational-promotional
Social participation Social

Social status Social
Delivery of subsidized inputs to recipients of water resources management Government support

Material and spiritual incentives for water resource recipients Government support
Farmer’s crop area Economic

Type of exploitation system Economic
Farmers’ income Economic

Mechanization level Economic

3. Discussion

3.1. Identifying the Factors Affecting Indigenous Knowledge of the Optimal Use of Water in the
Agricultural Sector

According to Table 2, it is observed that in the matrix of pairwise comparison of
indices of factors affecting indigenous knowledge in optimal water consumption in the
agricultural sector of Sistan, according to experts of Jihad Keshavarzi, the area of relations
with neighbors regarding the use of indigenous knowledge, membership in the aquifer
organization, farmers’ incomes, and drought loans (11, 13, 19, and 23) are superior to other
indicators. Meanwhile, visitation programs for farmers on indigenous knowledge, training
classes on the use of indigenous knowledge, practical projects around indigenous knowl-
edge projects, and the provision of specialized human resources in terms of indigenous
knowledge projects (1, 2, 3, and 14) have a weak advantage over other indicators.
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3.2. Investigating the Factors Affecting the Sustainable Management of Agricultural Water
Resources for the Optimal Use of Water in the Agricultural Sector

The results of Table 3, which were obtained from the pairwise comparison matrix of the
studied indicators, show the factors affecting the sustainable management of agricultural
water resources in the optimal use of water in the agricultural sector. Acceptors of water
resources management, the type of exploitation system, farmers’ income, and the level of
mechanization (criteria 4, 9, 12, 13, and 14) were preferable to other criteria.

According to the results related to the pairwise comparison of visit program indicators
for farmers regarding indigenous knowledge, the prevalence of training classes on the use
of indigenous knowledge, practical projects on indigenous knowledge projects, the use
of publications, written training packages (film, books, tapes, etc.), specialized seminars
on promotional projects for the development of indigenous knowledge, and the use the
internet and e-learning, which are related to the educational-promotional factor, show that
the socio-cultural factor has a relative superiority over other indicators.

According to the results of a pairwise comparison of belief options towards indige-
nous knowledge, farmers’ interest in using indigenous knowledge, communication with
neighbors regarding the use of indigenous knowledge, interest in membership in social
groups (baneh) and membership in the water organizations branch were related to the
socio-cultural factor. The managerial factor is superior over other criteria.

The results of pairwise comparison of criteria related to the managerial factor—providing
specialized manpower for indigenous knowledge projects, organizing financial mechanisms
of officials regarding indigenous knowledge, the attitudes of managers towards indigenous
knowledge projects, the practical participation of officials and managers in indigenous
knowledge promotion projects, transferring powers and decisions to farmers, bottom-up
decision-making—show that the economic factor is relatively superior over other factors.

The results of a pairwise comparison of options related to the economic factor—farmers’
income, insurance for agricultural products at risk of drought, drought grants, the extension
of drought loan repayment, drought loans, bank facilities for the purchase of pump motors
and machines, show that the socio-cultural factor is relatively superior.

According to the opinions of experts in the Sistan region, indicators have been identi-
fied to investigate the factors affecting indigenous knowledge in the optimal use of water
in the agricultural sector and have been fitted using the analytic hierarchy process (FAHP)
model. Considering that the purpose of this study was to investigate the factors affecting
indigenous knowledge in the optimal use of water in the agricultural sector, prioritization
has been conducted and, as can be seen in Figure 2, the educational-extension factor, with a
final weight of 0.46, has had the greatest impact on indigenous knowledge in the optimal
use of agricultural water, followed by socio-cultural (0.33), managerial (0.15), and economic
(0.06) factors.

According to the results obtained from a pairwise comparison of educational-promotional
factors—the use of publications, the use of radio and television, holding classes and
training courses, the distribution of magazines and educational publications, the use of
training workshops, and communication with relevant specialists (agricultural promoters)—
the factor (option) of farmers’ knowledge and information was superior. A pairwise
comparison of the criteria for government support—the delivery of subsidized inputs to
the recipients of water resources management and the material and spiritual incentives of
the recipients of water resources—showed that the knowledge and information of farmers
was superior over other factors.
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Figure 2. Weight of options based on indicators of factors affecting indigenous knowledge in optimal
water consumption in agriculture.

The results of pairwise comparison of economic factors—the level of farmers’ crop cul-
tivation, the type of exploitation system, farmers’ income, and the level of mechanization—
showed that farmers’ knowledge and information is superior to other options. Parallel
comparison of options according to the criteria of farmers’ technical knowledge of the stages
up to harvest and their level of education, which are related to the factor of knowledge
and information of farmers, showed that all education-extension, social, and government
support factors are equally superior.

Scientific research is set up to discover the truth, find solutions to challenges, and
improve human lives. Communication with neighboring countries and the use of their
knowledge contributes to the optimal use of water in agriculture, and, by joining a aquifer
organization, this creates the ground for correct and optimal consumption, as well as
increasing farmers’ incomes and the loans given to farmers during droughts. The above
can be one of the most important factors affecting the indigenous knowledge of the region.

The results of evaluating the factors affecting the sustainable management of agricul-
tural water resources in the optimal use of water in the agricultural sector showed that the
distribution of educational magazines and publications, the delivery of subsidized inputs to
recipients of water resources management, the type of exploitation system, farmers’ income,
and the level of mechanization were the preferred criteria. The results of this research
confirm those of Shahbakhsh et al. [1], Abbasian et al. [2], and Farrokhzadeh et al. [3]. The
existence of promotional activities, such as the distribution of magazines and publications,
increases farmers’ awareness of the sustainability of water resources, and authorities cre-
ate incentive amongst designers to promote the sustainability and optimal use of water
resources. Based on the factors affecting the sustainable management of agricultural water
resources in the optimal use of water in the agricultural sector, the educational-extension
factor, with a final weight of 0.37 is defined here as the first priority (Figure 3). The reason
for the superiority of the criteria was due to the use of publications, the use of radio and
television, holding classes and training courses, distributing educational-promotional mag-
azines and publications, using training workshops, and communicating with specialists
(agricultural promoters). Meanwhile, social factors, government, economic support, and
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farmers’ knowledge and information, with final weights of 0.24, 0.21, 0.13, and 0.03, are the
next priorities.

Figure 3. Final weight of options based on the indicators of factors affecting the sustainable manage-
ment of agricultural water resources in the optimal use of water in agriculture.

4. Conclusions

Water shortage is one of the main limiting factors for the development of economic
activities in the coming years. Iran is located in one of the driest regions in the world.
Increasing population and the limitations of water resources make the targeted management
of water resources even more necessary. Therefore, maintaining water resources and
applying proper management in the exploitation of the above resources, especially in the
agricultural sector, is of particular importance. The reason for this is that the production of
agricultural products is intended to meet food needs, and in the future, due to population
growth on the one hand and restrictions on arable land to limit water on the other hand,
meeting the country’s food needs will be a major problem.

Indigenous knowledge, which includes local beliefs, values and awareness, and their
social knowledge, is a part of the national capital of any ethnic group and is of particular
importance in the optimal use of water in the agricultural sector. In the present study,
fuzzy hierarchical analysis (FAHP) was applied separately to the factors affecting local
knowledge and sustainable management of agricultural water resources for the optimal use
of water in the agricultural sector. The criteria and study options were grouped according to
previous studies and using the opinions of experts, and the relationship between them was
examined. The results of evaluation of factors affecting indigenous knowledge in optimal
water consumption in agriculture indicated that, among the indicators used, indices of
relations with neighbors regarding the use of indigenous knowledge, membership in water
collectors, farmers’ incomes and drought loans, were superior to other indicators.

Based on results of this research, the following suggestions are presented:

1. To increase the level of indigenous knowledge of regional officials in relation to the
optimal and correct use of water in agriculture.

2. To use the experiences of neighboring countries for indigenous knowledge and opti-
mal use of agricultural water in the region.

3. To establish research organizations on activities and studies of indigenous knowledge
in the region with optimal water consumption.
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4. To hold training classes related to the sustainability of water resources.
5. To encourage and support farmers in using new irrigation methods.
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Abstract: This study combines measurements of dissolved inorganic carbon (DIC), total alkalinity
(TA), pH, earth observation (EO), and ocean model products with deep learning to provide a good step
forward in detecting changes in the ocean carbonate system parameters at a high spatial and temporal
resolution in the North Atlantic region (Long. −61.00◦ to −50.04◦ W; Lat. 24.99◦ to 34.96◦ N). The in
situ reference dataset that was used for this study provided discrete underway measurements of DIC,
TA, and pH collected by M/V Equinox in the North Atlantic Ocean. A unique list of co-temporal
and co-located global daily environmental drivers derived from independent sources (using satellite
remote sensing, model reanalyses, empirical algorithms, and depth soundings) were collected for this
study at the highest possible spatial resolution (0.04◦ × 0.04◦). The resulting ANN-estimated DIC, TA,
and pH obtained by deep learning shows a high correspondence when verified against observations.
This study demonstrates how a select number of geophysical information derived from EO and
model reanalysis data can be used to estimate and understand the spatiotemporal variability of the
oceanic carbonate system at a high spatiotemporal resolution. Further methodological improvements
are being suggested.

Keywords: ocean acidification; ocean carbonate system; dissolved inorganic carbon; total alkalinity;
pH; North Atlantic; spatiotemporal variability; earth observation; deep learning

1. Introduction

The global oceans constitute an important component in the global carbon cycle. They
are also a major sink of human-induced emissions of CO2. When CO2 dissolves under
typical ocean surface conditions, 90% of this CO2 is formed as HCO3

−, 9% as HCO3
2−,

and only 1% as undissociated CO2 (aq) and H2CO3 [1]. The four important parameters that
are needed to understand the ocean carbonic acid system include the dissolved inorganic
carbon (DIC), the total alkalinity (TA), the pH, and the pCO2 in surface water.

In the past decades, most of our understanding of the ocean carbonate system is de-
rived from in situ observations. Now, thanks to global networking programs, observations
have increased widely and consistently, due to ship surveys, the ARGOS project, and
mooring and autonomous platforms; furthermore, due to the availability of ever more
complex biogeochemical models, the understanding of ocean global and regional carbonate
system has advanced considerably. These activities provide accurate, long-term time series
f CO2 datasets, such as those found in the Surface Ocean CO2 Atlas—SOCAT—[2,3] and
the Global Ocean Data Analysis Project (GLODAPv2.2022), consisting of data products of
biogeochemical data collected through the chemical analysis of water samples, including
TA, DIC, and many others [4]. This information now shows that surface ocean waters show
around a 26% increase in concentration of hydrogen ions since 1860, which is equivalent
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to a drop in pH from 8.2 to 8.1 [5]. This change has been mainly attributed to the rising
anthropogenic emissions of CO2 [5].

From a measurement point of view, changes in pH occur on a large spatial scale and can
be influenced by different environmental parameters, especially at the local scale. Due to their
very nature, direct field measurements are inherently limited in spatial (time series, moored
stations) and/or temporal resolution (ship surveys). Earth observation (EO), on the other
hand, offers an avenue for expanding observations and analyzing the temporal and spatial
variability of the global ocean and its properties. While EO has proved to be a difficult tool for
the direct monitoring of seawater pH and its impact on marine organisms, satellite remote
sensing can indirectly measure this by providing us with a range of related physico-chemical
and biological processes occurring at the ocean surface at an unprecedented spatiotemporal
scale. In addition, even though in situ surface measurements offer a geographically limited
representation of the entire oceanic volume and its contents, remote sensing observations of
the global ocean become very important for the study of the carbonate system, due to the
fact that the change in ocean chemistry arises first in the ocean surface. Thus, environmental
satellites have great potential in this field.

At the local level, coastal communities are most vulnerable to a lowering pH, espe-
cially where the ocean chemistry is changing most rapidly due to multiple stressors. These
communities have the potential of being the worst hit, both economically and socially, espe-
cially those who derive benefits from calcifying organisms and other vulnerable species [6].
This explains the need for the rapid monitoring of such coastal waters.

This study asks the following research questions: (1) how can we provide information
on the state of ocean carbonate information (such as pH and other important carbonate
chemistry parameters) at suitable geographical scales that are useful for the management
of marine resources? and (2) how can a more robust monitoring of the ocean carbonate
system be made available; one that is chemically, biologically, and physically linked to a
good number of environmental drivers instead of a much smaller number of parameters,
such as salinity, temperature, and chlorophyll? [7].

In seeking to address these research questions, this study moves away from others
that have modeled ocean carbonate parameters at coarse temporal [8] and spatial scales
(around 500–1500 km; [9]). Instead, it aims to provide ocean carbonate system parameter
information at an unmatched high spatial (4 km) and temporal (such as daily) level via
gridded ocean maps, with the opportunity of assimilating this into daily operational
monitoring and forward the modeling that is used by a wide variety of ocean end users.
This goes perfectly in line with NOAA-SOCAN’s top research priorities, i.e., “to monitor key
ocean parameters across various spatial and temporal scales that will provide information
on mechanistic drivers of acidification and input parameters for predictive model algorithm
development” (known as ‘priority 1′) by developing “operational and qualitative models
that can transition to end users and adapting existing models to understand acidification”
(known as ‘priority 3′) from a “regional perspective as well as in specific systems” [10]. The
end-user sectors of this data may range from artisanal and small-scale or semi-industrial
fisheries and bivalve aquaculture [11] to coastal managers and policy makers whose actions
need to become more adaptive in the short term.

To resolve this challenging aim, this study uses the artificial neural network (ANN)
method to fix those specific, inter-related environmental conditions that can lead to partic-
ular states of the ocean carbonate system. It does so by following the approach that has
been taken by the latest ocean research that uses time-finite, individual-ship-based transect
measurements that cross extended oceanic areas such as the North Atlantic Ocean [12], the
northwest European shelf seas [13], and the North Pacific Ocean [14], among others.

The calculations that have been carried out in this study were performed at a very
high spatiotemporal resolution of a so-far unique list of environmental drivers that, in
combination, are able to describe and model the much-needed detailed spatiotemporal
variation of surface DIC, TA, and pH. This approach can lead to the prediction of a unique
set of high-resolution, daily DIC, TA, and pH regional ocean surface grid maps, with
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potential applications in future studies focused on the local dynamics of the carbonate
systems in both coastal and oceanic areas.

Now, the vast availability of daily EO data and related ancillary data are ideally suited
for the ANN’s model-free estimators and for predictive data mining. In this study, the
ANN allows the processing of different chemical, biological, and physical ocean values
by estimating the most probable field values on the basis of their previous patterns, as
observed out in the field. Depending on the algorithmic architecture, the ANN is able
to perform its estimations through association, clustering, and prediction of the required
output variables. While keeping in mind the practicality and the feasibility of this study, it
is very important to create an ANN architecture that is able to learn, and ultimately model,
the association between the ocean carbonate parameters and the largest possible number of
oceanic physicochemical and biological processes. The potential use of such a tool can be
extremely important for the validation of numerical ocean modeling and the prediction of
changes in ocean carbonate chemistry.

2. Materials and Methods

2.1. Study Area

The study area covers part of the Atlantic Ocean, comprising part of the Iberian Plain,
with the Canary basin on the east side and the North American basin on the western side,
reaching to the Puerto Rico trench.

Time series measurements show that the North and Central Atlantic constitutes the
largest reservoir of anthropogenic CO2 [15–17] and displays a surface ocean pH decline [18].
Moreover, a strong correlation between the pCO2 and the surface water pH was identified
by Bates et al., 2012 [19], with the latter showing a definitive decrease in the North Atlantic
Ocean between 1984 and 2012. Furthermore, in its 2015 and 2016 State of the Climate, NOAA
reported a world record in terms of large sea surface temperature and upper ocean heat
content anomalies in large swaths of the western North Atlantic Ocean [20,21]. This extreme
event can offer an interesting opportunity to continue studying the changes in DIC, with
respect to pH, TA, and sea temperature [22], whilst making use of the novelty of this study.

2.2. Field Data

This study made use of the best surface underway data available over the study area
for the period of 2015–2016. The Ocean Carbon and Acidification Data Portal of the National
Centers for Environmental Information provides only one set of surface underway data (NCEI
Accession 0154382) that contains the three core study variables of DIC, TA, and pH over
the study area covering the period of analysis (https://www.ncei.noaa.gov/data/oceans/
ncei/ocads/metadata/0154382.html (accessed on 20 February 2023)). Additional surface
underway datasets are available; however, these consist of an increasingly limited number of
observations (such as NCEI Accession 0157237, 0157352, 0157312, and 0110259), for which
suitable co-located and co-temporal satellite and model reanalysis data are not available.

2.2.1. In Situ Observations of the Carbonate System

From 7 March 2015 to 6 November 2016, the M/V Equinox (ID: MLCE) sailed across
the North Atlantic Ocean three times. Discrete surface underway measurements of seawater
DIC, TA, and pH were performed on all cruises (Figure 1). The details of the laboratory
methods onboard the M/V Equinox are well documented [23] as NCEI Accession 0154382.
This research was conducted in support of the coastal monitoring and research objectives of
the NOAA Ocean Acidification Program (OAP) and the Climate Program Office. The research
cruise covered an area from −78.9797◦ W to −10.3998◦ E and from 38.4622◦ N to 19.2893◦ S.

In addition to DIC, TA, and pH, M/V Equinox also collected sea surface tempera-
ture and sea surface salinity measurements with a documented uncertainty of ±0.001 ◦C
and ±0.005%, respectively (see https://www.ncei.noaa.gov/data/oceans/ncei/ocads/
metadata/0154382.html (accessed on 20 February 2023)). The range of the values collected
during the cruise mission is shown in Table 1.
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Figure 1. Sampling periods of in situ discrete underway samples of DIC, TA, and pH measured
by M/V Equinox (source: NCEI Accession 0154382) overlaid over bathymetry (source: GEBCO) for
Longitude −80◦ to −10◦ and Latitude +18◦ to +40◦. Inset: Winter 2015: Validation dataset 1; Autumn
2016: Validation dataset 2; Spring 2015: Validation dataset 3; Spring 2016: ANN training dataset. The
observations along the red transect were used to train the ANN for the prediction of DIC, TA, and pH.
The surface underway measurements shown in brown, yellow, and green were used to validate the
ANN algorithm against other independent datasets.

Table 1. Data value range and difference Δ along the transects M/V Equinox (ID: MLCE NCEI
Accession 0154382) for the entire cruise period.

Parameter Range Δ

SST (◦C) 15.2–27.5 12.3

SSS (PSU) 35.46–36.95 1.49

DIC (μmol.kg−1) 2025–2126 101

TA (μmol.kg−1) 2350–2439 89

pH 7.964–8.142 0.178

2.2.2. Remote Sensing Data and Reanalysis Data

Co-temporal and co-located met-ocean parameters that are considered to be somehow
connected with the ocean carbonate system were derived from independent sources using
earth observation satellite remote sensing (BD 1–7; PD 1–5), model reanalyses (PD 10),
and empirical algorithms (PD 6–8) (Table 2). The GEBCO bathymetry (PD 9) was derived
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from a mix of ship track soundings, with the interpolation between soundings guided by
satellite-derived gravity data.

Table 2. Co-temporal and co-located environmental drivers derived from independent sources that
range from satellite remote sensing and model analyses to empirical algorithms were collected.

Parameter Code Source Resolution Reference

Biological drivers

Water-leaving surface reflectance (Rrs)
at 412, . . . 555 nm) BD 1 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Rrs 443/555 BD 2 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Rrs 531/555 BD 3 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Rrs 443/488 BD 4 MODIS (Aqua, Terra) 0.042◦, daily, global [24,25]

Chlorophyll-a BD 5 MODIS (Aqua, Terra) 0.042◦, daily, global [26]

Particulate Inorganic Carbon (PIC) BD 6 VIIRS 0.042◦, daily, global [27]

Particulate Organic carbon (POC) BD 7 VIIRS 0.042◦, daily, global [28,29]

Physical drivers

Sea surface salinity PD 1 SMOS 0.05◦, daily, global [30]

Sea surface
temperature PD 2 OISST 0.25◦, daily, global [26]

Wind speed PD 3 ASCAT 0.25◦, daily, global [26]

Wind direction PD 4 ASCAT 0.25◦, daily, global [26]

Wind stress PD 5 ASCAT 0.25◦, daily, global [31]

Transfer velocity (W) PD 6 Based on ASCAT 0.25◦, daily, global [32]

Transfer velocity PD 7 Based on ASCAT 0.25◦, daily, global [33]

Transfer velocity PD 8 Based on ASCAT 0.25◦, daily, global [34]

Bathymetry PD 9 GEBCO 0.083◦, global [35]

Mean layer depth PD 10

Global ocean 1/12◦ physics
analysis and forecast updated
daily. Copernicus marine en-

vironment monitoring service.

0.083◦, daily mean,
global analyses,
50 depth levels

[36,37]

2.2.3. Justification for the Selection and Use of Environmental Drivers

Figure 2 shows the linkage between the various environmental drivers used in this
study and how these were used to model the target ocean surface DIC, TA, and pH. The
environmental drivers can be seen to represent the following three proxies of oceanic
processes:

1. Kinetic forcing, by looking at atmospheric stability (proxies, such as transfer velocity,
that affect the partial pressure of CO2 (pCO2), wind speed, wind direction, and wind
stress on the ocean surface);

2. Thermohaline forcing, by looking at proxies such the sea surface temperature and the
sea surface salinity;

3. Biological forcing, by looking at proxies such as chlorophyll-a, surface reflectance and
its ratios, and particulate organic and inorganic carbon and its ratios;

4. Water-side convection and upwelling, by looking at proxies such as mixing layer
depth and bathymetry.
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Figure 2. Linkage between the various groups of environmental drivers and how these were used to
model or predict the three target parameters of surface DIC, TA, and pH. The environmental drivers
can be seen as representing some of the main met-ocean processes influencing these three target
variables (based on [38]).

These four processes were used to closely represent as much as possible the forcing
that leads to the derivation of DIC, TA, and pH using our algorithm. Native resolution
grids of all of the environmental drivers considered for this study, including PD1, were
resampled to a common 0.04◦ × 0.04◦ global raster grid for a suitable retrieval of all co-
located data. Table 3 provides a summarized justification for the inclusion of these drivers
into the predictive algorithm.

Table 3. Justification of the use of the biological and physical drivers of surface DIC, TA, and pH
used for this study.

Environmental Driver Summary Reference

Transfer velocity

The transfer velocity describes the efficiency exchange
of CO2 across the air–sea interface and dissolution in
water on the basis of ΔpCO2 between the water and
the atmosphere.

[32–34,39–45]

Wind speed (U10) and direction (DD)

The wind speed determines the structure and fluxes at
the air–sea interface. It has an important effect on the
magnitude and direction of the CO2 flux across the
air–sea interface, which differs according to the
prevalent wind and turbulence regimes.

[46–53]

Mean layer depth

This is the depth at which the density difference from
the surface reaches 0.02 kg m−3. Within this layer, the
properties of density, temperature, and salinity are
more uniform, due to the mixing. When this layer is
well-defined, a significantly enhanced transfer velocity
within it is observed.

[36,37,54–57]
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Table 3. Cont.

Environmental Driver Summary Reference

Wind stress Wind stress is able to affect the vertical transport of
dissolved gases, such as CO2. [31]

Sea surface salinity

Sea surface salinity has been used as a proxy indicator
for pCO2 using statistical analysis and artificial neural
networks. CO2 solubility is a function of temperature
and salinity.

[31,58–61]

Sea surfacetemperature
Sea surface pCO2 depends on the SST, such that when
the SST increases by 1 ◦C, the surface pCO2 increases
4-fold.

[26,62–68]

Depth

The depth and structure of the sea bottom can
influence the intensity of upwelling. High levels of
CO2 from deep water can be brought to the surface
through upwelling and released into the atmosphere.
This can be enhanced in the case of an existing
deep-water circulation.

[69]

Biological activity
Photosynthesis acts to bind CO2 into organic matter
and can affect DIC concentration. Studies show that
chlorophyll-a correlates well with pCO2.

[26,67,70]

Particulate Organic carbon (POC)

POC is a proxy of coccolithophore production, which
in turn is often used as a measure of net productivity.
The phenomenon of sinking POC is part of the
biological pump, which provides a mechanism for the
sequestration of carbon in the deep ocean.

[25,71]

Particulate Inorganic Carbon (PIC)

PIC is used as a measure of net calcification by
coccolithophores. The PIC:POC ratio is considered to
be an important term for modeling carbon cycling in
the oceans and, therefore, is a good indicator of
changes in seawater CO2.

[72–74]

2.3. Algorithm Development and Validation
2.3.1. Training of the ANN

For this study, a back propagation neuron (BPN) algorithm was trained by supervised
learning by providing it with values of the co-located and co-temporal environmental
drivers (Figure 3) and the corresponding DIC, TA, and pH (Figure 2) that constitute the
final output for this study. Since the BPN algorithm is central to much current work on
learning in NN, and has been independently invented several times (e.g., [75,76]), we used
this algorithm to perform our desired task. The BPN algorithm feeds forward the input
training pattern, which is then followed by the back propagation of the associated error,
and which is finally expressed as a weight adjustment.

In order to supply training power to the BPN algorithm, the in situ Spring 2016 dataset
(i.e., 16–24 April 2016) measurements (Table 1) were used as the values of the output
neurons, while their corresponding (i.e., co-located and co-temporal) physico-chemical
and biological drivers (Table 2), which were obtained independently, were used as the
values of the input neurons. The location of the sampling points spanned across the entire
North Atlantic Ocean, and thus presented the desired wide-ranging variability in both
the physico-chemical and the biological conditions, which in turn led to the value range
of DIC, TA, and pH observed during that period (Table 1). This process was carried out
to optimize the BPN weights, such that the error function became minimal. The choice
of the input (predictors) and output (predictands) dataset was targeted towards having
a BPN algorithm that was able to model the output variables under different physical
environmental conditions within the area of interest.
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During this algorithm training, the net output was compared with the target value and
the resultant error was calculated. It was here that the error factor was distributed back to the
hidden layer, and the weights were updated accordingly. The error factor was calculated in a
similar manner for all of the units, and their weights were updated simultaneously.

The ultimate objective here was to reduce this training error for the BPN algorithm
until the ANN learned on the basis of the training data. The weights were gradually
adjusted by means of a learning rule until they were capable of optimizing the predictive
modeling of DIC, TA, and pH, as shown in Equation (1), as follows:

f (DIC, TA, pH) = (U10, DD, wind stress, transfer velocity, depth, SSS, chlorophyll-a, SST,
Rrs 412, Rrs 443/555, Rrs 531/555, Rrs 443/48, PIC, POC, MLD)

(1)

Multi-source, geo-located EO and model reanalysis datasets (Level 4, SMI format)
covering the period of 16–24 April 2016 were derived (Figure 3) from the co-located and
co-temporal values (corresponding to BD 1–7 and PD 1–10) at the points shown in red
(i.e., Spring 2016: ANN training set) in Figure 1. Choosing the right number of hidden
neurons is usually performed through trial and error [77]. The ANN optimal topology
hinges on the complexity of the relations between inputs and outputs. In this study, two
sets of hidden neurons were tested: n = 5 and n = 10, where the assumption was that the
greater the number of nodes, the smaller the error on the training set. However, at a certain
point, the generalization began to increase, and the first structure (i.e., n = 5) was chosen on
the basis of the smallest value for RMSE that was achieved during the training phase. The
best topology found in this study consisted of an input layer with 17 neurons, 5 neurons in
the hidden layer, and an output layer consisting of 3 neurons whose output gave the scaled
DIC, TA, and pH (Figure 4). The training algorithm adjusted the bias and weighting factors
according to the negative gradients of the error cost function [58] for the final training
pattern.

The ANN training process algorithm for DIC, TA, and pH is shown in Figure 4
as follows:

1. The collection of co-located and co-temporal input (i.e., independent environmental
drivers) and co-located and co-temporal output (i.e., cruise measurements of DIC, TA,
and pH) datasets;

2. The data were normalized and scaled to the range of 0 to 1 to suit the transfer function
in the hidden (sigmoidal, discrete; logistical implementation) and output layer (linear):
Â = (A − Amin)/(Amax − Amin), where Â is the normalized value and Amin and Amax
are the minimum and maximum values of A, respectively;

3. Neural network designing and training;
4. The testing of the ANN topology.

The training of the BPN algorithm started by using a small, random weight. It
propagated each input pattern to the output layer, compared the pattern in the output
layer with the correct one, and adjusted the weights according to the back propagation
learning algorithm. After the presentation of around 10,000 patterns, the weights converged,
i.e., the network picked up the correct pattern, and the error-correction learning stopped.
In so doing, the network systematically reduced and/or reinforced the weights of the
connection architecture and all of the ‘knowledge’ in the BPN was then contained in the
weights. Naturally, the magnitude of this error depended on the choice, relation, quality,
and accuracy of the inputs (predictors).

The predictive power of the BPN algorithm was maximized by means of the follow-
ing steps:

1. A large number of iterations was used (circa 10,000) in order to minimize the process-
ing error of the training set as much as possible. The training was stopped when a
very small and stable training error was achieved (circa 0.0007);

2. The number of learning samples consisted of entire sets of measurements spanning
the northwestern Atlantic, with its inherent physical (including bathymetry, surface
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salinity, winds, wind stress, temperature, and mixed layer depths) and biological
(chlorophyll-a, dissolved organic carbon, and surface-leaving reflectance) parameters,
in order to model the highest possible scenario for appropriate learning under a wide
range of variability. This training procedure can be further improved by including
input and output variables with a greater degree of variability, such as measurements
covering other regional areas and time periods;

3. An optimal number of hidden units (n = 5) was found with the sigmoid activation
function and a liner output unit to derive an optimal ‘expressive’ power of the network.
The present training set presented a ‘smooth’ function and therefore the number of
hidden units needed was kept to a minimum (n = 5). For strongly fluctuating functions,
more hidden units are generally needed, which does not seem to be a requirement for
our study.

 

Figure 4. The network architecture of the BPN model (left) showing 5 neurons in the hidden layer
and the respective weights (in red and blue) of each connection. The values in each of the neurons
is a scaled down value (1 decimal place) of the input, hidden, and output neurons, corresponding
to one possible solution between the proxy environmental drivers (predictors) and the values for
DIC, TA, and pH (predictands). Layer 1 (input): 17 neurons (see Table 1 for a list of input neurons).
Layer 2 (hidden): 5 neurons. Layer 3 (output): 3 neurons: DIC, TA, and pH. Steps involved in the
development of the BPN model (right).

2.3.2. Performance of the BPN Algorithm
Entire M/V Equinox cruise transect datasets were reserved and used as independent

datasets to validate the performance of the BPN training method. This is a common practice
that ensures that the model can produce reliable estimates outside the range of the learning
data (generalization capabilities) [78]. Thus, by assigning the trained BPN algorithm with
the values of the fixed set of co-located and co-temporal input neurons as the physico-
chemical and biological drivers, the resulting ANN-output-modeled DIC, TA, and pH were
validated against the assigned datasets (Table 1).
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The precision of the machine learning approach was evaluated, which was based
on the trained BPN model, through a comparison with the M/V Equinox dataset using
the mean bias (MB; Equation (2)) and the root mean square error (RMSE; Equation (3)),
as well as the slope of the linear regression between the ANN-retrieved values and the
corresponding in situ measured values, as follows:

MB = Σn,i = 1(xi − yi)/n (2)

RMSEfo =

⎡
⎢⎣∑N

i=1

(
z fi

− zoi

)2

N

⎤
⎥⎦

1/2

(3)

where the mean bias is how far the model is from the ground truth data and RMSE
determines the error on the test set (or generalization error). The objective of the best BPN
model topology was based on the lowest possible metrics for the entire test data.

2.4. Construction of Gridded DIC, TA, and pH Gridded Data for 30 October 2016

Finally, the ability of the trained BPN algorithm to process and generate a huge number
of DIC, TA, and pH data points was applied to a 1.1 million km2 subset area located in the
mid-North Atlantic Ocean, represented by a total number of 63,360 gridded data points
(each encompassing the full set of 17 environmental drivers when available). In view of
the extensive retrieval and processing requirements, these data points were based on the
validated ANN algorithm and initiated by the physico-chemical and biological drivers that
were retrieved on 30 October 2016.

The geographical extent of this area was west −61.00◦; east −50.04◦; west–east 10.96◦;
south 24.99◦; north 34.96◦; and south–north 9.96◦. This area was chosen on the basis of its
interesting hydrodynamics, as well as on its inter-annual trends in CO2 concentrations. The
large temporal and spatial gradients of pCO2, as well as its variability driven by a diversity
of physical and biological processes, make the analysis of the carbonate chemistry over the
region both interesting and challenging [79]. The study’s region of interest is influenced
by the North Atlantic gyre and has a seasonal surface temperature variation of about 8 to
10 ◦C, occurring alongside a fluctuation in the MLD between the Northern Hemisphere’s
winter and summer seasons. On average, the MLD deepens to 200 m in winter up to about
10 m in summer. Generally, nutrients remain below the euphotic zone for most of the year,
resulting in low primary production. During winter convective mixing, nutrients penetrate
the euphotic zone, causing a short-lived phytoplankton bloom in the spring. All of these
seasonal changes ultimately influence the total amount of CO2 in the seawater.

All of the grid-point predictor variables were inserted in the BPN algorithm and the
values of DIC, TA, and pH were modeled for that day for the entire area, with a native
grid size of 0.04167◦. On 30 October, there was a total of 7897 empty grid cells in this area
that were attributed to cloud cover and, therefore, the lack of optically retrieved remotely
sensed predictors (i.e., chlorophyll-a, Rrs, PIC, and POC).

3. Results and Discussion

3.1. Validation between Remotely Sensed- and Cruise-Derived SST and SSS Data

Table 4 shows a strong correlation between SST and SSS derived from the full cruise-
segmented datasets (see Figure 1) and the remotely sensed PD1 and PD2.

3.2. Performance of the BPN Algorithm

By means of the independent validation datasets, we evaluated the performance
of the algorithm by comparing the BPN-retrieved values of DIC, TA, and pH with the
measurements that were taken by M/V Equinox (NCEI Accession 0154382) elsewhere,
during the different time periods.
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Table 4. Correlation between same variables obtained remotely and by M/V Equinox [ID: MLCE;
7 March 2015 to 6 November 2016] cruise-segmented datasets. Their p-value is <0.00001 and all of
the correlations are significant at p < 0.05.

Sampling
Period

Pearson
Correlation R–Sea Surface

Temperature

Pearson
Correlation R–Sea Surface

Salinity

7–8 March 2015 0.78 0.93

28 April–6 May 2015 0.99 0.69

16–24 April 2016 0.98 0.90

3.2.1. M/V Equinox—7–8 March 2015

Figure 5 shows the distribution and the statistical significance of the data points
within the range that is shown by both in situ and ANN-estimated values, as well as the
existence of outliers. The co-located, ANN-estimated DIC, TA, and pH values were in very
good agreement with the surface underway measurements given that the BPN algorithm
was trained on the data that were collected during 28 April–6 May 2015 along the entire
North Atlantic width. The results show that the mean biases for DIC, TA, and pH are
−2.5 μmol.kg−1, −3.2 μmol.g−1, and 0.0048, respectively. Compared to the range of DIC,
TA, and pH that is shown by the surface underway measurements along all of the transects
(Table 1), the values for the mean bias show low variations and a good ANN algorithm
performance. Importantly, apart from the fact that no outliers were detected, the overall
dispersion of the ANN-estimated values is well within the range of those shown by the
M/V data. Some skewness is shown by the ANN-estimated pH and, to a lesser extent, for
DIC. The similarity between these three sets of data is statistically significant at the 99%
confidence level.

These results point to an effective BPN algorithm that is able to capture the information
provided by the chosen environmental drivers. It is important to note that for oceanic and
coastal regions with a different matrix of environmental drivers (such as for areas with
high chlorophyll-a, where the net productivity is likely to perturb the carbonate system
more, or in areas where there are river inputs), further learning of the BPN algorithm is
therefore recommended.

 

Figure 5. Median and variability of ANN-estimated values fall within those shown by discrete
underway measurements (Winter 2015 cruise transect). The means of the two datasets are similar at
the 99% C.L.

3.2.2. M/V Equinox—30 October to 6 November 2016, North Atlantic Ocean (20◦ N to
40◦ N; −80◦ W to −10◦ W)

Similarly, Figure 6 shows the resultant statistical evaluation when the ANN-estimated
values were compared against the corresponding in situ data. As for the previous validation
set, the predictions for the October–November 2016 dataset were in good agreement with
the co-located and co-temporal M/V Equinox data. Overall, the ANN-estimated data show
less dispersion than the in situ values and that the spread of the former is well within that
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shown by the data from M/V Equinox. The few ANN-estimated outliers are well within
the interquartile range of the M/V Equinox data.

 

Figure 6. Median and variability of ANN-estimated values fall within those shown by discrete
underway measurements (Autumn 2016 cruise transect). The means of the two datasets are similar at
the 99% C.L.

The performance indicators between the modeled and the validation dataset 1 (i.e., the
7–8 March 2015 in situ dataset) point to a stronger estimation than in the case of the second
validation dataset. This is most likely because dataset 1 is based on the same seasonal
variations of the carbonate chemistry when compared to the second validation sample
that was collected during the Autumn of 2016. The mean bias values generally show a
non-Gaussian distribution and spread, with the exception of TA for both of the validation
datasets, and pH for the Spring 2015 dataset (Figure 7). In the latter case, the residuals are
skewed toward lower modeled values.

The uncertainties that were inherent in the in situ measurements were not included
in the metadata information within NCEI Accession 0154382, and therefore this element
of uncertainty attributed to the surface underway observation could not be evaluated.
Overall, however, the results’ metrics are very comparable to the validation metrics that
were obtained by Fourrier et al., for their neural network estimation of pH and total
alkalinity in the Mediterranean [80]. It is rather complex to identify the main sources of
the observed metric errors in view of (1) the procedure that was used by this study and
(2) the uncertainty embedded in the in situ data that were used for both the BNP algorithm
training and its validation; however, this bias could be expected to decrease if the following
steps are taken:

1. The further training of the BNP algorithm. In so doing, the training process of the
BNP algorithm should allow for further ‘learning’ from the local/regional variability
of both the predictors and predictands;

2. Although the neural networks have the ability to ‘generalize’, the additional retrieval
of in situ measurements of surface DIC, TA, and pH from cruises can be carried out
during other seasons over the same area, and combining this with the training set that
was used for the BNP algorithm might prove useful;

3. Expand the range of predictors (i.e., environmental drivers; see Section 3.3.2 below).
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(a) M/V Equinox: 7–8 March 2015, off Bahamas and Dominican Republic. 

(b) M/V Equinox: 30 October–6 November 2016, North Atlantic Ocean. 

Figure 7. Histogram reporting the distribution of the mean bias values for DIC, TA, and pH.

3.3. Model Applications: ANN-Derived Ocean Variability of DIC, TA, and pH over the Mid-North
Atlantic Ocean

Based on the previous two validation studies that span different time periods and
geographical areas (where each area manifests its own variability in terms of the magnitude
of the environmental drivers), we were able to apply the validated ANN topology to model
DIC, TA, and pH within the ROI described in Section 2.4 at a resolution of 0.04167◦. The
final product was a set of gridded, time-specific geophysical maps of these predictands
(i.e., surface DIC, TA, and pH). The resolution of these maps took on the native resolution
of the input (i.e., predictor) datasets (i.e., 17 environmental drivers). If needed, these
raster outputs can be subsequently re-gridded to coarser resolutions in order to (1) further
understand the spatiotemporal variability of the carbonate system over specific oceanic
regions, (2) comprehensively map the carbonate system components in support of the
cruise data, and (3) input the predicted values into numerical modeling systems (such as
ocean forecasting models).

Figure 8a–d represents the gridded output of DIC, TA, and pH maps for the area
of interest that were produced by the ANN algorithm. The data gaps represent that no
ocean surface data are available whenever clouds obstruct part of the field of view of the
optical satellite sensors, at which points the ANN algorithm nullifies the predictions. These
high-resolution data representing the carbonate system of the area can be exploited by other
modeling activities, including data assimilation for general circulation models [81] and
improved model reanalyses [82], as well as the identification of daily trends over sensitive
marine areas [83].
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Figure 8. Modeled, gridded (a) DIC, (b) TA, and (c) pH maps for the ROI produced by the ANN
algorithm. The spatial resolution is 0.04◦ × 0.04◦, which corresponds to the native spatial resolution
of some of the predictands. The (d) pCO2 map valid for 30 September until 31 October 2016 has been
inserted for reference [78]).

Figure 8d shows how the co-temporal spatial distribution of pCO2 that has been
derived by the Landschützer et al., dataset [84] and grid-resampled over our exact area
of study is similar to the way that the ANN-estimated pH is distributed. It clearly shows
higher pCO2 levels over areas with a lower pH estimate (Figure 8c). This relationship
corresponds with the results that were obtained by Sutton et al., (2014) and by Bates et al.,
(2012) when they studied the variability between pCO2 and pH over the Pacific Ocean
and the Atlantic Ocean surface, respectively [19,85]. In our study, the subtle gradient in
pCO2 from east to west at around 27◦ N in Figure 8d is well captured by the modeled
spatial variation of the pH high resolution field over the same area (Figure 8c, including
the relatively lower pH values corresponding to the northerly pCO2 ‘tongue’ originating
from around −58◦ W, 26◦ N (Figure 8d).
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3.3.1. Validation of the Modeled Data over the Mid-North Atlantic Ocean

In Situ Cruise Data

The results of the data validation against the in situ datasets available over the same
area using validation dataset 3 are shown in Table 5. The in situ cruise transect (comprising
StationIDs 1120000–1160000) did not include any pH measurements along the way. The
linear regression analysis shows that the correlation between the TA datasets is statistically
significant (p < 0.05; 95% C.L.). Moreover, the regressed observations and ANN-estimated
DIC and TA values fall within the predicted 95% confidence level of the regression line.

Table 5. Corresponding ship-based and ANN-estimated values for DIC, TA, and pH. In situ pH
measurements were not collected by M/V Equinox during part of the transect of 28 April–6 May 2015
(Validation dataset 3). (n/a: not available). The location of the individual StationIDs is as follows:
1120000: (31.1390◦ N, −60.5765◦ W); 1130000: (31.3795◦ N, −59.3347◦ W); 1140000: (31.7085◦ N,
−57.6472◦ W); 1150000: (32.1818◦ N, −55.2020◦ W); 1160000: (32.7458◦ N, −52.2730◦ W); 1200000:
(34.0460◦ N, −45.4433◦ W); and 1330000: (27.5105◦ N, −78.8207◦ W).

Discrete Underway
Measurements

ANN Estimation Mean Bias

StationID
DIC

(μmol·kg−1)
TA

(μmol·kg−1)
pH

DIC
(μmol·kg−1)

TA
(μmol·kg−1)

pH
DIC

(μmol·kg−1)
TA

(μmol·kg−1)
pH

1120000 2074 2387 n/a 2064 2385 8.111 10 2 n/a

1130000 2078 2397 n/a 2066 2378 8.105 12 19 n/a

1140000 2076 2404 n/a 2071 2368 8.099 5 36 n/a

1150000 2081 2400 n/a 2066 2375 8.104 15 25 n/a

1160000 2083 2392 n/a 2062 2384 8.112 21 7 n/a

1200000 2078 2382 8.073 2075 2378 8.096 3 4 −0.023

1330000 2095 2390 8.073 2073 2388 8.099 21 1 −0.025

Hindcast Biochemistry Data

In order to extend the validation of our BPN algorithm, additional independent sources
of daily and/or monthly 2016 oceanic surface pH maps were sought; however, this type of
dataset proved to be scarce, whilst 2016 daily/monthly gridded oceanic TA and DIC data
are non-existent. As of now, the Copernicus Marine Service (CMEMS) makes available the
following three datasets: (1) the Global Ocean Biochemistry Hindcast, which consists of
both daily and monthly gridded maps (however, the geographic information about pH is
only available at a monthly temporal resolution at 0.25◦ by 0.25◦ grid resolution); (2) the
Global Ocean—in situ reprocessed carbon observations—SOCATv2021, which provides
point measurements of DIC, TA, and pH, such as NCEI Accession 0154382; and (3) the
Global Ocean Surface Carbon database, which provides pH data on a monthly basis at 1◦
by 1◦ grid resolution.

The correlation between the modeled pH (for 30 November 2016) and that derived
from the Global Ocean Biochemistry Hindcast (16 October–15 November 2016 at 00:00 h
UT) over the area of study is shown in Figure 9. This hindcast database provides monthly
data starting as of the 16th day of each month, and therefore this data represents the average
value for an entire month. In spite of their slight temporal difference, the two datasets are
shown to be strongly correlated together, with an R2 of 0.81 (Figure 9c), indicating a good
statistical similarity, as well as an impressive spatial similarity for pH (Figure 9a,b). From
an atmosphere–ocean dynamical point of view, this correlation points to a slowly changing
pH distribution for the study area over a monthly scale.
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(c)

Figure 9. pH distribution map (a) ANN-estimated pH valid for 30 October 2016; (b) extracted from
the Global Ocean Biochemistry Hindcast valid for 16 October–15 November 2016, and (c) scatterplot
between (a) and (b) (R2 = 0.81).

3.3.2. Caveats and Recommendations

This study is limited to the estimation of some elements of the carbonate chemistry
for the mid-latitude of the North Atlantic Ocean based on their variability during the late
winter, spring, and autumn of 2015 and 2016. Whether this neural network algorithm is
applicable to other regions of the global oceans and/or for other time periods needs further
investigation. The further development and training of the ANN algorithm is therefore
recommended. This can be carried out by incorporating (1) a larger scalar variability of
the same environmental drivers that are used at the highest spatiotemporal resolution
possible in order to improve the learning of the BPN model, and (2) new environmental
drivers, such as daily air–sea surface heat fluxes, 2 m air temperature, and air pressure
at the highest spatial resolution possible. These may include freshwater influx through
precipitation and conditions of the air–sea interface, such as heat fluxes (latent and sensible)
and related physical values (such as the sub-layer depth [46]). The atmospheric conditions
at sea level are an important parameter that influence the solubility of CO2 in a unit volume
of liquid [86]. Increasing the range of EO-based environmental drivers is now becoming
more technically feasible, thanks to cloud servers and computing. Equally important
would be the derivation of pCO2 as another predictand from our artificial neural network
algorithm [87]. Due to the limited time available in obtaining high resolution atmospheric
and ocean modeled data, the inclusion of these additional environmental drivers was
beyond the scope of the present study. The incorporation of (3) dynamical adjustments
made to numerical ocean models [88] on the basis of chosen environmental drivers may
further enhance the accuracy of the BPN algorithm. For example, it is necessary to take
time-dependent temperature variations into account whenever the wind stress is estimated
since it varies by more than a factor of two between 0◦ and 30 ◦C because of its dependence
on temperature (the Schmidt number).

It is expected that the demand for high resolution DIC, TA, and pH maps, as estimated
by deep learning, will, for many reasons, increase in the future. One important use is their
support in the monitoring of proposed Ocean Acidification Refugia (OAR), such as the
likes of extensive seagrass meadows and dense algal beds [89,90], and algal boundary
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layers [91,92], slow-flow habitats [93], deep-sea mounts [94], and areas that are isolated
from ocean upwelling [95,96]. These are examples of highly localized areas that can vary
dramatically across spatial scales from few millimeters (in the case of algal boundary layers)
to hundreds of meters squared (such as in the case of extensive seagrass beds), with no
clear criteria as to what makes each area a potential OAR other than the observed transient
increases in seawater pH relative to the surrounding waters. Kapsenberg and Cyronak
(2019) point out the lack of clear, agreed-upon functional criteria for OAR in the context of
climate change, which makes it difficult for managers, legislators, and scientists to assess
where to invest management efforts [97]. In this regard, this study becomes promising as a
way to provide a means by which the daily determination of carbonate chemistry can be
made available across multiple spatial scales down to at least a 4 km2 horizontal resolution.
In doing so, new target refugia can be proposed for research and management purposes.

4. Conclusions

Changes in ocean carbonate chemistry are a large spatiotemporal scale phenomenon
that certainly needs to be monitored at the local scale. This study addresses its first research
question by showing a way to produce high resolution, accurate, gridded maps of DIC, TA,
and pH that are ideally suited for more localized ocean carbonate studies and applications.

Ship-based sampling remains subjected to limited ship time and human resources,
costs, and weather conditions that prevent sampling in specific areas or at certain times of
the year. Yet, they remain fundamental for numerical model validation and initialization
tasks. This study shows a way to generate very-high-resolution gridded maps of ocean
surface DIC, TA, and pH using an ANN approach in a robust and efficient way. This was
carried out by addressing the second research question of this study. The future availability
of more EO products hosted by cloud-serving computing environments and deep learning
will soon be a determining factor towards the future automation of the synthesis of similar,
highly detailed, daily carbonate chemistry maps for the global oceans. This technology
will definitely help various ocean-related communities to better mitigate and adapt to the
expected long-term changes. This is why we feel that high resolution EO products, coupled
with deep learning, will provide us with an indirect way to monitor the chemical changes
in seawater at an unprecedented resolution.
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Abstract: The heterogeneous ecosystems in the Mediterranean Basin (MB) are becoming sensitive
to water stress. To investigate the climatic stress, a water budget study was conducted over the
basin using TerraClimate simulations for a long temporal range (1990–2020). According to the
budget accounting, forested regions received the highest precipitation (P) on average compared to
other land use types (annual mean ~≈ 633 mm yr−1), and even then, they were in a water deficit
state (−0.42 mm yr−1). Tree plantations in North Africa (Libya and Morocco) were also in a water
deficit state; however, their average P was very low (≈12 mm yr−1) compared to that of northern
parts of the MB, and the average Actual Evapotranspiration (AET) was ≈15 mm yr−1. Also, the
water balance in other land use systems (rain-fed, irrigated croplands, and rangelands) was either
negative or near zero. As a whole, the basin’s average annual P was ≈538 mm yr−1, the annual
average AET was ≈415 mm yr−1, and the runoff (Q) was equivalent to 123 mm yr−1, which shows a
strong influence of ET over the region. Since runoff was negligible in most dry areas, the AET’s large
contribution was notable in the North African base of the Atlas Mountains including the Nile delta
region. This indicates that precipitation and evaporation are the principal mechanisms of the water
balance in the MB. The result shows strong climate variability over Southern Europe, Turkey, and
the western Balkans in the recent years, affecting the AET and making their land use systems more
vulnerable to water stress. This benchmark study signifies the consistent need for water storage in
the Mediterranean vegetation systems of the basin. It also indicates two distinct climate clusters for
water balance modeling.

Keywords: Mediterranean basin; climate fluctuations; water deficit; Mediterranean ecosystems;
Budyko curve

1. Introduction

In the Mediterranean climate, changes to freshwater availability directly affect total
annual precipitation volumes. A rise in temperature also increases the evaporative demand.
These effects bring variations in the water balance of the MB, and their frequent monitoring
is significantly important to maintain socio-economic balance in water use and distribu-
tion. Such long-term monitoring also helps in understanding the nature of hydro-climatic
fluctuations in the basin, which can also be human evolved. However, climatic effects are
the prime contributor to the hydrological imbalances in the arid and semi-arid production
systems of the MB, as these systems are more vulnerable to freshwater decline. Recent
studies envisaged that the MB would experience an aridity of more than twice its present
extent with future climate changes [1,2]. An increase in drought frequency and warm
spells has also been documented in the MB in the last 40 years (1979–2018) [3,4]. These
dry weather events are predicted to be more pronounced in hyper-arid regions like North
Africa, southern Spain, and the Middle East [5]. Frequent dry spells, especially during the
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crop growing season, can increase water demand and can make basin ecosystems more
sensitive to water stress [6]. Changes such as late springs, coupled with freshwater decline,
are already affecting the net ecosystem productivity of the basin [7]. By 2050, the MB will
experience more water deficit with a 30–50% decline in freshwater resources [8]. In such a
case, an accurate assessment of the water budget is extremely important to conduct and
control supply and demand imbalances.

Many studies found Evapotranspiration (ET) as an important hydrological flux in con-
text with surface and deep surface responses to climatic variations [9,10]. It is also a principal
water-extracting component in the most arid regions, and its accurate quantification along
with precipitation is becoming more critical with the growing water scarcity in the basin.
Several studies assessed the Mediterranean water budget using ET at various scales with a
variety of projections and methodologies, i.e., Med-CORDEX [11], the Weather Research
and Forecasting model [12], the bucket with a bottom hole (BBH) model with RCMs SMH-E
and SMH-B [13], the LPJ model [14], and the transient model [15]. A few studies used
the water budget equations with additional parameters, or the runoff or ET estimation at
basin scale, while some modified water balance methods for region-specific studies in order
to carry out the water budget explicitly [16–21]. Usually, in the majority of water budget
estimations, the interpolated or gridded datasets of precipitation (P), actual ET (AET), and
runoff (Q) are used, which are either simulated with climate or hydrological models or
derived from reanalysis climate data. Some studies compared the budget inferences from
different data sources and compared their associated uncertainties or absolute errors in
budget estimates. Since the accuracy in estimations is a priority in hydrological assessments
in order to set reliable benchmarks for long-term water management, it is necessary to
account for and fix large errors in budget closures with associated uncertainties. For this
study, we used the recently released monthly TerraClimate product for the water budget
evaluation and Budyko curve analysis to investigate the water-limited state in different
parts of the basin. We also assessed the water stress conditions in various land uses (wetland,
agriculture, forest, and urban) at a plausible resolution (1 km). The TerraClimate product
has already gained confidence in various hydrological assessment studies, i.e., in closing
a water budget [18], freshwater flux differences [22], the impact of extreme events on the
budget [23] and has also been validated with in situ data in various locations.

The terrestrial water budget is mainly constrained by energy and water limitations.
These limitations are determined by the simple Budyko hypothesis. This technique is robust
for evaluating water resources [24] in data scarce regions at various scales, i.e., global [25,26],
national or large river [27], and basin-scale [28,29]. It relates the long-term average of a
basin’s actual evapotranspiration (AET) to its potential evapotranspiration (PET) and
precipitation (P) in a semi-empirical way. It has many applications in hydrological studies;
for instance, Li and Quiring (2021) [30] used the Budyko framework to investigate spatial
heterogeneity in the factors that control the water balance, while looking at the importance
of forest coverage as a function of climate. Wang and Hejazi (2011) [31] developed a
decomposition method using the Budyko framework, to link discharge variability with
hydrological components. Xu (2011) [32] also used a Budyko-like framework to develop
a regression model and decompose the contribution of anthropogenic activities to the
reduction of water resources in a basin. Our study quantifies the current nature of the
water balance at the annual time step, using a first-order water balance approach and a
Budyko framework to derive clusters with terrestrial water balance components. We also
accounted for potential water storage differences among the existing land use patterns in
the MB. The results may be used as a benchmark for tracking the changes in the water
budget after the 1991–2020 period, and may assist decision-makers in setting future targets
for water storage in the basin.

2. Materials and Methods

This study used monthly TerraClimate datasets for computing the 30-year average
water budget using three principal hydrological components: P, AET, and Q. TerraCli-
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mate is mainly derived from Climate Research Unit CRU 4.0 [33], in substitution with
Japanese reanalysis JRA55 data, which are particularly used for sparse station regions
such as Africa. The hydrological flux components (AET and Q) were calculated via a
modified Thornthwaite-Mather climatic water balance model, wherein storage or drainage
is constrained with the defined soil water storage capacity with the lookup table method.
The Thornthwaite-Mather climatic water balance model uses the relation of P, PET (calcu-
lated using the Penman-Monteith equation), soil moisture, and snowpack water storage to
compute the water balance. In this case, some of P is intercepted by the canopy and lost
through evaporation. The remainder, i.e., throughfall, is added to the soil water pool. When
the resulting volumetric soil water content exceeds the capacity of the soil, this excess is
deemed to be lost as runoff or drainage (Q), which is used in this analysis.

All of these components were validated from station data and streamflow gauges [34].
The product has better spatial realism (4 km) and quality in terms of average absolute error
than its older versions. The details on the TerraClimate product development are in [35].

The entire 30-year budget calculation (1991–2020) was conducted in the google earth
engine (GEE) platform (source code and datasets are available). Potential and actual
evapotranspiration, runoff, and precipitation products were rescaled with 0.1, and all were
resampled to 1 km resolution using the bilinear resampling method embedded in GEE. To
quantify the water surplus and deficit state of basin’s land use systems, the most recent
Mediterranean Land System Map (2017) was used. The details of the dataset are given in
the Table 1 below and the land cover classification methodology is discussed in [36].

Table 1. Datasets used for trend analysis and the water budget calculation for the study period
(1991–2020).

Dataset Variable Spatial Resolution Source

Terraclimate, University of Idaho

Precipitation Potential
Evapotranspiration (ASCE
Penman-Montieth) Actual
Evapotranspiration Runoff

4.6 km resampled 1 km Abatzoglou et al. 2018 [35]

Mediterranean land systems 26 land cover types 2 km resampled 1 km Malek and Verburg, 2017 [36]

The PER method used in this study provides temporal variability of water budget
changes using P, E, and Q [21]. In this method, the continuity equation gives the change in
the storage within a specific area by subtracting the input precipitation from output sources
(evapotranspiration and runoff), over the territory only.

P − Q − E = ΔS (1)

where P = precipitation, Q = runoff, E = evapotranspiration, and ΔS = water storage.
The annual averages were computed for these three water balance components within

the basin domain. Then, the class-wise average value of each component was retrieved to
find out which regions and land use land cover systems were in a water deficit state. To
understand regional water trends, the basin was subdivided into four regions to compare
annual budget time series; the sub-division is shown in Figure 1. Later, a simple Mann-
Kendall statistical test was applied on annual datasets to assess whether the budget and
its components were increasing over time or decreasing, and whether the trend in either
direction was statistically significant. In last, the Budyko framework [37] was applied at
the mean annual time scale to find aridity clusters in the basin.
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Figure 1. Diverse land systems in Mediterranean region with 26 thematic classes representing
intensive and extensive typologies of forests, crops, wetland, agro-pastoral, and grazing systems
lying in the four sub-regions differentiated with colored outlines, i.e., Southern Europe (black),
Northwest Africa (blue), Middle East (red), and Turkey and Western Balkans (grey).

2.1. Budyko Curve Theory

The Budyko technique sets a semi-empirical relation between the evaporative index,
AET/P, and the aridity index, PET/P. This relation can be termed as the Budyko AET/P
versus PET/P curve, and is a conventional metric of climate aridity, often used to identify
regions under climatic water deficits. In this technique, the annual water balance can be
expressed as a function of the available water and energy, and the ratio of the mean annual
evaporation to the mean annual precipitation (Ea/P, evaporative index) is manifested
by the ratio of the mean annual potential evaporation to the mean annual precipitation
(E0/P, dryness index). If the dryness index is less than one, it means that the energy supply
is the limiting factor for evaporation; if it is greater, then the water supply is the limiting
factor. These indexes are typically affected by climate seasonality, topography, soil types,
and vegetation. Yu et al. 2021 [38] revealed that vegetation coverage had a dominant effect
on AET changes, while climate seasonality that has a negative effect on AET had a relatively
lower effect. This indicates that vegetation dynamics can change the water budget situation
in the basin, but at this broad region scale, our focus was to investigate the storage and
consumption of water in the current land use system considering the atmospheric supply
only. Landscape dynamics can only be assessed with the availability of a dynamic land use
land cover (LULC) with a similar typology, which is missing in this study. Since the region
is so diverse, 90% accuracy in LULC assessment is difficult to achieve.

2.2. Land Use Systems in the MB

In this study, the recent land use land cover map used represents the vegetation of
27 countries, covering an area of 2.3 million km2. The basin surrounding the Mediterranean
Sea has similar climatic and biophysical traits. In previous studies, the Nile River basin
was usually not considered as being part of the MB, with the reason being that the source
of this transboundary basin is in the tropics, and its tropical hydrological regime and water
management issues go beyond the Mediterranean context [8]. Now in the new classification
map, the Nile Delta and Apennines forests of Italy are included, with the justification of
their sharing of common Mediterranean ecoregions falling in the Middle East and Southern
European regions.

These 26 land cover classes shown in the map (Figure 1) were derived from land
cover, livestock density, irrigation extent, and different intensity proxies’ information from
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existing databases, using expert-based hierarchal classifications; the detailed methodology
is given in [36]. This map is specifically used because of its significantly improved thematic
typology at a higher resolution (2 km) compared to existing land cover products.

It sufficiently represents variations in the land systems across the region and gives a
realistic view of climatic impacts on landscapes, compared to other classified maps. As the
distribution indicates, a majority of intensive rain-fed systems exist in Spain, intensive and
extensive arid grazing systems in North Africa, and a majority of irrigated croplands exist
in Italy and Egypt. Forests are more common in Italy and Scandinavian countries, while
Turkey, Spain, and the Balkans have a majority of rain-fed cropping systems and fewer
forests. Their areal densities are given in Table 2, and the sub-regions shown in colored
borders are used for further investigation on the water budget.

Table 2. Annual average of hydrological components for land use land cover classes.

Major Class Area % P (mm yr−1) AET (mm yr−1) Q (mm yr−1) ΔS (mm yr−1)

Bare and Open
Grazing systems 22.6% 486.96 ± 110 359.32 ± 58 127.61 ± 69 0.18 ± 28

Cropland Systems 37.9% 540.56 ± 111 429.60 ± 63 110.91 ± 65 0.00 ± 36

Forest systems 10.1% 633.63 ± 125 463.56 ± 62 170.88 ± 80 −0.42 ± 36

Agro-silvo
pastoral mosaics 23.3% 633.41 ± 133 479.99 ± 68 153.62 ± 86 −0.41 ± 41

3. Results

This study examined the water balance of diverse land use systems in the MB, in
which a 30-year average trend was determined for the Mediterranean ecosystems in the
spatial domain of four major regions surrounding the Mediterranean Sea: Europe, North
Africa, the Middle East, and Turkey and the Balkans (Figure 1). The geographical location,
climatic zone of the sub-region, and various spatial and temporal processes can all affect
the overall water balance of the basin. In areas where rainfall is scarce, the major inflows
come from the sea (desalinated water) into the terrestrial ecosystem. However, only P could
be accounted here as main inflow. On the other hand, evaporation from water bodies is
also considered negligible, which is often true in arid and semi-arid areas at the coarser
resolution; thereby, AET from vegetation was taken as the main outflow component. In
this study, we analyzed the basin’s average budget state in the current climate conditions,
while exploring the significance of ET in the arid and semi-arid land systems through trend
analysis. Such analysis is essential to understand a basin’s behavior, priorities, and needs.

As can be seen in Figure 2, the average P was spatially distributed between 2413 and
12 mm yr−1, with the lowest in Egypt and entire North African belt (less than 200 mm yr−1).
The latter is comparable to the 1979–1999 period-averaged precipitation map found in [39].
While the maximum amount of rain was confined to small areas in Italy, the Balkans, and
coastal areas of North Africa and Spain, as expected, the basin showed contrasting humid
and arid climate compositions. In the northern regions, the P was >1000 mm yr−1 and
PET < 1000 mm yr−1; in contrast, the southern regions had a P of <300 mm yr−1 and a
PET of >1000 mm yr−1. The surplus water was available mostly in the coastal regions of
Lebanon and Israel, and parts of the Middle East, while the majority of the basin had a
storage of nearly −0.5 – 2 mm yr−1, which indicates a critical water deficit at an annual
time step in a large part of the region.
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Figure 2. Shows the spatially averaged map of (a) actual evapotranspiration (AET), (b) precipitation
(P), (c) runoff (Q) (d) water budget for the 30-year period (1991–2020).

In comparison with the AET annual averaged map, a similar pattern was found, in
which areas where P was above 1000 mm yr−1 also had an AET greater than 500 mm yr−1.
The gap between P and AET was very close for North Africa, especially in Egypt.

After applying the first-order water budget Equation (1), an extreme water deficit of
nearly −11 mm yr−1 was found in Greece, Albania, and the northwestern part of Turkey
where the Köroğlu mountains exist. This large water deficit over Greece and Turkey could
have been a stimulus for the extreme wildfires that were spotlighted in the international
media [40,41]. Wildfires could be a consequence of increasingly drier conditions over the
Mediterranean region. We also identified the Balkans, Maghreb, North Adriatic, Central
Spain, and Turkey as the most affected regions from frequent wildfire events, and consider
them to be under a climate crisis. Reduction in the stream flows are noticeably impacted
by climate change, this observed deeply at the catchment scale in Catalonia, Spain [42].
Another scientific reason for the water deficit could be orographic effects in the mountainous
region, where increased evapotranspiration rates at the peaks makes more water available
for vegetation at foothills, and simultaneously less water available for transpiration in the
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mountains, making the water deficit more prominent over the peaks. As the annual average
of ET and Q cannot justify the reasoning fully, neither lateral distributions are accounted
for in this analysis. To justify this deficit, available water in the form of infiltration and
groundwater is also required in the budget analysis, as Freund and Kirchner (2017) [43]
considered P + net lateral transfer to quantify its effect on average ET; they found that ET
increases when the dryness index increases with altitude, due to the lateral movement
of water from more humid uplands to more arid lowlands. It shows that lateral water
transfers will strongly affect the average ET if the source (or recipient) location is energy
limited and the recipient (or source) location is water limited, which is not accountable
with the existing Thornthwaite water balance approach. Overall, the runoff (Q) and P have
similar spatial patterns, which indicates areas where P is more allocated to the mountainous
systems which have greater runoff, and also highlights the near-zero runoff condition in
the majority of the downstream basin areas. This situation will increase in the future, and
the zero runoff condition will markedly increase with a decreasing P influx, as a notable
decrease in streamflow is also suspected for the period 2076–2100 in the Mediterranean
region, as predicted via climate modelling [40].

This spatial pattern (Figure 2) was further analyzed with a recent and detailed high-
resolution land use land cover map, and it indicated that all types of vegetation on average
were under a water-deficit state (Table 2). Surprisingly, forest and pastoral systems spread-
ing over the entire basin showed on average a negative water balance. Medium intensity
forests, followed by bare areas, received the highest precipitation on annual average among
all land cover types. The class-wise statistics also showed the prominence of ET in the
water budget of the basin. Cropland systems that had the highest distribution of nearly 38%
in the basin had an average water budget close to zero, and were especially negative in the
irrigated systems. Even forests covering just 10% of the land had a negative water balance.
This clearly shows that Mediterranean vegetation systems are under climate-induced water
stress. In fact, in all land use systems, the water storage situation was either negative or zero
in average conditions, which can be seen in the minor classes as well (Appendix A). This
was further observed in the graph of LULC systems that showed the minimal difference
between inflow and outflow (Figure 3).

Figure 3. Inflow and outflow budget differences close to zero, among major land use land cover class
of the MB.

This water-limited state was further verified with the Budyko framework that rep-
resents a simple first-order relationship among hydrological components. In this regard,
each region’s annual averaged evaporative and dryness index was plotted over the Budyko
curve. Some interesting clusters formed with the sub-regional study that clearly justifies
regional climatic differences in the Budyko curve. The majority index values found in the
water-limited region of the Budyko curve in the horizontal direction indicate the dominant
climatic influence on the hydrological cycle in the basin, as the basin is getting warmer
and drier over time. Southern Europe (SE), Turkey, and the west Balkans showed more
similarity in their chronological patterns for PET while showing a diagonal position on
the curve; these regions are indicating a relatively less constrained state by available water
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supply, compared to the Middle East and Northwest Africa, where climate variability is
more pronounced with a dispersed pattern and is highly constrained by water limitations.

North Africa’s closeness to its water limit is shown in Figure 4, which depicts its
fragility and vulnerability to a dry climate far greater than other regions. Nevertheless,
this analysis covers only the Mediterranean region under thick or sparse vegetation. The
climatic effects on vegetative parts are obvious from declining productivity and growing
food insecurities in the region.

Figure 4. The dots represent the distribution of the mean annual evaporative index (E/P) ver-
sus the mean annual dryness index (PET/P), accounting for the TerraClimate averages over the
30-year period for the MB. The red and blue lines are the hypothetical water and energy limits of the
Budyko framework.

The time series of hydrological components for the thirty years (1990–2020) were
computed to observe the climate variability in each region. The region-wise stacked time
series of P, AET, Q, and ΔS revealed that synchronicity exists between temporal averages
of AET and P because this basin area is mostly covered with vegetation. However, the
P and AET ranges vary with the regions, as the Middle East and northwest Africa have
both a lower P and AET in the comparable range of 200–400 mm yr−1. The gap between
the average P and AET trend lines is lesser than the difference gap found in SE and the
Turkey and the Balkans regions, where runoff is more prominent and generally highest
(Figure 5). Davraz et al. (2014) [44] also found rainfall to be a prominent cause for the
surface water level increase in Turkey, with direct and indirect recharges through runoff. It
also indicates that the runoff varies by region in the basin, which is also linked to the AET
distribution. The average precipitation peaks for SE and NA are chronologically similar
(1996, 2003, 2010, 2018), indicating that extreme precipitation events happen after every
seven or eight years. The years 2003 and 2018 are also important in terms of the peak found
in the Middle East, the Balkans, and Turkey. The difference gap between AET and P in
SE and Turkey and the Balkans is larger because of the prominent runoff trend ranges
between 0 and 300 mm yr−1, their AET average ranges between 400 and 500 mm yr−1, and
P between 600 and 800 mm yr−1. This trend analysis indicates the regional differences in
the water budget components, with more water storage fluctuations in the Balkans and
Turkey followed by Southern Europe. The water budget in these regions is also close to
zero and negative in some places, which means that much of the precipitation consumed
in the basin and annual variability in storage is greater than that of the MENA region.
By noticing temporal signals, more climate fluctuations in terms of precipitation can be
observed in the recent decades, especially for Southern Europe, Turkey, and the Balkans.
Ajjur and Baalousha (2021) [45] also observed substantial changes in the components of
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the hydrological cycle, which has increased the imbalance between the water supply and
demand across the MENA region. According to climate projections for the middle and
end of century (2021–2050, 2071–2100), temperature rise is the principal reason for PET
losses that amplified the AET, which in result reduced the water availability in the MENA
region [10] (Ajjur and Al Ghamdi 2021). In Europe, Deszi et al. (2018) [46] identified
AET as an important driver of water availability, and their future projections over Europe
postulated a pronounced water deficit in Southern Europe with reference to an ET increase.
This also supports budget inferences, and testifies growing hydrological constraints in the
current climatic conditions.

Figure 5. Annual average moisture budget over four regions for 1990 − 2020. Given are annual
averaged trend of precipitation (blue), evapotranspiration (green), runoff (yellow) and minus change
in terrestrial water storage (red), for (a) North Africa (b) Southern Europe (c) Turkey and the Balkans
(d) Middle East.

Figure 6 shows a clear demarcation of latitudinal similarity among the four sub-regions
in the temporal trends of the budget components. SE and Turkey and the Balkans have
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shown similar magnitudes in P and AET with some variations in peak years. Trendlines
of all budget components showed a similar trend of a slight uplift in AET and P, while
also a statistically insignificant decreasing trend found in SE, via the Mann Kendall test
(Table 3). No trend was observed in most cases, which indicates only a very slight change
in the behavior of the basin.

Figure 6. Long-term time series of water budget components over four sub-regions, i.e., North Africa,
Southern Europe, Turkey and the Balkans, and the Middle East, with their averaged trend behavior.

The entire region observed a peak in the P and a storage change in the recent year
2018, which was also noticed as a year of climate extremes (drought and heavy precipi-
tation) in North Africa [47]. Overall, the time series graph shows greater hydro-climatic
fluctuations over SE, Turkey and the Balkans, indicating that climate predictions could be
more uncertain and challenging here. As AET accounting is based on the water balance
approach, wherein a significant part of irrigation and external water sources is missing and
is not visible in the Middle Eastern Nile region as well, it could affect budget studies with
conventional techniques. Remote sensing-based ET computations should be included in
the budget assessments in future budgeting to account for irrigated ET. However, this study
is primarily based on the terrestrial water budget, in which P is the main inflow and AET
is computed following a one-dimensional simplified water balance approach explained
in the methodology section. This first-order water balance calculation could reveal the
storage condition on an annual basis in the major land use systems in the region, which are
elaborated in this study in different ways.
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4. Discussion

Like in other studies, we also found the highest precipitation (more than 1200 mm)
to be over the Adriatic coast, the Alpine region, and over the coast of Turkey and the
Atlantic Iberian Peninsula. The lowest precipitation was found in the southeast region of
the basin, over the southern Iberian Peninsula, and over the northern coast of Africa, with
less than 400 mm of precipitation. Past studies determined that precipitation changes in
the MB are partially influenced by North Atlantic Oscillations (NAO), upon which their
vegetation dynamics and compositions are based. Precipitation is significantly correlated
with the NAO, which is known to be the primarily responsible atmospheric event for
budget fluctuations; however, no significant correlation has been found for evaporation
yet [48]. Besides that, there could be multiple factors that act together and contribute to the
basin’s hydrological responses. They could be region-specific characteristics, topography,
geography, location, or precipitation regimes; however, their proportional influence has
not yet been accounted for in the basin. A recent study indicated that the incoming P flux
mostly comes from sources inside the Mediterranean. This proportion is only 35%, while
10% is from ET over nearby land in continental Europe, and 25% originates in the North
Atlantic. The remaining 30% comes from the tropical Pacific or the Southern Hemisphere,
indicating its direct connections with multiple locations on earth due to a global terrestrial
energy redistribution. Therefore, fluxes have a more global than regional influence that
links climate change effects with the water cycle in the basin [49,50].

As also noticed over Turkey and the west Balkans (Figures 5c and 6), hydro-climatic
fluctuations are projected to increase, which would decrease annual precipitation in the
southern Europe–Turkey region and the Levant, while in the Arabian Gulf area precipitation
may increase. Besides that, daytime maximum temperatures appear to increase most
rapidly in the northern part of the region, i.e., the Balkan Peninsula and Turkey, which
means more evaporation. This will have marked effects on the ecosystems’ productivity
and functioning, as seen in the analysis. Moutahir [51] also noticed negative trends in
the different water balance components, although they focused on the pine stands in the
sub-humid belt of Spain; according to their budget analysis, the native pine population is
likely to disappear in the future under extreme climate scenarios of water stress. The water-
limiting conditions in the region are threatening for native tree plantations. Even the small
quantity of water used by trees is important in the hydrologic budget of the Mediterranean
areas where rainfall is limited; this indicates how significant the accurate computation
of AET is in the budget [52]. In these regions, AET is mostly found to be higher: more
than 54% of total precipitation, and mostly where tree density was lower [53]. This also
shows how crucial precipitation is for forest growth and how it can control regional forest
expansions or declines. Since many projected studies revealed that rainfall frequency is
likely to be lower in the future, it would reduce the chances for aquifer recharge, despite
their increasing size with extreme rainfall events. Changes in the precipitation intensity,
size, and temporal distribution are expected in this region, and will have different effects
on the water balance. Even in older studies, after precipitation, evaporation is recorded as
the largest term in the Mediterranean freshwater budget in the 50 years of one study period
(1948–1998) [48]. They also found that the Mediterranean region was under a freshwater
deficit at the annual scale. The decrease in open water evaporation under future climate
scenarios as a result of increased relative humidity will have a positive effect on the water
cycle, but this trend would be seasonal and common in the winter only.

The goal of this paper was to provide a picture of the mean annual water budget along
with the long-term variability of hydrological fluxes in the MB. It also justifies that complex
morphology and climate variability contribute to significant annual differences in total
precipitation and its geographical distribution. Rainfall and surface inflows (streams and
rivers) are the major inflows, whereas evapotranspiration from different land uses and
drains from the region to sea are the major outflows. A recent in situ study in Italy also
validated our conclusion about the deficit state of the basin. They found a negative trend
in the estimated infiltration for the consecutive five hydrological years (2017–2022). This
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infiltration decrease was associated with a decrease in precipitation; however, they found
AET in a less significant negative trend in the same period. This affirms that climate stresses
are dominant in the MB, and that reduced surface water input will affect the groundwater
input as well [54,55]. Scarascia-Mugnozza et al. [56] measured the hydrological balance at
different integration times and found evapotranspiration was correlated to the water status
of soils and plants. The indicated water stress can affect carbon metabolism, the water
relations of forest trees, and ecosystem stability. All in all, AET was found to be an effective
measure. This study highlights that both the accounting of the water budget at multi-scale
and multi-functional systems are very important in considering the significant climatic
influence over the water cycle and the budget. These findings could facilitate future climate
preparedness and monitoring tasks.

5. Conclusions

This study attempted to investigate long-term water budget trends in the basin using
only TerraClimate estimates, with which the annual averaged water storage in the major
land distributions is assessed. The long-term water budget assessment has proven the
hydrological constraints in the MB region under the current climate. These constraints
found spatial variations due to an unequal distribution of precipitation over the basin.

From the Budyko curve analysis, we found that AET in the basin is mainly controlled
by evaporative demand. This increase in demand makes the basin more arid, and with
dwindling freshwater influx, causes the region to be water limited. The long-term climate
statistics showed that its spatially averaged annual precipitation is ≈538 mm yr−1, while
water consumption through AET is ≈415 mm yr−1 and runoff is 123 mm yr−1, which
indicates that the major contribution of AET in the basin is in response to the climate. It is
noteworthy to mention that the temporal trend of AET is getting closer to precipitation in
the North African base of the Atlas Mountains, where the water budget is ≈ 0 mm yr−1,
including the Nile delta region, which shows pressure on external water resources. In
contrast, the gap between AET and P is wider for Turkey, the Balkans, and the EU, with
pronounced runoff patterns. The strong climate variability found in the recent decades for
Turkey, the Balkans, and Southern Europe clearly indicates them as more vulnerable to
climate effects and affected by irregular patterns.

As a whole, the basin is in a water deficit state due to the strong effect of evaporative
demand and the limited water supply to the basin. Since these budget inferences are
only based on TerraClimate estimates, which has gained confidence in recent studies,
storage biases have not been verified with other global climate products and model-based
estimations. The purpose of this study was to show the nature of water balance by already
peer-reviewed and published data (TerraClimate) from a first-order perspective. With
this, the study opens the opportunity to add more inputs from different model sources for
hydrological sub-components, to contribute to the storage calculation over the basin.

Our results suppress the need for continuing serious actions on basin water storage
at a large scale, and alarms about escalating climate fluctuations in the MB, especially in
Southern Europe, Turkey, and the Balkans. Middle Eastern and North African ecosys-
tems are fragile to water stress where remote sensing-based dynamic water budgeting is
preferred for its irrigated, rain-fed, and pastoral land use systems.
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Appendix A

Table A1. Class-wise 30-year averaged budget.

Major Class Minor Class Area % P ET Q ΔS

Bare and Open
Grazing systems

bare 1.00 910.75 573.36 335.57 0.27
ext. open rangeland 0.70 444.12 347.12 98.72 0.17

ext. arid grazing 10.20 243.65 210.90 32.38 0.34
int. open rangeland 1.80 495.93 383.30 113.22 0.08

int. arid grazing 8.90 340.33 281.93 58.17 0.05
Average Σ 22.6% 486.96 359.32 127.61 0.18

Cropland Systems

ext. annual 10.40 460.19 359.67 100.53 −0.18
ext. permanent 1.30 608.68 477.60 131.23 −0.22

ext. annual permanent 2.70 548.40 442.63 105.59 0.11
rainfed int. annual 5.80 569.68 443.52 126.11 0.07

rainfed int. permanent 2.20 521.70 435.03 86.37 0.17
rainfed int. ann. -perm. 1.30 543.74 436.50 107.06 0.26

irrigated annual 8.70 569.70 430.66 139.38 −0.25
irrigated permanent 2.20 531.43 440.53 91.00 −0.09

irri ann. -perm 3.30 511.55 400.23 110.95 0.10
Average Σ 37.9% 540.56 429.60 110.91 0.00

Forest systems

medium intensity forest 6.20 837.39 593.49 244.69 −1.03
semi (natural) 2.60 760.82 549.04 212.35 −0.22
high intensity 1.00 769.99 561.11 210.02 −0.81
planted forests 0.30 166.35 150.59 16.45 0.38

Average Σ 10.1% 633.63 463.56 170.88 −0.42

Agro-silvo
pastoral mosaics

cropland/rangeland 6.50 509.44 405.95 103.49 −0.16
open woodland 3.20 702.44 514.28 188.24 −0.28

open wooded rang. 3.50 688.44 505.79 182.84 −0.50
cropland/wooded rang. 6.80 656.81 501.44 155.72 −0.40

perm. crops/wooded ran. 1.70 479.15 386.31 92.62 0.00
closed wooded ran. 1.60 764.19 566.18 198.85 −1.11

Average Σ 23.3% 633.41 479.99 153.62 −0.41
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